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Optimizing the expected values of probabilistic processes is a central problem in computer science and its
applications, arising in �elds ranging from arti�cial intelligence to operations research to statistical computing.
Unfortunately, automatic di�erentiation techniques developed for deterministic programs do not in general
compute the correct gradients needed for widely used solutions based on gradient-based optimization.

In this paper, we present ADEV, an extension to forward-mode AD that correctly di�erentiates the ex-
pectations of probabilistic processes represented as programs that make random choices. Our algorithm is a
source-to-source program transformation on an expressive, higher-order language for probabilistic computa-
tion, with both discrete and continuous probability distributions. The result of our transformation is a new
probabilistic program, whose expected return value is the derivative of the original program’s expectation.
This output program can be run to generate unbiased Monte Carlo estimates of the desired gradient, which
can then be used within the inner loop of stochastic gradient descent. We prove ADEV correct using logical
relations over the denotations of the source and target probabilistic programs. Because it modularly extends
forward-mode AD, our algorithm lends itself to a concise implementation strategy, which we exploit to develop
a prototype in just a few dozen lines of Haskell (https://github.com/probcomp/adev).
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tional semantics; • Computing methodologies→ Symbolic and algebraic manipulation; Machine learning.
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1 INTRODUCTION

Specifying and solving optimization problems has never been easier, thanks in large part to the
maturation of programming languages and libraries that support automatic di�erentiation (AD).
With AD, users can specify objective functions as programs, then automate the construction of
programs for computing their derivatives. These derivatives can be fed into optimization algorithms,
such as gradient descent or ADAM, to �nd local minima or maxima of the original objective function.
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Fig. 1. Our approach to di�erentiating loss functions defined as expected values. Our algorithm takes as

input a probabilistic program C , which, given a parameter of type R (or a subtype), outputs a value of type R̃,

which represents probabilistic estimators of losses (Def. 3.1). We translate C to a new probabilistic program B ,

whose expected return value is the derivative of C ’s expected return value. Running B yields provably unbiased

estimates G8 of the loss’s derivative, which can be used to guide optimization.

Input Loss as a AD on deterministic ADEV

Probabilistic Program parts only (incorrect) (correct derivative)

L = _\ : I.E (do {
1 ← flip\

if 1 then

return 0

else

return − (\ ÷ 2)
})

L′ = _\ : I.E (do {
1 ← flip\

if 1 then

return 0

else

return − 1 ÷ 2

})

L′ = _\ : I.E (do {
1 ← flip\

if 1 then

return 0

else

let X? = 1 ÷ (\ − 1)

let X; = −1 ÷ 2
let ; = −\ ÷ 2
return X; + ; × X? })

L(\ ) = \2−\
2 L′naive (\ ) =

\−1
2 L′correct (\ ) = \ −

1
2

Fig. 2. If probabilistic constructs are ignored, AD may produce incorrect results. In this case, standard AD

fails to account for \ ’s e�ect on the probability of entering each branch. ADEV, by contrast, correctly accounts

for the probabilistic e�ects, generating similar code to what a practitioner might hand-derive. Right: Correct

gradients are o�en crucial for downstream applications, e.g. optimization via stochastic gradient descent.

Unfortunately, there is an important class of functions that today’s AD systems cannot di�erentiate
correctly: those de�ned as expected values of probabilistic processes. Consider, for example, the
reinforcement learning problem of optimizing the parameters of a robot’s algorithm, based on
simulations of its behavior in random environments. The practitioner hopes maximize the expected
(i.e., average) reward across all possible runs of the simulator. But obtaining gradients of this objec-
tive is not straight-forward; naively applying AD to the stochastic reward simulator will in general
give incorrect results. Instead, practitioners often resort to hand-derived gradient estimators that
they must manually prove correct. And this dilemma is hardly unique to robotics: the optimization
of expected values is a ubiquitous problem, as the diverse examples in Table 1 attest.

In this paper, we present ADEV, a new AD algorithm that correctly computes derivatives of the
expected values of probabilistic programs. Our general approach is sketched in Figure 1:

• The user provides a program C encoding a probabilistic process dependent on a parameter \ .
• The user’s goal is to �nd \ ∗ = argmin\ L(\ ), where the loss function L maps a parameter value
\ to the expected return value of C , run on input \ .
• Applying ADEV to C yields a new probabilistic program B . Our algorithm is correct in that the
expected return value of B at input \ is exactly the derivative L ′(\ ) of the loss.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 5. Publication date: January 2023.
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Table 1. The need to di�erentiate expected values of probabilistic processes is ubiquitous in many fields,

including machine learning, operations research, and finance [Mohamed et al. 2020].

Application Probabilistic Process Expected Value Use of Gradients

Supervised learning Evaluate loss on random minibatch Loss on all data Minimize total loss
Reinforcement learning Measure reward in simulated environment Average reward Maximize reward
Variational Bayes Sample variational family, estimate ELBO ELBO objective Minimize  ! (@ | |?)
Train on synthetic data Generate synthetic data and evaluate loss Expected loss un-

der simulator
Minimize average loss

Sensitivity analysis in
computational �nance

Simulate future option prices, to assess in-
vestment risk

Expected risk Analyze risk assess-
ment’s sensitivity to
pricing assumptions

Operations research Simulate e�ciency of a customer queue Average e�ciency Maximize e�ciency
Bayesian optimization Sample current belief distribution about a

function’s value at a candidate point, and
evaluate whether the point would be a new
‘best parameter value’

Probability of
improvement
over current best
parameter value

Choose next sample
point to maximize prob-
ability of improvement

• Even if L ′(\ ) cannot be evaluated exactly, users can run the probabilistic program B to simulate
provably unbiased estimates of L ′(\ ), which can be used for stochastic optimization.

Figure 2 illustrates our method on a toy example. The loss functionL is de�ned as the expectation
of a program that �ips a biased coin, with probability-of-heads \ . Depending on the outcome, we
receive either 0 loss (the ‘heads’ case), or a negative loss of −\

2
(indicating a positive reward). The

problem is to �nd the \ that minimizes expected loss. Intuitively, the optimal strategy must trade o�
the bene�ts of increasing \ (higher payo� in the ‘tails’ case) with its drawbacks (lower probability

of entering the ‘tails’ case in the �rst place). The expected loss L(\ ) = \ 2−\
2

is minimized at \ = 0.5.
Applying AD to only the deterministic parts of 5 fails to account for the e�ect of increasing \ on

the probability of entering the high-reward branch. The resulting (incorrect) gradient is negative
for all \ ∈ (0, 1); optimizing with it signi�cantly overshoots the optimal value of 0.5. By contrast,
ADEV automatically introduces additional terms to account for the dependence of 1 on \ , leading
to a gradient that can be soundly used to optimize the loss.
Our translation of L into L ′ may appear complex and non-local, but in fact, we arrived at our

algorithm by modularly extending a standard ‘dual-number’ forward-mode AD macro (e.g., as pre-
sented by Huot et al. [2020]) to handle probabilistic types and terms. As in standard forward-mode
AD, our translation is mostly structure-preserving, with almost all the action happening in the
translation of primitives, like flip in this example. (The term we display for L ′ in Figure 2 has
been further simpli�ed for clarity, via monad laws and V-reductions; see Figure 15.)

Contributions.We present ADEV, a new AD algorithm for correctly automating the derivatives
of the expectations of expressive probabilistic programs. It has the following desirable properties:

(1) Provably correct: It comes with guarantees relating the output program’s expectation to the
input program’s expectation’s derivative (Theorem 6.1).

(2) Modular: ADEV is a modular extension to traditional forward-mode AD, and can be modularly
extended to support new gradient estimators and probabilistic primitives (Table 2).

(3) Compositional: ADEV’s translation is local, in that all the action happens in the translation of
primitives (as in standard forward-mode AD).

(4) Flexible: ADEV provides levers for navigating trade-o�s between the variance and computa-
tional cost of the output program, viewed as an unbiased gradient estimator.

(5) Easy to implement: It is easy to modify existing forward-mode implementations to support
ADEV — our Haskell prototype is just a few dozen lines (Appx. A, github.com/probcomp/adev).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 5. Publication date: January 2023.
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Recipe for New

ADEV Modules

Add new types, con-
structs, or primitives

Extend macro D{·} to
new constructs

For new typesg , de�ne
speci�cation Rg

Prove new constructs
preserve correctness

Table 2. ADEV is implemented modularly and admits modular extensions.

Modular language extension Reference

Real-valued probabilistic primitives + combinators Sec. 3
Discrete prob. prog. + enumeration + REINFORCE [Ranganath et al. 2014] Sec. 4
Continuous prob. prog. + REPARAM [Kingma and Welling 2014] Sec. 5
Discontinuous operations (e.g. ≤) Sec. 6
Control variates (baselines) for variance reduction [Mnih and Gregor 2014] Appx. B.1
Variance reduction via dependency tracking [Schulman et al. 2015] Appx. B.2
Storchastic [van Krieken et al. 2021] multi-sample estimators Appx. B.4
Higher-order primitive for di�erentiable particle �lter [Ścibior et al. 2021] Appx. B.5
Implicit reparameterization gradients [Figurnov et al. 2018] Appx. B.7
Weak or measure-valued derivatives [Heidergott and Vázquez-Abad 2000] Appx. B.8
Reparameterized rejection gradients [Naesseth et al. 2017] Appx. B.9
SBSA with common random numbers [Kleinman et al. 1999] Appx. B.10

Key Challenges. To develop our algorithm, we had to overcome four key technical challenges:

(1) Challenge: Reasoning about correctness compositionally. Our correctness criterion makes
sense for themain program, but not necessarily for subterms, hindering compositional reasoning.
Solution: Logical relations. We adapt the logical relations technique of Huot et al. [2020]
(Sec. 2) to de�ne extended correctness criteria that apply to any type in our language.

(2) Challenge: Compositional di�erentiation of probability kernels. ML researchers of-
ten build gradient estimators for whole models [Mohamed et al. 2020]. But to di�erentiate
compositionally we need a notion of ‘probability kernel derivative,’ and rules for composition.
Solution: Higher-order semantics of probabilistic programs and AD. Recent PPL seman-
tics view probability as a submonad of the continuation monad [Vákár et al. 2019]. In this light,
probabilistic primitives are really higher-order primitives, averaging a continuation’s value
over all possible sampled inputs. This gives a blueprint for a notion of derivative at probabilistic
types, based on existing theory of higher-order AD [Huot et al. 2020] (Sec. 4).

(3) Challenge: Commuting limits. Di�erentiating expectations requires swapping integrals and
derivatives, which may not be sound. The dominated convergence theorem gives su�cient
regularity conditions, but they are hard to formulate or enforce compositionally.
Solution: Lightweight static analysis to surface regularity conditions. Our macro op-
tionally outputs a veri�cation condition (presented to the user as syntax) making explicit every
regularity assumption that ADEV makes while translating a program (Sec. 5). These regularity
assumptions are often ignored (i.e., not even stated) in the ML literature on gradient estimation.

(4) Challenge: Safely exposing non-di�erentiable primitives. Probabilistic programs that use
non-di�erentiable primitives, like ≤ or '4!* , may have di�erentiable expectations. But domi-
nated convergence requires integrands to be continuously di�erentiable w.r.t. the parameter.
Solution: Static typing for �ne-grained di�erentiability tracking. To ensure we only
swap integrals and derivatives when it is sound to do so, we use static typing to track the
smoothness of deterministic subterms with respect to each of their free variables (Sec. 6).

2 BACKGROUND: FORWARD-MODE AD FOR DETERMINISTIC PROGRAMS

In this section, we review standard forward-mode AD, a well-established technique for automating
the derivatives of deterministic programs [Director and Rohrer 1969; Griewank and Walther 2008;
Rall 1981]. Our presentation is based on Huot et al. [2020]’s formalization of forward-mode AD
in a pure, higher-order functional language. The simplicity of the algorithm, and the modularity
of Huot et al. [2020]’s correctness argument via logical relations, makes it well-suited to extensions,
like those we introduce in Sections 3-6 and in Appendix B (see Table 2).
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Smooth base types ^ ::=R | R>0 | I

Types g ::= 1 | N | ^ | g1 × g2 | g1 → g2

Terms C ::= () | A (∈ R) | 2 | 2D | G | (C1, C2) | _G : g .C | let G = C1 in C2

| fst C | snd C | C1 C2

Primitives 2 ::=+ | − | × | ÷ | exp | log | sin | cos | pow

We write let (G,~) = C1 in C2 as sugar for let G = fst C1 in let ~ = snd C1 in C2

Fig. 3. Syntax of Sec. 2’s deterministic simply-typed _-calculus, where A ranges over real numeric constants,

and 2 over source-language primitive functions, to each of which is associated a target-language dual-number

derivative 2D (Fig. 5). Gray highlights indicate syntax only present in the AD macro’s target language.

2.1 Source Language for AD

The grammar of our starting language is given in Figure 3. Our types, terms, typing rules, and
semantics are standard, but we recall them here to �x notation:
Types and Terms. Our language includes numeric types1 (R, R>0, I = (0, 1), N), tuples � ×

�, and function types � → �. For terms, it features the standard constructs for building and
accessing tuples, creating abstractions, and applying functions. We also provide primitives for
smooth numerical operations, like log : R>0 → R. Technically, we need multiple versions of each
primitive (+N, +R), but we will suppress these subscripts when clear from context.

Judgments. A context Γ is a list associating variable names with their types (e.g., Γ = G : g,~ : f).
The typing judgment Γ ⊢ C : g indicates that, in context Γ, C is a well-typed term of type g . If ⊢ C : g
(i.e., if C is well-typed in an empty context), we call C a closed term. The typing rules are standard.

Semantics. To each type g we assign a set of values ⟦g⟧. To numeric types, we assign the
corresponding sets of numbers. We interpret product and function types as products and functions
on the interpretations of their arguments: ⟦� × �⟧ = ⟦�⟧ × ⟦�⟧, and ⟦� → �⟧ = ⟦�⟧ → ⟦�⟧.
Then, for any term in context Γ ⊢ C : g , we assign a meaning ⟦Γ ⊢ C : g⟧ ∈ ⟦Γ⟧ → ⟦g⟧, where
⟦Γ⟧ is the space of environments mapping the variable names in Γ to values of their corresponding
types. For example, the meaning of a variable is the function that looks up that variable in the
environment: ⟦Γ ⊢ G : g⟧(d) = d [G]. When the context or the type is clear, we may omit them,
writing ⟦C⟧ or ⟦C : g⟧. Using this shorthand, we give some more examples of term interpretations:

⟦C1 C2⟧(d) = ⟦C1⟧(d) (⟦C2⟧(d)) ⟦(C1, C2)⟧(d) = (⟦C1⟧(d), ⟦C2⟧(d)) ⟦_G.C⟧(d) = _E .⟦C⟧(d [G ↦→ E])

Notation 2.1. For closed terms C , we write ⟦C⟧ instead of ⟦C⟧(d), where d is the empty environment.

2.2 Forward-Mode AD

We assume the user has written a program ⊢ C : R→ R, and wishes to automate the construction
of a program ⊢ B : R→ R computing its (denotation’s) derivative \ ↦→ ⟦C⟧′(\ ). Forward-mode AD
translates the source program into a program representing the derivative in two steps:

• First, we apply a macro,D{·}, to the user’s program, yielding a new program ⊢ D{C} : R ×R→
R ×R. This new program operates on dual numbers, pairs of numbers representing the value
and derivative of a computation. For any di�erentiable ℎ, applying ⟦D{C}⟧ to the dual number
(ℎ(\ ), ℎ′(\ )) should yield ((⟦C⟧ ◦ ℎ) (\ ), (⟦C⟧ ◦ ℎ) ′(\ )).
• Second, we output the program B = _\ : R.snd(D{C} (\, 1)). Since (\, 1) = (83 (\ ), 83 ′(\ )),
we know ⟦D{C}⟧(\, 1) returns a dual number representing ((⟦C⟧ ◦ 83) (\ ), (⟦C⟧ ◦ 83) ′(\ )) =
(⟦C⟧(\ ), ⟦C⟧′(\ )), whose second component we extract to return ⟦C⟧’s derivative.

1In our implementation, reals are represented by �oating-point numbers, but we note that our correctness results do not
account for any error introduced by �oating-point approximations.
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AD on contexts: D{•} = • D{Γ, G : g} = D{Γ}, G : D{g}

AD on types:
D{^} = ^ ×R
D{N} = N

D{1} = 1

D{g1 × g2} = D{g1} × D{g2}
D{g1 → g2} = D{g1} → D{g2}

AD on pure expressions:
D{_G : g .C} = _G : D{g}.D{C}
D{C1C2} = D{C1}D{C2}
D{let G = C1 in C2} = let G = D{C1} in D{C2}
D{(C1, C2)} = (D{C1},D{C2})

D{fst C} = fst D{C}
D{snd C} = snd D{C}
D{A : ^} = (A, 0)
D{A : N} = A

D{G} = G

D{()} = ()
D{2} = 2D

Fig. 4. The standard forward-mode AD translation as a whole program transformation. Note that the types of

variables G : g (both free and bound) are changed to G : D{g}. For every primitive 2 : g of the source language,

2D : D{g} is its built-in derivative. D{−} is a typed-translation: if Γ ⊢ C : g , then D{Γ} ⊢ D{C} : D{g}.

If the �rst step is done correctly, the correctness of the second step should be clear. Therefore, the
content of the forward-mode AD algorithm mostly lives in the de�nition of theD{·} macro, and in
the proof of its correctness. To emphasize this, we restate the property we need ⟦D{C}⟧ to satisfy
if we want the second step above to follow:

Definition 2.1 (correct dual-number derivative at R). Let 5 : R→ R be a di�erentiable

function. Then 5� : R ×R→ R ×R is a correct dual-number derivative of 5 if for all di�erentiable

ℎ : R→ R, 5� (ℎ(\ ), ℎ
′(\ )) = ((5 ◦ ℎ) (\ ), (5 ◦ ℎ) ′(\ )).

Then the AD macro is correct if it computes these dual-number derivatives:

Definition 2.2 (correctness of D{·}). The AD macro D{·} is correct if, for all closed terms

⊢ C : R→ R, ⟦⊢ D{C} : R ×R→ R ×R⟧ is a correct dual-number derivative of ⟦⊢ C : R→ R⟧.

De�ning the AD Macro. The AD macro D{·} itself is given in Figure 4. In every place that real
numbers (of type R) appeared in the original program, they are now replaced by dual numbers (of
type R ×R). This a�ects the type of every term in the program, and the assumed types of any free
variables in the context; we write D{g} for the type that terms of type g have after translation to
use dual-numbers. Since reals are replaced by pairs of reals, we have D{R} = R × R (and more
generally, D{^} = ^ ×R for all smooth base types ^). Because functions into N have no derivative
information to track, D{N} = N. On product and function types, D{·} is de�ned recursively:
D{g1 × g2} = D{g1} × D{g2} and D{g1 → g2} = D{g1} → D{g2}.
When applied to a term G1 : g1, . . . , G= : g= ⊢ C : g , AD produces a new term G1 : D{g1}, . . . , G= :

D{g=} ⊢ D{C} : D{g}. The new term is mostly the same as the old term—only two things change:

• Constant real numbers A are replaced with constant dual numbers (A, 0) with 0 derivative.
• Primitives 2 : g → f are translated into new, target-language primitives 2� : D{g} → D{f}. For
each 2 , 2� is a built-in dual-number derivative for the primitive 2 (though we have yet to make
this precise, except when g = f = R).

Notation 2.2. In examples, we use the variable naming convention 3G = (G, XG) for dual numbers.

The semantics of the new primitives 2� are given in Figure 5. When 2 : R→ R, ⟦2�⟧ has the form

⟦2�⟧ = _(G, XG).(⟦2⟧(G), ⟦2⟧′(G) · XG),

which ensures that when run on a pair (ℎ(\ ), ℎ′(\ )), it computes (⟦2⟧(ℎ(\ )), ⟦2⟧′(ℎ(\ )) · ℎ′(\ )),
the second component of which uses the familiar chain rule from calculus to compute (⟦2⟧◦ℎ) ′(\ ).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 5. Publication date: January 2023.
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⟦expD⟧(G, XG) = let ~ = exp G

in (~,~ × XG)
⟦powD⟧(3G, 0) = (0, 0)

⟦(+R)D⟧((G, XG), (~, X~)) = (G + ~, XG + X~)
⟦(×R)D⟧((G, XG), (~, X~)) = (G × ~, XG × ~ + G × X~)
⟦powD⟧((G, XG), = + 1) = let ~ = pow(G, =) in

(G × ~, (= + 1) × ~ × XG)

Fig. 5. Dual number interpretation of deterministic primitives. On the right we use syntax for simplicity, but

it should be understood as metalanguage syntax. We write 3G = (G, XG) for dual numbers. Note that each

primitive implements the chain rule, multiplying the derivative with respect to G by XG .

2.3 Proof Technique: Reasoning about Correctness with Logical Relations

We now review a powerful proof technique for reasoning about AD and establishing its correctness,
based on logical relations [Ahmed 2006; Barthe et al. 2020; Huot et al. 2020; Katsumata 2013; Krawiec
et al. 2022]. It may seem like overkill for such a simple algorithm, but the technique will shine
when we try to make sense of highly non-standard extensions to forward-mode AD, in Secs. 3-6.

The Challenge with Simple Proof by Induction. We might hope we could establish AD’s
correctness with a simple proof by induction: if AD is correct for each subterm in a program,
it is correct for the whole program.2 The challenge is that the notion of correctness we gave in
De�nition 2.1 applies only to translations of closed R → R programs. The meaning of an open
subterm, ⟦Γ ⊢ C : g⟧, will in general be a function from environments to values of type g (which
may not be R). The meaning of its translation, ⟦D{Γ} ⊢ D{C} : D{g}⟧, will also be a function,
from dual-number environments to values of type D{g}. Our simple correctness criterion about
di�erentiable R→ R functions cannot be applied here, and so it is unclear what inductive hypoth-
esis a proof by induction would use.

The Logical Relations Approach. The logical relations proof technique circumvents this issue
by de�ning a di�erent inductive hypothesis for each type. In proofs about AD, what this means is
that we ultimately de�ne a di�erent notion of correct dual-number derivative for functions between
any two types in our language. Once we’ve done this, we can then proceed with an ordinary proof
by induction: if the translation of each subterm Γ ⊢ C : g yields a correct dual-number derivative of
the ⟦Γ⟧ → ⟦g⟧ function that C denotes, then the translation of the enclosing term is also correct.

But how can we de�ne correct dual-number derivatives for functions 5 : ⟦g1⟧ → ⟦g2⟧ between
arbitrary types? Looking more closely at De�nition 2.1, we can see that it phrases correctness
for 5 : R → R functions in a slightly non-standard way: 5� is a correct derivative if, when
composed with a function ℎ’s derivative, it preserves the relationship that ℎ and ℎ′ enjoyed, of “being
a derivative.” This motivates a more general approach to de�ning correctness based on the idea of
preserving the relationship between a function and its derivative. We proceed in two stages:

• First, for each type g , we de�ne a notion of derivative for R→ ⟦g⟧ functions: a relation between
an R→ ⟦g⟧ function and an R→ ⟦D{g}⟧ function encoding what it means to be a derivative.
• Then, for arbitrary functions 5 : ⟦g1⟧ → ⟦g2⟧, we de�ne correctness as the preservation of this
relationship: we look at what happens when 5 (and its translation) are composed with R→ ⟦g1⟧
functions (and their R → ⟦D{g1}⟧ derivatives), and check that what we get out are related
R→ ⟦g2⟧ and R→ ⟦D{g2}⟧ functions.

More precisely, in step 1, we de�ne for each type g a dual-number relation Rg encoding what it
means to be a derivative of an R→ ⟦g⟧ function:

2Technically, the induction is usually over the typing derivation of the term, and what we call “subterms” are really subtrees
of the typing derivations corresponding to the premises of the bottom-most inference rule in the typing derivation.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 5. Publication date: January 2023.



5:8 Alexander K. Lew, Mathieu Huot, Sam Staton, and Vikash K. Mansinghka

Dual-Number Logical Relations Rg for the Deterministic Language (§2)

RR =

{
(5 : R→ R, 6 : R→ R ×R) | 5 di�erentiable ∧ ∀\ ∈ R.6(\ ) = (5 (\ ), 5 ′(\ ))

}

RR>0
=

{
(5 : R→ R>0, 6 : R→ R>0 ×R) | (]R>0

◦ 5 , ⟨]R>0
, 83⟩ ◦ 6) ∈ RR

}

RI =

{
(5 : R→ I, 6 : R→ I ×R) | (]I ◦ 5 , ⟨]I, 83⟩ ◦ 6) ∈ RR

}

RN =

{
(5 : R→ N, 6 : R→ N) | 5 is constant ∧ 5 = 6

}

Rg1×g2 =
{
(5 : R→ ⟦g1 × g2⟧, 6 : R→ ⟦D{g1} × D{g2}⟧) |

(c1 ◦ 5 , c1 ◦ 6) ∈ Rg1 ∧ (c2 ◦ 5 , c2 ◦ 6) ∈ Rg2

}

Rg1→g2 =
{
(5 : R→ ⟦g1 → g2⟧, 6 : R→ ⟦D{g1 → g2}⟧) |

∀( 9, :) ∈ Rg1 .(_A .5 (A ) ( 9 (A )), _A .6(A ) (: (A ))) ∈ Rg2

}

Fig. 6. Definition of the dual-number logical relation at each type. For each smooth base type ^, we write

]^ : ⟦^⟧ → R for the canonical injection.

Definition 2.3 (dual-number relation). For a type g , a dual-number relation for g is a relation

Rg over the sets R→ ⟦g⟧ and R→ ⟦D{g}⟧, that is, a subset Rg ⊆ (R→ ⟦g⟧) × (R→ ⟦D{g}⟧).

For each g , we choose Rg so that it relates continuously-parameterized ⟦g⟧ values (i.e., curves
R→ ⟦g⟧) with continuously-parameterized dual-number values (curves R→ ⟦D{g}⟧) that use
their dual-number storage to correctly track a local linear approximation to how the ⟦g⟧ value is
changing when the real-valued parameter changes. This allows us to de�ne correct dual-number
derivatives at any type automatically:

Definition 2.4 (correct dual-number derivative (general)). Suppose that dual-number

relations Rg have been chosen for every g , and let 5 : ⟦g1⟧ → ⟦g2⟧. We say 5� : ⟦D{g1}⟧ → ⟦D{g2}⟧
is a correct dual-number derivative of 5 if, for all (6,6′) ∈ Rg1 , the functions (5 ◦ 6, 5� ◦ 6

′) ∈ Rg2 .

This last de�nition is the one we will use as our inductive hypothesis in proving the AD macro
correct overall. Although the proof by induction ultimately needs to cover all terms, the power of
the technique is that the inductive steps are largely covered by existing, well-studied machinery,
and so most of the AD-speci�c action happens at base types and primitives.

2.4 Proof of Correctness for Forward-mode AD

We now apply the logical relations technique from the last section to prove our AD macro correct.
To do so, we de�ne dual-number relations Rg which encode a notion of derivative at each type
(Figure 6). For the reals (and continuous subsets of the reals), this notion coincides with the usual
derivative: the relation RR, for example, relates a di�erentiable function 5 with the function
6(\ ) = (5 (\ ), 5 ′(\ )). For discrete types, such as N , because the derivative will necessarily be zero,
we can avoid storing a dual number.

We then need to prove what is often called the fundamental lemma of a logical relations argument:

Lemma 2.1 (Fundamental lemma). For every term-in-context Γ ⊢ C : g , ⟦D{C}⟧ is a correct

dual-number derivative of ⟦C⟧, with respect to the relations Rg given in Figure 6.

This is proved by induction on the typing derivation of C , and as our de�nitions of Rg for product
types and function types are completely standard, the inductive cases can be handled by standard
logical relations machinery [Huot et al. 2020]. The only interesting cases are the base cases, where
we must show that the interpretation of every primitive function 2 has a correct dual-number
derivative given by the interpretation of its translation 2� (De�nition 2.1).
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The last step is to use our proof of the fundamental lemma to establish the more basic correctness
criterion we outlined in De�nition 2.2:

Theorem 2.2 (correctness of forward-mode AD [Huot et al. 2020]). For all closed terms

⊢ C : R→ R, ⟦_\ : R.snd(D{C} (\, 1))⟧ is the derivative of ⟦C⟧.

Proof. By the fundamental lemma (2.1), ⟦D{C}⟧ ∈ RR→R, so for functions (5 , 6) ∈ RR, we
have (⟦C⟧◦ 5 , ⟦D{C}⟧◦6) ∈ RR. Take 5 = 83 and 6 = _\ .(\, 1), and note that (5 , 6) ∈ RR, because
6(\ ) = (5 (\ ), 5 ′(\ )). Then (⟦C⟧ ◦ 5 , ⟦D{C}⟧ ◦ 6) = (⟦C⟧, _\ .⟦D{C}⟧(\, 1)) ∈ RR, and so by the
de�nition of RR, for all \ ∈ R, ⟦D{C}⟧(\, 1) = (⟦C⟧(\ ), ⟦C⟧′(\ )). Applying c2 to extract just the
second component, we have c2⟦D{C}⟧(\, 1) = ⟦C⟧′(\ ). As a function of \ , the left-hand side is
precisely ⟦_\ : R.snd(D{C}(\, 1))⟧, and the right-hand side is the derivative of ⟦C⟧. □

3 WARM-UP: DIFFERENTIATING A PROBABILISTIC COMBINATOR DSL

Now that we have set the stage, we can begin to introduce our main characters: new types and
terms for probabilistic programming. In this section, we tackle only a small warm-up extension: we
study the most basic setting where probability arises, a simple and restrictive DSL for composing
probability distributions with combinators. Unlike general probabilistic programming languages,
which we study in Sections 4-6, the DSL in this section does not allow for arbitrary sequencing of
probabilistic computations. Despite the simplicity of this setting, our development here provides
an important foundation for the fancier extensions we will add next.

3.1 The Type R̃ of Random Real Numbers

Typically, in di�erentiable programming languages, users aim to construct a closed expression
⊢ C : R→ R, implementing a di�erentiable function whose derivative they wish to compute. But
for the rest of this paper, we consider a di�erent work�ow: instead of constructing a program of
type R→ R, the user constructs a program of type R→ R̃, where R̃ is a new type of random real
numbers, whose expected values are the quantities of interest. We call the values of R̃ unbiased

real-valued estimators: sampling them yields unbiased estimates of the true values we care about.

Definition 3.1 (real-valued estimator). We denote by R̃ the set of unbiased real-valued esti-

mators: probability measures ` on the measurable space (R,B(R)). If EG∼` [G] =
∫
G` (3G) exists, i.e.

is �nite and equal to some number A ∈ R, we say ` estimates (or is an unbiased estimator of) A .

Remark 3.1. A distribution ` ∈ R̃ need not have a density function, and may be supported on a

�nite, countable, or uncountable set of reals. For example, the Dirac distribution, XA , which assigns all

its mass to the number A , is an unbiased estimator of A , as is the Gaussian distribution N(A, 1).

Although the user’s program ⊢ C̃ : R→ R̃ denotes a map into the space of probability distribu-
tions, the function they wish to di�erentiate is the loss function L : R→ R = _\ .EG∼⟦̃C⟧(\ ) [G], if
L is well-de�ned (i.e., if the expectation always exists). As illustrated in Figure 1, applying ADEV
to the program C̃ , we get a new program ⊢ B̃ : R→ R̃ that estimates L ′, the derivative of the loss. It
will be useful to have a word for the relationship between ⟦̃C⟧ and ⟦̃B⟧; we coin unbiased derivative:

Definition 3.2 (unbiased derivative). Given a function 5̃ : * → R̃, for * ⊆ R, suppose

L : * → R = _\ .E
G∼5̃ (\ )

[G] is well-de�ned and di�erentiable. We say that a function 6̃ : * → R̃ is

an unbiased derivative of 5̃ if for all \ ∈ * , 6̃(\ ) estimates L ′(\ ), that is,

EG∼6̃ (\ ) [G] = L
′(\ ) =

d

d\
E
G∼5̃ (\ )

[G] .

Note that estimator-valued functions may have many unbiased derivatives.
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Types g ::= . . . | R̃ | R̃D

Primitives 2 ::= . . . | minibat� : N→ N→ (N→ R) → R̃ | fst∗, snd∗ : R̃D → R̃

| +R̃,×R̃ : R̃ × R̃→ R̃ | 4G?R̃ : R̃→ R̃ | exact : R→ R̃

Fig. 7. Syntax for the Probabilistic Combinator DSL (§3), as an extension to Fig. 3. Gray highlights indicate

syntax only present in the target language of the AD macro.

Semantics of types: Example primitive and its built-in derivative:

⟦R̃⟧ = {` | ` a probability measure
on (R,B(R))}

⟦R̃D⟧ = {` | ` a probability measure
on (R ×R,B(R ×R))}

×R̃ (G̃ : R̃, ~̃ : R̃):
A ∼ G̃

B ∼ ~̃,
return A × B

end

×R̃D (3̃G : R̃D, 3̃~ : R̃D):

3A ∼ 3̃G

3B ∼ 3̃~,
return 3A ×D 3B

end

Fig. 8. Semantics of the new types for the Combinator DSL and an example of a new primitive.

D{R̃} = R̃D

D{4G?R̃} = 4G?R̃D

D{minibat�} = minibat�D
D{exact} = exactD

D{+R̃} = +R̃D
D{×R̃} = ×R̃D

Fig. 9. ADEV macro for the Combinator DSL (§3), extending Fig. 4

3.2 Syntax and Semantics of the Combinator DSL

We now present our combinator language, a toy DSL for constructing values of type R̃. The syntax
is given in Fig. 7, and the semantics in Fig. 8 (some primitives deferred to Fig. 24).
Beyond the new base type R̃, our extended source language exposes a small collection of

combinators for implementing stochastic loss functions. The minibat� primitive constructs a
probabilistic estimator of a large sum

∑"
8=1 5 (8), that works by subsampling < ≪ " indices

(81, . . . , 8<) uniformly at random, and evaluating 5 only at those indices, returning "
<

∑<
9=1 5 (8 9 ).

The exact primitive constructs the trivial deterministic estimator of a real value that returns the
value with probability 1. Our other new primitives transform existing estimators, creating a new
estimator with expected value equal to some function (e.g., a sum, product, or exponentiation) of

the inputs’ expected values. We give one example (×R̃) in Figure 8; the full semantics can be found
in Appendix C, Figure 24.

3.3 ADEV for the Combinator DSL: Di�erentiating through R̃

Suppose a user has written a program ⊢ C̃ : R→ R̃, representing a stochastic estimator ⟦̃C⟧ of a loss
function L(\ ) = EG∼⟦̃C⟧(\ ) [G]. Our algorithm, ADEV, di�erentiates L by constructing a program

⊢ B̃ : R→ R̃ that implements an unbiased derivative of ⟦̃C⟧ (De�nition 3.2), in two steps:

• First, we will apply an extended version of the AD macro D{·} to the user’s program, yielding a
new program D{̃C} : R ×R→ R̃D . It accepts a dual number as input, and instead of estimating
a single real value, estimates a dual number value: the type R̃D denotes the set of probability
distributions over pairs of reals. The key correctness property in this extended setting is that
if we are given as an input dual number (ℎ(\ ), ℎ′(\ )) for some di�erentiable function ℎ, then
⟦D{̃C}⟧ should send it to an estimator of the dual number ((L ◦ ℎ) (\ ), (L ◦ ℎ) ′(\ )).
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• Second, we output the term B̃ = _\ : R.snd∗ (D{̃C}(\, 1)). As before, since (\, 1) = (83 (\ ), 83 ′(\ )),
we know c2∗ ◦ ⟦D{̃C}⟧ returns a new estimator that estimates (L ◦ 83) ′(\ ), as desired.

As in the standard AD algorithm from Section 2, the correctness of the second step follows
directly if we can prove the �rst step works correctly, so we now turn to extending D{·}.

De�ning the ADEV Macro at the Type Level. Our AD macro from Section 2 had one key job:
replacing every real number �owing through the program with a dual number, and all real number
operations with dual number operations. In doing so, it translated terms of type g to terms of type
D{g}—the dual-number version of the type g . We now have a type of estimated real numbers, R̃,
and the dual-number version of an estimator should be an estimator of a dual number:

Definition 3.3 (unbiased dual-number estimator). We denote by R̃D the set of unbiased

dual-number estimators: probability measures ` on (R × R,B(R × R)). If E(G,XG)∼` [G] = A and

E(G,XG)∼` [XG] = XA for �nite real numbers A and XA , we say that ` estimates the dual number (A, XA ).

This type, which appears in the target language in Figure 7 but not in our source language, rep-
resents random processes for estimating a dual number. Note that it allows for the two components
of the estimate to depend on the same random choices: it is a distribution over pairs, not a pair of
distributions. We set D{R̃} := R̃D .

De�ning the ADEV Macro at the Term Level. To extend the macro D{·} from Section 2 to
handle our extended language, we need to say what it does on each new term. But the only new

terms we have added to our source language are the new primitives, like minibat� and 4G?R̃.
Thus, the only new behavior we need to specify is how to translate each primitive—in other words,
we need to attach to each new primitive 2 : g → f a custom built-in derivative 2D . We give one
example in Figure 8, with the full list in Appendix C, Figure 24.
If a primitive 2 : g → R̃ builds an estimator of some loss, the goal of 2D : D{g} → R̃D is

to estimate both the loss and the derivative of the loss. In many cases, this is quite straightfor-

ward. For example, the primitive ×R̃ in Fig. 8 estimates the product of the two numbers G and ~

that its input arguments G̃ and ~̃ estimate. Its built-in derivative ×R̃D does the same but with dual
numbers: it independently generates estimates 3A = (A, XA ) of (G, XG) and 3B = (B, XB) of (~, X~),
then returns (A, XA ) ×D (B, XB) = (AB, BXA + AXB). Because A and B are independent random variables,
their product’s expectation is the product of their expectations, E[AB] = G~. And by linearity of
expectation, E[BXA + AXB] = E[BXA ] +E[AXB]; exploiting again the fact that B and XA are independent
(and likewise for A and XB), we obtain the desired result ~XG + GX~. With such built-in derivatives
for all the primitives (Figure 24), the ADEV macro now covers the new source language.

3.4 Correctness Criterion for ADEV

Before trying to prove ADEV correct, let’s formulate a de�nition of correctness for the programs it
produces (an updated version of De�nition 2.1):

Definition 3.4 (correct dual-number derivative at R̃). Let 5̃ : R → R̃ be an estimator-

valued function, and suppose that the map L : R→ R that sends \ to E
G∼5̃ (\ )

[G] is well-de�ned (i.e.,

the expectation exists for all \ ) and di�erentiable. Then 5̃� : R ×R→ R̃D is a correct dual-number

derivative of 5̃ if for all di�erentiable ℎ : R→ R, the dual number estimator 5̃� (ℎ(\ ), ℎ
′(\ )) estimates

the dual number ((L ◦ ℎ) (\ ), (L ◦ ℎ) ′(\ )).

Then our macro should compute these correct dual-number derivatives:
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R
R̃
= {( 5̃ : R→ R̃, 6̃ : R→ R̃D) | L := \ ↦→ E

G∼5̃ (\ )
[G] is well-de�ned and di�erentiable

∧ for all \ ∈ R, 6̃(\ ) estimates (L(\ ),L ′(\ )) (Def. 3.3)}

Fig. 10. Logical relation for the Probabilistic Combinator DSL

Definition 3.5 (correctness ofD{·} (ADEV)). The ADEV macroD{·} is correct if for all closed

terms ⊢ C̃ : R→ R̃, ⟦⊢ D{̃C} : R ×R→ R̃D⟧ is a correct dual-number derivative of ⟦⊢ C̃ : R→ R̃⟧.

This notion of correctness is intensional [Lee et al. 2020a], in that there is more than one correct
dual-number derivative of a function 5̃ : R → R̃. In practice, which derivative a user gets will
depend on which primitives a user’s program invokes, intuitively because “all the action” in forward-
mode AD happens at the primitives (each primitive is equipped with a built-in derivative, and
these are composed to implement a program’s derivative). By providing users with a library of
primitives, some of which have the same meaning but di�erent built-in derivatives, we give users a
compositional way to explore the space of gradient estimation strategies (see Section 4.1).

3.5 Proving the ADEV Algorithm Correct

To extend Section 2’s proof to cover the ADEV algorithm, we need to:

(1) De�ne a dual-number relation R
R̃
⊆ (R→ R̃) × (R→ R̃D), characterizing when a function

that estimates dual numbers is a correct derivative of a function that estimates reals. Intuition:
this step is about de�ning a notion of derivative for R→ R̃ functions; we will base our choice
on our earlier De�nition 3.4.

(2) Prove an updated version of the fundamental lemma (Lemma 2.1) for the extended language,
with respect to all the old relations Rg , but also the new relation R

R̃
. Intuition: this step

updates an inductive proof now that we have more base cases (new primitives). Luckily, the
inductive steps don’t change at all, and it su�ces to check the base cases. Concretely, this means
showing that each of our new primitives has a correct built-in derivative, using the de�nition
of ‘correctness’ arising from our choice in step (1) together with De�nition 2.4.

(3) Prove an updated version of Theorem 2.2, to show how correctness of ADEV follows from the
updated fundamental lemma. Intuition: This step shows that if our program estimates dual
numbers correctly (implied by step 2), then our “wrapper” that extracts the second component of
the dual number to return as the derivative is correct. As in Section 2, this step is straightforward.

For the �rst step, we extend our de�nitions of dual-number relations Rg from Section 2 to cover
our new type, R̃. The new relation R

R̃
is presented in Figure 10, and captures what it means to be

a correct dual-number derivative estimator. Since our logical relations have changed, we need to
reprove the fundamental lemma:

Lemma 3.1 (fundamental lemma (revised with R̃)). For every term Γ ⊢ C : g , ⟦D{C}⟧ is a

correct dual-number derivative of ⟦C⟧, with respect to the relations Rg de�ned at each type (incl. R̃).

Proof. The proof is the same inductive proof we used for Lemma 2.1, except that there are now
new base cases: we must show that the interpretation of every new primitive function 2 has a
correct dual-number derivative given by the interpretation of its translation 2� .

• For exact : R→ R̃, we must check that exactD (ℎ(\ ), ℎ′(\ )) estimates (ℎ(\ ), ℎ′(\ )) for di�eren-
tiable ℎ (which it clearly does: it returns its input dual number exactly).
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Types g ::= . . . | B | % g | %D g

Terms C ::= . . . | True | False | if C then C1 else C2 | do {< } | doD {< }

| return C | returnD C

Do notation< ::= C | G ← C ; <

Primitives 2 ::= . . . | �ipREINFORCE, �ipENUM : I→ % B | E : % R→ R̃

Γ ⊢ C : g
Γ ⊢ return C : % g

Γ ⊢ C : % g
Γ ⊢ do{C} : % g

Γ ⊢ C : % g1 Γ, G : g1 ⊢ do{<} : % g
Γ ⊢ do{G ← C ;<} : % g

Γ ⊢ C : g
Γ ⊢ returnD C : %D g

Γ ⊢ C : %D g

Γ ⊢ doD{C} : %D g

Γ ⊢ C : %D g1 Γ, G : g1 ⊢ doD{<} : %D g

Γ ⊢ doD{G ← C ;<} : %D g

Γ ⊢ C : B Γ ⊢ C1 : g Γ ⊢ C2 : g
Γ ⊢ if C then C1 else C2 : g

let G = C ;< is sugar for G ← return C ;< and C ;< for _← C ;<

Fig. 11. Syntax of the discrete probabilistic language, as an extension to Figs. 3 and 7. Gray highlights indicate

syntax only present in the target language of the AD macro.

• For 4G?R̃, ×R̃ and +R̃, implementing =-ary operations >? on estimators, we must check that for
all =-tuples di�erentiable functions (A1, . . . , A=) : R → R, if 3̃A 8 estimates (A8 (\ ), A ′8 (\ )), then

>? (3̃A 1, . . . , 3̃A=) estimates (>? (A1 (\ ), . . . , A= (\ )),
3
3\
>? (A1 (\ ), . . . , A= (\ ))).

• For the primitive minibat�, we must check that if 3 5 : N→ R ×R maps each natural number 8
to the dual number (58 (\ ), 5 ′8 (\ )) for some di�erentiable function 58 , then minibat�D "<35

estimates the dual number (
∑"
8=1 58 (\ ),

∑"
8=1 5

′
8 (\ )).

Once we check all these primitives (given in Figure 24), the proof is done. □

Finally, we can conclude correctness of the ADEV algorithm on the extended language:

Theorem 3.2 (correctness of ADEVon the combinatorDSL). For all closed terms ⊢ C̃ : R→ R̃,

⟦_\ : R.snd∗ (D{̃C} (\, 1))⟧ is an unbiased derivative of ⟦̃C⟧.

4 DIFFERENTIATING EXPECTED VALUES OF DISCRETE PROBABILISTIC PROGRAMS

In this section, we develop one of the most important ideas in the paper: how to di�erentiate
expressive probabilistic programs, with sequencing and branching, compositionally. For now we
make the simplifying assumption that primitive probability distributions have �nite support (e.g., a
coin �ip, which can take only two possible values). But this is only to simplify the proofs; when we
add continuous distributions in Section 5, the ADEV algorithm itself won’t change, only the theory.

4.1 Syntax and Semantics of the Discrete Probabilistic Programming Language

Figure 11 gives the syntax of this section’s language. It is an extension of the language from
Section 3 with two new features: sequencing of probabilistic computations, and branching. This
greatly increases the expressiveness of the language; e.g., even without the advances of Sections 5
and 6, we can already express and di�erentiate the motivating example program in Figure 2.
Types: We introduce a type B of Booleans, and for each type g , a new monadic type % g , of

(�nitely supported) probability distributions over ⟦g⟧. In our semantics, we need to �x a way of
representing these distributions, and we choose ⟦% g⟧ to be the set of probability mass functions
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Semantics of types:

⟦% g⟧ = {` : ⟦g⟧ → [0,∞) | ` a probability distribution on ⟦g⟧ with �nite support }
⟦%D g⟧ = (⟦D{g}⟧ → R̃D) → R̃D ⟦B⟧ = {True, False}

Semantics of terms:
⟦return⟧(G) (~) = [G == ~] ⟦returnD⟧(3A ) = _3; .3; (3A ) ⟦E⟧(`) = `

⟦�ipENUM⟧(\ ) (1) = 1 ?\ : (1 − \ ) ⟦ED⟧(5 ) = 5 (⟦exactD⟧) ⟦�ipREINFORCE⟧ = ⟦�ipENUM⟧

⟦if C then C1else C2⟧(d) = ⟦C⟧(d) ? ⟦C1⟧(d) : ⟦C2⟧(d)
⟦do {G ← C ;<}⟧(d) (~) =

∑
I∈supp(⟦C⟧(d)) (⟦C⟧(d) (I) × ⟦<⟧(d, I) (~))

⟦doD {G ← C ;<}⟧(d) (3;) = ⟦C⟧(d) (_E .⟦<⟧(d [G := E]) (3;))

Fig. 12. Semantics of the discrete probabilistic language

⟦g⟧ → [0,∞) with �nitely many non-zero values, which form a monad over Set. For ` ∈ ⟦% g⟧,
we write supp(`) ⊆ ⟦g⟧ for the �nite subset of inputs at which it is non-zero.3

Terms: Since we now have Booleans, we can introduce an if statement. We will not introduce
discontinuous comparators like ≤ until Section 6, so for now the if statement is primarily useful for
branching on the outcomes of random coin �ips. The new term flip : I→ % B (which comes in two
�avors, �ipENUM and �ipREINFORCE, for reasons we defer to Section 4.3) is the key primitive probability
distribution. It is parameterized by a number \ ∈ (0, 1), and returns True with probability \ and
False with probability 1 − \ . More complex probability distributions can be constructed using the
Haskell-inspired do {G ← C ;<} syntax: it builds a new probabilistic program that �rst samples G
from ⟦C⟧, then runs ⟦<⟧ in an environment extended with the sampled G . This allows us to, for
example, sequence two coin �ips, where the second �ip’s probability depends on the outcome of the
�rst: do {11 ← �ipREINFORCE 0.5; 12 ← �ipREINFORCE (if 11 then 0.2 else 0.4); return (11 ∧ 12)} : % B.

The Expectation Operator. We now have two types denoting probability distributions over reals:

• R̃, the type of estimators—arbitrary probability distributions over R, that can be composed using
the combinator DSL from Section 3.
• % R, the type ofmonadic probabilistic programs returning reals, which may be composed arbitrarily
with downstream probabilistic computation.

The expectation operator E : % R→ R̃ casts a probabilistic program returning random real numbers
into an unbiased estimator of the original program’s expectation. ADEV can then be applied to
the resulting esitmator to construct an estimator of its expectation’s derivative. Returning to the
example from Fig. 2, the term L has type R→ R̃, and is thus a suitable ‘main function’ for ADEV
to di�erentiate—but it is constructed by applying E to a term of type % R. Note that because our
language has primitives that transform and combine R̃ terms, the user’s main function need not

be a simple expectation of a probabilistic program—it can also be the 4G?R̃ of an expectation, for

example, or the +R̃ of two expectations.

4.2 Di�erentiating the Probabilistic Language: Three False Starts

We now face the challenge of extending our ADEV macro D{·} to handle this much more ex-
pressive probabilistic language. The �rst step is to de�ne the macro’s action on each new type

in our language. The Booleans are simple enough (D{B} = B, since they do not track derivative

3We emphasize that the choice to represent probability distributions as mass functions in our semantics does not mean that
the operational meaning of a % g term is a mass function evaluator: we think of % g terms as probabilistic programs, which
are tractable to run (i.e., to draw samples from), but for which it may be extremely expensive to evaluate probabilities.
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information), but the monadic types % g pose a real hurdle. If a source language term has type % g ,
what type should its translation have? In this section, we �rst explore three super�cially appealing
but ultimately problematic answers, before introducing our solution in Section 4.3.

False Start 1: Probabilistic Dual-Number Programs. In Section 3, we saw how for simple
probabilistic computations overR, it su�ced to translate them to simple probabilistic computations
over R ×R. Naively, we might wonder whether this approach works at all types: can we de�ne
D{% g} = % (D{g})? Unfortunately, this simple, structure-preserving choice doesn’t work. Values
of type D{g} must track both a primal value of type g , and the way that value depends continu-
ously on an external parameter. At R, for instance, this is done explicitly using a pair of reals. But
now consider a program of type % B, for example flip\ . Even though B is discrete, probability
distributions over Booleans may depend continuously on parameters, and so D{% B} values must
somehow track both the primal value (a distribution over B) and a dual value (how that distribution
changes when \ changes). But if we choose D{% g} := % D{g}, then we get that D{% B} = % B,
which can only track the primal value. This loss of information is one of the key reasons why
Standard AD can fail when naively applied to probabilistic programs, as depicted in Figure 2.

False Start 2: Di�erentiating the Mass Function Semantics. Our semantics interprets a term
of type % g as a mass function, mapping values of ⟦g⟧ to non-negative real probability values.
Viewed in this light, a primitive like flip is actually a real-valued function, in this case from
I→ B→ [0,∞). We already know how to make AD work compositionally with functions of this
type; would it work to set D{% g} := D{g → R} = D{g} → R × R? The idea would be that
applying AD to a probabilistic program ⊢ ? : R→ % R would give us the derivative of its mass func-
tion, _(\, G). 3

3\
⟦?⟧(\ ) (G). To get derivatives of an expectation, 3

3\

∑
G ∈supp(⟦?⟧(\ ))⟦?⟧(G, \ ) · G , we

would then di�erentiate term-by-term, using the automatically computed derivative. Unfortunately,
it is not clear how to handle the fact that ⟦?⟧’s support can depend on \ , and relatedly, that the
mass functions of probabilistic programs are not always di�erentiable. Consider, for example, the
program C = _\ : R.do {1 ← flip 0.3; if 1 then return\ else return (2\ )}, whose support {\, 2\ }
depends on \ and whose mass function, ⟦C⟧(\ ) (A ) = 0.3[\ = A ] + 0.7[2\ = A ], is not di�erentiable
with respect to \ .

False Start 3: Di�erentiating the Expectation Directly. Ultimately, we only need to di�erentiate
terms of type % g because we care about how they a�ect the expectation of the program they are
used within. This suggests that when we translate a term ? of type % g , we might wish to produce a
term that tells us not how ⟦?⟧ itself depends on a parameter \ , but how expectations with respect
to the distribution ⟦?⟧ depend on the parameter \ . That is, can we di�erentiate the expectation
EG∼⟦?⟧ [5 (G)] =

∑
G ∈supp(⟦?⟧)⟦?⟧(G) · 5 (G), for a formal expectand 5 : g → R?

One way to make good on this intuition is to set D{% g} := D{(g → R) → R}. Here, we
understand a probability distribution ` to be a higher-order function, taking in an expectand
5 : g → R, and outputting the expectation

∑
G ∈supp(`) ` (G) · 5 (G). If we know how to di�erentiate

` as an expectation operator, then we will know how to di�erentiate expectations with respect to `.
What would this look like in practice? For the primitive flip, we would need to implement

a built-in derivative flipD , of type I × R → (B → R × R) → R × R. Intuitively, it takes in a
dual number (\, X\ ) : I × R representing the probability of heads, and dual-number expectand
3 5 : B→ R ×R, and returns a dual number with the value and derivative of

EG∼flip(\ ) [c1 (3 5 (G))] = \ · c1 (3 5 (True)) + (1 − \ ) · c1 (3 5 (False)).
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D{B} = B

D{% g} = %D D{g}

= (D{g} → R̃D ) → R̃D

D{if C then C1 else C2} = if D{C} then D{C1} else D{C2}
D{return C} = returnD D{C}
D{do{<}} = doD {D{<}}
D{G ← C ;<} = G ← D{C};D{<}

+ new primitives for the built-in derivatives of �ipENUM, �ipREINFORCE, and E.

Fig. 13. Extended ADEV macro for the Discrete Probabilistic Programming Language (§4)

�ipENUMD (3? : I ×R, 3̃; : B→ R̃D ) :

3;1 ∼ 3̃; True

3;2 ∼ 3̃; False

3A1← (3? ×D 3;1)

3A2← ((1, 0) −D 3?) ×D 3;2)
return 3A1 +D 3A2

end

ED (3̃; : %D (R ×R)) :

3̃A ∼ 3̃; (⟦exactD⟧)

return 3̃A
end

�ipREINFORCED (3? : I ×R, 3̃; : B→ R̃D ) :
1 ∼ Bernouilli(fst 3?)

(;1, ;2) ∼ 3̃; 1

3;? ← if 1 then logD 3? else logD ( (1, 0) −D 3?)

X;>6?3 5 ← snd 3;?

return (;1, ;2 + ;1 × X;>6?3 5 )
end

Fig. 14. Built-in derivatives for our new probabilistic primitives.

This looks reasonable, and is not hard to implement in practice, using the dual number operators
×D and +D . Indeed, this choice turns out to be quite nice. Expectation operators of probability
distributions form a submonad of the continuation monad [Vákár et al. 2019], so we would be
translating one term of monadic type (C : % g) to a new term of monadic type (D{C} : (D{g} →
D{R}) → D{R}, whose type is equivalent to ContD{R} (D{g})). Furthermore, if we translate
do {G ← C ;<} into doCont {G ← D{C};D{<}} and return C to returnCont D{C}, we obtain correct
(exact) derivatives of compound probabilistic programs’ expectations. This is nice in that D{·} still
preserves even a monadic program’s structure, with “all the action” happening at the primitives.

But there is one fatal �aw with this otherwise appealing approach: it computes exact derivatives
of expectations, by summing over all possible random paths through a program, and in practice
this will generally be completely intractable.

4.3 ADEV for the Probabilistic Language, Correctly

We present our approach to extending the ADEV macro in Figures 13-14. Our strategy reaps all the
bene�ts of False Start 3 from the previous section, but avoids the fatal �aw: everywhere that False
Start 3 must compute exact expectations of typeR, we permit estimated expectations of type R̃. For
example, instead of requiring each primitive to compute intractable exact derivatives of expectations
of arbitrary expectands, we allow primitives ? to expose procedures for estimating the derivatives
of expectations EG∼? [5 (G)], given as input a procedure 3̃ 5 : ⟦D{g}⟧ → R̃D for estimating the
value and derivative of the expectand 5 . We describe the intuition behind the translation:

• Understanding the macro at the type level: Our macro translates terms of probabilistic
program type % g into terms of dual-number expectation estimator type

%D D{g} := Cont
R̃D
D{g} = (D{g} → R̃D) → R̃D .

Given a probabilistic program ⊢ ? : % g , the translation produces an algorithm ⊢ D{?} : (D{g} →
R̃D) → R̃D for estimating the value and derivative of a ⟦?⟧-expectation. The generated procedure

D{?} takes as input a function 3̃ 5 : ⟦D{g}⟧ → R̃D , which, on input (G, XG), estimates some
true (dual-number) expectand (5 (G), X 5 (G, XG)) : R ×R. The goal of the procedure ⟦D{?}⟧ is
then to estimate EG∼⟦?⟧ [5 (G)] and its tangent value.
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• Understanding the macro on return: One of the simplest probabilistic programs is returnG :

% g , which implements the Dirac delta distribution that returns G with probability 1. The ex-
pectation of a function 5 with respect to this distribution is just 5 (G). Indeed, our macro trans-
lates this term to returnD 3G : %D D{g}, which, unfolding the de�nitions, is equivalent to
_3̃ 5 : D{g} → R̃D .3̃ 5 (3G) : (D{g} → R̃D) → R̃D . Intuitively, if we know how to estimate the
dual number 3 5 (3G) for any 3G , we can also estimate its expectation under the Dirac delta—just
plug in 3G .
• Understanding the macro on flip: For the primitive distribution flip, we must attach a built-
in derivative flipD , capable of estimating expectations with respect to the Bernoulli distribution,
as well as their derivatives. It turns out there are multiple sensible choices, which strike di�erent
trade-o�s between computational cost and variance. To a�ord the user maximum �exibility in
navigating these trade-o�s, we expose two versions of flip, �ipENUM and �ipREINFORCE, which have
the same semantics, but di�erent built-in derivatives. Our implementations of these built-in
derivatives are given in Figure 14. The estimator �ipENUMD is the costlier but lower-variance
option: to estimate an expected loss, it estimates the expectand on both possible sample values,
True and False, and computes a (dual-number) weighted average. By contrast, �ipREINFORCED
samples a value 1, and only estimates the expectand for that sample value. It then uses the
REINFORCE or score-function estimator to estimate the derivative of the expectation. In both
cases, we emphasize how the logic of a particular derivative estimation strategy is encapsulated
inside a procedure attached to the �ipENUM or �ipREINFORCE primitive. This modular design supports
future extensions with new gradient estimation strategies, or with new primitive distributions.
• Understanding the macro on do: To translate a term that sequences probabilistic computations,
do {G ← C ;<}, the macro outputs doD {3G ← D{C};D{<}}. This is sugar for the continuation
monad; desugaring, if C : % f and G : f ⊢ do{<} : g , we get that the produced term is equivalent
to _3̃ 5 : (D{g} → R̃D).D{C}(_3G : D{f}.doD{D{<}}(3̃ 5 )). How should we understand this
term? In order to estimate an expectation with respect to the sequence of computations, we
apply the law of iterated expectation (E(G,~)∼? [5 (~)] = EG∼? [E~∼? ( · |G) [5 (~)]]): we estimate an
expected [expectation with respect to ⟦do{<}⟧] with respect to ⟦C⟧. The inner expectation is
estimated using the translation of<, and the outer one is estimated using the translation of C .
• Understanding the macro on E: Once the user has constructed a term C : % R, they can
construct a term E C : R̃, of estimator type. We think of E C as an estimator of ⟦C⟧’s expectation,
i.e., the expectation of the identity function under the distribution ⟦C⟧. When our macro is
applied to E C , we get the term EDD{C} : R̃D , which, as can be seen from Fig. 14, is equivalent
to D{C}(_3A : R × R.exactD3A ) : R̃D . The idea is that D{C} is a procedure for estimating
expectations (and their derivatives) of any dual-number function with respect to ⟦C⟧; we want
the expectation of the identity, so we pass in _3A .exactD 3A , (a zero-variance estimator of) the
dual-number 83 function.

4.4 Correctness of ADEV on the Probabilistic Language

The overall ADEV work�ow, and the statement of the overall correctness theorem for ADEV, will
not change from Section 3: the user still ultimately constructs a program of type R→ R̃, and it
is still our job to di�erentiate the expectation of that program. The novelty in this section is that
now, the user has more tools for constructing the �nal R→ R̃ function, most notably the ability to
construct probabilistic programs and pass them to E. To establish correctness, we need to de�ne
new dual-number logical relations, de�ning appropriate notions of correct derivative for each new
type. Then, we will need to reprove the fundamental lemma, by adding cases to our inductive proof
for every new term constructor we added in this section.
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L = _\ : R.E(do {
1 ← �ipREINFORCE \

if 1 then

return 0

else

return (\ ÷ −2)})

3L = _ 3\ : R ×R.ED (doD {
1 ← �ipREINFORCED 3\

if 1 then

returnD (0, 0)
else

returnD (3\ ÷D (−2, 0))})

D{·}

3L = _ 3\ : R ×R.ED (_3̃; .
�ipREINFORCED 3\ (_1.

if 1 then

3̃; (0, 0)
else

3̃; (3\ ÷D (−2, 0))))

desugar
doD

3L = _ 3\ : R ×R.

�ipREINFORCED 3\ (_1.
if 1 then

exactD (0, 0)
else

exactD (3\ ÷D (−2, 0)))

apply ED

3L = _ 3\ : R ×R.

(_(\, X\ ) ._3̃; .
E(do{
1 ← �ipREINFORCE\

(;, X;) ← 3̃;

let X;>6?3 5 = if 1 then

X\ ÷ \
else

X\ ÷ (\ − 1)
return(;, X; + ; × X;>6?3 5 )
}))(3\ ) (_1.
if 1 then

exactD (0, 0)
else

exactD (3\ ÷D (−2, 0)))

inline
�ipREINFORCED

3L = _ (\, X\ ) : R ×R.E(do{
1 ← �ipREINFORCE\

if 1 then

return (0, 0)
else

let (;, X;) = (\, X\ ) ÷D (−2, 0)
let X;>6?3 5 = X\ ÷ (\ − 1)
return(;, X; + ; × X;>6?3 5 )})

V-reduce

L′ = _ \ : R.E(do{
1 ← �ipREINFORCE\

if 1 then

return 0

else

let (;, X;) = (\, 1) ÷D (−2, 0)
let X;>6?3 5 = 1 ÷ (\ − 1)
return(X; + ; × X;>6?3 5 )})

apply to (\, 1),
extract dual component

L′ = _ \ : R.E(do{
1 ← �ipREINFORCE\

if 1 then

return 0

else

let ; = −\ ÷ 2
let X; = −1 ÷ 2
let X;>6?3 5 = 1 ÷ (\ − 1)
return(X; + ; × X;>6?3 5 )})

perform
dual-number arithmetic

Fig. 15. How ADEV, applied to the example program from Fig. 2, derives the term on the bo�om right. The

ADEV macro D{·} is itself very simple, changing only constants and primitives, just as in forward-mode AD.

A�er applying it, we partially evaluate the resulting term for clarity, but these are not new transformations.

(NB: We overload E : % R→ R̃ to also work on inputs of % (R ×R) type, yielding output of type R̃D .)

De�ning the New Logical Relations. The new dual number logical relations for B and % g are
given in Fig. 16. The relation for B is essentially the same one we had for N, another discrete type,
re�ecting that the only di�erentiable functions fromR into the Booleans are the constant functions.
The relation at the probabilistic program type % g is more interesting. Its goal is to relate a

parameterized probabilistic program 5 : R → ⟦% g⟧ to the algorithm 6̃ : R → (⟦D{g}⟧ →

R̃D) → R̃D for estimating derivatives of expectations with respect to it. As an intermediate step
for understanding the correctness relationship that must hold between 5 and 6̃, let’s �rst consider
a simpler algorithm than 6̃, that simply estimates expectations of 5 , not their derivatives. Such
an algorithm 0̃ would have a similar type to 6̃, but would have no need for dual numbers: the
program 0̃ : R→ (⟦g⟧ → R̃) → R̃ would take as input a parameter \ and an estimated expectand

;̃ : ⟦g⟧ → R̃, and return an estimator of EG∼5 (\ ) [; (G)], where ; (G) = E
~∼;̃ (G)

[~]. One way of

implementing such an 0̃ would be to have it sample G ∼ 5 (\ ), then sample ~ ∼ ;̃ (G), then return ~.
That is, 0̃ is just the monadic bind, in the underlying semantic space of probability measures, of
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RB = {(5 : R→ B, 6 : R→ B) | 5 is constant ∧ 5 = 6}

R% g = {(5 : R→ % g, 6̃ : R→ (D{g} → R̃D) → R̃D) |

(_\ ._̃; : g → R̃.

⨖
;̃ (G) 5 (\ ) (3G), 6̃) ∈ R(g→R̃)→R̃

}

Fig. 16. Definition of the dual-number logical relation for our Discrete Probabilistic language

5 (\ ) (a probability distribution over ⟦g⟧) with the continuation ;̃ (a probability kernel from ⟦g⟧ to
R). Mathematically, we can write

0̃ = _\ ._̃; .

⨖
;̃ (G) 5 (\, dG),

where we have borrowed Kock integral notation
⨖
a (~)` (G, 3~) for binding a kernel ` : - → % . to

a continuation kernel a : . → % / from synthetic measure theory [Kock 2011; Ścibior et al. 2018].
Now, what we want from the algorithm 6̃, which estimates dual-number derivatives of expecta-

tions, is that it be a correct dual-number derivative of the expectation estimation algorithm 0̃. This is
exactly what our logical relation R% g says (Figure 16, inlining the de�nition of 0̃ we gave above).

Correctness of Primitives. Using this de�nition, we can work out a precise statement of the
speci�cation that a custom built-in derivative for a primitive R → % g (such as �ipENUM and
�ipREINFORCE) must meet. It arises as a special case of De�nition 2.4, for the type R→ % g :

Definition 4.1 (correct dual-number expectation estimator). Let ? ∈ R → ⟦% g⟧ be a
probability kernel from R to ⟦g⟧. Then ?� : ⟦D{R}⟧ → ⟦%D D{g}⟧ is a correct dual-number ex-

pectation estimator for ? if for all ( 5̃ : R → ⟦g⟧ → R̃, 6̃ : R → ⟦D{g}⟧ → R̃D) ∈ Rg→R̃
,

and all di�erentiable functions ℎ : R → R, ?� (ℎ(\ ), ℎ
′(\ )) (6̃(\ )) estimates the dual number

(EG∼? (ℎ (\ )) [E~∼5̃ (\ ) (G) [~]],
3
3\
EG∼? (ℎ (\ )) [E~∼5̃ (\ ) (G) [~]]).

The idea is that a built-in derivative for a probabilistic primitive (e.g. �ipREINFORCED for the
primitive �ipREINFORCE) receives two inputs: (1) a dual-number parameter, (ℎ(\ ), ℎ′(\ )), that is
already tracking its own derivative with respect to some underlying parameter \ , and (2) the
expectand-estimator 6̃\ : ⟦D{g}⟧ → R̃D , which is in general a closure that may have captured
the underlying parameter \ . When returning an estimated expectation and derivative of the
expectation, �ipREINFORCED must account for both the way that \ in�uences the sampling distribution
of G ∼ �ipREINFORCE (\ ), and also how it in�uences the closure whose expectation is being estimated.
It is instructive to go through the exercise of showing why (for example) �ipREINFORCE’s built-in
derivative satis�es this speci�cation: the argument combines the standard REINFORCE estimator
with the use of dual numbers to propagate derivatives.

Lemma 4.1. ⟦�ipREINFORCED⟧ is a correct dual-number expectation estimator for ⟦�ipREINFORCE⟧.

Proof. Let ℎ : R→ R di�erentiable, and ( 5̃ : R→ B→ R̃, 6̃ : R→ B→ R̃D) ∈ R
B→R̃

. Then
by the de�nition of correct dual-number derivative, ⟦�ipREINFORCED⟧ should estimate

3

3\
EG∼�4A= (ℎ (\ )) [E~∼5̃ (\ ) (G) [~]] (1)

(standard REINFORCE estimator, based on log derivative trick)

= EG∼�4A= (ℎ (\ ))

[(
3

3\
log�4A=(G ;ℎ(\ ))

)
E
~∼5̃ (\ ) (G)

[~] +
3

3\
E
~∼5̃ (\ ) (G)

[~]

]
(2)
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(use the fact that ( 5̃ , 6̃) ∈ Rg→R̃
to rewrite both terms)

= EG∼�4A= (ℎ (\ ))

[(
3

3\
log�4A=(G ;ℎ(\ ))

)
E(~,X~)∼6̃ (\ ) (G) [~] + E(~,X~)∼6̃ (\ ) (G) [X~]

]
(3)

(push log density term inside expectation, then combine expectations)

= EG∼�4A= (ℎ (\ ))

[
E(~,X~)∼6̃ (\ ) (G)

[
~ ·

(
3

3\
log�4A=(G ;ℎ(\ ))

)
+ X~

] ]
(4)

(evaluating the derivative)

= EG∼�4A= (ℎ (\ ))

[
E(~,X~)∼6̃ (\ ) (G)

[
~ ·

(
−11−G · ℎ′(\ )

�4A=(G ;ℎ(\ ))

)
+ X~

] ]
. (5)

This �nal expression can be estimated using just the dual number (ℎ(\ ), ℎ′(\ )), and the function 6̃,
by generating G ∼ �4A=(G ;ℎ(\ )), then (~, X~) ∼ 6̃(\ ) (G), and then returning the value from line (5)
above. This is exactly what ⟦�ipREINFORCED⟧ does, to compute the tangent value it returns. □

Proving every primitive correct in a similar manner, following Section 4.3’s logic, we can derive:

Lemma 4.2 (Fundamental lemma (revised with B and % g)). For every term Γ ⊢ C : g , ⟦D{C}⟧
is a correct dual-number derivative of ⟦C⟧, w.r.t. the relations Rg de�ned at each type (incl. B and % g).

Having reproved the fundamental lemma, the proof of Theorem 3.2 goes through unchanged:

Theorem 4.3 (correctness of ADEV for the discrete probabilistic language). For all

closed terms ⊢ C : R→ R̃, ⟦_\ : R.snd∗ (D{C} (\, 1))⟧ is an unbiased derivative of ⟦C⟧.

Corollary 4.4. For all continuous numeric types ^ ∈ {R,R>0, I}, and all closed terms ⊢ C : ^ → R̃,

⟦_\ : ^.snd∗ (D{C}(\, 1))⟧ is an unbiased derivative of ⟦C⟧.

Proof. We have the result for ^ = R from Thm 4.3, so �rst consider ^ = I. Let ⊢ C : I →
R̃. By the fundamental lemma, ⟦D{C}⟧ is a correct dual-number derivative of ⟦C⟧, so for any
(ℎ,ℎD) ∈ RI, we have (⟦C⟧ ◦ ℎ, ⟦D{C}⟧ ◦ ℎD) ∈ R

R̃
. In particular, this means that for any

A ∈ R, E(G,XG)∼⟦D{C }⟧(ℎD (3)) [XG] = (_A .EG∼⟦C⟧(ℎ (A )) [G])
′(A ). Now let \ ∈ I and consider ℎ :=

_A . \

\+(1−\ )4−A/(\−\
2 )
, ℎD := _A .(ℎ(A ), ℎ′(A )). Because ℎD computes ℎ’s derivative, (ℎ,ℎD) ∈ RI. The

important property of this functionℎ is thatℎ(0) = \ andℎ′(0) = 1. Plugging thisℎ into the equation
from above, and setting A to 0, we get that E(G,XG)∼⟦D{C }(\,1)⟧ [XG] = (_A .EG∼⟦C⟧(ℎ (A )) [G])

′(0). The
left-hand side is the expected value of ⟦_\ : I.snd∗D{C}(\, 1)⟧(\ ). The right-hand side can be
rewritten, using the chain rule, to yield ℎ′(0) · (_I.EG∼⟦C⟧(I) [G])

′(ℎ(0)) = 1 · (_I.EG∼⟦C⟧(I) [G])
′(\ ).

The fact that the LHS and RHS are equal implies that ⟦_\ : I.snd∗D{C}(\, 1)⟧ is an unbiased
derivative of ⟦C⟧.For the type R>0, the argument is the same, expect that we de�ne ℎ := _A .\ .4A/\ ,
which also has the property that ℎ(0) = \ and ℎ′(0) = 1 but has codomain R>0 instead of I. □

5 EXTENDING ADEV TO CONTINUOUS PROBABILISTIC PROGRAMS

We now lift the key restriction from Section 4: we add to our language new primitives for sampling
from continuous distributions (Fig. 17). Perhaps surprisingly, nothing about the ADEV macro or
the user’s work�ow changes with this extension. Adding continuous primitives is no di�erent
from adding discrete primitives: just as in Section 4, the key task is to design built-in derivative-
of-expectation estimators of type %D g for every % g primitive we add. What does change is the
correctness proof: as we will see in Section 5.2, the introduction of continuous probability adds
several wrinkles to our semantics and logical relations.
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Primitives 2 ::= . . . | uniform : % I | normalREPARAM : R ×R>0 → % R

| normalREINFORCE : R ×R>0 → % R | geometricREINFORCE : I→ % N

Fig. 17. Extended syntax for Continuous Probabilistic Programming

5.1 Syntax and Algorithm

Our extended language (Fig. 17) has four new primitives: uniform : % I (which samples on the unit
interval), normalREPARAM, normalREINFORCE : R × R>0 → % R (which sample a normal distribution
with user-speci�ed parameters), and geometricREINFORCE : I→ % N (which samples a geometric).4

Following our development in Section 4, we equip each primitive with a built-in derivative
estimation procedure, based on the REINFORCE and reparameterization-trick gradient estimators,
well-studied in the machine learning literature [Kingma and Welling 2014]. (See Fig. 25 in Appen-
dix C.) As in Section 4, the novelty here is not in the estimators themselves but in the modularity,
with gradient estimators exposed to the user in the form of composable primitives. Beyond the
translation of these new primitives, the ADEV macro requires no further extensions.

5.2 Correctness of ADEV in the Continuous Language

New Challenges. All we have done is add a few new primitives, but formally justifying the
extension raises two signi�cant technical di�culties:

• Measurability issues. In Section 4 we chose ⟦% g⟧ to be the monad of �nitely supported mass
functions. This choice was nice, because (1) the set of �nitely supported mass functions on ⟦g⟧ is
well-de�ned for any set ⟦g⟧, and (2) the expectation of any function 5 : ⟦g⟧ → R with respect
to a �nitely-supported distribution is well-de�ned (it is just a �nite sum). We exploited property
(2) in de�ning our logical relations R% g , which talk about expectations of arbitrary functions.
In our newly extended language, we must revise our choice of ⟦% g⟧, setting it to (something
like) the set of probability measures on ⟦g⟧. But this breaks both of the nice properties above: (1)
there is no nice way to de�ne the set of probability measures over ⟦g⟧ when g is higher-order
(e.g. g = R → R) [Heunen et al. 2017], and (2) in general expectations can only be taken of
measurable functions. The challenge, then, is to �nd a way of de�ning semantics for the extended
language, and updating our logical relations, that doesn’t break anything we’ve done so far.
• Edge cases where primitive gradient estimators are incorrect. The standard proofs that the
REINFORCE and reparameterization trick estimators are correct come with regularity conditions
on the function 5 whose expectation’s derivative is being estimated. As such, our new primitives
and their ADEV translations (2, 2D) do not technically satisfy the correctness criterion implied
by our logical relations (De�nition 4.1), which quanti�es over all possible expectands. An updated
correctness theorem will need to somehow account for these regularity conditions.

Resolving the First Challenge: Quasi-Borel Semantics. A long line of research has recently
culminated in a new setting for measure theory where function spaces are well-behaved: the
quasi-Borel spaces [Heunen et al. 2017]. Like a measurable space, a quasi-Borel space - pairs an
underlying set |- | with additional structure for reasoning precisely about probability; see Ścibior
et al. [2018] for an overview. Here we just summarize our application of the theory:

• For every quasi-Borel space - , there is a quasi-Borel space % - of probability measures on - , and
these form a strong commutative monad. Using it, we were able to reformulate our language’s
semantics in terms of quasi-Borel spaces: every type g is interpreted by a space ⟦g⟧, and terms C
are interpreted as quasi-Borel morphisms ⟦C⟧, which are just functions satisfying a generalized
measurability property ensuring they work nicely with quasi-Borel measures. Our interpretations

4The geometric distribution is not continuous, but violates a di�erent restriction from Section 4—�nite support.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 5. Publication date: January 2023.



5:22 Alexander K. Lew, Mathieu Huot, Sam Staton, and Vikash K. Mansinghka

R
R̃
=

{
(5 : R→ R̃, 6 : R→ (R̃D × (( → R ×R))) | ℎ8 := _\ ._B.c8 ((c2 ◦ 6) (\ ) (B))

∧ ∀\ .

∫

R

ℎ1 (\ ) (B)3B = EG∼5 (\ ) [G] = EG∼c1∗ (c1◦6) (\ ) [G]

∧ ∀\ .

∫

R

ℎ2 (\ ) (B)3B = EG∼c2∗ (c1◦6) (\ ) [G]

∧ (_\ ._B.ℎ1 (\ ) (B), _\ ._B.(ℎ1, ℎ2) (\ ) (B)) ∈ R(→R

}

R( =

{
(5 : R→ (, 6 : R→ () | 5 is constant ∧ 5 = 6

}

Fig. 18. Revised logical relation for our type R̃.

are standard, matching those of Ścibior et al. [2018]. We note that, unlike in Section 4, we now
interpret R̃ and % R the same way: as the quasi-Borel probability measures on R.
• Now that we have changed our semantics, how should we think about the de�nitions, appearing
throughout our paper, of logical relations Rg? We can read the de�nitions exactly as they are
written, but interpreting them as relations over sets of quasi-Borel morphisms R → ⟦g⟧ (or
R → ⟦D{g}⟧), rather than over sets of arbitrary functions. Any expectations and integrals
appearing in our de�nitions should now be understood as expectations and integrals of quasi-
Borel morphisms with respect to quasi-Borel measures.5

• Having re-interpreted our language and our de�nitions of logical relations, we should do a sanity
check that our proofs from Section 4 still go through (using the new semantics, but not yet adding
our new primitives for continuous sampling). It turns out they do:

Lemma 5.1 (fundamental lemma for the old language, new semantics). For every term

Γ ⊢ C : g in the discrete probabilistic language of Section 4, ⟦D{C}⟧Qbs is a correct dual-number

derivative of ⟦C⟧Qbs, with respect to the Rg obtained by interpreting our previous de�nitions as

relations of quasi-Borel morphisms.6

Resolving the Second Challenge: Surfacing Regularity Conditions with a Lightweight

Static Analysis. Now that we have a clear semantics, we can move onto the second problem:
our logical relations Rg are too strict. In particular, they require that a primitive distribution
must be able to estimate the derivative of the expectation of any (smooth, quasi-Borel) expectand,
when in practice, nearly every gradient estimator needs additional regularity conditions to ensure
unbiasedness. We address this issue in three stages:

(1) First, we develop a weaker de�nition of unbiased derivative (De�nition 3.2):

Definition 5.1 (weak unbiased derivative). Let 5̃ : R → R̃, and suppose that the map

L : R → R sending \ to E
G∼5̃ (\ )

[G] is well-de�ned. Then 6̃ : R → R̃ is a weak unbiased

derivative of 5̃ if there exists a measurable function ℎ : R ×R→ R, continuously di�erentiable in

its �rst argument, such that (1) L(\ ) =
∫
R
ℎ(\, B)3B , and (2) 6(\ ) estimates

∫
R

m
m\
ℎ(\, B)3B .

5Existing work on quasi-Borel spaces usually de�nes integration of - → [0,∞] functions, and not of - → R functions.
But just as in standard measure theory, we can extend the de�nition for non-negative functions to one for arbitrary real
functions: we split the integrand into a positive part and negative part, separately integrate each, and then subtract the
results. Because each result can be either �nite or in�nite, their di�erence can be either �nite, in�nite, or unde�ned (if both
the positive part and negative part are in�nite). In this paper, when we say that an expectation exists or is well-de�ned, we
mean that the result of the integral is �nite.
6For the categorically-minded reader, we provide another presentation of this logical relations argument in Appendix D.
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This de�nition captures “unbiased, up to interchange of an integral with a derivative”: instead
of requiring that 6 unbiasedly estimate L ′(\ ), we require that there is some way to write L as
an integral such that, if you could swap the derivative and the integral, 6 would estimate L ′(\ ).

(2) Second, we develop a lightweight static analysis that, given a term ⊢ C̃ : R → R̃, �nds the
measurable function ℎ : R × R → R (from De�nition 5.1) that justi�es ADEV’s output
B̃ : R→ R̃ as a weak unbiased derivative estimator. To do so, we create a modi�ed version of
D{·}, whereD{R̃} = R̃D × (( → R ×R). Here, ( is a new type of random seeds: ⟦(⟧ = R, but
D{(} = ( (no dual numbers), and derivatives of ( computations are not tracked. Intuitively,
this new D{·} translates a term of type R̃ to a pair, where the �rst component is the same dual
number estimator (of type R̃D ) that we produced in Sections 3 and 4, and the second is the
justi�cation of the estimator as a weak unbiased derivative. A crucial part of this translation is
what should happen at the primitives: becauseD{·}’s behavior on R̃ has changed, to include an
extra component, all our primitives involving R̃ need to be updated, to produce or handle this
extra component (see Figure 26 in Appendix). A more formal understanding can be gained by
examining the new logical relation we de�ne for R

R̃
, given in Figure 18. (What it calls ℎ1 is the

witness ℎ from De�nition 5.1, and what it calls ℎ2 is its derivative.) By proving the fundamental
lemma using this new relation, we obtain a weak correctness result for the language:

Lemma 5.2 (Weak correctness of ADEV). Let ⊢ C̃ : R→ R̃. Letting

ℎ8 = _(\, G).c8 (c2 (⟦D{̃C}⟧(\, 1)) (G)) : R ×R→ R,

assume that ∀\ ∈ R,
∫
R
ℎ1 (\, G)3G and

∫
R
ℎ2 (\, G)3G are well-de�ned. Then:

• For all (\, G) ∈ R ×R, ℎ2 (\, G) =
m
m\
ℎ1 (\, G)

• For all \ ∈ R, ⟦̃C⟧(\ ) is an unbiased estimator of
∫
R
ℎ1 (\, G)3G .

• For all \ ∈ R, snd∗ (c1 (⟦D{̃C}⟧(\, 1))) is an unbiased estimator of
∫
R
ℎ2 (\, G)3G .

Therefore, _\ : R.snd∗ (c1 (⟦D{̃C}⟧(\, 1))) is a weak unbiased derivative of ⟦̃C⟧.

(3) Finally, we state a su�cient condition for a weak unbiased derivative to be fully unbiased:

Definition 5.2 (Locally Dominated). We say that a function 5 : R × R → R is locally

dominated if, for every \ ∈ R, there is a neighborhood* (\ ) ⊆ R of \ and an integrable function

<* (\ ) : R→ [0, +∞) such that ∀\ ′ ∈ * (\ ),∀G ∈ R, |5 (\ ′, G) | ≤ <* (\ ) (G).

Combining it with our static analysis that �nds ℎ and ℎ′, we get our �nal correctness theorem:

Theorem 5.3 (Correctness of ADEV (continuous language)). Let ⊢ C̃ : R → R̃ be a

closed term, and suppose that ⟦̃C⟧(\ ) has a well-de�ned expectation for every \ ∈ R. If ⟦_(\, G) :
R ×R.snd(snd(D{̃C}(\, 1)) (G))⟧ is locally dominated, then ⟦_\ : R.snd∗ (fst(D{̃C}(\, 1)))⟧ is
a correct unbiased derivative of ⟦̃C⟧.

Note that the �nal conclusion is the same full correctness property we proved in earlier sections;
there is now just a single local domination condition for the user to verify, before the guarantee
kicks in. This local domination condition is only one of the preconditions for swapping deriva-
tives and integrals to be valid; crucially, the other hypotheses of the Dominated Convergence
Theorem are automatically discharged by our proofs. Furthermore, even if the user’s program
composes di�erent primitives, each using di�erent gradient estimation strategies and making
di�erent assumptions, the static analysis performed by our modi�ed D{·} macro automatically
generates a single term _(\, G).snd(snd(D{̃C}(\, 1)) (G)) (the ℎ2 from Lemma 5.2) whose local
domination should be checked. Because this is an explicit term in our language, we are optimistic
that future, more sophisticated static analyses could be developed to automatically discharge
this local domination condition in many cases.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 5. Publication date: January 2023.



5:24 Alexander K. Lew, Mathieu Huot, Sam Staton, and Vikash K. Mansinghka

Types g ::= . . . | ^∗ (for every smooth base type ^)

Primitives 2 ::= . . . | uniform : % I
∗ | normalREINFORCE : R ×R>0 → % R

∗ | ⌊·⌋^ : ^∗ → ^

| ≤^ : ^∗ × ^∗ → B | =^ : ^∗ × ^∗ → B

Fig. 19. Revised syntax for smooth-tracking types

D{^∗} = ^∗ R^∗ = {(5 : R→ ⟦^⟧, 6 : R→ ⟦^⟧) | 5 is constant ∧ 5 = 6}

Fig. 20. Definition of the dual-number type and the dual-number logical relation for smooth-tracking types

Accepted by the Type-checker Rejected

L1 = _\ : R.E(do {
G∗ ← normalREINFORCE \ 1

~ ← normalREPARAM ⌊G
∗⌋ 1

if G∗ ≤ 3 then

return 0

else

return − (\ ÷ 2)})

L2 = _\ : R.E(do {
G ← normalREPARAM \ 1

~∗ ← normalREINFORCE G 1

if ~∗ ≤ 3 then

return 0

else

return − (\ ÷ 2)})

L3 = _\ : R.E(do {
G∗ ← normalREINFORCE \ 1

~ ← normalREPARAM ⌊G
∗⌋ 1

if ~ ≤ 3 then

return 0

else

return − (\ ÷ 2)})

Fig. 21. Smoothness-tracking types allow us to enforce preconditions for ADEV’s correctness. In these

programs, variables of type R
∗ – those that can be used non-smoothly – are indicated with a star. Type

checking will reject the unsound program on the right and accept the two programs on the le�. The error

comes from the fact that ~ : R cannot be cast to a variable of type R
∗, for use with ≤: ~ has to be used

smoothly for normalREPARAM’s built-in derivative to be correct.

6 STRONGER GUARANTEES WITH SMOOTHNESS-TRACKING TYPES

The correctness guarantee of Theorem 5.3 covers an expressive language with discrete and con-
tinuous sampling, higher-order functions, monadic probabilistic programming, and conditional
branching. But ADEV sometimes produces correct derivatives in cases our theory does not yet
cover, namely when the user’s program uses discontinuous primitives like ≤. Consider, for example,

_\ : R.do {G ← normalREINFORCE (\, 1); if G ≤ 3 then return 1 else return 0}, (6)

which uses ≤ but has expectation PG∼N(\,1) [G ≤ 3], which is itself di�erentiable with respect to \ .
If we equip ≤ with a built-in derivative that ignores the tangent part of any dual-number inputs,
we can apply ADEV to this program, and in this case, we do get out a correct derivative. Why is
this, and can we state a more general theorem about when ADEV is correct?
It turns out that primitives like ≤ can be safely added to our language, but only if their use is

carefully restricted. This is because the proof that establishes Theorem 5.3 from Lemma 5.2 relies
on the measure-theoretic formulation of the Leibniz integral rule, which requires us to ensure
that ℎ1 (\, G) is di�erentiable with respect to \ for almost all G . Importantly, we do not need ℎ1
to be di�erentiable with respect to G . Intuitively, we can allow ≤ in cases where it introduces
discontinuities with respect to the random seed G , but not to the input parameter \ .
Types for Smoothness Tracking.We can make these intuitions precise by carefully extending
our language of study to allow restricted uses of discontinuous primitives, then re-proving our
correctness theorem for the extended language. We do this by adding, for each smooth type ^

(R, I, and R>0), a non-smooth type ^∗. The semantics of a smooth type and its corresponding
non-smooth type are the same, but our macro D{·} does not attach dual numbers to non-smooth
values (D{^∗} = ^∗), and our logical relations R^∗ (Fig. 20) treat them as if they were discrete.
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From a user’s perspective, values of non-smooth type are allowed to be used non-smoothly,
whereas values of smooth type must be used smoothly. This is re�ected in the type of the primitive
≤: ^∗ ×^∗ → B. In addition to ≤, we introduce a coercion ⌊·⌋ : ^∗ → ^ from non-smooth to smooth
types, but not in the other direction: you are always allowed to promise (unnecessarily) to use a
value smoothly, but not to go back on your promise. In fact, as can be seen from the de�nition
of RR∗ , any R → R

∗ function expressible in our language must necessarily be constant—no
information can ‘leak’ from the smooth world to the non-smooth world.
Smooth and non-smooth types can be mixed to create functions whose types perform �ne-

grained tracking of which arguments they are di�erentiable with respect to. For example, a term
⊢ C : R×R∗ → R is guaranteed to have a denotation di�erentiable with respect to its �rst argument,
but not its second. The key feature unlocked by this �ne-grained tracking is that we can now
assign more permissive types to some of our primitives from Section 5: namely, uniform and
normalREINFORCE now generate samples of non-smooth type, indicating that their correctness proofs
do not require sampled values to be used smoothly in the rest of the program. normalREPARAM, by
contrast, still generates samples of type R. With these new types, we can accept program (6) from
above, while rejecting programs on which ADEV would fail (Figure 21).
With these typing rules, we can import Section 5’s results with no major hurdles:

Theorem 6.1 (Correctness of ADEV (full)). Let ⊢ C̃ : R→ R̃ be a closed term in the extended

language of Section 6, such that ⟦̃C⟧(\ ) has a well-de�ned expectation for every \ . If ⟦_(\, G) :

R × R.snd(snd(D{̃C}(\, 1)) (G))⟧ is locally dominated, then ⟦_\ : R.snd∗ (fst(D{̃C}(\, 1)))⟧ is a
correct unbiased derivative of ⟦̃C⟧.

7 SUMMARY: FULL LANGUAGE AND ADEV MACRO

Our full language is summarized in Figure 22, and our full AD macro in Figure 23. By combining
Thm. 6.1 with Cor. 4.4, we arrive at the following general correctness result:

Corollary 7.1. Let ⊢ C̃ : ^ → R̃ be a closed term in the full language, where ^ ∈ {R,R≥0, I}. If
⟦̃C⟧(\ ) has a well-de�ned expectation for every \ ∈ ^ , and ⟦_(\, G) : ^×R.snd(snd(D{̃C}(\, 1)) (G))⟧
is locally dominated, then ⟦_\ : ^.snd∗ (fst(D{̃C}(\, 1)))⟧ is a correct unbiased derivative of ⟦̃C⟧.
When C̃ samples only from �nite discrete distributions, the domination condition is always satis�ed.

8 RELATED WORK

Gradient Estimation in Machine Learning. ADEV’s primitives compositionally package many
gradient estimation strategies developed in the machine learning community [Kingma and Welling
2014; Lee et al. 2018; Mohamed et al. 2020; Ranganath et al. 2014]. It also extends a growing literature
on stochastic computation graphs (SCGs) [Foerster et al. 2018; Schulman 2016; Schulman et al. 2015;
Weber et al. 2019], the goal of which is to help practitioners derive unbiased gradient estimators for
expectations of probabilistic processes represented as graphs. Recently, van Krieken et al. [2021]
presented Storchastic, a practical system for AD of stochastic computation graphs. Storchastic
provides reverse-mode AD (often more e�cient than the forward-mode AD in our paper); and is
implemented for PyTorch [Paszke et al. 2019], a widely used, practical deep learning framework.
Our work on ADEV is complementary. We precisely formalize the general problem of automatic
di�erentiation of expected values of probabilistic processes, in a way that applies to broad classes of
probabilistic programs (including higher-order) that cannot easily be represented as computation
graphs. Furthermore, our logical relations allow us to precisely formulate general conditions that
new primitives’ gradient estimators must satisfy to be compositionally added to the language. See
Appendix B for further discussion on the consequences of these di�erences, including: (1) how
ADEV can exploit dependency structure that is more explicit in SCGs, (2) how Storchastic gradient
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Smooth base types ^ ::=R | R>0 | I

Types g ::= 1 | N | ^ | g1 × g2 | g1 → g2 | R̃ | B | % g | ^
∗ (for every smooth base type ^)

| R̃D | %D g | S

Terms C ::= () | A (∈ ^) | 2 | G | (C1, C2) | _G.C | let G = C1 in C2 | fst C | snd C | C1 C2

| True | False | if C then C1 else C2 | do {< } | return C

| 2D | 3 | doD {< } | returnD C

Do notation< ::= C | G ← C ; <

Source primitives 2 ::=+ | − | × | ÷ | exp | log | sin | cos | pow | E : % R→ R̃

| minibat� : N→ N→ (N→ R) → R̃ | +R̃,×R̃ : R̃ × R̃→ R̃

| 4G?R̃ : R̃→ R̃ | exact : R→ R̃ | ⌊−⌋^ : ^∗ → ^ (for each ^)

| �ipREINFORCE, �ipENUM : I→ % B | ≤^ : ^∗ × ^∗ → B | =^ : ^∗ × ^∗ → B

| uniform : % I
∗ | normalREPARAM : R ×R>0 → % R

| normalREINFORCE : R ×R>0 → % R
∗ | geometricREINFORCE : I→ % N

Target primitives 3 ::= | fst∗, snd∗ : R̃D → R̃

Γ ⊢ C : g

Γ ⊢ return C : % g

Γ ⊢ C : % g

Γ ⊢ do{C } : % g

Γ ⊢ C : % g1 Γ, G : g1 ⊢ do{<} : % g

Γ ⊢ do{G ← C ;<} : % g

Γ ⊢ C : g

Γ ⊢ returnD C : %D g

Γ ⊢ C : %D g

Γ ⊢ doD {C } : %D g

Γ ⊢ C : %D g1 Γ, G : g1 ⊢ doD {<} : %D g

Γ ⊢ doD {G ← C ;<} : %D g

Γ ⊢ C : B Γ ⊢ C1 : g Γ ⊢ C2 : g

Γ ⊢ if C then C1 else C2 : g

let G = C ;< is sugar for G ← return C ;< and C ;< for C ← _;<

When clear from context, we omit the brackets ⌊ ·⌋^ .
We also assume that each source-language primitive 2 has a corresponding built-in derivative 2D in the target language.

Fig. 22. Full grammar and selected typing rules of the language we study. Gray highlights indicate syntax

only present in the target language of the AD macro.

estimation methods can be exposed compositionally in ADEV, (3) how ADEV’s continuations
let it work robustly with multi-sample gradient estimators, whereas Storchastic’s broadcasting
approach can cause it to fail e.g. in programs with Python if statements, (4) how ADEV can achieve
polynomial time complexity for estimators that would be exponential-time in Storchastic, and (5)
how higher-order ADEV primitives can encapsulate sophisticated gradient estimation strategies
that don’t decompose into sample-by-sample estimators (as Storchastic’s design would require).

Concurrently with our work, Arya et al. [2022] developed an intriguing new approach to AD of
probabilistic programs, which like ADEV, arises by extending forward-mode AD, but which unlike
ADEV, is not based on composing existing, well-understood estimation strategies. It is unclear what
source-language features are covered by their algorithm (the authors caution, e.g., that general if
statements are unsupported), but the low variance their estimators appear to achieve may open the
door to stable optimization of objectives that have been out of reach using existing estimators. We
have worked with the authors to incorporate their approach into ADEV as an additional estimator;
our preliminary implementation (available on Github) adds little new code, inherits ADEV’s support
for if statements and other control �ow, and interoperates with all of ADEV’s other estimators.

To our knowledge, among frameworks for deriving unbiased gradient estimators (based on SCGs
or Arya et al. [2022]’s stochastic triples), ADEV is the only one that handles objectives de�ned as
functions of one or more expected values (e.g., exp

R̃
(E ?) +

R̃
exp

R̃
(E @)).
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D{−} on contexts

D{•} = • D{Γ, G : g } = D{Γ }, G : D{g }
D{−} on types

D{R̃} = R̃D × (( → R ×R)
D{% g } = %V D{g }
D{^ } = ^ ×R
D{N} = N

D{g1 × g2 } = D{g1 } × D{g2 }
D{g1 → g2 } = D{g1 } → D{g2 }
D{B} = B

D{^∗ } = ^∗

D{−} on expressions

D{G } = G
D{_G.C } = _G.D{C }
D{C1C2 } = D{C1 }D{C2 }
D{let G = C1 in C2 } = let G = D{C1 } in D{C2 }
D{(C1, C2) } = (D{C1 },D{C2 })
D{fst C } = fst D{C }
D{snd C } = snd D{C }

D{A : ^ } = (A, 0)
D{A : ^∗ } = A
D{A : N} = A
D{() } = ()
D{return C } = returnV D{C }
D{do{<}} = doV {D{<}}
D{G ← C ;<} = G ← D{C };D{<}

We assume built-in primitives 2D for the derivatives of source primitives 2 , including �ipENUM, �ipREINFORCE,
normalREINFORCE, normalREPARAM, geometricREINFORCE, uniform, minibat�, exact, and E. For those we have

D{2 } = 2D

%V g, returnV , doV are syntactic sugar for the continuation monad given by %V g := (g → D{R̃}) → D{R̃}.

Fig. 23. Full AD translation D{−}. We have the following invariant: if Γ ⊢ C : g , then D{Γ} ⊢ D{C} : D{g}.

On terms Γ ⊢ C : R̃, the first projection of D{C} is the dual-number derivative, and the second is the witness

program for the function whose weak domination has to be checked (see Section 5).

Correctness and Semantics for Probabilistic and Di�erentiable Programming. Partly en-
abled by new semantic foundations for probabilistic [Ehrhard et al. 2018; Heunen et al. 2017; Zhang
and Amin 2022] and di�erentiable [Huot et al. 2020; Sherman et al. 2021; Vákár 2020] programming,
researchers have recently established a variety of correctness results for both automatic di�erentia-
tion [Abadi and Plotkin 2020; Krawiec et al. 2022; Lee et al. 2020a; Mazza and Pagani 2021] and
probabilistic program transformations [Lee et al. 2020b; Lew et al. 2020; Ścibior et al. 2018] for
increasingly expressive languages. We build most closely on logical relations approaches [Ahmed
2006; Appel et al. 2007; Katsumata 2013; Pientka et al. 2019] for proving properties of AD algo-
rithms [Barthe et al. 2020; Brunel et al. 2020; Huot et al. 2020; Mazza and Pagani 2021], and on works
that use quasi-Borel spaces as a model of synthetic measure theory [Kock 2011; Ścibior et al. 2018;
Vákár et al. 2019]. Recent work has begun to formally investigate interactions of di�erentiability
and probabilistic programming [Lee et al. 2020b; Lew et al. 2021; Mak et al. 2021; Sherman et al.
2021], but not yet the properties of AD in the general probabilistic programming setting.

AD of Languages with Integration. Researchers have recently proposed languages with support
both for integration and AD, including Teg [Bangaru et al. 2021], a di�erentiable �rst-order ex-
pression language with compact-domain integrals and arithmetic, and _( [Sherman et al. 2021], a
higher-order language with computable integration on [0, 1] as a primitive. Using compact-domain
integration, it is possible to express some probabilistic program expectations, but not all (e.g., _(
cannot express probabilistic programs that use Gaussian distributions). Furthermore, unlike in Teg
and _( , the output of ADEV is a new probabilistic program, that can be directly run to produce gra-
dient estimates for optimization. A unique aspect of Teg is its support for parametric discontinuities,
which can sometimes be mimicked in ADEV programs using discrete random choices like flip,
but are in general prohibited by Section 6’s type system.

AD in PPLs.Many practical probabilistic programming languages [Bingham et al. 2019; Cusumano-
Towner et al. 2019; Narayanaswamy et al. 2017] support the automated estimation of gradients
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of a particular expectation with respect to probabilistic programs @: the gradient of the ELBO,
∇\EG∼@\ [log ?\ (G) − log@\ (G)]. ADEV formalizes and proves correct a more general algorithm
for arbitrary expected values, giving theory that could help to understand when these algorithms
are correct (as studied in a �rst-order language for independent Gaussians by Lee et al. [2020b]),
and how they can be modularly extended to support new gradient estimation strategies, or the
estimation of other expectations. Many PPLs also rely on AD for reasons other than di�erentiating
expectations. Typically, these languages di�erentiate deterministic programs that are derived from
or related to probabilistic ones. For example, Wingate et al. [2011] di�erentiate log densities of
probabilistic programs, as does the widely-used and highly-optimized Stan [Carpenter et al. 2017]
probabilistic programming system, for use within Hamiltonian Monte Carlo. Venture [Mansinghka
et al. 2014, 2018] and Gen [Cusumano-Towner et al. 2019] also di�erentiate log densities, for HMC,
gradient-based MAP optimization, and Metropolis-Adjusted Langevin Ascent. Gen also computes
derivatives of user-de�ned involutions to automatically compute Jacobian corrections in reversible-
jump MCMC [Cusumano-Towner et al. 2020]. It would be interesting to investigate whether our
semantic setting—where we can reason about smoothness via logical relations, and measurability
via quasi-Borel semantics—could be used to establish the soundness of these PPL applications.

9 DISCUSSION

Multivariate Functions. To simplify the presentation, we have presented everything in terms of
R→ R̃ functions with scalar, not vector, inputs and outputs. But the same general strategies used
to extend deterministic forward-mode to multivariate functions apply in our case:
Given a term ⊢ C : R= → % R

< , and an input vector G ∈ R
= , we can consider the terms

C8 9 := _\ : R.E(do{~ ← C (G1, . . . , G8−1, \, G8+1, . . . , G=); return (c 9 ~)}. The translation D{C8 9 } of

such a term yields an unbiased estimator of the partial derivative
m~ 9
mG8

. One (costly) option for
estimating the entire Jacobian matrix would be to separately estimate each partial derivative. To
reduce the variance of this estimate, the same random seed can be used when generating each
term’s estimate, without compromising unbiasedness of the overall estimate. For a �xed 8 , the
computation of C8 9 ’s derivative estimate proceeds identically for all 9 ; it is only at the end that we
extract the 9Cℎ component of a result vector. There is therefore no need to run the computation<
times: we must only run the calculation once for each 8 ∈ {1, . . . , =}, to generate an entire vector

of< di�erent
m~ 9
mG8

values. This is a well-understood feature of forward-mode AD: it is especially
e�cient when there are many outputs but few inputs. As in ordinary forward-mode AD, then, we
can compute a Jacobian via = runs of the translated program. Also as in standard forward-mode AD,
it is possible to trade memory for time: if instead of dual numbersR×R we use dual vectorsR×R= ,
we can run the = copies of the computation ‘in parallel.’7 However, for memory- and time-e�cient
gradients of functions with high-dimensional inputs, reverse-mode is usually preferred.

Limitations of Di�erentiability Analysis. Our type system enforces that the user’s main
program is smooth with respect to the input parameter \ . This limitation has several consequences:

(1) ADEV’s type system rejects many programs do not have di�erentiable expectations. Estimating
their derivatives would be an ill-de�ned task, so we consider this ‘a feature, not a bug.’

(2) ADEV’s type system also prevents users from expressing some programs that do have di�er-
entiable expectations, but for which e�cient gradient estimators are not known or cannot be
derived using standard strategies. We would love to di�erentiate such programs, but we suspect

7Built-in derivatives 2D must be updated to work on these =-ary dual numbers. For deterministic primitives, this is
straightforward, but for probabilistic primitives that employ certain gradient estimation strategies, e.g. measure-valued
di�erentiation, it is less clear whether there are e�cient ways to simultaneously estimate derivatives in multiple directions.
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that for expert users hoping to apply ADEV, this limitation would seem natural. (Several recent
works [Bangaru et al. 2021; Lee et al. 2018] present gradient estimation strategies for restricted
classes of discontinuities; these estimators are not yet widely used by practitioners, but we are
interested in exploring how they might be incorporated into future versions of ADEV.)

(3) Finally, ADEV rejects some programs too eagerly. For example, if a parameter \ is used non-
smoothly but only in a probability-zero set of random executions (i.e., for almost all executions,
the function is di�erentiable for all \ ), our type system will reject it, even though our existing
gradient estimators would have been correct for the program. More subtly, certain Lipschitz-
continuous but non-di�erentiable uses of a parameter \ may be permissible, if for any \ the
non-di�erentiability itself is encountered with probability 0 (e.g., '4!* (G − \ ) for G sampled
from a Gaussian). A less conservative static analysis could help make ADEV applicable to
such programs, which do arise in practice. But we expect this to be a tricky problem. For
example, concurrently with our work, Lee et al. [2022] present a static analysis based on abstract
interpretation for careful reasoning about smoothness, including local Lipschitz continuity.
Their analysis accepts '4!* (G−\ ), but it also seems to accept, for example, '4!* ('4!* (G)−\ ),
a term we would want to reject in ADEV (at \ = 0, the program is not di�erentiable for a
positive-measure set of G values). Finding more sophisticated static analyses that admit a larger
set of programs while still ensuring soundness is an interesting direction for future work, which
could broaden the range of applications that AD of probabilistic programs might have.

Haskell Prototype. Our Haskell prototype (Appx. A) illustrates how ADEV integrates with
existing libraries for probabilistic and di�erentiable programming. On Github, we also implement
11 extensions from Appx. B, and we intend the library to be practical both as a platform for future
research and as a tool for small- or medium-scale applications.8 Interestingly, although our analysis
does not cover general recursion, our prototype successfully di�erentiates many recursive programs.
The only failure cases we know of are programs whose translations do not halt almost surely, e.g.
geom = _\ : I.do{1 ← �ipENUM \ ; if 1 then 0 else do{= ← geom\ ; return (= + 1)}}. The use of
�ipENUM causes ADEV’s gradient estimator to attempt an enumeration of program paths, of which
there are in�nitely many. In this example, the problem could be avoided by using (e.g.) �ipREINFORCE,
but we leave to future work a full account of ADEV’s correctness that covers recursive programs.
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