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We examine how to provide applications with dedicated bandwidth and guaranteed latency in a programmable mission-critical

network. Unlike other SDN approaches such as B4 or SWAN, our system Tuneman optimizes both routes and packet schedules

at each node to provide lows with sub-second bandwidth changes. Tuneman uses node-level optimization to compute node

schedules in a slotted switch, and does dynamic routing using a search procedure with QoS-based weights. This allows

Tuneman to provide an eicient solution for mission-critical networks that have stringent QoS requirements. We evaluate

Tuneman on a telesurgery network using a switch prototype built using FPGAs, and also via simulations on India’s Tata

Network. For mission-critical networks with multiple QoS levels, Tuneman has comparable or better utilization than SWAN

while providing delay bounds guarantees.

CCS Concepts: · Networks→ Programmable networks; Packet scheduling; Network experimentation.

Additional Key Words and Phrases: QoS, scheduling, network programmability, FPGAs, mission-critical networks, segment

routing

1 INTRODUCTION

The Internet has been an amazing success for nearly 50 years, partly because of a key design decision to make the
network "application-agnostic." In other words, IP treats all applications ś whether remote telesurgery or Facebook
ś as a group of addresses that sends a bag of bits to each other. This allowed the Internet to support applications
like email and later accommodate unforeseen applications like video. Today we take for granted applications like
Uber for hailing a cab but these run on mobile devices that are connected by an IP-centric network. There are
many more exciting networked applications around the corner, whether networks of self-driving cars, remote
telesurgery, precision agriculture, and more. Many of these new applications have critical requirements from the
network. They are so essential for society that they demand unprecedented levels of performance and reliability
from the network. Consider a surgeon doing remote telesurgery in AIIMS, a hospital in Delhi to a village 100km
away in Haryana, India. Such a network has stringent requirements on latency (< 10 msec) and ixed bandwidth
(≈ 10 Mbps) [14]. Consider another example of a trading network with stringent real time constraints connecting
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trading centers in the New York area. Providing guaranteed Quality of Service (QoS) is critical for such networks
as delay variation can have severe impacts [33, 50]. We call these types of networks "mission-critical" and focus
on the problem of automatically coniguring them to provide applications with both dedicated bandwidth and
small guaranteed latencies. Note that the primary objective of designing such a network is to provide guaranteed
delay and bandwidth for a speciic class of service (such as telesurgery). However, for economic viability, other
types of services are also added to saturate the network.

Existing solutions only solve part of the problem. For example, centralized SDN implementations like B4 [27]
and SWAN [26] maximize traic utilization while guaranteeing application low bandwidths and but do not
guarantee low delay bounds. As in SWAN [26] our deinition of a low is a higher level "application low" (called
a service in SWAN) consisting of a source-destination pair and an application. It is not a TCP low; an application
low will typically comprise many TCP lows that come and go.
Our solution starts by replacing classical router output scheduling (using algorithms such as DRR [46] and

iSLIP [35]) with a slotted scheduler at each output link that can be programmed by a centralized SDN controller.
Slotted schedulers are cheap to implement and allow ine tuning of node delay bound without the expense of a
classic Weighted Fair Queuing (WFQ) scheduler [19] needed for Parekh-Gallagher style delay bounds [40]. The
SDN controller also controls routes. When an application low or service makes a request for bandwidth � and
delay bound � , the controller searches for a route, starting with the shortest path and then moving on to the
next shortest paths as in SWAN [26].
However, unlike B4 or SWAN, at each switch in the prospective route, the controller does a node level

optimization to see whether the current output link schedule can be adjusted to accommodate a node delay
bound for the new low. If the sum of the node delay bounds meets the requested application delay bound � ,
the controller allocates the low on the route. Otherwise, it moves on to consider other routes. If all routes fail,
the controller uses more Draconian measures and considers shifting an existing low (with a more relaxed delay
bound) to an alternate route to accommodate the new low. The algorithm avoids thrashing using a measure
called mobility factor that estimates the likelihood of a low repeatedly evicting other lows.
In some sense, our approach functionally emulates SWAN [26] (traic engineering, bandwidth bounds) but

augments it with delay bounds while doing so in an incremental, distributed manner. In our approach, as in the
classical SDN vision [45], distributed protocols such as routing are eliminated. Our approach goes further, however,
and also eliminates distributed scheduling mechanisms such as DRR [46] and iSLIP [35]. Instead a single controller
orchestrates the routes and schedules of all application lows at every router. The controller is responsible for
jointly optimizing routes and schedules. Since the general problem is computationally hard [30], we decompose
it into a node optimization and a route search procedure as described above. We call the resulting framework
Tuneman because it customizes the network to meet each application’s QoS needs. We demonstrate Tuneman
with application mixes such as remote telesurgery, video traic, and Web-suring on a testbed consisting of
Terabit routers built from FPGAs, and also using simulations on a much larger country-wide network.

The Tuneman framework is completely automated to minimize the amount of operational expertise needed
to run a mission-critical network. This is because operational expertise is hard to obtain, especially for appli-
cations like telesurgery, where the network spans villages. Since the Internet protocols by design provide no
application/service level support, router vendors over the years have coped by adding mechanisms like MPLS and
tuning knobs like QoS and DifServ [7] to guarantee performance. However, these knobs must be set manually
on each device by experts in order to make the network application-aware, which we seek to avoid. We also
focus on minimizing the cost of a switch. This is partly because of our design choices: segment routing [24] and
label switching to avoid preix and ACL lookups, and slotted schedulers to avoid complex QoS mechanisms. We
employ segment routing in Tuneman because it provides low-level QoS guarantees and has a signiicantly less
control overhead than the TE protocols used on the internet today [17, 55].

ACM Trans. Internet Technol.
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Figure 1 positions Tuneman with respect to other approaches from the literature. The irst choice is whether
to use distributed routing and scheduling as in MPLS-TE. Comparisons with SWAN (see Figure 14 in [26]) show
that such distributed traic engineering solutions are far from optimal in utilization compared to centralized
traic engineering. When we turn to centralized solutions, the controller can either control routes only (as in B4
and SWAN) or can control both routes and schedules. As we will see in our evaluation, controlling only routes as
in SWAN [26] or B4 [27] cannot guarantee latency, as they allocate lows to routes based on bandwidth needs and
not latency. Silo [29] also only controls routes but uses rate limits and delay calculus [15] to provide bandwidth
guarantees and delay bounds. However, Silo uses VM placement to maximize utilization, which is possible in a
data center but not in a mission-critical network.

Next, if we choose to have centralized control of both routes and schedules, we can choose to control routes and
schedules at hosts or at routers. Fastpass [41] is the main prior work we know of that uses an SDN approach to
schedule lows, but at end nodes not at routers as we do. However, Fastpass’s edge coloring algorithm only works
in topologies such as Fat Trees that are reconigurably non-blocking. Fastpass also does not provide application
bandwidth guarantees. Fastpass does, however, work with existing switches. By contrast, Tuneman requires
a new switch design (but which allows us to optimize for switch cost because of our design choices) with a
slotted link scheduler that can be programmed by a centralized SDN controller. Similarly, [30] does not have the
hardware switch capabilities that Tuneman leverages for node-level scheduling in order to provide bounds on
both delay and bandwidth for each application. A broader comparison for related work is in Table 3, and detailed
experimental comparisons with SWAN can be found in § 7.

Fig. 1. Positioning of Tuneman.

To use Tuneman, besides the physical topology, applications need only specify their traic demands (e.g.,
bandwidth) and performance objectives (e.g., latency) to the controller.

The contributions of this paper are:

ACM Trans. Internet Technol.
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1. Architecture: We show that a fully programmable, application-aware network design ś where both routes
and packet schedules are under the control of a central SDN scheduler ś is both computationally scalable (Figure
12a) and efective (Figure 12b, § 7).

2. Algorithms: We introduce a new optimization framework for node scheduling (§ 3) and a search algorithm
for rerouting lows that leverages a new metric: mobility factor (§ 4).
3. Evaluation: We describe a terabit router testbed that emulates an actual Telesurgery setup (§ 6) and

simulations on India’s Tata network to show that Tuneman has better utilization and latency for mesh networks
with several QoS levels than MPLS-TE and SWAN (§ 7).

2 TUNEMAN ARCHITECTURE

Interface: Tuneman provides an API to applications for specifying their needs, and has interfaces to conigure
routers and end-nodes. Tuneman converts application bandwidth and delay needs to a set of schedules that are
sent to each router, and routes that are sent to end-nodes. Note that applications are service requests (lows), of
granularity at least a few Mbps, and not TCP sessions. Though nodes and routers are connected to Tuneman,
they are not required to be synchronized with each other. Applications use a 5-tuple to specify their needs to the
controller consisting of source(s), destination(s), bandwidth, latency guarantees and QoS values, which constitutes
a low. Packets with lower QoS values are dropped before packets with higher QoS values in times of overload or
when a route is not found.
Design Choices: First, consider the schedulers at individual routers. Observe that simple solutions like strict
priority can only guarantee latency bounds for the highest priority low even at one router. Simple weighted
round robin schemes like Deicit Round Robin [46] have poor delay bounds [30], while Generalized Processor
Sharing (GPS) approximations like W2FQ [5] require expensive sorting. Instead, our FPGA-based programmable
dataplane routers simply cycle through a slotted allocation pattern.

Creating a large number of source-destination classiiers at each router is expensive. MPLS-like tunnels suice
but require lookup tables at each switch. Segment routing makes router forwarding trivial with no forwarding
state at routers; the state mapping each low to paths is stored at end-nodes (which need to store such state
information anyways for transport protocols).

In summary, to keep routers simple and low-cost for mission-critical networks, the "backend" of the Tuneman
compiler is a segment-routed network with data-plane programmable routers (implemented as FPGAs) that use
slotted schedules.
Design Overview: At the highest level, the Tuneman controller solves a bin-packing problem where the žbinsž
are time slots on each output link in the network and the žitemsž are lows (Figure 3). In classical bin packing [6],
the only constraint is that the sum of the item sizes allocated to each bin must not exceed the bin size. In our
problem, not only must the sum of allocated low bandwidths not exceed the bandwidth of each link, but the slot
allocations should guarantee low latency bounds. Further, our problem is a multi-resource bin packing problem,
where the resources (network links) are coupled by the network graph structure.

Since bin-packing by itself isNP-hard [6] and the additional latency constraint along with the graph structure
only makes the problem harder [10], exact solutions (even using solvers) are infeasible [30]. Instead, Tuneman
hierarchically decomposes the problem into path selection and node scheduling: it uses search heuristics to
ind a feasible path, and an exact local optimization to compute node schedules. Since the optimization requires
milliseconds, it is infeasible to redo the optimization when packets enter and leave; instead the optimization is
only done when the delay or bandwidth requirements of a service changes or a new service is added.
To evaluate a prospective route, Tuneman selects a plausible path (§ 4), and then computes a schedule for

every node along the path by including the new low’s 5-tuple. The new low’s parameters are checked against
existing provisioned lows. Schedules are computed on a per-node basis. If nodes along a selected path can accept
their new schedules (inclusive of the new request), then that path is chosen, and the request is provisioned. If not,
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Tuneman attempts to ind another path by invoking routing algorithms presented in (§ 4). Tuneman achieves
sub-1-second provisioning.

To compute a schedule for a port at a node, Tuneman uses an optimization mechanism that takes as a constraint
the permissible latency through each node. The latency of an end-to-end path is bounded by a threshold set
by the application, and this end-to-end bound is divided equally among all nodes in the path to determine the
latency for the low in each node. Tuneman guarantees bandwidth (through schedules) and latency (through
node-constraints). Tuneman assumes that lows are shaped at the ingress nodes to avoid bursts at switches that
would invalidate low delay guarantees.

For reasons explained earlier, the current Tuneman data-plane uses segment routing. Ports are node-wise
uniquely numbered, and a path is identiied by the conjoining of ingress and egress port numbers of nodes along
the path. Each end-node (edge devices, not routers, routers do not need such tables) has a table that maps an
incoming packet to a segment-routed label. (called megalabel, §6). For a low entering the Tuneman-controlled
network, the ingress node has a table entry of the form <protocol identiier: segment-routed label>. The segment-
routed label is pushed on to incoming packets (like MPLS). From then on, packet forwarding at each router
happens just by examining the node-relevant portion of the label and avoiding time costly match table look-ups.

We now describe the detailed design as to how node schedules are computed, followed by the details of routing
in §4.

3 NODE LEVEL SCHEDULING

Before delving into the details of node level scheduling, let us consider the global picture of how Tuneman
handles low requests. Figure 2 shows that low requests are handled by one of the following scenarios.

1. Start up: In this scenario, there is no traic in the network and a routing algorithm is invoked that calculates
the shortest path for a new traic low and provisions the low. Upon provisioning a low, a schedule is obtained
by computing epoch time (� � ) for each output port � for all the nodes along a desired path.

Fig. 2. A flow chart for the Tuneman provisioning system.

ACM Trans. Internet Technol.
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2. Feasible provisioning: In this case there is traic in the network, and a new low can be provisioned readily
by using the routing algorithm. Speciically, for a new traic request, one of � possible paths is chosen, such that
the path satisies provisioning constraints by computing � � at every node along the path.
3. Feasibility subject to reconiguration: In this case, a network is heavily loaded and a new request arrives.

However, this new request cannot be provisioned only by the routing algorithm and choosing one of the � paths.
This is because the bandwidth/delay for the new request is not met. In such a case, we make use of a Dynamic
Flow Provisioning (DFP) algorithm (described in §4) that consists of two modules: reconiguration and low
provisioning, which together attempt to re-allocate existing traic in order to ind a suitable path. Finally, if
despite attempts to reconigure existing lows, the new request cannot be provisioned, then it is dropped.

For all three scenarios, computing � � is required to ind a schedule at every node (along the provisioning path)
to meet the bandwidth and delay requirements for all the provisioned lows. This step is referred to as epsilon
solving in Figure 2. The details of epsilon solving are as follows.
Each output port � at a node supports a cyclic schedule of duration � � . This cycle consists of slots �� � (time

allocated to send data from an input port � to an output port � ) for all input ports � that intend to send data
to output port � . The epoch repeats as long as there is no change in the low bandwidth (BW)/delay at port � .
However, if a low using port � requests the controller for a change in bandwidth or delay guarantee, then the
epoch duration needs to change. Assume the end-to-end delay for a particular low��

��
is Δ�

��
, where�� and�� are

the source and destination nodes for the low, and� is a low instance between
(

��,��
)

. If the path to provision

the low is of ℎ hops, then we constrain the maximum delay at each node on that path to be ��
��
≤ (Δ�

��
)/(ℎ − 1),

where Δ�
��

is obtained after subtracting propagation delay (for the chosen path) from Δ
�
��
.

Figure 3 is a toy example that shows a 3x3 node, with Virtual Output Queues (VoQs) supporting a non-blocking
switch. With the VoQs, the switch is essentially a 3(3 − 1)x3 or 6x3 switch. There are 6 lows, 2 arriving at each
input port and some combination of 2 lows exiting at an output port. Flows arrive as multiple packets and are
bufered. To transfer packets from an input port � to the output port � , a ix slot time is provided. We store these
slot times in a matrix �. An element of the matrix �� � represents the slot time available for input port � to transfer

Fig. 3. Scheduling at a 3-port switch. At the input side, each port has 2 VoQs. Schedules and time slots for data destined to

output port from diferent input ports are shown. The matrix �� � provides slot time information from an input port � to an

output port � . Since the switch does not forward a packet on the same port where it has been received. Therefore, �� � = 0, if

� = � .
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Table 1. Optimization model parameters

ParameterDescription

��
��

The��ℎ traic request (low) from node �� to node �� .

���� Maximum size of a VoQ bufer.
� Number of ports.
�� � Output rate at port � .
�� � Time-slot duration for input port � at output port � .

��� Epoch time for output port � at node � (sometimes also
referred as � � ) .

Δ
�
��

End-to-end delay requirement for the low ��
��
.

��
��

Maximum allowable delay at a node for the low ��
��
.

��� � Maximum allowable delay at node � between port � to
port � .

packets to output port � . In Figure 3 matrix � is shown, where �21 and �31 represent the time slots available for
transferring packets from input ports 2 and 3, respectively, to output port 1. Also, the summation of the elements
of a column constitutes the epsilon value for the respective output port. For instance, summation of column-1 of
matrix � in Figure 3 is �11 +�21 +�31 = 3, where 3 is �1 value for output port 1. The igure also shows a penalty
for switching from one input port to another. We refer to this as a guard-band interval � ; no transfer of data
takes place during this interval. These guard-band intervals are also accounted for in the epsilon computation.
Therefore, the inal epsilon value for output port 1 becomes �1 = 3 +� . Thus the optimization seeks to maximize
� � , the cycle time for port � independently for each port, in order to minimize wasted throughput (due to guard
bands). Note that in our architecture, the � � for each port need not be equal. In Figure 3, the cycle �1 is bigger
than �2 .
We now describe how to compute the epoch time � � . We have listed the optimizations parameters and their

description in Table 1.
Objective: Intuitively, we wish to maximize throughput (i.e. reduce the number of interchanges between the

portsśguard-band) subject to delay and bufer constraints. Hence, the objective function we use is to maximize
the cyclic schedule for each port � is:max[� � ]

Constraints:

Delay constraint: � �/2 ≤ ��� � . This constraint implies that the average waiting time within a switch should be

less than the maximum permissible delay for that switch. The maximum permissible delay ��� � is the tightest delay

bound among all the lows for which packets enter switch � from port � and exit from port � , i.e., ��� � =���[��
��
],

∀��
��

passes from port � to port � at node � .

Rate constraint: ∀�, ��
��
.� � ≤ �� �

.
[

�� �

]

. The rate constraint implies that the total arrival in time � � for every
traic request at each of the ingress ports � is less than or equal to the departure at egress port � . Note that �� � is
computed by the optimization (see below).

Bufer constraint:��
��
.� � ≤ ���� . This constraint ensures that the rate of packets entering the bufer and leaving

through the VoQ switch is within the bufer threshold.
Slot constraint: ∀�, �, �� � ≥ (� � −� × (� − 1)) × (

∑

�,�,� ��
��
/
∑

�,�,�,� �
�
��
).

This constraint ensures that a slot time is allocated in proportional fraction of traic bandwidth. In the irst
term of the above equation, the guard-band� is of 5-20 �� and � is the port count of a switch. For a � port switch,
at every output port, we need to assign a slot for each of the � input ports. Therefore, for a given output port
� , once a slot for input port � gets over, the next input port in the sequence (i.e., (� + 1)�ℎ port) gets the chance
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to transmit packets to � . In this process, there exists a small interval (gap) while switching from port � to port
� + 1. This gap corresponds to guard band interval G. For a � port switch, there will be (� − 1) such gaps during
which no packets can be forwarded and the switch remains idle. Subsequently, the second term in the constraint
provides a fraction of total traic destined for port � from port � . The slot time proportional to the computed
fraction is assigned to port � from the epoch time � � after removing the time wasted due to guard-band intervals.

Node optimization ensures that the switch by itself is work conserving as long as there is conformance to the
committed information rate promised by the controller to the application. Appendix A enhances this simple
optimization module above to incorporate traic that varies from its average value to a peak value using robust
optimization [4]. The idea is that any x of the y requests at a node are at their peak value, while the other (y-x)
are allowed to be at a known average value, though we do not know which of the x requests are at their peak
values.

The node optimization model was implemented in Matlab + Gurobi and used as an executable in a Python
simulator. This LP assumed the following major parameters: switch port count 4-128; line-rate 1-100Gbps; max
bufer size of 1 ms per port. Other parameters include: � � is bounded to 250�s at a node; ��� � ≤ 150�s; bandwidth

of lows from 1 to 100Gbps, in increments of 100Mbps; number of lows at a node for the non-robust case 400 ×
port count ∼ (1600 − 51200). For a sweep of the bandwidth and low parameters, Matlab inds a feasible result in
under 2.5 ms for the worst case.

4 DYNAMIC FLOW PROVISIONING

Our routing algorithm (see low chart in Figure 2) accommodates a new request either directly by considering the
� � values of all the ports of nodes along the shortest path and then provisions the request, or by reconiguration.
Reconiguration involves re-routing already provisioned low(s) on an alternative path(s), thus incorporating
the new request. For re-routing, only those lows are considered that have lower priority (QoS) than the new
request. In more detail, following the low chart of Figure 2, when a request arrives, Tuneman irst attempts to
provision the request over one of the � shortest paths if there is node-level compliance: in other words, the node
optimization results in a valid schedule at all the nodes in the path.
We note that as the product of the lows and bandwidth assigned to a path increases, �� � decreases for all

nodes on the path. But to avoid fragmentation, �� � cannot fall below the time to forward 1 MTU sized packet.
Thus even if the node optimization procedure in the last section works and computes a �� � , a node schedule is
considered invalid if the time-slot corresponding to �� � falls below 1 MTU. If for all � shortest paths, even one
node on each path is invalid, we say all paths are exhausted (see Figure 2) and we invoke the DFP algorithm for
reconiguration.
The DFP algorithm makes use of � � value that is available from the last successful run of the optimization

model. This value is useful in determining if latency bounds and bandwidth needs are met for the new and
afected low requests. We compute latency over a path in a graph � (� , �) as:

�� =

︁

� :�∈��� (�) (� )

��� /2 +
︁

� :�∈��� (�) (� )

�� , (1)

where ��� /2 is the average latency at an output port � at node � , given node � is on path �. Further, ��� (�) :

� ∈ {1, 2, ..., �} is the ��ℎ path between node �� and �� . The second term in the above equation is the sum of the
propagation delay over all the links in path ��� (�), denoted by �� . The available bandwidth over a ℎ-hop path is
calculated as:

���{� ��
1 ,� ��

2 , ...,� ��
ℎ },where �

��
� = �� �

− Σ��
�� (2)

The DFP algorithm consists of two functions that work in tandem called low_provision() and reconigure(), shown
in Algorithms 1 and 2. We now step through the DFP algorithm in detail which takes as input the network state
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(i.e., already provisioned traic, denoted by � , and the corresponding set of paths � ). For a new request ��
��
,

between nodes �� and �� the algorithm starts with low_provision().
flow_provision() function: In step 1, � paths for a new traic request ��

��
are computed. Thereafter, ��� is

computed by eliminating a path � from the computed � paths. For a new request, � is null; for re-provisioning an
existing low to an alternate path, � is set to the existing path of the low. Removing path � from ��� ensures
that the low provision function does not provision an existing low on the same path again. In step 2, the
algorithm computes whether suicient bandwidth is available (using equation 2) on the ��ℎ available path
��� (�) : ��� (�) ∈ ��� to accommodate the new request. If suicient bandwidth is available and delay bound
is met (using equation 1) on path ���

(

�
)

, then the algorithm provisions the new request on this path. In case

suicient bandwidth is not available or the delay bound is not met on any of the available paths in ��� , then the
algorithm calls reconigure() with a path ��� (�) as an input (step 3). The reconigure() function may return the
updated network state (� and � ), such that suicient bandwidth is now available on path ��� (�) to provision the
request. This provisioning of a request may require additional re-routing for some of the already provisioned
requests from path ��� (�) to some other path(s) because of insuicient bandwidth on ��� (�). In step 4, the state
of the network (� and � ) is updated by adding the new request and its path.
reconigure() function: A reconigure() function is used for selecting a provisioned traic request in the

network for re-routing over an alternate path. Re-routing enables suicient bandwidth to be available on a
selected path ��� (�). The selected path is provided as an input from low_provision(). In step 1 of the reconigure()
function, a list (��� ) of all the nodes over path ��� (�) is generated. In step 2, the bottleneck node(s) that cannot
accommodate the new request on the path ��� (�) are identiied. The requests provisioned through a bottleneck
node (�� ) are then sorted in descending order (set �� ), based on their value of a measure called mobility factor��

(described later in this section). For re-routing, a request corresponding to the highest mobility factor (i.e. �� (1),
which was provisioned over a path �� (1)) is selected from the sorted list of lows and the low_provision() function
is invoked. The new network state is denoted by� −��

(

1
)

, � −��
(

1
)

. This state implies that neither the traic��
(

1
)

nor the path ��
(

1
)

exist in the new network state and thus we avoid any possibility of provisioning same service

Algorithm 1: Function low_provision().

Input :� , � , ��
��
, Δ�

��
, � Output :� , �

1 ��� = � ���_�_�ℎ������_���ℎ� (�, �) − �

2 ��������� = 0

3 Step 2: // Check for bandwidth and delay on paths

4 for � = 1 �� |��� | do

5 if �����_�� (��� (�)) ≥ ��
��

and ����� (��� (�)) ≤ Δ
�
��

then

6 ��������� = 1

7 �����_�� (��� (�)) = �����_�� (��� (�)) −��
��

8 Break

9 Step 3: // In case suficient bandwidth is not available or delay bound is not met, choose a path in ��� for

reconfiguration.

10 if ��������� = 0 then

11 (�,� ) = ������ ����� (�, �,��
��
, ��� (�))

12 �����_�� (��� (�)) = �����_�� (��� (�)) −��
��

13 Step 4: //Update network state (T,P).

14 � = � ∪ ��� (�), � = � ∪��
��

15 Step 5:Return �,�
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Algorithm 2: Function reconigure()

Input :� , � , ��
��
, ��� (�), Output :� , �

1 Step 1: // Find all the nodes over the path ����
2 ��� = ���_�����_��_���ℎ(��� (�)), � = 0

3 Step 2: list all botleneck nodes

4 for � in ��� do

5 if �����_�� (�) < ��
��

then

6 ���� = ���� ∪��

7 for � in ���� do

8 (�� , �� ) ← provisioned requests at node � having bandwidth ≥ ��
��

and ��� ≤ ��� (��
��
)

9 if (�� , �� ) == ∅ then

10 Terminate Algorithm //reconf. not possible

11 (�� , �� ) ← requests sorted in descending order of�� at node � .

12 // provision first request on another path.

13 (�,� ) = ����_���������(� −�� (1),

14 � − �� (1),�� (1),Δ� (1), �� (1)) //passing values

15 if �� (1) provisioned on path other than �� (1) then

16 De-provision �� (1) across nodes along �� (1)

17 � ← � −�� (1), � ← � − �� (1), � ← � + 1

18 else

19 call ����_��������� with the next request from the sorted set (�� , �� ) until exhausted

20 if � ≠ |���� | then Terminate Algorithm

21 Step 3 Return �,�

over the same path again. The current path of the traic ��
(

1
)

is also used as an input to the low_provision()
function. This ensures that traic to be re-routed does not use its current path for reconiguration. This procedure
is repeated for each bottleneck node along the path ��� (�).
Time complexity of DFP algorithm: To ind t-shortest paths in a network graph�

(

� , �
)

the complexity is

in the order of �
(

��
(

� + � log�
) )

using Yen’s algorithm [56]. Tuneman calculates �-shortest paths for each
source-destination pair in the network and stores it. For every new request to be provisioned, Tuneman checks
whether suicient bandwidth is available on the �-shortest paths for the request. To check for suicient bandwidth
on � paths, we need to traverse every node along those paths. A path can have up to � nodes. Hence the time
complexity for this step is �

(

� .�
)

. In case, none of these �-shortest paths have suicient bandwidth, Tuneman
starts the reconiguration process. To this end, the irst shortest path is chosen, and an attempt to ind bottleneck
nodes is made. There could be � bottleneck nodes and each node may have, on average � services. Tuneman
identiies candidate services for reconiguration in O

(

S
)

and calculates the mobility factor for each candidate
service. To select a service for reconiguration, Tuneman sorts candidate services based on the mobility factor in
�
(

� log �
)

. Finally, there is recursion for re-routing; as a result, there can be maximum � .� iterations. Hence, the

total time complexity of our algorithm is computed as �
( (

��
(

� +�����
)

+��.
(

� .� +� .� log �
) )

.
Performance micro-benchmarks in ğ5 show that DFP is able to keep most lows of higher priority provisioned

on their shortest path, penalizing lower QoS lows by sending them over longer paths if required. By contrast, a
naive algorithm drops low requests beyond a network load of 60%; however using DFP and a mobility factor,
low requests are dropped only after 80% load. These results are sensitive to the topology used; this dependency
is examined in ğ5.
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Fig. 4. Motivating mobility factor: choosing the best flow to reconfigure.

Recursive deadlock: The process of provisioning a candidate request may require re-routing of other pro-
visioned request(s). This could lead to recursive calls of the two functions and an ininite loop. To avoid this,
we allow our algorithm to terminate when either a low is successfully conigured or there are no other lows
available for re-routing with a lower QoS value than the new low request. For the algorithm to select a candidate
low for rerouting, we associate a numerical value with each routed request called�� or mobility factor, which
when high, implies that the request is a suitable candidate for rerouting (based on QoS, path availability and
latency). Selecting a lower QoS low for re-routing limits the pool of choices and ensures that after several
iterations our algorithm will select the lowest QoS low for re-routing. By continuously choosing lower QoS
lows, our algorithm exhausts candidates that can be selected, leading to termination.
To motivate the mobility factor measure, consider a network with 16 nodes as shown in Figure 4. Suppose a

new low request needs to be conigured over the path F-G-H. However, there is no bandwidth available at (red)
node G; this is when Tuneman invokes the DFP algorithm. At node G, three diferent lows (low 1, 2 and 3) are
conigured with lower priority but with higher bandwidth requirement than the new request. Hence the DFP
algorithm can select a low for shifting out from among these three lows and move it to an alternate path. Assume
the next shortest path for lows 1, 2 and 3 are A-B-C-D-E, I-J-K-L-M and I-N-O-P-M, respectively. Given the three
choices, Tuneman attempts to choose a low whose shifting does not lead to a large chain of reconigurations.
While reconiguring a low on its alternate path, Tuneman still needs to guarantee the latency requirement of the
low. Therefore, only those lows are considered for reconiguration, for which latency criteria are fulilled at one
of the alternate paths. For instance, if the path I-J-K-L-M does not meet the low 2 latency requirement, then low
1 and low 3 are the only candidates for reconiguration.

Next, assume nodes B and D on low 1’s alternate path do not have enough capacity to accommodate low 1.
Also, nodes K and P do not have enough bandwidth for lows 2 and 3 respectively on their next shortest paths.
We refer to these nodes as bottleneck nodes. Hence if we choose to move low 1, we need to free-up bandwidth at
both nodes B and D. By contrast, choosing low 2 or 3 requires freeing up bandwidth only at a single node (node
K or P). Intuitively, the larger the number of bottleneck nodes on a path, the larger is the chain of reconiguration
calls and vice-versa. Therefore, lows 2 and 3 with a single bottleneck node are better candidates for shifting.
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Further, to select among lows 2 or 3, Tuneman checks the number of existing lows at bottleneck nodes K and P
which can be shifted to their next shortest paths if required. A higher count implies a larger pool to select a low
to shift. Therefore, Tuneman selects low 2 to reconigure on path I-J-K-L-M because it has a pool of 15 lows (NS
= 15) on bottleneck node K in contrast to 10 lows on bottleneck node P for low 3.
Motivated by the above example, we propose a mobility factor, which is instrumental in DFP choosing the

"best" low for reconiguration among a pool of candidate lows.
Computing Mobility Factor�� : Based on the example, the mobility factor of a low is computed using three

factors.

(1) Latency slack is deined as the diference in latency between the worst-case path and an existing path from
among � paths. We calculate latency slack as:

� = (�� − ��)/�� (3)
Where, �� represents the worst latency across the � paths. Further, �� is the latency over a path on which a
low is currently provisioned i.e. � ∈ {1, 2, ..., �}.

(2) The bottleneck node over a path (on which we are attempting to provision this low) is deined as a node
that does not have suicient bandwidth available to provision this request. The total number of bottleneck
nodes over a path is �.

(3) �� is the minimum number of lows provisioned across all the bottleneck nodes that have lesser QoS and
higher bandwidth than the requested low.

To summarize, the larger the latency slack of a low, the more likely it is to ind an alternative path such that
the latency requirement of the low is satisied. On the other hand, a higher value of�� , implies more options
(larger pool of lower QoS lows are available) from which a low can be selected for re-routing over an alternate
path. Therefore,�� should be directly proportional to both latency slack and�� . By contrast, a large number of
bottleneck nodes (�) implies a correspondingly higher requirement to reconigure a larger number of lows on an
alternate path. This suggests that we make�� inversely proportional to the number of bottleneck nodes. Putting
the pieces together, we deine the mobility factor of a low as:

�� =
� ∗

(

�� + 1
)

� + 1
(4)

5 PATH COMPUTATION BENCHMARKS

A Python based simulation model was developed for reconigure() and low_provision() functions and applied to a
200-node topology modelled as a power-law graph with average degree of connectivity across nodes as 4. Nodes
have 2-16 ports at 10Gbps rate. Flows were generated between random source-destination pairs and have one of
the 8 QoS values. The probability of selecting any QoS value for a low is 0.125 (equal distribution among all
8 QoS classes). The arrival of the lows follow exponential distribution (with � = 6.53 ms) and the Cumulative
distribution function (CDF) of the inter-arrival times is shown in Figure 5. The bandwidth requirements for the
lows are normally distributed [18] with a mean of 300 Mbps and variance of 200 Mbps. Between each source
destination pair, we calculate and store sixteen shortest paths (� = 16) before provisioning any service. Load is
calculated as the ratio of actual occupancy across all the links to the sum of all link capacities divided by the
average path-length; hence it lies in [0, 1]. We refer to this deinition of load throughout the paper. The average
hop-count is 4.25 (representing a typical tier-2 network).
Efective traic shifting: In Figure 6a we show the capability of our algorithm to keep the lows of higher

priority provisioned on their shortest path, penalizing lower QoS lows by sending them over longer paths (if
required). Figure 6a shows that 93% of the lows having the highest QoS value are provisioned on the shortest
path. This validates the reconigure() function and the intuition behind the computation of�� . In the absence of
our algorithm, lows are evenly distributed over the available paths. The result shows that our algorithm always
attempts to keep the traic of the highest QoS value on the shortest path. Due to reconiguration, lows having
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Fig. 5. CDF of the inter-arrival times of the flows.

lower QoS values may not be provisioned on their shortest path as compared to an approach where there is
no reconiguration. The lower the QoS value of a low, the lower the likelihood of its being provisioned on the
shortest path.
Next, in Figure 6b, we observe the relationship between the frequency of reconiguration as a function of

number of paths � and load. The value of � impacts the number of reconiguration calls with increasing load.
We experimented with four diferent values of � : 4, 8, 12 and 16. Below a load of 80%, all lows are successfully
provisioned without requiring any reconiguration. Note that the higher the value of � , lower the number of
reconigurations. For lower values of � (such as � = 4), the number of reconiguration calls increases drastically
(at higher loads). This is because more lows will result in higher chances of reconiguration.

Next in Figure 7a, we show how the use of mobility factor improves traic provisioning time by reducing the
number of recursive calls in the algorithm. To obtain this result, we computed the number of lows re-routed
by the algorithm with and without using mobility factor at diferent loads. We then calculate the percentage
improvement seen in the number of recursive calls by the use of mobility factor for diferent values of � . For

(a) (b)

Fig. 6. a) Fraction of flows on their shortest path for diferent QoS values. b) Number of reconfiguration function calls for

diferent values of � (number of shortest-paths considered) with load.
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(a) (b)

Fig. 7. a) Percentage improvement in number of reconfiguration function using mobility factor with load. b) Average link

utilization (with and without Tuneman).

� = 16, an improvement of 36.5% is observed at a load of 90%. Even for smaller values of � , such as � = 4 the
improvement is around 20% at this load. However, for all the values of � , improvement due to mobility factor falls
after a load of 90%. This is because all the candidate lows lead to similar reconigurations at heavy loads and less
available paths.
Next, in Figure 7b, we show the efect of the reconiguration algorithm on average link utilization in the

network. Tuneman achieves better link utilization as compared to the traditional approach. The improvement is
much more noticeable at the high loads. This is because Tuneman drops fewer services and pushes low-priority
services on the longer paths to increase path diversity.
Next, in Figure 8, we show how Tuneman improves the acceptance ratio of the service requests. For this

experiment, we show the percentage of requests dropped for every considered QoS class, when services are
provisioned with and without Tuneman (baseline). We say a service request is dropped if it cannot be provisioned
in the network because of insuicient available bandwidth at all of the �-shortest paths. The bar chart in Figure 8
has 4 groups of bars corresponding to the network load of 0.4, 0.6, 0.8, and 1.0. For each group, we have 16 bars ś
eight each for Tuneman and baseline case. Within a group, for each case, the eight bars represent the percentage
of services dropped for all eight considered priority classes. The irst bar in each group denotes the percentage of
requests dropped belonging to QoS level 7 (highest QoS) for the baseline case. The next adjacent bar corresponds
to the Tuneman case for the same QoS level. Similarly, the last two bars in each group represent dropped requests
belonging to the lowest priority class (QoS level 0) for the baseline and Tuneman case, respectively. At a low
load of 0.4, even without Tuneman, the acceptance percentage is quite good and only ∼ 2% requests are dropped
across all priority classes. However, with Tuneman this rate even improves, and hardly any high-priority service
is dropped. However, for the load of 1, the drop percentage is around ∼ 15% for the baseline case across all priority
classes. Tuneman signiicantly improves this percentage for the high-priority classes as only ∼ 5% services are
dropped. However, the improvement is not much for low-priority classes such as QoS level 0. This is because
Tuneman’s reconiguration algorithm does not shift higher priority lows (on a longer path) to adjust a low
priority low. The minute improvement for the lowest priority services (QoS 0) comes from shifting other lowest
priority services on a longer path.
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Fig. 8. Percentage of services dropped for each QoS level with and without Tuneman (at diferent network loads).

6 SYSTEM EVALUATION

Initially, Tuneman discovers all nodes using layer 2 discovery protocol (similar to Cisco Discovery Protocol) via
its immediately connected nodes (and then its neighbors and so on) and constructs an adjacency graph of the
entire network. Thereafter each port at a node is given a unique number. Tuneman periodically pings all nodes
to verify the adjacency matrix. We use a re-arrangeable and non-blocking VoQ crossbar. When a new request
arrives, a schedule is computed based on ğ3. A path is then found that can accommodate a new request after
which tables are populated.

Tuneman computes a megalabel by concatenating ingress and egress port numbers for all the routers along
the request’s path. The megalabel is a segment-routed information appended to every packet belongs to the
request. An entry in the megalabel is 13-bits long: the irst 6-bits correspond to an ingress port, while the last
6-bits correspond to an egress port. As a packet traverses a node, the node eradicates its active portion of the
megalabel by converting the middle bit from a 0 to a 1 allowing downstream nodes to know which portion of the
megalabel to work on next. As a low enters a Tuneman-supported network, a table at the ingress node maps an
application low identiier to a megalabel, which is present in the table if the low was provisioned.
The scheduler takes into account the small bufer sizes. In the FPGA we use, bufers are implemented using

block RAMs that are not more than 300 microseconds or about 250 MTUs at 10 Gbps.

ACM Trans. Internet Technol.



16 • Sidharth Sharma, Aniruddha Kushwaha, Mohammad Alizadeh, George Varghese, and Ashwin Gumaste

(a) (b)

Fig. 9. a) The edge and regional SDN routers. b) The core SDN router. Chassis (above let), PCB (above right), the switching

card (botom let), the IO card (botom right).

(a) (b)

Fig. 10. a) AIIMS existing telesurgery set-up. b) Emulation of AIIMS telesurgery set-up.

Tuneman hardware: Three kinds of SDN whiteboxes were used in the testbed (shown in Figure 9a and 9b):
an edge box that has 10 × 1 Gbps and 2 × 10 Gbps IOs (Input/Output), a regional platform, whose individual
stackable element has 4 × 10 Gbps and 8 × 1 Gbps IOs and a core whitebox that supports 144 × 10 Gbps IOs. The
edge box is built using a Virtex 6 FPGA (240T-1) and an AMCC PHY that multiplexes 3.125 Gbps IO lines from
the FPGA into 10 Gbps IOs. The regional SDN platform uses a Virtex 6 365T FPGA along with 4 Pemaquid OTN
capable ASICs. The larger core platform has 2 switching cards, each supporting multiple Virtex 7 690T FPGAs,
and up to 12 IO cards, each supporting 12 × 10Gbps IOs with each IO card built around two parallel units of
Virtex 7 FPGAs. The FPGA-based hardware interacts with a Java-based network management system (NMS)
(i.e., Tuneman) through a control state machine. The Tuneman controller consists of a provisioning module, a
telemetry module and a network discovery module.

6.1 Telesurgery Emulation Experiment

We emulated the topology and telesurgery setup of a leading hospital (AIIMS) in India on our testbed. Figure
10a shows that the hospital has 2 telesurgery (TS) locations, East and West of itself at a distance of 96 and 130
km respectively. The West location is currently connected through an MPLS cloud using 2x100 Mbps best-efort
traic, while the East location is connected using a SDH (Synchronous Digital Hierarchy) network of a STM-4
(622 Mbps) link. We emulated this set up in our lab with spools of ibers corresponding to the distances as shown
in Figure 10b. We used all three routers we had designed ś a terabit router at the hospital location, a mid-size
router at the Eastern location and the smallest router at the Western location. The Tuneman controller was
connected to the terabit router, through which it was also connected to the other two edge routers. All traic
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(a) (b)

Fig. 11. a) Latency comparison of Tuneman vs. existing solutions. b) Throughput comparison of Tuneman vs. existing

solutions.

was in integer multiples of 10 Mbps and over 10 Gbps links. The TS traic was multiplexed with other traic.
Two traic generators (JDSU8000) were used at the far ends to generate multiple traic streams such that the
network was loaded with not just TS, but other background traic as well. Shown in Figures 11a, 11b are latency
and throughput respectively as load varies.
We observe that the circuit switched STM-4 has the worst latency (6-hops with 32 microseconds at each

hop), though it remains constant with load. MPLS latency grows with load, and hence will adversely impact
Telesurgery (TS). Though MPLS latency is less than the strict cut-of for TS, it is variable, implying that there
is perceivable change in user experience for TS. Deterministic latency is hence much more important for the
application of TS than just meeting a bound as the data rate is intense (HD video) and precision in the form of
two-way feedback is critical. Tuneman exhibits very low and deterministic latency, ideal for TS. Note that we
have neglected the constant propagation delay for each case which would increase the user perceived delays by a
few msec. Note that Tuneman is almost 1/4-th the price of STM-4 and yet gives much more BW (622Mbps vs
10Gbps on a link). The last graph shows the throughput comparison between STM-4, MPLS and Tuneman. MPLS
and Tuneman have similar throughput In STM-4, the throughput is a direct function of network load. When
viewed together, the deterministic latency and high throughput of Tuneman makes it a promising solution for TS
(and other applications).

6.2 Controller Scalability

We compare the performance of the Tuneman controller with another SDN controller, OpenDaylight (ODL). To
do so we created a linear topology of 14 nodes in Mininet. Mininet interacts with ODL, which writes the network
conigurations. We captured diferent sized packets exchanged between ODL with Mininet using Wireshark. We
also capture the packets exchanged between Tuneman and the node in the network. Diferent sized packets are
exchanged between controller and the nodes; therefore for a fair comparison, we compute the total number of
bytes exchanged by varying the number of lows in the network as shown in Figure 12a. Note, to exhibit similar
functionality as Tuneman, there is signiicant increase in load on the ODL controller because Tuneman uses
segment routing which results in updates of match tables only at the ingress node but ODL has to update all the
routers. Observe that as the number of lows increases, there is an increase in controller load for both Tuneman
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(a) (b)

Fig. 12. a) Controller load comparison between Tuneman and a standard SDN controller. b) Percentage of requested

bandwidth admited by SWAN and Tuneman.

and ODL, but this increase is not as signiicant for Tuneman as in ODL; therefore, Tuneman controller scales
better.

7 COMPARISON WITH OTHER SCHEMES

In this section, we compare the end-to-end latency and network utilization of Tuneman to SWAN (that only
attempts to maximize utilization). For this reason, one might expect Tuneman to at most match the utilization of
SWAN. This is a key comparison because as we said in the introduction, Tuneman functionally emulates SWAN
but adds delay bound guarantees.
To examine scalability in the following experiments, we used simulations on a larger countrywide network,

India’s Tata Network rather than the smaller testbed that we used to emulate the AIIMS telesurgery setup. The
Tata network is a WAN (TATA network [61]) comprising 145 nodes and 186 bidirectional iber links. Links have
10Gbps capacity.

SWAN vs. Tuneman: Figure 12b, compares the percentage of requested bandwidth allocated by SWAN and
Tuneman. We generated lows between random source-destination pairs. We assume four priority classes: (1)
telesurgery and similar applications (latency bound of 5 ms [14, 58]), (2) video traic (latency bound of 35 ms [52]),
(3) voice traic (latency bound of 100 ms [39]) and, (4) web-suring traic (latency bound of 200ms). Note that the
latency bounds are in msec as opposed to �s earlier because we also consider realistic end-to-end propagation
delays for mission-critical networks. The individual bandwidth requirement of the lows for these priority classes
are as follows: 100 Mbps for telesurgery (multiple sessions), 5-10 Mbps for video lows, 1-5Mbps for voice lows
and 1-20 Mbps for web-suring. We have experimented with diferent traic mixes of these four classes. The
traic mixes are as follows: M1 = [0.1, 0.1, 0.4, 0.4], M2 = [0.7, 0.1, 0.1, 0.1], M3 = [0.1, 0.2, 0.2, 0.5] and M4 = [0.3,
0.3, 0.2, 0.2]. An entry�� � in the traic mix�� determines the fraction of traic for priority class � to the total
generated traic. For SWAN’s traic allocation algorithm, we set U = 10 and alpha = 1.5 (see Figure 6 in [26]).
SWAN focuses on inter-DC WANs, whereby there are multiple paths between a chosen source-destination pair.
Hence to be fair to SWAN, we have only included lows between those source-destination pairs that have at least
10 paths between them.
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Table 2. Product Features

Feature
Cisco

ASR

Juniper

MX

Tuneman

1-

Tbps

IPv4/IPv6
forwarding

Yes Yes Yes

MPLS TP/Carrier
Ethernet

Yes Yes Yes

OpenFlow1.5 No No Yes
L2 switching Yes Yes Yes
BGP + OSPF Yes Yes Yes

802.1ag OAMP (50ms
protection)

No No Yes

OTN No No Yes
Bandwidth on

demand
Yes No Yes

Deterministic
latency

No No Yes

Figure 12b shows that for traic mixes M3 and M1, where the proportion of low priority lows are higher than
the high priority lows, Tuneman provisions roughly 5% more bandwidth than SWAN. This is because SWAN
always provisions high-priority lows on their shortest paths, irrespective of whether the latency guarantee is
barely met or met by a large margin. By contrast, Tuneman provisions lows based on their latency tolerance: as
long as the latency guarantee is met, the application can be provisioned on a longer path, thus creating room for
application lows on otherwise congested links. Tuneman can provision high-priority lows on slightly longer
paths, allowing Tuneman to allocate comparatively shorter paths to low priority lows, hence allowing more low
priority lows while meeting delay bounds for every provisioned low.
Even for traic mixes where high-priority lows dominate (M2, M4), Tuneman performs slightly better in

terms of bandwidth admission. More fundamentally, SWAN cannot guarantee delay bounds for applications like
telesurgery. SWAN’s priority mechanism is simply best efort, and can fail without the application being aware
of the failure. Thus, Tuneman’s real advantage is better or comparable traic utilization while guaranteeing delay

bounds. Without latency bounds, SWAN’s traic engineering algorithm always outperforms Tuneman for all
traic mixes as SWAN uses a network-level optimization model for bandwidth utilization while Tuneman relies
on the (heuristic) DFP algorithm.

Our evaluation only compares Tuneman with SWAN. Fastpass is host based and uses edge coloring (which in
turn requires reconigurably non-blocking networks) and so cannot directly be compared to Tuneman which
works in mesh networks. We also do not compare with MPLS TE because it is well known that centralized
schemes like SWAN are better than distributed schemes [26]. Shown in Table 2 is a comparison of our developed
Tuneman hardware to commercial grade SDN/IP routers.

8 RELATED WORK

Table 3 summarizes Tuneman versus related work. Most earlier work attempts either to provide delay bounds or
do traic engineering to improve utilization. Notable exceptions are Silo [29] (which improves utilization by VM
placement and hence is not applicable to mission-critical networks) and [30] (which uses SDN switches and
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Table 3. Related works

Scheme
Delay
Bounds

BW Uti-
lization

Throughput
Bounds

Low cost
switches

Applicable
to Mesh
Net-

works?

TE solutions [26, 27, 44] No Good Yes No Yes
SDN based Host schedule [41]) Yes No No No No1

Delay Solutions [2, 22, 25] Yes No No No Yes
Delay Calculus Based + Pacing [29] Yes Yes2 Yes No No
Optimization + WFQ switches [30] Yes Yes Yes No3 Yes

Tuneman: SDN control of routes and schedules Yes Yes Yes Yes Yes
1reconigurably non-blocking topologies only, 2by VM Placement, 3SDN switches

WFQ approximations to provide coarse delay bounds). Also, there are a few earlier works based on QoS routing
[9, 53] considered both bandwidth and delay criteria to provision services in ad-hoc and multimedia networks.
However, the latency requirements of these services are often in the range of 100s of milliseconds as opposed
to the strict requirements in mission-critical networks. These works compute a set of paths that satisies both
delay and bandwidth criteria and thereafter provisions a request on a link with either maximum bandwidth or
minimum delay. However, such a strategy leads to congestion on the shortest path, eventually forcing a drop of
service requests with stringent bandwidth and delay requirements.
Traic Engineering:Multiple traic engineering proposals exist for maximizing bandwidth utilization in

WANs and DCs. The goal of B4 [27] and SWAN [26] is to utilize links efectively by changing data-plane
conigurations based on changing low bandwidth requirements. The optimization model does not consider
latency but does consider bandwidth changes and low priority classes. SWAN focuses on avoiding congestion
while updating the rules in the switches and enforces max-min fairness within a class of traic. SWAN does not
consider switch-level scheduling of lows and hence does not guarantee delay bounds. A model that maximizes
bandwidth allocation while respecting availability is presented in [20]. Edge Fabric [44] avoids link congestion at
the edge in Facebook’s network.

DelayBounds:HULL [2] uses phantom queues to leave bandwidth headroom to support latency-sensitive lows.
QJUMP [22] uses priority queuing along with rate-limiting to handle throughput-latency trade-of. pFabric [3]
uses a remaining low size metric for scheduling packets in DC switches to optimize low completion time. PDQ
[25] uses preemption to quickly inish data-center lows. These approaches are fundamentally diferent from
Tuneman as they are primarily focused on low-latency communication within a DC and do not perform traic
engineering.
SDN Control of Host Packet Sending: FastPass [41] uses an SDN controller to allocate packet sending

time-slots at hosts to minimize packet queues and latency at switches. FastPass does not simultaneously optimize
low bandwidth and latency as Tuneman does. Fastpass also does not do traic engineering to maximize utilization,
and requires reconigurably non-blocking topologies used in data-centers [41] for its edge coloring algorithm.
Delay and Throughput Bounds with High Utilization: Kumar [30] propose a delay and bandwidth

guarantee model for SDNs. However, our work difers signiicantly because [30] provides delay guarantees in
commodity SDN switches using WFQ approximations and one queue per low which is expensive and infeasible
(as they themselves note). They also provide only coarse node delay guarantees. By contrast, we build our own
slotted SDN switches, which allow us to scalably and cheaply control node delays at ine granularities, which in
turn allows us to perform node-level bandwidth and delay optimizations. Thus the algorithm proposed by [30] is
best-efort, while we guarantee delay bounds. Silo [29] leverages VM placements and pacing to guarantee latency
bounds, bandwidth guarantees, and bandwidth utilization in a multi-tenant DC. By contrast, Tuneman provides
bandwidth and latency for each application in a WAN environment.
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Router Scheduling: Tuneman’s node scheduling optimization module is comparable to a fast scheduler like
iSLIP [35] but works at a coarser time scale. While iSLIP is not cast as an optimization, it does provide fast
work-conserving scheduling. Native iSLIP, however, does not consider latency bounds, which Tuneman does.
Tuneman is computationally slower than iSLIP but provides latency guarantees for Tuneman lows. Similarly,
variants of DRR [46] provide poor delay bounds. The celebrated Parekh-Gallager [40] delay bound and Cruz’s
network calculus [15] are techniques to ensure and calculate fairly coarse delay bounds in a multi-hop network.
By contrast, our focus is on designing and controlling the nodes of a network so that low delay are explicitly met.
Our analysis does not require the sophistication of the delay calculus because of the simple slotted schedulers
we employ at nodes. Recent Switch schedulers include hardware schedulers [34, 37, 47, 49, 57] and software
schedulers [42, 43, 49]. Tuneman’s slotted scheduler is diferent and more closely related to techniques such as
[1, 11, 28]. DRILL [21] does scheduling and load balancing.
Other approaches: Cameo [54] is an approach to meet deadlines while ensuring performance isolation in

streaming systems. Homa [38] is a transport protocol for small messages in low-latency DCs, that assigns priority
dynamically at a receiver and over-commits receiver’s links to increase BW utilization. Low-latency routing is
considered by [23] by dimensioning the physical topology. [32] is a measurement module for software switches.
We have a similar module that provides latency and throughput. Tuneman can be implemented using other
data-plane programmability techniques [8, 12, 48, 60].

9 DISCUSSION

Before we conclude, we discuss the limitations, the impact of rescheduling lows on TCP and the scheduling
complexity of Tuneman.
Limitations:We identiied some limitations in our work. The irst limitation of our work is that we assume

the applications specify their bandwidth and latency requirements at the time of provisioning. Applications can
spoof their QoS and bandwidth requirements. In the present version of Tuneman, we expect applications to
convey their QoS and bandwidth requirements correctly. We assume to have a mechanism that can convey QoS
and bandwidth requirements (based on the application) to Tuneman. Application Aware Routing is one such
alternative as presented in [16, 31, 36, 51, 59], which aims to identify the applications and perform routing based
on application’s requirement. This may require a standardization process for applications such that they can
be categorized into classes and a speciic ield is allocated in a packet for the class IDs. Another limitation is
that Tuneman equally distributes the target delay for a service among all switches along the chosen path. This
assumption simpliies the problem as it does not consider the existing load at a switch while distributing the delay
budget. In the future, we aim to rectify these limitations by introducing mechanisms that consider application
awareness and individual switch’s load.
Impact of low rescheduling on TCP: Flow scheduling and reconiguration impacts the TCP lows and

their windowing mechanism. This impact is prominent when reconiguration of lows is done following the
break before make philosophy, where new conigurations for lows are populated in the match table after tearing
down the existing low conigurations. In contrast, Tuneman follows make before break philosophy, where new
conigurations are populated irst before tearing down the existing conigurations. Therefore impact on TCP
lows and throughput is negligible. However, this reconiguration impacts the TCP window sizing. As with
reconiguration, paths of the lows become longer, TCP attempts to increase its window size to sustain the
throughput.

Scheduling complexity: As per our analysis, packet scheduling in Tuneman can be directly correlated to the
scheduling presented in [13, 46]. For a round robin scheduling work required to process a packet has complexity
of O(1) as presented in [13, 46]. Therefore, the work required to process a packet in Tuneman is also O(1), as
Tuneman also uses round robin to schedule the packets from input ports to output ports. In Tuneman, an epoch
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is divided into smaller time slots for scheduling the packets from all incoming ports; this slot time corresponds to
a łquantaž in [46] or łweightž in [13].

10 CONCLUSION

This paper explores the consequences of programmability of a network, where routes, switch schedules, QoS
priorities are all at the command of a centralized controller. Earlier work (e.g., SWAN, B4, FastPass) assumed
the network was partially programmable. B4/SWAN assumes routes can be dynamically selected but not switch
schedules, while FastPass assumes routes and packet schedules at end-nodes can be programmed but not switches.
In existing routers, both routes and QoS parameters can only be coarsely tuned using link-weights and queue
parameters.

We present a path towards full programmability using packet schedules and dynamic routing. Our results show
that SWAN’s coarse latency knobs (priority levels) can actually decrease utilization. Full programmability also
paradoxically simpliies matters compared to having a controller restrained with existing switches and limited
QoS knobs. Tuneman thus can be used in mission-critical networks with increasing demands for stringent latency
bounds (e.g., telesurgery).
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APPENDIX

A ROBUST OPTIMIZATION

Robustness in optimization is incorporated when we consider some connections to be at a peak value, while
others are at a ixed ("average") value. However, we do not know which of the connections are going to be at
their peak values. Incorporating robustness allows a statically designed system to support some degree of traic
dynamism.
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Fig. 13. Loss of throughput due to robustness
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Figure 13 measures the impact of robustness. For this experiment, we use 50 ≤ ��� ≤ 200; 10 ≤ � ≤ 120; On the

x-axis, we have the ratio of the number of lows at peak-value to the total number of lows at the output port.
We begin from 0.1 and go up to 0.6. We create 3 groups with 3 bars in each group: the irst 3 bars are for small
number of lows at the output port, the next three are for medium number of lows at an output port, while the
last three are for a heavy loaded output port. In each group, we further have three bar-graphs for diferent ratios
of peak-to-average bandwidth values.

The result can be interpreted as follows: Each bar has two indicators ś the peak-to-average bandwidth value
and the number of lows at peak to total number of lows at the port. We measure for these two indicators the loss
of throughput (deined as how much extra padding in terms of �� � we need to reserve to take into consideration
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robustness). The 3rd, 6th, 9th bars i.e. at �/�� > 0.5 are diicult to realize as the loss in throughput is high since
we incorporate almost 50% churn.

The remaining results show the merit of the robustness model ś the loss of throughput is less than 20% for
even relatively high churn of 40% of the connections varying their bandwidth by 10-20% from their steady-state
value (we assume both increase and decrease from the steady-state value). A plausible reason for this seemingly
lower loss of throughput is because of better itting of schedules in the �� . What is happening is that with churn,
there is some interchange between slots (and hence a new schedule), though the epoch time is hardly impacted.
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