
MIT Open Access Articles

Threshold Cryptography as a Service
(in the Multiserver and YOSO Models)

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Benhamouda, Fabrice, Halevi, Shai, Krawczyk, Hugo, Miao, Alex and Rabin, Tal. 2022.
"Threshold Cryptography as a Service (in the Multiserver and YOSO Models)."

As Published: https://doi.org/10.1145/3548606.3559397

Publisher: ACM|Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security

Persistent URL: https://hdl.handle.net/1721.1/147692

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/147692

Threshold Cryptography as a Service
(in the Multiserver and YOSO Models)

Fabrice Benhamouda

Shai Halevi

Hugo Krawczyk

fabrice.benhamouda@gmail.com

shaih@alum.mit.edu

hugokraw@gmail.com

Algorand Foundation

New York, USA

Alex Miao

alexmia@sas.upenn.edu

USA

Tal Rabin

talr@seas.upenn.edu

University of Pennsylvania

USA

Algorand Foundation

New York, USA

ABSTRACT
We consider large deployments of threshold cryptographic services

that can run in traditional multi-server settings and, at a much

larger scale, in blockchain environments. We present a set of tech-

niques that improve performance and meet the requirements of

settings with large number of servers and high rate of threshold

operations. More fundamentally, our techniques enable threshold

cryptographic applications to run in more challenging decentral-

ized permissionless systems, such as contemporary blockchains.

In particular, we design and implement a novel threshold solution

for the recently introduced YOSO (You Only Speak Once) model.

The model builds on ever changing, unpredictable committees that

perform ephemeral roles in a way that evades targeting by attackers

and enables virtually unlimited scalability in very large networks.

Our solution allows for the maintenance of system-wide keys that

can be generated, used and proactivized as needed. The specific

techniques build on optimized protocols for multi-secret multi-

dealer verifiable secret sharing and their adaptation to the YOSO

model.

We demonstrate the practicality of our solutions by reporting on

an end-to-end implementation of a proactive re-sharing protocol

in the YOSO model, showing benchmarks for committees of sizes

up to 500 nodes. For traditional multi-server settings, we obtain

significant speedups in settings where dealers process many secrets

simultaneously (say, to generate or proactivize many keys at the

same time), e.g., we show 5× improvements relative to classical

Pedersen VSS for 15 servers and 50 secrets, and 48× for 500 servers

and 1000 secrets.

CCS CONCEPTS
• Security and privacy→ Cryptography; Key management; Pub-
lic key (asymmetric) techniques; Digital signatures; Public key en-
cryption;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00

https://doi.org/10.1145/3548606.3559397

KEYWORDS
Threshold cryptography, Verifiable secret sharing, blockchain, YOSO

model

ACM Reference Format:
Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal

Rabin. 2022. Threshold Cryptography as a Service (in the Multiserver and

YOSO Models). In Proceedings of Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’22). ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3548606.3559397

1 INTRODUCTION
In threshold cryptography, cryptographic functions are computed

by running a protocol among a set of parties, in a way that preserves

secrecy and integrity as long as “most parties” are honest. A typical

example is a system of𝑛 servers that produces signatures in a secure

way as long as nomore than a threshold 𝑡 of the servers is corrupted.

Threshold cryptography has been studied intensively for more that

30 years. While deployment in the real world has been limited so

far, modern trends such as the outsourcing of computation to the

cloud and decentralized applications provide new motivation and

opportunities to deploy threshold cryptography.

Threshold cryptography as a service. Efficient threshold cryptogra-

phy systems for small sets of servers are known, but most systems

in the literature scale rather poorly to large deployments. In this

work we develop techniques that make very large deployment fea-

sible (our techniques show significant benefits in smaller settings

too, see Section 5). We envision a large set of servers that provides

cryptographic services to applications by computing cryptographic

functions with threshold security. We refer to such deployments as

threshold cryptography as a service.
Traditional examples include threshold encryption services to

protect valuable information, signature services to support sensi-

tive applications such as (software) code signing or certification

authorities, and many more. A more demanding setting for thresh-

old services arise with decentralized permissionless systems, such

as contemporary blockchains. Example include running committees

of validators, implementing cross-chain bridges and randomness

beacons, using threshold encryption to protect transactions against

front-running, protecting custodial services, and many more. These

systems are open, allowing anyone to join and run a node, creating

the potential for the existence of a large number of nodes. Thus,

323

https://doi.org/10.1145/3548606.3559397
https://doi.org/10.1145/3548606.3559397

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal Rabin

the protocols that are executed in these systems must perform well

even when large number of nodes wish to participate.

One technique for dealingwith such large systems rely on smaller

committees for doing the work, that are sub-sampled from the en-

tire population of nodes. However, these committees must still be

large enough to ensure that they are “mostly honest” with high

probability. This results in committees with dozens to hundreds

(possibly more) of parties.

YOSO protocols. Recent years saw a new style of cryptographic pro-

tocols, where long-term parties are replaced by stateless ephemeral

ones. Such protocols are motivated by the general shift towards

“serverless computing”, as well as by specific blockchain-based ar-

chitectures that emphasize player replaceability [9].

The latter approach envisions computation carried via a se-

quence of randomly-chosen anonymous committees where a com-

mittee receives secret inputs from previous committees, carries

computations based on these inputs, and and eventually produces

an output. Anonymity of committee members precludes the at-

tacker from targeting these entities. However, the anonymity is

broken when the party “speaks" (produces output). Thus, before

producing output a committee member must erase all of its secret

state. Any information in this state that is needed for future actions

of the protocol needs to be shared to a different committee that will

complete these actions when required in the future.

This model was recently formalized by Gentry et al. [21] and

called YOSO (You Only Speak Once). In this model, long-lived nodes

are replaced by ephemeral stateless entities called roles.1 These

roles are addressable (i.e. other roles can send them messages), and

each role has access to all the messages that were sent to it (or

broadcast) in the past. Other than this communication transcript,

however, each role begins its life without any state. A role performs

some computation, sends (or broadcast) a single batch of messages,

and then immediately self destructs (capturing the erasure of state

as described above).

While this serverless model is very appealing from a system

perspective, realizing secure protocols of this type is very challeng-

ing. Some early protocols were described, e.g., in [5, 6, 11], and

Gentry et al. provided in [21] a general feasibility result, showing

that every function can in principle be computed in this way. But

obtaining YOSO protocols that are efficient enough to be useful is

still a major challenge. And aiming at large committees makes this

challenge a whole lot harder. As we explain later, adapting standard

cryptographic protocols to the YOSOmodel typically entails at least

an 𝑛× increase in complexity, where 𝑛 is the number of parties.

1.1 Our contributions and techniques
In this work we describe optimized threshold protocols that are

efficient enough to support large committees, in the traditional

multi-server case and even in the YOSO model. Our solutions are

all built from a basic primitive of multi-secret/multi-dealer verifiable
secret sharing (MSMD-VSS). Namely, we show efficient protocols

that allow 𝑛′ dealers, each with𝑚 secrets, to share all their secrets

among a set of 𝑛 shareholders.

1
An example of a role could be “party #3 in committee #2”.

First, we show how to amortize the classical Pedersen VSS pro-

tocol [30] to the setting of many secrets that are shared by many

dealers, in the traditional (non-YOSO) setting. Very roughly, we

consider a 3-dimensional matrix with axis corresponding to dealers,

secrets, and shareholders, and perform consistency checks across

the multiple dimensions to save on work. This protocol is described

in Section 3. Our implementation (Section 5) shows 5× improve-

ments relative to classical Pedersen VSS for 15 servers and 50 secrets,

and 48× for 500 servers and 1000 secrets.

The main technical challenge of this work is in adapting that

basic protocol to the YOSO model, and using it to implement a

protocol for “proactive” refreshing of secrets (e.g., as needed in the

architecture of Benhamouda et al [5]).

To see some of the issues that are involved, recall that the Ped-

ersen VSS protocol (recalled in Fig. 2) is based on the paradigm of

accusations and resolution. Very roughly, it features a dealer that

sends shares of its secret to the shareholders, and publishes some

associated verification information. The shareholders compare their

shares to the verification information, and publish an accusation

against the dealer if they don’t match. The dealer then responds to

accusations by publishing the secret shares that it sent to the ac-

cusing shareholders. Finally, every participants can decide whether

to accept the published responses or to disqualify the dealer.

Consider now what happens when we try to convert such a pro-

tocol to the YOSO model. We need to adapt it so that the dealer only

sends a single batch of messages, and shareholders are completely

passive and do not send any messages at all. This may seem impos-

sible: How can the shareholders accuse if they cannot speak at all,

and how can the dealer respond if it cannot speak a second time? To

solve this conundrum, we let the dealer send its messages utilizing

two intermediary committees: A verification committee that will
run checks and broadcast accusations, and a response committee
that responds to these accusations.

The response committee’s (called “future broadcast” in [21])

design is as follows: Whenever a dealer D𝑖 sends a message to a

verifierV𝑗 , it also shares that message among the members of the

response committees using Shamir sharing. IfV𝑗 accuses D𝑖 , then

the response committee simply publishes their shares for everyone

to see. Since it must be the case that eitherV𝑗 or D𝑖 are bad, then

there is no security loss in revealing that message.

The verification committee’s operations are harder: A dealer D𝑖

that wants to relay a message 𝑀 via the verifiers to some share-

holder Pℓ , cannot directly send it to any of the verifiers, since any

one of them can be bad. Instead, it has to share that message among
all the verifiers, and have them reconstruct that message to Pℓ . Yet,
the sharing must still allow the verifiers to check the shared value

and accuse D𝑖 if it is bad, all by speaking only once.

These ideas can be used to “compile” protocols to the YOSO

model, but doing so naively is very expensive. Indeed, it seems to

require two extra levels of secret sharing: every message D → P in

the original protocol must be shared among the verifiers, and each

of these shares must again be shared among the responders. Hence,

trying to compile an 𝑛-party protocol may increase the complexity

by a factor of 𝑛2.

Reducing this overhead is the main technical contribution of

this work. On the one hand, we show in Section 4 a collection of

techniques that can reduce the expansion factor from 𝑛2× to 𝑛×.

324

Threshold Cryptography as a Service CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Then we relay on the scaling features of our MSMD-VSS protocol to

rein in the complexity: we show that this 𝑛× factor can be expressed
as having the dealers share 𝑛 secrets each (rather than just one), and

then use our MSMD-VSS protocol to do so much more efficiently

than running 𝑛 copies of the original protocol.

The combination of all these techniques allows our protocol to

remain feasible with many hundreds of parties and even in the

YOSO model. This makes our protocol a promising step towards an

actual feasible implementation of the architecture from [5].

To demonstrate the practicality of our YOSO resharing protocol,

we provide an end to end implementation of it and report perfor-

mance results. Our code is written in Go and portable C without

assembler optimization, using a modified version of libsodium [16]

with some new optimizations. With 𝑛 = 513 parties, the protocol

takes less than 2 minutes of single-threaded computation per party

(when run over an in-memory communication layer). Since the

workload per party is highly parallelizable, a multi-core version

would scale almost linearly in number of cores and would reduce

even more the computation time per party. In addition, each party

broadcasts less than 100MB of data.

For the non-YOSOMSMD-VSS protocol, we provide performance

results that were obtained from running micro-benchmarks on the

various steps. These results show that our amortization techniques

provide significant speedup (see above) over a naive implementation

of the basic Pedersen protocol.

1.2 Related Work
Optimizing VSS and MPC via batch verification has been examined

extensively, especially in information-theoretic settings [1–4, 14, 15,

26]. One limitation of the approach in these works is that it requires

a larger honest majority (at least 𝑛 ≥ 3𝑡 + 1). More critically, these

information-theoretic protocols lose much of their benefits when

augmented with computational elements to produce public keys,
corresponding to the secrets or their shares, as needed in many

applications, particularly those that motivate our work. Moreover,

porting these protocols to the YOSO setting seems very hard. While

information-theoretic YOSO protocols are theoretically feasible

[21], they typically feature complexity of 𝑂 (𝑛6) or more, which is

too expensive to be usable in practice.

Some recent works on efficient computational (non-YOSO) VSS

include, for example, [7] and [27]. The former describe a very effi-

cient VSS, but where the shareholders can only recover 𝑠 ·𝐺 in the
group, rather than the secret 𝑠 itself. This may be enough for some

applications, but is too restrictive for others (such as threshold sig-

natures or decryption). The latter is more general but it is based on

Paillier encryption and significantly less efficient.

A very relevant recent work is the VSS protocol of Gentry et al.

[22]. That work is motivated similarly to ours, namely, they aim at

feasible threshold protocols for the YOSO model. But it features a

different solution approach: Rather than adapt an interactive proto-

col to the YOSO model, they describe a completely non-interactive

VSS protocol. Namely, the dealer(s) just broadcast encrypted shares

to the shareholders, and provide NIZK proofs that these shares are

valid. They use a combination of lattice-based batched encryption

and DL-based proof systems to obtain rather efficient NIZKs. While

potentially feasible even for very large committees, their protocol

is a lot slower than ours. For example, running their protocol with

𝑛 = 512 parties, verifying each NIZK proof reportedly takes 17.4 sec-
onds. This means that each shareholder must work 17.4 ·512 ≈ 8900

seconds (about 2.5 hours) to verify all the proofs. In contrast, our

protocol with 513 parties would requires about two minutes to

complete the entire verifiable sharing. We also mention a straw-

man implementation of a non-interactive proactive VSS suitable to

the YOSO model presented in [21], based on threshold Paillier, but

highly inefficient and not suited for practice.

1.3 Organization
We recall background material in Section 2, and then describe our

non-YOSO amortized VSS protocol in Section 3. Our YOSO protocols

are described in Section 4, andwe show some initial implementation

results in Section 5. All proofs are deferred to the full version.

2 NOTATIONS AND BACKGROUND
Notation. For an integer 𝑛, we denote [𝑛] = {1, 2, . . . 𝑛} and

[[𝑛]] = {0, 1, 2, . . . , 𝑛}. We consider a hard-discrete-logarithm group

G of prime order 𝑞, written additively, with a designated generator

𝐺 ∈ G. The number of shareholders is usually denoted 𝑛, and the

bound on the number of faulty parties is 𝑡 . Secrets are usually

denoted by lowercase 𝑠 ∈ Z𝑞 , and we use uppercase 𝑆 ∈ G to

denote the corresponding group elements, 𝑆 = 𝑠𝐺 . We often use

𝜎 or lowercase 𝑧 to denote shares and set 𝑍 = 𝑧𝐺 . We extend the

group additive notations to vectors as follows:

• For a vector ®𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ Z𝑛𝑞 and an element𝑋 ∈ G, we
denote ®𝑧𝑋 = (𝑧1𝑋, . . . , 𝑧𝑛𝑋) ∈ G𝑛 . Similarly for 𝑧 ∈ Z𝑞 and

®𝑋 = (𝑋1, . . . , 𝑋𝑛) ∈ G𝑛 , we denote 𝑧 ®𝑋 = (𝑧𝑋1, . . . , 𝑧𝑋𝑛) ∈
G𝑛 .
• For same-dimension vectors ®𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ Z𝑛𝑞 and

®𝑋 = (𝑋1, . . . , 𝑋𝑛) ∈ G𝑛 their pointwise product is ®𝑧 ⊙ ®𝑋 =

(𝑧1𝑋1, . . . , 𝑧𝑛𝑋𝑛) ∈ G𝑛 , and their inner product is ®𝑧 • ®𝑋 =∑𝑛
𝑖=1 𝑧𝑖𝑋𝑖 ∈ G.

These notations extend also to matrix-vector products.

2.1 Multi-Dealer Verifiable Secret Sharing
We recall informally the Multi-Dealer VSS notion that is central to

our protocols and point to some of its applications.

VSS A (𝑡, 𝑛) Verifiable Secret Sharing (VSS) [10] is a multi-party

protocol with two phases: Dealing and Reconstruction. The dealing

phase involves a dealer D and 𝑛 shareholders P1, . . . ,P𝑛 , and the

reconstruction phase involves 𝑡 + 1 (or more) shareholders. D’s

input for the Dealing phase is a secret 𝑠; at the end of the phase,

either all honest shareholders disqualify the dealer or otherwise

each honest shareholder ends with a share 𝜎𝑖 . In the reconstruction

phase, subsequent to a non-disqualified dealing, each shareholder

provides its share 𝜎𝑖 as input, and they reconstruct (output) the

secret 𝑠 . Assuming at most 𝑡 < 𝑛/2 dishonest parties, this protocol
provides the following security guarantees: (a) If the dealer is honest

then it is not disqualified; (b) If the dealer is honest then at the end

of dealing no set of 𝑡 shareholders has any information about 𝑠;

and (c) If the dealer is not disqualified, then at the end of dealing

there is a unique value 𝑠 which is guaranteed to be reconstructed

in every execution of the reconstruction protocol with at least 𝑡 + 1

325

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal Rabin

honest shareholders. Our solutions in this work are based on the

classic Pedersen VSS protocol, see Section 2.6.

MD-VSS. In a Multi-Dealer VSS (MD-VSS), there are 𝑛′ dealers
D1, · · · ,D𝑛′ , and 𝑛 shareholders P1, . . . ,P𝑛 . Each D𝑖 , 𝑖 ∈ [𝑛′],
runs a VSS with the 𝑛 shareholders on a secret 𝑠𝑖 where all 𝑛

′
VSS

protocols are run simultaneously.

At the end, each shareholder P𝑗 outputs a local share which is

a linear combination2 of the shares received from non-disqualified

dealers. A common example is just the sum of all the shares of the

non-disqualified dealers. Additionally, many applications require

that the dealers and/or parties generate and verify public commit-

ments to the dealers’ secrets and/or to the shares computed by the

shareholders, see some examples below.

The linear combination is the same for all shareholders, it is

specified by the application running the MD-VSS and depends on

the set of non-disqualified dealers. By the properties of VSS, all

honest shareholders agree on which dealers are disqualified. In the

text we formalize this linear combination by a mapping 𝐿 : 2
[𝑛′] →

Z𝑛
′

𝑞 , that for any non-disqualified set Q ⊆ [𝑛′] yields the linear
combination

®𝜆 = (𝜆1, . . . , 𝜆𝑛′) = 𝐿(Q) that the shareholders use.
We require that the 𝑖’th entry of 𝐿(Q) is zero for any disqualified

dealer, 𝑖 ∉ Q (namely honest shareholder only use shares of non-

disqualified dealers). Thus, the parties compute 𝑧 𝑗 =
∑
𝑖∈[𝑛′] 𝜆𝑖𝜎𝑖 𝑗 .

Applications of MD-VSS. A basic use-case for MD-VSS is dis-

tributed key generation (DKG) for dlog systems [19]. In this ap-

plication, each dealer D𝑖 chooses its secret 𝑠𝑖 as a random field

element and the linear combination applied by shareholders can be

as simple as addition of all shares received from non-disqualified

dealers. The resulting shares serve as the shareholders’ local private

keys and the implicit shared secret serves as the global private key

of the system. In addition, all honest parties learn the public keys

corresponding to the local and global private keys. Such DKG pro-

tocol can also be used for producing ephemeral values in Schnorr

or ECDSA signatures (the ’𝑟 ’ element in a (𝑟, 𝑠) signature pair).
A more involved application of MD-VSS is for refreshing shares

in a proactive security system [23, 28] (that we use in essential

ways in our YOSO protocols from Section 4). This setting considers

𝑛′ shareholders holding shares 𝑠1, · · · , 𝑠𝑛′ of a global secret 𝑠 . At
some point, these shareholders need to reshare the secret 𝑠 into

fresh shares (without changing 𝑠), so that any knowledge of old

shares does not help in learning information about the new ones.

Namely, an attacker that learns 𝑡 shares from the old sharing and 𝑡

shares from the new one, learns nothing about 𝑠 . In applications

where shares act as the parties’ private keys (e.g., in a threshold

signature scheme), shareholders must also learn each other’s public

keys as well as the global public key of the system.

Proactive refreshing can be implemented with MD-VSS using the

technique from [20]. Roughly, the old shareholders act as dealers

in MD-VSS, and the new shareholders use Lagrange interpolation

for their linear combination. See more details in Section 4.

2.2 Pedersen Commitments
Pedersen commitments [29] rely on a setup phase in which two

random generator 𝐺0,𝐺1 ∈ G are made public, where the discrete

2
It is assumed that secrets and shares are field elements.

logarithm between them is unknown. To commit to 𝑧 ∈ Z𝑞 , the
committer chooses a uniform 𝑟 ∈ Z𝑞 and outputs the group element

𝐶 = 𝑟𝐺0 + 𝑧𝐺1. To open, the committer reveals 𝑧 and 𝑟 .

This is extended to multi-valued commitments to𝑚-dimensional

vectors as follows: The setup is extended to use𝑚+1 random genera-

tors with unknown pairwise discrete logarithm,𝐺0,𝐺1, . . . ,𝐺𝑚 ∈ G.
To commit to (𝑧1, . . . , 𝑧𝑚) ∈ Z𝑚𝑞 , the committer chooses a random

scalar 𝑧0 ∈ Z𝑞 and outputs the commitment element𝐶 =
∑𝑚
ℓ=0 𝑧ℓ𝐺ℓ .

To open, the committer reveals all the 𝑧ℓ ’s, ℓ ∈ [[𝑚]]. The following
are well-known properties of this scheme.

• Perfectly hiding: Given 𝐶 ∈ G and (𝑧1, . . . , 𝑧𝑛) ∈ Z𝑛𝑞 , there
is exactly one value 𝑧0 ∈ Z𝑞 for which 𝐶 =

∑𝑚
ℓ=0 𝑧ℓ𝐺ℓ .

• Computationally binding: If the discrete logarithm problem

is hard in G then it is infeasible to find two different vectors

(𝑧0, 𝑧1, . . . , 𝑧𝑚), (𝑧′
0
, 𝑧′

1
, . . . , 𝑧′𝑚) ∈ Z𝑚𝑞 such that

∑𝑚
ℓ=0 𝑧ℓ𝐺ℓ =∑𝑚

ℓ=0 𝑧
′
ℓ
𝐺ℓ .

• Linearity: Given vectors ®𝑧, ®𝑧′ ∈ Z𝑚𝑞 and their Pedersen com-

mitments 𝐶,𝐶′ with randomness 𝑧0, 𝑧
′
0
, respectively, the ele-

ment 𝐶 +𝐶′ ∈ G is a valid commitment to ®𝑧 + ®𝑧′ ∈ Z𝑚𝑞 with

randomness 𝑧0 + 𝑧′
0
∈ Z𝑞 .

2.3 Vector Commitments
Vector commitment [8] is a commitment scheme to a vector that al-

lows the committer to open individual entries of the vector without

opening or revealing information on other entries. A trivial vector

commitment solution is to commit to each entry individually, but

more efficient solutions are known, using Merkle trees or accumu-

lators. Our YOSO protocol from Section 4 uses vector-commitment,

but that component has only a negligible effect on the complexity

of the overall protocol. Hence in our implementation we used the

trivial solution above.

2.4 Linearity Testing
Our protocols need parties to verify that certain vectors of group

elements ®𝐶 = (𝐶1, . . . ,𝐶𝑛) belong to some known linear space “in

the exponent”. (In particular, we will need to check that𝐶 𝑗 = 𝑓 (𝑗)𝐺
for some low-degree polynomial 𝑓 , namely, where the linear space

is defined by a Vandermonde matrix.) This condition can be tested

by checking that [ℎ] ®𝐶 = ®0 where [ℎ] is the parity-check matrix of

that linear space over Z𝑞 . But checking this directly is expensive, as
it requires as many scalar-point multiplications as there are entries

in ℎ. Instead, the verifier can choose a random vector ®𝑒 over Z𝑞 ,
compute ®𝑢 = ®𝑒 [ℎ], then check the inner product ®𝑢 • ®𝐶 = 0 using

a single 𝑛-multi-scalar-point multiplications. Note that if ®𝐶 does

not satisfy the linearity condition, this test succeeds only with

probability 1/𝑞.
If there are multiple verifiers, they can either each choose their

own randomness ®𝑒 (and the prover will have to answer to each

separately) or all use the same randomness (e.g., using a random

oracle).

2.5 NIZK-POK for Discrete Logarithm
Schnorr-type proofs of knowledge for discrete logarithm are ex-

tremely well-studied and useful primitives for cryptographic proto-

cols, see for example [12, 13] and references within.

326

Threshold Cryptography as a Service CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Parameters: generators 𝐺1, . . . ,𝐺𝑚 , 𝐻1, . . . , 𝐻𝑚

Public input: elements 𝑍1, . . . , 𝑍𝑚 ,Y

Prover input: scalars 𝑧1, . . . , 𝑧𝑚

(1) Prover chooses at random 𝑟1, . . . , 𝑟𝑚 ∈ Z𝑞 , sends to veri-

fier 𝑅ℓ = 𝑟ℓ𝐺ℓ and 𝑆ℓ = 𝑟ℓ𝐻ℓ

(2) Verifier sends to prover a random 𝑐 ∈ Z𝑞 .
(3) Prover responds with 𝑧′

ℓ
= 𝑟ℓ + 𝑐 · 𝑧ℓ , ℓ ∈ [𝑚].

(4) Verifier picks uniformly at random 𝑒1, . . . , 𝑒ℓ ∈ Z𝑞 . Then
it checks that∑

ℓ 𝑐𝑒ℓ𝑍ℓ +
∑
ℓ 𝑒ℓ𝑅ℓ +𝑐𝑌 +

∑
ℓ 𝑆ℓ

=
∑
ℓ 𝑧
′
ℓ
𝑒ℓ𝐺ℓ +

∑
ℓ 𝑧
′
ℓ
𝐻ℓ .

(𝑐, 𝑒1, . . . , 𝑒ℓ can be chosen in [2𝜆] with 𝜆 the security parameter

rather than uniform in Z𝑞 .)

Figure 1: Σ-protocols to prove knowledge of discrete-
logarithms 𝑍ℓ = 𝑧ℓ𝐺ℓ , ℓ ∈ [𝑚], in a multi-valued setting. With
the text in gray, it also proves that

∑
𝑧ℓ𝐻ℓ = 𝑌 for the same

𝑧ℓ ’s. These proofs can be made non-interactive via the Fiat-
Shamir transformation.

For our purposes, we will be proving knowledge of (possibly

multi-valued) commitments that satisfy some linear relations. Fig. 1

describes two simple cases used in our protocols (in the multi-value

setting). First, given 𝐺1, . . . ,𝐺𝑚, 𝑍1, . . . , 𝑍𝑚 ∈ G, prove knowledge
of 𝑧1, . . . , 𝑧𝑚 ∈ Z𝑞 such that 𝑍ℓ = 𝑧ℓ𝐺ℓ , ℓ ∈ [𝑚]. Second, the proto-
col is augmented to additionally prove that the same 𝑧ℓ ’s also satisfy∑
ℓ 𝑧ℓ𝐻ℓ = 𝑌 (for some public 𝐻1, . . . , 𝐻𝑚, 𝑌 ∈ G). Note that for

large enough values of𝑚, these proofs can be made more efficient

by using a few large𝑚-multi-scalar-point multiplications rather

than similar number of individual scalar-point multiplications.

2.6 Pedersen Verifiable Secret Sharing
In Fig. 2 we present a slight variation of Pedersen VSS [30], that

implements the VSS functionality using (𝑡, 𝑛)-Shamir sharing, com-

mitments to the shares (instead of the coefficients) and the Linearity

Testing (Section 2.4). The protocol uses a broadcast channel and

private channels from the dealer to all the shareholders. (The use of

index 𝑖 inD𝑖 and related shares is for consistency with the notation

in multi-dealer settings in subsequent sections.)

Using the commitments for verifying the parties actions, the

protocol has an accusation-response round that guarantees that

either the dealer is disqualified or otherwise the honest shareholders

hold correct shares. Honest dealers are never disqualified and honest

shareholders agree on whether the dealer is or is not disqualified.

The protocol achieves information-theoretic secrecy (with up to

𝑡 < 𝑛/2 corrupt shareholders) thanks to the properties of the Shamir

secret sharing and the perfect hiding of Pedersen commitments.

Additionally, the commitments also serve as a way to guarantee

correct reconstruction of the secret.

Note, that as the dealer commits to the shares there is no longer

a commitment to the secret. There are two possible scenarios: 1.

the commitment to the secret already exists from another portion

Parameters: Integers 𝑡, 𝑛, 𝑛 ≥ 2𝑡 + 1. Group G of order 𝑞 and

two generators 𝐺0,𝐺1 ∈ G.
Inputs: Dealer D𝑖 has private input 𝑠𝑖 ∈ Z𝑞 .
1. Share distribution. D𝑖 chooses two random polynomials

𝑓𝑖 (·), 𝑟𝑖 (·) of degree 𝑡 s.t. 𝑓𝑖 (0) = 𝑠𝑖 :
𝑓𝑖 (𝑧) = 𝑎𝑖0 + 𝑎𝑖1𝑧 + · · · + 𝑎𝑖𝑡𝑧𝑡 , 𝑟𝑖 (𝑧) = 𝑏𝑖0 + 𝑏𝑖1𝑧 + · · · + 𝑏𝑖𝑡𝑧𝑡 ,
(𝑎𝑖0 = 𝑠𝑖 and the other 𝑎𝑖𝑘 , 𝑏𝑖𝑘 are random in Z𝑞).

• D𝑖 computes the shares 𝜎𝑖 𝑗 = 𝑓𝑖 (𝑗), 𝜎′𝑖 𝑗 = 𝑟𝑖 (𝑗) for 𝑗 =
1, . . . , 𝑛 and sends 𝜎𝑖 𝑗 , 𝜎

′
𝑖 𝑗
to P𝑗 .

• D𝑖 broadcasts 𝐶𝑖 𝑗 = 𝜎𝑖 𝑗𝐺1 + 𝜎′𝑖 𝑗𝐺0 for 𝑗 ∈ [𝑛].
2. Accusations. Shareholder P𝑗 does the following:
• Execute the Linearity Testing (Section 2.4) on the points

𝐶𝑖ℓ , for ℓ = 1, . . . , 𝑛.

• Verify the share from the dealer by checking

𝜎𝑖 𝑗𝐺1 + 𝜎′𝑖 𝑗𝐺0 = 𝐶𝑖 𝑗 (over G) . (1)

If either check fails, P𝑗 broadcasts an accusation against D𝑖 .

3. Response. For every P𝑗 that accused D𝑖 , the dealer broad-

casts values 𝜎𝑖 𝑗 , 𝜎
′
𝑖 𝑗
that satisfy Eq. (1).

4. Disqualification. All P𝑗 disqualify dealer D𝑖 if

• either D𝑖 received more than 𝑡 accusations in Step 2,

• or D𝑖 failed to answer an accusation with values that

satisfy Eq. (1).

(Note that thanks to the broadcast channel, all honest sharehold-

ers agree on whether D𝑖 is disqualified or not.)

If the dealer is not disqualified, then each P𝑗 that sent an accu-

sation replaces the corresponding shares by the values 𝜎𝑖 𝑗 , 𝜎
′
𝑖 𝑗

that were broadcast in Step 3 (that satisfy Eq. (1)).

Reconstruction. If the dealer was not disqualified, then share-

holders can reconstruct the secret 𝑠𝑖 by pooling their shares

𝜎𝑖 𝑗 , 𝜎
′
𝑖 𝑗
, which are checked using Eq. (1). Any 𝑡 + 1 shares 𝜎𝑖 𝑗

that pass verification can be used to interpolate 𝑠𝑖 .

Figure 2: A Variant of the Pedersen VSS Protocol.

of the protocol. In that case, the linearity test needs to include the

commitment to the secret as well. 2. No such commitment exists,

though it can be computed from the commitment to the shares. In

this case, what will be done in actuality depends on the application.

3 AMORTIZED VSS
An important contribution of our work is the ability to amortize

the sharing of many secrets with only a minor increase in complex-

ity. We start by describing the approach for amortizing multiple

Pedersen VSS protocols for one dealer, then extend it to handle the

multi-dealer case (which is what most applications require).

3.1 Multi-Secret, Single-Dealer Pedersen VSS
Consider a single dealer D𝑖 (the subscript 𝑖 is for consistency with

later notation) that holds𝑚 secrets 𝑠𝑖ℓ , ℓ ∈ [𝑚], and wants to verifi-

ably share all of them to the same set of 𝑛 shareholders, P1, . . . ,P𝑛 .

327

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal Rabin

We show how to accomplish this with better efficiency than run-

ning the VSS protocol𝑚 times. The idea in a nutshell is to start

with multiple Pedersen VSS protocol from Fig. 2, and combine for

each shareholder all the shares directed to that shareholder using

a multi-Pedersen commitment as in Section 2.2. This can be seen

as the batching techniques for secret sharing [4], computed in the

exponent.

In more detail, the dealer generates an independent (𝑡, 𝑛) Shamir-

sharing for each of the secrets 𝑠𝑖,ℓ , and in addition for another

random secret 𝑠𝑖0. Then consider the share matrix A𝑖 ∈ Z(𝑚+1)×𝑛𝑞 ,

where A𝑖 [ℓ, 𝑗] = 𝑓𝑖ℓ (𝑗) is the share of party 𝑗 in the sharing of 𝑠𝑖ℓ :

A𝑖 =

©­­­­«
𝜎𝑖10 𝜎𝑖𝑛0
𝜎𝑖11 𝜎𝑖𝑛1

. . .

𝜎𝑖1𝑚 𝜎𝑖𝑛𝑚

ª®®®®¬
𝜎𝑖 𝑗0 =

∑𝑡
𝑘=0

𝑎𝑖𝑘0 𝑗
𝑘 (𝑎𝑖00 = 𝑠𝑖0)

𝜎𝑖 𝑗1 =
∑𝑡
𝑘=0

𝑎𝑖𝑘1 𝑗
𝑘 (𝑎𝑖01 = 𝑠𝑖1)

.

.

.

𝜎𝑖 𝑗𝑚 =
∑𝑡
𝑘=0

𝑎𝑖𝑘𝑚 𝑗
𝑘 (𝑎𝑖0𝑚 = 𝑠𝑖𝑚)

The dealer generates and broadcasts a Pedersen multi-value com-

mitment to each column of the matrix, using 𝜎𝑖 𝑗0 as randomness.

Namely, 𝐶𝑖 𝑗 =
∑𝑚
ℓ=0 𝜎𝑖 𝑗ℓ𝐺ℓ ∈ G, where the 𝐺 ’s are public ran-

dom generators. The dealer also sends over a private channel to

each shareholder P𝑗 its shares for all the secrets, 𝜎𝑖 𝑗ℓ = 𝑓𝑖ℓ (𝑗),
ℓ = 0, 1, . . . ,𝑚.

Each shareholder P𝑗 compares its own shares to the public com-

mitments 𝐶𝑖 𝑗 , by checking that indeed 𝐶𝑖 𝑗 =
∑𝑚
ℓ=0 𝜎𝑖 𝑗ℓ𝐺ℓ . In addi-

tion, everyone verifies that the check values 𝐶𝑖1, . . . ,𝐶𝑖𝑛 lie on a

degree-𝑡 polynomial, using the linearity test from Section 2.4.

If both D𝑖 and P𝑗 are honest then this verification will pass. To

see that, let 𝑒ℓ = 𝐷𝐿𝐺 (𝐺ℓ) (for some generator 𝐺), then

𝐶 𝑗 =

𝑚∑︁
ℓ=0

𝜎𝑖 𝑗ℓ ·𝐺ℓ =

𝑚∑︁
ℓ=0

𝑓𝑖ℓ (𝑗) · 𝑒ℓ𝐺 = 𝐹𝑖 (𝑗)𝐺,

where 𝐹𝑖 (·) =
∑
ℓ 𝑒ℓ · 𝑓𝑖ℓ (·) is a degree-𝑡 polynomial.

If verification fails at P𝑗 , P𝑗 broadcasts a complaint against D𝑖 .

This is resolved as usual by D𝑖 broadcasting all the shares 𝜎𝑖 𝑗ℓ that

it sent to P𝑗 , and everyone checking that 𝐶𝑖 𝑗 =
∑𝑚
ℓ=0 𝜎𝑖 𝑗ℓ𝐺ℓ .

The dealer D𝑖 is disqualified either if it was accused by more

than 𝑡 shareholders, or if it failed to respond to an accusation by

broadcasting valid shares. Since disqualifying the dealer is a deter-

ministic function of the content of the broadcast channel, then all

honest parties will agree on whether or not D𝑖 was disqualified.

To reconstruct all the 𝑠𝑖ℓ ’s, the participating shareholders pool

their shares 𝜎𝑖 𝑗ℓ , which are checked against the check values 𝐶𝑖 𝑗 .

Any 𝑡 + 1 shares 𝜎𝑖 𝑗 that pass verification can be used to interpo-

late 𝑠𝑖ℓ . (Note that share verification relies on the fact that all the
secrets 𝑠𝑖0, . . . , 𝑠𝑖𝑚 are reconstructed together and hence all the 𝜎𝑖 𝑗ℓ’s
are available.) Details of the protocol appear in Fig. 3.

Soundness of this protocol is established by showing that if

the dealer was not disqualified, then the shares of all the honest

parties must agree with some set of 𝑡-degree polynomials 𝑓𝑖ℓ (·), ℓ =
0, 1, ,𝑚. In more detail, we show that finding shares {𝜎𝑖𝑘ℓ }𝑘,ℓ
that pass verification in the protocol (i.e.,

∑𝑚
ℓ=0 𝜎𝑖 𝑗ℓ ·𝐺ℓ = 𝐶𝑖 𝑗) but do

not all lie on the same degree-𝑑 polynomials 𝑓𝑖ℓ (·), implies finding

a non-trivial representation of the element 0 ∈ G in the bases

𝐺0,𝐺1, . . . ,𝐺𝑚 . This only happens with a negligible probability,

assuming that finding discrete logarithms in G is hard. See proof in

full version.

Parameters: Integers𝑚,𝑛, 𝑡 with 𝑛 ≥ 2𝑡 + 1, group G of prime

order 𝑞 and generators 𝐺0,𝐺1, . . . ,𝐺𝑚 ∈ G.
Inputs: Dealer D𝑖 has input secrets 𝑠𝑖1, . . . , 𝑠𝑖𝑚 ∈ Z𝑞 .
Dealing. Dealer D𝑖 :

(1) Chooses a random value 𝑠𝑖0 ∈ Z𝑞 .
(2) For all ℓ ∈ [[𝑚]], sets 𝑎𝑖0ℓ = 𝑠𝑖ℓ , chooses at random

𝑎𝑖𝑘ℓ ∈ Z𝑞 for all 𝑘 ∈ [𝑡]. (This defines the polynomials

𝑓𝑖ℓ (𝑥) =
∑𝑡
𝑘=0

𝑎𝑖𝑘ℓ𝑥
𝑘
over Z𝑞 .)

(3) For all 𝑗 ∈ [𝑛], ℓ ∈ [[𝑚]], computes shares 𝜎𝑖 𝑗ℓ = 𝑓𝑖ℓ (𝑗)
and sends to P𝑗 over private channels.

(4) For all 𝑗 ∈ [𝑛], computes 𝐶𝑖 𝑗 =
∑𝑚
ℓ=0 𝜎𝑖 𝑗ℓ𝐺ℓ ∈ G and

broadcasts 𝐶𝑖1, . . . ,𝐶𝑖𝑛 .

Verifications and Accusations. Each shareholder P𝑗 :
(1) Verify that𝐶𝑖1, . . . ,𝐶𝑖𝑛 lie on a degree-𝑡 polynomial using

the linearity test (Section 2.4)

(2) Check that 𝐶𝑖 𝑗 =
∑𝑚
ℓ=0 𝜎𝑖 𝑗ℓ𝐺ℓ .

If any check fails, P𝑗 broadcasts an accusation against D𝑖 .

Response.
(1) Each D𝑖 broadcasts the shares 𝜎𝑖 𝑗ℓ , ℓ ∈ [[𝑚]] for every
P𝑗 that accused it.

(2) Each P𝑗 that accusedD𝑖 replaces its shares 𝜎𝑖 𝑗ℓ with the

ones that D𝑖 broadcasted.

Dealer disqualification. Dealer D𝑖 is disqualified if

• either it was accused by more than 𝑡 shareholders,

• or it failed to respond to some accusation with shares

𝜎𝑖 𝑗ℓ such that 𝐶𝑖 𝑗 =
∑𝑚
ℓ=0 𝜎𝑖 𝑗ℓ𝐺ℓ .

Figure 3: Fast Amortized Multi-secret, Single-dealer VSS

3.2 Multi-Secret, Multi-dealer VSS
In Fig. 4 we describe our multi-secret, multi-dealer VSS (MSMD-

VSS) protocol; a protocol with𝑛′ dealersD1, ...,D𝑛′ , each sharing𝑚

secrets 𝑠𝑖1, · · · , 𝑠𝑖𝑚 , in parallel, to a set of 𝑛 shareholders P1, . . . ,P𝑛
(for security claims we will consider 𝑡 of the shareholders to be

corrupted with 𝑡 < 𝑛/2).
We can think of this protocol as working on𝑚 “slices”, ℓ ∈ [𝑚].

For each slice ℓ , we denote by𝜎𝑖 𝑗ℓ the share ofP𝑗 for the secret 𝑠𝑖ℓ of
D𝑖 . P𝑗 then takes a linear combination of the shares that it received

from all the (non-disqualified) dealers in that slice, 𝑧 𝑗 ℓ =
∑
𝑖 𝜆𝑖𝜎𝑖 𝑗ℓ

(using the same linear combination in all the slices). The linear

combination, that depends on the set of non-disqualified dealers

and the application, is formalized using the mapping 𝐿 : Q ↦→ ®𝜆 as
described in Section 2.1.

Moreover, for later share verification,P𝑗 also produces public val-
ues 𝑍 𝑗 ℓ = 𝑧 𝑗ℓ𝐺ℓ , ℓ ∈ [𝑚], to which we often refer as shareholder’s

public keys. The protocol ensures correctness and verifiability of

these public values. Furthermore, a linear combination “in the ex-

ponent” of these values generates a public key 𝑍ℓ for a combined

global secret of that slice, 𝑧ℓ =
∑
𝑖∈Q 𝜆𝑖𝑠𝑖ℓ . For example, in a DKG

application we get a global private key 𝑧ℓ and the corresponding

global public key 𝑍ℓ for each slice ℓ ∈ [𝑚].
The protocol uses a broadcast channel and a private communi-

cation channel between the dealers and the shareholders: For each

328

Threshold Cryptography as a Service CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Parameters: Integers𝑚,𝑛, 𝑡 with 𝑛 ≥ 2𝑡 + 1, group G of prime

order 𝑞 and generators 𝐺0,𝐺1, . . . ,𝐺𝑚 ∈ G. Also a mapping

𝐿 : 2
[𝑛′] → Z𝑛′𝑞 s.t. for all Q ⊆ [𝑛′] and all 𝑗 ∉ Q, 𝐿(Q) 𝑗 = 0.

Inputs: Each dealer D𝑖 has input secrets 𝑠𝑖1, . . . , 𝑠𝑖𝑚 ∈ Z𝑞 .

Sharing and Dealer Disqualification:
(1) Each dealerD𝑖 (𝑖 ∈ [𝑛′]) executes the Multi Secret Single

Dealer protocol of Fig. 3, resulting in shares 𝜎𝑖 𝑗ℓ and

commitment to them 𝐶𝑖 𝑗 .

(2) Let Q ⊂ [𝑛′] be the set of qualified dealers, i.e. the ones

that were not disqualified.

Shareholder public values. Let ®𝜆 = 𝐿(Q) ∈ Z𝑛′𝑞 . Each share-

holder P𝑗 does the following:
(5) Computes 𝑧 𝑗ℓ =

∑
𝑖∈Q 𝜆𝑖𝜎𝑖 𝑗ℓ for all ℓ ∈ [[𝑚]].

(6) Computes and broadcasts 𝑍 𝑗 ℓ = 𝑧 𝑗 ℓ𝐺ℓ for all ℓ ∈ [[𝑚]].
(7) For each𝑍 𝑗 ℓ , broadcast a NIZK-POK of the corresponding

𝑧 𝑗 ℓ , using the protocol from Fig. 1.

Shareholder disqualifications. Every shareholder P𝑗 ′ does
the following for each shareholder P𝑗 , 𝑗 ≠ 𝑗 ′:

(8) Verifies the NIZK-POK of𝑍 𝑗ℓ , for all ℓ ∈ [[𝑚]], and checks
that

∑𝑚
ℓ=0 𝑍 𝑗 ℓ =

∑
𝑖∈Q 𝜆𝑖𝐶𝑖 𝑗

(9) If verification fails for them then P𝑗 is disqualified.
Let Q′ ⊆ [𝑛] be the set of qualified shareholders, namely, those

that were not disqualified. (If |Q′ | < 𝑡 + 1 then abort.)

Reconstruction and global public key. The shares 𝑧 𝑗ℓ of

any subset of 𝑡 + 1 shareholders from Q′ (which can be verified

against the public values 𝑍 𝑗 ℓ) can be used to interpolate the

global secrets 𝑧ℓ .

Moreover, the 𝑍 𝑗ℓ ’s themselves can be used to compute the

global public keys via 𝑍ℓ = 𝑧ℓ𝐺ℓ =
∑

𝑗 𝛾 𝑗𝑍 𝑗 ℓ , where the 𝛾 𝑗 ’s are

the corresponding Lagrange interpolation coefficients.

Figure 4: Fast Amortized Multi-secret, Multi-dealer VSS

dealer, we first run the Multi Secret Single Dealer protocol of Fig. 3.

The parties define the set of qualified dealers. Then each shareholder

computes its share of the global secrets 𝑧ℓ as 𝑧 𝑗 ℓ =
∑
𝑖∈Q 𝜆𝑖𝜎𝑖 𝑗ℓ .

Finally, the shareholders engage in a protocol to generate the pub-

lic values 𝑍ℓ = 𝑧ℓ𝐺ℓ as follows: Each shareholder broadcasts the

elements 𝑍 𝑗ℓ = 𝑧 𝑗ℓ𝐺ℓ for all ℓ , along with a NIZK-POK for the

corresponding 𝑧 𝑗ℓ . Then everyone verifies these NIZK proofs, and

also uses the commitments to the columns of the matrices A𝑖 (cf.
Section 3.1) to check that these 𝑍 𝑗ℓ ’s lie on degree-𝑡 polynomials.

If all these checks pass, then everyone can compute the public

values 𝑍ℓ by interpolating “in the exponent” the 𝑍 𝑗ℓ ’s from 𝑡 + 1
shareholders.

Proofs of soundness and security of the protocol (the latter based

on definitions in Section 3.3) are presented in the full version.

3.3 Functionality and Simulation
We codify the security properties that we need from our MSMD-

VSS protocol by an “ideal functionality” F𝑀𝑆𝑀𝐷.𝑉𝑆𝑆 . See Fig. 5 for

a schematics of the functionality and the corresponding simulator.

Parameters. The functionality interacts with 𝑛′ dealers D𝑖

and 𝑛 shareholders P𝑗 , some of which are controlled by

the ideal-world adversary. Let B be the set of adversarially-

controlled dealers and B′ are the adversarially-controlled
shareholders, and assume that ∥B′∥ ≤ 𝑡 .
The functionality is parametrized by the same group G of

order 𝑞 with generators 𝐺0, . . . ,𝐺𝑚 and the same mapping

𝐿 : 2
[𝑛′] → Z𝑛′𝑞 from the high-level application.

Inputs. The functionality receives𝑚 “original secrets” 𝑠𝑖1, . . . ,

𝑠𝑖𝑚 ∈ Z𝑞 from each honest dealer D𝑖 , and optionally also

some of the dishonest dealers.

Qualified dealers. The functionality also receives from the

adversary a set P ⊆ B of dealers under its control that should

be included in the qualified set. All these dealers 𝑖 ∈ P must

supply original secrets 𝑠𝑖ℓ . The set of qualified dealers will

include P and the honest dealers, Q = P ∪ B.
Global secrets. The functionality computes the linear combi-

nation coefficients
®𝜆 = 𝐿(Q), and computes the global secrets

𝑧ℓ =
∑
𝑖∈Q 𝜆𝑖𝑠𝑖ℓ for all ℓ ∈ [𝑚].

Shares and verification values. The simulator also sends to

the functionality the alleged shares of the bad shareholders,

{𝜎𝑖 𝑗ℓ : 𝑖 ∈ [𝑛′], 𝑗 ∈ B′, ℓ ∈ [𝑚]}. The functionality prepares

sharing of all the global secrets, which is consistent with

those shares.

Specifically, for each qualified dealer 𝑖 ∈ Q it computes the

unique polynomials 𝑓𝑖ℓ (·) consistent with the bad sharehold-

ers’ view and the secrets 𝑠𝑖ℓ , then sets 𝑔ℓ =
∑
𝑖∈Q 𝜆𝑖 𝑓𝑖ℓ . It

then sets 𝑧 𝑗 ℓ = 𝑔ℓ (𝑗) for all 𝑗 ∈ [𝑛] and ℓ ∈ [𝑚], and sends

to the adversary the public values 𝑍 𝑗ℓ = 𝑧 𝑗 ℓ𝐺ℓ for the honest

shareholders 𝑗 ∉ B′ and all ℓ ∈ [𝑚].
Qualified shareholders and output. The adversary responds

with a set P′ ⊆ B′ of shareholders under its control that
should be included in the qualified set.

The functionality sets Q′ = P′ ∪ B′. It returns to each quali-

fied shareholder 𝑗 ∈ Q′ the shares 𝑧 𝑗ℓ = 𝑔ℓ (𝑗) for all ℓ ∈ [𝑚].
It also sends to everyone the verification values 𝑍 𝑗ℓ = 𝑧 𝑗 ℓ𝐺ℓ ,

for all 𝑗 ∈ Q′ and ℓ ∈ [𝑚].

Is F𝑀𝑆𝑀𝐷.𝑉𝑆𝑆 meaningful? The functionality above is not very

“ideal”, in that the adversary S has a lot of influence over the output

shares {𝑧 𝑗 ℓ }. In what sense, then, does it providemeaningful secrecy

guarantees?

In the full version we prove two lemmas. The first says that

the view in the sharing phase is independent of the original se-

crets shared by the honest dealers. The second says that the entire

protocol provides information-theoretic security for the original

secrets: Any two sets of original secrets that result in the same

set of global secrets, will induce the same probability distribution

over the adversary’s view of the entire protocol. (This means that

we could rewrite the functionality above to sample a new set of

original secrets that results in the same global secrets, and use that

other set to compute the shares 𝑧 𝑗ℓ .)

Of course, whether or not this guarantee is enough depends on

the application. In our main motivation applications, where the

global secrets are random secret keys (or shares thereof), it turns

out to be enough.

329

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal Rabin

𝑠𝑖ℓ 𝑖∈𝑄

𝐶𝑖,𝑗 𝑖∉𝐵

(Simulator/Adversary control dealers in 𝐵, shareholders in 𝐵′, 𝐵′ ≤ 𝑡)

𝐶𝑖,𝑗 𝑖∈𝐵

𝑃 ⊆ 𝐵

accusations

response 𝜎𝑖𝑗ℓ

𝜎𝑗ℓ, 𝑍𝑗ℓ

𝑍𝑗ℓ, NIZK𝑗ℓ

E

n

v

i

r

o

n

m

e

n

t

F

u

n

c

t

i

o

n

a

l

i

t

y

S

i

m

u

l

a

t

o

r

𝑄 = 𝑃 ∪ ത𝐵

A

d

v

e

r

s

a

r

y

𝜎𝑖𝑗ℓ 𝑗∈𝐵′

𝑖∉𝐵

𝜎𝑖𝑗ℓ 𝑗∉𝐵′

𝑖∈𝐵

𝑃′ ⊆ 𝐵′

𝑄′ = 𝑃′ ∪ 𝐵′

j ∈ 𝑄′

𝐵, 𝐵′

𝜎𝑖𝑗ℓ 𝑗∈𝐵′

𝑍𝑗ℓ 𝑗∉𝐵′

Figure 5: Schematics of the MSMD-VSS functionality
F𝑀𝑆𝑀𝐷.𝑉𝑆𝑆 and the simulator

Analysis of the MSMD-VSS protocol from Fig. 4 including the

proof that it realize the functionality above, appears in the full

version.

3.4 Complexity
We briefly analyze the number of operations carried by the different

parties in the protocol as well as the bandwidth requirements which

are the main complexity measures for this type of protocols. Compu-

tations are composed mostly by𝑚-multi-scalar-point multiplication

opertions (namely, expressions of the form

∑𝑚
ℓ=0 𝑥ℓ𝐺ℓ for 𝑥ℓ ∈ Z𝑞

and 𝐺ℓ ∈ G) plus some individual scalar-point multiplications of

the form 𝑥𝐺 . For simplicity, we will count an𝑚-multi-scalar-point

multiplication as𝑚 scalar-point multiplications although the for-

mer are significantly faster than the latter (and this speed up is

central to our practical performance).

Sharing and Creation of Q. Sharing. Each dealer needs to compute

the 𝑛 “column commitments” 𝐶𝑖 𝑗 =
∑𝑚
ℓ=0 𝜎𝑖 𝑗ℓ𝐺ℓ ∈ G that requires

a single𝑚-multi-scalar-point multiplication. The total number of

scalar-point multiplications is thus 𝑛(𝑚 + 1) per dealer.
The dealer broadcasts the 𝑛 group elements 𝐶𝑖 𝑗 and sends𝑚 + 1

scalars in Z𝑞 to each shareholder, the total bandwidth over secret

channels is 𝑛(𝑚 + 1) scalars for each dealer.

Accusations. Each shareholder P𝑗 , 𝑗 ∈ [𝑛] computes two inner-

products to check each dealer: one for the linearity test and the

other for testing 𝐶𝑖 𝑗 =
∑𝑚
ℓ=0 𝜎𝑖 𝑗ℓ𝐺ℓ ∈ G. The total number of

scalar-point multiplications per shareholder in this step is therefore

𝑛′ (𝑛 +𝑚 + 1). The bandwidth is upto 𝑛′ accusation broadcasts per

shareholder.

Response. Each dealer broadcasts 𝑚 + 1 scalars for each ac-

cusation. We can have upto 𝑡 accusations (above that the dealer

is automatically disqualified), so this step can consume broadcast

bandwidth of upto 𝑡 (𝑚 + 1) scalars.
Dealer disqualification. For every accusation P𝑗 → D𝑖 , every

other shareholder P𝑗 ′ needs to compute one𝑚-multi-scalar-point

multiplication or𝑚 scalar-point multiplications. As there can be

upto 𝑡 accusations per dealer, this may require upto 𝑡𝑛′ (𝑚 + 1)
more scalar-point multiplications for each shareholder. In the worst

case, this is by far the most time-consuming step in this protocol.

Below we show that when dealers communicate privately with

shareholders via public key encryption over the broadcast channel

(as is the case in our applications in later sections), the complexity of

resolving accusations is no more than (𝑛′ + 𝑡)𝑚-multi-scalar-point

multiplications per shareholder.

Verification values. Each shareholder P𝑗 performs𝑚+1 scalar-point
multiplications to compute the 𝑍 𝑗ℓ ’s, and𝑚 + 1 more to prepare

the NIZK proofs for them. Hence a total of 2𝑚 + 2 scalar-point

multiplications. In terms of bandwidth, each shareholder broadcasts

2𝑚 + 2 group elements (𝑍 𝑗 ℓ ’s and 𝑅 𝑗ℓ ’s). See Fig. 1
3
.

Shareholder disqualification. Every shareholder P𝑗 ′ must verify the

values of every other shareholder P𝑗 . This requires verifying the
NIZK (2𝑚 + 2 scalar-point multiplications per P𝑗), and

∑
𝑖∈Q 𝜆𝑖𝐶𝑖 𝑗

(|Q| ≤ 𝑛′ scalar-point multiplications per P𝑗). Hence the total

number of scalar-point multiplications in this step is upto 𝑛(𝑛′ +
2𝑚 + 2).

Summing up the above, we get the following total complexity:

Multiplications. Each dealer computes a total of𝑛(𝑚+1) scalar-point
multiplications. If there are no accusations, then each shareholder

computes

𝑛′ (𝑛 +𝑚 + 1) + 2𝑚 + 2 + 𝑛(𝑛′ + 2𝑚 + 2)
scalar-point multiplications. With accusations, in the worst case,

each shareholder may need to do up to 𝑡𝑛′ (𝑚+1) more scalar-point

multiplications, but not more than (𝑛′ + 𝑡) 𝑚-multi-scalar-point

multiplications with the optimization from xyz.

Broadcast bandwidth. Each dealer broadcasts 𝑛 group elements if

there are no accusations, and upto 𝑡 (𝑚 + 1) more scalars if there are

accusations. Each shareholder broadcasts upto𝑛′ accusations, 2𝑚+2
group elements and𝑚 + 1 scalars. The total broadcast bandwidth
over the entire protocol (i.e., the number of “broadcast units” that

each participants must listen to) is 𝑛(𝑛′ + 3𝑚 + 3) if there are no
accusations, and upto 𝑛′𝑡 (𝑚+1) more if there are many accusations

(or only (𝑛′ + 𝑡) (𝑚 + 1) with the below optimization).

Point-to-point bandwidth. Each dealer sends 𝑛(𝑚 + 1) scalars over
these channels, and each shareholder listens to 𝑛′ (𝑚 + 1) scalars.
Comparison to naive Pedersen VSS. Using𝑚 · 𝑛′ runs of single-
dealer/single-secret Pedersen VSS would require that each share-

holder computes roughly𝑚𝑛′𝑡 scalar-point multiplications, which

is roughly a factor of 𝑡 more than in our protocol. Our protocol also

does slightly better in terms of bandwidth, saving roughly a factor

of two on both broadcast and point-to-point bandwidth.

3.4.1 Faster handling of accusations. As described, the protocol
from Fig. 4 has worst-case complexity𝑂 (𝑛3) if there are many accu-

sations (assuming𝑚,𝑛′, 𝑡 = Θ(𝑛)). This can be improved to 𝑂 (𝑛2)
by using the broadcast channel (together with PKI) to implement

the private channels between dealers and shareholders, Specifically,

the dealer can use standard committing encryption over broadcast

to send the shares to the V𝑗 ’s. For every accusation V𝑗 → D𝑖 ,

the dealer can open the encryption, and everyone can check if the

3
We use the Fiat-Shamir transformation, so the NIZK challenges 𝑐 and the 𝑒ℓ ’s are

computed as a hash of the prover’s message.

330

Threshold Cryptography as a Service CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

shares that were sent were valid. This means that whenever an

accusation is resolved, either the dealer or the verifier will be dis-

qualified. Hence at most 𝑡 + 𝑛′ accusations would ever need to be

checked, so the overall complexity of handling them all is reduced

to 𝑂 (𝑛2).

3.5 Further Improvements
We describe optimizations that can further improve the amortized

cost of a multi-secret VSS. We also comment on the applicability of

our protocol to settings with dishonest majority (𝑡 ≥ 𝑛/2).

3.5.1 Deriving more global secrets. While the protocol from Fig. 4

offers a large improvement over naive Pedersen, in many contexts

it can be amortized further using known techniques. In the full

version we mention two of these techniques based on packed secret

sharing [17] and super-invertible matrices [24].

3.5.2 Beyond honest majority. It is easy to see that the protocol

above works right out of the box in settings where there is a mix of

semi-honest and malicious parties. If there are 𝑠 semi-honest and 𝑡

malicious parties, the protocol ensures both privacy and correctness

as long as 𝑛 > 2𝑡 + 𝑠 . Note that this is a weaker condition than

𝑛 > 2(𝑡 + 𝑠), so in some settings we can get security even when

𝑛 − 𝑡 − 𝑠 < 𝑡 + 𝑠 . In other words, even if there are more dishonest

than honest parties.

4 MULTI-DEALER VSS IN THE YOSO SETTING
We present an MD-VSS protocol in the YOSO model which can

serve as a basis for multiple applications of threshold cryptography

in this model.

Recall that in the YOSO model, computation is carried via a

sequence of randomly-chosen anonymous committees where a com-

mittee receives secret inputs from previous committees, carries

computations based on these inputs and additional public informa-

tion, and eventually produces an output. Anonymity of committee

members precludes the attacker from targeting these entities. How-

ever, the anonymity is broken when the party “speaks" (produces

output). For this reason, before producing output a committee mem-

ber must erase all of its secret state (and renew its private-public

key pair). Any information in this state that is needed for future

actions of the protocol needs to be shared to a committee that will

complete these actions when required in the future. The following

design is geared to comply with these YOSO rules

4.1 The Basic YOSO MD-VSS Protocol
Consider the VSS functionality (at the core of threshold proto-

cols) and specifically Pedersen’s VSS from Fig. 2. The essential

verification-response mechanism in the protocol makes it into an

interactive protocol where parties may speak more than once. In-

deed, a dealer that distributed shares and verification information

needs to stay around to respond to accusations. Similarly, share-

holders cannot stay silent until they use their shares as they need to

first speak in the accusation round hence revealing their identities.

This leads to our re-design of the VSS protocol for the YOSO set-

ting along the lines described in the introduction, namely, creating

two intermediate committees between the dealer and shareholders,

one for the verification/accusation step, the verifiers, and one for

the responses step, the responders. Additionally, the verifying com-

mittee transfers information to the target shareholder committee

so the latter can compute and verify their final shares.

The introduction of the verification committee basically means

that in the YOSO VSS protocol, a dealer will first create a secret shar-

ing 𝑠1, . . . , 𝑠𝑛 of its secret 𝑠 and then a second-level secret sharing

𝑠1ℓ , . . . , 𝑠𝑛ℓ for each share 𝑠ℓ , ℓ ∈ [𝑛]. This second level is shared with
the verifiers who check that shares lie on a 𝑡-degree polynomial

and accuse the dealer if the test fails. Interestingly, if we consider

the shares 𝑠1, . . . , 𝑠𝑛 that are reshared by the dealer as 𝑛 secrets, we

can see this as a multi-secret VSS protocol for which we can apply

the amortization techniques from Section 3. Furthermore, in the

multi-dealer case in the YOSO model, we can reuse the techniques

and analysis of the MSMD-VSS protocol from Fig. 4.

We further remark that the sharing of 𝑛2 shares 𝑠1ℓ , . . . , 𝑠𝑛ℓ , ℓ ∈
[𝑛], to the responder committee also benefits from the amortization

presented in Fig. 4, yet it is not sufficient. The sharing leads to𝑂 (𝑛3)
bandwidth per dealer or 𝑂 (𝑛4) for 𝑛 dealers, making the protocol

impractical for large committees. We manage to reduce this to a

practical size via the “secret sharing made short” technique [25].

Specifically, to send a (long) message from D𝑖 to V𝑗 , the dealer

chooses a short symmetric key 𝜖𝑖 𝑗 , uses it to encrypt the message,

and broadcasts the ciphertext. Then it privately sends 𝜖𝑖 𝑗 toV𝑗 , and

also shares it among the responders committee members. This way

we only pay this extra𝑛× factor for the short 𝜖𝑖 𝑗 , while broadcasting
the long message only once (see Fig. 6).

In our presentation, we split the YOSO MD-VSS protocol in

two parts in Fig. 6 and Fig. 8 (Section 4.3). The first includes the

sharing mechanisms described above while the second extends

the protocol to the case where the secret dealt by the dealer has

a known public commitment, and correctness needs to include

a proof that the shares obtained by shareholders are consistent

with this commitment. Moreover, this part of the protocol also

creates public commitments for the shareholder shares. In typical

threshold cryptography applications (e.g., threshold signatures),

the shareholder shares correspond to their private keys and the

commitments act as public keys.

We note that the YOSO MD-VSS protocol shown here has the

additional property of being proactive, namely, any information

learned about 𝑡 or less shares becomes obsolete for attacking the

fresh sharing. This is a fundamental functionality within the YOSO

model where information learned from corrupt parties in one com-

mittee should be useless when corrupting parties in any future

committee.

In the full version we present a simplification of the protocol

that utilizes the existence of public keys for all parties. In essence,

the simplification is to collapse the response committee onto the

verification committee. This saves a round and eliminates the need

for an additional level of sharing. What is required to enable this

increased efficiency is for the dealers to encrypt their messages

under an encryption scheme where the recipient can expose the

encrypted message. This can be done either with an encryption

scheme that recovers the randomness, or by adding a ZK proof that

the exposed message is in fact the one sent under the encryption.

331

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal Rabin

Parameters: 𝑛 ≥ 2𝑡 + 1, group G, generators ®𝐺 = (𝐺0, . . . ,𝐺𝑛).
Parties: Dealers D𝑖 , verifiersV𝑗 , responders R𝑘 , shareholders Pℓ .
Inputs: Each D𝑖 , 𝑖 ∈ [𝑛], has input 𝑠𝑖 ∈ Z𝑞 .
Dealing. Each dealer D𝑖 , 𝑖 ∈ [𝑛], does the following:

(1) Secret share input 𝑠𝑖 : Choose a random degree-𝑡 polyno-

mial 𝑓𝑖 (·) over Z𝑞 s.t. 𝑓𝑖 (0) = 𝑠𝑖 . Set 𝑠𝑖 𝑗 = 𝑓𝑖 (𝑗) 𝑗 ∈ [𝑛].
(2) Choose a random 𝑠𝑖0 ∈ Z𝑞 .
(3) Secret share each 𝑠𝑖 𝑗 : ∀ℓ ∈ [[𝑛]], choose a random degree-𝑡

polynomial 𝑓𝑖ℓ (·) over Z𝑞 s.t. 𝑓𝑖ℓ (0) = 𝑠𝑖ℓ . Set 𝜎𝑖 𝑗ℓ = 𝑓𝑖ℓ (𝑗)
for all 𝑗 ∈ [𝑛].

(4) ∀𝑗 ∈ [𝑛], denote ®𝜎𝑖 𝑗 = (𝜎𝑖 𝑗0, . . . , 𝜎𝑖 𝑗𝑛) and then do:

(a) Compute column-check values 𝐶𝑖 𝑗 = ®𝜎𝑖 𝑗 • ®𝐺 =∑𝑛
ℓ=0 𝜎𝑖 𝑗ℓ𝐺ℓ .

(b) Choose a random degree-𝑡 polynomial 𝑔𝑖 𝑗 (·), and set

𝜖𝑖 𝑗 = 𝑔𝑖 𝑗 (0) and 𝜖𝑖 𝑗𝑘 = 𝑔𝑖 𝑗 (𝑘) for all 𝑘 ∈ [𝑛].
(c) Encrypt 𝜖𝑖 𝑗 withV𝑗 ’s public key, ciphertext is 𝐸

′
𝑖 𝑗
.

(d) Encrypt ®𝜎𝑖 𝑗 with symmetric key (derived from) 𝜖𝑖 𝑗 , ctxt

is 𝐸𝑖 𝑗 .

(5) ∀𝑘 ∈ [𝑛], denote ®𝜖𝑖𝑘 = (𝜖𝑖1𝑘 , . . . , 𝜖𝑖𝑛𝑘).
(a) Compute a vector commitment 𝛾𝑖𝑘 to ®𝜖𝑖𝑘 , and let 𝜌𝑖𝑘 be

the randomness needed to open it.

(b) Encrypt (®𝜖𝑖𝑘 , 𝜌𝑖𝑘) with R𝑘 ’s public key, ctxt is 𝐹𝑖𝑘 .
(6) Broadcast {𝐶𝑖 𝑗 , 𝐸𝑖 𝑗 , 𝐸′𝑖 𝑗 } 𝑗∈[𝑛] and {𝛾𝑖𝑘 , 𝐹𝑖𝑘 }𝑘∈[𝑛] .

Verification and accusations. Each verifierV𝑗 , 𝑗 ∈ [𝑛], does
the following:

(1) For all 𝑖 ∈ [𝑛]:
(a) Decrypt 𝐸′

𝑖 𝑗
and then 𝐸𝑖 𝑗 to recover the shares ®𝜎𝑖 𝑗 .

(b) If 𝐶𝑖 𝑗 ≠ ®𝜎𝑖 𝑗 • ®𝐺 , broadcast an accusation against D𝑖 .

(2) Define the set NA𝑗 = {𝑖 : D𝑖 was not accused byV𝑗 }.
(3) ∀ℓ ∈ [[𝑛]], denote ®𝜉 𝑗 ℓ = (𝜎𝑖 𝑗ℓ : 𝑖 ∈ NA𝑗).
(4) For ℓ ∈ [𝑛], let ℎ 𝑗ℓ be a commitment to

®𝜉 𝑗 ℓ and 𝜏 𝑗ℓ is the
opening. Denote

®ℎ 𝑗 = (ℎ 𝑗1, . . . , ℎ 𝑗𝑛).
(5) Set ®𝑒 𝑗 = (𝑒𝑖 𝑗 : 𝑖 ∈ NA𝑗) ∈ Z

|NA𝑗 |
𝑞 as ®𝑒 𝑗 ← O(𝑗, ®ℎ 𝑗 ,NA𝑗),

where O is modeled as a random oracle.

(6) ∀ℓ ∈ [[𝑛]] set 𝜌 𝑗ℓ =
∑
𝑖∈NA𝑗

𝜎𝑖 𝑗ℓ𝑒𝑖 𝑗 ∈ Z𝑞 and row-check

values 𝑅 𝑗 ℓ = 𝜌 𝑗 ℓ𝐺ℓ ∈ G.
(7) Compute a NIZK-POK for 𝜌 𝑗 ℓ = 𝐷𝐿𝐺ℓ

(𝑅 𝑗 ℓ) ∀ℓ ∈ [[𝑛]].

(8) For ℓ ∈ [𝑛], send (®𝜉 𝑗 ℓ , 𝜏 𝑗ℓ) privately to Pℓ .
(9) For ℓ ∈ [[𝑛]], broadcast (ℎ 𝑗ℓ , 𝑅 𝑗ℓ , 𝑁 𝐼𝑍𝐾𝑗ℓ).

Verifiers that broadcast more than 𝑡 accusations are ignored. Deal-

ers that received more than 𝑡 accusations are disqualified.

Response. Responder R𝑘 does the following for every remaining

accusationV𝑗 → D𝑖 :

(1) Decrypt 𝐹𝑖𝑘 to recover (®𝜖𝑖𝑘 , 𝜌𝑖𝑘).
(2) Use 𝜌𝑖𝑘 to open the commitment to 𝜖𝑖 𝑗𝑘 inside of ®𝜖𝑖𝑘
(3) Broadcast 𝜖𝑖 𝑗𝑘 and its opening.

Disqualifications. Every shareholder Pℓ does the following:
(1) For each non-disqualified dealer D𝑖 , check that

𝐶𝑖1, . . . ,𝐶𝑖𝑛 lie in the linear subspace of evaluations of

degree-𝑡 polynomials. Disqualify D𝑖 if the test fails.

(2) As long as there remain accusationsV𝑗 → D𝑖 :

(a) Check all the commitments 𝛾𝑖𝑘 against the opening to

𝜖𝑖 𝑗𝑘 that the R𝑘 ’s broadcasted. DisqualifyD𝑖 if less than

𝑛−𝑡 are valid, or if not all the valid 𝜖𝑖 𝑗𝑘 ’s lie on a degree-

𝑡 polynomial.

(b) Otherwise use the shares 𝜖𝑖 𝑗𝑘 ’s to recover 𝜖𝑖 𝑗 , and use

𝜖𝑖 𝑗 to decrypt 𝐸𝑖𝑘 and recover ®𝜎𝑖 𝑗 .
(c) If 𝐶𝑖 𝑗 ≠ ®𝜎𝑖 𝑗 • ®𝐺 then disqualify D𝑖 . Otherwise ignore

V𝑗 and all of its accusations and shares.

(3) For each remaining verifier V𝑗 with received shares

𝜎′
1𝑗ℓ
, . . . , 𝜎 ′

𝑛𝑗ℓ
and commitment opening 𝜏 𝑗 ℓ check the fol-

lowing (and ignoreV𝑗 if any check fails):

(a) Check
®𝜉 𝑗 ℓ , 𝜏 𝑗ℓ against the commitment ℎ 𝑗ℓ .

(b) Verify all the proofs {𝑁𝐼𝑍𝐾𝑗𝑟 }𝑟 ∈[[𝑛]] .
(c) Set ®𝑒 ← O(𝑗, ®ℎ 𝑗 ,NA𝑗) and 𝜌′𝑗 ℓ =

∑
𝑖∈NA𝑗

𝑒𝑖 𝑗𝜎
′
𝑖 𝑗ℓ

. Check

that 𝑅 𝑗ℓ = 𝜌
′
𝑗 ℓ
𝐺ℓ .

(d) Check that

∑𝑛
𝑟=0 𝑅 𝑗𝑟 =

∑
𝑖∈NA𝑗

𝑒𝑖 𝑗𝐶𝑖 𝑗 .

Shares. Pℓ aborts if it has less than 𝑡 + 1 remaining verifiers. Let

𝐽 = { 𝑗0, . . . , 𝑗𝑡 } be its first 𝑡 + 1 remaining verifiers and Q be the

qualified dealers, and denote by {𝜎′
𝑖 𝑗ℓ

: 𝑖 ∈ Q, 𝑗 ∈ 𝐽 } their shares
as received by Pℓ . Let (𝜆 𝑗 : 𝑗 ∈ 𝐽) be the Lagrange interpolation
coefficients for 𝐽 .

For every qualified dealerD𝑖 , 𝑖 ∈ Q, Pℓ computes its share of the

secret 𝑠𝑖 as 𝑠𝑖ℓ =
∑

𝑗∈ 𝐽 𝜆 𝑗𝜎
′
𝑖 𝑗ℓ

.

Figure 6: The basic YOSO MD-VSS protocol

4.2 Analysis of the YOSO MD-VSS protocol
We present our YOSO MD-VSS in Fig. 6 and its analysis in this

section. In terms of secrecy, we point out that as long as there are

at most 𝑡 bad parties in each of the committees, the adversary’s

view in this protocol is essentially the same as in the non-YOSO

MSMD-VSS protocol from Fig. 4. There are some commitments and

ciphertexts that are sent and never opened, and the ones that are

opened correspond to accusations, which means that either sender

or receiver must be bad. Finally, there are the shares dealt to honest

parties by dishonest dealers, and these are distributed with uniform

distribution since there are at most 𝑡 of them in each committee. A

formal simulation proof (using the UC-formulation from [21]) is

deferred to later work.

Note the following technical point. Just as in the non-YOSO

protocol from Section 3, the honest shareholders agree on the set Q
of qualified dealers. However, in the YOSO protocol we introduce

the verifiers and parties may ignore some of the verifiers, and there

is no need to have consensus on who are the ignored verifiers.

For soundness, we prove Lemma 4.1 that formalizes the intuitive

argument that the only way forV𝑗 to fool Pℓ is to have committed

(via the ℎ 𝑗ℓ ’s) to different shares that happen by chance to agree

with the real shares on a random linear combination. Namely,V𝑗

must commit to values (𝜎′
1𝑗ℓ
, . . . , 𝜎 ′

𝑛𝑗ℓ
) that satisfy ∑𝑛

𝑖=1 𝑒𝑖 𝑗 (𝜎′𝑖 𝑗ℓ −
𝜎𝑖 𝑗ℓ) = 0, which is enforced by the checks 3c and 3d performed

by Pℓ . If the shares are not all the same, then the probability of

choosing 𝑒𝑖 𝑗 ’s that satisfy this equality is 1/𝑞.

332

Threshold Cryptography as a Service CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

In the proof below, we ignore the Fiat-Shamir aspect of the

protocol and analyze it as if it was an interactive protocol. That is,

we consider instead a protocol in whichV𝑗 first sends to eachPℓ the
shares 𝜎′

𝑖 𝑗ℓ
, then the coefficients 𝑒𝑖 𝑗 are chosen at random, and then

V𝑗 uses them to compute the 𝜌 𝑗ℓ ’s and 𝑅 𝑗 ℓ ’s. (In the actual protocol,

the 𝑒𝑖 𝑗 ’s are computed instead by applying a random oracle to all

the ℎ 𝑗 ℓ = 𝐶𝑜𝑚𝑚𝑖𝑡 (®𝜉 𝑗ℓ), where each Pℓ verifies the commitment to

its own ℎ 𝑗 ℓ and takes the other ℎ 𝑗𝑟 ’s from the broadcast channel

“on faith”.)

For every honest shareholder Pℓ , and every (not necessarily

honest) dealer and verifier D𝑖 ,V𝑗 , let 𝜎
′
𝑖 𝑗ℓ

be the value (alleged

share) received by Pℓ from D𝑖 via V𝑗 . This is either the value

sent from V𝑗 if there was no accusation, or the value that was

reconstructed by the R𝑘 ’s ifV𝑗 accused D𝑖 , or 0 is there was an

accusation but no value was reconstructed.

For each 𝑖 ∈ Q we also let 𝜎𝑖 𝑗ℓ denote “the correct share” that

D𝑖 was supposed to send, which is defined as follows:

• If D𝑖 is honest then this is just the value of 𝑓𝑖 𝑗 (ℓ) that was
sent toV𝑗 (and shared among the R𝑘 ’s).
• If D𝑖 is dishonest and V𝑗 is honest, then 𝜎𝑖 𝑗ℓ is either the

value thatV𝑗 received (ifV𝑗 did not accuseD𝑖), or the value

that was reconstructed from the R𝑘 ’s (ifV𝑗 accused D𝑖).
4

• If neither D𝑖 norV𝑗 are honest, then 𝜎𝑖 𝑗ℓ is defined as the

interpolation of the “real shares” 𝜎𝑖 𝑗 ′ℓ for all the honest

verifiersV𝑗 ′ .
5

We note that the values 𝜎𝑖 𝑗ℓ , 𝜎
′
𝑖 𝑗ℓ

are all well defined by the time

that Pℓ runs the disqualification procedure, and can be recovered

from the view of all the honest parties. Note also that by definition,

𝜎′
𝑖 𝑗ℓ

= 𝜎𝑖 𝑗ℓ ifV𝑗 accused D𝑖 .

Lemma 4.1. Fix an honest shareholder Pℓ and a (not necessarily
honest) verifierV𝑗 . Assume that the coefficients (𝑒𝑖 𝑗)𝑖∈NA𝑗

are chosen
at random after all the 𝜎′

𝑖 𝑗ℓ
. Let Q ⊆ [𝑛] denote the set of indexes of

qualified dealers D𝑖 at the end of the protocol.
Then, the probability that there exists 𝑖 ∈ Q such that 𝜎′

𝑖 𝑗ℓ
≠ 𝜎𝑖 𝑗ℓ ,

and yetV𝑗 is not ignored by Pℓ , is negligible.

The proof is presented in the full version.

4.3 Proving consistent sharing and correct
public keys/commitments

We now describe how to extend the basic MSMD-VSS from Fig. 6

to get a proactive re-sharing protocol with public verification keys.

Namely, each dealer D𝑖 has an input share 𝑠𝑖 = 𝑓 (𝑖) for the global
secret 𝑠 = 𝑓 (0), and it shares its 𝑠𝑖 among the shareholders Pℓ .
Each shareholder Pℓ then uses the shares-of-shares 𝑠𝑖ℓ from all the

dealers to reconstruct a new share 𝑠′
ℓ
of the same global secret. To

that end, we use the MSMD-VSS protocol for distributing these 𝑠𝑖ℓ ’s,

and in addition each dealer D𝑖 prove that these 𝑠𝑖ℓ ’s are “the right

ones”. We also add a procedure for computing public verification

values for the shares.

In more detail, at the beginning of the protocol each dealer D𝑖

has a single secret input 𝑠𝑖 , and we assume that the 𝑠𝑖 ’s lie on a

degree-𝑡 polynomial 𝑓 , representing the global secret 𝑠 = 𝑓 (0). In
4
Since 𝑖 ∈ Q then we know that some value was reconstructed.

5
Since 𝑖 ∈ Q then we know that the 𝜎𝑖 𝑗 ′ℓ ’s must lie on a degree-𝑡 polynomial.

addition all the values 𝑆𝑖 = 𝑠𝑖𝐺 are publicly known. Our goal is to

maintain that invariant, so that the same will hold also at the end

of the protocol, for new shares 𝑠′
ℓ
that are held by the shareholders

(but the same global secret).

Before we begin, we note that if the dealers share the “right secrets”
(i.e. valid shares of a global secret), then the shareholders in the

protocol from Fig. 6 can indeed compute new shares of the same

global secret. To see that, let the original secrets lie on a degree-

𝑡 polynomial, 𝑠𝑖 = 𝑓 (𝑖), and let 𝑠 = 𝑓 (0). Assume further than

each dealer D𝑖 really chooses a degree-𝑡 polynomial 𝑓𝑖 such that

𝑓𝑖 (0) = 𝑠𝑖 = 𝑓 (𝑖), that more than 𝑡 dealers remain qualified at the

conclusion of the protocol, and that each honest shareholder Pℓ
holds the shares 𝜎𝑖ℓ = 𝑓𝑖 (ℓ) for every qualified dealer 𝑖 ∈ Q.

Let 𝐼 = {𝑖0, . . . , 𝑖𝑡 } ⊆ Q be the first 𝑡 + 1 qualified dealers. Let

𝜇𝑖0 , . . . , 𝜇𝑖𝑡 be the Lagrange interpolation coefficients for the set 𝐼 .

Namely 𝑝 (0) = ∑
𝑖∈𝐼 𝜇𝑖𝑝 (𝑖) for every degree-𝑡 polynomial 𝑝 . Con-

sider then the degree-𝑡 polynomial 𝑓 ′ =
∑
𝑖∈𝐼 𝜇𝑖 𝑓𝑖 . On the one hand,

each shareholder Pℓ knows 𝑓𝑖 (ℓ) for all 𝑖 ∈ 𝐼 , so it can compute its

share 𝑠′
ℓ
= 𝑓 ′ (ℓ) = ∑

𝑖∈𝐼 𝜇𝑖 𝑓𝑖 (ℓ). On the other hand, we have

𝑓 ′ (0) =
∑︁
𝑖∈𝐼

𝜇𝑖 𝑓𝑖 (0) =
∑︁
𝑖∈𝐼

𝜇𝑖 𝑓 (𝑖) = 𝑓 (0) .

Hence the scalars 𝑠′
ℓ
are indeed shares of the same secret as the

original 𝑠𝑖 ’s. We now turn to the tasks at hand, having the dealers

prove that they shared the right secrets, and computing the public

verification elements.

4.3.1 A first attempt. A natural approach for proving correct re-

sharing goes as follows: Each dealer D𝑖 , after choosing the polyno-

mial 𝑓𝑖 and computing a value 𝜎𝑖ℓ = 𝑓𝑖 (ℓ) that it wants to commu-

nicate to Pℓ ’s (via theV𝑗 ’s), would broadcast all the corresponding

values 𝑍𝑖ℓ = 𝜎𝑖ℓ𝐺 (along with NIZK proofs of correctness). Once

the set of qualified dealers Q is established (and hence the Lagrange

interpolation coefficients 𝜇𝑖 are known), this will let everyone com-

pute the public value 𝑆 ′
ℓ
=
∑
𝑖 𝜇𝑖𝑍𝑖ℓ . The same derivation as above

implies that this is the correct public value. Namely 𝑆 ′
ℓ
= 𝑠′

ℓ
𝐺 for

the share 𝑠′
ℓ
that Pℓ recovered.

Unfortunately, this approach suffers from the randomness-biasing

drawback that was pointed out by Gennaro et al. [19]: After seeing

the public values𝑍𝑖ℓ , the adversary can influence the set of qualified

dealers (by making bad verifiers accuse/not accuse some dealers). It

can therefore bias the public values 𝑆 ′
ℓ
(e.g., ensuring that 𝑆 ′

𝑖
begins

with a ‘0’), by trying different combinations for Q until it finds one

that yields the desired result.

4.3.2 Preventing biasing attacks. To overcome this drawback, we

need to hide from the adversary the eventual 𝑆 ′
ℓ
elements until

after the set Q is determined. The approach that we take here is to

encrypt the values 𝑍𝑖ℓ under Pℓ ’s public key, while proving that the
encrypted value is what it should be. This will enable Pℓ to later

decrypt, broadcast, and prove that decryption was done correctly.

To improve efficiency, we use Elgamal encryption with keys that

“play nice” with the protocol itself. Specifically, each shareholder

Pℓ has an Elgamal public key (𝐺ℓ , 𝐻ℓ = 𝑘ℓ𝐺ℓ), where the 𝐺ℓ ’s are

the same generators that are used for the protocol, and 𝑘ℓ is the

secret key of Pℓ .

333

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal Rabin

We use 𝑍𝑖ℓ = 𝜎𝑖ℓ𝐺ℓ (rather than 𝜎𝑖ℓ𝐺) as the public key, since it

is easier to prove.
6
The dealerD𝑖 broadcasts an Elgamal encryption

of 𝑍𝑖ℓ , namely the pair (𝑟𝑖ℓ𝐺ℓ , 𝑟𝑖ℓ𝐻ℓ + 𝑍𝑖ℓ) for a random 𝑟𝑖ℓ ∈ Z𝑞 .
As we show below, this form allows proving that the encrypted

value 𝑍𝑖ℓ is “the right one”.

After setting 𝑠𝑖ℓ = 𝑓𝑖 (ℓ) for a random degree-𝑡 polynomial 𝑓𝑖 with

𝑓𝑖 (0) = 𝑠𝑖 , sharing will be done exactly as before, letting Pℓ learn
the value 𝑠𝑖ℓ . At the same time, Pℓ can also decrypt the ciphertext to
obtain 𝑍𝑖ℓ , check that it indeed matches its share, 𝑍𝑖ℓ = 𝑠𝑖ℓ𝐺ℓ , and

then broadcast𝑍ℓ together with a NIZK proof of correct decryption.

Consider the column vector consisting of the second element

from each Elgamal ciphertext, namely (𝑟𝑖1𝐻1 + 𝜎𝑖1𝐺1, . . . , 𝑟𝑖𝑛𝐻𝑛 +
𝜎𝑖𝑛𝐺𝑛)𝑇 . This can be thought of as column-0 of the matrix A𝑖
(corresponding to the values 𝜎𝑖ℓ0 = 𝑓𝑖ℓ (0), ℓ = 1, . . . 𝑛), except it is

shifted by 𝑟𝑖ℓ𝐻ℓ . (The dealer will also publish an encryption for

row-0 of this matrix, i.e. (𝑟𝑖0𝐺0, 𝑟𝑖0𝐻0 + 𝑓𝑖0 (0)𝐺0) for some random

generator 𝐻0.) Everyone can then compute a column check value

for this shifted column, namely add the 2nd elements from all these

ciphertexts to get

𝐶′𝑖0 =
𝑛∑︁
ℓ=0

(𝑟𝑖ℓ𝐻ℓ + 𝑓𝑖ℓ (0)𝐺ℓ) .

Recall that all the other 𝐶𝑖 𝑗 ’s (𝑗 ∈ [𝑛]) must lie on a degree-𝑡

polynomial, and that polynomial will be consistent with the 𝑓𝑖ℓ ’s if

the dealer is honest. Everyone can therefore also use interpolation

to compute the (alleged) non-shifted value

𝐶𝑖0 =

𝑛∑︁
ℓ=0

𝑓𝑖ℓ (0)𝐺ℓ ,

and then compute the difference Δ𝑖 = 𝐶′
𝑖0
− 𝐶𝑖0. The dealer D𝑖

will broadcast a NIZK proof of knowledge of the representation

(𝑟𝑖0, . . . , 𝑟𝑖𝑛) s.t.
∑𝑛
ℓ=1 𝑟𝑖ℓ𝐻ℓ = Δ𝑖 , and moreover the same 𝑟𝑖ℓ ’s were

used in the first coordinates of the ElGamal ciphertexts 𝑟𝑖ℓ𝐺ℓ . (That

is exactly the second protocol from Fig. 1 in Section 2.) This proves

that the Elgamal ciphertexts indeed encrypt the secrets 𝑠𝑖ℓ = 𝑓𝑖ℓ (0)
that were shared and will be reconstructed by the Pℓ ’s.

For a share-refresh protocol, it is left to show that these 𝑠𝑖ℓ ’s are

indeed a valid sharing of 𝑠𝑖 (which is the share of the global secret

held byD𝑖). For that, recall thatD𝑖 also publishes 𝑆𝑖 = 𝑠𝑖𝐺𝑖 together

with proofs of correct decryption from the previous round (where

it was a shareholder). D𝑖 will also provide a NIZK proof of knowl-

edge for 𝑠𝑖 = 𝐷𝐿𝐺𝑖 (𝑆𝑖) as well as a representation (𝑠𝑖0, 𝑠𝑖1, . . . , 𝑠𝑖𝑛)
of 𝐶𝑖0 in the bases 𝐺0,𝐺1, . . . ,𝐺𝑛 , such that (𝑠𝑖 , 𝑠𝑖1, . . . , 𝑠𝑖𝑛) lie on
a degree-𝑡 polynomial. A simple Σ-protocol for this is described
in Fig. 7, which can be made non-interactive via the Fiat-Shamir

transformation.

4.3.3 The protocol. The invariant that we maintain is that at the

beginning of each step, each honest dealer D𝑖 knows 𝑠𝑖 , and ev-

eryone knows the corresponding public value 𝑍𝑖 = 𝑠𝑖𝐺𝑖 . Moreover,

the 𝑠𝑖 ’s of the honest dealers lie on a degree-𝑡 polynomial. The

modifications to the protocol from Fig. 6 are described in Fig. 8.

6
If the application needs to use 𝜎𝑖ℓ𝐺 , then the shareholder Pℓ can later publish that

value together with a NIZK proofs of DL equality. We note that group elements𝐺ℓ

can be derived deterministically from parties’ identities via a random oracle into the

group G.

Parameters: generators 𝐺1, . . . ,𝐺𝑛 , index 𝑖 ∈ [𝑛].
Prover input: degree-𝑡 polynomial 𝑓 (·) and scalar 𝑠0 ∈ Z𝑞 .
Public input: elements 𝑆,𝑇 ∈ G.
Prover claims that 𝑆 = 𝑓 (0)𝐺𝑖 and 𝑇 = 𝑠0𝐺0 +

∑𝑛
ℓ=1 𝑓 (ℓ)𝐺ℓ .

(1) Prover chooses at random a degree-𝑡 polynomial 𝑔(·) and
𝑟0 ∈ Z𝑞 . Sends to verifier 𝑅 = 𝑔(0)𝐺𝑖 , 𝑅0 = 𝑟0𝐺0, and

𝑅ℓ = 𝑔(ℓ)𝐺ℓ for ℓ ∈ [𝑛].
(2) Verifier sends to prover a random challenge 𝑐 ∈ Z𝑞 .
(3) Prover send ℎ(·) = 𝑔(·) + 𝑐 · 𝑓 (·) and 𝑧0 = 𝑟0 + 𝑐𝑠0.
(4) Verifier checks that ℎ has degree 𝑡 , that 𝑅 + 𝑐𝑆 = ℎ(0)𝐺𝑖 ,

and that

∑𝑛
ℓ=0 𝑅ℓ + 𝑐𝑇 = 𝑧0𝐺0 +

∑𝑛
ℓ=1 ℎ(ℓ)𝐺ℓ .

Figure 7: ZKPOK for proving re-sharing of a secret.

Inputs. Each dealer D𝑖 has an input share 𝑠𝑖 , and everyone

knows the public value 𝑆𝑖 = 𝑠𝑖𝐺𝑖 (which was proven correct in

the previous round).

Each shareholder Pℓ has a secret key 𝑘ℓ , and everyone knows

the corresponding public key 𝐻ℓ = 𝑘ℓ𝐺ℓ .

For ℓ = 0 there is also a public random “public key”𝐻0 for which

no one knows the secret key.

Dealing. D𝑖 chooses a random degree-𝑡 polynomial 𝑓𝑖 s.t.

𝑓𝑖 (0) = 𝑠𝑖 , and set 𝑠𝑖ℓ = 𝑓𝑖 (ℓ) for all ℓ ∈ [𝑛]. Then it executes

the dealing phase and adds the following steps:

(6) For all ℓ ∈ [[𝑛]], choose a random 𝑟𝑖ℓ ∈ Z𝑞 and broadcast

(𝑋𝑖ℓ = 𝑟𝑖ℓ𝐺ℓ , 𝑌𝑖ℓ = 𝑟𝑖ℓ𝐻ℓ + 𝑠𝑖ℓ𝐺ℓ).
(7) Set 𝐶𝑖0 =

∑𝑚
ℓ=0 𝑠𝑖ℓ𝐺ℓ , 𝐶

′
𝑖0

=
∑𝑚
ℓ=0 𝑌𝑖ℓ , and Δ = 𝐶′ −𝐶 .

(8) Compute a NIZK-POK of values 𝑟𝑖ℓ s.t. Δ =
∑
ℓ 𝑟𝑖ℓ𝐻ℓ and

𝑋𝑖ℓ = 𝑟𝑖ℓ𝐺𝑖 for all ℓ ∈ [[𝑛]] (cf. Fig. 1).
(9) Compute a NIZK-POK of a degree-𝑡 polynomial 𝑓 (·) and

a scalar 𝑠𝑖0, s.t. 𝑆𝑖 = 𝑓 (0)𝐺𝑖 and𝐶 = 𝑠𝑖0𝐺0 +
∑𝑛
ℓ=1 𝑓 (ℓ)𝐺ℓ

(cf. Fig. 7).

(10) Broadcast 𝐶𝑖0 and the NIZK proofs.

Verification andAccusations.After linearity test, everyone in-
terpolates 𝐶𝑖0 from 𝐶𝑖1, . . . ,𝐶𝑖,𝑡+1 and computes 𝐶′

𝑖0
=
∑𝑚
ℓ=0 𝑌𝑖ℓ

and Δ = 𝐶𝑖0 −𝐶′𝑖0. Next everyone checks the NIZK proofs, dis-

qualifying D𝑖 if they do not verify.

Public values. With Q the set of qualified dealers, if |Q| ≤ 𝑡
then all shareholders abort. Otherwise let 𝐼 ⊆ Q be the first

𝑡 + 1 dealers in Q. Let {𝜏𝑖 }𝑖∈𝐼 be the Lagrange interpolation

coefficients for the set 𝐼 .

After computing the shares, each shareholder 𝑃ℓ computes the

aggregate ciphertext (𝑋ℓ =
∑
𝑖∈𝐼 𝜏𝑖𝑋𝑖ℓ ,𝑌ℓ =

∑
𝑖∈𝐼 𝜏𝑖𝑌𝑖ℓ). Pℓ uses

its secret key 𝑘ℓ to decrypt, getting 𝑆 ′
ℓ
= 𝑌ℓ − 𝑘ℓ𝑋ℓ .

Pℓ also computes its share of the global secret as 𝑠′
ℓ
=
∑
𝑖∈𝐼 𝜏𝑖𝑠𝑖ℓ .

If 𝑆 ′
ℓ
= 𝑠′

ℓ
𝐺ℓ then Pℓ broadcasts 𝑆 ′ℓ along with a NIZK proof of

correct decryption. Otherwise it aborts.

Figure 8: Additions to the MSMD-VSS from Fig. 6 to obtain a
share-refresh protocol.

5 IMPLEMENTATION
As a proof of concept, we implemented (an older version of) the

protocol in Section 4.3. That version is about twice as expensive

334

Threshold Cryptography as a Service CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

as the protocol in Section 4.3, and it uses an information-theoretic

protection of the 𝑍𝑖ℓ values rather than ElGamal encryption. Hence

the performence numbers below should be cut roughly in half if

the new protocol is implemented.

The implementation is available off of https://github.com/shaih/

go-yosovss. We used Go (version 1.17.6) for most of the code, and

C/C++ for the elliptic curve and field operations. We use a mod-

ified version of libsodium [16] (version 1.0.18) for the curve op-

erations and most of the field operations. Modifications include

use of non-compressed representation of elliptic curve points (to

avoid overhead from decompression), support formulti-scalar-point

multiplication (both a constant-time version for operations with

secret scalars, and a variable-time version for operations with non-

secret scalars), fixed-based scalar-point multiplication (and variant

with two bases for Pedersen commitments), matrix multiplications

over the scalar field, scalar polynomial evaluation, and other small

additional functions. The code is pure portable C without any as-

sembly optimizations. We also use NTL [31] for the generation of

the parity-check matrix for the Shamir secret sharing (to do the

linear tests). This operation needs to only be performed one time

in the whole duration of the system (for a given number of parties

𝑛 and threshold 𝑡).

The communication layer (i.e., the broadcast channels) is sim-

ulated using Go channels. (Channels are assumed to be authenti-

cated.) Real networking communication layer can be built and used

as a drop-in replacement of these simulated channels. Serialization

is fully implemented and uses a canonical version of msgpack [18].

Benchmarking was done on a cloud VMwith 50 cores and 128GB

of RAM (CPU: AMD EPYC™ 7601, 2.2GHz). The OS was Ubuntu

20.04. For efficiency reasons, only the steps of the first party in

each committee are fully executed, the other parties are partially

simulated (to provide the required inputs for the first party of the

other committees).

We used a VM with 50 cores and 128GB of RAM just to be able

to simulate all the other parties. A single party workload use a very

small amount of RAM (less than a few GB) and a single thread. The
workload of a single party is embarrassingly parallel and the use of

multiple threads should give almost linear scaling.

Computational and communication complexity are reported in

Table 1. Since all verifiers are honest, there are no accusations and

the work of the responders is negligible, hence not reported. The

“disqualifications & shares” step include verifying the NIZK made

by the dealers and computing the new commitments 𝑆 ′
𝑖
= 𝑠′

𝑖
𝐺 +𝑟 ′

𝑖
𝐻 .

From the performance numbers in the table, we can see that all

the steps appear to have a quadratic computation and communica-

tion complexity (except for the computation complexity of dealing):

every time 𝑡 doubles, the computational and communication com-

plexity is multiplied by 4. Dealing becomes of cubic complexity

for high 𝑡 and 𝑛 because the scalar operations (to actually gener-

ate the shares) become dominant (compared to the scalar-point

multiplication that are quadratic and dominant for small 𝑡 and 𝑛).

Micro-benchmarking for the Non-YOSO MultiVSS. We pro-

vide in Figs. 9 and 10 some performance results for the non-YOSO

MSMD-VSS protocol from Fig. 4. These measurements were ob-

tained by running micro-benchmarking in the above YOSO imple-

mentation. As we can see, our protocol provides significant speedup

Table 1: Performance of the proactive YOSO resharing pro-
tocol in Section 4.3 (computation time and size of the broad-
casted message of the first party in each committee)

Dealing Accusations

Disqualifications

& Shares

𝑡 𝑛 Time Size Time Size Time

64 129 1.5 s 3.5 MB 1.0s 1.2 MB 3.2 s

128 257 7.2 s 14 MB 4.1s 4.6 MB 12.8 s

256 513 42 s 54 MB 17s 18 MB 52 s

as compared to a basic implementation of the classical Pedersen

VSS protocol.

Figure 9: Single-threaded computation per party (seconds)
for the MSMD-VSS protocol, with 𝑛 dealers and𝑚 secrets per
dealer.

Figure 10: The speedup factor of the MSMD-VSS protocol
against naive Pedersen, with 𝑛 dealers and 𝑚 secrets per
dealer.

REFERENCES
[1] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. 2014.

How to withstandmobile virus attacks, revisited. InACM Symposium on Principles
of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014, Magnús M.

Halldórsson and Shlomi Dolev (Eds.). ACM, 293–302. https://doi.org/10.1145/

2611462.2611474

[2] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. 2015.

Communication-Optimal Proactive Secret Sharing for Dynamic Groups. In

Applied Cryptography and Network Security - 13th International Conference,
ACNS 2015, New York, NY, USA, June 2-5, 2015, Revised Selected Papers (Lec-
ture Notes in Computer Science, Vol. 9092), Tal Malkin, Vladimir Kolesnikov,

Allison Bishop Lewko, and Michalis Polychronakis (Eds.). Springer, 23–41.

https://doi.org/10.1007/978-3-319-28166-7_2

335

https://github.com/shaih/go-yosovss
https://github.com/shaih/go-yosovss
https://doi.org/10.1145/2611462.2611474
https://doi.org/10.1145/2611462.2611474
https://doi.org/10.1007/978-3-319-28166-7_2

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal Rabin

[3] Mihir Bellare, Juan A. Garay, and Tal Rabin. 1996. Distributed Pseudo-Random

Bit Generators - A New Way to Speed-Up Shared Coin Tossing. In Proceedings
of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing,
Philadelphia, Pennsylvania, USA, May 23-26, 1996, James E. Burns and Yoram

Moses (Eds.). ACM, 191–200. https://doi.org/10.1145/248052.248090

[4] Mihir Bellare, Juan A. Garay, and Tal Rabin. 1998. Fast Batch Verification for Mod-

ular Exponentiation and Digital Signatures. In EUROCRYPT’98 (LNCS, Vol. 1403),
Kaisa Nyberg (Ed.). Springer, Heidelberg, 236–250. https://doi.org/10.1007/

BFb0054130

[5] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo

Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. 2020. Can a Public

Blockchain Keep a Secret?. In Theory of Cryptography - 18th International Con-
ference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part I
(Lecture Notes in Computer Science, Vol. 12550), Rafael Pass and Krzysztof Pietrzak
(Eds.). Springer, 260–290. https://doi.org/10.1007/978-3-030-64375-1_10

[6] Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. 2020. Asyn-

chronous Byzantine Agreement with Subquadratic Communication. In TCC 2020,
Part I (LNCS, Vol. 12550), Rafael Pass and Krzysztof Pietrzak (Eds.). Springer,

Heidelberg, 353–380. https://doi.org/10.1007/978-3-030-64375-1_13

[7] Ignacio Cascudo and Bernardo David. 2017. SCRAPE: Scalable Randomness

Attested by Public Entities. In ACNS 17 (LNCS, Vol. 10355), Dieter Gollmann,

Atsuko Miyaji, and Hiroaki Kikuchi (Eds.). Springer, Heidelberg, 537–556. https:

//doi.org/10.1007/978-3-319-61204-1_27

[8] Dario Catalano and Dario Fiore. 2013. Vector Commitments and Their Appli-

cations. In PKC 2013 (LNCS, Vol. 7778), Kaoru Kurosawa and Goichiro Hanaoka

(Eds.). Springer, Heidelberg, 55–72. https://doi.org/10.1007/978-3-642-36362-7_5

[9] Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed

ledger. Theor. Comput. Sci. 777 (2019), 155–183. https://doi.org/10.1016/j.tcs.2019.

02.001

[10] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Ver-

ifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults

(Extended Abstract). In 26th FOCS. IEEE Computer Society Press, 383–395.

https://doi.org/10.1109/SFCS.1985.64

[11] Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel

Kaptchuk. 2021. Fluid MPC: Secure Multiparty Computation with Dynamic

Participants. In Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceed-
ings, Part II (Lecture Notes in Computer Science, Vol. 12826), Tal Malkin and Chris

Peikert (Eds.). Springer, 94–123. https://doi.org/10.1007/978-3-030-84245-1_4

[12] Ronald Cramer. 1996. Modular Design of Secure yet Practical Cryptographic
Protocols. Ph. D. Dissertation. CWI and University of Amsterdam.

[13] Ivan Damgård. 2010. On Σ Protocols. https://cs.au.dk/%7Eivan/Sigma.pdf.

[14] Ivan Damgård and Yuval Ishai. 2006. Scalable Secure Multiparty Computation.

In CRYPTO 2006 (LNCS, Vol. 4117), Cynthia Dwork (Ed.). Springer, Heidelberg,

501–520. https://doi.org/10.1007/11818175_30

[15] Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam

Smith. 2008. Scalable Multiparty Computation with Nearly Optimal Work and

Resilience. In CRYPTO 2008 (LNCS, Vol. 5157), David Wagner (Ed.). Springer,

Heidelberg, 241–261. https://doi.org/10.1007/978-3-540-85174-5_14

[16] Frank Denis. 2022. The Sodium cryptography library. https://download.

libsodium.org/doc/

[17] Matthew K. Franklin and Moti Yung. 1992. Communication Complexity of Secure

Computation (Extended Abstract). In 24th ACM STOC. ACM Press, 699–710.

https://doi.org/10.1145/129712.129780

[18] Sadayuki Furuhashi. 2013. MessagePack Serialization Format. https://msgpack.

org/

[19] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

Distributed Key Generation for Discrete-Log Based Cryptosystems. Journal of
Cryptology 20, 1 (Jan. 2007), 51–83. https://doi.org/10.1007/s00145-006-0347-3

[20] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. 1998. Simplified VSS and Fast-

Track Multiparty Computations with Applications to Threshold Cryptography.

In 17th ACM PODC, Brian A. Coan and Yehuda Afek (Eds.). ACM, 101–111.

https://doi.org/10.1145/277697.277716

[21] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen,

Tal Rabin, and Sophia Yakoubov. 2021. YOSO: You Only Speak Once / Secure MPC

with Stateless Ephemeral Roles. In CRYPTO 2021, to appear. https://ia.cr/2021/210.
[22] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. 2021. Practical Non-

interactive Publicly Verifiable Secret Sharing with Thousands of Parties. IACR
Cryptol. ePrint Arch. (2021), 1397. https://eprint.iacr.org/2021/1397

[23] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. 1995. Proac-

tive Secret Sharing Or: How to Cope With Perpetual Leakage. In CRYPTO’95
(LNCS, Vol. 963), Don Coppersmith (Ed.). Springer, Heidelberg, 339–352. https:

//doi.org/10.1007/3-540-44750-4_27

[24] Martin Hirt and Jesper Buus Nielsen. 2006. Robust Multiparty Computation with

Linear Communication Complexity. In CRYPTO 2006 (LNCS, Vol. 4117), Cynthia
Dwork (Ed.). Springer, Heidelberg, 463–482. https://doi.org/10.1007/11818175_28

[25] Hugo Krawczyk. 1994. Secret Sharing Made Short. In CRYPTO’93 (LNCS, Vol. 773),
Douglas R. Stinson (Ed.). Springer, Heidelberg, 136–146. https://doi.org/10.1007/3-

540-48329-2_12

[26] Stephan Krenn, Thomas Lorünser, and Christoph Striecks. 2017. Batch-verifiable

Secret Sharing with Unconditional Privacy. In Proceedings of the 3rd International
Conference on Information Systems Security and Privacy, ICISSP 2017, Porto, Portu-
gal, February 19-21, 2017, Paolo Mori, Steven Furnell, and Olivier Camp (Eds.).

SciTePress, 303–311. https://doi.org/10.5220/0006133003030311

[27] Yehuda Lindell and Ariel Nof. 2018. Fast Secure Multiparty ECDSA with Practical

Distributed Key Generation and Applications to Cryptocurrency Custody. In

ACM CCS 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng

Wang (Eds.). ACM Press, 1837–1854. https://doi.org/10.1145/3243734.3243788

[28] Rafail Ostrovsky and Moti Yung. 1991. How to Withstand Mobile Virus Attacks

(Extended Abstract). In 10th ACM PODC, Luigi Logrippo (Ed.). ACM, 51–59.

https://doi.org/10.1145/112600.112605

[29] Torben P. Pedersen. 1991. A Threshold Cryptosystem without a Trusted Party

(Extended Abstract) (Rump Session). In EUROCRYPT’91 (LNCS, Vol. 547), Don-
ald W. Davies (Ed.). Springer, Heidelberg, 522–526. https://doi.org/10.1007/3-

540-46416-6_47

[30] Torben P. Pedersen. 1992. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In CRYPTO’91 (LNCS, Vol. 576), Joan Feigenbaum (Ed.).

Springer, Heidelberg, 129–140. https://doi.org/10.1007/3-540-46766-1_9

[31] Victor Shoup. 2022. NTL: A Library for doing Number Theory. https://libntl.org/

336

https://doi.org/10.1145/248052.248090
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-030-64375-1_13
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1007/978-3-030-84245-1_4
https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-540-85174-5_14
https://download.libsodium.org/doc/
https://download.libsodium.org/doc/
https://doi.org/10.1145/129712.129780
https://msgpack.org/
https://msgpack.org/
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1145/277697.277716
https://ia.cr/2021/210
https://eprint.iacr.org/2021/1397
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/11818175_28
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.5220/0006133003030311
https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1145/112600.112605
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46766-1_9
https://libntl.org/

	Abstract
	1 Introduction
	1.1 Our contributions and techniques
	1.2 Related Work
	1.3 Organization

	2 Notations and Background
	2.1 Multi-Dealer Verifiable Secret Sharing
	2.2 Pedersen Commitments
	2.3 Vector Commitments
	2.4 Linearity Testing
	2.5 NIZK-POK for Discrete Logarithm
	2.6 Pedersen Verifiable Secret Sharing

	3 Amortized VSS
	3.1 Multi-Secret, Single-Dealer Pedersen VSS
	3.2 Multi-Secret, Multi-dealer VSS
	3.3 Functionality and Simulation
	3.4 Complexity
	3.5 Further Improvements

	4 Multi-Dealer VSS in the YOSO Setting
	4.1 The Basic YOSO MD-VSS Protocol
	4.2 Analysis of the YOSO MD-VSS protocol
	4.3 Proving consistent sharing and correct public keys/commitments

	5 Implementation
	References

