
 
 
 
 

Accelerating Climate Innovation 
A Mechanistic Approach and Lessons for Policymakers 

 
 
 
 
 

Jessika E. Trancik 
Micah S. Ziegler 

 
Massachusetts Institute of Technology 

 
 

January 2023 
 
 
 
 
 
 
 
 
 
 
 
 

Correspondence to: trancik@mit.edu



   1 

About the Authors 
Jessika E. Trancik is a Professor in the Institute for Data, Systems, and Society at the 
Massachusetts Institute of Technology. Her research examines the dynamic costs, performance, 
and environmental impacts of energy systems to inform climate policy and accelerate beneficial 
and equitable technology innovation. Her projects focus on all energy services including 
electricity, transportation, heating, and industrial processes. This work spans solar energy, wind 
energy, energy storage, low-carbon fuels, electric vehicles, and nuclear fission among other 
technologies. Prof. Trancik received her B.S. from Cornell University and her Ph.D. from the 
University of Oxford as a Rhodes Scholar. She is currently an external professor at the Santa Fe 
Institute, and was formerly at Columbia University’s Earth Institute, and at WSP 
International/UNOPS (now Interpeace) in Geneva.  
 
Micah S. Ziegler is a postdoctoral associate in the Institute for Data, Systems, and Society at the 
Massachusetts Institute of Technology. He evaluates sustainable energy and chemical 
technologies, their impacts, and their potential. His research shapes robust strategies to 
accelerate the improvement and deployment of technologies that can enable a global transition 
to sustainable and equitable energy systems. His work informs research and development, public 
policy, and financial investment. Dr. Ziegler earned a Ph.D. in Chemistry from the University of 
California, Berkeley and a B.S. in Chemistry, summa cum laude, from Yale University. He has 
researched international climate change negotiations and energy technology policy in the 
Climate and Energy Program at the World Resources Institute. He was also a Luce Scholar, 
advising companies on environmental sustainability at the Business Environment Council in Hong 
Kong. 

About the Trancik Lab 
The Trancik Lab builds data-informed models to evaluate the economic and environmental 
impacts of energy technologies over time and space. Our research aims to accelerate clean 
energy development by informing decisions made by engineers, policymakers, and private 
investors. 

Acknowledgements 
The authors thank Danielle Arostegui for her collaboration in bringing this report to fruition. 
Danielle is a Manager of U.S. Climate Policy at the Environmental Defense Fund (EDF). EDF is one 
of the world’s leading environmental nonprofit organizations. EDF’s mission is to preserve the 
natural systems on which all life depends. Guided by science and economics, EDF finds practical 
and lasting solutions to the most serious environmental problems. 
 
The authors thank Gökşin Kavlak, Magdalena Klemun, James McNerney, and Philip Eash-Gates 
for their contributions to the methodology and research examples presented in this report.  
 
In addition, the authors gratefully acknowledge the many people whose input helped improve 
this report, including Morgan Rote, Natasha Vidangos, Chandler Green, Steve Capanna, and 



   2 

James Fine (EDF) as well as Alexandra Teitz (AT Strategies).  We are also grateful to the 
Bernard and Anne Spitzer Charitable Trust for its generous support of this project. 
  



   3 

Executive Summary 
Significant improvement and deployment of sustainable technologies will likely be needed over 
coming decades for society to meet its global targets for climate change mitigation. Achieving 
these targets will require rapid rates of technological progress, including the rates at which we, 
as a society, invent, develop, and adopt climate solution technologies.  

Government policy can play a crucial role in enabling technological progress. Public policies have 
the potential to influence decisions made by stakeholders across the landscape of technological 
innovation, from start-ups, established corporations, and investors to academic institutions, 
nonprofit organizations, and the government itself. Policy tools for supporting technological 
change can be divided into two categories: “technology-push” policies that enhance the supply 
of technologies (e.g., government funding for research and development and demonstration 
projects) and “market-expansion” policies that can increase demand for new technologies (e.g., 
regulations, subsidies, and government procurement). Enhancing the effectiveness of these 
policies will be critical for making the best use of limited public funds and limited time to mitigate 
the worst impacts of climate change.    

To improve the efficacy of policies, we want to know: which strategies can accelerate the rate of 
innovation for climate solutions? Which government policy tools are the most effective in 
different scenarios? Recent research on the drivers of technological improvement helps address 
these questions. In this report, we describe an approach advanced in the Trancik Lab at MIT to 
identify promising mechanisms of technological change that can be targeted by efforts to 
accelerate innovation.  

In the Trancik Lab, one focus area is on understanding and quantitatively modeling the drivers of 
underlying progress for a range of technologies—what we term the “mechanisms” of 
technological change. These mechanisms can refer to both specific, measurable changes in a 
technology, such as increased efficiency or lower input prices, or to more general improvement 
processes, including research and development and emergent phenomena such as economies of 
scale. Studying the mechanisms that drive technology improvements such as the exponential 
reductions in cost observed in recent decades for solar modules and lithium-ion batteries, helps 
provide insights into how policymakers, researchers, and the private sector can better target 
these mechanisms to accelerate future technological progress.  

This mechanism-focused approach to studying innovation differs from previous efforts by 
relating each change to a feature of a technology or its manufacturing process to performance 
improvements, even when many changes occur simultaneously that interact with one another in 
determining costs. When this approach is used to study past changes in a technology, we can 
identify which mechanisms mattered, quantify their contributions, and answer important 
questions. For example, what percentage of a technology’s cost decline was caused by a decrease 
in the price of raw materials as opposed to the building of larger manufacturing plants? Or, how 
much of its improvement can be attributed to research and development as opposed to 
economies of scale? These insights then allow decision-makers to identify public policies or 
business practices that could help drive further improvement, within physical limits.  
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In this report we review the concepts and methods underlying this mechanism-focused approach 
to understanding innovation, and then demonstrate the application of the approach and the 
types of insights that can be derived through case studies of three energy technologies: solar 
photovoltaics, lithium-ion batteries, and nuclear fission power plants.  
 
Key takeaways for policymakers from the research include:  

• Research and development (R&D) and market-expansion policies each played essential 
and non-substitutable roles in spurring innovation in technologies. Our examination of 
solar PV modules demonstrated that both “technology-push” policies (i.e., public R&D 
funding) and market-expansion policies contributed significantly to the observed cost 
declines, and that the mechanisms they targeted differed considerably. Support for R&D 
led to cost reduction through improvements in conversion efficiency and reductions in 
the quantities of materials required per cell, among other low-level mechanisms. 
Meanwhile, market-expansion policies were essential for stimulating private R&D, as well 
as the growth in the sizes of manufacturing plants and bulk purchasing that reduced costs 
via economies of scale.  
 

• Government support was an important driver of cost decline. Some of the initial 
research and development, including invention and early improvement of solar 
photovoltaic technology, relied on government funding, including substantial R&D 
support from the U.S. Government. This government funding was crucial as some of the 
early materials science and physics research leading to these improvements would have 
been considered too risky to pursue for a private company. Similarly, government passage 
of market-expansion policies, for example in Germany and Japan, was instrumental in 
incentivizing the growth of solar companies in the private sector, and in turn both the 
private R&D and economies of scale that lead to substantial cost reductions.  
 

• Many other technologies are also likely to need both R&D funding and market-
expansion policies. Policymakers involved in setting climate, energy, and industrial 
policies and those designing R&D budgets should coordinate to ensure that the potential 
benefits of both types of policies are captured, based on an assessment of innovation 
mechanisms. The balance of support for these different policy approaches might also 
need to be adjusted at different stages in the lifecycle of a technology, based on the most 
promising mechanisms for technological improvement given the features of the 
technology and its stage in development. Examples of technologies that could benefit 
from this approach, in addition to those described in this report, include other types of 
batteries (e.g., stationary, fast-charging, those based on abundant materials), 
electrolyzers, wind turbine components, fuel cells, electric vehicles (e.g., battery electric 
and hydrogen fuel cell vehicles), and even entire infrastructures such as those for 
producing hydrogen and charging electric vehicles. 
 

• R&D investment can be beneficial well past initial commercialization of a technology. 
Our research suggests that sustained, and not just early-stage, R&D support can be an 
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important driver of cost reduction for clean energy technologies. Conventional wisdom in 
technology policymaking is that ‘‘science and technology–push’’ processes should 
precede ‘‘demand-pull’’ processes. Our results are consistent with this model, but also 
show that technology-push policies, such as government funding for basic and applied 
research and development, may remain important for certain technologies even long 
after demand-pull processes also begin to contribute to cost reduction and other 
technology improvement. 
 

• Technologies with low levels of “design complexity”, or high “modularity”, may be 
particularly well positioned to advance rapidly. In the case of lithium-ion batteries, R&D 
concurrently contributed to many low-level mechanisms of cost change, which highlights 
a feature of lithium-ion batteries that might help explain their rapid improvement: the 
diversity of materials and chemistry combinations that can be used in these devices. Our 
results are consistent with other research that suggests that technologies that allow some 
components to be improved without requiring changes elsewhere in a design can improve 
significantly more quickly than those with many dependencies between components. 
 

• For some energy technologies and infrastructures, carefully designed mechanistic cost 
change modeling and demonstration projects could contribute substantially to 
technological cost improvement. Some technologies are constructed mostly in the field 
rather than in manufacturing plants. Examples of such technologies include nuclear 
power plants, electricity transmission systems, and some proposed infrastructures for 
producing hydrogen gas. For those technologies, cost reducing innovations might be 
identified through a combination of 1) cost change modeling that connects technological 
features to resulting costs, as described in this report, and 2) building demonstration 
projects that can provide empirical data to refine modeling assumptions. Neglecting this 
approach can lead to unanticipated cost overruns, as has been observed in U.S. nuclear 
power plant construction. 
 

• Analysis of prospective public policies that aim to drive technological improvement 
should consider physical features of technologies and relevant infrastructures. The 
methodology advanced here shows how valuable it can be to begin with a model of the 
features of a technology or infrastructure that affect cost or another performance metric 
of interest. Even policies seemingly far removed from traditional R&D policies can 
potentially jumpstart significant innovation. However, it will be important to target the 
innovation mechanisms with the greatest potential impact, and we only know to target 
those mechanisms through first identifying them. This identification will require studies 
that clearly delineate how changes in technologies have, and could in the future, influence 
performance and cost. When researchers and technology developers seek funding to 
support their efforts, their proposals can be strengthened by analyses that consider the 
mechanisms of technological change and clearly, and where possible quantitatively, 
delineate how their technical proposals relate to the performance improvements or cost 
reductions they project. Similarly, government agencies could perform, or fund, 
independent analyses and expert elicitations, to both provide additional understanding 
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and identify research directions that could effectively accelerate the development of 
clean energy technologies. 
 

• Policymakers and regulators should emphasize the need to collect and share empirical 
data on technology variables affecting costs and other aspects of technology 
performance, and how these variables change over time. The studies of technological 
change we describe and the insights this research provides require extensive collection of 
data that is often difficult to obtain. Policymakers could require firms and researchers 
receiving funding from various governmental initiatives to collect and share such data, 
and also specifically allocate funding for collecting data on technologies and how they 
change. These data include details on technologies’ components and other features, as 
well as on their manufacturing processes, and on technologies’ performance and cost, 
and how these change over time. These data enable investigation of the possible 
mechanisms of technological change. Relevant data can be collected from academic 
institutions, businesses, and government agencies, and then be made available to 
researchers. In addition to implementing data collection and sharing requirements for 
projects receiving government support, another promising opportunity to collect data on 
the deployment of energy technologies in the earlier stages of market maturity would be 
through the funding and design of demonstration projects and hubs. Data on component 
costs and specifications, and importantly how they change over time, could be collected 
through these projects and be made available to researchers. 
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Introduction  
The Climate Innovation Challenge 
To limit the impacts of climate change, society must swiftly reduce its emissions of greenhouse 
gases (GHGs). This emissions reduction will require that economies transition to sustainable 
technologies across all sectors, including electricity, industry, transportation, and agriculture, in 
order to provide goods and services without emitting GHGs.1,2 Many of the technologies needed 
to support this transition are already affordable and ready to scale. However, the further 
improvement of these technologies, and the development of new ones, can play an essential role 
in supporting a rapid, equitable, and complete decarbonization transition.3 
 
Technological innovation can support society’s adoption of climate solutions while 
simultaneously enhancing human wellbeing.1,3 This innovation includes the large-scale 
deployment and continuous improvement of mature technologies like wind turbines, solar 
panels, and batteries.3,4 This innovation also entails the research, development, and 
commercialization of technologies not yet widely established in the marketplace, such as those 
that can provide carbon-neutral fuels or capture and store carbon dioxide from the air.3,5  
 
“Technology” as used in the context of this report encompasses individual devices and larger 
infrastructures and spans both hardware and non-hardware forms of codified knowledge. 
Innovation is important across this spectrum of technologies.  
 
Accelerating Innovation: Role of Research  
Scientific and engineering research plays a central and well-recognized role in developing new 
technology.6,7 However, research into understanding processes of technological innovation can 
also inform the direction and pace of society’s transition to sustainable technologies. Such 
research can generate important insight to help decision-makers make good use of finite 
resources and limited time to address climate change. This research can help answer key 
questions, such as: What technological functionality can help society reach its climate goals? How 
can public policies, as well as business and engineering decisions, effectively leverage resources 
to support the improvement and deployment of critical technologies? The first question has been 
the focus of much research, which has advanced knowledge on the roles that different 
technologies can potentially play in supporting a decarbonized and integrated energy system.1,8–
13 This report focuses primarily on addressing the second question, and complements previous 
research,14–31 by outlining a modeling approach to data-informed, quantitative study.  
 
In this report, we describe an approach to identifying the drivers of technological change and 
informing efforts to further technological innovation. In this approach, we focus on 
understanding the factors that influence the rate of technological progress for a range of 
technologies. We study technologies that have improved rapidly and substantially, such as solar 
panels and lithium-ion batteries, as well as those whose improvement and adoption has been 
hampered along one or more dimensions, as is the case for nuclear fission power plant 
construction costs and adoption rates.  We elucidate the drivers, or “mechanisms”, of 
technological change. These mechanisms include specific, measurable changes in a technology, 
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such as increased efficiency or lower input prices. These mechanisms also entail broader efforts, 
including research and development and learning-by-doing, and emergent phenomena such as 
economies of scale. By studying the mechanisms that drove past technology improvements, we 
provide insights into how policymakers, researchers, and the private sector can better target 
these mechanisms to help drive technological progress going forward.  

The method outlined could be used to inform forecasts contingent on different policy or other 
investment decisions as well as engineering design strategies. Primarily, this research aims to 
inform policy and business decisions so that they can be more successful than if decision-makers 
rely solely on intuition to direct the investment of time and monetary resources. The future is 
always uncertain, and the objective of the research outlined here is to inform decisions despite 
that uncertainty, by making use of information available in data and engineering knowledge on 
the processes and constraints influencing technology improvement.  
 
The Role of Government and Public Policy 
Public policies can significantly influence the process of technological innovation.24,25,32 Many 
stakeholders contribute to technological innovation—the invention, development, and 
deployment of new technologies. These stakeholders include academic institutions, start-up 
companies, established corporations, investors, nonprofit organizations, and governments 
themselves. Public policies can affect the myriad decisions, big and small, that these stakeholders 
make about technologies, from which research directions to pursue to which technologies or 
resulting services to purchase. Some policies can influence decisions by providing support for 
certain options, for example by providing subsidies for technologies that meet environmental 
targets, or disincentivizing other options, for example via limiting greenhouse gas emissions. 
Policies that incentivize or disincentivize market growth for different technologies can have a 
large impact on private sector investments into innovation in those technologies. Policies can 
also fund efforts to research and develop new technologies. In addition, policies can reduce 
uncertainty surrounding decisions, for example by providing clear regulations and setting 
expectations.  

Through its capacity to impact a wide range of decisions, effective government policy can be a 
critical lever for accelerating technological innovation and a transition to sustainable 
technologies. Accordingly, in this report we highlight insights arising from our research that are 
particularly relevant to the design of public policies.  

The research we describe can help inform policymaking, and specifically how governments use 
limited public funds and limited time to help society accelerate the transition to sustainable 
technologies and meet its climate targets.33 In particular, our research helps elucidate the 
relationships between the different tools available to policymakers and the various mechanisms 
underlying technological change, and thus provides insights into the conditions under which 
these different policy tools can most impactfully be applied to support innovation.  

While in this report we focus on the role of government policy, the approaches and insights 
described can also inform the decisions made by other stakeholders about how to allocate 
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financial resources and time, ranging from scientists and engineers to businesses and a range of 
private investors.  
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A Mechanism-Focused Approach to Studying Innovation: Concepts and 
Methods 
When designing policies to promote technological innovation, it is useful to consider the various 
mechanisms that contribute to the change in the cost and performance of technologies, in order 
to identify those that might have the greatest impact on technological improvement. These 
mechanisms can be thought of as the drivers of technological change. Once identified, these 
mechanisms can then be targeted by public policies, increasing the likelihood that policymakers 
will achieve greater technological improvement given their investment of financial resources.  
 
In the Trancik Lab, we have developed an approach to identifying mechanisms of technological 
change that can serve as leverage points for innovation. This approach comprises both a general 
conceptual framework and more detailed technical methodology for investigating the 
mechanisms that drove past technology change and for exploring how researchers, policymakers, 
and businesses can target these mechanisms to better direct or accelerate future technological 
progress.  
 
Our approach fills an important gap in research on technological innovation. Many efforts to 
understand technological change use trends from historical data28,29,34–36 or data from expert 
surveys.30,37–39 Using these results, some studies then forecast different performance levels and 
rates of change for a given set of technologies, where the forecasts are based on time or an 
aggregate measure of effort such as the cumulative production volume of the technology. 
Missing from these studies is a method of elucidating how changes to features of the technology, 
such as changes to prices of its raw materials or manufacturing process, contribute to cost 
reductions, and how these relate to human efforts and policies.  
 
The approach we present here focuses in on how specific investments, engineering designs, or 
manufacturing approaches can advance technology. By arriving at explanatory results about 
these mechanisms of technological change, these insights can inform a wide set of interventions 
to advance a technology, beyond the time-based and production-based forecasts that can be 
derived from trends in data. Our approach differs from many previous efforts in that it builds a 
model that connects changes to the physical functioning of the technology to changes in an 
aspect, or aspects, of its performance, such as its cost. Physical characteristics of the technology 
and its production are represented as variables. Each variable included in the model connects to 
an outcome in technology performance, and changes in these variables relate to changes in 
technology performance. In this way, the model allows us to investigate the underlying 
mechanisms of technological change. Through a focus on mechanisms, rather than correlations, 
we can explain why technologies changed; and we can estimate quantitatively the degree to 
which various underlying drivers led to an observed change in a technology. The explanation of 
technological change provided by this approach is of the underlying mechanisms that lead to the 
observed outcome.  
 
When decision-makers understand how different mechanisms influence technological change, 
they can direct public policies, business decisions, and research efforts toward the mechanisms 
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more likely to lead to success, in terms of the accelerated improvement and deployment of 
sustainable technologies. For instance, it is known that the soft costs of installation (e.g., labor 
costs, permitting, project management, design, etc.) constitute a major contributor to the costs 
of nuclear fission reactors. Direct investments that target those mechanisms that affect soft costs 
(e.g., investing in efforts to adopt design processes that are made to be flexible in response to 
construction site characteristics) might have an outsized impact on driving down the costs for 
that technology.  
 
The methodology and case studies described below provide a roadmap for identifying and 
understanding key mechanisms of technological change. The application of this approach can be 
done more or less quantitatively depending on the context and the level of insight required. For 
instance, a technical expert overseeing research and development (R&D) funding awards at the 
Department of Energy  may be interested in conducting a detailed quantitative study of the low-
level mechanisms that contribute to the cost and performance of an emerging technology, such 
as hydrogen fuel cells or direct air capture plants. Such a study could help them better direct 
funding towards those mechanisms that present the most impactful leverage points for these 
technologies. However, this level of detail may be unnecessary for a Congressional policymaker 
who seeks to understand how to sequence the implementation of broader technology-push and 
market-expansion policies for a portfolio of technologies. In this case, a higher-level application 
of the conceptual framework may be sufficient.  
 
While detailed studies of technologies may be overly time-consuming in some policy contexts, 
there are helpful and revealing lessons that can be derived from this way of thinking about how 
a technology’s costs (or other aspects of performance) change over time, even without a detailed 
study. We therefore outline those generalizable lessons throughout this discussion, alongside the 
more detailed description of the approach. These lessons form the basis of a conceptual model 
that we can use to understand processes of technological change. Even if one does not have the 
resources to conduct a detailed study, we expect that thinking through or using only a few of the 
steps outlined below can help inform decision-making and improve policymaking. 
 
Here we introduce and then apply the mechanism-focused approach to studying technology 
innovation. We highlight how this approach helps us understand technological change and 
provides insights that can inform decisions moving forward, with a focus on insights for 
government policymakers. We outline the approach and specifically demonstrate its application 
through case studies focused on three energy technologies: solar photovoltaic modules, lithium-
ion batteries, and nuclear fission power plants. 
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Concepts: What Are Mechanisms of Technology Change? 
Mechanisms of technology change can be understood as the drivers of changes in a technology, 
e.g., the causes of reductions in cost or improvements in performance of a technology. In our 
work, we differentiate between two types of mechanisms: low-level and high-level mechanisms 
of technological change. Public policies and business decisions can influence high-level 
mechanisms of technological change, which in turn influence low-level mechanisms. Figure 1, 
below, illustrates the relationships between the different mechanisms and public policies for the 
example of solar panels, specifically silicon photovoltaic (PV) modules.  
 

 
Figure 1. Identification of how public policies influence high-level mechanisms and how high-level mechanisms influence low-level 
mechanisms for solar (i.e., silicon PV) modules. The ‘Other’ policies category includes policies that aim to impact an industry 
unrelated to the technology being studied. For example, subsidies for manufacturers of computer chips could lead to spillovers 
that reduce the price of silicon used in the production of solar panels.  

Low-Level Mechanisms 
Low-level mechanisms are measurable, often tangible, changes in the characteristics of a 
technology or its manufacturing process that influence overall technology performance or cost. 
Examples of low-level mechanisms include prices of input materials, physical or chemical 
properties of components, manufacturing rates, and labor costs. These variables are often the 
focus of science and engineering efforts to improve technologies. For instance, if replacing an 
expensive input material with a less expensive version led to a reduction in the overall cost of a 
technology, we would consider the change in the price paid for the input material to be a low-
level mechanism of cost change.  
 
Low-level mechanisms reflect the specific characteristics of the technology being studied. The 
low-level mechanisms of cost reduction of solar PV modules differ from the low-level 
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mechanisms of cost reduction of lithium-ion batteries. This difference results from the two 
technologies using different materials with different characteristics and being produced in 
different manufacturing processes. (Limited overlaps can occur, for example when technologies 
both incorporate the same materials, components, or processes.) 
 
High-Level Mechanisms 
High-level mechanisms refer to broader processes that lead to changes in the low-level 
mechanisms, and are themselves often the targets of public policies and business decisions. 
Examples of high-level mechanisms include research and development, learning-by-doing, and 
economies of scale.  While other high-level mechanisms do sometimes play a role, as can be seen 
in the case study on nuclear fission power plants, these three mechanisms broadly apply across 
diverse technologies. These three mechanisms can impact a broad variety of low-level 
mechanisms, and have been discussed widely in studies of technological innovation. These 
mechanisms also reflect distinct processes that can be impacted by a range of decisions, including 
government funding for basic science and engineering research, investments made by private 
companies, policies that favor deployment of technologies that meet certain targets, and 
increases in the purchase of certain goods or services. 
 

• Research and development includes changes that require experimental settings, from 
laboratory research through pilot-scale production, including work in both the public and 
private sectors. 

• Learning-by-doing, as defined here, involves changes informed by routine manufacturing 
activity at commercial scale, e.g., incremental process refinements. This definition is 
informed by the traditional use of the term and the economics literature. 

• Economies of scale encompasses changes resulting from increasing scales of 
manufacturing plant production and production capacity, including price reductions from 
volume purchases. 

 
Not all people who research or influence technological change define these mechanisms 
similarly. When studying technological change, it is important to provide clear definitions of these 
mechanisms so that the results can be interpreted and compared appropriately. Delineating 
specific definitions is important in applying the approach outlined here, so that different low-
level mechanisms can be related to different high-level mechanisms.   
  
Policies 
Just as high-level mechanisms drive changes in low-level mechanisms, high-level mechanisms 
are, in turn, influenced by public policies, business strategies, and financial investments. In this 
report we focus primarily on the role of public policies.   
 
Government policymakers have a collection of tools that can influence these many decisions and 
support technology innovation. Broadly, these tools can be divided into two categories: 
“technology-push” and “market-expansion” policies. 
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• Technology-push policies include research and development (R&D) funding, 
demonstration project funding, and other policies which help to stimulate the invention 
and development of new technologies by focusing on the conditions required to increase 
the supply of new technologies. R&D funding and demonstration projects have long been 
considered essential tools for policymakers to incentivize technological innovation.6,40 
 

• Market-expansion policies include policies that stimulate demand and create markets for 
certain technologies. (An alternative label for this category of policies is “demand-pull”.) 
This category includes a wide range of policies, including market-based instruments (e.g., 
taxes or caps on emissions), regulations (e.g., performance standards), subsidies (e.g., tax 
credits or rebates on low-emitting technologies) and procurement policies (e.g., 
government purchases of renewable energy or electric vehicles). While market-expansion 
policies have often not traditionally been considered a part of the toolkit for innovation 
policy, our research shows why they play an essential role in accelerating innovation. 
Relatedly, our research also provides strong evidence for considering both the 
transformation of markets (i.e., the diffusion of technology) and the improvement in 
technologies as interconnected parts of the innovation process. 
 

Both types of policies can drive changes in high-level mechanisms and their underlying low-level 
mechanisms. Often, technology-push policies support public research and development (R&D), 
and sometimes fund demonstration projects leading to a greater emphasis on ‘development’ in 
the broader category of R&D. Meanwhile, market-expansion policies can drive private research 
and development, learning-by-doing, and economies of scale. Moreover, the influence of public 
policies is not limited to the high-level mechanisms described here. For example, some public 
policies can also reduce uncertainty, aiding public and private sector decision-making.  
 
As Figure 1 illustrates, low-level mechanisms, high-level mechanisms, and policies can all 
simultaneously change a technology’s cost or performance. For example, suppose a worker who 
cuts materials on the factory floor identifies a way to minimize material loss during this cutting. 
This innovation could result in an increased “yield” of the material and lower the overall cost of 
the final technology. The resulting cost reduction can be explained in multiple ways. One way is 
to say that yield of the material increased (a low-level mechanism). Another way is to say that 
learning-by-doing (a high-level mechanism) drove down costs because the worker “learned” how 
to minimize material loss in the process of making the technology, i.e., doing. Both explanations 
are correct and emphasize different parts of the process of technological improvement. 
Furthermore, the opportunity the worker had to develop an improved cutting approach might 
itself have been influenced by a public policy that spurred demand for the technology, like a 
subsidy that lowered its cost. The increased demand could have led to increased production, 
during which the worker learned how to increase yield.  The approach we describe below allows 
us to better understand the connections between policies, high-level mechanisms, and low-level 
mechanisms, and quantify their contributions to technological change.  
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Methods: A Five-Step Approach to Identifying Key Levers of Technology Change 
The approach we use to identify key drivers of innovation can be summarized in five steps:  

1) Define performance metrics of interest, and estimate performance targets. 
2) Develop a performance or cost equation. 
3) Examine low-level mechanisms of technological change. 
4) Examine high-level mechanisms of technological change. 
5) Identify and evaluate policy drivers of technological change.   

 
Each of these five steps is described in greater detail below. We have published detailed technical 
papers on this approach elsewhere41–44 and focus here on describing the approach and 
highlighting the relevant policy insights we can arrive at through this approach.  
 
The approach described below can be applied both retrospectively and prospectively, and both 
types of studies can inform the development of public policies, business strategies, and research 
directions. Retrospective studies help us understand what contributed to technological change 
in the past. For example, were research and development efforts the primary cause of the cost 
decline observed for silicon photovoltaic modules? Or did most of the cost decline come from 
the building of larger factories that allowed manufacturers to benefit from economies of scale? 
(The answer is discussed in one of the case studies detailed below.) We can also compare the 
mechanisms identified for technologies that improved rapidly to mechanisms identified for 
technologies that have improved slowly, or not at all. These results can provide policymakers 
evidence as to which strategies have successfully enabled significant technological change and 
why, and which aspects of these strategies might be successful going forward. Prospective 
studies, on the other hand, focus on revealing technology features and mechanisms that hold 
significant potential for improving overall performance moving forward. In this case, variables in 
the cost or performance equation are changed based on hypothetical future scenarios and the 
scenario outcomes are compared. For instance, prospective analyses can help identify the low-
level mechanisms that might most substantially influence overall cost and would thus benefit 
from focused R&D. Prospective analyses can also help estimate the limits that both low-level and 
high-level mechanisms, and the policies that drive them, might encounter when trying to 
accelerate or redirect technological change. 
 
1) Define performance metrics of interest, and estimate performance targets  
Questions to ask: What are you looking for in a technology? In what ways do you want that 
technology to improve? 
 
The first step is to identify what performance is valued in the technology, now and in the future, 
and how that performance can be quantified. When technologies compete in a market, cost is 
often a primary consideration; and the cost of a technology is typically scaled by the service it 
provides to allow for fair comparisons between options. Common energy metrics for electricity 
generating technologies, such as solar panels, wind turbines, and conventional fossil fuel 
combustion power plants, in which cost is scaled by service include cost per power (i.e., USD/kW) 
or cost per energy generated in a given time period (i.e., USD/kWh). These metrics are especially 
useful as they combine estimates of cost with those of service. For example, a given power 
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generating technology might be improved by reducing its cost for a given power capacity or 
increasing its power capacity for the same cost; both changes are reflected in a cost per power 
output metric. 
 
Other metrics can represent environmental impacts. A common impact metric is greenhouse gas 
emissions, sometimes summarized as CO2-equivalent emissions, from a given service provided, 
such as electric energy (measured in kWh); the final metric would be CO2-equiv/kWh. These 
performance metrics are also often used to inform decisions made when choosing between 
technologies.  
 
It is important to clarify additional assumptions and conditions that are implied, but not always 
explicitly included, in certain performance metrics. For example, levelized cost of electricity 
(LCOE), which represents the cost of producing electricity with a given technology scaled by the 
amount of electricity generated, has units of USD/kWh. Meanwhile, energy storage systems are 
often characterized by their capital costs scaled by the amount of energy they can store at once, 
which also has units of USD/kWh. When choosing performance metrics, the characteristics 
represented, and the methods used to calculate the metrics, should be clearly described to avoid 
potential confusion.  
 
In the examples discussed in the case studies below, cost per unit service is the performance 
metric of interest because of its central role in determining the competitiveness and adoption of 
a climate-mitigating technology. However, these methods can also be used to investigate past 
and potential future mechanisms that influence improvement in other measures of technology 
performance. 
 
Related research seeks to estimate performance targets for these metrics of interest. This 
research contributes to addressing the first question highlighted in the Introduction section 
above: What technological functionality can help society reach its climate goals? The Trancik Lab 
has studied how to prioritize performance metrics and estimate performance targets based on 
how the technology will need to perform in context of a sustainable energy system.45–49 In the 
case of some technologies, several different performance metrics are important to consider 
simultaneously. For example, in the case of energy storage, depending on the intended use of a 
storage system (e.g., for price arbitrage or to reliably meet energy demand with variable 
renewable energy) the desired balance of power capacity costs (e.g., in units of $/kW) and energy 
capacity costs (e.g., in units of $/kWh) will shift. The different prioritization of these performance 
metrics can then influence which types of storage technologies should be the focus of research 
and development for various applications.  
 
2) Develop a performance or cost equation 
Questions to ask: What components or processes significantly contribute to the technology’s 
performance or cost? How do these components and processes relate? What data are available? 
How uncertain are these data?  
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Once a performance metric is chosen, then a “performance equation” or “performance model” 
can be developed. When the performance metric summarizes a technology’s cost, as is often the 
case, this equation can be referred to as a “cost equation” or “cost model”. This equation relates 
the performance of the technology, as summarized in the selected metric, to components of the 
technology and a set of variables describing the characteristics of these components. These 
components include hardware components and soft components. Hardware components, 
sometimes referred to as tangible components, include the raw materials used to make the 
technology (e.g., minerals, metals, plastics) as well as purchased, manufactured components 
(e.g., wires, solvents, computer chips). “Soft” components, as in “software”, are varied and are 
sometimes referred to as intangible components. “Soft” components can include the algorithms 
that control a technology’s operation. “Soft” cost components can also include the labor of the 
workers who construct the technology, the financing of capital to build a manufacturing plant, 
and the administration required to oversee manufacturing processes.  
 
In the performance or cost equations, components are represented by combinations of variables. 
For example, in a cost equation, components are often separated into the quantity of a material 
required (i.e., a quantity variable) and the price of the material (i.e., a price variable), with the 
product of the two (quantity times price) giving the cost component. Improvements to the 
technology (e.g., a cost-reducing innovation) can come from using less of the material while 
achieving the same level of service, or replacing the material with a new option that has a lower 
price.   
 
The performance equation is a representation of the technology that connects the physical, 
chemical, and other characteristics of its components to the technology’s overall performance. 
We determine which components and variables to include in the equation by studying a 
technology’s design, construction or manufacturing process, and operation. We investigate 
which materials are purchased by a manufacturer or installer, which components are produced 
and constructed and how, and what other factors might influence the performance metric we 
have focused on. We seek to include all significant contributors to the performance metric being 
examined, and to validate our model, can compare the results of our analysis to independent 
measures of how the performance metric changed over time. For example, to develop a cost 
equation, we can determine how variables in the equation contribute to the costs of every 
physical component found in a technology (e.g., the materials); the costs of the equipment, 
electricity, and other resources required to make the technology; and the soft costs of 
manufacturing the technology (e.g., labor, oversight, permitting, etc.). We can also account for 
the amount of material that is lost during manufacturing. If the sum of all cost components equals 
the overall cost, or in some cases price, of the technology as reported by other sources, we can 
have confidence that the cost equation accounts for the major cost components.  
 
Performance equations can also be rewritten in terms of variables that highlight technology 
features or component characteristics that are considered important, because a decision-maker 
has agency over them (i.e., a decision-maker can alter them through research-driven or 
manufacturing-driven improvements or redesign). For climate-relevant technologies, a variety of 
potentially important features and characteristics can be investigated using a performance 
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equation, including energy efficiency, charge stored in a given mass of material, the ratio of 
materials that participate directly in electricity conversion (i.e., active materials) to those 
materials that do not participate directly (i.e., non-active materials), and the proportion of cost 
that results from labor. These features are often influenced by the underlying physics and 
chemistry of the technologies but can be altered within physical limits. 
 
An example of a cost equation developed for photovoltaic modules is: 
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Here, the cost of the module (in $) is scaled by the power the module provides when exposed to 
sunlight (W). This scaled cost (in $/W) is given as the sum of cost components that include the 
silicon-related costs, non-silicon related costs, and costs that depend on plant size. These 
components are defined as functions of a variety of variables relevant to the physics, design, and 
manufacturing of solar modules, including the energy efficiency of the module (𝜂), price of silicon 
(𝑝!), the area of the wafers (𝐴), the size of the manufacturing plant (𝐾). (More details on the 
development of this cost equation, and the variables contained within it, can be found in the 
journal article describing the analysis.41) 
 
Developing a performance equation requires balancing the need to reflect important technology 
features and component characteristics in the equation with the ability to obtain high-quality 
data that describe these features and components. For example, the cost equation for PV 
modules, shown above, could be expanded to include many more details describing how the 
panels were manufactured, including the rate of manufacturing, the number of workers per shift, 
the wages paid to the workers, the electricity used by the factory, etc. A lack of reliable historical 
data precluded incorporating this level of detail. Regardless, even without this detail, the 
contributions of many important low-level mechanisms of cost change, and the three major high-
level mechanisms highlighted above, could still be elucidated and quantified.  
 
Constructing a performance equation can highlight important relationships between different 
technology characteristics and the overall performance metric. For example, if a given variable 
appears in multiple cost components, changes to that one variable might significantly impact 
overall performance. Delineating a performance equation also limits the chance of double-
counting the effects of technology characteristics when examining how modifying these 
characteristics affects performance change (i.e., when studying low-level and high-level 
mechanisms as discussed below). 
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3) Examine low-level mechanisms of technological change 
Questions to ask: How have individual technology features changed? How have these changes 
impacted overall technology performance? How might changes in technology features influence 
future performance? 
 
Once a performance (or cost) equation is developed, the impact of changes to the technology 
can be examined quantitatively. Changes in the variables that compose the performance 
equation are designated as “low-level mechanisms” of technological change. These low-level 
mechanisms are measurable changes in characteristics of a technology or its manufacturing that 
can influence overall technology performance or cost. Examples include an increase in energy 
efficiency, a decrease in input material prices, or an increase in labor costs.  They can be thought 
of as the causes of technological change that reflect changes to variables in the performance (or 
cost) equation.  
 
Using the methodology detailed in our recent papers,41–43 the impact that changes in individual 
variables have on overall performance or cost can be estimated, even when multiple variables 
change simultaneously and have non-additive impacts on performance or costs. From the 
performance equation, performance change equations can be developed. These equations relate 
changes in the variables to changes in the overall performance metric. The performance change 
equations in this step are a key methodological advancement beyond previous work, which 
would define a performance equation but only examine the additive contributions of changes in 
cost components (for which a performance change equation is not required), rather than 
examine the impacts on performance of changing variables within those cost components. 
 
Performance change equations allow us to disentangle the impacts of multiple low-level 
mechanisms (changes to variables), which is useful because it is often the case that changes in 
many technology features contribute simultaneously to technological change and important 
features can influence multiple cost components. Characterizing the impacts of these 
simultaneous changes is key to understanding past technology evolution and prioritizing 
investments going forward, including investments in stimulating different high-level mechanisms 
as discussed further below.  
 
4) Examine high-level mechanisms of technological change 
Questions to ask: What broader efforts or phenomena led to the low-level mechanisms of 
technological change? Can these broader efforts be distinguished? 
 
Low-level mechanisms of technological change are themselves often the result of broader efforts 
and emergent phenomena that are influenced by public policies and business strategies. In our 
research, these are termed “high-level mechanisms” of technological change. In the context of 
energy-relevant and many other technologies, important high-level mechanisms include: 
research and development, learning-by-doing, and economies of scale. Other high-level 
mechanisms can also be identified and studied, but these three high-level mechanisms are 
commonly investigated in research on technological change and can influence a wide variety of 
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low-level mechanisms. The analytical approach detailed here allows us to estimate the influence 
of these high-level mechanisms of technological change. 
 
To estimate the contributions of high-level mechanisms, low-level mechanisms of technological 
change are assigned to the high-level mechanisms. In retrospective studies, assignments require 
knowledge of what drove the low-level mechanisms. For example, were decreases in the price of 
a raw material the result of bulk purchasing? If so, then the cost change contribution from the 
reduction in price could be assigned to economies of scale. Or was the decrease in the price due 
to the introduction of a new material that is less expensive that the material it replaced? In that 
case, the change in price could be assigned to research and development. Sometimes, changes 
in individual variables result from multiple high-level mechanisms, and the methodology allows 
for this by assigning portions of the change in variables to different high-level mechanisms.  
 
After the mechanism assignment is complete, the contributions of the individual high-level 
mechanisms to technological change are estimated by summing the contributions of the low-
level mechanisms assigned to each high-level mechanism. The results are estimates of the 
percentage of technological change that result from each high-level mechanism. Of course, there 
is some uncertainty in this assignment and estimation process. Often, we include an ‘other’ 
category for low-level mechanisms that do not have a clear assignment. Sensitivity analyses can 
also be employed to estimate the uncertainty in the contributions of the high-level mechanisms. 
For example, assigning the entirety of a low-level mechanism to one or another high-level 
mechanism can provide upper and lower bounds on the uncertainty that results from the 
assignment. 
 
5) Identify and evaluate policy drivers of technological change 
Questions to ask: What policies drive high-level mechanisms? How have these policies 
performed in the past? How can future policies be improved? 
 
Public policies can directly and indirectly influence high-level mechanisms of technological 
change. A common direct policy approach is to promote public research and development. For 
example, allocating funding for research via the National Science Foundation or Department of 
Energy’s Office of Science can encourage public research and development in universities and 
national laboratories. Similarly, funding demonstration projects can promote research and 
development as well as learning-by-doing. Other policies work indirectly. For example, 
subsidizing the purchase of a technology is considered a “market-expansion” policy. By 
encouraging companies to produce and improve a technology, market-expansion policies can 
support increased private research and development, learning-by-doing, and economies of scale. 
Take, for example, subsidies for battery electric vehicles. These subsidies drive consumer 
demand, which in turn encourages private companies to produce more vehicles. As production 
increases, the companies can learn in the process (learning-by-doing) and benefit from 
economies of scale. These companies can also invest in their own, often private, research and 
development to improve their vehicles. These effects can also pass through to the suppliers of 
electric vehicle manufacturers, such as those producing lithium-ion battery cells, and drive high-
level mechanisms that help improve their component technologies. 
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Policymakers can improve their design of policies to encourage technological change using 
estimates of how high-level mechanisms contribute to technological change. Retrospective 
studies can provide evidence of what policies have worked and show whether the high-level 
mechanisms that drive a particular technology’s change have shifted over time. For example, a 
common theory suggests that research and development become less important as a technology 
advances and economies of scale become more important, which would suggest that 
policymakers should adjust their funding priorities based on technological maturity.16 Studies of 
technologies that have advanced rapidly can provide support for, or against, such theories and 
help policymakers decide how to balance their funding options. Using this evidence, 
policymakers can focus efforts on those mechanisms most likely to accelerate technological 
change. Prospective studies can help policymakers evaluate whether their proposals will have 
their desired impacts. For example, if a proposed technology remains costly but a cost change 
analysis suggests that it will benefit little from additional public research and development, 
policymakers could instead focus their efforts on developing market-expansion policies that 
promote economies of scale and learning-by-doing. Similarly, prospective studies that examine 
limits to technological change could improve projections of the pace of adoption of climate-
friendly technologies.  
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Case Studies: Lessons from Three Technology Examples 
In the case studies described below, we present the findings of analyses the Trancik Lab 
conducted to investigate the mechanisms that drove changes in the costs of three technologies 
that could help mitigate climate change: solar photovoltaic (PV) modules, lithium-ion batteries, 
and nuclear fission power plants. Two of these technologies—solar modules and lithium-ion 
batteries—are quintessential examples of rapidly improving clean energy technologies (see 
Figure 2). In contrast, in our third example, nuclear fission power plants in the U.S. have 
experienced construction cost increases over time.  
 

 
Figure 2. Costs (orange) and prices (purple) of solar modules, lithium-ion battery cells, and nuclear fission power plants from 1965 
through 2020. Representative cost or price series are plotted as bolded, dashed lines. Additional detail on the data plotted is 
available in work published previously.41,42,50 
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Case Study #1: Solar Photovoltaic Modules 
Why study solar photovoltaics? The substantial and rapid declines in the costs of solar 
photovoltaic (PV) modules over the past 40 years are considered a paragon of rapid technological 
change for energy technologies. By studying the drivers of their cost decline, we can identify 
factors that might be able to enable further improvements in solar PV technology, and arrive at 
insights that may help stimulate similar success with new and emerging technologies.41  
 
How we applied the approach: We applied the mechanism-focused approach retrospectively, 
following the steps outlined above, to examine what led to the reduction in the cost of PV 
modules.41 First, we defined our performance metric of interest: the cost of manufacturing 
modules scaled by the power they produce when exposed to sunlight, i.e., cost per power output, 
given in units of USD/Watt (Step 1). We developed a cost equation whose variables reflect 
important characteristics of solar modules and their manufacturing, including their energy 
efficiency, the price of silicon, silicon usage, wafer size, non-silicon material costs, manufacturing 
plant size, and manufacturing yield (Step 2). We collected data to populate this cost equation at 
different points in time, and quantified how changes in these technology features, i.e., the low-
level mechanisms, contributed to the cost reduction of PV modules between 1980 and 2001, 
between 2001 and 2012, and overall, between 1980 and 2012 (Step 3). The results are shown in 
Figure 3. 
 

 
Figure 3. Contributions of the low-level mechanisms to the cost decline of PV modules, in the period 1980–2001 (left), 2001–2012 
(middle), and 1980–2012 (right). 

Contributions from low-level mechanisms: Our results show that between 1980 and 2001, most 
of the cost reduction came from improvements in module efficiency, followed closely by 
decreases in non-silicon material costs. Later, between 2001 and 2012, plant size was the major 
contributor to cost reduction. 
 
Next, we assigned these low-level mechanisms of cost change to high-level mechanisms (Step 4). 
Some assignments were straightforward. For example, efficiency, silicon usage, and wafer size 
were attributed to a combination of public and private research and development, while plant 
size was assigned to economies of scale and manufacturing yield was assigned to learning-by-
doing. Other assignments, such as the price of silicon, were less clear-cut. The drivers of silicon 
prices changed over time. During the first period (1980–2001), silicon for modules often came 
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from the semiconductor industry, and thus the price of silicon was assigned to the ‘other’ 
category. During the second period (2001–2012), PV industry demand for silicon surpassed that 
of the semiconductor industry and polysilicon producers scaled to meet this demand, so the price 
of silicon was assigned to economies of scale. Still other low-level mechanisms, like non-silicon 
materials costs, were split between high-level mechanisms within the same period because they 
were likely influenced by both R&D and economies of scale. The resulting estimates of the 
contributions of the high-level mechanisms are presented in Figure 4. 
 

 
Figure 4. Contributions of the high-level mechanisms to the cost decline of PV modules, in the period 1980–2001 (left), 2001–2012 
(middle), and 1980–2012 (right). 

Contributions from high-level mechanisms: We found that early in the adoption of terrestrial 
solar panels, between 1980 and 2001, R&D was the dominant contributor to cost reductions. This 
R&D is a combination of both public and private efforts. As time went on, the role of R&D 
lessened, and economies of scale grew in importance. In the second time period, between 2001 
and 2012, R&D and economies of scale were nearly equal contributors to cost reduction. When 
looking across the full time period studied, from 1980 through 2012, R&D still provided the bulk 
of the cost reductions. Economies of scale had a smaller, but still significant impact. Meanwhile, 
learning-by-doing was a relatively minor contributor.  
 
Contributions from policies: We then sought to identify those policies that drove the high-level 
mechanisms and disentangle how much of the cost change could be attributed to efforts to 
support public research and development versus efforts to stimulate the market for PV modules, 
which drove economies of scale and investments in private R&D (Step 5). Our results show that 
market-expansion, or market-stimulating, policies contributed to about 55% of cost reductions 
between 1980 and 2001, and their contribution grew to approximately 75% between 2001 and 
2012. Across the full period, market-stimulating policies contributed nearly 60% of all observed 
cost reductions, suggesting that market-stimulating policies were very important in driving the 
cost reduction of silicon PV modules. 
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Figure 5. Contributions of the combination of market-stimulating policies (orange and purple bars) to the cost decline of PV 
modules, in the period 1980–2001 (left), 2001–2012 (middle), and 1980–2012 (right). 

This step required that we differentiate the contributions of public and private R&D, for which 
we relied on estimates of roughly equal public R&D and private R&D expenditures. Based on 
these expenditures, we estimated that public and private R&D were similarly effective in driving 
the low-level mechanisms that acted to reduce costs. As a result, the contributions of public and 
private R&D were split evenly, and the results are presented in Figure 5.  
 
While this assumption contributes to uncertainty in the estimates of the contribution of market-
stimulating policies and public R&D funding, the overall conclusion that both policies contributed 
significantly to the overall observed cost decline is robust. It is clear from examining the low-level 
mechanisms of cost change that important changes occurred in both publicly funded labs and in 
companies.  
 
Moreover, these mechanisms worked in concert to support cost change and were driven by very 
different types of efforts in these two distinct settings, where efforts in each setting were likely 
necessary but not alone sufficient for driving the observed cost change. In other words, it is 
unlikely that the two types of policies could have been substituted for one another with the same 
success as that which was observed in the historical data. Beginning our analysis with the 
engineering and manufacturing features of the technology, i.e., building the cost equation, and 
developing a mechanistic model of performance change, i.e., elucidating the low- and high-level 
mechanisms, were essential for arriving at a strong conclusion about the importance of these 
two types of public policy.  
 
Examining strategies moving forward: In addition to the retrospective analysis, we also used the 
cost and cost change equations to outline an approach to conducting prospective analyses for 
informing strategies for future technological development. We sought to describe an approach 
for estimating how efforts to target certain mechanisms might influence cost reduction.  
 
These types of prospective analyses can allow us to estimate the impacts of potential low-level 
mechanisms going forward, and can help prioritize future policy design and investments to target 
specific high-level mechanisms. In this analysis, we retain the same cost and cost change 
equations and change the values of the variables in them. For example, for solar modules, we 
can examine the cost reduction obtained by increasing energy efficiency or reducing the price of 
silicon or doing both simultaneously. 
 
We assessed how influential each low-level mechanism is for reducing costs under our model, 
when they contribute individually. In the first analysis, presented in Figure 6, we investigated 

� �� �� �� �� ���

����±����

EOS LB
D

50% R&D
market-stimulating
policies

public R&D
and other

3HUFHQW�FRQWULEXWLRQ�IURP�PDUNHW�VWLPXODWLQJ�SROLFLHV

� �� �� �� �� ���

����±����

EOS LB
D 50%

R&D
market-stimulating
policies

public R&D
and other

� �� �� �� ��

2YHUDOO������±�����

EOS LB
D

50% R&D
market-stimulating
policies

public R&D
and other

���



   26 

what would happen if each technology feature, except for yield and plant size, were changed by 
25% in the cost reducing direction. The goal here was simply to better understand the influence 
of variables and not to model a likely future scenario. We examined these changes under two 
conditions: plant sizes increasing 3-fold (dark blue) and 10-fold (light blue). We find that increases 
in efficiency and plant size are the two largest possible drivers of cost reduction when these 
features are changed individually.  
 

 
Figure 6. Prospective reductions in the cost of PV modules for one-at-a-time changes to various factors that influence overall 
module cost. 

However, typically multiple mechanisms contribute to technological change over time. Thus, we 
also examined the contributions of the low-level mechanisms when all are changed 
simultaneously and grouped their contributions to estimate the prospective contribution of the 
three high-level mechanisms. We again examine the potential contributions when plant sizes 
increase either 3- or 10-fold. The results are presented in Figure 7. 
 

 
Figure 7. Prospective reductions in the cost of PV modules in a scenario in which cost equation variables are changed 
simultaneously by the amounts shown. 
 
In both scenarios, a combination of public and private R&D contributes the most to the 
prospective cost reduction, while economies of scale contribute less but still significantly. The 
results highlight those technology characteristics that might be good targets for additional 
research and development. In the case of PV modules, increases in efficiency, larger plant sizes, 
and decreases in non-Si material costs are consistently the three largest potential contributors 
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to further cost reduction. While results from prospective analyses must also be considered in 
conjunction with physical limits, they can help those who are directing both public and private 
research and development funding to identify potentially promising avenues for technological 
improvement.  
 
These results can also estimate the impacts of broader public policies, and in this case, suggest 
balancing increased production and larger plants with support for additional R&D. For example, 
we find that, if plant sizes increase 10-fold, economies of scale and learning-by-doing would 
together contribute only 40% of the potential cost decline observed. Additional R&D, both public 
and private, would lead to considerably more cost reduction. 
 
The hypothetical scenarios outlined here can be further developed into a set of more or less likely 
scenarios, and the modeled changes can be constrained based on physical limits. To implement 
such an approach, targeted expert elicitations can be informed by performance equations to 
solicit inputs on potential improvements to key variables. By focusing on a detailed set of 
variables as opposed to aggregate metrics such as device or project costs, which have often been 
the focus in the past, elicitations can be designed around specific knowledge sets. Experts can 
then be recruited who have direct insight into the technical feasibility of improving relevant 
design and manufacturing variables or the policy levers that could stimulate high-level 
mechanisms.   
 
Key insights for policymakers  
 

• R&D and market-expansion policies each played essential and non-substitutable roles 
in spurring innovation in solar PV. Public R&D funding is often considered an essential 
tool for policymakers to incentivize the improvement of technology while market-
expansion policies are not always considered a key lever for innovation policy. Our 
examination of solar PV modules demonstrated that both public R&D funding and 
market-expansion policies contributed significantly to the observed cost declines, and 
that the mechanisms they targeted differed considerably. Support for R&D led to cost 
reduction through design improvements that affected conversion efficiency and the 
materials required per cell, among other low-level mechanisms. Meanwhile, market-
expansion policies were essential for stimulating privately funded, applied R&D, as well 
as the growth in the sizes of manufacturing plants and bulk purchasing that reduced costs 
via economies of scale.  

 
• Government support was an important driver of cost decline. Some of the initial 

research and development, including invention and early improvement of solar 
photovoltaic technology, relied on government funding, including substantial R&D 
support from the U.S. Government. This government funding was crucial as some of the 
early materials science and physics research leading to these improvements would have 
been considered too risky to pursue for a private company. Similarly, government passage 
of market-expansion policies, for example in Germany and Japan, was instrumental in 
incentivizing the growth of solar companies in the private sector, and in turn both the 
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private R&D and economies of scale that lead to substantial cost reductions. Prior to these 
cost reductions, the cost of electricity provided by solar modules was higher than that of 
many other competitor technologies. Now solar PV modules are among the least 
expensive options for generating electricity. 
 

• Many other technologies are also likely to need both R&D funding and market-
expansion policies. Policymakers involved in setting climate, energy, and industrial 
policies and those designing R&D budgets should coordinate to ensure that the potential 
benefits of both types of policies are captured, based on an assessment of innovation 
mechanisms. Any technology that is manufactured and has the potential for substantial 
improvements will likely benefit from both types of policies working in concert to 
accelerate innovation. In addition, the balance of support for these different policy 
approaches might also need to be adjusted at different stages in the lifecycle of a 
technology, and based on the features of the technology. Mechanistic modeling can help 
policymakers improve how these policies are balanced, and aid in the direction of efforts 
toward the most promising mechanisms for technological improvement. Examples of 
technologies that could benefit from this approach, in addition to those described in this 
report, include other types of batteries (e.g., stationary, fast-charging, those based on 
abundant materials), electrolyzers, wind turbine components, fuel cells, electric vehicles 
(e.g., battery electric and hydrogen fuel cell vehicles), and even infrastructures such as 
those for producing hydrogen and charging electric vehicles.  
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Case Study #2: Lithium-Ion Battery Technologies 
Why study lithium-ion batteries? We studied lithium-ion batteries to inform efforts to continue 
improving battery technologies, as well as to identify strategies that can effectively support rapid 
improvement for a wide range of technologies.43  
 
The prices of lithium-ion batteries have fallen rapidly and substantially since their commercial 
introduction in the early 1990s, at rates comparable to those observed for solar PV modules.50 
Originally used in portable electronics, lithium-ion batteries are now powering electric vehicles 
and e-bikes, and increasingly helping to support the electric grid. Energy storage technologies 
will need to continue to improve in cost and performance in the coming years to meet climate 
policy goals, and studying lithium-ion batteries can help provide insight into strategies to 
continue to reduce the costs of both lithium-ion and nascent battery technologies. Moreover, 
comparing the insights derived from this example with those from the solar PV example can help 
policymakers, engineers, and private investors start to identify trends that carry across multiple 
technologies.  
 
How we applied the approach: As with PV modules, we applied the mechanism-focused 
approach to elucidate the drivers of the observed cost decline in lithium-ion batteries.43 In this 
case, the performance metric we studied was the cost of battery cells scaled by their energy 
capacity (in units of USD/Wh). Substantial efforts have focused on reducing the energy capacity 
costs of batteries to bring down costs of electric vehicles as well as stationary storage systems, 
which can help integrate solar and wind energy resources into the electric power system.  
 
We developed a cost equation featuring a few dozen technology characteristics and examined 
how they changed between the late 1990s (1995–2000) and early 2010s (2010–2015). We 
aggregated the contributions of these changes to cost reduction to reveal the impacts of broader 
technology characteristics, such as cell charge density, voltage, cathode and anode materials 
prices, and costs that depend on plant size (i.e., plant size–dependent costs). The results are 
shown in Figure 8. 

 
Figure 8. Contributions of aggregated low-level mechanisms to the cost decline of 18650-sized lithium-ion battery cells between 
the late 1990s and early 2010s.  
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Contributions from low-level mechanisms: Our results indicate that between the late 1990s and 
the early 2010s, the increase in cell charge density was the largest contributor to cost decline, 
followed by decreases in cathode materials prices and non-material, plant size–dependent costs.  
 
We also examined the impacts of high-level mechanisms: public and private research and 
development, learning-by-doing, and economies of scale. We assigned the low-level mechanisms 
to these categories, or to an ‘other’ category, and summed the contributions to cost change 
within each. Assignments to research and development included changes that required 
experimental settings, from laboratories to pilot-scale production lines. For example, the 
increases in the specific capacities of the cathode and anode materials and changes in the 
dimensions of cell components are assigned to research and development. Leaning-by-doing, as 
defined here, is more limited, encompassing changes informed by routine production of lithium-
ion batteries at the commercial scale; and in this analysis, it comprised the changes in yields of 
materials and the final cells. Meanwhile, the increases in the sizes of manufacturing plants and 
decreases in prices of some input materials that were attributable to increased volumes of 
production, were assigned to economies of scale. The results are presented in Figure 9. 

 
Figure 9.  Contributions of high-level mechanisms to the cost decline of 18650-sized lithium-ion battery cells between the late 
1990s and early 2010s.  

 
Contributions from high-level mechanisms: We find that public and private research and 
development contributed just over half of the cost change observed between the late 1990s and 
early 2010s. Economies of scale remained significant, but contributed less, while learning-by-
doing contributed little. 
 
Of course, assigning low-level mechanisms to high-level mechanisms can be uncertain. For 
example, the prices of cathode materials can be influenced by changes in metal prices and 
improvements in mining and manufacturing processes. To account for some of this uncertainty, 
we assigned certain low-level mechanisms entirely to one or another reasonable high-level 
mechanism and examined the impacts of these extreme assignments on our results. The results 
of this sensitivity analysis are plotted in Figure 10. 
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Figure 10. The results of a sensitivity analysis showing that our findings—that public and private R&D was the primary contributor 
to cost decline while economies of scale remain significant but still contribute less—remain robust across a full range of plausible 
assignments of low-level mechanisms to high-level mechanisms. 

We find that our ranking of high-level mechanisms remains robust to assignment uncertainty. 
Research and development is nearly always the largest contributor to the cost decline of lithium-
ion batteries, while economies of scale are relatively consistently the next largest contributor. 
 
Disentangling the contribution from R&D: This mechanism-focused approach can also help 
identify which subject areas within R&D have contributed the most to the observed cost 
reduction in lithium-ion batteries. When we disaggregate the contribution of R&D to the cost 
decline, we find that advances in chemistry and materials science were responsible for the vast 
majority of the R&D contribution. These results are shown in Figure 11. 

 
Figure 11. Contributions of research and development to cell-level cost decline between the late 1990s and early 2010s, examining 
both the overall contribution as well as the contribution from advances in chemistry and materials science. 

This category of “chemistry and materials science” includes research and development efforts 
that span many traditional disciplines, including chemistry, chemical engineering, physics, and 
materials science and engineering.  The finding that efforts within this category contributed so 
significantly suggests that similar efforts might substantially contribute to the improvement of 
other nascent electrochemical energy storage technologies. 
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Key insights for policymakers  
 

• R&D investment can be beneficial well past initial commercialization of a technology. 
For both PV modules and lithium-ion batteries, we find that improvements coming from 
R&D activities persisted well beyond initial commercialization of the technologies. In the 
case of solar photovoltaics, modules for use on earth overtook those designed for use in 
space around 1980. Since then, R&D contributed 59% of the cost reduction. For example, 
improvements in energy efficiency, which resulted from R&D efforts, contributed to 24% 
of the cost reduction observed between 1980 and 2001, and still contributed another 12% 
of the reduction between 2001 and 2012. These R&D activities came from both private 
efforts—spurred by market-expansion policies—as well as government-funded R&D 
programs.  
 
Similarly, R&D was the largest contributor to the cost decline of lithium-ion batteries, 
even after their commercialization in 1991. Between the late 1990s and early 2010s, 
efforts to increase the energy density of cells led to considerable reductions in cost, 
surpassing, for example, the cost reduction contributions of lower cathode material prices 
and larger manufacturing plants. As with PV modules, these improvements also resulted 
from a combination of privately and publicly funded R&D efforts. Moreover, the case of 
lithium-ion batteries suggests that this support for R&D might be especially relevant when 
there is a diversity of options that can be explored to potentially improve a technology.  

 
Together, these examples suggest that sustained, and not just early-stage, R&D support 
can be an important driver of cost reduction for clean energy technologies. Conventional 
wisdom in technology policymaking is that ‘‘science and technology–push’’ processes 
should precede ‘‘demand-pull’’ processes. Our results are consistent with this model and 
provide additional insight. Our study of the underlying mechanisms reveals that 
technology-push policies, such as government funding for basic and applied research and 
development, may remain important for certain technologies even long after demand-
pull processes also begin to contribute to cost reduction and other technology 
improvement. Additional analysis can help determine whether post-commercialization 
support for R&D is similarly important for other technologies and provide more guidance 
as to how policymakers can balance both direct support for R&D and policies that expand 
markets for clean energy technologies. 

 
• Technologies with low levels of “design complexity”, or high “modularity”, may be 

particularly well positioned to advance rapidly. In the case of lithium-ion batteries, R&D 
concurrently contributed to many low-level mechanisms of cost change, which highlights 
a feature of lithium-ion batteries that might help explain their rapid improvement: the 
diversity of materials and chemistry combinations that can be used in these devices. For 
example, over time, as different cathode materials were identified and improved, they 
could be combined with a variety of different anode materials that were similarly being 
developed. These varied combinations of cathode and anode materials enabled lithium-
ion battery cells to perform better or cost less, or both. Moreover, battery cells could be 
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constructed using these new materials without requiring an entire redesign every time a 
new material was introduced. We sometimes refer to this feature of the design of lithium-
ion batteries as reflecting their high modularity or low design complexity. While additional 
research is necessary to estimate how important this flexibility was, our results are 
consistent with earlier, theoretical research that suggests that technologies that allow 
some components to be improved without requiring changes elsewhere in a design can 
improve significantly more quickly than those with many dependencies between 
components.51  
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Case Study #3: Nuclear Fission Power Plants in the United States 
Why study nuclear fission power plants? We studied nuclear fission power plants to understand 
why their costs, at least in the U.S. context, have risen over time.42 Our results help identify 
strategies to reduce the costs of nuclear power plants, and provide insight into how to avoid 
increasing costs of deploying other energy technologies. 
 
The costs of nuclear power plants built in the U.S. increased dramatically during the 1960s and 
1970s (Figure 12).42 This trend was observed not just for all plants built in the U.S., but also for 
individual plant designs (Figure 13), demonstrating that nominal design standardization did not 
lead to significant cost declines in plant construction costs. The rising costs of nuclear fission 
power plants provide a stark contrast to the rapid cost declines observed for photovoltaic 
modules and lithium-ion batteries. Understanding what has led to these increases can help us 
identify and mitigate similar challenges that might be encountered when deploying a range of 
technologies going forward.  
 

 
Figure 12. Trends in construction costs of nuclear fission power plants in the United States.  
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Figure 13. Trends in construction costs of nuclear fission power plants, for specific designs, in the United States.  
 
How we applied the approach: We began by examining the drivers of the increase in the cost of 
construction of nuclear fission power plants for a single plant design—the Westinghouse four-
loop plant.42 In this case, the performance metric we focused on was the cost of constructing the 
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the supervision of work in the field. We categorized these cost components as either indirect or 
direct costs.  Indirect costs, which are largely “soft costs”, include activities that support plant 
construction, such as engineering, administration, construction services, management, field 
supervision, and testing. Direct costs, include the costs of materials, labor, and equipment 
needed for physical components. The results are shown in Figure 14.  
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Figure 14. Contributions of low-level mechanisms of cost change in nuclear power plants of a single design between 1976 and 
1987. 
 
Contribution of low-level mechanisms: We found that most of the increase in construction costs 
between 1976 and 1987, about 72%, was due to an increase in indirect costs. Substantially less 
was a result of changes in direct costs. 
 
We then estimated how different plant components contributed to this increase in indirect costs. 
We redistributed the indirect costs of construction to the individual plant components, and the 
results are plotted in Figure 15. We found that the three plant components that drove the largest 
change in indirect costs—the nuclear steam supply system, the turbine generator, and the 
containment building—also contributed heavily to direct cost increase. 
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Figure 15. Contributions of low-level mechanisms of cost change in nuclear power plants of a single design between 1976 and 
1987, where indirect costs are attributed to the different power plant components. 
 
 
To further investigate the drivers of this cost increase, we quantified the mechanisms of direct 
cost change of containment building construction,a a major contributor to the increase in direct 
and indirect costs between 1976 and 1987.  We focused on containment building construction in 
this case study in part because it is a substantial contributor to plant cost and is the largest safety-
grade structure of a nuclear power plant. Elucidating the mechanisms of cost change for 
containment building construction allows us to examine the roles of construction challenges and 
changing safety paradigms. In addition, focusing on the direct costs of the containment building 
enables us to extend the comparison between 1976 and 1987 to 2017, so that we can investigate 
the impact of changes that have been implemented in the construction at the VC Summer project 
in South Carolina. 
 

 
a Containment buildings are airtight structures made from steel and concrete. They form the outermost layer of a 
nuclear fission reactor and are designed to prevent the escape of radioactive materials during accidents, protect the 
reactor from external impacts, and provide structural support for the steam supply system. 
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The low-level mechanisms of the increase in containment building construction costs highlight 
the importance of deployment rates and structural design changes (Figure 16). Deployment rates 
are the ratios of material volumes to the quantity of person-hours required to deploy the given 
volume of material. Higher deployment rates reflect higher construction productivity, lower rates 
reflect lower productivity.  
 

 
Figure 16. Aggregated contributions of low-level mechanisms of cost change for nuclear power plant containment buildings, 
between 1976 and 1987, 1987 and 2017, and overall.  
 
Between 1976 and 1987, most of the direct cost increase could be attributed to a substantial 
drop in deployment rates, which includes both concrete and steel worker productivity in the 
nuclear industry. Between 1987 and 2017, much of the cost increase resulted from design 
changes that necessitated the construction of a much thicker steel shell. 
 
The importance of the decline in deployment rates between 1976 and 1987 motivated further 
investigation of how these rates have fallen over time (Figure 17). During the early 1980s, the 
deployment rates estimated for nuclear construction diverged considerably from estimates for 
general domestic construction, with rates for recent nuclear construction dropping well below 
that for general domestic construction. Both the general construction and nuclear-specific 
construction deployment rates, which are based on empirical data, fell over the period examined 
and were well below those used in cost estimation guidelines employed in the nuclear industry. 
This disconnect between rates found in estimation guidelines and rates based on realized 
projects can lead to cost projections that substantially underestimate the final costs of 
construction. 
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Figure 17. Historical change in construction productivity in the nuclear industry, and the construction industry at large. 
 
As with photovoltaic and lithium-ion battery technologies, we can also examine the influence of 
high-level mechanisms on the increasing cost of containment building construction. However, in 
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interference, safety” (PIS), which represents the influence of on-site safety personnel, including 
those from the Nuclear Regulatory Commission, who interacted with the construction process. 
The third mechanism is “worsening despite doing” (WDD), which represents decreases in 
performance that can be attributed to parasitic processes, such as decreasing morale, that did 
not originate in construction activities and were also not counteracted by them.b  
 
Contribution of high-level mechanisms: Quantitative estimates of the contributions of high-level 
mechanisms reveal the large influence of procedural and site-specific mechanisms, including 
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both PIS and WDD (Figure 18). They also reveal that no one high-level mechanism dominated the 
cost increase observed for containment building construction. 
 
One major result is that much of the cost increase, about 70%, resulted from on-site, procedural 
changes in plant construction, which includes both WDD and PIS. This suggests that further 
understanding processes that take place in the field, as these projects are constructed, could be 
especially important for identifying routes for reducing the costs of nuclear power. 
 

 
Figure 18. Contributions of high-level mechanisms of cost change to the increase in costs of containment building construction. 

Safety has been a major concern for nuclear fission power plants, and our analysis allows us to 
estimate the influence of compliance with safety-related regulations on cost increases. While 
safety-related considerations permeate all of the high-level mechanisms, the mechanism most 
representative of compliance with relevant regulations is PIS. Our results suggest that roughly 
30% of the cost increase observed between 1976 and 2017 is attributable to direct, safety-related 
requirements in the construction process. This finding suggests that addressing safety-related 
concerns in construction was not the only driver of the cost increases observed. 
 
Examining strategies moving forward: We also examined three scenarios for future cost 
reduction to investigate whether additional innovation might be able to address the factors that 
led to past increases in cost (Figure 19). In this analysis, we use the same cost and cost change 
equations, applied to containment building construction, and estimate how different innovations 
might influence costs going forward. 
 
The scenarios we examine represent hypothetical development strategies. The first scenario 
reflects cost improvements contributed by all of the low-level mechanisms, estimated by 20% 
changes in all variables in the cost reducing direction. The second scenario represents the impact 
of improving on-site deployment rates due to adoption of advanced techniques for 
manufacturing and construction management. The third scenario represents the adoption of 
advanced, high-strength materials in the construction of the containment building, which could 
reduce the quantity of commodities used like concrete and steel. 
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Our results suggest that both reducing commodity usage and automating some of the 
construction process could be important goals moving forward. However, these results also 
highlight some of the potential limitations to reducing the costs of constructing nuclear fission 
power plants given current designs. Improving construction productivity (scenario 2) and 
introducing advanced materials (scenario 3) only lead to reductions in construction costs 
between 30 and 40%, relative to estimates of costs in 2017. Neither scenario demonstrates a 
pathway for reducing constructions costs relative to those estimated for 1976, though it is 
important to note that further study involving expert elicitations, detailed estimates on physical 
limits, and, ideally, targeted demonstration projects, is needed to determine the limits to cost 
reduction. Moreover, changing reactor designs offers more significant opportunities to alter the 
cost equation and potentially access additional cost reductions.  
 
Key insights for policymakers 
 

• For some energy technologies and infrastructures, carefully designed mechanistic cost 
change modeling and demonstration projects could contribute substantially to 
technological improvement, especially through the inclusion of soft costs and soft 
technology variables in addition to hardware costs and hardware variables.  
 
Some technologies are constructed mostly in the field rather than in manufacturing 
plants. Examples of such technologies include nuclear power plants, electricity 
transmission systems, and some proposed infrastructures for producing hydrogen gas. 
For those technologies, cost reducing innovations might be identified through a 
combination of 1) cost change modeling that connects features of technologies 
(represented as variables) to resulting costs and 2) building demonstration projects that 
can provide empirical data to refine modeling assumptions. Neglecting this approach can 
lead to unanticipated cost overruns, as has been observed in U.S. nuclear power plant 
construction.  
 
Demonstration does not necessarily mean a full-scale implementation of a technology, 
which can be costly. Modeling of the mechanisms of cost change of the kind 
demonstrated here can highlight potentially problematic cost categories that should be 
targeted through a combination of demonstration projects and adaptive designs.  
 
Demonstration projects paired with detailed cost change analyses can also be used to 
identify important drivers of cost change that diverge from expectations, which can in 
turn help provide guidance for future projects. For example, analysis of the increase in 
the direct costs of containment building construction demonstrated the importance of 
deployment rates. Further research revealed that the deployment rates in nuclear 
construction fell during the time periods examined, to levels substantially below those for 
the broader domestic construction industry. Moreover, the rates based on empirical data 
are significantly lower than those used in cost estimation guidelines for nuclear fission 
plants. These results suggest that guidelines for estimating the costs of nuclear plants 
might require updates to reflect empirical trends. Demonstration projects can similarly 
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provide empirical data that can then be used to identify important cost contributors and 
improve cost estimation guidelines for larger projects or increased deployment. 
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