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Abstract

The problem-solving performance of most people improves with experience.
The performance of most expert systems does not. People solve unfamiliar
problems slowly, but recognize and quickly solve problems that are similar
to those they have solved before. People also vemember probiems that they
have solved, thereby improving their performance on similar problems in the
future. The thesis describes a system, CASEY, that uses case-based reasoning
to recall and remember problems it has seen before, and uses a causal model

of its domain to justify re-using previous solutions and to solve unfamiliar
problems.

CASEY overcomes some of the major weaknesses of case-based reasoning
through its use of a causal model of the domain. First, the model identi-
fies the important features for matching, and this is done individually for each
case. Second, CASEY can prove that a retrieved solution is applicable to the
new case by analyzing its differences from the new case in the context of the
model. CASEY overcomes the speed limitation of model-based reasoning by
remembering a previous similar case and making small changes to its soluiion.
It overcomes the inability of associational reasoning to deal with unanticipated
problems by recognizing when it has not seen a similar problem before, and
using model-based reasoning in those circumstances.

The techniques developed for CASEY are shown to result in solutions identical
to those derived by a model-based expert system for the same domain, but
with an increase of several orders of magnitude in efficiency. Furthermore, the
methods used by the system are domain-independent and should be applicable
in other domains with models of a similar form.

Thesis Supervisor: Peter Szolovits

Title: Associate Professor, Electrical Engineering and Computer Science

2



Acknowledgements

I would like to thank the following people who helped make this thesis possible:

My thesis supervisor, Peter Szolovits, for seven years of support and good
advice, for encouraging me to keep going when I was ready to give up, and for
giving me the intellectual freedom to let my ideas develop and grow.

Ramesh Patil, who as teacher, reader, and friend, taught me about artificial
intelligence, medicine, engineering, and life in general.

William Long, whose knowledge, good nature, and patience inspired me,
and whose Heart Failure program is a challenging and impressive body of work
that I was extremely fortunate to have as a resource for my own research.

Patrick Winston, who did exactly what he promised, and whose comments
during my thesis defense made it quite a pleasant experience.

Janet Kolodner, to whom I owe an irnmense intellectual debt, for reading
this thesis although under no official obligation to do so, and for supporting
me in so many ways.

Robert Jayes, who provided the test cases for my program.

The members of the Clinical Decision Making Group, past and present,
especially Tom Russ, Elisha Sacks, Mike Wellman, Alex Yeh, Robert Granville,
and Isaac Kohane, for many years of camaraderie, peer review, and good ideas,
and Nomi Harris for making our office such a fun place.

Paul Resnick, for some very illuminating discussions.

My friends David Goddeau and Kent Pitman for all-around good advice
since the time we were undergraduates.

And of course, my family: my daughter Jaclyn, my husband Ben (a merci-



less editor), and my parents, without whose love, support, time, and sacrifices

I could never have finished this thesis.

The work reported herein has been supported in part by National Institutes
of Health grants R01 LM 04493 from the National Library of Medicine and
RO1 HL 33041 from the National Heart, Lung, and Blood Institute.




Contents

1 Introduction

1.1 Background . ... ... ... ... . ... ..o,
1.2 Associational vs. model-based reasoning . . .. ... .. ...
1.3 Using past problem-solving experience . ... ... ......
1.4 The domain of medical decision making . . . . ... ... ...
1.5 Asimpleexample . . . ... ... ... ... ... .....
2 Design and operation

2.1 Overview of the memory system . . . . .. .. ... ......
2.2 Overview of the Heart Failure Program . . . ... .. ... ..
2.3 Overviewof CASEY . ... ... ... ... .. ........
24 Ma-t_.ching and Retrieval . . . ... ... ... ... .. ...

2.4.1 Determining the relative importance of features . . . .

2.4.2 Choosing the Best Match . . .. ... .........
2.5 Justification . . . ... ...
2.6 Adapting thesolution. . . . .. ... ... ... ........

2.6.1 Explanation Repair Strategies . . . . . .. ... .. ..

11
13
16
17



2.6.2 Diagnosis and therapy repair. . . . . . .. .. ... ..

2.7 Storage and feature evaluation . . . . . ... ... ..., ...
Implementation
3.1 Interface with the Heart Failure program . . . ... .. .. ..

3.2 Implementation of the memory nodes . . . . ... ... ....

3.2.1 Generalizations . . . ... ... .. ... ... . ...
322 Cases. .. ... i i i e
3.3 Complexity of the memory scheme . ... ... ... .....

3.4 Constructing a similarity metric . . . .. . ... ... .. ...

3.5 Implementation of the justifier . . . . . ... ... .......
3.6 Implementation of the repair strategies . . . . . ... .. ...
Results
4.1 A detailedexample . . .. ... .. ... ... ... ... ...
4.2 Analysis of CASEY’s performance . . . . ... .........
Discussion
5.1 Strengths of the method . . .. ... ... ... ... ....
5.2 Limitations . .. .. ... .. ... ... ... . . . 0.,
53 Learning . . . .. .. ... ... ... o e
5.3.1 Learning by generalization . . . . ... .........
5.3.2 Improving on the Heart Failure program . .. ... ..
54 Indexing . . ... ... ... .. . ... ..
5.5 Defaults and exceptions . . . . ... ... ... ... ... .
5.6 Relation to formal theories of diagnosis . . . . . .. ... ...

56
57
59
59
61
64
66
68
69

70
71
82



5.7 CBR vs. generate-and-test . . . . ... ... .......... 102

5.8 Generality of the Method . . . . . .. . ... ... ....... 104
5.8.1 Requirements . ... ................... 104
5.8.2 Other aspects of generalization .. ... ........ 105
5.8.3 Application to more complex models . . . ... .. .. 106

59 FutureWork. .. ... .. ... . ... ... .. .. 109

5.10 Conclusions . . . . . . .. .. .. ... .. 118



Chapter 1

Introduction



The problem-solving performance of most people improves with experience.
The performance of most expert systems does not. People solve unfamiliar
problems slowly, but recognize and quickly solve problems that are similar
to those they have solved before. People remember problems that they have
solved, thereby improving their performance on similar problems in the future.
People also learn from their mistakes. Research in artificial intelligence has
resulted in techniques that exhibit some of these capabilities. Associational
reasoning solves common problems quickly. Model-based reasoning! can be
used to solve unfamiliar problems, but it does so slowly. Memory-based rea-
soning [22] techniques can be used to remember previously solved problems
and to learn from experience. However, no current system demonstrates all
three capabilities. A reasoning system that (1) used associational reasoning
for efficiency, (2) used model-based reasoning for robustness, and (3) learned
from experience, could combine the advantages of each technique while com-
plementing their individual limitations. Such a method would represent a
substantial enhancement of current technology. This thesis presents the the-

ory, implementation, ard evaluation of such a system, CASEY.

1.1 Background

Much of the recent research in artificial intelligence has becn directed towards
the development of high-performance, domain-specific problem solving sys-

tems, called ezpert systems or knowledge-based systems. Such systems can be

!by which I mean reasoning from a causal model of some domain.



classified according to the type of reasoning used by the program.? The vast
majority of current expert systems rely on associational reasoning (associating
data with solutions via heuristics, empirical associations, or “rules of thumb”).
The alternative approach, which solves problems by reasoning about a2 model
of the behavior of objects in the domain, is known as model-based reasoning.’
Each approach has its advantages and disadvantages, but neither approach
allows expert systems to learn from experience. Although work in machine
learning has developed techniques that allow computer programs to learn, bar-
ring few exceptions (e.g., AQ11 [31]) these techniques have not been applied to
expert systems. Furthermore, this work has concentrated on the development
of rule sets through training examples, after which learning ceases.

People seem to use both associational and model-based reasoning. For fa-
miliar problems, we use associational reasoning, taking advantage of the speed
of this approach. When confronted with unfamiliar or difficult problems, peo-
ple can refer to a more detailed knowledge base, much like the type used by
model-based systems. The human ability to exploit both types of reasoning
requires us to (1) recognize a new problem as being of a type we have en-
countered previously, and to (2) constantly update our knowledge; that is, to
learn from experience. Current knowledge-based systems rely on knowledge

painstakingly compiled from human experts, a process that is time-consuming

2This dichotomy had previously been identified as “shallow vs. deep” knowledge. How-
ever, the difference is in the method of reasoning, since the distinction between deep and
shallow knowledge is relative [25], and deep knowledge can.be employed with techniques
traditionally considered shallow [15].

3Also known as “reasoning from first principles” [9).
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and labor-intensive. When faced with the same problem twice in succession,
they work just as hard to solve the problem the second time. The development
of a technique that integrates associational and model-based reasoning with
the ability to learn from experience could result in improved system perfor-

mance.

1.2 Associational vs. model-based reasoning

Associational reasoning reduces long chains of inferences in the underlying
“deep” knowledge to shorter, often uncertain, links between data and solu-
tions. This approach has the advantage of efficiency, because the alterna-
tive of following all of the intermediate links and choosing among alternate
paths in the problem space can be slow and is often unnecessary. However,
programs using associational reasoning have their limitations. Because such
programs solve problems by matching the current situation against a set of
predetermined situations, the knowledge base must anticipate situations that
may arise. If the program is presented with an unanticipated, peripheral, or
difficult problem, it may be unable to solve it [8] or worse, appear to solve it
but yield a solution that is incorrect [24]. Also, associational knowledge typi-
cally must contain maay implicit assumptions. For a complicated domain, it
might be infeasible or impossible to explicitly enumerate the exact conditions
under which the knowledge is applicable. Such systems, therefore, cannot
ensure that their knowledge will be applied correctly.

Models provide a different kind of knowledge for reasoning in many do-

mains. Knowledge about the domain that might be excluded from an associ-
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ational reasoning system is often explicitly represented in the model. Models
are typically combined with a general reasoning method, such as simulation
or search, affording the model-based system more flexibility than an associa-
tional system for the same domain [9], [24], [44]. However, the more explicit
knowledge and more general problem solving method creates longer inference
chains. For this reason, model-based systems are slower, more complicated,
and less widely employed than associational systems. Also, if the relationships
in the model are uncertain, long inference chains may generate too much un-
certainty to draw conclusions. Associational reasoning allows the relationships
to be summarized at a manageable level of uncertainty.

There have been a few previous attempts to combine associational rea-
soning with model-based reasoning. ABEL [34], a program for diagnosing
acid-base and electrolyte disturbances, maintained a description of a patient’s
illness at five levels of detail. The least-detailed level represented associational
knowledge and the more-detailed levels were used for model-based teasoning.
However, rather than choosing when to solve a problem using associational rea-
soning and when to use model-based reasoning, ABEL always reasoned about
the patient at every level of detail. GORDIUS [45] combined associational
reasoning and reasoning from a causal model for hypothesis generation in the
geology domain. It also was incapable of deciding when to use each type of
knowledge. It always used its associational rules to generate hypotheses, and

always used its causal model to test proposed hypotheses.
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1.3 Using past problem-solving experience

The ability to identify similar problems, recall previous problems, and store
newly-solved problems could enhance a knowledge-based system’s performance
in several ways. Common problems could be solved more efficiently because
the system could recognize that it already knew how to solve them and apply
previously derived solutions. By remembering problems after it solved them,
the system could continually increase the collection of problems that it knows
how to solve. The system could also modify its knowledge by allowing the
user to override the program’s solution, and remembering the solution that
the user preferred.

There have been several machine learning techniques developed that allow
identification and recall of similar problems, for example case-based reason-
ing [23], memory-based reasoning [47), and derivational analogy [7]. These
paradigms all rely on a memory of previously solved cases. Case-based reason-
ing and derivational analogy have the same basic framework when presented
with a new problem. The programs recall a previous solution, adapt it to the
current problem, and remember the new problem and its solution. Memory-
based reasoning is used to remember a similar previous problem, but does
no adaptation. These paradigms are fundamentally associational: they asso-
ciate features of a problem with a previously-derived solution to that problem.
However, neither case-based reasoning nor memory-based reasoning have been
used with a strong causal model, and so their adaptations of previous solutions
are basically ad hoc. Derivational analogy goes to the other extreme: it is so

careful about justifying its use of each step in a previous solution that it loses
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the efficiency advantage of associational reasoning. Winston’s work on anal-
ogy [50, 51, 52] uses the causal explanation of a previous situation to produce a
solution for a new problem. However, this work does not address the issues of
remembering, determining the applicability of, and choosing among previous
similar problems.

Case-based reasoning was the most applicable to CASEY’s goals of com-
biring associational reasoning, model-based reasoning, and learning from ex-
perience. By their ability to match the features of a new problem against
a memory of previously-solved problem, case-based reasoning systems achieve
the efficiency of associational reasoning. If no previous case is recalled, it could
serve as a signal that the problem is unfamiliar to the program and that model-
based reasoning should be used. By their ability to remember new problems
and their solutions, case-based reasoning systems continually increase their
collection of easily solved problems. Most importantly, as several similar cases
are solved, most programs that use case-based reasoning (e.g., citeKolo, [46],
[48]) make and remember generalizations about the problems that they have
solved and the solutions to these problems. These generalizations represent
new associational knowledge which links the common features of a group of
problems with a solution to that type of problem.

Until now, case-based reasoning has been applied only to domains without
a strong causal model (e.g., SHRINK [21] in psychiatry, MEDIATOR [46] in
dispute mediation, PERSUADER [48] in labor negotiations, JUDGE [5] and
HYPO [4] in legal reasoning, PLEXUS (2] in real-world planning, SWALE [16]
in newspaper story explanation). The lack of an explicit causal model gives

case-based reasoning programs a problem commonly seen in other associational
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reasoning systems: they cannot ensure that their knowledge will be applied
correctly. There is one underlying reason for this: without an explicit causal
model, case-based reasoning programs depend exclusively on coincidence in
selecting similar previous problems* and in making generalizations. A second
problem, also seen in associational reasoning systems, is that when an adequate
match is not found, case-based reasoners are unable to fall back on model-
based reasoning and must still use the best inatch available to arrive at a
solution. A consequence of these two limitations is that a retrieved solution
sometimes leads a case-based reasoner down the wrong path. A previous
case-based reasoning program which did use a causal model was CHEF [13],
a planning program in the domain of cooking. CHEF’s causal model was
extremely simple. Moreover, its causal reasoning consisted solely of chaining
rules backward from an observed failure to a cause. This approach could not
scale up to a reasonably sized domain. Furtlermore, his causal model was not
used to derive a solution de novo.-

Integrating associational, model-based, and case-based reasoning results
in a program which has the strengths of each approach while compensating
for their weaknesses. The model-based reasoning component solves compli-
caied and unfamilar problems, and releases the case-based component from
its dependeiice on coincidence. The case-based reasoning component uses as-
sociational knowledge to recognize problems that the system already knows
how to solve, and allows the constant creation of new associational knowledge

by the program. The combination is synergistic.

4memory-based reasoning programs also have this drawback.
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1.4 The domain of medical decision making

As a complex real-world domain, medical decision making is particularly well-
suited as a testbed for combining associational reasoning, model-based reascn-
ing, and learning techniques. Medical decision making involves an experiential
component as well as reasoning from causal models. Physicians start with a
large basic and clinical science knowledge base. Then, the accumulation of
cases seen over a physician’s career improves his day-to-day problem-solving
ability. Making generalizations about previous patients lets a physician make
predictions about future similar patients; remembering how an unusual past
case was resolved can be helpful the next time a similar case is seen. How-
ever, when a good physician confronts an unfamiliar problem he refers to his
knowledge of pathophysiology — his model.

Medical reasoning is more challenging than some other diagnosis domains
that typically deal with “single faults” and have an underlying model that
is small and well-characterized (e.g. digital circuit diagnosis). The models
used in the medical domain are often large and complex. They are incomplete
and therefore uncertain. Medical problems can include multiple interacting
diseases with partially overlapping symptoms, which are problematic for many
diagnosis programs.

For these reasons, the ideas developed for CASEY were tested in the do-
main of managing patients with heart failure. The techniques do not depend
on any specific domain information and therefore should be applicable to other

domains with similarly designed models.
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1.5 A simple example

The input to CASEY is a description of a patient. CASEY produces its
solutions using a memory of cases that it has already solved and a causal
model of the cardiovascular system. CASEY’s output is a causal explanation
of the patient’s symptoms. The causal explanation relates items in the patients
description to states in the model. This section gives a simple example of
CASEY’s operation.

A new patient, Uri, is presented to the program. Uri is a 67-year-old
male with dyspnea (shortness of breatk) on exertion and a history of anginal
chest pain. His blood pressure is 135/80, his heart rate is 87, his respiration
rate is 14, and his temperature is 98.4. His chest x-ray reveals aortic valve
calcification. The rest of his physical examination is normal.

The best match CASEY finds for Uri is a patient named Sarah. She was a
72-year-old woman with a history of angina, complaining of unstable anginal
chest pain. Her blood pressure was 138/81, her heart rate was 76, her respi-
ration rate was 14, and her temperature was 98.4. The rest of her physical
examination was normal.

The causal explanation for Sarah’s findings retrieved from the memory is
shown in Figure 1.1.5 It indicates that her chest pain was caused by a fixed

coronary obstruction. She was suffering from both exertional angina (which

5In this and all subsequent causal explanation diagrams, items in upper case indicate
states in the model of the cardiovascular system. Items in bold face are diagnosis states.
Items in lower case are inputs to the program. An arrow from item A to item B indicates
that A causes B. A lack of connection between items indicates that they are not causally

related.
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FIXED CORONARY
OBSTRUCTION

'

REGIONAL FLOW DEFICIT ———p UNSTABLE ANGINA

} )

EXERTIONAL ANGINA unstable anginal chest pain

'

history of anginal chest pain

Figure 1.1: Causal explanation for Sarah.

explained her history of angina), and unstable angina (which explained her
unstable anginal chest pain).

CASEY’s next task is to determine whether the solution for Sarah can be
adapted to fit Uri. The differences between the patients, shown in Table 1.5,
might make the solution unsuitable. One of Sarah’s symptoms that was used as
evidence in the solution (unstable angina) is absent from Uri’s case. Similarly,
Uri exhibits symptoms that are absent from Sarah’s case and which must be
explained. Using information in its causal model and a set of principles fo:
reasoning about causal explanations, CASEY makes the following judgements

about the d;ﬂ'erences between Sarah and Uri:

1. No state in the model of the cardiovascular system uses the sex or age

of the patient in any way, so these differences are insignificant.

2. Dyspnea is a significant symptom. CASEY knows this because the model

contains the information that when a patient has dyspnea on exertion,

18




Feature: Sarah Uri

Sex female male

Age 72 67

Dyspnea none on exertion

Chest pain unstable angina  none

Blood pressure  138/81 135/80

Heart rate 76 87

Chest x-ray normal aortic-valve calcification

Table 1.1: Differences between Sarah and Uri.

it can be explained by the model 70% of the time.

3. Uri does not have any evidence for unstable angina. This part of the

diagnosis does not fit Uri.
4. The difference between the two patient’s blood pressures is insignificant.

5. Uri’s heart rate is slightly high, while Sarah’s is normal. However, a
slightly high heart rate does not strongly suggest any disease, so it can

be ignored.

6. Aortic valve calcification has only one cause: aortic valve disease. Aortic

valve disease must be part of the solution for Uri.
CASEY can repair Sarah’s solution to fit Uri by
1. adding dyspnea on exertion as an unexplained feature,

2. removing the diagnosis of unstable angina,

19



AORT!C VALVE DISEASE FIXED CORONARY dyspnea on exertion

l OBSTRUCTION
aortic valve calcification REGIONAL FLOW DEFICIT

‘ |

EXERTIONAL ANGINA

b

history of anginal chest pain

Figure 1.2: Causal explanation for Uri.

3. adding the diagnosis aortic valve disease to account for the aortic valve

calcification.

The results of these repairs are shown in Figure 1.2 This is identical to the
causal explanation for Uri produced by the Heart Failure program. CASEY’s
explanation, however, is derived without running that program, but by adapt-

ing the solution of the past case. This method is significantly more efficient.
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Chapter 2

Design and operation
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2.1 Overview of the memory system

CASEY remembers cases it has seen by storing them in a self-organizing mem-
ory system [17]. A self-organizing memory system records and organizes ex-
periences or cases. The memory system also creates generalizations, which
are structures that hold knowledge describing a group of similar cases.! A
generalization is created from the similarities between the cases that it orga-
nizes. Individual cases that are stored in a particular generalization structure
are indexed by the features that distinguish them from the other cases in the
same generalization structure. As a new case is integrated into a generaliza-
tion, it “collides” with the cases in the generalization that share its differences.
This is termed reminding [42). Two cases are said to be similar if they are
integrated into the same generalization and share a set of differences with the
generalization.

The implementation of the memory structure is based on the memory de-
scribed by Kolodner [17]. Following Kolodner’s scheme, the memory structure
is represented as a discrimination net in which each node is either an indi-
vidual case or a generalization structure (called a GEN). Each pointer to a

subnode is labeled (indexed) by a feature of the subnode that differentiates it

1A note om terminology: Kolodner [17] used the terms Memory Organization Packet
(MOPs), features, and norms to describe the structures in a self-organizing memory. The
same structures can be thought of as frames, slots, and typical values; or concepts, roles,
and prototypes. A MOP is a specialization of a frame that, in addition to holding general
(i.e. prototypical) information (that which is true of a typical episode organized by this
MOP), also contains a hierarchical structure that indexes all the episodes organized by this

MOP. Kolodner later [19] began referring to MOPs as “generalized episodes.”
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from the parent node. Indexing requires two levels (see Figure 2.1). The first
level indicates the category of the index (e.g., syncope/near-syncope). The
second level indicates the values that the feature takes on in the subnodes
(e.g., syncope/near-syncope on- exertion; syncope/near-syncope at-rest).

The set of indices defines a set of paths through the memory structure. At
each point in the path, one of three conditions obtains. If exactly one case
is stored at this point, the stored case and the new case are compared, their
similarities placed in a new generalization, and they are indexed beneath the
generalization by their differences from each other. Also, the stored case is
returned (the program is “reminded” of it). If there is a generalization at
the point, the new case is indexed in the existing generalization. If there is
no further information that distinguishes the new case from the other cases
stored in the GEN, the common features of the GEN are returned.? If no other
case is stored at this point, the new case is simply installed there, and the

common features of the GEN directly above this point are returned.

2.2 Overview of the Heart Failure Program

CASEY is designed around an existing model-based expert system (the Heart
Failure program [30]) that diagnoses and suggests therapy for patients with
heart failure. The building blocks of the Heart Failure model are measures,
measure values, and states. Measures correspond to observable features, such

as heart rate, or laboratory results. Measure values are the input values of

2In medicine, this would be an instance of a case being a “classic presentation” of some

disease.
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GEN °FEATURE-GEN® NODES: 46

FEATURES
(auscultation s2)
(angina unstable)
(sex male)

CAUSAL nil

DIFFS acutemi syncope/near-syncope ...

GEN 888 NODES: 23

FEATURES

(cardiomegaly lv)

(apex-impulse sustained)

(s2 single)

(characteristic-murmur as)

(pulse slow-rise)

(chest-pain anginal)

(dyspnez on-exertion)

CAUSAL

limited-cardiac-output general-flow-deficit

exsrtional angina fixed-high-outflow-resistance
slow-ejection aortic-stenosis

DIFFS
known diagnoses heart-rate auscultation ...

Figure 2.1: A fragment of the memory structure.
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(defnode mitral-stenosis

goal diagnosis

causes (primary (.003 (if (female sex) .01 .001))
P+ (mitral-valve-disease :prob .1)
D- (mitral-valve-replacement))

measure ((characteristic-murmur (prob ms .5))
(murmur (prob diastolic-rumble .5))
(history-findings (prob hemoptysis .1))
(cxr (prob kerley-b-lines .2))
(EKG (prob (or first-degree-block wenckebach) .1))
(s1 (prob loud .75))
(auscultation (prob lv-s3 (p- 1.0)))
(auscultation (prob opening-snap .7))
(valvular-disease (prob MS 1.0))))

Figure 2.2: Information about mitral stenosis.

the measures, for example, “68” for the patient’s heart rate, and are entered
by the user. The combination of a measure and a measure value is referred to
as a finding. States can represent three types of information: specific qualita-
tive assessments, of physiological parameters, for example HIGH LEFT ATRIAL
PRESSURE; the presence of diseases (“diagnosis” states), for example PERI-
CARDITIS; and therapies given to the patient, for example NITROGLYCERIN.
Some states are distinguished as “goal states”. These are states that can be
treated. The Heart Failure program’s information about the state MITRAL
STENOSIS is-shown in Figure 2.2.3 The model recognizes two kinds of relation-
ships. It can indicate that one state causes another with a given probability.

It can also indicate that a state is associated with a particular finding with

3goal diagnosis indicates that this is a diagnosis state. P+ indicates an uncertain cause;
D~ indicates a definite correction. The measure slots indicate the probability with which a

patient with mitral stenosis will have the given finding.
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a given probability. There are over 400 findings and about 140 states defined
in the model. The model is represented as a causal inference network. States
in the model are shown as nodes. They are connected by links indicating
the direction of causality, whether the influence is positive or negative, and
probabilities associated with the link.

The Heart Failure program takes as its input a list of findings that describe
the patient. A patient description typically consists of about 40 findings. The
description for a new patient presented to the system, Larry, is shown in
Figure 2.3. From the input, the Heart Failure program produces a solution
consisting of a causal explanation, a diagnosis, and therapy suggestions for the
patient. The causal explanation describes the relationship between physiolog-
ical states in the model and observable features of the patient. The diagnosis
and the therapy suggestions are derived from states in the causal explanation.

The causal explanation consists of a set of findings, states, and directed
links (Figure 2.4). A link between two states, or a state and a finding, indi-
cates that one causes the other. Only abnormal findings are explained, but
the program may not explain all abnormal findings. If a diagnosis state is
established in the causal explanation, the name of the state is added to the
patient’s diagnosis. If a goal state is established, the therapy associated with
that state is added to the list of therapy suggestions for the patient.

The prototypical concept of a causal model in artificial intelligence is one
that contains descriptions of a set of primitive objects and a set of operations
that exist in some domain. In order to derive the overall behavior of the system,
programs which use this kind of model (e.g., [12], [24], [49], [13], [45], etc.)

compute the effects of applying the operations to the objects until some end-
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(DEFPATIENT "Larry"
HISTORY
(age . 65)
(sex male)
(dyspnea on-exertion)
(orthopnea absent)
(chest-pain anginal)
(anginal within-hours unstable)
(syncope/Near-syncope on-exertion)
(palpitations none)
(nausea/Vomiting absent)
(cough absent)
(diaphoresis absent)
(hemoptysis absent)
(fatigue absent)
(therapies none)
VITAL-SIGNS
(blood-pressure 138 80)
(heart-rate . 90)
(arrhythmia-monitoring normal)
(resp . 20)
(temp . 98.4)
PHYSICAL-EXANM
(appearance nad)
(mental-status conscious)
(jugular-pulse normal)
(pulse slow-rise)
(apex-impulse normal)
(parasternal-impulse normal)

= (chest clear-to-auscultation-and-percussion)

(abdomen normal-exam)
(extremities normal-exam)
LABORATORY-FINDINGS
(ekg 1vh normal-sinus)
(cxr calcification)
(calcification mitral aortic-valve))

Figure 2.3: Patient description for Larry
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Figure 2.4: A causal explanation produced by the Heart Failure Program.
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state or goal is achieved. This computation often takes the form of a simulation
or search. The trace from initial state to end-state of the effects of operations
on the objects in the system is called a causal ezplanation of the observed end-
state. When the effects of applying an operation cannot be determined (as
when computing the combined effects of two opposing influences of unknown
magnitudes) such systems usually create multiple “possible worlds,” one for
each uncertain conclusion. For simple systems this method can be useful.

For some other domains, and in particular the cardiovascular domain in
which the Heart Failure program operates, the cost of simulation is prohibitive
due to the presence of approximately 270 feedback loops in the portion of the
domain that the model covers. Furthermore, the cost of maintaining multiple
possible worlds is also high in this particular domain. Much of the data needed
for simulation can only be obtained invasively,* so it is not usually available.
This results in an explosion of possible worlds [29]. The Heart Failure program
therefore uses a different approach. When the information about states, their
causes, and their effects is loaded into the Heart Failure program, the program
precomputes the trace of the system under various conditions. The diagnos-
tic task, then, is to work backwards from features in the patient description
through the trace of potential causes and effects, to find the states which ulti-
mately caused the symptoms. The paths from ultimate (or primary) cause to
observed features is the causal explanation.

The causal explanation is derived through a complicated process which

involves causal, probabilistic, and heuristic reasoning. The Heart Failure pro-

4that is, by inserting measurement devices into or otherwise invading the patient’s body.
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gram propagates evidence backward from the findings to the states that cause
them. Some findings have definite causes; those states are established imme-
diately. For each remaining unexplained finding, the system examines every
pathway through the model from every diagnosis that could cause the find-
ing. The process of producing an explanation is complicated by the presence
of the 270 feedback loops in the model. It is further complicated because the
links between findings and the states that cause them are frequently uncertain,
so several possible explanations for the patient’s findings must be considered
simultaneously. The system allows for multiple diseases, and attempts to find
a set of diagnoses that “cover” the findings. Each of these covering sets is
evaluated and the most probable is selected.

The Heart Failure program was designed to deal with complex clinical situ-
ations. Its model has evolved painstakingly over several person-years of effort.
Like other model-based programs, it is capable of solving difficult and unusual
cases. However, like other model-based programs, its reasoning is extremely
expensive computationally. For this reason, the Heart Failure program was an

excellent testbed for enhancement through the use of experience.

2.3 Oyerview of CASEY

CASEY attempts to produce the same causal explanation, diagnosis, and ther-
apy suggestions for a new patient (the case that CASEY is currently trying
to solve) as the Heart Failure program. It does so by integrating model-based
reasoning, associational reasoning and case-based reasoning, in a five-step pro-

cess:
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e Reirieval. CASEY finds a case similar to the new patient in its case

memory. This is called the retrieved case.

o Justification. CASEY evaluates the significance of any differences be-
tween the new case and the retrieved case using information in the Heart
Failure model. It significant differences are found, the match is invali-
dated. If all differences between the new case and the retrieved case
are judged insignificant or if the solution can be repaired to account for
them, the match is said to be justified. The precedent case is a retrieved
case that has been justified and from which solution transfer will occur.

The precedent solution is the solution associated with the precedent case.

e Adaptation. If none of the differences invalidate the match, CASEY
adapts a copy of the precedent solution (called the transferred solution)
to fit the new case. If all matches are ruled out, or if no similar previous
case is found, CASEY uses the Heart Failure program to produce a

solution for the case de novo.

e Storage. The new case and its solution are stored in CASEY’s memory

for use in future problem solving.’

o Feature evaluation. Those features that were causally important in the

solution of this problem are noted in the memory.

The model-based reasoning component of CASEY employs the model of

the cardiovascular system developed for the Heart Failure program. Other

5The user has the option of rejecting CASEY’s solution, in which case Heart Failure

program is used to produce a causal explanation, which is then stored in memory.
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programs which integrate associational reasoning with causal models (e.g.
CHEF and GORDIUS) use their causal model to simulate a proposed solution.
The complexity of the Heart Failure program’s model precludes simulation.
CASEY 