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NeuroLINCS Proteomics: Defining 
human-derived iPSC proteomes 
and protein signatures of 
pluripotency
Andrea D. Matlock   1, Vineet Vaibhav1, Ronald Holewinski1, Vidya Venkatraman1, 
Victoria Dardov1, Danica-Mae Manalo1, Brandon Shelley2, Loren Ornelas2, Maria Banuelos2, 
Berhan Mandefro2, Renan Escalante-Chong3, Jonathan Li3, Steve Finkbeiner   4, 
Ernest Fraenkel   3, Jeffrey Rothstein   5, Leslie Thompson   6, Dhruv Sareen   2, 
Clive N. Svendsen   2, NIH NeuroLINCS Consortium* & Jennifer E. Van Eyk   1 ✉

The National Institute of Health (NIH) Library of integrated network-based cellular signatures (LINCS) 
program is premised on the generation of a publicly available data resource of cell-based biochemical 
responses or “signatures” to genetic or environmental perturbations. NeuroLINCS uses human 
inducible pluripotent stem cells (hiPSCs), derived from patients and healthy controls, and differentiated 
into motor neuron cell cultures. This multi-laboratory effort strives to establish i) robust multi-omic 
workflows for hiPSC and differentiated neuronal cultures, ii) public annotated data sets and iii) relevant 
and targetable biological pathways of spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis 
(ALS). Here, we focus on the proteomics and the quality of the developed workflow of hiPSC lines 
from 6 individuals, though epigenomics and transcriptomics data are also publicly available. Known 
and commonly used markers representing 73 proteins were reproducibly quantified with consistent 
expression levels across all hiPSC lines. Data quality assessments, data levels and metadata of all 
6 genetically diverse human iPSCs analysed by DIA-MS are parsable and available as a high-quality 
resource to the public. 

Background & Summary
NeuroLINCS (http://neurolincs.org/), is one of several data generation centers of the National Institute of Health 
(NIH) Library of integrated network-based cellular signature (LINCS)1. It is comprised of a collaboration across 
seven specialized laboratories to support the multi-omic data generation and data integration initiatives for the 
motor neuron disorders amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA)2. All ALS cell 
lines analysed originate from a subset of ALS patients with genetic mutations in C9orf72 (C9), superoxide dis-
mutase 1 (SOD1) or were derived from sporadic disease3–6. SMA cell lines contain various genetic mutations in 
SMN1 that reduce expression and reduce or inhibit normal protein function. SMA patients are often diagnosed 
in early childhood whereas ALS is diagnosed later in life, 55 being the average age of onset.

Biomolecular studies of human neurological disorders have transitioned to hiPSC differentiated cell types 
affected in diseases since human tissue samples or biopsies can only be obtained posthumously and thus less 
informative for studies of disease progression. NeuroLINCS focuses on hiPSCs differentiated to motor neuron 
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cell cultures. The biological interrogation of human neuronal cultures is possible due to advances in hiPSC line 
generation7 and neuronal differentiation protocols, as long as the culture protocol is consistent8–14.

The goal of NeuroLINCS is to generate and combine multi-omic data sets to produce weighted disease sig-
natures from epigenomic, transcriptomic and proteomic pathway analyses from the same live cell specimens 
to test functional phenotypes using specialized robotic imaging assays15–17, and functional assays (Fig. 1a)18–20. 
Of the twelve cell lines (fig 1b), six lines were selected, two per biological condition: patients with the C9orf72 
ALS mutation (C9)21, patients with SMA22, and heathy or undiagnosed motor neuron controls (Fig. 1b). hiPSCs 
and motor neuron cultures were prepared in duplicate or triplicate at Cedars-Sinai Stem Cell Core (https://
www.cedars-sinai.org/research/areas/biomanufacturing/ipsc.html). To assess the challenges around carrying 
out proteomics on hiPSC and derived motor neurons, it was important to document the number of times a cell 
line did not grow appropriately, or cells numbers were insufficient for adequate proteome depth. It is equally 
important to understand the stability of the differentiation protocol and the data generation workflow over time 
by analysing i) biological growth replicates for which the same hiPSC cell line was collected from different wells 
but cultured simultaneously and ii) sample data re-collection from a digested sample to ensure the stability of 
sample storage and the performance of the mass spectrometer over the course of months.

A summary of all NeuroLINCS hiPSC and differentiated motor neuron data publicly released through the 
NIH LINCS program23,24 are provided (Table 1). Data-independent acquisition-mass spectrometry (DIA-MS) is 
a quantitative discovery tool in proteomics and its application has gained recognition in clinical biomarker anal-
yses25–27. NeuroLINCS proteomic data was generated using SWATH-MS, a data-independent acquisition-mass 
spectrometry (DIA-MS) method28, to reproduciably quantify approximately 3,000 proteins in every motor neuron  
sample of the NeuroLINCS project.

Aligned with the vision and goals of the NIH LINCS program, to make a long-standing data resource to the 
public, data quality assessments and supporting metadata are available for overall transparency. The NIH Data 
integration and coordination center (DCIC) introduced a system to designate and provide access to each respec-
tive data level with the intention of enabling broad applicability throughout the scientific community1. The 
levels have been organized to be consistent across various assay types and LINCS data generation centers. These 
include, raw data files, unprocessed/pre-normalized protein and peptide relative quantitation values, normalized 
protein/peptide quantitation, and biological signatures. This format inherently provides perspective for potential 

Fig. 1  NeuroLINCS project overview. (a) Omic data generation centers include transcriptomics, proteomics, 
epigenomics, robotic imaging assays and cell-based functional studies. Molecular signatures of disease from 
epigenetic, RNA and protein analyses are incorporated into integrative network analysis using Omic Integrator. 
(b) Samples generated from 12 patient-derived hiPSC lines. Proteomics data is generated using DIA-MS 
methods on TripleTOFs (Sciex) and searched using sample specific peptide spectral libraries generated from 
DIA-MS of pooled samples. Analyte signals are extracted using OpenSWATH and MapDIA as specified.
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data users to the relevant data level applicable to their interest and expertise. For example, data level 0 contain 
raw MS data files for remining peptide spectra or testing novel mass spectral computational tools. The last data 
level containing biological signatures for NeuroLINCS contains hiPSC protein markers and differential pro-
tein expression signals. Neurobiologists looking for a specific protein or peptide of interest may parse through 
disease specific protein signatures compiled in the final processed data level. It should go without saying, any 
publicly available data set requires careful consideration and data quality assessments regardless of data type29–35. 
Many previously reported hiPSC protein markers are observed in all hiPSC analysed and are discussed below.

Methods
hiPSC lines, culture and maintenance.  Fibroblasts from ALS, SMA and control donors were repro-
grammed into hiPSCs using nucleofection of episomal plasmids containing POU5F1, SOX2, KLF4, LIN28, 
L-MYC, TP53shRNA as described in previously published manuscripts21,36,37. All the cell lines and protocols in 
the present study were carried out in accordance with the guidelines approved by Stem Cell Research Oversight 
committee (SCRO) and Institutional Review Board (IRB) at the Cedars-Sinai Medical Center under the auspice 
IRB-SCRO Protocols Pro00032834 (iPSC Core Repository and Stem Cell Program). Human iPSCs were cul-
tured in mTeSR®1 medium (StemCell Technologies, Cat. 85850) on growth factor-reduced Matrigel™ Matrix  

Cell type Cell Line Diagnosis
Differentiaion 
protocol

ATAC-Seq RNA-Seq DIA-MS Proteomics

Leve 
l

Leve 
3

Leve 
4

Leve 
1

Leve 
3

Leve 
4

Leve 
0

Leve 
2

Leve 
3

Leve 
4

iPSC

CS14iCTR-n6 Control none A A A A A A A A A A

CS25iCTR-18n2 Control none A A A A A A A A A A

CS83iCTR-33n1 Control none A A A A A A A A A A

CS28iALS-n2A ALS - C9orf72 none A A A A A A A A A A

CS29iALS-n1N ALS - C9orf72 none A A A A A A A A A A

CS30iALS-n1A ALS - C9orf72 none A A A A A A A A A A

CS52iALS-n6A ALS - C9orf72 none n/a n/a n/a A A A A A A A

CS32iSMA-n3 SMA Type I none A A A A A A A A A A

CS77iSMA-n5 SMA Type I none A A A A A A A A A A

CS83iSMA-n5 SMA Type I none A A A A A A A A A A

iMNs

CS00iCTR_iMNS Control Long A A A A A A A A A A

CS25iCTR_iMNS Control Long A A A A A A A A A A

CS83iCTR_iMNS Control Long A A A A A A A A A A

CS28iALS_iMNS ALS - C9orf72 Long A A A A A A A A A A

CS29iALS_iMNS ALS - C9orf72 Long A A A A A A A A A A

CS30iALS_iMNS ALS - C9orf72 Long A A A A A A A A A A

CS52iALS_iMNS ALS - C9orf72 Long A A A A A A A A A A

CS32iSMA_iMNS SMA Type I Long A A A A A A A A A A

CS77iSMA_iMNS SMA Type I Long A A A A A A A A A A

CS83iSMA_iMNS SMA Type I Long A A A A A A A A A A

diMNs

CS00iCTR_diMNS Control Short A A A A A A A A A A

CS14iCTR_diMNS Control Short A A A A A A A A A A

CS25iCTR_diMNS Control Short A A A A A A n/a n/a n/a n/a

CS83iCTR_diMNS Control Short A A A A A A n/a n/a n/a n/a

CS04iALS_diMNS ALS - SOD1 Short A A A A A A A A A A

CS11iALS_diMNS ALS - SOD1 Short A A A A A A A A A A

CS14iALS_diMNS ALS - SOD1 Short A A A A A A A A A A

CS22iALS_diMNS ALS - SOD1 Short A A A A A A A A A A

CS28iALS_diMNS ALS - C9orf72 Short A A A A A A A A A A

CS29iALS_diMNS ALS - C9orf72 Short A A A A A A A A A A

CS30iALS_diMNS ALS - C9orf72 Short A A A A A A A A A A

CS52iALS_diMNS ALS - C9orf72 Short A A A A A A A A A A

CS138isALS_diMNS ALS - Sporadic Short A A A A A A A A A A

CS152isALS_diMNS ALS - Sporadic Short A A A A A A A A A A

CS166iALS_diMNS ALS - Sporadic Short A A A A A A A A A A

CS32iSMA_diMNS SMA Type I Short n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

CS77iSMA_diMNS SMA Type I Short n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

CS83iSMA_diMNS SMA Type I Short n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Table 1.  NeuroLINCS data publicly released. A, available; n/a, not available.
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(Corning, Cat. 354230) coated plates at 37 °C in a 20% O2, 5% CO2 incubator. Briefly, 70–90% confluent hiPSC colonies  
were passaged every 7 days chemically (Versene, Life Technologies, Cat. 15040-066) or mechanically by StemPro® 
EZPassage™ Disposable Stem Cell Passaging Tool (Life Technologies, Cat. 23181–010). The hiPSCs in this study 
were passaged every 5–7 days. The hiPSCs were cryopreserved using CryoStor CS10 (StemCell Technologies, Cat. 
07930) and an isopropanol freezing vessel at −80 °C overnight. The cryopreserved vials were subsequently stored 
in liquid nitrogen tanks for long-term storage. Within the various samples produced for proteomics analysis, there 
were biological growth replicates in which the same hiPSC line was collected from different wells but cultured 
simultaneously and each well was processed for mass spectral analysis as independent, biological replicate samples.

Sample preparation.  Cell pellets were lysed in 2% SDS, 0.1% TCEP and sonicated for 30 minutes at 70 amp, 
10 second on/off pulses (QSonica Q800R) before transfer to 30 kD MWCO filters according to the FASP sample 
processing protocol38. SDS was removed by buffer exchange with 8 M urea into Tris, pH 8 and samples were alky-
lated using iodoacetamide. Protein digestion was performed in 50 mM NH4HCO3, pH 8, with Trypsin/LysC mix 
(Promega) overnight while shaking at 37 °C. Digested sample was desalted and cleaned for mass spectral analysis 
using Oasis MCX 96-well plates (Waters) and resulting samples were dried and reconstituted in 0.1% FA H20. 
Liquid Chromatography retention time standards (Biognosys) were added to each sample before analysis by mass 
spectrometry.

Mass spectrometry.  Human inducible pluripotent stem cells were analysed on the Triple TOF 6600 or 5600 
instruments (Sciex)39. A sample specific spectral  library was generated from pooled samples of each biological 
condition, control, ALS and SMA, i.e. control samples were only pooled with controls and 19 DDA-MS analyses 
were performed. The 19 DDA-MS data files used to make the sample specific spectral library, as well as the spec-
tral library file generated in OpenSWATH are available (https://panoramaweb.org/NeuroLINCS_iPSCs.url and 
PXD021497)40. DIA-MS methods used 100 variable windows over a chromatographic gradient of 120 minutes in 
the 400–1200 m/z range. Additional experimental metadata are accessible on the NIH LINCS data portal (https://
lincsportal.ccs.miami.edu/datasets/)24 and available for download (Table 2). Note, data level 0 and 1 are only on 
panorama web and not available through the NIH portal due to data size limitations.

Data analysis.  Peptide spectral library and data analysis of DIA-MS data were performed as previously 
described for Triple TOF data41. OpenSWATH algorithum42 was used for both spectral ion library generation 
from peptide identification output files generated from DDA43 data files and for peptide quantitation from DIA 
data by extraction of transition ions. Peptide quantitation values are compiled into protein level quantitation 
using MapDIA v2.4.144 and described in more detail below.

Spectral library generation using DDA-MS.  Profile-mode.wiff files from the data acquisition were converted 
to mzML format using the Sciex Data Converter (in proteinpilot mode), version 1.3, and then re-converted to 
mzXML format using ProteoWizard v.3.0.600245 for peaklist generation. The MS2 spectra were queried against 
the reviewed canonical Human Uniprot complete proteome database as of July, 2019 appended with iRT protein 
sequence and shuffled sequence decoys46. All data were searched using the X!Tandem Native v.2013.06.15.1, 
X!Tandem Kscore v.2013.06.15.147 and Comet v.2014.02 rev.248. The search parameters included the following 
criteria: static modifications of Carbamidomethyl (C) and variable modifications of Oxidation (M). The pre-
cursor ion mass tolerance was set to be 50 p.p.m, and mono-isotopic fragment mass tolerance was 100 p.p.m 
and subsequently filtered to be < 0.05 Da for building spectral library; tryptic peptides with up to three missed 
cleavages were allowed. The identified peptides were processed and analysed through Trans-Proteomic Pipeline 
v.4.849,50 and was validated using the PeptideProphet51 scoring and the PeptideProphet results were statistically 
refined using iProphet52. All the peptides were filtered at a false discovery rate (FDR) of 1%. The raw spectral 
libraries were generated from all valid peptide spectrum matches and then refined into the non-redundant con-
sensus libraries53 using SpectraST v.4.054. For each peptide, the retention time was mapped into the iRT space55 
with reference to a linear calibration constructed for each data analyses as by Collins et al.53. Peptide spectral 
library was constructed using the top six most intense transitions.

Level 0
DIA-MS Raw data files (.wiff)
DDA-MS library data files (.wiff)
hiPSC ion library (TraML)

Panorama
https://panoramaweb.org/NeuroLINCS_iPSCs.url
https://doi.org/10.6069/50qp-cy56
Proteome Exchange
PXD02149740

Level 1 Skyline document of 73 quantified hiPSC proteins Panorama
https://panoramaweb.org/NeuroLINCS_iPSCs.url40

Level 2 raw counts (no normalization) for protein and peptides, 
removal of non-proteotypic peptides, QC

NIH LINCS data portal23,24

https://lincsportal.ccs.miami.edu/datasets/

Level 3 Normalized counts for protein and peptides, removal of non-
proteotypic peptides, QC

NIH LINCS data portal23,24

https://lincsportal.ccs.miami.edu/datasets/

Level 4
For hiPSCs (Exp 1): 73 quantified hiPSC proteins.
For iMN (Exp 2, 3): Signatures, Fold change (a) peptide level (b) 
protein levels

NIH LINCS data portal23,24

https://lincsportal.ccs.miami.edu/datasets/

Table 2.  Data levels and public access.
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Fig. 2  Data consistency across sample analyses. (a) Number of proteins, peptides and transitions identified 
per sample, including biological growth replicates and temporally dispersed technical replicates. MS raw file 
and sample metadata are available in the online Supplementary Table 4. (b) nomenclature key for data labeling, 
cell line, growth replicate, biological condition, and biological growth replicate. (c) distribution of raw un-
normalized protein quantitation log2 signal intensity. (d) normalized protein concentrations were calculated 
by dividing each transition intensity by the sum of transitions measured for that sample. Outlier iRT protein 
data points (circled) in samples with higher iRT to total protein ratios. (e) log2 intensity of iRT per sample after 
normalization. iRT measurements greater than 25 are highlighted red. (f) statistics of proteins identified across 
all data files (n = 38). (g) distribution of protein coefficient of variation (CV) for biological replicates of each 
cell line. CV for all biological replicates, per bar, and technical replicates. (h) CVs calculated in pairs for each 
biological replicate. Calculated CVs provides resolution of data quality assessments.

https://doi.org/10.1038/s41597-022-01687-7
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Targeted data analysis for DIA-MS.  DIA-MS wiff files from the data-independent acquisition were first con-
verted to profile mzML using ProteoWizard v.3.0.600245. The whole process of SWATH-targeted data analysis 
was carried out using OpenSWATH v.2.0.056 running on an internal computing cluster. OpenSWATH utilizes a 

Fig. 3  Reproducibly quantified protein markers of human iPSC lines. (a) 73 protein markers of pluripotency reproducibly 
quantified in 6 patient-derived iPSC lines. Protein quantitation was averaged across all growth and technical replicates 
for each cell line. (b) Heatmap of 73 protein hiPSC markers. (c) Extracted ion chromatograms (XICs) for peptide 
K.LYPAIPAAR.R [562, 570] of DNA (cytosine-5)-methyltransferase 3B in hiPSC lines 14i and 25i for three biological 
growth replicates. (d) Skyline peak area plot of K.LYPAIPAAR.R [562, 570] transition ions. (e) unbiased sample clustering 
of DIA-MS hiPSC samples and replicates by hierarchical clustering and (f) unbiased sample clustering by PCA.

https://doi.org/10.1038/s41597-022-01687-7
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target-decoy scoring system (PyProphet v.0.13.3) such as mProphet to estimate the identification of FDR. The 
best scoring classifier that was built from the sample of most protein identifications was utilized in this study. 
Based on our final spectral library, OpenSWATH firstly identified the peak groups from all individual SWATH 
maps at a global peptide FDR of 1% and aligned them between SWATH maps based on the clustering behaviors 
of retention time in each run with a non-linear alignment algorithm57. For this analysis, the MS runs were rea-
ligned to each other using Locally Weighted Scatterplot Smoothing method and the peak group clustering was 
performed using ‘LocalMST’ method. Only peptide peak groups that deviate within 3 standard deviations from 
the retention time were reported and considered for alignment with the max FDR quality of 5% (quality cutoff 
to still consider a feature for alignment). To obtain a quantitative data at the protein level, proteins whose pep-
tides were shared between multiple different proteins (non-proteotypic peptides) were discarded from protein 
level analysis and reporting57. This step reduces the total number of peptides and proteins reported even though 
the peptides are unambiguously identified because it is unclear which or if all the possible protein matches are 
present in the sample. This step becomes necessary to strengthen the biological pathway analysis of proteins by 
eliminating inaccurate biological pathways that would result from the inclusion of proteins isoforms or vari-
ants identified using peptides shared by multiple proteins. Data pre-processing and statistical analysis of MS 
runs into quantitative protein data was performed using mapDIA v2.4.144. The transition ion intensities were 
normalized by total intensity sums as well as a novel alternative normalization by local intensity sums in reten-
tion time space to remove systematic bias between MS runs. This is followed by outlier removal and peptide/
fragment selection that preserve the major quantitative patterns across all samples for each protein. The selected 
transition and peptide ions which are unambiguously unique proteotypic peptides assigned to a single specific 
protein were used in the final model-based statistical significance analysis of protein-level differential expression 
between specified groups of samples. Quantitative peptide and protein level summary outputs generated by 
mapDIA v2.4.144 were then used for all downstream biological pathway analyses.

Data Records
Cell line information and omic assay data, metadata and SOPs can be accessed and downloaded through the 
NIH LINCS website. Access to all data levels is either through the NIH LINCS data portal (https://lincspor-
tal.ccs.miami.edu/datasets/)23,24 or through panorama40 (Table 2). Samples, raw file naming and mapping to 
figure abbreviations and sample replicate metadata are available through the NIH LINCS portal and online 
Supplementary Table 4. Omic data integration analyses are performed using Omics Integrator on differenti-
ated neuron cultures and is published separately (http://fraenkel-nsf.csbi.mit.edu/omicsintegrator/)58,59. The 
proteomics data released includes the complete pre- and post-normalized peptide and protein lists, a skyline 
document composed of 73 stable proteins signatures (online Supplementary Table 1)  of hiPSCs and all DIA 
and DDA raw data files used for this data analysis and to generate sample specific spectral  libraries, respectively 
(Table 2). In addition, members of the DCIC have developed and given public access to data mining tools avail-
able through the NIH LINCS program data portal23,24. Shamsaei and Meller, of the BD2K-LINCS DCIC, have 
contributed several assets to overall LINCS proteomics including a LINCS proteomics website, http://www.
lincsproteomics.org/lincsproteomics/ and a novel proteomics peptide data-to-knowledge tool piNET60.

Technical Validation
Technical validation efforts of NeuroLINCS proteomic data include cell line and data quality assessments for 
the hiPSCs samples and data generated. Cell lines are generated and cultured by the Cedars-Sinai’s Induced 
Pluripotent Stem Cell Core. Routine quality control assessments are performed during hiPSC line generation, 
maintenance, banking and experimental use as described above. Out of 12 lines, 2 lines (an SMA line and a 
control line) were not able to be used after rigorous genomic quality control assessments performed routinely by 
the iPSC core determined that these cell lines cultures were contaminated with another cell line. Therefore, these 
samples were dropped from further analysis.

For the DIA-MS data, the number of proteins and peptides quantitated using OpenSWATH provides the 
first tier of data curation (Fig. 2a). Quality data files that fall below a minimum number of quantifiable peptides, 
simply due to limited sample, adversely affect the extraction potential of equally loaded sample data files. Once 
these data files, limited by sample amount available for analysis are removed, the number of peptides quantitated 
is maximized for the remaining data files when searched simultaneously. Based on this criterion, samples that 
resulted in less than 2,000 quantifiable proteins in combination with the cell line sample quality assessment 
mentioned, two cell lines per experimental group, CTR, ALS and SMA, were removed from further analyses. 
This left 2 cell lines per experimental group for a total of 6 different patient-derived hiPSC lines. Once sample 
normalization was performed, the highest abundant protein data points were circled (Fig. 2c,d) as outliers. These 
data points were investigated further to determine what they were and if they were the same protein in each sam-
ple. Of note, these outliers were only in same that quantified the lowest number of proteins comparatively, albeit 
above 2,000 proteins as well as overall higher %CVs for the proteins quantified. All five circled data points were 
identified as the internal retention time standard, which gets spiked into all samples. These samples, where iRT 
peptides were the most abundant and more abundant than detected in any other sample (Fig. 2e) resulted from 
a higher ratio of iRT peptides to total protein and are, therefore, not considered a defect in the normalization 
method used.

To assess stability of the hiPSC culture protocol and consistency between growth plates, analysis of 3 biolog-
ical growth replicates were performed for each cell line using different wells of the culture plate and thus grown 
simultaneously. The percent coefficient of variation (%CV) analyses were performed on the protein level data 
of 6 hiPSC lines collected in 3 biological replicates (Fig. 2g). To assess the stability of frozen, digested peptide 

https://doi.org/10.1038/s41597-022-01687-7
https://lincsportal.ccs.miami.edu/datasets/
https://lincsportal.ccs.miami.edu/datasets/
http://fraenkel-nsf.csbi.mit.edu/omicsintegrator/
http://www.lincsproteomics.org/lincsproteomics/
http://www.lincsproteomics.org/lincsproteomics/


8Scientific Data |           (2023) 10:24  | https://doi.org/10.1038/s41597-022-01687-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

samples and instrument conditions, 3 technical replicates were also generated from each of the ALS and SMA 
lines, both 8 and 10 months following the initial data acquisition. To determine if some of the samples were 
outliers, causing overall higher %CVs, each sample was replotted in pairs for %CV calculations (Fig. 2h). For 
the first technical replicate of cell line 28i-1ALS, (Fig. 2e), only ~40% of proteins between 3 biological replicates 
have a %CV less than 25. However, biological replicate one has the lowest correlation, i.e., high %CV when 
compared to either replicate 2 or 3. In Fig. 2f, 28i-1ALS, 70% of the proteins quantified in biological replicates  
2 and 3 have a %CV less than 25. Therefore, biological replicate 1 of 28i was removed from biological anal-
yses due to decreased sample quality based on low correlation with the remaining 2 biological replicates of 
the 28i-ALS cell line and thereby eliminates experimental variability that would otherwise cloud the biological 
interpretation of, in this case, ALS.

Peptide signals were extracted to determine if known proteins routinely used to identify and character-
ize hiPSC cultures by immunofluorescent staining could be accurately and reproducibly quantitated in these 
DIA-MS analyses. A list of proteins used to characterize hiPSC cultures was generated in addition to proteins 
previously published on human iPSC samples7,61,62. In all, 73 proteins were extracted from the average 2300 
proteins quantified (Fig. 3). Protein quantitation of these hiPSC markers were stable, showing minimal quanti-
tative fluctuation across all 6 genetically diverse hiPSC lines analysed. This and other hiPSC proteomic studies 
may serve to further annotate protein databases of hiPSC protein expression and hiPSC biology in comparison 
to other human cell types or iPSCs originating from other organisms. Pripuzova, et al. published a panel of 
22 candidate protein markers of hiPSCs from the analysis of 10 hiPSC lines. Expression of these protein were 
first discovered by LCMS in 2 hiPSC lines and later confirmed by WB in an additional 8 lines62. Of the 22 
hiPSC proteins, 17 of these were able to be quantified in the panel of 73 hiPSC proteins produced in this study. 
StemCellDB63 (http://stemcelldb.nih.gov) used microarray global gene expression analysis to generate a gene 
list of 82 markers of which 30 of them are quantified on the protein level and are included in the panel of 73 
hiPSC protein markers. Other embryonic proteins are included, such as Taf8, known for its role in early embry-
onic development albeit not previously characterized in hiPSCs to our knowledge. According to UniProt, Taf8  
(by similarity) maybe important for survival of cells of the inner cell mass which constitute the pluripotent cell 
population of the early embryo.

Other proteins included in the panel of 73 are associated with aberrant expression in cancer cells. Cancer has 
been one of the most highly researched diseases. Though a hallmark of cancer is the cell’s ability to de-differentiate 
into a more pluripotent or stem cell-like state thus enabling increase cell replication and acquiring metastatic 
capabilities known as the epithelial-to-mesenchymal transition (EMT). Protein mapping to Ensemble tran-
script and CPTAC identifiers were compiled (online Supplementary Tables 2 and 3). From the CPTAC resource,  
11 proteins overlap with the 73 iPSC proteins out of the 1464 proteins targeted in the various cancer studies made 
available (https://gdc.cancer.gov). As annotations of cellular proteomes are explored, more overlap between these 
cell types should be expected. Ultimately, 73 proteins representing biological signatures of human iPSCs (level 1)  
and separate tables of these proteins and peptide quantitation per cell line from all technical and biological rep-
licates analysed are provided (data level 4).

After data quality assessments, the subset of hiPSC lines presented (38 MS raw files for 6 of 12 original lines) 
contain high quality protein and peptide data from which the 73 protein markers of human iPSCs are a valua-
ble contribution to lists previously published7,61,62. Aside from 2 cell lines that were unusable due to mixed cell 
line contamination, as previously stated, it is worth noting that the entire workflow was improved for all future 
NeuroLINCS proteomics analyses of motor neuron cultures58,59. The hiPSC study being the first analysis in the 
development of the pipeline with ultimate goals of being conducive to high-throughput analyses required for 
motor neuron samples of NeuroLINCS and, later, for Answer ALS59. Therefore, the small samples of the cultured 
iPSCs were intended to reduce cost, however the methods used to process samples required improvements 
methods to minimize the sample loss associated with the workflow used for the hiPSC samples of this study, 
which is directly responsible for the limited protein depth reported for the hiPSCs.

Making this data publicly available does not come without a few words of caution29–34. An important con-
sideration is that this hiPSC experiment was designed around understanding proteome variability rather than 
disease specific biology, in contrast to the experimental design of other NeuroLINCS data releases 2 and 3 
(Table 1), for which inducible motor neuron cultures were analysed. Therefore, disease versus control analyses 
for this iPSC data set cannot and should not be performed because there is no way to tease apart the technical 
variability of the batch effects from true disease specific biology since sample processing and data acquisitions 
were performed separately for the control and disease sample sets. Any attempt to derive disease specific biolog-
ical meaning from the apparent clustering in the dendrogram and PCA plot (Fig. 3e,f) for the purpose of disease 
specific biology, would be misguided. Instead, the PCA plot is a testament to the great quality of 2 patient control 
cell lines that tightly cluster and 28iALS biological replicates and 2 sets of individual technical replicates gener-
ated from frozen aliquots of the original sample digests, 8 and 10 months following the initial acquisition. Each 
cell line clusters tightly with its biological growth plate replicates and technical replicates. Therefore, sample 
clusters represent the quality of sample storage and technical reproducibility of the sample generation, sample 
processing and instrumentation. Continued development of both a semi-automated sample processing work-
flow and new DIA-MS methods have occurred since this initial iPSC experiment that deliver improved pro-
teome coverage, depth and precision while requiring less sample. Automation and small sample requirements 
are essential to accomplishing large scale, population-based proteomic studies of the future. This proteomic data 
stands to understand the nuances hiPSC protein biology from cell lines of several human subjects and to further 
annotate hiPSC specific resources as the field continues to explore human proteome variability across individu-
als, from different cell and tissue types or altered experimental conditions.
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Usage Notes
Data level 0 – raw MS files.

•	 Compare detection and quantitation to other human cell lines or cell types
•	 Mine unidentified peptide spectra from data-dependent acquisition (DDA) files
•	 Extraction of peptide identifications from new or updated Uniprot fasta files or other protein sequence data-

bases with isoform sequences or genetic variations resulting in peptide sequence changes.
•	 Raw data analysis using alternative data conversion and extraction algorithms.
•	 Bioinformatic development or vetting novel MS-proteomics algorithms or data mining tools.
•	 Test new or updated search algorithms and mass spectral data normalization across independent data sets44,57.
•	 DIA-MS analysis of co- and posttranslational modifications has challenges and is an evolving aspect to these 

complex data sets28,59–63.

Data level 1 – Skyline documents of 73 quantified human iPSC proteins in 6 cell lines.

•	 Compare detection and quantitation to other human cell lines, cell types including cancer cells, oocyte and 
embryonic stem cells.

•	 Compare detection and quantitation to various states of hiPSC cultures64.

Data level 2 – unnormalized protein and peptide levels.

•	 Protein expression values may be combined or compared with other hiPSC or neuronal datasets with care-
ful considerations of signal correlations and overall compatibility of independent studies and normalization 
methods.

•	 Use to understand differences in detection based on technical methods used.

Data level 3 – normalized protein and peptide levels.

•	 Mine protein and peptide expression profiles.
•	 Explore data with respect to available patient, cell line and experimental metadata.
•	 Data integration studies using NeuroLINCS transcriptomic and epigenomic data generated from aliquots of 

the same sample for transcriptomics data or from the same cellular stock for epigenomic data.

Data level 4, signature – List of protein markers of pluripotency quantified in hiPSC samples. Signatures of dif-
ferentiated motor neuron cultures of the same cell lines are available as fold change values of protein expression 
between disease and control cell lines.

•	 Determine coverage of hiPSC markers in hiPSC MS-based data sets. 
•	 Match differential signatures in other hiPSC or neuronal disease studies to find signature overlap on the pep-

tide, protein or molecular pathway level65,66.

Code availability
Computer code used for data analyses of this manuscript are previously published and referenced in the Methods 
section.
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