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Over the last several decades, tremendous progress in the 
optimization of therapies for various medical conditions, 
such as cancer, has been realized. Many factors underlie this 

therapeutic success, including optimization of clinical trial design, 

new pathway-specific pharmaceuticals and the coordination of  
participant recruitment efforts across clinics. Perhaps one of the 
most powerful and fundamental reasons for the success of some 
cancer therapies is the ability to sample diseased tissues and thereby 
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Answer ALS is a biological and clinical resource of patient-derived, induced pluripotent stem (iPS) cell lines, multi-omic data 
derived from iPS neurons and longitudinal clinical and smartphone data from over 1,000 patients with ALS. This resource pro-
vides population-level biological and clinical data that may be employed to identify clinical–molecular–biochemical subtypes of 
amyotrophic lateral sclerosis (ALS). A unique smartphone-based system was employed to collect deep clinical data, including 
fine motor activity, speech, breathing and linguistics/cognition. The iPS spinal neurons were blood derived from each patient 
and these cells underwent multi-omic analytics including whole-genome sequencing, RNA transcriptomics, ATAC-sequencing 
and proteomics. The intent of these data is for the generation of integrated clinical and biological signatures using bioinfor-
matics, statistics and computational biology to establish patterns that may lead to a better understanding of the underlying 
mechanisms of disease, including subgroup identification. A web portal for open-source sharing of all data was developed for 
widespread community-based data analytics.
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distinguish the biological and molecular events responsible for 
individual diseases or disease subgroups within a disease cluster1. 
Thus, skin, breast or prostate biopsies have been important start-
ing points for the investigation of various types of melanomas and 
breast or prostate cancers. Neurodegenerative diseases such as ALS, 
Alzheimer’s disease and Huntington’s disease have, however, not 
seen such advances. Clinical trials in humans, often based on find-
ings from nonhuman model systems, have repeatedly proven dis-
appointing2,3. Although there are probably many reasons for such 
failures (for example, poor pharmacokinetics, wrong biological 
pathway, lack of target engagement), a critical reason is the inabil-
ity to identify disease pathways in patient tissues and to segment 
patients for clinical trials according to these pathways. As a result of 
the high risk of disability, brain and spinal cord biopsies for tissue 
analysis are not feasible in neurodegenerative diseases and there-
fore, unlike the biopsy of other organs and tissues, obtaining neural 
tissue during the disease course is a significant hurdle to effective 
therapeutic development.

An alternative is to use stem cell technology and infer disease 
pathways from cell lines derived from the patients’ own blood. 
Evidence for this approach is beginning to emerge. Early work 
employing iPS spinal neurons from patients with C9orf72 ALS/
frontotemporal dementia led the way to the development of the 
first antisense-based gene therapy for this common familial form 
of ALS (fALS), with an international clinical trial already under 
way (clinicaltrials.gov: NCT03626012)4,5. But for most patients with 
ALS, who have sporadic disease (sALS), these discoveries have yet 
to translate into meaningful therapies. A major barrier has been the 
lack of a predictive preclinical human model for sALS. However, 
with advances in iPS cell technology and the unprecedented data 
and specimen collection efforts of Answer ALS, we can now take an 
iPS cell-based approach to unraveling mechanisms that may cause 
or contribute to the heterogeneous clinical spectra of sALS, such as 
pattern and speed of spread and certain nonmotor manifestations. 
Notably, multiple gene mutations are already known to cause fALS 
and represent quite diverse pathways: RNA metabolism, nuclear 
transport, protein aggregation, axonal trafficking, glial dysfunc-
tion, etc.6. Curiously, the variability in clinical features is nearly as 
great when comparing patients with any single mutated gene as it is 
when comparing across genes or with sALS. Little is known about 
the derangements in specific biological pathway(s) driving sALS 
or whether there are ALS subgroups defined by specific biological 
derangements. Knowledge of these biological subgroups may be 
critically important and the success of disease-modifying thera-
pies may depend on treating the right ‘subgroup’ with the proper 
pathway-targeting drug.

The Answer ALS (AALS) program was conceived as a program 
to generate iPS cell lines from a large number of patients with 
ALS and apply well-established molecular, biochemical and imag-
ing techniques to understand the heterogeneity of sALS in these 
patient-derived spinal neurons, to serve as a ‘biopsy-like’ equiva-
lent. After ensuring that results were reproducible, we assembled 
comprehensive biological datasets from individual subject iPS cell 
lines and combined them with the longitudinal clinical data. In con-
trast to smaller previous iPS cell experiments, studies of iPS cells 
from a large population, like AALS, provide the first opportunity 
to explore biologically relevant subgroups of sALS. This resource 
program was designed with the core goals of providing large clini-
cal and biological datasets in an open source-like application that 
affords researchers the proper tools to identify biological subgroups 
and an extensive collection of IPS cell lines with which to test ALS 
therapies and hypotheses about ALS pathogenesis.

Results
Clinical demographics and clinical data generation. Population 
demographics. The enrolled participant population for the AALS 

program (Fig. 1a, Extended Data Fig. 1, Supplementary Information 
and Supplementary Tables 1–5) had clinical characteristics  
comparable to past large sALS population demographics, with 
a slightly higher number of male than female participants, site 
of disease onset predominantly a limb rather than bulbar and a  
mean age of disease onset of approximately 57 years. The mean 
delay in clinical diagnosis for ALS patients included in the study  
was 14.8 months. A higher percentage of patients with rapid pro-
gression had bulbar-onset disease. There was a wide range of  
disease progression rates over the time period of obser-
vation (Fig. 1b,c), with an average follow-up duration of 
12.5 months and an average rate of decline of 0.77 points per 
month (Fig. 1b,c). The smaller population of patients with 
fALS in the resource had typical representations of the com-
mon gene mutations including C9orf72 and SOD1 (Table 1),  
with a small subset of patients with C9orf72 and non-C9orf72 
ALSs developing cognitive decline during the study (https://data-
portal.AnswerALS.org). A small number of individuals were ALS  
mutation carriers (asymptomatic ALS) without overt neurological 
disease (Table 1). Non-ALS motor neuron disease (MND) included 
patients with predominantly upper MND, not formally catego-
rized as ALS (for example, primary lateral sclerosis), and their 
demographic information is included in Supplementary Table 4.  
The healthy control subject population consisted of age-matched 
participants without ALS or a family history of ALS.

App-based voice recordings—motor and speech analyses. A core 
tool to gather more comprehensive longitudinal clinical data,  
ultimately to integrate with the biological datasets, was the 
development of a new smartphone app, designed to inform ele-
ments of motor activity, speech, breathing, voice and cognition 
(Supplementary Information) while patients were at home. Given 
the nature of this progressively disabling disorder, the reliability 
of utilization is an important variable. Compliance for using the 
smartphone app was analyzed over 18 months from the beginning 
of the app rollout to a subset of 80 study subjects. Surprisingly, 
only a modest decrease in compliance was observed with increased  
duration of use (Fig. 2a).

App data accurately predicted clinical progression. From speech 
recordings, we extracted linguistic features to evaluate word diver-
sity and complexity of thought such as semantic similarity, disper-
sion and frequency, as recently detailed7. Features derived from 
the voice tasks (single-breath count, read-aloud passage and free 
speech; Extended Data Fig. 2) each correlated highly with the 
bulbar subdomain of the ALS Functional Rating Scale-Revised 
(ALSFRS-R; Pearson’s R = 0.8, slope = 1.14; Pearson’s R = 0.89, 
slope = 0.98; and Pearson’s R = 0.71, slope = 1.12, respectively). 
Features from the finger tracing showed modest individual correla-
tions with the ALSFRS-R total score (Fig. 2b and Extended Data  
Fig. 2). Importantly, the combination of features from all of 
these tasks correlated very highly with the ALSFRS-R total score 
(Pearson’s R = 0.89, slope = 1.16; Fig. 2c).

Features obtained from the single-breath counting task corre-
lated well with vital capacity (R = 0.63) and strongly suggest that 
voice analysis could be a proxy for vital capacity measurements in a 
clinic. Similar results by others employing sustained phonation are 
in agreement with our new observations8.

Importantly, semantic analysis of the picture description  
task was highly correlated with the ALS-Cognitive Behavioral 
Screen (CBS) (R = 0.72) and less correlated with the central nervous 
system (CNS) lability scale (R = 0.45). These studies then also sug-
gest that at-home app analytics can be useful for longitudinal cogni-
tion analytics.

This task also predicted well the ALSFRS-R speech subscore  
(Fig. 2b); however, models using features from the reading task 
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outperformed the counting and picture description tasks. A more 
detailed account of these results is reported elsewhere7.

These results demonstrate that the modules implemented to 
assess hand function and speech may be useful to quantify ALS 
function when patients are not in clinic and can substantially 
aid in the acquisition of progressively declining clinical indices. 
Furthermore, the picture description task may be useful to evalu-
ate cognitive function in ALS. The potential to record voice and 
store it encrypted in the cloud could provide a powerful clinical tool  
to assess change over time that could be used clinically and in  
ALS trials.

Production of the iPS cell line. A core design and strength of 
the program are the set of iPS cell lines from a large population of 
>1,000 patients with ALS and control subjects, all deeply pheno-
typed, provided to the research community. To date, more than 850 
of the iPS cell lines have been generated and are available through 
the web portal. Out of the ~850 unique samples, only 18 lines (~2%) 
failed reprogramming. As there are multiple different protocols to 
generate iPS cells and differentiate them into motor neurons, it was 
essential that the uniformity of the generated cultures be evaluated, 
thereby establishing the reliability of this new and renewable bio-
logical resource. To address this central issue, we evaluated the iPS 
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Fig. 1 | Clinical enrollment and characteristics: ALSFRS-R progression curves for all AALS clinic-enrolled subjects over a 40-month period. a, Patients 
with AALS and control subject enrollment. b, ALSFRS-R total slope distribution. Kernel density estimation with Gaussian kernels was used to estimate the 
probability density function of the ALSFRS-R slope. The dashed line indicates the mean ALSFRS-R slope. c, Longitudinal ALSFRS-R measurements with fast 
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cell-derived spinal neurons from a large cohort of 217 control and 
ALS iPS cell lines. Specifically, we examined expression of five dif-
ferent cell-identifying markers for neurons and glia, including cell 
markers NKX6.1, SMI32, ISL1, TUJ1 and S100beta. This differen-
tiation protocol (Extended Data Fig. 3) generates a mixed popula-
tion of neurons consisting of ~75% (±8%) βIII-tubulin- (TuJ1-) and 
~70% (±10%) NF-H-positive cells, ~19% (±6%) Islet-1- and ~34% 
(±9%) Nkx6.1-positive spinal motor neurons, and ~18% (+/13%) 
S100B-positive progenitors 32 d after the onset of differentiation 
(Fig. 3 and Supplementary Table 6). As shown in Fig. 3, there was 
great uniformity in the cellular composition of the cultures for this 
large selection of human lines. This was important, because past 
work or methods can lead to variable cultures, making the inter-
pretation of downstream analysis complicated. Notably the cellular 

composition was not substantially different between the ALS and 
control iPS cell-derived neurons. As expected, these cultures pre-
sented a mixture of motor neurons, neurons and, to a lesser extent, 
glia. This was important, because ALS is not simply a motor neuron 
disease, but is a disorder of multiple different nervous system cell 
types, as reflected in these uniformly generated cultures.

Generation of multi-omics data. Genomics. As an appreciation 
of the overall diversity of the program’s ALS and control popula-
tion, especially valuable for future global analytics, we evaluated the 
AALS cohort using New York Genome Center’s (NYGC’s) ancestry 
pipeline9. Most participants were white and of European descent 
(91.45%); the remainder had ancestry consistent with the Americas 
(1.69%), Africa (4.94%) and east (1.33%) and south Asia (0.6%)  

Table 1 | Answer ALS basic clinical demographics

Subjects Statistics

Variable Level Overall: no. (%) ALS: no. (%) Asymptomatic 
ALSl: no. (%)

Healthy 
control: no. 
(%)

Non-ALS MND: 
no. (%)

ALS versus 
healthy 
control

Participants n 100.0 (1,047) 82.2 (861) 1.1 (12) 10.3 (108) 6.3 (66)

Sex Female 40.6 (423) 37.4 (320) 58.3 (7) 66.4 (71) 37.9 (25) <0.001

Male 59.4% (618) 62.6 (536) 41.7 (5) 33.6 (36) 62.1 (41) <0.001

[missing]  (6)  (5)  (0)  (1)  (0) N/A

Race Native American 0.2 (2) 0.1 (1) 0.0 (0) 1.0 (1) 0.0 (0) 0.078

Asian 2.0 (21) 1.5 (13) 0.0 (0) 5.7 (6) 3.0 (2) 0.004

Black 4.8 (49) 5.0 (42) 0.0 (0) 4.8 (5) 3.0 (2) 0.928

Pacific Islander 0.1 (1) 0.1 (1) 0.0 (0) 0.0 (0) 0.0 (0) 0.724

White 92.9 (956) 93.3 (789) 100.0 (12) 88.6 (93) 93.9 (62) 0.081

[missing]  (18)  (15)  (0)  (3)  (0) N/A

Ethnicity Hispanic or Latino 4.8 (50) 5.3 (45) 0.0 (0) 2.8 (3) 3.1 (2) 0.271

Not Hispanic or 
Latino

95.2 (989) 94.7 (810) 100.0 (12) 97.2 (104) 96.9 (63) 0.271

[missing]  (8)  (6)  (0)  (1)  (1) N/A

Age at baseline (years) Mean (s.d.) 58.9 ± 11.6 (20.0, 
91.0)

59.3 ± 11.1 (24.0, 
91.0)

48.3 ± 10.3  
(33.0, 62.0)

55.0 ± 14.1 
(20.0, 82.0)

61.9 ± 12.0 
(26.0, 85.0)

<0.001

Time between symptom 
onset and diagnosis 
(months)

Mean (s.d.) 15.9 ± 20.4 (−5.7, 
286)

14.8 ± 16.8 
(−5.7, 185)

N/A N/A 40.8 ± 52.6 (0.1, 
286)

N/A

Time between symptom 
onset and study 
enrollment (months)

Mean (s.d.) 32.0 ± 39.4 (0.6, 
458)

29.8 ± 35.6 
(0.6, 458)

N/A N/A 78.4 ± 75.3 (11.1, 
353)

N/A

BMI at screening visit Mean (s.d.) 26.8 ± 6.39 (10.1, 
150)

26.5 ± 4.83 
(10.1, 44.4)

29.2 ± 3.38  
(23.6, 34.2)

29.2 ± 14.9 
(17.0, 150)

27.3 ± 5.61 
(16.6, 47.3)

<0.001

ALSFRS-R at first 
ALSFRS-R visit

Mean (s.d.) 33.8 ± 8.65 (0.0, 
47.0)

33.8 ± 8.67 
(0.0, 47.0)

N/A N/A 33.5 ± 8.44 (7.0, 
46.0)

N/A

ALSFRS-R slope −0.73 ± 0.87 
(−5.1, 1.4)

−0.77 ± 0.88 
(−5.1, 1.4)

N/A N/A −0.11 ± 0.40 
(−1.6, 1.0)

N/A

FVC (percentage 
predicted) at first 
ALSFRS-R visit

Mean (s.d.) 69.9 ± 24.0 (4.0, 
126)

69.6 ± 23.9 
(4.0, 125)

N/A N/A 73.7 ± 25.3 
(17.0, 126)

N/A

FVC slope −1.5 ± 2.53 
(−16,14.1)

−1.6 ± 2.59 
(−16,14.1)

N/A N/A −0.12 ± 0.86 
(−1.9, 2.1)

N/A

Follow-up duration Months (mean 
(s.d.))

13.3 ± 17.3 (0.0, 
340)

12.5 ± 12.6 (0.0, 
94.1)

N/A N/A 24.0 ± 47.2 
(0.0, 340)

N/A

Time from onset to death Months (mean (s.d.)) N/A 34.7 ± 27.6 (8.3, 
187)

N/A N/A N/A N/A

BMI, body mass index; N/A, not available.
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(Fig. 4). On average, each sample harbored a total of ~4.1 mil-
lion variants and ~9,800 protein-altering variants, including 
SNPs, frameshift and nonframeshift deletions and insertions, 
and protein-truncating variants (Table 2 and Fig. 4a–d), similar 
to previous reports10. Notably, the samples with African descent 
had a higher number of variants than other ethnic populations, as 
expected (Fig. 4b)11.

We used PCA12,13 to visualize the ancestry background of the 
AALS cohort and a set of 2,504 samples from the 1000 Genomes 
Project with well-defined ancestry. We find that most of the sam-
ples clustered with the NYGC’s European samples, although some 
were closer to the African group and a few clustered with the Asian 
group (Fig. 4e), corroborating the NYGC ancestry results and prob-
ably consistent with the local recruiting clinics geographic locations 
(Extended Data Fig. 1).

Variants in ALS genes. As most of the ALS lines were derived from 
patients with sALS, an analysis of the genomic variants is impor-
tant, especially as future opportunities for researchers to correlate 
the observed variants along with the deep clinical and multi-omics 
data, as well as the future use of the living cell lines. Within the 
830 samples, we observed 440 exonic variants in the 33-ALS genes 
(Supplementary Information) that were <1% frequent (Fig. 4c,d, 
Table 2 and Supplementary Table 7). Both controls and ALS cases 
averaged 1.5 rare ALS variants per individual within the 33-ALS 
genes. Of these, 79% were SNPs, 13% uncharacterized, ~1% splic-
ing, ~1% nonframeshift deletion, 1% frameshift deletion, 1% frame-
shift insertion, 2% frameshift insertion, 2% nonframeshift insertion 
and 1% stop-gain (Supplementary Table 7).

As future biological pathways in ALS subgroups could reflect 
the expression of genetic variants of established ALS genes, we 
first evaluated how many pathogenic or probably pathogenic vari-
ants existed as reported in ClinVar (CP) in the 33-ALS genes. We 
found that 12% of ALS cases harbored a CP variant within one of the 
33-ALS genes (Supplementary Tables 7 and 8). All of these CP vari-
ants were rare (<1% frequency within the population) except two 
found within the OPTN gene. For example, we observed five SOD1 
CP variants (within eight patients with ALS), two TDP43 CP vari-
ants (within two patients with ALS) and one CP FUS variant in a 
patient with ALS (Supplementary Tables 7 and 8). CP variants were 
also detected in individuals who did not show signs of ALS at the 
time of the clinic visit, and there were eleven CP variants within con-
trol samples (within ALS2, SETX, OPTN and PFN1), four CP vari-
ants in the pre-fALS cohort (within FIG4, OPTN and CHCHD10), 
three CP variants within individuals with other MNDs (within 

SQSTM1, OPTN and PFN1) and three CP variants in uncharac-
terized individuals (within SQSTM1 and SETX; Supplementary  
Table 8). In summary, rare CP variants were observed in 3.11% (22 
total) of ALS cases and 1% of controls (1 out of 92 samples). We also 
investigated the number of P/LP variants called by Intervar (IP), in 
in silico prediction (ISD variants) and a new combination of ACMG 
gene criteria as well as the in silico prediction and family-based seg-
regation data, a list of high-confidence causal variants in 12 genes—
ALS2, CCNF, CHCHD10, FUS, OPTN, PFN1, SOD1, TARDBP, 
TBK1, UBQLN2, VAPB and VCP—which have been curated 
and designated as the HP (Harms P/LP, Supplementary Table 7)  
variants. These are reported in Supplementary Tables 7–11.  
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Fig. 2 | Smartphone use and analytics (n = 80 biologically independent 
samples). a, Smartphone app compliance mean and 95% confidence 
interval (CI). Compliance was calculated using the average number of 
tasks done per day and per subject. b, Results of inferring ALSFRS-R total. 
Pearson’s values are shown in black contoured bars (left, y axis) and mean 
absolute errors of the prediction are shown in color bars with 95% CI 
(right, y axis). Performance values were obtained using each individual task 
as well as the combination of all the tasks. The highest performance was 
obtained using all tasks (R = 0.89, P < 1 × 10−5). LH, left hand; RH, right hand. 
c, Results of inferring ALSFRS-R scores using only speech-related tasks. 
Pearson’s values are shown in black contoured bars (left, y axis) and the 
mean absolute errors of the prediction are shown in color bars with 95% CI 
(right, y axis). Performance values were calculated independently for each 
of the three speech tasks to infer FVC and ALSFRS-R speech and bulbar 
subscores. Highest performance was obtained using information from 
the reading task for both ALSFRS-R subscores, obtaining up to R = 0.89 
(P < 1 × 10−5) or ALSFRS-R bulbar subscore. On the other hand, counting 
task information produced the best result when inferring the FVC score 
(R = 0.65, P = 2 × 10−2).
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We investigated CP, IP and ISD variants found across all genes in 830 
samples and these are listed in Supplementary Tables 12, 13 and 14.

Expansions in C9orf72 and ATXN2. Genomic expansions of both 
C9orf72 and ataxin 2 are associated with both fALS and sALS. 
The availability of large numbers of iPS cell lines and the matched 
multi-omics data from this phenotypically variable genetic sub-
group provide a unique future opportunity to investigate these genes 
that alternatively lead to ALS and/or FTD. Using Expansion Hunter 
to identify repeat expansions within whole-genome sequencing 
(WGS) data, we found 601 expanded regions in the 830 samples14. 
In total, 41 patients with ALS and 4 pre-fALS subjects in the AALS 
study population harbored hexanucleotide expansions in C9orf72 
that were >26 repeats (Fig. 4f and Supplementary Table 15). We also 
observed 35 patients with ALS, 4 controls and 1 uncharacterized 
individual harboring CAG triplet repeat expansions in ATXN2 >26 
repeats (Fig. 4g and Supplementary Table 16). All patients with ALS 
with >26 ATXN2 repeats had clinical phenotype characteristics of 
MNDs and no other reported neurological abnormalities. Notably, 
in this population of patients and cell lines, for carriers of expan-
sions in both ATXN2 and C9orf72 simultaneously, we found no cor-
relation between age of ALS onset and expansion size (Fig. 4h,i and 
Supplementary Tables 15). However, future multi-omic studies of 

the patient iPS spinal neurons may reveal different biological path-
ways/properties when both mutations are co-expressed in humans.

ACMG genes. Pathogenic or probable pathogenic variants in 59 
genes are currently considered to be medically actionable by the 
American College of Medical Genetics and Genomics (ACMG), 
due to the potential for medical intervention to modify morbid-
ity and mortality in carriers of such variants15. Within the 830 
samples, we identified 73 C-PLP variants within 32 ACMG genes 
(Supplementary Table 17). Of the individuals, 50.4% did not har-
bor a C-PLP variant in an ACMG gene, 41.2% harbored 1, 7.6% 
harbored 2 and 0.84% harbored 3 C-PLP variants. Of these variants 
found within 110 individuals, 66 were rare (<1%; Supplementary 
Table 17). We also found 42 I-PLP variants within ACMG genes 
within 51 individuals, all of which were rare (Supplementary Table 
18). Participants were offered to receive the results of these medi-
cally actionable genes through the return of genetic results substudy 
(Extended methods).

Transcriptomics. For each of the omics assays, vials from an identi-
cal pool of differentiated motor neurons were processed to ensure 
comparability, including batch differentiation controls (BDCs) and 
batch technical controls (BTCs) from the control 2AE8 line, as 
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Fig. 3 | Uniformity in the generation of large sets of ALS and control iPS cell lines. Violin plots of immunofluorescent immunocytochemistry-stained 
diMNs cultures quantified using Image Express Micro. The iPS cells from both control and patients with ALS differentiated for 32 d after the Cedars-Sinai 
Biomanufacturing Center-directed diMN protocol, then fixed, immunostained and analyzed for the number of cells that stain positively for neuronal  
(a: NKX6.1, b: SMI32 (NEFH), c: ISL1, d: TUJ1 (TUBB3)) and non-neuronal marker proteins (e: s100β). Data are presented as a positive percentage of total 
DAPI-labeled nuclei; 217 different subject iPS cell lines were analyzed. There were no significant differences between ALS and control for any  
of the assessments.
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detailed in Extended methods. Overall the analytics revealed mini-
mal to no technical confounders and low batch effects between dif-
ferentiation and no clear batch-related abnormalities with regard to 
disease status (Extended Data Figs. 4a,d and 5a).

Annotation of transcripts detected in the samples revealed vari-
ous RNA species that were captured in the deep sequencing, with 
protein-coding RNAs accounting for most (~82%) of all RNAs, fol-
lowed by long intergenic noncoding (linc)RNA (~13%) (Fig. 5a). A 
low proportion of reads mapped to small RNAs and a very minimal 
portion to ribosomal RNAs, which were depleted during library 
preparation and act as a technical quality assessment. The use of 
total RNA-sequencing (RNA-seq) and deeper sequencing allows 
for differential alternative splicing analyses, as well as circular RNA 
and cryptic exon analyses (Fig. 5e,f). As an example of RNA-seq 
analyses, we assessed the ability of our cell model and RNA-seq 
methods to capture common, alternative splicing types and found 
significant enrichment in skipped exon (SE, 52%) and retention of 
introns (RIs, 35%) when comparing male C9 samples with male 
controls (Fig. 5e). RNA-binding protein (RBP) motif enrichment 
analysis of the significant RI events (cryptic exons) predicts that the  

binding of HNRNPA2B1 (Fig. 5f) is upregulated in ALS samples. 
These findings are consistent with previous reports in human post-
mortem brain tissue16.

To assess pathway activities, we used gene set variation analy-
sis (GSVA) to score samples against canonical Kyoto Encyclopedia 
of Genes and Genomes (KEGG) and Biocarta pathways from the 
MsigDB database, and identified pathways that are differentially 
regulated between subjects with bulbar and limb onset (Fig. 5g). 
Using these pathway activity scores, we also identified pathways 
that are positively or negatively correlated with the patient ALSFRS 
progression slope (Fig. 5h).

These data indicate that both gene expression differences and 
RNA-splicing differences could be captured by our differentiated 
iPS cell model. Notably, these data can be explored for additional 
new alterations in ALS and potential associations with ALS subtype 
and clinical data, and with other omics data that are being captured 
from these samples.

Epigenomics. Overall the quality of transposase-accessible chro-
matin using sequencing (ATAC-seq) data was high, with very good 
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reproducibility of BDCs and BTCs, as assessed by the simple error 
rate estimate (SERE) (Fig. 5b, Extended Data Figs. 4b,e and 5b, and 
Supplementary Information). Hypersensitive sites were distributed 
across the genome in the expected regions (Extended Data Fig. 6a,b), 
especially in previously annotated regulatory regions, with very few 
reads in ENCODE blacklist regions. Although, overall, samples 
did not cluster by genotype or disease status, many loci did show 
strong differences between patients and controls (Extended Data 
Fig. 6c). As an example of a potential application of the epigenomic 
data, we identified potential transcriptional regulators through 
analysis of sequence motifs in the open chromatin (Extended Data  
Fig. 6d). Consistent with the expected cell composition, we 
observed an overrepresentation of transcription factors implicated 
in neuronal differentiation, such as Pdx1, Cux2 and the Lhx family 
(Extended Data Fig. 6d).

Proteomics. In total, >25,000 peptides corresponding to 
>3,600 proteins per sample were quantified. As detailed in the 
Supplementary Information, for proteomic analytics, there was 
minimal drift between the batches (Fig. 5c and Extended Data  
Figs. 4c,f and 6c). Although patient and control iPS neuron clusters 
are interspersed, indicating their overall similarity, these iPS neuron 

models have significant individual protein-level differences and we 
selected representative proteins ECH1 and PCKGM (Fig. 5d) that 
show significant (P ≤ 0.05) differences, based on what is seen in the 
differential analysis-based evidence (Fig. 5d).

Longitudinal single-cell imaging and analysis. Validation of the 
identification of pathological phenotypes was achieved with longi-
tudinal single-cell robotic imaging of mutant SOD1 patient-derived 
iPS spinal neurons as described previously (Fig. 6a)17. As shown in 
Fig. 6b, mutant SOD1 neurons exhibited an enhanced cell death 
profile, similar to that reported previously with spinal motor neu-
rons18. Future data will be available on similar analytics of cohorts of 
the sporadic iPS cell-derived neurons from the AALS dataset.

Data dissemination: data portal. The AALS data portal (http://
data.answerals.org; Supplementary Table 3) was designed to provide 
information about the various types of biological and clinical data 
generated by the AALS partners and to allow easy visualization/
access to the metadata and data, along with links to obtain bioflu-
ids and iPS cell lines. Additional details regarding the portal can be 
found in Extended methods. In the future, the portal will also host 
online data analytics and visualization tools.

Table 2 | Summary table of variants in the AALS cohort

Variant type Total variants in all genes 
in ALS cases

Total variants in all genes 
in CTRLs

ALS genea 
variants in ALS

ALS genea 
variants in 
controls

Number of variants per 33-ALS gene

All variants Sum = 2,941,489,030
Average = 
4,166,415 variants per ALS 
case

Sum = 379,092,863
Average = 4,120,575 
variants per control

Sum = 1,092
Average = 1.5 
variants per ALS 
case

Sum = 141
Average = 1.5 
variants per 
control

ALS2 (20), ANG (5), ANXA11 (15), ATXN2 
(29), C21orf2 (19), C9orf72 (5), CAMTA1 
(24), CCNF (28), CHCHD10 (2), DAO (7), 
DCTN1 (24), FIG4 (14), FUS (6), HNRNPA1 
(2), HNRNPA2B1 (1), KIF5A (9), MATR3 
(10), MOBP (4), NEK1 (19), OPTN (10), 
PFN1 (7), SCFD1 (13), SETX (57), SOD1 
(14), SQSTM1 (14), TAF15 (16), TARDBP 
(11), TBK1 (18), TUBA4A (3), UBQLN2 (7), 
UNC13A (19), VAPB (4), VCP (4). Details of 
variants are found in Supplementary Tables

ClinVar P/
LP (C-PLP) 
variants

Sum = 23,924
Average = 33.9 variants per 
ALS case
Rare = 3,659 (5.2 variants 
per ALS case)

Sum = 3,097
Average = 33.7 variants 
per control
Rare = 61 (5 variants per 
control)

Sum = 85 (2% of 
cases harbor)
Rare only = 21 
(3% of cases 
harbor)

Sum = 11 (12% 
of controls 
harbor)
Rare only = 3 
(3.3% or 
control 
harbor)

ALS2 (1) ANG (2), CHCHD10 (1), FIG4 
(2), FUS (1), OPTN (2)b, PFN1 (2), SETX 
(4), SOD1 (5), SQSTM1 (3),TARDBP (2), 
UBQLN2 (2), VCP (1)

Harms P/
LP (H-PLP) 
variants

N/A N/A Sum = 4 (3.4% 
of cases harbor)

Sum = 1
(1% of 
controls 
harbor)

FUS (1), PFN1 (2), SOD1 (11), TARDBP (3) 
UBQLN2 (1), VCP (1)

Intervar P/
LP (I-PLP) 
variants

Sum = 2,346
Average = 3.3 variants per 
sample
Rare = 2272
Average = 3.21 variants 
per case

Sum = 288
Average = 3.1 variants per 
sample
Rare = 276
Average = 3.2 per control

Sum = 25 (3.5% 
of cases harbor)

0 (0%) NEK1 (2), OPTN (1), SOD1 (12), SETX (1), 
TBK1 (2), VCP (2),

In silico 
prediction: 6/9 
predicted to be 
damaging

Sum = 79,010
Average = 112 variants per 
sample
Rare = 40,910 Average = 58 
variants per sample

Sum = 5,464 
Average = 113 variants 
per sample Rare = 5,464 
Average = 59.4 variants 
per sample

Sum= 97 (13.7% 
of cases harbor)

Sum=11 (12% 
of controls 
harbor)

ALS2(2), ANXA11 (4), ATXN2 (3), C21orf2 
(1), CAMTA1 (1), DAO (3), DCTN1 (5), FIG4 
(3), FUS (1), HNRNPA2B1 (1), KIF5A (2)
MOBP(1), NEK1(2), OPTN (1), PFN1 (3), 
SCFD1 (2), SETX (14), SOD1 (11), SQSTM1 
(2), TARDBP (4), TUBA4A (2), UBQLN2 (1), 
UNC13A (3), VCP (2)

Sum = the total number of variants found per group, ALS versus control. aVariants <1%. bOPTN variants listed here are high frequency, >1%.
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Discussion
The pathogenesis of sALS remains a mystery and few comprehen-
sive data collections, on a population scale, exist to truly inform 
researchers about the biological underpinnings of the disease or 
the possibility of disparate biological subgroups. To date, clinical 
studies alone have not yielded reliable data to suggest a common 
pathway or, more importantly, a means to target relevant biologi-
cal subgroups. The identification of biological subgroups has been 
impactful in various cancers, where the ability to actually sample 
disease tissues from skin, liver, prostate or pancreas biopsies, cou-
pled with clinical characteristics of tumor type, has led to marked 
improvements in therapeutic approaches, drug treatments and deci-
sions about disease management19,20.

The core goal of AALS is to provide a comprehensive set of tools 
including deeply phenotyped longitudinal clinical data and biologi-
cal tools such as iPS cell lines, and a multi-omics platform consisting 
of whole-genome, iPS-derived, spinal neuron-enriched proteomes, 
transcriptomes and epigenomes, to uncover underlying biological 
subgroups. Previous studies have demonstrated the ability to gener-
ate small populations of fALS or sALS iPS cell-derived motor neu-
rons and glia, as well as relatively limited multi-omics data. However, 
none approximates true population-based tools, with reproducible 
quality assurance protocols, necessary to accurately assess disease 
pathways or identify population subgroups combining longitudinal 
clinical, genomic and living multi-omics data4,21,22.

The AALS reagent collection includes individual iPS cell lines 
from approximately 850 sALS and control participants (soon to 
reach >1,200), the iPS cell-derived spinal neurons from each par-
ticipant, their longitudinal clinical data (collected over 1 year), 
sequentially amassed fluid biospecimens (blood and cerebrospinal 
fluid (CSF)) and the early multi-omics data generated from each 
participant’s blood (whole genome) as well as from their ‘spinal cord 
biopsy’-equivalent, iPS-derived neuronal cell lines. The collection 
also includes autopsy samples and pathology data from a subset of 
participants. The autopsy pathology data and CNS specimens will 
eventually be available through the AALS web portal and coupled 
with the iPS cell lines from these participants.

A reasonable question is the utility of patient-derived iPS cells to 
predict the disease-causing pathways in an adult-onset disease. Can 
reprogrammed human spinal neurons reflect adult-onset disease 
pathogenic cascades? Already multiple studies have documented 
that human iPS cell lines, in either two-dimensional cultures or 
three-dimensional organoids, can reproduce the pathology seen in 
human brain23–25. One advantage of the iPS platform is the ability to 
dynamically detect early pathogenic events and even serially occur-
ring events. In fact, early use of the AALS iPS cell lines has already 
provided evidence that the iPS collection can provide insights into 
new pathways (nuclear pore complex and nuclear transport defects) 

in ALS pathophysiology, generate new therapies and validate gene 
therapy based on the approaches4,25–27.

This population and its dataset were never envisioned to enable 
the identification of new ALS genes. A cohort of ~1,000 ALS par-
ticipants does not amount to a large enough database for new gene 
identifications. However, sharing the whole-genome sequences 
from this dataset has aided in the identification of a new ALS gene, 
Kif5A28. In fact, the estimated 6+ billion data points generated 
from each participant, combining the longitudinal clinical demo-
graphic and observational data, the longitudinal smartphone app 
data (motor activity, speech, breathing, cognition) and the aggregate 
multi-omics data (whole genome, epigenome, proteome, transcrip-
tome) represent an exceptionally large set of data per participant. 
Furthermore, the core multi-omics dataset reflects the human 
cells affected in individual ALS participants and spinal neurons, 
and acts as an organ- or tissue-specific biopsy. When these com-
bined longitudinal and multidimensional clinical and biological 
data are analyzed by integrative methods, such as artificial intelli-
gence, clinical and biological subgroups might emerge, potentially 
assigning a unique risk or modifier gene or a unique molecular 
pathway to a specific patient subgroup, which could one day enable 
patient-specific interventions, or serve as drug target engagement 
marker or subgroup biomarker.

How many individual sporadic patient lines would be required 
to detect one of more pathophysiologically relevant subgroups is 
simply not known. Prior work in fALS suggests that at least 10–15 
C9orf72 iPS cell lines is sufficient to robustly detect defects in 
nuclear pore biology. However, sALS may have multiple risk path-
ways associated with gene variants (for example, ataxin 2 expansion,  
TMEM 106b)29,30 or environmental stressors and, as such, may 
require more patient cell lines and multi-omics data to allow 
detection of robust pathway readouts. A recent study, targeting 
imaging-based strategies to detect and evaluate an ESCRT-III-based 
pathway and therapy in >40 different sporadic and C9orf72 ALS and 
control iPS cell lines, approached the size of a small clinical trial25. 
However, it remains unclear how many iPS cell lines are needed 
to robustly and reproducibly detect pathophysiological alterations 
from human omics analyses.

The other research advantage to such a dataset and living tools 
is the immediate ability to test for potentially ALS-relevant patho-
genic pathways using the participant’s own iPS cells/iPS cell-derived 
spinal neurons to test drugs for candidate pathogenic pathways and, 
importantly, to develop CNS biomarkers from the iPS cells and vali-
date drug target engagement. Libraries of iPS cell lines derived from 
participants with neurological diseases, including Alzheimer’s dis-
ease and FTD, have been growing over the last several years and rep-
resent a valuable tool to truly examine specific disease pathways31,32. 
Most of these iPS cell libraries are relatively small, including our 

Fig. 5 | Omics exploratory analysis of results. a, Violin plot showing counts of RNA species identified in the current AALS samples. As expected, 
protein-coding and lincRNAs represent the largest proportions whereas rRNAs, which have been depleted, are the lowest. Minimal variability has been 
observed among samples. Types represented are: protein coding, lincRNA, miRNA, small nuclear RNA, small nucleolar RNA and rRNA in green, red, gold, 
purple, blue and teal, respectively (n = 102 biologically independent samples). b, Peak functional annotations. Analysis of read distribution across all 
ATAC-seq samples shows an enrichment in known open chromatin regions, such as DNase 1-hypersensitive sites and previously annotated enhancers and 
promoters (n = 100 biologically independent samples). c, The log2(protein intensity distribution) unnormalized (top) and normalized (bottom).  
d, The log10(protein intensity) comparison of selected proteins (PCKGM, ECH1) showing differential expression between ALS and controls. Box plots in 
c and d indicate median, quartiles and range (n = 66 biologically independent samples). e, Pie chart of proportions of rMATS analysis of differentially 
alternative splicing identified events comparing male C9orf72 ALS samples versus male controls. An FDR cutoff of 0.05 was used to define statistical 
significance. SE has the highest number of events (n = 617, 52%), followed by RIs (n = 409, 35%). f, The rMAPS2-based motif enrichment analysis of 
alternatively RIs (409 RI events) shows that the RBP-binding motif HNRNPA2B1 is significantly enriched in the male control samples versus male C9orf72 
ALS samples near the RI sites. Wilcoxon’s rank-sum test (one sided) was used to get the P values for comparing up- and downregulated exons (RI) versus 
control/background exons. Motif scores are plotted in solid lines and P values are in dotted lines. Red designates control samples and blue the ALS.  
g, Heatmap of pathway activity scores defined by GSVA against MsigDB’s C2 canonical pathways from KEGG and Biocarta. The top 30 pathways are 
shown from comparing samples with bulbar versus limb ALS disease onset (FDR < 0.05). h, The top 14 pathways that have high Pearson’s correlation 
between GSVA enrichment scores and ALSFRS clinical progression slope.
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original library of 22 fALS iPS cell lines21, with a few selected lines 
for each disease mutation and, when appropriate, isogenic controls. 
None represents the far more common sporadic forms of the dis-
ease. Furthermore, none provides deep longitudinal clinical and 
extensive multi-omics data.

Aside from the biological data generated from the program, 
the results from the AALS smartphone app demonstrate that the 
modules implemented to assess limb function, speech and cogni-
tion may be useful to identify early bulbar and cognitive symp-
toms in ALS and track disease progression over time. Specifically, 
limb-function tests reveal that it can be useful to infer ALSFRS-R 
scores. Importantly, we observed that, by combining the features 
from multiple domains, motor tests and all the voice tests highly 
correlated with the ALSFRS, now commonly used as a primary or 
secondary outcome measure in ALS clinical trials, thereby provid-
ing a reliable tool for at-home longitudinal monitoring of patient 
progression. Furthermore, the single-breath testing also correlated 
well with in-clinic forced vital capacity (FVC), often a prominent 
secondary outcome measure in clinical trials. This test typically 
requires in-clinic testing, which limits enrollment or follow-up data 
collection in clinical trials. The application of this app test alone 
could greatly enhance patient participation in nationwide clinical 
trials—especially in those areas where travel to a testing center is 
challenging. Overall, we observe that quantitative motor speech 
analysis holds tremendous promise in both identifying changes lim-
ited not only to ALS rating scales but also to others such as cognitive 
assessment. The potential to record voice, and store it encrypted in 
the cloud, could provide a powerful clinical tool to assess change 
over time for use clinically and in ALS trials. Overall, the app data, 
coupled with in-clinic data, provide deep and longitudinal clinical 
datasets available for multi-domain biological and clinical correla-
tions for future users.

The overall clinical demographics and population genomics in 
the AALS program accurately reflect the ALS subject population 
described in previous studies. This observation validates the AALS 
iPS cell lines and multi-omics platform as a database that others can 
employ to generate and test biological hypotheses.

Importantly, all the clinical data, multi-omic data and iPS 
cell lines were generated to be freely accessible to all researchers,  

academic and commercial, free of restrictions other than standard 
Health Insurance Portability and Accountability Act (HIPAA) 
compliance rules. A web portal for downloading filtered data-
sets, for example, proteome, whole genome, etc., has been set 
up with minimal but appropriate requirements for data access 
(Supplementary Table 3). The ALS and control iPS cell lines, 
matched to datasets, are also fully available for research studies, for 
a minimal fee (to cover the replacement of the depleted stock of 
cells). Biospecimens (for example, CSF and plasma) longitudinally 
collected from patients are also available (Supplementary Table 3). 
Future web-based links will include access to autopsied CNS tis-
sues from patients matched to the iPS cell lines and iPS cell-based  
multi-omics.

Online content
Any methods, additional references, Nature Research reporting 
summaries, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availabil-
ity are available at https://doi.org/10.1038/s41593-021-01006-0.
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generated from ~25 patients per month and stored frozen until they were 
differentiated (Extended Data Fig. 3a). Each cell line was thawed and cultured 
for 2–3 weeks before passaging for differentiation. Cell lines were differentiated 
in batches of up to 11 lines. PBMCs were used instead of fibroblasts to limit the 
potential for genetic defects and facilitate sampling from the large number of 
patients enrolled in our study. Overall, blood draws are less invasive and carry 
lower risk for patients than skin biopsies, which improved the overall risk–benefit 
ratio for the study. Rigorous quality control (QC) (Supplementary Table 6) 
was performed on each AALS iPS cell line, similar to previously publications35. 
G-band karyotype was performed at multiple passages for each AALS iPS cell 
line, which provides confidence about the genetic integrity of the AALS iPS cell 
repository, given that each iPS cell line is karyotyped at multiple passages. Cell-line 
authentication is repeated at multiple stages. The cell line authentication (STR) 
is performed on the original donor blood/PBMC sample, then performed on the 
reprogrammed iPS cell line and the differentiated neurons (Supplementary  
Tables 6 and 19). Additional details are provided in Supplementary  
Information.

Generation of iPS cell spinal neurons. The iPS cells were differentiated into motor 
neurons according to the direct iPS cell diMN protocol, which comprises three 
main stages (Extended Data Fig. 3 and Supplementary Table 6), as described 
previously25. Additional details are provided in Supplementary Information. On 
day 32 of differentiation, cell lines were collected and pelleted as illustrated in 
Fig. 4. Thus far, ~800 iPS cell lines have been successfully reprogrammed and one 
clone line banked and characterized per donor. Out of the ~800 unique samples, 
only 18 lines (~3%) failed reprogramming. Additional details are provided in 
Supplementary Information.

QC of diMNs. As referenced in Extended Data Fig. 3, on day 32 one 6-well plate 
from each cell line for immunostaining was reserved for QCs, which included 
the following markers of neuronal differentiation: SMI32 (NF-H), TUBB3 (TUJ), 
ISL1, NKX6.1, S100β and Nestin. This protocol generates a mixed population 
of neurons consisting of ~75% (±8%) βIII-tubulin- (TuJ1-) and ~70% (±10%) 
NF-H-positive cells, ~19% (±6%) Islet-1- and ~34% (±9%) Nkx6.1-positive 
spinal motor neuron, and ~18% (+/13%) S100B-positive progenitors 32 d after the 
onset of differentiation (Fig. 3). Additional details are provided in Supplementary 
Information.

Multi-omics data generation for each iPS cell-derived motor neuron line. At 
the end of the 32-d differentiation protocol, the spinal neurons were harvested 
for RNA-seq, proteomics or epigenome profiling as detailed in Supplementary 
Methods. WGS was performed on PBMCs. Day 32, chosen for independent 
experiments with selected C9orf72 ALS/FTD iPS cell-derived spinal neurons, 
demonstrated phenotypic and molecular changes in nuclear pore complex and 
biology, matching that seen in patient autopsies, by this time point26.

Program QCs: cell generation batch controls. To detect and compensate for cell 
culture-associated confounders, all differentiations were conducted in a single 
facility and included two key control groups of biological samples: BDCs were 
differentiated with each batch from the same original line to assess interbatch 
variability of iPS cell differentiation to diMNs and BTCs, consisting of a single 
differentiation of the same line were frozen, aliquoted and distributed with each 
batch to assess technical variability of the omics assay batch runs, were performed 
as detailed in Supplementary Information. Complete details for the design and 
implementation of these critical operational controls (Extended Data Figs. 4 and 5) 
can be found in Supplementary Information.

Data quality and batch effect assessments. RNA-seq. For the RNA-seq data 
samples were processed and passed all QC metrics including RNA integrity 
(Extended Data Fig. 4a), library and sequencing QC metrics. To assess data quality 
and technical batch effects, sample-to-sample SERE scores (0 = identical samples) 
were generated using gene expression for three groups: the BDCs, BTCs and all 
other samples (Extended Data Figs. 4 and 5).

A heatmap of SERE scores between all samples with hierarchical clustering 
(Extended Data Fig. 5) shows that, although BTCs form their own cluster, the rest 
of the samples fall into multiple small clusters with no clear relationship to their 
disease status.

Proteomics. Each block of samples comprised case, control, BDC samples and 
HEK293 cell control samples. The numbers of proteins and peptides quantified 
for all 66 samples were very consistent (Extended Data Fig. 4c). The percentage 
coefficient of variation for the proteins quantified were calculated for the BTC and 
BDC samples (Extended Data Fig. 4f). Individual samples are normalized to the 
total MS2 spectra intensity across the chromatographic profile of eluting peptides 
to smooth any inconsistencies in sample loading on to the mass spectrometry (MS) 
instrument, thereby eliminating systemic variation in signal intensities (Extended 
Data Fig. 4c). We found that BTCs and BDCs (both originating from the 2AE8 
CTR cell line) cluster tightly (Extended Data Fig. 6c), indicating minimal drift 
between the MS batches.

Methods
Program process. Overall design (Extended Data Fig. 1). The overall AALS 
program, from clinical enrollment to smartphone app data collection, iPS cell-line 
generation, biological data generation and data storage is outlined in Extended 
Data Fig. 1 (ClinicalTrials.gov: NCT02574390). Methods for each element of the 
program are provided below and in Supplementary Methods.

Enrollment, clinical characterization and sample collection. The clinical portions 
of AALS were coordinated through Johns Hopkins University and Massachusetts 
General Hospital. The eight enrolling neuromuscular clinics were distributed across 
the USA and included Johns Hopkins University, Massachusetts General Hospital, 
Ohio State, Emory University, Washington University, Northwestern University, 
Cedars-Sinai and Texas Neurology (Supplementary Table 1 and Extended Data 
Fig. 1). The study was approved by local institutional review boards, and all 
participants provided written informed consent. Consent was uniform across all 
sites and included agreement to share data broadly for medical research (also see 
Data access in Supplementary Information). Subjects with sALS, fALS and related 
MNDs (referred to as non-ALS MNDs), including those with primary lateral 
sclerosis, progressive bulbar palsy and progressive muscular atrophy, along with 
asymptomatic ALS gene mutation carriers, were enrolled in AALS. Age-matched 
control participants without ALS or a family history of ALS were also enrolled. 
Additional enrollment details are provided in Supplementary Information.

Participants were monitored every 3 months for a year and, when possible, 
the ALSFRS-R was conducted by telephone every 3 months for another year 
thereafter. Baseline descriptors included the following: demographics and vital 
signs, genetic and family history of MND, general medical history, CNS lability 
and a brief focused history of environmental exposures. Concomitant medications 
and past medical history were collected at enrollment and updated throughout 
study participation. Measures of ALS progression included: deep tendon 
reflexes, Ashworth Spasticity Scale, Hand Held Dynamometry, ALSFRS-R and 
pulmonary slow vital capacity (Supplementary Tables 2 and 3 and Supplementary 
Information). To enhance depth of longitudinal clinical data collection, a secure 
and HIPAA-compliant smartphone app, with a specific focus on motor activity, 
voice and cognition, was created for home data collection (Fig. 2 and Extended 
Data Fig. 2). At each in-clinic visit, blood was collected and processed according 
to the methods outlined in Supplementary Information. At the first visit, whole 
blood was collected for generation of primary peripheral blood mononuclear cell 
(PBMC)-derived iPS cell lines.

Biofluid collection and processing. At each in-clinic visit along with follow-up 
visits, approximately 50–100 ml of blood was collected from each participant. 
Plasma and serum were processed for storage and PBMC isolation. Whole blood 
was sent to the NYGC for DNA extraction and WGS. CSF was optionally collected 
and flash frozen at −80 °C. Serum, plasma and CSF samples were shipped on dry 
ice to a centralized biofluid repository to be stored at −80 °C (Supplementary Table 
3). Additional details are provided in Supplementary Methods

Return of AALS results. To provide medical and ethically appropriate feedback, 
study participants with ALS were offered the opportunity to receive the results of 
their WGS for 5 ALS genes (C9orf72, SOD1, FUS, TARDBP and TBK1), as well as 
59 genes designated as medically actionable by the ACMG15, as part of a substudy, 
Return of Answer ALS Results (ROAR). ROAR participants completed a separate 
online consent after enrollment in the parent study. Additional details are provided 
in Supplementary Information.

AALS smartphone app. The app has seven modules designed to gather 
information about upper limb motor function, respiration, bulbar function and 
cognition. Six modules measured arm function: finger tapping, finger tracing and 
phone tilt tracing; each was performed using the right and left hand separately  
(Fig. 2a). The speech module (Fig. 2c), consisted of three tasks, rotated weekly 
to reduce learning effect: (1) single-breath count, in which participants were 
instructed to draw in a deep breath and count at a measured pace (a surrogate 
for FVC)34; (2) read-aloud passage, in which participants read aloud one of four 
standardized passages from their screen; and (3) picture description, in which 
participants described one of three line-art illustrations over 30–120 s. Details 
regarding this digital clinical module are included in Supplementary Information.

The iPS cell-line methods. PBMC processing. Fresh blood was collected, and 
samples were centrifuged at 18–25 °C in a horizontal rotor centrifuge for 20 min at 
1,800 r.c.f. within 2 h of collection. The plasma/buffy coat mixture was collected and 
centrifuged for 15 min at 300 r.c.f. Isolated PBMCs were counted and cryopreserved. 
The average cell count was ~25 million PBMCs per sample with an average cell 
viability of 91%. Additional details are provided in Supplementary Methods

Generation, reprogramming and QC of iPS cells. The iPS cells were generated 
by reprogramming the cryopreserved and nonexpanded PBMCs, using a 
method based on a nonintegrating episome. Clones were isolated, expanded 
and maintained according to standard feeder-free protocols and characterized 
extensively as described in Supplementary Table 6. The iPS cell lines were 
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Epigenetics. ATAC-seq data quality was determined according to ENCODE36.  
The distribution of fragment sizes across all samples revealed a clear 
nucleosome-free region and regular peaks corresponding to nucleosomal 
fractions (Extended Data Fig. 6). As expected, replicates from our batch control 
line were highly correlated with each other, with BTCs having an even smaller 
variation in correlation values compared with BDCs (Extended Data Fig. 4e). 
We also generated a consensus set of peaks present in >10% of samples using 
DiffBind (Extended Data Fig. 6) and characterized transcription factor motif 
enrichment within these peaks using HOMER37. There was an overrepresentation 
of transcription factors implicated in neuronal differentiation, such as Pdx1, Cux2 
and the Lhx family (Extended Data Fig. 6d). We then obtained a counts matrix 
of reads mapped to each peak in the consensus peakset across all samples and 
performed hierarchical clustering using the same approach as the RNA-seq data 
(Extended Data Figs. 4, 5 and 6). Subjects did not cluster by disease status, presence 
of C9 mutation, sex or processing batch. Additional data on quality control can be 
found in Supplementary Methods.

Whole-genome methods: WGS and analysis. PBMCs were sent by each clinic 
to the NYGC (https://www.nygenome.org) for DNA extraction and sample QC 
and WGS libraries. We evaluated pathogenic or probable pathogenic variants 
reported in ClinVar (C-PLP) for all genes. We also examined pathogenic variants 
called by Intervar Li38 (I-PLP) and predicted damaging variants as called by in 
silico prediction tools (IS-D), which are reported in Table 2 and Supplementary 
Table 8. The variant calls from NYGC were assessed by examining the actual 
reads for alignment issues and spot checking the BAM files for specific variants 
in Integrative Genomic Viewer determined to be of good quality. The variant call 
formats (VCFs) were converted into genomic VCFs (GVCFs), and joint genotyping 
calling was run using Sentieon v.201911 (https://www.sentieon.com); applied 
variant quality score recalibration (VQSR) was done using GATK v.3.8 (truth 
sensitivity level = 99.0), and the files were annotated using Annovar v.2018Apr16 
(ref. 39). For each variant, we also incorporated functional in silico predictions 
from nine programs, including databases such as SIFT40, PolyPhen2 (ref. 41) and 
Mutation Taster42, and those described in Li et al.43. Additional databases were 
included that assess the variant tolerance of each gene using the Residual Variation 
Intolerance Score (RVIS)44 and the gene damage index (GDI)45 and LoFTool46. 
For variants in genes that are highly expressed in the brain, we incorporated data 
from the Human Protein Atlas47 (http://www.proteinatlas.org) and expression data 
from GTEx portal48,49 (https://gtexportal.org/home) for the cortex and spinal cord. 
Frequency information from three databases on all known variants was obtained 
from ExAC50, the National Heart, Lung, and Blood Institute (NHLBI) Exome 
Sequencing Project (ESP)51 and the 1000 Genomes Project10.

PCA was carried out (Fig. 4d) to reveal how the AALS samples cluster among 
various ancestry groups of the 1000 Genomes Project dataset. PCA was used12,13 to 
visualize the ancestry background of the AALS cohort and a set of 2,504 samples 
from the 1000 Genomes Project with well-defined ancestry. We used a set of 10,000 
randomly chosen autosomal SNPs (singletons and multiallelic SNPs were removed) 
that were present in both datasets and removed correlated SNPs by linkage 
disequilibrium pruning. We implemented randomized PCA52 using the Python 
library scikit-allel package53.

The annotation pipeline incorporated elements from ANNOVAR39 and 
generated reports, including genotypes for all samples. These reports are available 
on request. The following annotation was used: for genes and exonic variants that 
have clinical significance, the Clinical Genomic Database54, the Online Mendelian 
Inheritance in Man55 and ClinVar56, and genes listed in the ACMG57 database were 
incorporated. We also incorporated Intervar, which is based on the ACMG and 
AMP standards and guidelines for interpretation of variants58–61. This tool uses 
18 criteria to prescribe the clinical significance and classifies based on a 5-tiered 
system62. To flag ALS genes, ALS gene lists and variants were incorporated from 
ALSoD63 (http://alsod.iop.kcl.ac.uk), a list provided by M. Harms, a gene list from 
J. Landers and associations from DisGeNet64. Functional predictions were based 
on in silico prediction from nine databases: SIFT40, PolyPhen2 (refs. 65–67) (HDIV 
and HVAR), LRT_Prediction67, Mutation Taster42, Mutation assessor68, FATHMM 
prediction69–71 and dbNSFP (RadialSVM_pred and LR_pred)72–74. Databases that 
assess the variant tolerance of each gene using the RVIS44 and the GDI45 were also 
included, and LoFTool46 will be incorporated. To identify variants in genes that 
are highly expressed in the brain, data from the Human Protein Atlas47 (http://
www.proteinatlas.org) and the GTEx portal75,76 (https://gtexportal.org/home) for 
the cortex and spinal cord were used. Frequency information was derived from 
ExAC50, the NHLBI ESP51 and the 1000 Genomes Project11.

A separate annotation pipeline was developed for variants in intergenic and 
regulatory regions. Variants are reported relative to the closest gene, whether 
intronic, upstream and downstream (up to 4 kb from the start and stop of 
a gene) or in 5′- and 3′-UTRs. The annotation was based on RegulomeDB, 
which annotates variants with known or predicted regulatory elements such as 
transcription factor-binding sites, expression quantitative trait loci, validated 
functional SNPs and DNase sensitivity77, with source data from ENCODE78,79 
and the Gene Expression Omnibus80. Additional regulatory databases such as 
Target Scan, an algorithm that uses 14 features to predict and identify microRNA 
(miRNA) target sites within messenger RNAs81 and miRBase82–84, were also used. 

Extensive details on the methods for whole-genome analytics can be found in 
Supplementary Methods.

RNA methods. Total RNA was isolated from each sample using the QIAGEN 
RNeasy mini-kit. RNA QC was conducted using an Agilent Bioanalyzer and 
Nanodrop. Our primary QC metric for RNA quality is based on RNA integrity 
number (RIN) values ranging from 0 to 10, 10 being the highest quality RNA. 
In addition, we collected QC data on total RNA concentration and 260:280 and 
260:230 ratios to evaluate any potential contamination. Only samples with RIN > 8 
were used for library prep and sequencing. The rRNAs were removed and libraries 
generated using TruSeq Stranded Total RNA library prep kit with Ribo-Zero 
(QIAGEN). RNA-seq libraries were titrated by quantitative (q)PCR (Kapa), 
normalized according to size (Agilent Bioanalyzer 2100 High Sensitivity chip). 
Each complementary DNA library was then subjected to 100 Illumina (Novaseq 
6000) PE sequencing cycles to obtain over 50 million PE reads per sample. After 
sequencing, raw reads were subject to QC measures and reads with quality scores 
>20 collected and analyzed. Reads were mapped to the GRCh38 reference genome 
using Hisat2, QCed and gene expression quantified with featureCounts85, and 
differential expression was quantified using DESeq2 (ref. 86). Normalized and 
transformed count data were also used for exploratory analysis and differentially 
expressed genes (false discovery rate (FDR) < 0.1) were analyzed with commercial 
and open-source pathway and network analysis tools, including Ingenuity Pathway 
Analysis, gene set enrichment analysis (GSEA), GOrilla, Cytoscape and other tools 
to identify transcriptional regulators, predict epigenomic changes and determine 
potential effects on downstream pathways and cellular functions.

ATAC-seq methods. We used the assay for ATAC-seq to assess chromatin 
accessibility and identify functional regulatory sites involved in driving 
transcriptional changes associated with ALS. ATAC-seq sample prep, sequencing 
and peak generation were carried out by Diagenode Inc. as further described87. 
Briefly, cells were lysed in ATAC-seq resuspension buffer (RSB; 10 mM Tris-HCl, 
pH 7.4, 10 mM NaCl, 3 mM MgCl2 and protease inhibitors) with a mixture of 
detergents (0.1% Tween-20, 0.1% NP-40 and 0.01% digitonin) on ice for 5 min. 
The lysis reaction was washed out with additional ATAC–RSB containing 0.1% 
Tween-20 and inverted to mix. Then 50,000 nuclei were collected and centrifuged 
at 450 r.c.f. for 5 min at 4 °C. The pellet was resuspended in 50 µl of transposition 
mixture (25 µl of 2× Illumina Tagment DNA buffer, 2.5 µl of Illumina Tagment 
DNA enzyme, 16.5 µl of phosphate-buffered saline, 0.5 µl of 1% digitonin, 0.5 µl 
of 10% Tween-20 and 5 µl of water). The transposition reaction was incubated at 
37 °C for 30 min followed by DNA purification. An initial PCR amplification was 
performed on the tagmented DNA using Nextera indexing primers (Illumina). 
Real-time (RT)-qPCR was run with a fraction of the tagmented DNA to determine 
the number of additional PCR cycles needed, and a final PCR amplification was 
performed. Size selection was done using AMPure XP beads (Beckman Coulter) to 
remove small, unwanted fragments (<100 bp). The final libraries were sequenced 
using the Illumina NextSeq platform (PE, 75-nt kit). All samples passed QC 
checks that included morphological evaluation of nuclei, fluorescence-based 
electrophoresis of libraries to assess size distribution and RT-qPCR to assess the 
enrichment of open chromatin sites. The quality of the sequencing was assessed 
using FastQC and the reads were aligned to GRCh38 genome build using Bowtie2. 
We identified open chromatin regions separately for each sample using the 
peak-calling software MACS2 (ref. 88) and determined differentially open sites 
using DESeq2 (FDR < 0.1). Peaks were assigned to unique genes using the default 
HOMER37 parameters, and gene ontology analysis was performed using GOrilla89.

Proteome methods. Whole-proteome extracts from frozen diMNs were digested 
with trypsin and LysC and subjected to acquisition on the SCIEX 6600 as 
detailed below. Snap-frozen cell pellets were stored at −80 °C and transferred 
to the Cedars-Science Medical Center proteomics lab on dry ice, where it was 
stored at −80 °C until use. Samples were lyophilized and aliquoted into 600-µl 
polystyrene microcentrifuge tubes containing lysis buffer (6 M urea and 1 mM 
dithiothreitol in 1.5 M NH4HCO3). The sample was sonicated (QSonica Q800R1) 
by alternating 10 s on and 10 s off at 70% amplitude while rotating in a 4 °C water 
bath until the solution was homogenized (~20 min). Samples were centrifuged 
and the protein concentration determined on the supernatant according to 
manufacturer’s instructions (Pierce BCA Protein Assay Kit). Then 200 µg of 
each sample was transferred to a 96-well plate in aliquots and processed on the 
Biomek i7 Automated workstation (Beckman Coulter) as outlined previously. 
Briefly, samples underwent the following: reduction of disulfide bonds in 3 mM 
tris(2-carboxyethyl)phosphine hydrochloride solution, alkylated in 5 mM iodo-
3-acetic acid. Addition of β-galactosidase at 2 µg and protein digestion in solution 
using equimolar trypsin and LysC enzyme mixture (Promega, catalog no. V5111) 
followed at 1:40 enzyme:protein ratio under optimized digestion conditions (4 h 
at 37 °C). Digested proteins were desalted on a 5-mg Oasis HLB 96-well plate 
(Waters, catalog no. 186000309) and eluted in 50% acetonitrile. Samples were dried 
to completion using a speed-vac system and stored at −80 °C until MS analysis. 
For MS analysis, digested peptides were resuspended in 0.1% formic acid (FA) 
and analyzed on a 6600 Triple TOF (Sciex) in data-independent acquisition (DIA) 
mode and on the 6600 Triple TOF (Sciex) for data-dependent acquisition (DDA) 

Nature Neuroscience | www.nature.com/natureneuroscience

https://www.nygenome.org
https://www.sentieon.com/
http://www.proteinatlas.org
https://gtexportal.org/home/
http://alsod.iop.kcl.ac.uk
http://www.proteinatlas.org
http://www.proteinatlas.org
https://gtexportal.org/home/
http://www.nature.com/natureneuroscience


Resource NATuRE NEuRoSCiEnCE

mode. Specifically, samples were acquired in DDA mode for ion library generation 
and in DIA mode over 100 variable windows, similar to previously described 
acquisition protocols90,91.

DDA data were used for the generation of a sample-specific peptide ion library. 
DDA files were run through a trans-proteome pipeline using a human canonical 
FASTA file (Uniprot). A consensus peptide library with decoys was generated and 
used to quantify ions identified in DIA data files. Previously described DDA library 
build principles92 were utilized to generate a cell-specific library, which allowed for 
greater accuracy in matching DIA data to the DDA library during OpenSWATH, 
as indicated by higher d scores in PyProphet. The differential protein expression 
between ALS and control samples analyzed was calculated using mapDIA93.

DIA data files were analyzed using OpenSWATH pipeline against the 
sample-specific peptide ion library generated. Protein-level quantification is 
calculated by summing transition level intensities for all the proteotypic peptides 
identified. Differential protein expression between ALS and control samples 
analyzed was calculated using mapDIA.

Imaging methods. Longitudinal single-cell imaging and analysis. Differentiated 
iMNs from a subset of the AALS iPS cell lines were plated on 96-well plates 
for longitudinal single-cell imaging using robotic microscopy as previously 
described94–103. At day 25, cells were transduced with expression marker plasmids 
such as synapsin::EGFP33 to visualize cell morphology and viability. After 
transduction cells were imaged in an automated fashion with robotic microscopy 
once per day for 10–14 d. Some image analysis was performed in a computational 
pipeline constructed within the open-source program Galaxy, to identify and 
track individual cells and perform survival analysis and other morphological 
measurements. Additional method details can be found in Supplementary Methods.

Statistics. Statistical methods for the various programs are detailed in the 
Supplementary Information for the various programs.

Data portal. Data storage and data integration/analytics. AALS was designed to 
be an ‘open source’ program. All of the clinical datasets, the various omics results, 
including whole-genome, proteome, transcriptome and epigenome, along with 
the data integration have been posted to a portal for data sharing and crowd 
sourcing (https://data.answerals.org; Supplementary Table 3). Data are available for 
download to all academic and commercial researchers.

Web-based analytics. We have included online analytics for the many ALS 
researchers who will neither need nor want to download the full dataset. The 
current set of tools available at http://data.answerals.org/analyze allows users to 
select genes/pathways of interest and visualize them using braid maps, heatmaps, 
volcano plots, bar charts or networks (Fig. 4).

The data portal provides users with information about the AALS program, 
the data, relevant terminology and data release notes. Users can download a 
metadata package associated with each versioned release. This versioned package 
contains comprehensive clinical, iPS cell and inventory metadata. In addition, 
processes for enrolling patients, producing iPS cell lines and performing WGS are 
explained with links provided to the relevant facilities/institutions. Explanations 
for sample collection and analysis of epigenomic, proteomic and transcriptomic 
data are available. Finally, precise definitions are provided for our data levels, 
which are ways to stratify all the various omics data coming from our analyses 
(Supplementary Table 20).

Data dissemination. The AALS data portal (http://data.answerals.org; 
Supplementary Table 3) provides all raw and processed data including longitudinal 
clinical data and biological data generated by the AALS program, along with 
visualization/access to the metadata, data and biosamples released. The portal 
provides an overview of the data release notes, assays, data-level descriptions and 
links to sites for viewing cell lines/biosamples associated with the program. The 
website allows browsing of all available metadata (using filter and text search 
functions), the option to download all data and metadata or a filtered subset and 
links to obtain individual iPS cell lines from the Cedars-Sinai Biomanufacturing 
Center. Users interested in downloading datasets are required to submit an online 
form, acknowledge data use parameters and return a signed Data Use Agreement 
in compliance with the HIPAA.

Data organization and naming. Data products were organized and named in a 
unified and systematic manner to allow a smooth end-user experience. Data levels 
(Supplementary Table 20) were employed as a categorization schema to group 
similar types of omics data products together. Supplementary Table 21 describes 
examples of these data levels in action with each experimental assay that our 
program collects. All data products were prefixed in a systematic manner. The 
prefix consists of the following components: whether the sample is from a diseased 
patient or healthy control patient, the de-identified patient GUID, the sample vial 
ID and the assay type abbreviation. An example of this is the raw transcriptomics 
FASTQ file CASE-NEUAA599TMX-5310-T_P10_1.fastq.gz. The first underscore 
separates the prefix from any supplementary file information, allowing for easy 
tokenization. This nomenclature is applied consistently to all metadata and data 
files, making it easy to establish relationships with a single study participant.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of the present study are available within the 
paper, its Supplementary information files and the AALS web portals listed in 
Supplementary Table 3 (or via data.answerals.org).
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Extended Data Fig. 1 | Answer ALS Operations. Top. Answer ALS Research Program. Graphic illustration of overall program flow. Bottom. Clinical Sites. 
Participating clinics were districted nationally at 8 academic or private neurology clinics specializing in ALS clinical care and research.
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Extended Data Fig. 2 | Smartphone App. a. Smartphone App. Illustrations from app of various activities. a’. Main Menu, b’. Upper limb motor tests, 
c’. Bulbar activities, including single breath counting, speech and cognition, d’. Example of cartoon used for speech/cognition analytics. b. Examples of 
speech and fine motor tasks performed by the smartphone app study participants. Data are collected with an app called “Help us Answer ALS”. Each 
week, the app asks the participant to perform different tasks. The tasks involve motor control in the upper body, speech and cognition. Each task is 
performed once per week. The speech tasks include describing a picture (a,b,c), reading a passage (d,e,f), and counting until the subject runs out of breath 
(not represented). Describing a picture also serves as a cognition task. The motor task involves tracing 3 different contours in sequential order (h,i,j), 
alternating hand each day of the week.
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Extended Data Fig. 3 | Production of ALS and control iPS cell spinal motor neurons. a. Example of IPS Generation Schedule. b. Method of generating 
iPS cell-derived motor neuron cell lines using the diMNs protocol. c. Brightfield images show the morphology of the cells during differentiation from iPS 
cell stage to the generation of motor neurons over a period of 32 days. d. Production flow and harvesting schematic of diMNs for multi-omics analyses. 
e. Quality control of the diMNs produced from iPS cells is performed by imaging of representative wells for immunohistochemical staining with neuronal, 
motor neuron and glial markers after 32 days of differentiation. Scale bar=400μm. Images representative of over 600 patient cell lines.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Omics Quality Control metrics. a. Histogram of RNA integrity numbers for current AALS samples. Density plot and histogram of 
RIN values for all current AALS samples with RNAseq data. Plot shows all processed samples have RIN > 8. b. fragment size distribution Size distribution 
of ATAC seq data, with peaks representing different n-nucleosomal fragments and clear nucleosome-free regions separated by ~147 bp, the size of a 
nucleosome. c. Number of Proteins and peptide identification consistency in the data generation batches of AALS samples. d. Violin plot of SERE values 
for RNAseq data for current AALS samples. Violin plot showing variance of SERE values in BTC (green) and BDC (red) control samples relative to all 
other (blue) current AALS samples. BTC shows lowest score with the least amount of variance indicating that samples are true technical replicates, 
while BDC and other samples show increase variance. e. Violin plot of SERE values for ATACseq data for current AALS samples. Similar to RNA data 
the BTC (green) show lowest variability indicating low technical confounds. f. Coefficient of Variation (CV) for Batch Technical Control (BTC) and Batch 
differentiation control (BDC) replicates showing 80% proteins to be under a CV of 25%.
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Extended Data Fig. 5 | Heatmap and hierarchical clustering of current AALS samples. a&b. Heatmap and hierarchical clustering of SERE values using 
RNA/ATACseq data. Heatmap and clustering of current AALS samples using SERE values from the (a) RNAseq and (b) ATACseq data. Samples are 
annotated with gender, genotype, and C9orf72 mutation. No distinct clustering separates samples by these categories, but BTC sample cluster together.  
c. Spearman correlation matrix plot for the AALS proteomics data.
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Extended Data Fig. 6 | ATACSeq data. a and b. CDFs. The number of all peaks (a) and promoter peaks (b) that are common to different numbers of 
samples. (c) PLEKHG4B locus. (Left) ATAC-seq read density upstream of the PLEKHG4B gene for ALS (middle) and CTR (bottom) samples. Average 
coverage for each group is shown at the top. (Right) Zoomed in region around the starred peak. d. Motifs. The most overrepresented genomic motifs 
corresponding to known transcription factors as determined by the HOMER discovery algorithm for ATAC-seq. Motifs for transcription factors implicated 
in neuronal identity, such as Pdx1, Cux2, and the Lhx family, are significantly enriched.
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