
MIT Open Access Articles

Omnisemantics: Smoother Handling of Nondeterminism

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Chargu?raud, Arthur, Chlipala, Adam, Erbsen, Andres and Gruetter, Samuel. 2023.
"Omnisemantics: Smoother Handling of Nondeterminism." ACM Transactions on Programming
Languages & Systems.

As Published: https://doi.org/10.1145/3579834

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/147829

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/147829

Omnisemantics: Smooth Handling of Nondeterminism

ARTHUR CHARGUÉRAUD, Inria & Université de Strasbourg, CNRS, ICube, France

ADAM CHLIPALA,MIT CSAIL, USA

ANDRES ERBSEN,MIT CSAIL, USA

SAMUEL GRUETTER,MIT CSAIL, USA

This paper gives an in-depth presentation of the omni-big-step and omni-small-step styles of semantic judgments. These
styles describe operational semantics by relating starting states to sets of outcomes rather than to individual outcomes.
A single derivation of these semantics for a particular starting state and program describes all possible nondeterministic
executions (hence the name omni), whereas in traditional small-step and big-step semantics, each derivation only talks about
one single execution. This restructuring allows for straightforward modeling of both nondeterminism and undeined behavior
as commonly encountered in sequential functional and imperative programs. Speciically, omnisemantics inherently assert
safety, i.e. they guarantee that none of the execution branches gets stuck, while traditional semantics need either a separate
judgment or additional error markers to specify safety in the presence of nondeterminism.

Omnisemantics can be understood as an inductively deined weakest-precondition semantics (or more generally, predicate-
transformer semantics) that does not involve invariants for loops and recursion but instead uses unrolling rules like in
traditional small-step and big-step semantics. Omnisemantics were previously described in association with several projects,
but we believe the technique has been underappreciated and deserves a well-motivated, extensive, and pedagogical presentation
of its beneits. We also explore several novel aspects associated with these semantics, in particular their use in type-safety
proofs for lambda calculi, partial-correctness reasoning, and forward proofs of compiler correctness for terminating but
potentially nondeterministic programs being compiled to nondeterministic target languages. All results in this paper are
formalized in Coq.

CCS Concepts: · Theory of computation → Operational semantics; Axiomatic semantics; Pre- and post-conditions;
Program veriication; Hoare logic; Separation logic.

Additional Key Words and Phrases: Nondeterminism, Termination, Compiler Correctness Proofs

1 INTRODUCTION

Today, a typical project in rigorous reasoning about programming languages begins with an operational semantics
(or maybe several), with proofs of key lemmas proceeding by induction on derivations of the semantics judgment.
An extensive toolbox has been built up for formulating these relations, with common wisdom on the style to
choose for each situation. With decades having passed since operational semantics became the standard technique
in the 1980s, one might expect that the base of wisdom is suicient. Yet, a style that we call omnisemantics has
emerged in recent years as a new, powerful technique with numerous applications.
In short, omnisemantics relate starting states to their sets of possible outcomes, rather than to individual

outcomes. The omni-big-step judgment takes the form �/� ⇓ � and asserts that every possible evaluation starting

Authors’ addresses: Arthur Charguéraud, Inria & Université de Strasbourg, CNRS, ICube, France, arthur.chargueraud@inria.fr; Adam Chlipala,
MIT CSAIL, Cambridge, MA 02139, USA, adamc@csail.mit.edu; Andres Erbsen, MIT CSAIL, Cambridge, MA 02139, USA, andreser@mit.edu;
Samuel Gruetter, MIT CSAIL, Cambridge, MA 02139, USA, gruetter@mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0164-0925/2023/1-ART $15.00
https://doi.org/10.1145/3579834

ACM Trans. Program. Lang. Syst.

HTTPS://ORCID.ORG/0000-0001-7764-4507
HTTPS://ORCID.ORG/0000-0001-7085-9417
HTTPS://ORCID.ORG/0000-0002-9854-7500
HTTPS://ORCID.ORG/0000-0001-8369-9117
https://orcid.org/0000-0001-7764-4507
https://orcid.org/0000-0001-7085-9417
https://orcid.org/0000-0002-9854-7500
https://orcid.org/0000-0001-8369-9117
https://doi.org/10.1145/3579834

2 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

from the coniguration �/� reaches a inal coniguration that belongs to the set � . This set � is isomorphic to a
postcondition from a Hoare triple. The omni-small-step judgment takes the form �/� −→ � . It asserts both that
the coniguration �/� can take one reduction step and that, for any step it might take, the resulting coniguration
belongs to the set � . On top of this judgment, one may deine the eventually judgment �/� −→♢ � , which asserts
that every possible evaluation of �/� is safe and eventually reaches a coniguration in the set � .
On the one hand, omnisemantics can be viewed as operational semantics, because they are not far from

traditional operational semantics or executable interpreters. On the other hand, omnisemantics can be viewed as
axiomatic semantics, because they are not far form reasoning rules; in particular, they directly give a practical,
usable deinition of a weakest-precondition judgment, which can be used for verifying concrete programs. The
fact that they are both closely related to operational semantics and to axiomatic semantics is precisely the strength
of omnisemantics.

To the best of our knowledge, the ideas of omnisemantics have been studied prior to the writing of this paper
by three diferent groups of researchers. First, Schäfer et al. [2016] present an omni-big-step judgment for a
nondeterministic source language of guarded commands, as well as for a deterministic target language with
named continuations, using the term axiomatic semantics to refer to this style of semantics. They establish
the correctness of a function that compiles terminating programs from the source language into the target
language. Their proof is by induction on the derivation of an omni-big-step judgment for the source program
rather than on a derivation for the target program, a key insight that we will discuss in Sections 1.3 and 6.
They also present characterizations of program equivalence and present a proof of equivalence with traditional
small-step semantics, though only in the case of a deterministic semantics. Second, Erbsen et al. [2021] make use
of both omni-big-step semantics, applied to a high-level, core imperative language with external calls; and of
omni-small-step semantics, applied to a low-level, RISC-V machine language. They call this style of semantics
CPS semantics. They establish end-to-end compiler-correctness results for terminating programs. They also set up
Separation Logic reasoning rules in weakest-precondition style. Third, Charguéraud [2020]’s course notes make
use of omni-big-step semantics for the purpose of deriving Separation Logic triples, for both partial and total
correctness. The language considered is a nondeterministic, imperative �-calculus, with a substitution-based
semantics. In particular, that work establishes the relationship between omni-big-step semantics and traditional
big-step semantics, in the presence of nondeterminism.

Throughout the three pieces of work, the fundamental feature of omnisemantics being exploited is the ability
to carry out proofs by induction on derivations that follow the low of program execution, with smooth handling

of nondeterminism. Indeed, nondeterministic choices result in universally quantiied induction hypotheses at
steps where nondeterministic choices are made. Before further presenting omnisemantics, we believe that it is
useful to begin by presenting in more detail the several important problems that omnisemantics solve.

1.1 Feature #1: Stuck Terms and Nondeterminism

In an impure language, an execution may get stuck, for instance due to a division by zero or an out-of-bounds
array access. In a nondeterministic language, some executions may get stuck while others do not. Thus, for an
impure, nondeterministic language, the existence of a traditional big-step derivation for a starting coniguration
is not a proof that getting stuck is impossible.

How to ix the problem? A popular but cumbersome approach is to add errors as explicit outcomes (written err
in the rules below), so that we can state theorems ruling out stuck terms. For example, if the semantics of an
impure functional language includes the rule big-let, it needs to be augmented with two additional rules for

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 3

propagating errors: big-let-err-1 and big-let-err-2.

�1/� ⇓ �1/�
′ ([�1/�] �2)/�

′ ⇓ �/�′′

(let� = �1 in �2)/� ⇓ �/�′′
big-let

�1/� ⇓ err

(let� = �1 in �2)/� ⇓ err
big-let-err-1

�1/� ⇓ �1/�
′ ([�1/�] �2)/�

′ ⇓ err

(let� = �1 in �2)/� ⇓ err
big-let-err-2

The set of inference rules grows signiicantly, and the very type signature of the relation is complicated. Omni-
big-step semantics provide a way to reason, in big-step style, about the absence of stuck terms in nondeterministic
languages without introducing error-propagation rules.

1.2 Feature #2: Termination and Nondeterminism

In a nondeterministic language, a total-correctness Hoare triple, written total{� } � {�}, asserts that in any state
satisfying the precondition � , any execution of the term � terminates and reaches a inal state satisfying the
postcondition � . In foundational approaches, Hoare triples must be deined in terms of or otherwise formally
related to the operational semantics of languages.
When the (nondeterministic) semantics is expressed using the standard small-step relation, there are two

classical approaches to deining total-correctness Hoare triples. The irst one involves bounding the length of the
execution. This approach not only involves tedious manipulation of integer bounds, but it is also restricted to
initely branching forms of nondeterminism. The second approach is to deine total correctness as the conjunction
of a partial-correctness property (if � terminates, then it satisies the postcondition) and of a separate, inductively
deined termination judgment. With both of these approaches, deriving reasoning rules for total-correctness
Hoare triples becomes much more tedious than in the case of partial correctness.

One may hope for simpler proofs using a big-step judgment. Indeed, Hoare triples inherently have a big-step
lavor. Moreover, for deterministic, sequential languages, the most direct way to derive reasoning rules for Hoare
triples is from the big-step evaluation rules. Yet, when the semantics of a nondeterministic language is expressed
using a traditional big-step judgment, we do not know of any direct way to capture the fact that all executions
terminate. Omni-big-step semantics provide a direct deinition of total-correctness Hoare triples with respect to a
big-step-style, nondeterministic semantics, in a way that leads to simple proofs of the Hoare-logic rules.

1.3 Feature #3: Simulation Arguments with Nondeterminism and Undefined Behavior

Many compiler transformations map source programs to target programs that require more steps to accomplish
the same work, because they must make do with lower-level primitives. Intuitively, we like to think of a compiler
transformation being correct in terms of forward simulation: the transformation maps each step from the source
program to a number of steps in the target program. Yet, in the context of a nondeterministic language, such
a result is famously insuicient even in the special case of safely terminating programs. Concretely, compiler
correctness requires showing all possible behaviors of the target program correspond to possible behaviors
of the source program. A tempting approach is to establish a backward simulation, by showing that any step
in the target program can be matched by some number of steps in the source program. The trouble is that all
intermediate target-level states during a single source-level step need to be related to a source-level state, severely
complicating the simulation relation.
To avoid that hassle, most compilation phases from CompCert [Leroy 2009] are carried out on deterministic

intermediate languages, for which forward simulation implies backward simulation. Yet, many realistic languages
(C included) are not naturally seen as deterministic. CompCert involves special efort to maintain determinism,
through its celebrated memory model [Blazy and Leroy 2009]. Rather than revealing pointers as integers,

ACM Trans. Program. Lang. Syst.

4 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

CompCert semantics allocate pointers deterministically, taking care to trigger undeined behavior for any coding
pattern that would be sensitive to the literal values of pointers. As a result, any compiler transformations
that modify allocation order require the complex machinery of memory injections, to connect executions that
use diferent deterministic pointer values. Omnisemantics make it possible to retain the simplicity of forward
simulation, while keeping nondeterminism explicit.

1.4 Feature #4: Linear-Size Type-Safety Proofs

Type safety asserts that if a closed term is well-typed, then none of its possible evaluations gets stuck. A type-safety
proof in the syntactic style [Wright and Felleisen 1994] reduces to a pair of lemmas: preservation and progress.

preservation: � ⊢ � : � ∧ � −→ � ′ ⇒ � ⊢ � ′ : �

progress: ∅ ⊢ � : � ⇒ (isvalue �) ∨ (∃� ′ . � −→ � ′)

The Wright and Felleisen approach, although widely used, sufers from two limitations that can be problematic at
the scale of real-world languages with hundreds of syntactic constructs.
The irst limitation is that this approach requires performing two inductions over the typing judgment.

Nontrivial language constructs are associated with nontrivial statements of their induction hypotheses, for which
the same manual work needs to be performed twice, once in the preservation proof and once in the progress
proof. Factoring out the cases makes a huge diference in terms of proof efort and maintainability.

The second limitation is associated with the case inspection involved in the preservation proof. Concretely, for
each possible rule that derives the typing judgment (� ⊢ � : �), one needs to select the applicable rules that can
derive the reduction rule (� −→ � ′) for that same term � . Typically, only a few reduction rules are applicable. The
trouble is that fully rigorous checking of the proof must still inspect all of those cases to conirm their irrelevance.
A direct Coq proof, of the form łinduction H1; inversion H2ž, results in a proof term of size quadratic in the
size of the language1. As we expect to handle each possible transition at most once, a proof that takes only linear
work would be more satisfying. It would also avoid potential blow-up in the proof-checking time, for languages
involving hundreds of constructs.

Interestingly, in the particular case of a deterministic language, there exists a strategy [Rompf and Amin 2016]
for deriving type safety through a single inductive proof, which moreover avoids the quadratic case inspection.
The key idea is to carry out an induction over the following statement: a well-typed term is either a value or can
step to a term that admits the same type.

∅ ⊢ � : � ⇒
(

isvalue �
)

∨
(

∃� ′ . (� −→ � ′) ∧ (∅ ⊢ � ′ : �)
)

Omnisemantics allow to generalize this approach to the case of nondeterministic languages. As we show in
one of this paper’s original contributions, practical proofs of type safety can be carried out with respect to both
omni-small-step and omni-big-step semantics.

1.5 Contributions and Contents of the Paper

The contributions of this paper are as follows.

• We present big-step and small-step omnisemantics for a standard imperative �-calculus as well as for a
standard imperative while language, which we believe should make the presentation more accessible than
in prior publications. Moreover, we accompany this presentation with a Coq formalization of all deinitions
and proofs.2

1Lean matches Coq, and a proof based on Agda’s lexible dependent pattern matching still takes superlinear time to check.
2The present paper would, in particular, provide a formal publication of the results covered by the chapter on nondeterminism and the
chapter on partial correctness from Charguéraud’s Separation Logic Foundations course, Volume 6 of the Software Foundations series. These
results originally covered only omni-big-step semantics but have been extended in 2021 to cover omni-small-step semantics as well.

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 5

• We explain four key beneicial features of omnisemantics: They provide a convenient way to reason about
the absence of stuck terms (feature #1) and the absence of diverging terms (feature #2) in nondeterministic
languages, they enable forward-simulation-based correctness proofs for compilers with nondeterministic
target languages (feature #3), and they enable type-safety proofs that avoid quadratic case inspection even
in the case of a nondeterministic language (feature #4).

• We introduce the coinductive variant of omni-big-step semantics, which yields a partial-correctness
judgment. This possibility was left as future work by Schäfer et al. [2016].

• We present numerous properties of omnisemantics, as well as their relationship to traditional operational
semantics. Some of these properties were described in Erbsen et al. [2021] but only briely. For example,
the connection between traditional and omnisemantics only covered traditional small-step semantics with
no undeined behavior, and small-step omnisemantics themselves were given one paragraph of description.

• We present in detail the proof techniques from two case studies on compiler-correctness results, adapted
from Erbsen et al. [2021]’s prior work.

• We present a new case study illustrating an example of a correctness proof for a compiler transformation
that increases the amount of nondeterminism. In contrast, work by Schäfer et al. [2016] and Erbsen et al.
[2021] only considered transformations that decrease the amount of nondeterminism.

The paper is organized as follows.

• In Section 2, we introduce the omni-big-step judgment, which can be deined either inductively, to capture
termination of all executions; or coinductively, in partial-correctness fashion. We also state and prove
properties about the judgment, including the notion of smallest and largest admissible sets of outcomes.

• In Section 3, we introduce the omni-small-step judgment, as well as the eventually judgment deined on
top of it and three practical reasoning rules associated with these judgments.

• In Section 4, we present type-safety proofs carried out with respect to either omni-small-step or omni-
big-step semantics. We explain the improvement over the prior state of the art, as suggested in the earlier
discussion of features #1 and #4.

• In Section 5, we explain how the omni-big-step judgment or the omni-small-step eventually judgment can
be used to deine Hoare triples and weakest-precondition predicates. We consider both partial and total
correctness, and we show how the associated reasoning rules can be established via one-line proofs (recall
feature #2). Moreover, we explain how one may derive the frame rule from Separation Logic.

• In Section 6, we demonstrate how omnisemantics can be used to prove that a compiler correctly compiles
terminating programs, via forward-simulation proofs (recall feature #3). We illustrate this possibility
through two case studies carried out on a while-language. The irst one, łheapiicationž of pairs, increases
the amount of nondeterminism; it involves omni-big-step semantics for both the source and the target
language. The second one, introduction of stack allocation, decreases the amount of nondeterminism; it
involves an omni-big-step semantics for the source language and an omni-small-step semantics for the
target language.

Note that we leave it to future work to investigate how omnisemantics may be exploited to establish full compiler

correctness, that is, not just the correctness of compilation for terminating programs but also that of programs
that may crash, diverge, or perform ininitely many I/O interactions.

2 OMNI-BIG-STEP SEMANTICS

In the section, we introduce the omni-big-step judgment, written �/� ⇓ � . We use this judgment in particular
for establishing type safety (ğ4.3), for setting up program logics (ğ5), and for establishing compiler-veriication
results (ğ6). To present the deinition of this judgment, we consider an imperative, nondeterministic lambda-
calculus, for which we irst present the semantics in standard big-step style (ğ2.1). We then discuss the properties

ACM Trans. Program. Lang. Syst.

6 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

and interpretation of the omni-big-step judgment (ğ2.2). In particular, we focus on why the set � that appears in
�/� ⇓ � is interpreted as an overapproximation of the set of possible results, rather than as the exact set of possible
results. We next present the corresponding coinductive judgment, written �/� ⇓co � , which captures partial
correctness in the sense that it allows for diverging executions (ğ2.4). We conclude this section by presenting the
bind rule for handling programs that are not in A-normal form (ğ2.5).

2.1 Definition of the Omni-Big-Step Judgment

Syntax. As a running example, we consider an imperative lambda-calculus, including a random-number
generator rand. Both this operator and allocation are nondeterministic.
The grammar of the language appears next. The metavariable � ranges over primitive operations, � ranges

over values, � ranges over terms, and � and � range over program variables. A value can be the unit value tt, a
Boolean �, a natural number �, a pointer � , a primitive operator, or a closure3.

� := add | rand | ref | free | get | set
� := tt | � | � | � | � | �� .�� .�

� := � | � | (� �) | let� = � in � | if � then � else �

For simplicity, we present evaluation rules by focusing irst on programs in A-normal form: the let-binding
construct is the only one that involves evaluation under a context. In an application (�1 �2), the two terms must
be either variables or values. Similarly, the condition of an if-statement must be either a variable or a value, and
likewise for arguments of primitive operations. In ğ2.5, we present the bind rule, which enables the evaluation of
subterms under all valid evaluation contexts.

Evaluation judgments. The standard big-step-semantics judgment for this language appears in Figure 1. States
� are inite partial maps from pointers � to values � . The evaluation judgment �/� ⇓ �/�′ asserts that the
coniguration �/� , made of a term � and an initial state � , may evaluate to the inal coniguration �/�′, made of a
value � and a inal state �′.

The corresponding omni-big-step semantics appears in Figure 2. Its evaluation judgment, written �/� ⇓ � ,
asserts that all possible evaluations starting from the coniguration �/� reach inal conigurations that belong
to the set � . Observe how the standard big-step judgment �/� ⇓ �/�′ describes the behavior of one possible
execution of �/� , whereas the omni-big-step judgment describes the behavior of all possible executions of �/� .
The set � that appears in �/� ⇓ � corresponds to an overapproximation of the set of inal conigurations: it may
contain conigurations that are not actually reachable by executing �/� . We return to that aspect in ğ2.3.

The set � contains pairs made of values and states. Such a set can be described equivalently by a predicate of
type łval → state → Propž or by a predicate of type ł(val × state) → Propž. In this paper, in order to present
deinitions in the most idiomatic style, we use set-theoretic notation such as (�, �) ∈ � for stating semantics and
typing rules, and we use the logic-oriented notation � � � when discussing program logics. (The type of � may
be generalized for languages that include exceptions; see Appendix C.)

Description of the evaluation rules. The base case is the rule omni-big-val: a inal coniguration �/� satisies
the postcondition � if this coniguration belongs to the set � .

The let-binding rule omni-big-let ensures that all possible evaluations of an expression let� = �1 in �2 in state
� terminate and satisfy the postcondition � . First of all, we need all possible evaluations of �1 to terminate. Let �1

denote (an overapproximation of) the set of results that �1 may reach, as captured by the irst premise �1/� ⇓ �1.

3In our Coq formalization, the grammar of values is restricted to closed values (i.e., values without free variables). This design choice
signiicantly simpliies the reasoning about substitutions. One minor consequence is that the function construct needs to appear twice: once
in the grammar of closed values and once in the grammar of terms.

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 7

big-val

�/� ⇓ �/�

big-app
�1 = (�� .�� .�) ([�2/�] [�1/�] �)/� ⇓ � ′/�′

(�1 �2)/� ⇓ � ′/�′

big-if-true
�1/� ⇓ � ′/�′

(if true then �1 else �2)/� ⇓ � ′/�′

big-if-false
�2/� ⇓ � ′/�′

(if false then �1 else �2)/� ⇓ � ′/�′

big-let
�1/� ⇓ �1/�

′ ([�1/�] �2)/�
′ ⇓ �/�′′

(let� = �1 in �2)/� ⇓ �/�′′

big-add

(add�1 �2)/� ⇓ (�1 + �2)/�

big-rand
0 ≤ � < �

(rand�)/� ⇓�/�

big-ref
� ∉ dom �

(ref �)/� ⇓ �/(� [� := �])

big-free
� ∈ dom �

(free �)/� ⇓ tt/(� ∖ �)

big-get
� ∈ dom �

(get�)/� ⇓ (� [�])/�

big-set
� ∈ dom �

(set� �)/� ⇓ tt/(� [� := �])

Fig. 1. Standard big-step semantics (for terms in A-normal form)

omni-big-val
(�, �) ∈ �

�/� ⇓ �

omni-big-if-true
�1/� ⇓ �

(if true then �1 else �2)/� ⇓ �

omni-big-if-false
�2/� ⇓ �

(if false then �1 else �2)/� ⇓ �

omni-big-app
�1 = �� .�� .�1

([�1/�] [�2/�] �1)/� ⇓ �

(�1 �2)/� ⇓ �

omni-big-let
�1/� ⇓ �1

(

∀(� ′, �′) ∈ �1. ([� ′/�] �2)/�
′ ⇓ �

)

(let� = �1 in �2)/� ⇓ �

omni-big-add
(�1 + �2, �) ∈ �

(add�1 �2)/� ⇓ �

omni-big-rand
� > 0

(

∀�. 0 ≤ � < � ⇒ (�, �) ∈ �
)

(rand�)/� ⇓ �

omni-big-ref
∀� ∉ dom � . (�, � [� := �]) ∈ �

(ref �)/� ⇓ �

omni-big-free
� ∈ dom � (tt, � ∖ �) ∈ �

(free �)/� ⇓ �

omni-big-get
� ∈ dom � (� [�], �) ∈ �

(get�)/� ⇓ �

omni-big-set
� ∈ dom � (tt, � [� := �]) ∈ �

(set� �)/� ⇓ �

Fig. 2. Omni-big-step semantics (for terms in A-normal form)

One can think of �1 as the type of �1, in a very precise type system where any set of values can be treated as a
type. The second premise asserts that, for any coniguration � ′/�′ in that set �1, we need all possible evaluations
of the term [� ′/�] �2 in state �′ to satisfy the postcondition � .
The evaluation rule omni-big-add for an addition operation is almost like that of a value: it asserts that the

evaluation of add�1 �2 in state � satisies the postcondition � if the pair ((�1 + �2), �) belongs to the set � . The
nondeterministic rule omni-big-rand is more interesting. The term rand� evaluates safely only if � > 0. Under
this assumption, its result, named� in the rule, may be any integer in the range [0, �). Thus, to guarantee that
every possible evaluation of rand� in a state � produces a result satisfying the postcondition � , it must be the
case that every pair of the form (�, �) with� ∈ [0, �) belongs to the set � .

ACM Trans. Program. Lang. Syst.

8 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

The evaluation rule omni-big-ref, which describes allocation at a nondeterministically chosen, fresh memory
address, follows a similar pattern. For every possible new address � , the pair made of � and the extended state
� [� := �] needs to belong to the set � . The remaining rules, omni-big-free, omni-big-get and omni-big-set, are
deterministic and follow the same pattern as omni-big-add, only with a side condition � ∈ dom � to ensure that
the address being manipulated does belong to the domain of the current state.

2.2 Properties of the Omni-Big-Step Judgment

In this section, we discuss some key properties of the omni-big-step judgment �/� ⇓ � . Recall that themetavariable
� denotes an overapproximation of the set of possible inal conigurations.

Total correctness. The predicate �/� ⇓ � captures total correctness in the sense that it captures the conjunction
of termination (all executions terminate) and partial correctness (if an execution terminates, then its inal state
satisies the postcondition �). Formally, let �/� ⇓ �/�′ denote the standard big-step evaluation judgment, and let
terminates(�, �) be a predicate that captures the fact that all executions of �/� terminate (a formal deinition is
given in Appendix D). We prove:

omni-big-step-iff-terminates-and-correct :

�/� ⇓ � ⇐⇒ terminates(�, �) ∧
(

∀��′ . (�/� ⇓ �/�′) ⇒ (�, �′) ∈ �
)

.

In particular, if we instantiate the postcondition � with the always-true predicate, we obtain the predicate
�/� ⇓ {(�, �′) | True}, which captures only the termination property.

Consequence rule. The judgment �/� ⇓ � still holds when the postcondition � is replaced with a larger set. In
other words, the postcondition can always be weakened, like in Hoare logic.

omni-big-conseqence : �/� ⇓ � ∧ � ⊆ � ′ ⇒ �/� ⇓ � ′

Strongest postcondition. If the omni-big-step judgment holds for at least one set, then there exists a smallest
possible set � for which �/� ⇓ � holds. This set corresponds to the strongest possible postcondition � , in the
terminology of Hoare logic. Formally, if �/� ⇓ � holds for at least one � , then �/� ⇓ (strongest-post � �) holds,
where the strongest postcondition is equal to the intersection of all valid postconditions.

strongest-post � � =

⋂

� | (�/� ⇓�)

� =
{

(�, �′)
�

� ∀�, (�/� ⇓ �) =⇒ (�, �′) ∈ �
}

No derivations for terms that may get stuck. The fact that rand 0 is a stuck term is captured by the fact that
(rand 0)/� ⇓ � does not hold for any � . More generally, if one or more nondeterministic executions of � may
get stuck, then we have: ∀�. ¬ (�/� ⇓ �).

Relationship to standard big-step semantics. The standard big-step judgment �/� ⇓ �/�′ relates one input
coniguration �/� to one single result coniguration �/�′. The omni-big-step judgment, which relates inputs to
sets of results, thus appears as an immediate generalization of the standard big-step judgment. The following two
results formalizes their relationship.

First, if �/� ⇓ � holds, then any inal coniguration for which the standard big-step judgment holds necessarily
belongs to the set � .

omni-big-and-big-inv: �/� ⇓ � ∧ �/� ⇓ �/�′ ⇒ (�, �′) ∈ �

Second, if �/� ⇓ � holds, then there exists at least one evaluation according to the standard big-step judgment
whose inal coniguration belongs to the set � .

omni-big-to-one-big: �/� ⇓ � ⇒ ∃��′ . �/� ⇓ �/�′ ∧ (�, �′) ∈ �

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 9

precise-big-val

�/� ⇓′ {(�, �)}

precise-big-ref

(ref �)/� ⇓′ {(�, � [� := �]) | � ∉ dom �}

precise-big-rand
� > 0

(rand�)/� ⇓′ {(�, �) | 0 ≤ � < �}

precise-big-let
�1/� ⇓′ �1 ∀(� ′, �′) ∈ �1. ([�

′/�] �2)/�
′ ⇓ � ′

(�′,�′)

(let� = �1 in �2)/� ⇓′
⋃

(�′,�′) ∈�1

� ′
(�′,�′)

Fig. 3. Selected rules defining a precise variant of omni-big-step semantics, writen �/� ⇓′ � .

A corollary asserts that if �/� ⇓ � holds with � being a singleton set made of a unique inal coniguration
�/�′, then the standard big-step judgment holds for that coniguration.

omni-big-singleton: �/� ⇓ {(�, �′)} ⇒ �/� ⇓ �/�′

Particular case of deterministic languages. In a deterministic language, an input coniguration �/� may evaluate
to at most one coniguration �/�′. In such a case, the strongest postcondition is reduced to the singleton set
{(�, �′)}.

Nonempty outcome sets. Observe that the judgment �/� ⇓ � , as deined in Fig. 2, can only hold for a nonempty
set � . When designing omni-big-step rules for a new language, one has to be careful not to accidentally include
rules that allow derivations of empty outcome sets for some programs. To illustrate the matter, consider the
term łrand 0ž. According to the standard big-step semantics, this term is stuck because the rule big-rand

requires a positive argument to rand. In the omni-big-step semantics, if we were to omit the premise � > 0

in the rule omni-big-rand, we would be able to derive (rand 0)/� ⇓ � for any � and � . Indeed, the premise
∀�. 0 ≤ � < � ⇒ (�, �) ∈ � becomes vacuously true when � is nonpositive.

A similar subtlety appears in the rule omni-big-ref, where the fresh location � must be picked fresh from the
domain of � . This quantiication could become vacuously true if the semantics allowed for ininite states or if the
set of memory locations were inite. (We discuss in ğ6.5 the treatment of a language whose semantics account for
a inite memory.)

The likelihood of unadequate formalization due to missing premises might be viewed as the main weakness of
omnisemantics. Yet, if needed, additional conidence can easily be restored at the cost of minor additional work:
one may consider a standard small-step semantics as reference (i.e., as part of the trusted code base), then relate
it to the corresponding omni-big-step semantics and use the latter to carry out big-step style, inductive proofs on
nondeterministic executions.

2.3 About the Overapproximation of the Set of Results

The omni-big-step judgment �/� ⇓ � associates an initial coniguration �/� with a postcondition � , which
denotes an overapproximation of the set of possible inal conigurations. One may thus wonder: why not associate
it with a precise set of results? In this section, we show that it is technically possible to deine a precise judgment,
but at the same time we argue why that judgment is much less practical to work with than the overapproximating

omni-big-step judgment.
The precise judgment, written �/� ⇓′ � , is precise in the sense that it relates a coniguration �/� to at most one

set of results � . This precise judgment, like the overapproximating omni-big-step judgment, guarantees safety: a
judgment �/� ⇓′ � can be derived for some � if and only if none of the possible executions of �/� can get stuck.
Thus, the precise judgment relates a safe coniguration �/� to exactly one � .

ACM Trans. Program. Lang. Syst.

10 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

Figure 3 shows selected rules from the deinition of the precise judgment, written �/� ⇓′ � . The rule precise-
big-val relates a value � in a state � to the singleton set made of the pair (�, �). The rule precise-big-ref relates
the term (ref �) in a state � to the set of pairs made of a location � fresh from � and of the state � updated at
location � with the value � . Observe how this compares with the rule omni-big-ref, which only requires that set
of pairs to be included in the result set � . The rule precise-big-rand follows a similar pattern, only with the
premise � > 0 to ensure that the term is not stuck.
Most interesting is the rule precise-big-let. Its irst premise involves an intermediate set �1, which denotes

exactly the set of results that �1 can produce when executed in the input state � . The second premise describes, for
each result (� ′, �′) from the set �1, the evaluation of ([� ′/�] �2) in state �′. The result of the execution is asserted
to be exactly a set of conigurations written� ′

(�′,�′)
. Here� ′ denotes a (possibly ininite) family of postconditions,

indexed by the possible results of �1. The inal postcondition of the term (let� = �1 in �2) is obtained by taking the
union over that family of postconditions.4

In practice, working with indexed families of postconditions introduces signiicant overhead, compared with
the overapproximating omni-big-step judgment. Moreover, for practical applications such as type-checking or
program veriication (either using weakest preconditions or Hoare triples), we are only interested in overapproxi-
mations of the semantics. For such applications, building the overapproximation on top of a precise judgment
would only introduce a level of indirection. For other situations where a notion of exact set of results might be
desirable, typically for metatheoretical results (e.g., completeness results), we can always refer to the strongest
postcondition, which, as explained earlier, can be formalized as the intersection of all valid postconditions.
In summary, we believe that it is interesting to know that a precise judgment can be deined, as it might be

useful in other contexts, but for the applications that we have in mind the overapproximating omni-big-step
judgment appears much better suited.

2.4 Coinductive Interpretation of the Omni-Big-Step Judgment

Let �/� ⇓co � denote the judgment deined by the coinductive interpretation of the same set of rules as for the
inductively deined judgment �/� ⇓ � , i.e., rules from Fig. 2. The coinductive interpretation allows for ininite
derivation trees, thus the coinductive omni-big-step judgment can be used to capture properties of nonterminating
executions.
More precisely, the judgment �/� ⇓co � asserts that every possible execution of coniguration �/� either

diverges or terminates in a inal coniguration satisfying � . In particular, this judgment rules out the possibility
for an execution of �/� to get stuck, and it can be used to express type safety, as detailed in ğ4. The judgment
�/� ⇓co � can also be used to deine partial-correctness Hoare triples, as detailed in ğ5.

Formally, we can relate the meaning of �/� ⇓co � to the small-step characterization of partial correctness as
follows: for every execution preix, the coniguration reached is either a value satisfying the postcondition, or it
is a term that can be reduced further. Below, �/� −→ � ′/�′ denotes the standard small-step evaluation judgment
(deined in Appendix G), and val denotes the constructor that injects values into the grammar of terms.

co-omni-big-iff-safe-and-correct

�/� ⇓co � ⇐⇒ ∀�′� ′ . (�/� −→∗ � ′/�′) ⇒
(

∃� . � ′ = val � ∧ (�, �′) ∈ �
)

∨
(

∃� ′′�′′ . � ′/�′ −→ � ′′/�′′
)

The judgment �/� ⇓co � can also be used to characterize divergence, by instantiating � as the empty set: the
predicate �/� ⇓co ∅ asserts that every possible execution of �/� diverges. Because the judgment �/� ⇓co � is

4In Coq, we model sets with elements of type � as functions from � to propositions, thus�1 is represented as a function that takes a value
and a state and returns a proposition,� ′ is a function that takes a value, a state, another value, another state and returns a proposition, and
the union over the family of results is written � �′′ �′′ . ∃ �′ �′ . �1 �

′ �′ ∧ � ′ �′ �′ �′′ �′′ .

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 11

covariant in � , the predicate �/� ⇓co ∅ holds if and only if the predicate �/� ⇓co � holds for any � . In summary,
we formally characterize divergence as follows.

diverges � � ≡ (�/� ⇓co ∅) diverges � � ⇐⇒ ∀�. (�/� ⇓co �)

2.5 The Bind Rule for Reasoning about Evaluation Contexts

In this section, we explain how to reason about programs that are not in A-normal form. We follow the approach
of the bind rule, popularized by Iris [Jung et al. 2018] in the context of program logics. The bind rule follows the
pattern of the let-binding rule but allows for evaluation of a subterm � that appears in an evaluation context �.
For the syntax introduced in ğ2.1, we can deine evaluation contexts by the following grammar, where □ denotes
the hole, i.e., the empty context.

� := □ | let� = � in � | (� �) | (� �) | if � then � else �

We write � [�] for the context � whose hole is illed with the term � . We write value � for the predicate that
asserts that � is a value. The bind rule describes how to evaluate or reason about subterms that appear in evaluation
contexts and that are not already values. The omni-big-step bind rule takes the following form.

¬ value � �/� ⇓ �1

(

∀��′ . �1 � �
′ ⇒ � [�] / �′ ⇓ �

)

� [�] / � ⇓ �
omni-big-bind

The premise ¬ value � could be omitted for the inductive interpretation of the omni-big-step rules. It is required,
however, for the coinductive interpretation, to prevent the construction of ininite derivations for terms that do
not diverge.

3 OMNI-SMALL-STEP SEMANTICS

In this section, we present the omni-small-step judgment, written �/� −→ � . Here, � denotes a set of pairs each
made of a term and a state. We then present the eventually judgment, written �/� −→♢ � . We use these judgments
in particular for establishing type-safety (ğ4.1) and compiler-veriication (ğ6.6) results.

3.1 The Omni-Small-Step Judgment

The omni-small-step judgment, written �/� −→ � , asserts that the coniguration �/� can take one reduction step
and that, for any step it might take, the resulting coniguration belongs to the set � . It is deined by the rules from
Fig. 4. There is one per small-step transition. The interesting rules are those involving nondeterminism, namely
omni-small-rand and omni-small-ref, which follow a pattern similar to the corresponding omni-big-step rules.
Observe also how the rule omni-small-let-ctx handles the case of a reduction that takes place in the evaluation
context of a let-binding, by quantifying over an intermediate set of results named �1.

We prove that the judgment �/� −→ � captures the expected property w.r.t. the standard small-step judgment:
the coniguration �/� can make a step, and for every step it might take, it reaches a coniguration in � .

omni-small-step-iff-progress-and-correct

�/� −→ � ⇐⇒
(

∃� ′�′ . �/� −→ � ′/�′
)

∧
(

∀� ′�′ . �/� −→ � ′/�′ ⇒ (� ′, �′) ∈ �
)

3.2 The łEventuallyž Judgment

The judgment �/� −→♢ � captures the property that every possible evaluation of �/� is safe and eventually
reaches a coniguration in the set � . Here, � denotes a set of conigurationsÐit is not limited to being a set of
inal conigurations like in the previous section. The judgment �/� −→♢ � is deined inductively by the following
two rules. The irst one asserts that the judgment is satisied if �/� belongs to � . The second one asserts that the
judgment is satisied if �/� is not stuck and that for any coniguration � ′/�′ that it may reduce to, the predicate

ACM Trans. Program. Lang. Syst.

12 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

omni-small-app
�1 = (�� .�� .�)

([�2/�] [�1/�] �, �) ∈ �

(�1 �2)/� −→ �

omni-small-if-true
� (�1, �)

(if true then �1 else �2)/� −→ �

omni-small-if-false
� (�2, �)

(if false then �1 else �2)/� −→ �

omni-small-let-ctx
�1/� −→ �1

(

∀(� ′1, �
′) ∈ �1. ((let� = � ′1 in �2), �

′) ∈ �
)

(let� = �1 in �2)/� −→ �

omni-small-let
([�1/�] �2, �) ∈ �

(let� = �1 in �2)/� −→ �

omni-small-add
(�1 + �2, �) ∈ �

(add�1 �2)/� −→ �

omni-small-rand
� > 0

(

∀� ∈ [0, �). (�, �) ∈ �
)

(rand�)/� −→ �

omni-small-ref
(

∀� ∉ dom � . (�, � [� := �]) ∈ �
)

(ref �)/� −→ �

omni-small-free
� ∈ dom �

(tt, � ∖ �) ∈ �

(free�)/� −→ �

omni-small-get
� ∈ dom �

(� [�], �) ∈ �

(get�)/� −→ �

omni-small-set
� ∈ dom �

(tt, � [� := �]) ∈ �

(set� �)/� −→ �

Fig. 4. Omni-small-step semantics (for terms in A-normal form)

� ′/�′ −→♢ � holds. The latter property is expressed using the omni-small-step judgment �/� −→ � ′, where � ′

denotes an overapproximation of the set of conigurations � ′/�′ to which �/� may reduce.

eventually-here
(�, �) ∈ �

�/� −→♢ �

eventually-step
�/� −→ � ′

(

∀(� ′, �′) ∈ � ′ . � ′/�′ −→♢ �
)

�/� −→♢ �

If � denotes a set of inal conigurations, then the judgment �/� −→♢ � can be viewed as a particular case
of the judgment �/� −→♢ � , where � denotes a set of conigurations. We prove that �/� −→♢ � matches our
omni-big-step judgment �/� ⇓ � .

eventually-iff-omni-big-step: �/� −→♢ � ⇐⇒ �/� ⇓ �

3.3 Chained Rule and Cut Rule for the łEventuallyž Judgment

To apply the rule eventually-step, one needs to provide upfront an intermediate postcondition � ′. Doing so is
not always convenient. It turns out that we can leverage the omni-small-step judgment �/� −→ � ′ to provide an
introduction rule for �/� −→♢ � that does not require providing � ′ upfront. This rule, which we call the chained
version of eventually-step, admits the statement shown below. It reads as follows: if every possible step of �/�
reduces in one step to a coniguration that eventually reaches a coniguration from the set � , then every possible
evaluation of �/� eventually reaches a coniguration from the set � .

eventually-step-chained : �/� −→
{

(� ′, �′)
�

� � ′/�′ −→♢ �
}

⇒ �/� −→♢ �

One may wonder why we did not use this rule directly in the inductively deined judgment, and the reason is
Coq’s strict positivity requirement. The considerations for encoding sequencing here are similar to those discussed
in Appendix A in the context of the omni-big-step let-binding rule.
Another interesting property of the judgment �/� −→♢ � is its cut rule, which is derivable. It asserts the

following: if every possible evaluation of �/� eventually reaches a coniguration in the set � ′, and if every
coniguration from the set � ′ eventually reaches a coniguration from the set � , then every possible evaluation of

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 13

�/� eventually reaches a coniguration from the set � .

eventually-cut : �/� −→♢ � ′ ∧
(

∀(� ′, �′) ∈ � ′ . � ′/�′ −→♢ �
)

⇒ �/� −→♢ �

This cut rule also admits a chained version, which reads as follows: if every possible evaluation of �/� eventually
reaches a coniguration that itself eventually reaches a coniguration from the set � , then every possible evaluation
of �/� eventually reaches a coniguration from the set � .

eventually-cut-chained : �/� −→♢
{

(� ′, �′)
�

� � ′/�′ −→♢ �
}

⇒ �/� −→♢ �

The cut rule and the chained rules are particularly handy to work with, as we illustrate in ğ6.6.

3.4 Coinductive Interpretation of the Omni-Small-Step Judgment

Let �/� −→♢co � denote the coinductive interpretation of the two rules that deine �/� −→♢ � . Divergence can
be captured by instantiating � as the empty set. We prove that the judgment �/� −→♢co ∅ is equivalent to the
standard small-step characterization of divergence, which asserts that any execution preix may be extended
with at least one additional step.

co-eventually-empty-iff-small-step-diverges

�/� −→♢co ∅ ⇐⇒ ∀�′� ′ . (�/� −→∗ � ′/�′) ⇒
(

∃� ′′�′′ . � ′/�′ −→ � ′′/�′′
)

Besides, we can relate the coinductive omni-small-step judgment �/� −→♢co � to the coinductive omni-big-step
judgment �/� ⇓co � deined in ğ2.4. Here again, we let � denote a set of inal conigurations. We prove the
following equivalence.

co-eventually-iff-co-omni-big-step: �/� −→♢co � ⇐⇒ �/� ⇓co �

The proofs of these two equivalences co-eventually-iff-co-omni-big-step, co-eventually-empty-iff-
small-step-diverges, as well as the proof of co-omni-big-iff-safe-and-correct from ğ3.4, are interesting in
that they involve yet another judgment. This judgment, written �/� −→−→∗

co � , is deined in terms of the standard
small-step semantics, by taking the coinductive interpretation of the following two rules.

eventually’-here
(�, �) ∈ �

�/� −→−→∗
co �

eventually’-step
(

∃� ′�′ . �/� −→ � ′/�′
) (

∀� ′�′ . (�/� −→ � ′/�′) ⇒ (� ′/�′ −→−→∗
co �)

)

�/� −→−→∗
co �

The desired equivalences are established in three steps. First, we prove that the standard small-step charac-
terization of partial correctness that appears in the statement of co-omni-big-iff-safe-and-correct (ğ3.4) is
equivalent to this new coinductive judgment �/� −→−→∗

co � . The proof is relatively straightforward because both of
these characterizations are expressed using small-step transitions.
Second, we prove that the co-eventually judgment �/� −→♢co � is equivalent to �/� −→−→∗

co � . The proof is
relatively straightforward because the coinductive deinitions for these two judgments share a similar structure.
As a corollary, by instantiating� as the empty set, we establish co-eventually-empty-iff-small-step-diverges.

Third, we prove that the co-omni-big-step judgment �/� ⇓co � is equivalent to �/� −→−→∗
co � . This third proof

is the most challenging, especially for establishing the implication from the small-step style judgment to the
big-step style judgment. The proof involves a key intermediate lemma, which consists of an inversion rule
for let-bindings: if (let� = �1 in �2)/� −→−→∗

co � holds, then there exists a set �1 such that �1/� −→−→∗
co �1 and

∀(�1, �
′) ∈ �1 . ([�1/�] �2)/�

′ −→−→∗
co � hold. The proof of this key lemma itself relies on two auxiliary results,

whose purpose is to justify that we can take as witness for �1 the strongest postcondition of �1/� . The irst one
asserts that (let� = �1 in �2)/� −→−→∗

co � implies �1/� −→−→∗
co {(�1, �

′) | �1/� −→
∗ �1/�

′}. The second one asserts that
(let� = �1 in �2)/� −→−→∗

co � and �1/� −→∗ �1/�
′ imply ([�1/�] �2)/�

′ −→−→∗
co � . We refer to our Coq development for

details.

ACM Trans. Program. Lang. Syst.

14 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

A key observation about all the proofs involved in ğ2 and ğ3 is that they are constructive5. In particular, we
are able to establish equivalences betweeen coinductive omni-big-step semantics and small-step style semantics
without recourse to classical logic. This constrast with coinductive big-step semantics [Leroy and Grall 2009],
whose connection to small-step semantics requires classical logic. We discuss this aspect further in the related
work section (ğ8).

4 TYPE-SAFETY PROOFS USING OMNISEMANTICS

In this section, we show how the omni-small-step and omni-big-step judgments may be used to carry out
type-safety proofs. We illustrate the proof structures using simple types (STLC). As a warm-up, we begin with a
presentation of type safety on the restriction to the state-free fragment of our running-example language.
For this section, we need to consider a diferent semantics for the random-number generator. Indeed, the

current rule omni-big-rand asserts that the program is stuck if rand� is invoked with an argument � ≤ 0. Since
here we are interested in proving that well-typed programs do not get stuck, let us consider a modiied semantics,
where rand� is turned into a total function that returns 0 when � ≤ 0.

omni-big-rand-complete
∀�. 0 ≤ � < max(�, 1) ⇒ (�, �) ∈ �

(rand�)/� ⇓ �

omni-small-rand-complete
∀�. 0 ≤ � < max(�, 1) ⇒ (�, �) ∈ �

(rand�)/� −→ �

Additionally, for this section, we also exclude the primitive operation free, which is not type-safe.
The grammar of types, written � , appears below.

� := unit | bool | int | � → � | ref�

A typing environement, written �, maps variable names to types. The judgment ⊢ � : � asserts that the closed
value � admits the type � . The judgment � ⊢ � : � asserts that the term � admits type � in the environment �.
We let V denote the set of terms that are either values or variablesÐrecall that we consider A-normal forms to
simplify the presentation. The typing rules are essentially standard, apart from the fact that they involve side
conditions of the form � ∈ V to constrain terms to be in A-normal form. We include here two example rules; the
other rules are given in appendix E.

typ-let
� ⊢ �1 : �1 �, � : �1 ⊢ �2 : �2

� ⊢ (let� = �1 in �2) : �2

typ-rand
� ⊢ �1 : int �1 ∈ V

� ⊢ (rand �1) : int

4.1 Omni-Small-Step Type-Safety Proof for a State-Free Language

A stuck term is a term that is not a value and that cannot take a step. Type safety asserts that if a closed term � is
well-typed, then none of its possible evaluations gets stuck. In other words, if � reduces in a number of steps to � ′,
then � ′ is either a value or can further reduce.

type-safety (state-free language):

(∅ ⊢ � : �) ∧ (� −→∗ � ′) ⇒ (isvalue � ′) ∨ (∃� ′′ . � ′ −→ � ′′)

The traditional approach to establishing type safety is by proving the preservation and progress properties [Pierce
2002; Wright and Felleisen 1994].

preservation (state-free language): � ⊢ � : � ∧ � −→ � ′ ⇒ � ⊢ � ′ : �

progress (state-free language): ∅ ⊢ � : � ⇒ (isvalue �) ∨ (∃� ′ . � −→ � ′)

5The proofs that we present do not exploit classical logic axioms. However, we do not provide a machine-checked proof that our proofs are
constructive. Indeed, our Coq development is building on top of general-purpose libraries that exploit classical logic in various places.

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 15

Each of these proofs is most typically carried out by induction on the typing judgment. One diiculty that might
arise in the type-preservation proof for a large language with dozens (if not hundreds) of typing rules is the fact
that one needs, for each case of the typing judgment � ⊢ � : � , to inspect all the potential cases of the reduction
judgment � −→ � ′. This inspection is not really quadratic in practice, because one can ilter out applicable rules
based on the shape of the term � . Nevertheless, a typical Coq proof performing łintros HT HR; induction

HT; inversion HRž does produce a proof term whose size is quadratic in the number of term constructs. Coq
users have experienced performance challenges with quadratic-complexity proof terms when formalizing PL
metatheory [Monin and Shi 2013].
Interestingly, in the particular case of a deterministic language, there exists a known strategy (e.g., of Rompf

and Amin [2016]) to reformulate the preservation and progress statements in a way that not only factors out
the two into a single statement but also can be proved with a linear-size proof term. This combined statement,
shown below, asserts that a well-typed term � is either a value or can make a step towards a term � ′ that admits
the same type.

induction-for-type-safety, state-free, standard small-step, deterministic

∅ ⊢ � : � ⇒
(

isvalue �
)

∨
(

∃� ′ . (� −→ � ′) ∧ (∅ ⊢ � ′ : �)
)

As we explain next, this approach can be generalized to the case of nondeterministic languages using the
omni-small-step judgment. Let us write � −→ � for the judgment that corresponds to �/� −→ � without the state
argument. We can state type safety by considering for the postcondition � the set of terms � ′ that admit the same
type as � .

Lemma 4.1 (induction-for-type-safety, state-free, omni-small-step, nondeterministic).

∅ ⊢ � : � ⇒
(

isvalue �
)

∨
(

� −→
{

� ′
�

� (∅ ⊢ � ′ : �)
})

Proof. The proof is carried out by induction on the typing judgment. For the case where � is a value, the left
part of the disjunction applies. For all other cases, the right part needs to be established. We next detail two
representative proof cases.

Case 1: the term � has been typed using rule typ-rand. In this case, the term � has the form łrand �1ž. The rule
concludes ∅ ⊢ (rand �1) : int, from the premise ∅ ⊢ �1 : int and the premise �1 ∈ V. The latter means that �1
is either a value or a variable (recall that we assume A-normal form to simplify the presentation). Because �1
typechecks in the empty environment, it cannot be a variable. Thus, it must be a value, and because this value has
type int, it must be an integer value. (In other words, ∅ ⊢ �1 : intmust have been derived using the rules typ-val
and vtyp-int stated in appendix E.) Let us call � this integer. We need to establish: (rand�) −→

{

� ′
�

� (∅ ⊢ � ′ :

int)
}

. Recall the rule omni-small-rand-complete introduced at the start of ğ4. We apply this rule (ignoring
the state component), and need to establish its premise: ∀�. 0 ≤ � < max(�, 1) ⇒ � ∈

{

� ′
�

� (∅ ⊢ � ′ : int)
}

.
Consider an integer� such that 0 ≤ � < max(�, 1). We are left to prove ∅ ⊢ � : int, which is derivable from
the rules typ-val and vtyp-int.
Case 2: the term � has been typed using rule typ-let. In this case, the term � has the form łlet� = �1 in �2ž.

The rule concludes ∅ ⊢ (let� = �1 in �2) : � , from the two premises ∅ ⊢ �1 : �1 and � : �1 ⊢ �2 : � . We need
to prove (let� = �1 in �2) −→

{

� ′
�

� (∅ ⊢ � ′ : �)
}

. By the induction hypothesis applied to the irst assumption,
either �1 is a value, or �1 −→

{

� ′1
�

� (∅ ⊢ � ′1 : �1)
}

.
In the irst subcase, �1 is a value; let us call it �1. We exploit omni-small-let, and are left to justify ([�1/�] �2) ∈

{

� ′
�

� (∅ ⊢ � ′ : �)
}

, that is, ∅ ⊢ ([�1/�] �2) : � . This result follows from the standard substitution lemma applied
to � : �1 ⊢ �2 : � and to ∅ ⊢ �1 : �1.
In the second subcase, we have �1 −→

{

� ′1
�

� (∅ ⊢ � ′1 : �1)
}

. To prove (let� = �1 in �2) −→
{

� ′
�

� (∅ ⊢ � ′ : �)
}

,
we exploit omni-small-let-ctx with �1 =

{

� ′1
�

� (∅ ⊢ � ′1 : �1)
}

. We need to justify the second premise of that rule:

ACM Trans. Program. Lang. Syst.

16 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

∀� ′1 ∈ �1 . (let� = � ′1 in �2) ∈
{

� ′
�

� (∅ ⊢ � ′ : �)
}

. Consider a particular � ′1. The assumption � ′1 ∈ �1 is equivalent to
∅ ⊢ � ′1 : �1. The proof obligation (let� = � ′1 in �2) ∈

{

� ′
�

� (∅ ⊢ � ′ : �)
}

is equivalent to ∅ ⊢ (let� = � ′1 in �2) : � .
This result follows from the rule typ-let applied to the facts ∅ ⊢ � ′1 : �1 and � : �1 ⊢ �2 : � . □

The statement induction-for-type-safety above entails the preservation property (for empty environments)
and the progress property. We prove once-and-for-all that the statement of induction-for-type-safety entails
the type-safety property.6

4.2 Omni-Small-Step Type-Safety Proof for an Imperative Language

Let us now generalize the results from the previous section to account for memory operations.
A store-typing environment, written � , is a map from locations to types. The typing judgment for values

is extended with a store-typing environment, taking the form � ⊢ � : � . Likewise, the typing judgment for
terms is extended to the form � ;� ⊢ � : � . The store-typing entity � only plays a role in the typing rule for
memory locations. The rules for typing memory locations and memory operations are standard; they appear in
Appendix F.

The type-safety property asserts that the execution of any well-typed term, starting from the empty state, does
not get stuck. In the statement below, ∅ denotes an empty state or an empty store typing, whereas ∅ denotes, as
before, the empty typing context.

type-safety:

(∅; ∅ ⊢ � : �) ∧ (�/∅ −→∗ � ′/�′) ⇒ (isvalue � ′) ∨ (∃� ′′�′′ . � ′/�′ −→ � ′′/�′′)

To establish a type-safety result by induction on a reduction sequence, one needs to introduce a typing judgment
for stores. A store � admits type � , written ⊢ � : � , if and only if � and � have the same domain and, for any
location � in the domain, � [�] admits the type � [�]. Formally:

⊢ � : � ≡
(

dom � = dom �
)

∧
(

∀� ∈ dom � . � ; ∅ ⊢ � [�] : � [�]
)

The preservation and progress lemmas associated with the traditional approach to proving type safety are
updated as shown below. In particular, the preservation lemma requires the output state to admit a type that
extends the store typing associated with the input state (� ′ ⊇ �).

preservation: �/� −→ � ′/�′ ∧ ⊢ � : � ∧ � ; ∅ ⊢ � : �

⇒ ∃� ′ ⊇ �. ⊢ �′ : � ′ ∧ � ′; ∅ ⊢ � ′ : �

progress: � ; ∅ ⊢ � : � ∧ ⊢ � : � ⇒ (isvalue �) ∨ (∃� ′�′ . �/� −→ � ′/�′)

In contrast, using the omni-small-step judgment, we can establish type safety through a single induction on
the typing judgment. To that end, we formulate a lemma in terms of the predicate �/� −→ � , instantiating the
set � as the set of conigurations � ′/�′ such that � ′ admits the same type as � and such that �′ admits a type that
extends the type of � .

induction-for-type-safety (omni-small-step, with state)
(

� ; ∅ ⊢ � : �) ∧
(

⊢ � : �
)

⇒
(

isvalue �
)

∨
(

�/� −→
{

(� ′, �′)
�

� ∃� ′ ⊇ �. (⊢ �′ : � ′) ∧ (� ′; ∅ ⊢ � ′ : �)
})

6The generic entailment from induction-for-type-safety to type-safety holds for any typing judgment of the form ∅ ⊢ � : � and for any
judgment � −→ � related to the small-step judgment � −→ � ′ in the expected way, that is, satisfying the property omni-small-step-iff-

progress-and-correct from ğ3.2.

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 17

4.3 Omni-Big-Step Type-Safety Proof for an Imperative Language

Traditionally, a big-step safety proof can only be carried out if the semantics is completed using error-propagation
rules. Here, we demonstrate how to establish type safety with respect to an omni-big-step judgment, without any
need for error-propagation rules. First, we introduce the construct J� /�K to denote the set of possible outputs
produced by a term of type � , well-typed in a store of type � . Second, we describe the statement and proof for
type safety.

Consider a type � and a store typing � . We deine J� /�K as the set of inal conigurations of the form �/� such
that the state � admits a type � ′ that extends � , and the value � admits type � , under the store typing � ′. The
extension � ′ involved here accounts for the fact that the evaluation of a term � of type � may perform allocation
operations that extend the store in which � is well-typed.

J� /�K ≡
{

(�, �) | ∃� ′ ⊇ �. (⊢ � : � ′) ∧ (� ′ ⊢ � : �)
}

A key lemma involved in the type soundness proof asserts that, if � ′ is a store typing that enforces more constraints
than another store typing � , then J� /� ′K is a smaller set than J� /�K.

Lemma 4.2 (configuration-typing-subset).

� ′ ⊇ � ⇒ J� /� ′K ⊆ J� /�K

Proof. Assume � ′ ⊇ � . Consider a pair (�, �) ∈ J� /� ′K. By deinition, there exists � ′′ such that � ′′ ⊇ � ′ and
⊢ � : � ′′ and � ′′ ⊢ � : � . By transitivity, � ′′ ⊇ � . We conclude that (�, �) ∈ J� /�K holds, by taking � ′′ as witness
for the existential quantiier in the deinition of J� /�K. □

We are now ready to state type safety. The coinductive omni-big-step judgment �/� ⇓co J� /�K asserts that any
evaluation of �/� executes safely, without ever getting stuck; and that if an evaluation reaches a inal coniguration
�/�′, then this coniguration satisies the postcondition J� /�K. Given our deinition of J� /�K, the judgment
�/∅ ⇓co J� /∅K thus captures exactly the type-safety property associated with the typing judgment ∅; ∅ ⊢ � : � .
Type safety may be established by proving the following statement by coinduction.

Lemma 4.3 (coinduction-for-type-safety, omni-big-step, nondeterministic).

� ; ∅ ⊢ � : � ∧ ⊢ � : � ⇒ �/� ⇓co J� /�K

Proof. For technical reasons, the Coq coinduction tactic needs to be applied to the following statement, which
introduces an intermediate set � .

� ; ∅ ⊢ � : � ∧ ⊢ � : � ∧ J� /�K ⊆ � ⇒ �/� ⇓co �

Observe that this alternative statement is logically equivalent to the previous one: on the one hand, we can
instantiate � as J� /�K; on the other hand, we can exploit omni-big-conseqence to prove �/� ⇓co � from
�/� ⇓co J� /�K and J� /�K ⊆ � .

We carry out a proof by coinduction on that alternative statement. The coinduction hypothesis asserts that we
can assume the alternative statement to hold, provided that we have already applied at least one evaluation rule
(i.e., a coinductive constructor) to the conclusion at hand (�/� ⇓co �).

The irst step of the proof is to perform a case analysis on the typing hypothesis � ; ∅ ⊢ � : � . We then consider
each of the possible typing rules one-by-one. Let us consider two representative proof cases: the case of rand and
the case of a let-binding. In each case, the assumptions are � ; ∅ ⊢ � : � and ⊢ � : � and J� /�K ⊆ � ; and the goal
is to prove �/� ⇓co � .

Case 1: the term � has been typed using rule typ-rand. In this case, the term � has the form łrand �1ž, and � is
int. The rule concludes � ; ∅ ⊢ (rand �1) : int, from the premise � ; ∅ ⊢ �1 : int and the premise �1 ∈ V. Because
�1 typechecks in the empty environment, it must be a value. Because this value has type int, it must be an integer

ACM Trans. Program. Lang. Syst.

18 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

value, let us call it �. We need to establish: (rand�)/� ⇓co � . We apply the rule co-omni-big-rand-complete,
which is like omni-big-rand-complete but part of the coinductive interpretation of the set of evaluation rules.
We need to prove its premise: ∀�. 0 ≤ � < max(�, 1) ⇒ (�, �) ∈ � . Consider a particular� in that range. We
have Jint/�K ⊆ � . Thus, to show (�, �) ∈ � it suices to show (�, �) ∈ Jint/�K. By deinition of the operator
J� /�K, this amounts to proving ∃� ′ ⊇ �. (⊢ � : � ′) ∧ (� ′ ⊢ � : int). We conclude by taking � ′ = � and
checking that ⊢ � : � and � ′ ⊢ � : int indeed hold.
Case 2: the term � has been typed using rule typ-let. In this case, the term � has the form łlet� = �1 in �2ž.

The rule concludes � ; ∅ ⊢ (let� = �1 in �2) : � , from the two premises � ; ∅ ⊢ �1 : �1 and � ; (� : �1) ⊢ �2 : � . We
need to establish: (let� = �1 in �2)/� ⇓co � . We apply the rule co-omni-big-let (which is like omni-big-let but
part of the coinductive interpretation of the set of evaluation rules) with �1 instantiated as J�1/�K. We have to
establish the two premises: �1/� ⇓ J�1/�K, and ∀(� ′, �′) ∈ J�1/�K. ([�

′/�] �2)/�
′ ⇓ � . The irst premise follows

directly from the coinduction hypothesis applied to � ; ∅ ⊢ �1 : �1 and to J�1/�K ⊆ J�1/�K. For the second
premise, consider a pair (� ′, �′) ∈ J�1/�K. This amounts to assuming the existence of some � ′ such that � ′ ⊇ �

and ⊢ �′ : � ′ and � ′ ⊢ � : �1. There remains to show ([� ′/�] �2)/�
′ ⇓ � . A standard łtype preservation

upon store typing extensionž lemma shows that, because � ′ ⊇ � , we can reine � ; (� : �1) ⊢ �2 : � into
� ′ ; (� : �1) ⊢ �2 : � . Then, by the standard substitution lemma applied to � ′ ; (� : �1) ⊢ �2 : � and to � ′ ⊢ � : �1,
we derive � ′; ∅ ⊢ ([� ′/�] �2) : � . Besides, the lemma configuration-typing-subset applied to � ′ ⊇ � gives
J� /� ′K ⊆ J� /�K. Composing this subset relation by transitivity with J� /�K ⊆ � yields J� /� ′K ⊆ � . The conclusion
([� ′/�] �2)/�

′ ⇓ � then follows from the coinduction hypothesis applied to � ′; ∅ ⊢ ([� ′/�] �2) : � and ⊢ �′ : � ′

and J� /� ′K ⊆ � .
Note that most of these arguments are easily handled by automated proof search in Coq. □

Like for the small-step settings, we proved once-and-for-all that the statement coinduction-for-type-safety
entails type-safety.

Our coinductive omni-big-step approach ofers, to those who have good reasons to work with a big-step-style
semantics, a means to establish type safety without introducing error rules.
Regarding the comparison with the standard preservation-and-progress approach, at this stage we cannot

draw general conclusions on whether omni-big-step and omni-small-step type-safety proofs are more efective,
because we considered a relatively simple language. Nevertheless, it appears that each of the two approaches
that we propose results in proof scripts that (1) require only one induction or one coinduction instead of two
separate inductions, (2) are no longer than with preservation and progress separated, and (3) avoid the issue of
nested inversions requiring a number of cases quadratic in the size of the language.

5 DEFINITION OF PROGRAM PROOF RULES

This section discusses the construction of a foundational program logic, that is, a program logic whose reasoning
rules are derived through mechanized proofs from the formal semantics of the targeted programming language.
We speciically focus on Separation Logic [O’Hearn et al. 2001; Reynolds 2002], which has proved in the past
two decades to be an invaluable tool for carrying out practical, modular program veriication, both for low-level
and high-level languagesÐsee the broad survey by O’Hearn [2019] and the survey by Charguéraud [2020] that
focuses on sequential programs.
We irst review the properties that a program logic might capture, and we describe the key challenges in

deriving a foundational Separation Logic that captures total correctness with respect to a standard big-step
semantics (ğ5.1). We then explain how omnisemantics overcome these challenges, allowing one to derive a
foundational, total-correctness Separation Logic judgment in a straightforward, direct manner (ğ5.2). Moreover,
by referring to the coinductive omni-big-step judgment instead of the inductive one, one can similarly deine
partial-correctness triples. We explain how to derive the reasoning rules (ğ5.3) and in particular the frame rule

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 19

of Separation Logic (ğ5.4). Finally, we present reasoning rules in weakest-precondition style (ğ5.5), which have
proved very useful to set up practical tools, and which turn out to be even easier to derive.

5.1 Challenges in Defining Foundational Separation Logic Triples

A triple, written {� } � {�}, describes the behavior of the evaluation of the conigurations �/� for any � satisfying
the precondition � , in terms of the postcondition � . The exact interpretation of a triple depends on whether
it accounts for total correctness or partial correctness, which difer on how they account for termination. For
nondeterministic languages, the key notions of interest for deinining a triple {� } � {�} are as follows.

• Safety: for any � satisfying � , none of the possible evaluations of �/� can get stuck.
• Correctness: for any � satisfying � , if �/� can evaluate to �/�′, then � � �′ holds.
• Termination: for any � satisfying � , all possible evaluations of �/� are inite.
• Partial correctness: safety and correctness hold.
• Total correctness: safety, correctness, and termination hold.

When targeting total correctness, one key challenge in deining triples with respect to a standard big-step
semantics is that the direct deinition of Hoare triples yields a judgment that does not satisfy the frame rule of
Separation Logic. The frame rule asserts that if a triple {� } � {�} holds, then the pre- and the postcondition may
be extended with an arbitrary predicate � ′, yielding the valid triple {� ★� ′} � {� .★� ′}. Here, � .★� denotes
the postcondition ��. (� � ★�).

Concretely, consider the following deinition of a Hoare triple with respect to a standard big-step, deterministic
semantics. It asserts that, for any input state � satisfying the precondition� , there exists a result value � and a inal
state �′ such that the coniguration �/� evaluates to a inal coniguration �/�′ that satisies the postcondition � .

Hoare {� } � {�} ≡ ∀� . � � ⇒ ∃� . ∃�′ . (�/� ⇓ �/�′) ∧ (� � �′).

For such a judgment, one can prove that, starting from an empty heap, the allocation of a reference returns a
speciic memory location, say 0. For example, if the reference contains 3 and the location � denotes its address, one
can prove: Hoare {[]} (ref 3) {�� . [� = 0] ★ (0 ↩→ 3)}. To see why the judgment does not satisfy the frame rule, let
us attempt to extend the pre- and the postcondition of this triple with the heap predicate (0 ↩→ 1), which denotes
a reference at location 0 storing the value 1. We obtain: Hoare {0 ↩→ 1} (ref 3) {�� . [� = 0] ★ (0 ↩→ 3) ★ (0 ↩→ 1)}.
This triple does not hold, because the separating conjunction (0 ↩→ 3) ★ (0 ↩→ 1) is equivalent to False.

To derive a Separation Logic judgment that does satisfy the frame rule, one can exploit the classic technique of
the baked-in frame rule [Birkedal et al. 2005]Ðfor technical and historical details, we refer to Charguéraud [2020,
ğ5.1 and ğ10.2]. Separation Logic triples are deined as follows.

Sep. Logic via baked-in frame rule {� } � {�} ≡ ∀� ′ . Hoare {� ★� ′} � {� .★� ′}

This deinition quantiies over a heap predicate � ′ that describes the łrest of the world.ž The resulting triples
inherently satisfy the frame rule, as a direct consequence of the associativity of the separating-conjunction
operator. Indirectly, the introduction of� ′ rules out the judgments whose postconditions refer to speciic locations,
such as in the aforementioned counterexample.

The two-stage construction presented above, for building Separation Logic triples on top of the standard big-
step judgment via the baked-in frame rule technique, can be applied to deterministic languages or to languages
that are deterministic up to the choice of memory addresses. In what follows, we show that, by grounding
Separation Triples not on top of standard big-step semantics but instead on top of omnisemantics, we can avoid
the need to go through the two-stage construction associated with the baked-in frame rule technique. Moreover,
the omnisemantics construction applies to the general case of nondeterministic semantics, and it unfolds similarly
for both total- and partial-correctness triples.

ACM Trans. Program. Lang. Syst.

20 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

5.2 Definition of Hoare Triples w.r.t. Omni-Big-Step Semantics

Consider a possibly nondeterministic semantics. A total-correctness Hoare triple {� } � {�} asserts that, for
any input state � satisfying the precondition � , every possible execution of �/� terminates and satisies the
postcondition � . This property can be captured using the inductive omni-big-step judgment as follows:

Hoare {� } � {�} ≡ ∀� . � � ⇒ (�/� ⇓ �)

Note that an omni-big-step judgment may be interpreted as a particular Hoare triple, featuring a singleton
precondition to constrain the input state:

(

�/� ⇓ �
)

⇐⇒ Hoare {(��′ . �′ = �)} � {�}.

A partial-correctness Hoare triple asserts that, for any input state � satisfying the precondition� , every possible
execution of �/� either diverges or terminates and satisies the postcondition. This property can be captured
using the coinductive omni-big-step judgment as follows:

Hoare, partial correctness {� } � {�} ≡ ∀� . � � ⇒ (�/� ⇓co �)

Note that instantiating� with the always-false predicate in the partial-correctness triple yields a characterization
of programs whose execution always divergesÐand never gets stuck.
Throughout the rest of this section, we present results for total correctness. We write {� } � {�} for the

deinition of Hoare {� } � {�} given above. As we show, these triples inherently satisfy the frame rule, hence
yield a Separation Logic. All the corresponding results for partial correctness hold and may be found in our Coq
formalization.

5.3 Deriving Reasoning Rules for Hoare Triples

In a foundational program logic, reasoning rules take the form of lemmas proved correct with respect to the
deinition of triples and with respect to the semantics of the language. Consider for example the case of a
let-binding. Let us compare the semantics rule omni-big-let with the Hoare-logic rule hoare-let, which are
shown below. Throughout this section, we formulate rules by viewing postconditions as predicates of type
val → state → Prop, as this presentation style is more idiomatic in program logics. We also present reasoning
rules using the horizontal bar, but keep in mind that the statements are not inductive deinitions but lemmas.

omni-big-let
�1/� ⇓ �1

(

∀� ′�′ . �1 �
′ �′ ⇒ ([� ′/�] �2)/�

′ ⇓ �
)

(let� = �1 in �2)/� ⇓ �

hoare-let
{� } �1 {�1}

(

∀� ′ . {�1 �
′} ([� ′/�] �2) {�}

)

{� } (let� = �1 in �2) {�}

The only diference between omni-big-let and hoare-let is that the irst rule considers one speciic state � ,
whereas the second rule considers a set of possible states satisfying the precondition � . By exploiting the
fact that {� } � {�} is deined as ∀� . � � ⇒ (�/� ⇓ �), it is straightforward to establish that hoare-let
is a consequence of omni-big-let. The corresponding Coq proof script witnesses the simplicity of the proof:
łintros. eapply mbig_let; eauto.ž

Likewise, we derive a version of the bind rule, which generalizes the let-binding rule (recall ğ2.5). For the
reasoning rule, shown below, we purposely do not include the premise ¬ value � .

omni-big-bind
¬ value �

�/� ⇓ �1

(

∀��′ . �1 � �
′ ⇒ � [�] / �′ ⇓ �

)

� [�] / � ⇓ �

hoare-bind
{� } � {�1}

(

∀� . {�1 �} � [�] {�}
)

{� } � [�] {�}

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 21

As another example, consider the consequence rule. The Hoare-logic rule is, again, an immediate consequence
of the omni-big-step rule.

omni-big-conseqence

�/� ⇓ � � ⊆ � ′

�/� ⇓ � ′

hoare-conseqence

� ′ ⊆ � {� } � {�} � ⊆ � ′

{� ′} � {� ′}

5.4 Deriving The Frame Rule of Separation Logic

We next explain how to derive the frame rule for total-correctness triples. To that end, we irst need to state and
prove a key lemma capturing the preservation of the omni-big-step judgment �/�1 ⇓ � when the input state �1 is
augmented with a disjoint piece of state �2. We write �1 ⊥ �2 to assert that �1 and �2 have disjoint domains.

Lemma 5.1 (Frame property for big-step omnisemantics).

�/�1 ⇓ � �1 ⊥ �2

�/(�1 ⊎ �2) ⇓ (� .★ (��′ . �′ = �2))
omni-big-frame

Proof. The proof is carried out by induction on the omnisemantics judgment. There are two interesting cases
in the proof: the treatment of an allocation (4 lines of Coq script) and that of a let-binding (3 lines of Coq script).
In each case, we assume �1 ⊥ �2.
Case 1: � is ref � . The assumption is (ref �)/�1 ⇓ � . It is derived by the rule omni-big-ref, whose premise

is ∀� ∉ dom �1. � � (�1 [� := �]). We need to prove (ref �)/(�1 ⊎ �2) ⇓ (� .★ (��′ . �′ = �2)). By omni-big-ref,
we need to justify: ∀� ∉ dom (�1 ⊎ �2). (� .★ (��′ . �′ = �2)) � ((�1 ⊎ �2) [� := �]). Consider a location � not
in dom �1 nor in dom �2. The predicate (� .★ (��′ . �′ = �2)) � is equivalent to (� �) ★ (��′ . �′ = �2). The state
update (�1 ⊎ �2) [� := �] is equivalent to (�1 [� := �]) ⊎ �2. Thus, there remains to prove: ((� �) ★ (��′ . �′ =

�2)) ((�1 [� := �]) ⊎ �2). By deinition of separating conjunction and exploiting (�1 [� := �]) ⊥ �2, it suices to
show � � (�1 [� := �]). This fact follows from ∀� ∉ dom �1 . � � (�1 [� := �]).
Case 2: � is łlet� = �1 in �2ž. The assumption is �/�1 ⇓ � . It is derived by the rule omni-big-let, whose

premises are �1/�1 ⇓ �1 and ∀� ′�′ . �1 �
′ �′ ⇒ ([� ′/�] �2)/�

′ ⇓ � . We need to prove (let� = �1 in �2)/(�1 ⊎ �2) ⇓

(� .★ (��′ . �′ = �2)). To that end, we invoke omni-big-let. For its irst premise, we prove �1/(�1 ⊎ �2) ⇓ (�1 .★ (��′ . �′ = �2))

by exploiting the induction hypothesis applied to �1/�1 ⇓ �1. For the second premise, we have to prove
∀� ′�′′ . (�1 .★ (��′ . �′ = �2)) �

′ �′′ ⇒ ([� ′/�] �2)/�
′′ ⇓ (� .★ (��′ . �′ = �2)). Consider a particular � ′ and �′′. The

assumption (�1 .★ (��′ . �′ = �2)) �
′ �′′ is equivalent to ((�1 �

′) ★ (��′ . �′ = �2)) �
′′. By deinition of separating

conjunction, we deduce that �′′ decomposes as �′1⊎�2, with �
′
1 ⊥ �2 and�1 �

′ �′1, for some �′1. There remains to prove
([� ′/�] �2)/(�

′
1 ⊎ �2) ⇓ (� .★ (��′ . �′ = �2)). We irst exploit ∀� ′�′ . �1 �

′ �′ ⇒ ([� ′/�] �2)/�
′ ⇓ � , on �1 �

′ �′1 to
obtain ([� ′/�] �2)/�

′
1 ⇓ � . We then conclude by applying the induction hypothesis to the latter judgment. □

Lemma 5.2 (Frame rule).

{� } � {�}

{� ★� ′} � {� .★� ′}
frame

where � .★� ≡ ��. (� � ★�)

Proof. Assume {� } � {�}. Recall from ğ5.2 that this judgment is deined as ∀� . � � ⇒ (�/� ⇓ �). We have
to prove {� ★� ′} � {� .★� ′}, that is, ∀� . (� ★� ′) � ⇒ (�/� ⇓ (� .★� ′)). Consider a particular � such that
(� ★� ′) � . By deinition of separating conjunction, we can deduce that the input state � decomposes as �1 ⊎ �2,
with �1 ⊥ �2 and � �1 and � ′ �2. The goal is to prove: �/(�1 ⊎ �2) ⇓ (� .★� ′). By exploiting ∀� . � � ⇒ (�/� ⇓ �)

on � �1, we derive �/�1 ⇓ � . By invoking the lemma omni-big-frame on this judgment and on �1 ⊥ �2, we
derive �/(�1 ⊎ �2) ⇓ (� .★ (��′ . �′ = �2)). From there, to obtain the conclusion �/(�1 ⊎ �2) ⇓ (� .★� ′), it suices
to exploit the consequence rule omni-big-conseqence, and justify that (��′ . �′ = �2) entails � ′. In other words,

ACM Trans. Program. Lang. Syst.

22 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

we need to show that for any state �′ being equal to �2, this state �′ does satisfy � ′. Indeed, � ′ �2 holds. (The Coq
proof script for this lemma is 4 lines long.) □

In summary, the above proofs establish the frame property for the omni-big-step semantics, and for the triples
that we build on top of that semantics. Those results hold for the imperative �-calculus that we have considered in
this paper. We believe that these results could be similarly established for other programming languages for which
a Separation Logic can be set up. For example, we proved that the frame property holds for the omni-big-step
semantics involved in the case study presented in ğ6.3.

5.5 Deriving Weakest-Precondition-Style Reasoning Rules

The weakest-precondition operator, written wp � � , computes the weakest predicate � for which the triple
{� } � {�} holds. Here, łweakestž is interpreted w.r.t. the entailment relation, written � ⊢ � ′ and deined as
pointwise predicate implication (∀� . � � ⇒ � �′). Weakest reasoning rules are expressed as entailments. See, e.g.,
the rule for let-bindings and the bind rule shown below.

wp-let

wp �1
(

�� ′ .wp ([� ′/�] �2)�
)

⊢ wp (let� = �1 in �2)�

wp-bind

wp �
(

��.wp (� [�])�
)

⊢ wp (� [�])�

Many proof tools simply axiomatize the weakest-precondition rules. In a foundational approach, however, one
needs to prove the reasoning rules correct with respect to the formal semantics of the source language.
What is very appealing about describing the semantics of the language using an omni-big-step semantics

is that it delivers the weakest-precondition-style reasoning rules almost for free. Indeed, the interpretation of
the inductive judgment �/� ⇓ � matches, up to the order of arguments, the standard interpretation of the
weakest-precondition operator.

wp � � � ⇐⇒ �/� ⇓ �

Thus, in a foundational approach, we can formally deine wp as ����. (�/� ⇓ �).
There remains to describe how the weakest-precondition-style reasoning rules can be derived from the omni-

big-step evaluation rules. Doing so is even easier than for deriving triples. Consider for example the semantics
rule and the wp-reasoning rule associated with a let-binding.

�1/� ⇓ �1

(

∀� ′�′ . �1 �
′ �′ ⇒ ([� ′/�] �2)/�

′ ⇓ �
)

(let� = �1 in �2)/� ⇓ �
omni-big-let

To derive the rule wp-let from omni-big-let, it suices to instantiate �1 as ��1.wp ([�1/�] �2)� .
The frame rule in weakest-precondition style follows directly from the omni-big-frame lemma established in

the previous section. The rule appears below, together with a very handy corollary named the ramiied frame

rule [Hobor and Villard 2013; Krishnaswami et al. 2010]. In that corollary, the magic wand between postconditions,
written �1 .ś★ �2, is deined as ∀∀� .�1 � −★�2 � , where ∀∀ and −★ are the standard Separation Logic operators (see,
e.g., [Charguéraud 2020, ğ3.2 and ğ7]).

wp-frame

(wp � �) ★� ⊢ wp � (� .★�)

wp-ramified-frame

(wp � �) ★ (� .ś★ � ′) ⊢ (wp � � ′)

For most other term constructs, the wp rule is nothing but a copy of the omni-big-step rule with arguments
reordered. One interesting exception is that of loops. łWhilež loops have not been discussed so far, but they appear
in the language used for the case studies in ğ6. Typically, standard weakest-precondition rules for while loops are
stated using loop invariants. In contrast, an omni-big-step rule essentially unfolds the irst iteration of the loop,
just like in a standard big-step semantics. From that unfolding rule, one can derive the loop-invariant-based rule
by induction, in just a few lines of proof.

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 23

In summary, by considering a semantics expressed in omni-big-step style, one can derive practical reasoning
rules, both in Hoare-triple style and in weakest-precondition style, in most cases via one-line proofs. The
construction of a program logic on top of an omni-big-step semantics is thus a signiicant improvement, both
over the use of a standard big-step semantics, which falls short in the presence of nondeterminism; and over the
use of a small-step semantics, which requires much more work for deriving the reasoning rules, especially if
one aims for total correctness. Besides, a major beneit of considering an omni-big-step semantics is that, unlike
a set of weakest-precondition reasoning rules, it delivers an induction principle for reasoning about program
executions. Such induction principles are exploited in the case studies (ğ6).

6 COMPILER-CORRECTNESS PROOFS FOR TERMINATING PROGRAMS

Omnisemantics also simplify some of the characteristic complexities of behavior-preservation proofs for compilers.

6.1 Motivation: Avoiding Both Backward Simulations and Artificial Determinism

Following CompCert’s terminology [Leroy 2009], one particular evaluation of a program can admit one out of four
possible behaviors: terminate (with a value, an exception, a fatal error, etc.), trigger undeined behavior, diverge
silently after performing a inite number of I/O operations, or be reactive by performing an ininite sequence
of I/O operations. Whether an error such as a division by zero is considered as a terminating behavior or as an
undeined behavior is a design decision associated with each programming language. A general-purpose compiler
ought to preserve behaviors, except that undeined behaviors can be replaced with anything.
In this paper, we focus on proofs of compiler correctness for programs that always terminate safely. Such a

result is suicient for many practical applications in software veriication where source programs are proven to
be safe, and often, the only use case for nontermination is a top-level ininite event-handling loop, which can be
implemented in assembly language [Erbsen et al. 2021]. We leave to future work the application of omnisemantics
to the correct compilation of programs that diverge, react, or trigger undeined behavior on some inputs but not
others.

In the particular case of a deterministic programming language, compiler correctness for terminating programs
can be established via a forward-simulation proof.7 Such a proof consists of showing that each step from the
source program corresponds to a number of steps in the compiled program. The correspondence involved is
captured by a relation between source states and target states. Such forward-simulation proofs work well in
practice. The main problem is that they do not generalize to nondeterministic languages.
Indeed, in the presence of nondeterminism, a source program may have several possible executions. As we

restrict ourselves to the case of terminating programs, let us assume that all executions of the source program
terminate, only possibly with diferent results. In that setting, a compiler is correct if (1) the compiled program
always terminates, and (2) for any result that the compiled program may produce, the source program could have
produced that result. It may not be intuitive at irst, but the inclusion is indeed backwards: the set of behaviors of
the target program must be included in the set of behaviors of the source program.

To establish the backward behavior inclusion, one may set up a backward-simulation proof. Such a proof consists
of showing that each step from the target program corresponds to one or more steps in the source program.8 Yet,
backward simulations are much more unwieldy to set up than forward simulations. Indeed, in most cases one

7We follow CompCert’s terminology, using łforwardž and łbackwardž to refer to the direction of compilation, łforwardž meaning from source
language to target language. We note the conlict with other literature [Lynch and Vaandrager 1995] that uses łforwardž and łbackwardž to
refer to the direction of the state transitions.
8The number of corresponding steps in the source program should not be zero, otherwise the target program could diverge whereas the
source program terminates. In practice, however, it is not always easy to ind one source-program step that corresponds to a target-program
step. In such situations, one may consider a generalized version of backward simulations that allow for zero source-program steps, provided
that some well-founded measure decreases [Leroy 2009].

ACM Trans. Program. Lang. Syst.

24 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

source-program step is implemented by multiple steps in the compiled program, thus a backward-simulation
relation typically needs to relate many more pairs than a forward-simulation relation.
This observation motivated the CompCert project [Leroy 2009] to exploit forward simulations as much as

possible, at the cost of modeling features of the intermediate language as deterministic even when it is not natural
to do so, and even when doing so requires introducing artiicial functions for, e.g., computing fresh memory
locations in a deterministic manner. Even so, runtime input does not it the fully deterministic model, leading to
the technical deinitions of receptiveness and determinacy (roughly, capturing the idea of determinism modulo
input) so that lemmas for lipping forward simulations into backwards simulations can be stated and proven.
Omnisemantics remove the need for this machinery.

In this section:

• We explain how omnisemantics sidestep the need for backward simulations, by carrying out forward-
simulation proofs of compiler correctness, for nondeterministic terminating programs.

• We show how the idea generalizes to languages including I/O operations and to the case where the source
language and target language are diferent.

• We present two case studies: one transformation that increases the amount of nondeterminism and one
that decreases the amount of nondeterminism.

• We comment on the fact that our second case study features an omni-big-step semantics for the source
language, whereas it features an omni-small-step semantics for the target language.

6.2 Establishing Correctness via Forward Simulations using Omnisemantics

Consider a compilation function written C(�). For simplicity, we assume that the source and target language
are identical, we assume that compilation does not alter the result values, and we assume the language to be
state-freeÐwe will generalize the results in the next subsection. In this subsection, � ⇓ � denotes the standard
big-step judgment, � ⇓ � denotes the omni-big-step judgment, and terminates(�) asserts that all executions of �
terminate safely, without undeined behavior. The compiler-correctness result for terminating programs captures
preservation of termination and backward inclusion for resultsÐpoints (1) and (2) stated earlier.

correctness-for-terminating-programs:

terminates(�) ⇒ terminates(C(�)) ∧
(

∀� . C(�) ⇓ � ⇒ � ⇓ �
)

We claim that this correctness result can be derived from the following statement, which describes forward
preservation of speciications.

omni-forward-preservation: ∀�. � ⇓ � ⇒ C(�) ⇓ �

Let us demonstrate the claim. Let us assume that terminates(�) hold. First of all, recall from ğ2.2 the equivalence
named omni-big-step-iff-terminates-and-correct that relates the omni-big-step judgment and the termination
judgment.

� ⇓ � ⇐⇒ terminates(�) ∧
(

∀� . (� ⇓ �) ⇒ � ∈ �
)

Exploiting this equivalence, the omni-forward-preservation assumption reformulates as follows.

∀�.
(

terminates(�) ∧
(

∀� . (� ⇓ �) ⇒ � ∈ �
))

⇒
(

terminates(C(�)) ∧
(

∀� . (C(�) ⇓ �) ⇒ � ∈ �
))

The hypothesis terminates(�) holds by assumption. Let us instantiate � as the strongest postcondition for � ,
that is, as the set {� | (� ⇓ �)}. We obtain:

(

∀� . (� ⇓ �) ⇒ (� ⇓ �)
)

⇒ terminates(C(�)) ∧
(

∀� . (C(�) ⇓ �) ⇒ (� ⇓ �)
)

.

The premise is a tautology, and the conclusion proves correctness-for-terminating-programs.

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 25

omni-big-let-trace
�1/�/� ⇓ �1

(

∀(� ′, �′, � ′) ∈ �1. ([� ′/�] �2)/�
′/� ′ ⇓ �

)

(let� = �1 in �2)/�/� ⇓ �

omni-big-rand-trace
� > 0

(

∀�. 0 ≤ � < � ⇒ (�, �, (�,�) :: �) ∈ �
)

(rand�)/�/� ⇓ �

omni-big-ref
∀� ∉ dom � . (�, � [� := �], �) ∈ �

(ref �)/�/� ⇓ �

Fig. 5. Omni-big-step semantics with traces, selected rules

6.3 Omnisemantics Simulations for I/O and Cross-Language Compilation

More generally, the behavior of a terminating program consists of the inal result and its interactions with the
outside world (input and output). These interactions include, e.g., interaction with the standard input and output
streams, system calls, etc. Each interaction is called an event, and the semantics judgment is extended to collect
such events into a trace � . Figure 5 shows three illustrative cases of how the rules from Figure 2 are augmented
with traces, making the choice to treat rand calls as observable events while reference-allocation nondeterminism
remains internal.

Requiring a compiler to preserve only the nondeterministic choices recorded in the trace enables us to pick and
choose which (external) interactions must be preserved by compilations and which (internal) nondeterministic
choices the compiler may resolve as it sees it. As a particularly ine-grained example, the trace might record
that malloc was called and succeeded but omit the pointer it returned, to allow for optimizations that reduce
the amount of allocation. To our knowledge, this level of lexibility is unique to omnisemantics. For a forward-
simulation-based compiler-correctness proof, constructing a deterministic model of all internal nondeterminism
can be arbitrarily complicated (the CompCert memory model is an example).

We restrict our attention to semantics that only accept terminating commands � that do not go wrong and do
not return values, for the rest of this section. For languages of terms (that return values) rather than commands
(that do not return values), we would need a representation relation between source-level and target-level
valuesÐwe omit one here for brevity, but ğ6.4 tackles a similar challenge. In the current setting, behavior inclusion
holds between a source-language program and a target-language program if all traces that the target-language
program can produce (according to traditional small-step or big-step semantics) can also be produced by the
source-language program. More formally, we deine the traces that can be produced from a starting coniguration
�/�/� as

traces(�, �, �) := {� ′ | ∃�′ . �/�/� ⇓ �′/� ′}

and say that a compiler C satisies behavior inclusion for a command starting from the initial source-level state
�src related to the initial target-level state �tgt and initial trace � if TraceInclusion as deined below holds.

TraceInclusion(�, �src, �tgt, �) := traces(C(�), �tgt, �) ⊆ traces(�, �src, �)

Assuming omni-big-step semantics ⇓src and ⇓tgt for the source and target languages, plus a relation � between
source- and target-language states, we deine omnisemantics simulation, a compiler-correctness criterion designed
to be provable by induction on the ⇓src judgment, as follows:

OmnisemanticsSimulation(�) := ∀�src �tgt � �. �(�src, �tgt) ∧ �/�src/� ⇓src �

=⇒ C(�)/�tgt/� ⇓tgt ��

where �� (�
′
tgt, �

′) := ∃�′src . �(�
′
src, �

′
tgt) ∧� (�′src, �

′)

ACM Trans. Program. Lang. Syst.

26 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

Our goal in this section is to prove that an omnisemantics simulation implies trace inclusion if the source
program terminates, i.e. to show

∀�. OmnisemanticsSimulation(�) =⇒

∀ �src �tgt � . terminates(�, �src, �) ∧ �(�src, �tgt) =⇒ TraceInclusion(�, �src, �tgt, �)

We rely on two properties: First, soundness of omni-big-step semantics with respect to traditional big-step
semantics:

∀� � �′ � � ′ �. �/�/� ⇓ �′/� ′ ∧ �/� ⇓ � =⇒ � (�′, � ′) (1)

And conversely, that a program that terminates safely and whose traditional big-step executions all satisfy a
postcondition also has an omnisemantics derivation:

∀� � � �. terminates(�, �, �) ∧ (∀�′ � ′ . �/�/� ⇓ �′/� ′ =⇒ � (�′, � ′)) =⇒ �/�/� ⇓ � (2)

To show trace inclusion, i.e. traces(C(�), �tgt, �) ⊆ traces(�, �src, �), we can assume a target-language execution
C(�)/�tgt/� ⇓ �′tgt/�

′ producing trace � ′, and we need to show � ′ ∈ traces(�, �src, �). By applying (2) to the source
program (whose termination we assume) and setting � (�′src, �

′) := �/�src/� ⇓ �′src/�
′ so that the second premise

becomes a tautology, we obtain the source-level omnisemantics derivation �/�src/� ⇓ (��′src �
′ . �/�src/� ⇓ �′src/�

′).
Passing this fact into the omnisemantics simulation yields C(�)/�tgt/� ⇓ (��′tgt �

′ .∃�′src.�(�
′
src, �

′
tgt) ∧ �/�src/� ⇓

�′src/�
′). Now we can apply (1) to this fact and the originally assumed target-level execution and obtain an �′src such

that �(�′src, �
′
tgt) and �/�src/� ⇓ �′src/�

′, which by deinition is exactly what needs to hold to have � ′ ∈ traces(�, �src, �).

6.4 Case Study: Compiling Immutable Pairs to Heap-Allocated Records

This section describes a simple compiler pass that increases the amount of nondeterminism. The source language
assumes a primitive notion of tuples, whereas the target language encodes such tuples by means of heap allocation.
This case study is formalizedwith respect to a language based on commandswhose arguments all must be variables.
Such a language could be an intermediate language in a compiler pipeline, reached after an expression-lattening
phase.

Language syntax. We let � denote a command, � , �, and � denote identiiers, and � denote unbounded natural-
number constants. The grammar of the language is as follows.

� := � = ���� (�) | � = ����� (�, �) | � = input() | output(�) | � = � [�] | � [�] = � |

� = alloc(�) | � = � | � = � | �1; �2 | if � then �1 else �2 | while � do � | skip

We actually consider two variants of this language, difering only in the types of values and in the available
unary operators ���� and binary operators ����� . The source language features an inductively deined type of
values that can be natural numbers � or immutable pairs of values (i.e., the grammar of values is � := � | (�, �)). It
includes as unary operators the projection functions fst and snd (deined only on pairs) and the Boolean negation
not (deined only on {0, 1}). Its binary operators are addition (+) and pair creation mkpair. The target language
admits only natural numbers as values. It includes only the negation and addition operators.

Omni-big-step semantics. For both languages, the omni-big-step evaluation judgment takes the form �/�/ℓ/� ⇓

� , where � is a command,� is a memory state (a partial map from natural numbers to natural numbers), ℓ is an
environment of local variables (a partial map from identiiers to values, whose type difers between the source
and target languages as described above), � denotes the I/O trace made of the events already performed before

executing � , and the postcondition � is a predicate over triples of the form (�′, ℓ ′, � ′). A trace consists of a list of
I/O events � whose grammar is � := IN � | OUT �.
The rules deining the judgment appear in Figure 6. They are common to both languagesÐonly the set of

supported unary and binary operators difers. The semantics of operators are deined by two straightforward

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 27

eval-unop
(�, ��) ∈ ℓ evalunop(��, ��, �)

� (�, ℓ [� := �], �)

(� = �� (�))/�/ℓ/� ⇓ �

eval-store
(�, �) ∈ ℓ (� + �) ∈ dom�

(�, �) ∈ ℓ � (�[(� + �) := �], ℓ, �)

(� [�] = �)/�/ℓ/� ⇓ �

eval-input
∀�. � (�, ℓ [� := �], � :: IN �)

(� = input())/�/ℓ/� ⇓ �

eval-alloc
(

∀� �̄ . len(�̄) = � ∧ �, . . . , (� + � − 1) ∉ dom�

=⇒ � (�[(�, . . . (� + � − 1)) := �̄], ℓ [� := �], �)
)

(� = alloc(�))/�/ℓ/� ⇓ �

eval-while-again
(�, 1) ∈ ℓ �/�/ℓ/� ⇓ �1

(

∀�′ ℓ ′ � ′ . �1 (�
′, ℓ ′, � ′) =⇒ (while � do �)/�′/ℓ ′/� ′ ⇓ �

)

(while � do �)/�/ℓ/� ⇓ �

eval-while-done
(�, 0) ∈ ℓ � (�, ℓ, �)

(while � do �)/�/ℓ/� ⇓ �

eval-seq

�1/�/ℓ/� ⇓ �1 (∀�′ ℓ ′ � ′ . �1 (�
′, ℓ ′, � ′) =⇒ �2/�

′/ℓ ′/� ′ ⇓ �)

(�1; �2)/�/ℓ/� ⇓ �

Fig. 6. Nondeterministic omni-big-step semantics for an imperative language (selected rules)

auxiliary relations (spelled out in Appendix H), evalunop(����, �1, �2) asserting that applying ���� to value �1
results in �2, and evalbinop(�����, �1, �2, �3) asserting that applying ����� to �1 and �2 results in �3. The load
command � = � [�] requires that the local variable � contains a natural number � and stores the value of the
memory at address � + � into variable � (and is undeined if � + � is not mapped by the memory). The store
command � [�] = � stores the natural number contained in the local variable � at memory location � +�, where �
is the address contained in local variable � , but only if memory at address � + � has already been allocated.
The command � = input() reads a natural number �, stores it into local variable � , and adds the event

(IN �) to the event trace. The number � is chosen nondeterministically but recorded in the trace, resulting in
external nondeterminism. The language has a built-in memory allocator but, for simplicity, we do not deal with
deallocation. The command � = alloc(�) nondeterministically picks an address (natural number) � such that
�, as well as the � − 1 addresses following �, are not yet part of the memory, initializes these addresses with
nondeterministically chosen values, and returns �. This rule encodes internal nondeterminism, because this
action is not recorded in the event trace. Semantics of while loops are given by sequencing the irst iteration
with the loop itself as long as the loop test succeeds.

In practice, we found it convenient also to derive a chained version eval-seq-chained of the omni-big-step
rule eval-seq, just like we did for omni-small-step rules in ğ3.2.

eval-seq-chained : �1/�/ℓ/� ⇓
(

��′ℓ ′� ′ . (�2/�
′/ℓ ′/� ′ ⇓ �)

)

⇒ (�1; �2)/�/ℓ/� ⇓ �

Note that the chained variant cannot be used to deine the judgement inductively in Coq due to the strict
positivity requirement; more details on encoding choices can be found in Appendix A.

Compilation function. The compilation function C lays out the pairs of the source language on the heap memory
of the target language. This function is deined recursively on the source program. It maps the source-language

ACM Trans. Program. Lang. Syst.

28 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

operators that are not supported by the target language as follows.

C(� = fst(�)) := � = � [0]

C(� = snd(�)) := � = � [1]

C(� = mkpair(�, �)) := tmp = alloc(2); tmp[0] = �; tmp[1] = �; � = tmp

Note that to compile mkpair, we cannot simply store the address returned by alloc directly into � , because if
� is the same variable name as � or �, then we would be overwriting the argument. For this reason, we use a
temporary variable tmp that we declare to be reserved for compiler usage.

Simulation relation. To carry out the proof of correctness of the function C(�), we introduce a simulation
relation � for relating a source-language state (�1, ℓ1) with a target-language state (�2, ℓ2). To that end, we irst
deine the relation valuerepr(�,�,�), to relate a source-language value � with the corresponding target-language
value� , in a target-language memory�. This relation is implemented as the recursive function shown belowÐit
could equally well consist of an inductive deinition. A pair (�1, �2) is represented by address� if recursively �1
is represented by the value at address� , and �2 is represented by the value at address� + 1. A natural number �
has the same representation on the target-language level, i.e. we just assert� = �.

valuerepr((�1, �2),�,�) := (∃�1. (�,�1) ∈� ∧ valuerepr(�1,�1,�)) ∧

(∃�2. (� + 1,�2) ∈� ∧ valuerepr(�2,�2,�))

valuerepr(�,�,�) := � = �

The relationship � between source and target states can then be deined using valuerepr. In the deinition
shown below, we write �2 ⊇ �1 to mean that memory �2 extends �1, and we write �2 \�1 to denote the
map-subtraction operator that restricts�2 to contain only addresses not bound in�1. The locations bound by
�2 but not by�1 correspond to the memory addresses of the pairs allocated on the heap in the target language.

�((�1, ℓ1), (�2, ℓ2)) := tmp ∉ dom ℓ1 ∧�2 ⊇ �1∧

∀(�, �) ∈ ℓ1. ∃�. (�,�) ∈ ℓ2 ∧ valuerepr(�,�,�2 \�1)

Correctness proof. We are now ready to tackle the omni-forward-simulation proof.

Theorem 6.1 (omnisemantics simulation for the pair-heapification compiler).

∀� �src ℓsrc �tgt ℓtgt � �. tmp ∉ vars(�) ∧ �((�src, ℓsrc), (�tgt, ℓtgt)) ∧

�/�src/ℓsrc/� ⇓src � =⇒

C(�)/�tgt/ℓtgt/� ⇓tgt ��

where �� (�
′
tgt, ℓ

′
tgt, �

′) := ∃�′
src ℓ

′
src . �((�

′
src, ℓ

′
src), (�

′
tgt, ℓ

′
tgt)) ∧� (�′

src, ℓ
′
src, �

′)

Proof. By induction on the derivation of �/�src/ℓsrc/� ⇓ � . In each case, the goal to prove is initially of the
form C(�)/�tgt/ℓtgt/� ⇓ �� , where � has some structure that allows us to simplify C(�) into a more concrete
program snippet. We consider the resulting simpliied goal as an invocation of a weakest-precondition generator
on that program snippet, and we view the rules of Figure 6 as weakest-precondition rules that we can apply
in order to step through the program snippet, using the hypotheses obtained from inverting the source-level
derivation �/�src/ℓtgt/� ⇓ � to discharge the side conditions that arise. Whenever we encounter a sequence of
commands, we use eval-seq-chained instead of eval-seq, so that we do not have to provide an intermediate
postcondition. In the cases where commands have subcommands, we use the inductive hypotheses about their
execution as if they were previously proven lemmas about these łfunctions.ž
We only present the case where � = (� = mkpair(�, �)) in more detail: We have to prove a goal of the form

C(� = mkpair(�, �))/�tgt/ℓtgt/� ⇓ �� , which simpliies to

(tmp = alloc(2); tmp[0] = �; tmp[1] = �;� = tmp)/�tgt/ℓtgt/� ⇓ ��

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 29

Applying eval-seq-chained turns it into:

(tmp = alloc(2))/�tgt/ℓtgt/� ⇓
(

��′
tgt ℓ

′
tgt �

′ . (tmp[0] = �; tmp[1] = �;� = tmp)/�′
tgt/ℓ

′
tgt/�

′ ⇓ ��

)

Applying eval-alloc turns it into:

∀ � � . len(�) = 2 =⇒ �, � + 1 ∉ dom�tgt =⇒

(tmp[0] = �; tmp[1] = �;� = tmp)/�tgt [�..(� + 1) := �]/ℓtgt [tmp := �]/� ⇓ ��

Note how the fact that the address � and the list of initial values � are chosen nondeterministically naturally
shows up as a universal quantiication, and note how the memory and locals appearing in the state to the left of
the ⇓ have been updated by the alloc function. After introducing these universally quantiied variables and the
hypotheses, we again have a goal of the form ł. . . ⇓ . . . ž and continue by applying eval-seq-chained, eval-store,
eval-seq-chained, eval-store, eval-set. Finally, we prove �� for the locals and memory updated according to
the various eval-. . . rules that we applied by using map laws and the initial hypothesis �((�src, ℓsrc), (�tgt, ℓtgt)).

□

6.5 Case Study: Introduction of Stack Allocation

This second case study illustrates the case of a transformation that reduces the amount of nondeterminism. The
transformation consists of adding a stack-allocation feature to the compiler developed by Erbsen et al. [2021].
Proving this transformation correct using an omni-big-step forward simulation was straightforward and took
us only a few days of workÐmost of the work was not concerned with dealing with nondeterminism. This
smooth outcome is in stark contrast to the outlook of using traditional evaluation judgments: verifying the
same transformation would have required either more complex invariants, to set up a backward simulation;
or completely rewriting the memory model so that pointers are represented by deterministically generated
unobservable identiiers, to allow for a compiler-correctness proof by forward simulation. In fact, addressable
stack allocation was initially omitted from the language exactly to avoid these intricacies (based on the experience
from CompCert), but switching to omnisemantics made its addition local and uncomplicated.
The input language is an imperative command language similar to the one described in ğ6.4. The memory is

modeled as a partial map from machine words (32-bit or 64-bit integers) to bytes. The stack-allocation feature
here consists of a command let � = stackalloc(�) in � made available in the source language. This command
assigns an address to variable � at which � bytes of memory will be available during the execution of command � .
Our compiler extension implements this command by allocating the requested � bytes on the stack, computing
the address at runtime based on the stack pointer.
The key challenge is that the source-language semantics does not feature a stack. The stack gets introduced

further down the compilation chain. Thus, the simplest way to assign semantics to the stackalloc function in the
source language is to pretend that it allocates memory at a nondeterministically chosen memory location. This
nondeterministic choice is described using a universal quantiication in the omni-big-step rule shown below, like
in rule omni-big-ref from ğ2.

∀�new �. (dom�new ∩ dom�) = ∅ ∧ dom�new = [�, � + �) =⇒

�/(� ∪�new)/ℓ [� := �]/� ⇓ ��′ ℓ ′ � ′ . � (�′ \�new, ℓ
′, � ′)

(let � = stackalloc(�) in �)/�/ℓ/� ⇓ �
omni-big-stackalloc

In the source language, the address returned by stackalloc is picked nondeterministically, whereas in the
target language the address used for the allocation is deterministically computed, as the current stack pointer
augmented with some ofset. Thus, the compiler phase that compiles away the stackalloc command reduces the
amount of nondeterminism.

ACM Trans. Program. Lang. Syst.

30 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

Compiler-correctness proof. The compiler-correctness proof proceeds by induction on the omnisemantics
derivation for the source language, producing a target-language execution with a related postcondition. The
simulation relation � describes the target-language memory as a disjoint union of unallocated stack memory
and the source-language memory state. Critically, the case for stackalloc has access to a universally quantiied
induction hypothesis (derived from the rule shown above) about target-level executions of C(�) for any address �.
As the address of the stack-allocated memory is not recorded in the trace, we are free to instantiate it with

the speciic stack-space address, expressed in terms of compile-time stack-layout parameters and the runtime
stack pointer. Reestablishing the simulation relation to satisfy the precondition of that induction hypothesis
then involves carving out the freshly allocated memory from unused stack space and considering it a part of
the source-level memory instead, matching the compiler-chosen memory layout and the preconditions of the
stackalloc omnisemantics rule. It is this last part that made up the vast majority of the veriication work in this
case study; handling the nondeterminism itself is as straightforward as it gets.

Note that it would not be possible to complete the proof by instantiating � with a compiler-chosen ofset from
the stack pointer if the semantics recorded the value of � in the trace. The (unremarkable) proof for the input
command in the previous section also has access to a universally quantiied execution hypothesis, but it must

directly instantiate its universally quantiied induction hypothesis with the variable introduced when applying
the target-level omnisemantics input rule to the goal, to match the target-language trace to the source-language
trace. Either way, reasoning about the reduction of nondeterministim in an omni-forward-preservation proof
boils down to instantiating a universal quantiier.

Design decisions around proving absence of out-of-memory. In the veriied software-hardware stack described
in Erbsen et al. [2021], the main bottleneck in terms of complexity that prevents us from developping bigger
applications is the level of proof automation available for veriication of mundane aspects of source programs
such as address arithmetic. Therefore, we made an efort to avoid adding more proof obligations in the program
logic whenever possible. At the same time, for the targeted application it was ine to limit the expressivity of the
source language. In particular, we decided that disallowing recursive calls is acceptable. Given that setting, we
want to avoid reasoning about out-of-memory conditions in the source language, while still proving that the
compiled program will not run out of memory, which we can achieve as follows.

In the omni-big-stackalloc rule of our source language, we deliberately use a vacuous universal quantiication
if we run out of memory, because we prefer to handle out-of-memory conditions outside of the omnisemantics
judgment, in an additional external judgment. In particular, this means that if omni-big-stackalloc is applied
with a memory� whose domain already contains all (or almost all) addresses (which are 32-bit or 64-bit words),
there might be no�new and � such that the left-hand side of the implication above the line in omni-big-stackalloc
holds, so we can derive any postcondition � , something that we cautioned against in ğ2.2.
Efectively, this means that our source-language evaluation rules do not guarantee that the program never

runs out of memory. This choice simpliies the program-logic proofs for concrete input programs but requires
additional work in the compiler: the compiler performs a simple static-analysis pass over the call graph of the
program to determine the maximum amount of stack space that the program needs. Since this analysis rejects
recursive calls, the space upper bound is not hard to compute. The compiler-correctness proof contains an
additional hypothesis requiring that at least that computed amount of memory is available in the state on which
the target-language program begins its execution.

An alternative approach would be to introduce a notion of łamount of used stack spacež in the source-language
semantics and include an additional precondition in the omni-big-stackalloc rule that requires this amount to
be bounded. This approach would put more complexity into the veriication of source programs, while simplifying
the compiler correctness proof. In order to allow recursive calls and dynamically chosen stack-allocation sizes,

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 31

reasoning about the amount of stack space in the program logic seems to become unavoidable, in which case this
alternative approach would be preferrable.

6.6 Compilation from a Language in Omni-Big-Step to One in Omni-Small-Step

If the semantics of the source language of a compiler phase are most naturally expressed in omni-big-step, but
the target language’s semantics are best expressed in omni-small-step semantics, it is convenient to prove an
omni-forward simulation directly from a big-step source execution to a small-step target execution. For instance,
the compiler in the project by Erbsen et al. [2021] includes such a translation, relating a big-step intermediate
language to a small-step assembly language. In fact, this translation happens in the same case study described
in the previous subsection. In what follows, we attempt to give a lavor of the proof obligations that arise from
switching from omni-big-step to omni-small-step during the correctness proof.

Consider one sample omni-small-step rule, for the load-word instruction lw that loads the value at the address
stored in register �2 and assigns it to register �1:

asm-lw
(��, lw �1 �2) ∈� (�2, �) ∈ rf (�, �) ∈� � (�, rf[�1 := �], �� + 1, �)

�/rf/��/� −→ �

Here, we model a machine state �tgt as a quadruple of a memory� (that contains both instructions and data), a
register ile rf mapping register names to machine words, a program counter �� , and a trace � . One can prove an
omni-forward simulation from big-step source semantics directly to small-step target semantics:

∀�src �tgt � . �(�src, �tgt) ∧ �src ⇓ � =⇒ �tgt −→
♢ (��′tgt .∃�

′
src. �(�

′
src, �

′
tgt) ∧ � (�′src))

where � asserts, among other conditions, that the memory of the target state �tgt contains the compiled program.
Like the proof described in ğ6.4, this proof also works by stepping through the target-language program

by applying target-language rules and discharging their side conditions using the hypotheses obtained by
inverting the source-language execution, with the only diference that instead of using the derived big-step
rule eval-seq-chained for chaining, one now uses the following two rules: eventually-step-chained and
eventually-cut.
Applying eventually-step-chained turns the goal into an omni-single-small-step goal with a given post-

condition, which is suitable to discharge using rules with universally quantiied postconditions like asm-lw.
Applying eventually-cut, on the other hand, creates two subgoals containing an uninstantiated uniication
variable for the intermediate postcondition. The uniication variable appears as the postcondition in the irst
subgoal, so an induction hypothesis with the concrete postcondition from the theorem statement can be applied.
In the second subgoal, this postcondition becomes the precondition for the remainder of the execution.

7 RELATED WORK

This works builds on that of Schäfer et al. [2016], Charguéraud [2020], and Erbsen et al. [2021], all of which are
discussed in the introduction (ğ1). We now will review some additional connections.

Relationship to coinductive big-step semantics. Leroy and Grall [2009] argue that fairly complex, optimizing
compilation passes can be proved correct more easily using big-step semantics than using small-step semantics.
These authors propose to reason about diverging executions using coinductive big-step semantics, following up
on an earlier idea by Cousot and Cousot [1992]. Leroy and Grall’s judgment, written �/� ⇑co, asserts that there
exists a diverging execution of �/� . This judgment is deined coinductively, and a number of its rules refer to the
standard big-step judgment. For example, consider the two rules associated with divergence of a let-binding. An
expression let� = �1 in �2 diverges either because �1 diverges (rule div-let-1) or because �1 terminates on a value

ACM Trans. Program. Lang. Syst.

32 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

�1 and the term [�1/�] �2 diverges (rule div-let-2).

�1/� ⇑
co

(let� = �1 in �2)/� ⇑
co div-let-1

�1/� ⇓ �1/�
′ ([�1/�] �2)/�

′ ⇑co

(let� = �1 in �2)/� ⇑
co div-let-2

In contrast, the coinductive omni-big-step judgment involves a single rule, namely co-omni-big-let, deined as
part of the coinductive interpretation of the rules from Fig. 2.

�1/� ⇓co �1

(

∀(�1, �
′) ∈ �1. ([�1/�] �2)/�

′ ⇓co �
)

(let� = �1 in �2)/� ⇓co �
co-omni-big-let

In that rule, if �1 is instantiated as the empty set, the second premise becomes vacuous, and we recover the rule
div-let-1. Otherwise, if �1 is nonempty, then it describes the values �1 that �1 may evaluate to. For each possible
value �1, the second premise of the rule requires the term [�1/�] �2 to diverge, just like in the rule div-let-2. In
summary, co-omni-big-let captures at once the logic of both div-let-1 and div-let-2.

The paper by Leroy and Grall [2009], which focuses on a deterministic semantics, points out that the principle
of excluded middle (classical logic) is required for establishing the equivalence between a coinductive big-step
semantics for divergence and the standard small-step semantics for divergence. Interestingly, classical logic is not
required for establishing the equivalence between a coinductive omni-big-step semantics of divergence and the
standard small-step semantics for divergence. In the explanations that follow, we omit the state for simplicity, and
we write � −→∞

co for the standard small-step divergence judgment, deined as ∀� ′ . (� −→∗ � ′) ⇒ ∃� ′′ . (� ′ −→ � ′′).
The implication that requires classical logic to be established is: (� −→∞

co) ⇒ (� ⇑co). To see why, consider a
term � of the form let� = �1 in �2, where �1 corresponds to a program whose termination is an open mathematical
problem, and where �2 is an ininite loop. Thus, no matter whether �1 diverges or not, the program let� = �1 in �2
diverges. Yet, to establish the judgment (let� = �1 in �2) ⇑co, one needs to know whether �1 diverges, in which
case the rule div-let-1 applies, or whether �1 terminates, in which case the rule div-let-2 applies. In the general
case, one has to invoke the excluded middle to decide on the termination of an abstract term �1.
In contrast, the implication (� −→∞

co) ⇒ (� ⇓co ∅), which targets a coinductive omni-big-step semantics,
can be proved without classical logic, as pointed out earlier in ğ3.4. Intuitively, to prove that the same example
program let� = �1 in �2 diverges, one can apply the rule co-omni-big-let, regardless of whether �1 diverges or
not. It suices to instantiate �1, which denotes the set of possible results of �1, as the strongest postcondition
of �1. The strongest postcondition may be expressed in terms of the omni-big-step judgment (recall ğ2.2), or
equivalently in terms of the small-step judgment by instantiating �1 as {�1 | �1 −→∗ �1}. In particular, if �1
diverges, then the set �1 is empty and the second premise of co-omni-big-let becomes vacuous. What matters
for the proof of equivalence between the small-step semantics and the coinductive omni-big-step semantics is
that we do not need to decide whether�1 is empty, i.e., whether �1 diverges or not. We thereby avoid the need for
the excluded middle.

Coinductive characterization of safety. Wang et al. [2014] deine a safety judgment, written safe(�, �), to assert
that all possible executions of the coniguration �/� execute safely, i.e., do not get stuck. To reason in big-step style,
and to avoid the cumbersome introduction of error-propagation rules, they consider a coinductive deinition. We
reproduce below the rule for let-bindings, which reads as follows: to establish that let� = �1 in �2 executes safely,
prove that �1 executes safely and that, for any possible result �1 produced by �1, the result of the substitution
[�1/�] �2 executes safely.

safe(�1, �)
(

∀�1�
′ . (�1/� ⇓ �1/�

′) ⇒ safe(([�1/�] �2), �
′)
)

safe((let� = �1 in �2), �)
safe-let (coinductive)

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 33

Our judgment �/� ⇓co � generalizes the notion of safety, by baking the postcondition directly into the judgment
(ğ2.4). It asserts not only that �/� cannot get stuck but also that any potential inal coniguration belongs to � .
We formalized in Coq the following equivalence.

omni-co-big-step-iff-safe-and-correct :

�/� ⇓co � ⇐⇒ safe(�, �) ∧
(

∀��′ . (�/� ⇓ �/�′) ⇒ (�, �′) ∈ �
)

Our rule omni-big-let extends safe-let not just by adding the postcondition � to the judgment but also by
changing the quantiication over �1/�′. In the rule safe-let, the quantiication is constrained by �1/� ⇓ �1/�

′,
whereas in the rule omni-big-let, it is constrained by (�1, �

′) ∈ �1, where �1 denotes the postcondition of �1/� .
The key innovation here is that, thanks to the introduction of postconditions, we no longer need to refer to
the standard big-step judgmentÐthe judgment �/� ⇓ � gives a stand-alone deinition of the semantics of the
language.

Semantics of nondeterministic programs. An important aspect of the present paper is the set up of semantics
for nondeterministic language constructs. Let us review the key historical papers that have focused on that
task. Nondeterminism appears in the early work on semantics, including the language of guarded commands of
Dijkstra [1976] that admits nondeterministic choice where guards overlap, and the par construct of Milner [1975].
Plotkin [1976] develops a powerdomain construction to give a fully abstract model in which equivalences such as
(� par�) = (� par�) hold. Francez et al. [1979] also present semantics that map each program to a representation
of the set of its possible results. In all these presentations, nondeterminism is bounded: only a inite number of
choices are allowed.

Subsequent work generalizes the powerdomain interpretation to unbounded nondeterminism. For example, Back
[1983] considers a language construct � := �� that assigns � to an arbitrary value satisfying the predicate �Ðthe
program has undeined behavior if no such value exists. Apt and Plotkin [1986] address the lack of continuity in
the models presented in earlier work, still leveraging the notion of powerdomains. Their presentation includes
a (countable) nondeterministic assignment operator, written � := ?, that sets � to an arbitrary integer in Z.
More recent work by Tassarotti et al. [2017] heavily relies on the bounded nondeterminism assumption in an
extension of Iris [Jung et al. 2018] for developing a logic to justify program reinement. These authors speculate
that transinite step-indexing [Schwinghammer et al. 2013; Svendsen et al. 2016] may allow handling unbounded
nondeterminism.

Semantics of reactive programs. One key question is how much of a program’s internal nondeterminism should
be relected in its execution trace. At one extreme, one could include a delay event, a.k.a. a tick, to relect in the
trace each transition performed by the program, following the approaches of Danielsson [2012]. More recent
work on interaction trees [Koh et al. 2019; Xia et al. 2019] maps each program to a coinductive structure featuring
ticks in addition to I/O steps. Yet, these approaches come at the cost of reasoning łup to removal of a inite
number of ticks.ž

A promising route to avoiding ticks is the mixed inductive-coinductive approach of Nakata and Uustalu [2010],
for distinguishing between reactive programs that always eventually perform I/O operations and silently diverging
programs that eventually continue executing forever without performing any I/O. Despite apparent beneits, this
approach seems not to have gained popularity or evaluation in the form of sizable case studies.

Compiler correctness as trace property preservation. Abate et al. [2021] deine the notion of source trace property
preservation (denoted TP�̃) to mean that all properties that hold on traces produced by the source program also
hold on traces produced by the target program. They allow diferent trace formats in the source and target
language, relating the source trace � to a target trace � by a relation � ∼ � and quantifying over them in the
same way as we quantify over the source and target states in the deinition of omnisemantics simulation (ğ6.3).

ACM Trans. Program. Lang. Syst.

34 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

If we instantiate the deinition of Abate et al. [2021] by traces whose single events stand for emitting inal
states, we obtain our deinition of omnisemantics simulation, and vice versa, if we generalize our deinition to
also allow diferent trace formats but omit the state component, we obtain their deinition. However, including
the state component in our deinition makes it directly usable for a forward-style proof by induction on the
source-language derivation, even in the presence of target-language nondeterminacy. We speculate that several
proofs of example compilers in that paper could be revisited using omnisemantics. Doing so would not only
simplify the proofs but also make the results stronger by removing the target-language determinacy assumption,
which they need to derive backward simulations from forward simulations.

Semantics of concurrent programs. Concurrency increases the amount of nondeterminism, due to interleavings,
and generally increases the sources of undeined behaviors, due in particular to data races. The work on Com-
pCertTSO [Ševčík et al. 2013] shows how to deal with this additional complexity in a compiler-correctness proof.
A direction for future work is to investigate the extent to which omni-small-step semantics would help simplify
proofs from CompCertTSO.

The Iris framework [Jung et al. 2018, 2015] supports reasoning about concurrent programs in Separation Logic.
In Iris, the source language is speciied by means of a traditional small-step semantics. The weakest preconditions
predicate is then deined using step-indexing: one irst deines the notion of ła program is well-behaved for
� stepsž by induction over �; then deines the notion of ła program is well-behavedž as łit is well-behaved
for any number of stepsž. Proofs are then typically carried out by induction over the indices. Yet, the indices
involved get in the way of compiler proofs where the number of computation steps may increase or decrease
throught a transformation. This observation motivated the introduction of more advanced techniques to tame
the issue, such as transinite step-indexing [Svendsen et al. 2016]. When reasoning about sequential programs,
the use of step-indexing appears overkill for most applications: by leveraging an inductive deinition of the
weakest precondition predicate, an omni-big-step semantics provides a direct induction principle that avoids the
technicalities and limitations of step-indexing altogether.

Reasoning about termination. Many foundational program logics provide reasoning rules for partial correctness,
e.g. [Cao et al. 2018; Chlipala 2013; Jung et al. 2018; Ni and Shao 2006]. More recent frameworks have aimed to
support reasoning about total correctness. For example, in the context of the CakeML veriied compiler [Kumar et al.
2014], the work by Guéneau et al. [2017], subsequently simpliied by Charguéraud [2022], provides a foundational
approach to CFML’s characteristic formulae [Charguéraud 2011]. In the context of the Iris framework [Jung et al.
2018], Mével et al. [2019] encode in the notion of time credits [Charguéraud and Pottier 2019] for establishing
upper and lower bounds on the execution cost. The existence of an upper bound on the number of time credits
required by a program guarantees the termination of that program. Yet, that bound must be provided upfront,
thus this approach is not complete. To see why, consider as counterexample a program that picks an unbounded
random number in Z, then executes a loop that number of time.9 This program is terminating according to the
operational semantics, yet it does not admit any bound on its execution time. To handle such programs, Spies et al.
[2021] introduce transinite time credits, which allow for termination arguments based on dynamic information
learned during program execution. In comparison, omnisemantics can handle such programs without requiring
sophisticated models of Separation Logic. Indeed, an inductive omnisemantics derivation inherently corresponds
to a transinite derivation tree.

Semantics of probabilistic programs. Probabilistic semantics aim to describe not just which executions are
possible but also to describe with what probability each execution may happen. A probabilistic small-step
execution relation assigns a probability to every transition. One caveat is that probabilities do not suice to
describe all nondeterminism: in particular, memory is allocated at nondeterministically chosen addresses. We

9Operational semantics need not provide an actual implementation for the operation of picking a random number in Z.

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 35

refer to Batz et al. [2019] for a solution to this challenge. In the context of program logics, McIver and Morgan
[2005] introduce a weakest preexpectation calculus. Batz et al. [2019] generalize this notion to set up a Quantitative
Separation Logic.

Additionally, there is a long line of work aiming at providing denotational models for probabilistic programsÐ
e.g., Staton et al. [2016]; Wang et al. [2019]. Denotational and operational semantics serve diferent purposes; one
important practical beneit of omnisemantics is that it is grounded in inductive deinitions, with respect to which
proofs by induction can be carried out easily in a proof assistant. An interesting question is whether omnisemantics
could be adapted to provide an inductively deined operational semantics that accounts for probabilities, by
relating conigurations not to sets of outcomes but instead to probability distributions of outcomes.
The problem of termination of probabilistic programs is particularly subtle. One the one hand, one may be

interested in capturing that any execution terminates. For example, Staton et al. [2016] deine termination as
łthere exists �, such that termination occurs in � steps.ž However, this approach does not apply to ininitely
branching nondeterminism. On the other hand, one may design rules to establish almost-sure termination or
positive-almost-sure termination [Chakarov and Sankaranarayanan 2013; Ferrer Fioriti and Hermanns 2015;
Kaminski et al. 2016; McIver et al. 2017].

Dijkstra monads. Dijkstra monads [Ahman et al. 2017; Maillard et al. 2019] target code written in monadic
form and speciied using dependent types. The type-checking process essentially applies weakest-precondition
rules and results in the production of proof obligations. In practice, speciications are expressed in irst-order
logic, so that proof obligations can be discharged using SMT solvers. Dijkstra monads encourage metareasoning
using object-language dependent types only; they do not appear to have been designed for, or demonstrated
capable of, carrying out inductions over program executions. Dijkstra monads can be instantiated in particular
with the nondeterminism monad (NDet). In the current presentation [Ahman et al. 2017], the monad models sets
of possible outcomes using inite sets, which rules out ininitely branching nondeterminism and does not allow
for abstraction in intermediate postconditions (e.g., asserting that a subterm �1 returns an even integer).

8 CONCLUSION AND FUTURE WORK

This paper provides an in-depth introduction to the deinitions, properties, and applications of the omni-big-step
and omni-small-step semantics. These applications include mechanized proofs of type soundness, foundational
constructions of Separation Logic, and compiler correctness proofs.

It would be interesting future work to investigate whether a mixed inductive-coinductive version of omni-big-
step semantics could be deined and provide smooth reasoning for the combined challenge of potentially ininite
executions, nondeterminism, and undeined behavior. The key challenge is to ind a way to carry out compiler-
correctness proofs through a single pass that handles reasoning about both terminating and nonterminating
executions.

REFERENCES
Carmine Abate, Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Deepak Garg, Cătălin Hriţcu, Marco Patrignani, Éric Tanter, and Jérémy

Thibault. 2021. An Extended Account of Trace-relating Compiler Correctness and Secure Compilation. ACM Transactions on Programming

Languages and Systems 43, 4 (Nov. 2021), 14:1ś14:48. https://doi.org/10.1145/3460860
Danel Ahman, Cătălin Hriţcu, Kenji Maillard, Guido Martínez, Gordon Plotkin, Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy. 2017.

Dijkstra Monads for Free. ACM SIGPLAN Notices 52, 1 (Jan. 2017), 515ś529. https://doi.org/10.1145/3093333.3009878
K. R. Apt and G. D. Plotkin. 1986. Countable Nondeterminism and Random Assignment. J. ACM 33, 4 (Aug. 1986), 724ś767. https:

//doi.org/10.1145/6490.6494
R.J.R. Back. 1983. A continuous semantics for unbounded nondeterminism. Theoretical Computer Science 23, 2 (1983), 187ś210. https:

//doi.org/10.1016/0304-3975(83)90055-5
Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative Separation Logic:

A Logic for Reasoning about Probabilistic Pointer Programs. Proc. ACM Program. Lang. 3, POPL, Article 34 (Jan. 2019), 29 pages.

ACM Trans. Program. Lang. Syst.

https://doi.org/10.1145/3460860
https://doi.org/10.1145/3093333.3009878
https://doi.org/10.1145/6490.6494
https://doi.org/10.1145/6490.6494
https://doi.org/10.1016/0304-3975(83)90055-5
https://doi.org/10.1016/0304-3975(83)90055-5

36 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

https://doi.org/10.1145/3290347
Lars Birkedal, Noah Torp-Smith, and Hongseok Yang. 2005. Semantics of separation-logic typing and higher-order frame rules. In 20th Annual

IEEE Symposium on Logic in Computer Science (LICS’05). IEEE, 260ś269. https://doi.org/10.1109/LICS.2005.47
Sandrine Blazy and Xavier Leroy. 2009. Mechanized semantics for the Clight subset of the C language. Journal of Automated Reasoning 43, 3

(2009), 263ś288. https://doi.org/10.1007/s10817-009-9148-3
Qinxiang Cao, Shengyi Wang, Aquinas Hobor, and Andrew W. Appel. 2018. Proof pearl: Magic wand as frame. Unpublished.
Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Computer Aided Veriication,

Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, 511ś526. 10.1007/978-3-642-39799-8_34
Arthur Charguéraud. 2011. Characteristic Formulae for the Veriication of Imperative Programs. In International Conference on Functional

Programming (ICFP ’11). Association for Computing Machinery, 418ś430. https://doi.org/10.1145/2034773.2034828
Arthur Charguéraud. 2013. Pretty-Big-Step Semantics. In Proceedings of the 22nd European Conference on Programming Languages and Systems

(ESOP’13). Springer-Verlag, Rome, Italy, 41ś60. https://doi.org/10.1007/978-3-642-37036-6_3
Arthur Charguéraud. 2020. Separation Logic for Sequential Programs (Functional Pearl). Proc. ACM Program. Lang. 4, ICFP, Article 116 (Aug.

2020), 34 pages. https://doi.org/10.1145/3408998
Arthur Charguéraud. 2022. A Modern Eye on Separation Logic for Sequential Programs. Technical Report. 142 pages. https://hal.inria.fr/hal-

03864664v1
Arthur Charguéraud and François Pottier. 2019. Verifying the Correctness and Amortized Complexity of a Union-Find Implementation in

Separation Logic with Time Credits. Journal of Automated Reasoning 62, 3 (March 2019), 331ś365. https://doi.org/10.1007/s10817-017-9431-7
Adam Chlipala. 2013. The Bedrock Structured Programming System: Combining Generative Metaprogramming and Hoare Logic in an

Extensible Program Veriier. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming (ICFP ’13).
Association for Computing Machinery, 391ś402. https://doi.org/10.1145/2500365.2500592

Patrick Cousot and Radhia Cousot. 1992. Inductive Deinitions, Semantics and Abstract Interpretations. In Proceedings of the 19th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’92). Association for Computing Machinery, 83ś94. https:
//doi.org/10.1145/143165.143184

Nils Anders Danielsson. 2012. Operational Semantics Using the Partiality Monad. SIGPLAN Not. 47, 9 (Sept. 2012), 127ś138. https:
//doi.org/10.1145/2398856.2364546

Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall. IśXVII, 1ś217 pages.
Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala. 2021. Integration Veriication across Software and Hardware

for a Simple Embedded System. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and

Implementation (PLDI 2021). Association for Computing Machinery, 604ś619. https://doi.org/10.1145/3453483.3454065
Luis María Ferrer Fioriti and Holger Hermanns. 2015. Probabilistic Termination: Soundness, Completeness, and Compositionality. SIGPLAN

Not. 50, 1 (Jan. 2015), 489ś501. https://doi.org/10.1145/2775051.2677001
Nissim Francez, C. A. R. Hoare, Daniel J. Lehmann, and Willem P. De Roever. 1979. Semantics of Nondeterminism, Concurrency, and

Communication. J. Comput. System Sci. 19, 3 (Dec. 1979), 290ś308. https://doi.org/10.1016/0022-0000(79)90006-0 http://www.sciencedirect.
com/science/article/pii/0022000079900060.

Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, and Michael Norrish. 2017. Veriied Characteristic Formulae for CakeML. In European

Symposium on Programming (ESOP), Hongseok Yang (Ed.). Springer Berlin Heidelberg, 584ś610. https://doi.org/10.1007/978-3-662-54434-
1_22

Aquinas Hobor and Jules Villard. 2013. The Ramiications of Sharing in Data Structures. In Proceedings of the 40th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’13). Association for Computing Machinery, 523ś536. https://doi.org/
10.1145/2429069.2429131

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A
modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018). https://doi.org/10.1017/
S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and
Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL ’15). Association for Computing Machinery, 637ś650. https://doi.org/10.1145/2676726.2676980
Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition Reasoning for

Expected RunśTimes of Probabilistic Programs. In Programming Languages and Systems, Peter Thiemann (Ed.). Springer Berlin Heidelberg,
364ś389. https://doi.org/10.1007/978-3-662-49498-1_15

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C. Pierce, and Steve Zdancewic.
2019. From C to Interaction Trees: Specifying, Verifying, and Testing a Networked Server. In Proceedings of the 8th ACM SIGPLAN

International Conference on Certiied Programs and Proofs (CPP 2019). Association for Computing Machinery, Cascais, Portugal, 234ś248.
https://doi.org/10.1145/3293880.3294106

ACM Trans. Program. Lang. Syst.

https://doi.org/10.1145/3290347
https://doi.org/10.1109/LICS.2005.47
https://doi.org/10.1007/s10817-009-9148-3
10.1007/978-3-642-39799-8_34
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1007/978-3-642-37036-6_3
https://doi.org/10.1145/3408998
https://hal.inria.fr/hal-03864664v1
https://hal.inria.fr/hal-03864664v1
https://doi.org/10.1007/s10817-017-9431-7
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1145/143165.143184
https://doi.org/10.1145/143165.143184
https://doi.org/10.1145/2398856.2364546
https://doi.org/10.1145/2398856.2364546
https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1145/2775051.2677001
https://doi.org/10.1016/0022-0000(79)90006-0
http://www.sciencedirect.com/science/article/pii/0022000079900060
http://www.sciencedirect.com/science/article/pii/0022000079900060
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1145/2429069.2429131
https://doi.org/10.1145/2429069.2429131
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1145/3293880.3294106

Omnisemantics: Smooth Handling of Nondeterminism • 37

Robbert Krebbers. 2015. The C standard formalized in Coq. Ph. D. Dissertation. Radboud University Nijmegen. https://robbertkrebbers.nl/
research/thesis.pdf

Neel R. Krishnaswami, Lars Birkedal, and Jonathan Aldrich. 2010. Verifying Event-Driven Programs Using Ramiied Frame Properties. In
Proceedings of the 5th ACM SIGPLAN Workshop on Types in Language Design and Implementation (TLDI ’10). Association for Computing
Machinery, 63ś76. https://doi.org/10.1145/1708016.1708025

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A Veriied Implementation of ML. In Principles of

Programming Languages (POPL). ACM Press, 179ś191. https://doi.org/10.1145/2535838.2535841
Xavier Leroy. 2009. A Formally Veriied Compiler Back-end. Journal of Automated Reasoning 43, 4 (Dec. 2009), 363ś446. https://doi.org/10.

1007/s10817-009-9155-4
Xavier Leroy and Hervé Grall. 2009. Coinductive big-step operational semantics. Information and Computation 207, 2 (2009), 284ś304.

https://doi.org/10.1016/j.ic.2007.12.004 Special issue on Structural Operational Semantics (SOS).
Nancy Lynch and Frits Vaandrager. 1995. Forward and Backward Simulations Part I: Untimed Systems. Information and Computation 121

(1995), 214ś233.
Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Cătălin Hriţcu, Exequiel Rivas, and Éric Tanter. 2019. Dijkstra Monads for All.

Proceedings of the ACM on Programming Languages 3, ICFP (July 2019), 104:1ś104:29. https://doi.org/10.1145/3341708
Annabelle McIver and Carroll Morgan. 2005. Abstraction, Reinement And Proof For Probabilistic Systems. Springer.
Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. 2017. A New Proof Rule for Almost-Sure Termination.

Proc. ACM Program. Lang. 2, POPL, Article 33 (Dec. 2017), 28 pages. https://doi.org/10.1145/3158121
Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time Credits and Time Receipts in Iris. In Programming Languages and

Systems, Luís Caires (Ed.). Springer International Publishing, Cham, 3ś29. https://doi.org/10.1007/978-3-030-17184-1_1
Robin Milner. 1975. Processes: a mathematical model of computing agents. In Studies in Logic and the Foundations of Mathematics. Vol. 80.

Elsevier, 157ś173.
Jean-François Monin and Xiaomu Shi. 2013. Handcrafted Inversions Made Operational on Operational Semantics. In Interactive Theorem

Proving, David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar
Nierstrasz, C. Pandu Rangan, Bernhard Stefen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum,
Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie (Eds.). Vol. 7998. Springer Berlin Heidelberg, Berlin, Heidelberg, 338ś353.
https://doi.org/10.1007/978-3-642-39634-2_25

Keiko Nakata and Tarmo Uustalu. 2010. Mixed Induction-Coinduction at Work for Coq. 2nd Workshop of Coq users, developers, and contributors

(2010). http://www.cs.ioc.ee/~keiko/papers/Coq2.pdf.
Zhaozhong Ni and Zhong Shao. 2006. Certiied Assembly Programming with Embedded Code Pointers. In Conference Record of the 33rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’06). Association for Computing Machinery, 320ś333.
https://doi.org/10.1145/1111037.1111066

O’Hearn, Reynolds, and Yang. 2001. Local Reasoning about Programs that Alter Data Structures. In CSL: 15th Workshop on Computer Science

Logic. LNCS, Springer-Verlag. https://doi.org/10.1007/3-540-44802-0_1
Peter W. O’Hearn. 2019. Separation logic. Commun. ACM 62, 2 (2019), 86ś95. https://doi.org/10.1145/3211968 The appendix is linked as

supplementary material from the ACM digital library..
Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press.
G. D. Plotkin. 1976. A Powerdomain Construction. Siam J. of Computing (1976).
John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Annual IEEE Symposium on Logic in Computer

Science (LICS). 55ś74. https://doi.org/10.1109/LICS.2002.1029817
Tiark Rompf and Nada Amin. 2016. Type Soundness for Dependent Object Types (DOT). In Proceedings of the 2016 ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM, Amsterdam Netherlands, 624ś641.
https://doi.org/10.1145/2983990.2984008

Steven Schäfer, Sigurd Schneider, and Gert Smolka. 2016. Axiomatic Semantics for Compiler Veriication. In Proceedings of the 5th ACM

SIGPLAN Conference on Certiied Programs and Proofs. ACM, St. Petersburg FL USA, 188ś196. https://doi.org/10.1145/2854065.2854083
Jan Schwinghammer, Aleš Bizjak, and Lars Birkedal. 2013. Step-indexed relational reasoning for countable nondeterminism. Logical Methods

in Computer Science 9 (2013). https://doi.org/10.2168/LMCS-9(4:4)2013
Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO: A Veriied Compiler

for Relaxed-Memory Concurrency. J. ACM 60, 3 (June 2013), 1ś50. https://doi.org/10.1145/2487241.2487248
Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2021. Transinite Iris:

Resolving an Existential Dilemma of Step-Indexed Separation Logic. In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI 2021). Association for Computing Machinery, 80ś95. https://doi.org/10.1145/
3453483.3454031

Sam Staton, Hongseok Yang, Chris Heunen, Ohad Kammar, and Frank Wood. 2016. Semantics for Probabilistic Programming: Higher-Order
Functions, Continuous Distributions, and Soft Constraints. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer

ACM Trans. Program. Lang. Syst.

https://robbertkrebbers.nl/research/thesis.pdf
https://robbertkrebbers.nl/research/thesis.pdf
https://doi.org/10.1145/1708016.1708025
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1145/3341708
https://doi.org/10.1145/3158121
https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1007/978-3-642-39634-2_25
http://www.cs.ioc.ee/~keiko/papers/Coq2.pdf
https://doi.org/10.1145/1111037.1111066
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/3211968
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/2983990.2984008
https://doi.org/10.1145/2854065.2854083
https://doi.org/10.2168/LMCS-9(4:4)2013
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3453483.3454031

38 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

Science (July 2016), 525ś534. https://doi.org/10.1145/2933575.2935313 arXiv:1601.04943
Kasper Svendsen, Filip Sieczkowski, and Lars Birkedal. 2016. Transinite Step-Indexing: Decoupling Concrete and Logical Steps. In Programming

Languages and Systems, Peter Thiemann (Ed.). Springer Berlin Heidelberg, 727ś751. https://doi.org/10.1007/978-3-662-49498-1_28
Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for Concurrent Termination-Preserving Reinement. In

Programming Languages and Systems, Hongseok Yang (Ed.). Springer Berlin Heidelberg, 909ś936. https://doi.org/10.1007/978-3-662-
54434-1_34

Di Wang, Jan Hofmann, and Thomas Reps. 2019. A Denotational Semantics for Low-Level Probabilistic Programs with Nondeterminism.
Electronic Notes in Theoretical Computer Science 347 (2019), 303ś324. https://doi.org/10.1016/j.entcs.2019.09.016 Proceedings of the
Thirty-Fifth Conference on the Mathematical Foundations of Programming Semantics.

Peng Wang, Santiago Cuellar, and Adam Chlipala. 2014. Compiler Veriication Meets Cross-Language Linking via Data Abstraction. In
OOPSLA. ACM Press, 675ś690. https://doi.org/10.1145/2660193.2660201

A.K. Wright and M. Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation 115, 1 (Nov. 1994), 38ś94.
https://doi.org/10.1006/inco.1994.1093

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2019. Interaction Trees:
Representing Recursive and Impure Programs in Coq. Proceedings of the ACM on Programming Languages 4, POPL (Dec. 2019), 51:1ś51:32.
https://doi.org/10.1145/3371119

ACM Trans. Program. Lang. Syst.

https://doi.org/10.1145/2933575.2935313
https://arxiv.org/abs/1601.04943
https://doi.org/10.1007/978-3-662-49498-1_28
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1016/j.entcs.2019.09.016
https://doi.org/10.1145/2660193.2660201
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/3371119

Omnisemantics: Smooth Handling of Nondeterminism • 39

A ON THE CHALLENGE OF DEFINING WP INDUCTIVELY

The weakest-precondition-style reasoning rule for let-bindings is traditionally stated as follows.

wp-let: wp �1 (��
′ .wp ([� ′/�] �2)�) ⊢ wp (let� = �1 in �2)�.

Translating it to a big-step omnisemantics rule results in the following rule.

�1/� ⇓ {(� ′, �′) | ([� ′/�] �2)/�
′ ⇓ �}

(let� = �1 in �2)/� ⇓ �
omni-big-let-chained

The rule omni-big-let-chained can be useful for reasoning when one does not want to specify an explicit postcon-
dition that needs to hold between �1 and �2. This chained rule can be straightforwardly derived from the omni-big-
let rule part of the deinition of the omni-big-step semantics, by instantiating�1 as {(� ′, �′) | ([� ′/�] �2)/�′ ⇓ �}

in the irst premise, then checking the tautology associated with the second premise.

�1/� ⇓ �1

(

∀(� ′, �′) ∈ �1. ([� ′/�] �2)/�
′ ⇓ �

)

(let� = �1 in �2)/� ⇓ �
omni-big-let

One might wonder why we do not use omni-big-let-chained directly in the inductively deined rules. The
reason is that Coq’s strict positivity requirement on the well-formedness of inductive deinitions does not allow it.

To elaborate on this point, consider the four candidate Coq rules stated below.

Notation "H1 ⊢H2" := (∀ s, H1 s→ H2 s). (* notation for entailment *)

Inductive wp : trm → (val→ state→ Prop)→ (state→ Prop) :=
| wp_let_invalid : ∀x t1 t2 Q, (* non strictly positive occurrence of [wp]. *)

wp t1 (fun v1 ⇒ wp (subst x v1 t2) Q)
⊢wp (trm_let x t1 t2) Q

| wp_let_invalid' : ∀Q1 x t1 t2 Q s, (* non strictly positive occurrence of [wp]. *)

wp t1 Q1 s →

Q1 = (fun v1 s2 ⇒ wp (subst x v1 t2) Q s2)→
wp (trm_let x t1 t2) Q s

| wp_let_valid : ∀x t1 t2 Q, (* accepted, but with useless induction principle *)

(fun s ⇒∃Q1, wp t1 Q1 s ∧ (∀ v1, Q1 v1 ⊢wp (subst x v1 t2) Q))
⊢wp (trm_let x t1 t2) Q

| wp_let_valid' : ∀x t1 t2 Q1 Q, (* accepted, with useful induction principle *)

wp t1 Q1 s →

(∀ v1 s2, Q1 v1 s2 → wp (subst x v1 t2) Q s2))→
wp (trm_let x t1 t2) Q s.

The irst rule directly translates wp-let. It is rejected by Coq because it includes a non-strictly-positive
occurrence of the predicate wp.
The second rule attempts a reformulation by expanding the deinition of entailment and by introducing a

variable name Q1 for the intermediate postcondition, together with an equality constraint on Q1. Yet, Coq rejects
this rule just like the previous.

The third rule modiies the irst rule by introducing an existentially quantiied intermediate postcondition Q1,
quantifying over the items that belong to it. This rule is accepted by Coq. Yet, in that form, Coq (v8.14) generates
a useless induction principle, which provides no induction hypothesis for the nested occurence of wp. (This
weakness can be corrected by stating and proving an induction principle manually, but we prefer to avoid the
extra hassle.)

ACM Trans. Program. Lang. Syst.

40 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

The fourth rule corresponds to omni-big-let. It adapts the previous rule by quantifying Q1 universally at the
level of the constructor. This presentation is properly recognized by the induction-principle generator of Coq.

B UNSPECIFIED EVALUATION ORDER

For a language that uses unspeciied but consistent order of evaluation for arguments of, e.g., pairs or applications,
we can consider a generalized version of the rule omni-big-pair from the previous section. Essentially, we
duplicate the premises to account for the two possible evaluation orders.

omni-big-pair-unspecified-order
�1/� ⇓ �1

(

∀(�1, �
′) ∈ �1. �2/�

′ ⇓ {(�2, �
′′) | ((�1, �2), �

′′) ∈ �}
)

�2/� ⇓ �2

(

∀(�2, �
′) ∈ �2. �1/�

′ ⇓ {(�1, �
′′) | ((�1, �2), �

′′) ∈ �}
)

(�1, �2)/� ⇓ �

To avoid the duplication in the premises, one can follow the approach described in ğ5.5 of the paper on the
pretty-big-step semantics [Charguéraud 2013], which presents a general rule for evaluating a list of subterms in
arbitrary order.

Note that we do not attempt tomodel languages that allow arbitrary interleavings in the evaluation of arguments,
as, e.g., arithmetic expressions in the C language [Krebbers 2015]. More generally, concurrent evaluation is out of
the scope of the present paper.

C OMNISEMANTICS RULES IN THE PRESENCE OF EXCEPTIONS

For a programming language that features exceptions, the reasoning rule for let-bindings needs to be adapted
in two ways. Indeed, if the body of the let-binding raises an exception, then the continuation should not be
evaluated. Moreover, the exception raised should be included in the set of results that the let-binding can produce.

There are two ways to extend the grammar of results with exceptions. The irst possibility is to add a constructor
to the grammar of values. In this case, the postcondition� remains a predicate over pairs of values and states. The
second possibility is to introduce a type, to capture the sum of the type of values and of the type of exceptions. In
that case, the postcondition � becomes a predicate over pairs of results and states.

For simplicity, let us assume in what follows that the grammar of values includes a constant exception construct,
written exn. In that setting, the omni-big-step evaluation rule for a let-binding of the form (let� = �1 in �2) can be
stated as follows. The irst premise describes the evaluation of �1. The second premise handles the case where �1
produces a normal value. The third premise handles the case where �1 produces an exception.

omni-big-let-with-exceptions
�1/� ⇓ �1

(

∀(� ′, �′) ∈ �1. � ′ ≠ exn ⇒ ([� ′/�] �2)/�
′ ⇓ �

) (

∀�′ . �1 exn �
′ ⇒ � exn �′

)

(let� = �1 in �2)/� ⇓ �

We proved in Coq the equivalence of this treatment of exceptions with the formalization of exceptions expressed
both in standard small-step and in standard big-step semantics.

D DEFINITION OF THE TERMINATION JUDGMENT

We introduced the termination judgment to formalize the interpretation of the omni-big-step judgment (ğ2.2,
omni-big-step-iff-terminates-and-correct). The predicate terminates(�, �) asserts that all executions of
coniguration �/� terminate. In this section, we present two formal deinitions of this predicate, one in small-step
style and one in big-step style.

ACM Trans. Program. Lang. Syst.

Omnisemantics: Smooth Handling of Nondeterminism • 41

The small-step version is inductively deined by the two rules show below.

small-terminates-here

terminates(�, �)

small-terminates-step
(

∃� ′�′ . �/� −→ � ′/�′
)

(

∀� ′�′ . (�/� −→ � ′/�′) ⇒ terminates(� ′, �′)
)

terminates(�, �)

The big-step version is inductively deined using one rule per language construct. We show below the rules for
values and for let-bindings. This deinition corresponds to an inductive version of the coinductive judgment safe
from Wang et al. [2014], described in ğ8.

big-terminates-val

terminates(�, �)

big-terminates-let
terminates(�1, �)

(

∀�1�
′ . (�1/� ⇓ �1/�

′) ⇒ terminates(([�1/�] �2), �
′)
)

terminates((let� = �1 in �2), �)

E DEFINITION OF THE TYPING JUDGMENT

This section states the typing rules for the state-free language considered in ğ4.1. The typing rules are given for
terms in A-normal form. The judgment ⊢ � : � asserts that the closed value � admits the type � . The judgment
� ⊢ � : � asserts that the term � admits type � in the environment �. Finally, V denotes the set of terms that are
either values or variables.

vtyp-unit

⊢ tt : unit

vtyp-bool

⊢ � : bool

vtyp-int

⊢ � : int

vtyp-fix
� : (�1 → �2), � : �1 ⊢ � : �2

⊢ ((�� .�� .�)) : (�1 → �2)

typ-val
⊢ � : �

� ⊢ � : �

typ-var
� ∈ dom� � [�] = �

� ⊢ � : �

typ-fix
�, � : (�1 → �2), � : �1 ⊢ � : �2

� ⊢ (�� .�� .�) : (�1 → �2)

typ-app
� ⊢ �1 : (�1 → �2) � ⊢ �2 : �1 �1, �2 ∈ V

� ⊢ (�1 �2) : �2

typ-if
� ⊢ �0 : bool � ⊢ �1 : � � ⊢ �2 : � �0 ∈ V

� ⊢ (if �0 then �1 else �2) : �

typ-let
� ⊢ �1 : �1 �, � : �1 ⊢ �2 : �2

� ⊢ (let� = �1 in �2) : �2

typ-add
� ⊢ �1 : int � ⊢ �2 : int �1, �2 ∈ V

� ⊢ (add �1 �2) : int

typ-rand
� ⊢ �1 : int �1 ∈ V

� ⊢ (rand �1) : int

F EXTENSION OF THE TYPING JUDGMENT FOR STATE

This section states the typing rules for the imperative language considered in ğ4.2. There, the typing judgment
for terms takes the form � ;� ⊢ � : � , and the typing judgment for closed values takes the form � ⊢ � : � ,
where the store typing � maps locations to types. The rules from the previous appendix are extended simply to
thread � throughout the judgment. The new rules include the rule for typing locations and the rules for memory

ACM Trans. Program. Lang. Syst.

42 • Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Grueter

operations. They are shown next.
vtyp-loc
� ∈ dom � � [�] = �

� ⊢ � : (ref�)

typ-ref
� ;� ⊢ �1 : � �1 ∈ V

� ;� ⊢ (ref �1) : (ref�)

typ-get
� ;� ⊢ �1 : (ref�) �1 ∈ V

� ;� ⊢ (get �1) : �

typ-set
� ;� ⊢ �1 : (ref�) � ;� ⊢ �2 : � �1, �2 ∈ V

� ;� ⊢ (set �1 �2) : unit

G DEFINITION OF THE STANDARD SMALL-STEP JUDGMENT

In ğ2.4, we gave a characterization of coinductive omni-big-step semantics in terms of the standard small-step
semantics, written �/� −→ � ′/�′. For reference, we give below the rules that deine the standard small-step
judgment:

small-app
�1 = (�� .�� .�)

(�1 �2)/� −→ ([�2/�] [�1/�] �)/�

small-if-true

(if true then �1 else �2)/� −→ �1/�

small-if-false

(if false then �1 else �2)/� −→ �2/�

small-let-ctx
�1/� −→ � ′1/�

′

(let� = �1 in �2)/� −→ (let� = � ′1 in �2)/�
′

small-let-val

(let� = �1 in �2)/� −→ ([�1/�] �2)/�

small-add

(add�1 �2)/� −→ (�1 + �2)/�

small-rand
0 ≤ � < �

(rand�)/� −→�/�

small-ref
� ∉ dom �

(ref �)/� −→ (� [� := �])/�

small-free
� ∈ dom �

(free�)/� −→ tt/(� ∖ �)

small-get
� ∈ dom �

(get�)/� −→ (� [�])/�

small-set
� ∈ dom �

(set� �)/� −→ tt/(� [� := �])

H EVALUATION OF UNARY AND BINARY OPERATORS

The following deinitions complete the semantics described in the case study łcompiling immutable pairs to
heap-allocated recordsž (ğ6.4).

evalunop(fst, (�1, �2), �1) evalunop(snd, (�1, �2), �2) evalunop(not, 1, 0) evalunop(not, 0, 1)

evalbinop(+, �1, �2, �1 + �2) evalbinop(mkpair, �1, �2, (�1, �2))

ACM Trans. Program. Lang. Syst.

	Abstract
	1 Introduction
	1.1 Feature #1: Stuck Terms and Nondeterminism
	1.2 Feature #2: Termination and Nondeterminism
	1.3 Feature #3: Simulation Arguments with Nondeterminism and Undefined Behavior
	1.4 Feature #4: Linear-Size Type-Safety Proofs
	1.5 Contributions and Contents of the Paper

	2 Omni-Big-Step Semantics
	2.1 Definition of the Omni-Big-Step Judgment
	2.2 Properties of the Omni-Big-Step Judgment
	2.3 About the Overapproximation of the Set of Results
	2.4 Coinductive Interpretation of the Omni-Big-Step Judgment
	2.5 The Bind Rule for Reasoning about Evaluation Contexts

	3 Omni-Small-Step Semantics
	3.1 The Omni-Small-Step Judgment
	3.2 The ``Eventually'' Judgment
	3.3 Chained Rule and Cut Rule for the ``Eventually'' Judgment
	3.4 Coinductive Interpretation of the Omni-Small-Step Judgment

	4 Type-Safety Proofs using Omnisemantics
	4.1 Omni-Small-Step Type-Safety Proof for a State-Free Language
	4.2 Omni-Small-Step Type-Safety Proof for an Imperative Language
	4.3 Omni-Big-Step Type-Safety Proof for an Imperative Language

	5 Definition of Program Proof Rules
	5.1 Challenges in Defining Foundational Separation Logic Triples
	5.2 Definition of Hoare Triples w.r.t. Omni-Big-Step Semantics
	5.3 Deriving Reasoning Rules for Hoare Triples
	5.4 Deriving The Frame Rule of Separation Logic
	5.5 Deriving Weakest-Precondition-Style Reasoning Rules

	6 Compiler-Correctness Proofs For Terminating Programs
	6.1 Motivation: Avoiding Both Backward Simulations and Artificial Determinism
	6.2 Establishing Correctness via Forward Simulations using Omnisemantics
	6.3 Omnisemantics Simulations for I/O and Cross-Language Compilation
	6.4 Case Study: Compiling Immutable Pairs to Heap-Allocated Records
	6.5 Case Study: Introduction of Stack Allocation
	6.6 Compilation from a Language in Omni-Big-Step to One in Omni-Small-Step

	7 Related Work
	8 Conclusion and Future Work
	References
	A On the Challenge of Defining WP Inductively
	B Unspecified Evaluation Order
	C Omnisemantics Rules in the Presence of Exceptions
	D Definition of the Termination Judgment
	E Definition of the Typing Judgment
	F Extension of the Typing Judgment for State
	G Definition of the Standard Small-Step Judgment
	H Evaluation of Unary and Binary Operators

