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ABSTRACT

This thesis 1s concerned with the use of block codes to
transmit information over two-way communication systems which
have a discrete, memoryless, noisy channel in the forward
direction and a reverse channel which is noigeless and
undelayed and has unlimited capacity. It has been known
that the capacity in the forward direction is not iacreased
by the reverse channel. It has also been known that the
probability of error approaches zero exponentially with
increasing block length at any fixed rate less than capacity.
For a region of rates between a critical rate and capacity,
it has been known that the exponent with which the probability
of error approaches zero camnot be improved by the use of
feedback, and there was some question whether the feedback
channel could be made to serve any useful purpcse at all,
either to improve the probability of error or to decrease the
complaxity of the coding and decoding operations.

In view of these results, we focus our primary attention
on low rate codes, including zero-rate codes whose block
length anproaches infinity while the number of codewords
remaing rixed. We succeed in obtaining several new and
improvec bounds on the probatility of error for such codes,
both with and without feedback.

We evaluate the zero-rate exponents for arbitrary one-
way channels. This new general result leads to improved
lower bounds on the Probability of orror at low rates, via
techniques recently ‘atroduced by C. E. Shannon and R. G.
Gallager. We evaluate the zero-rate exponent for large
classes of feedback channels, including all binary-input
channels which satisfy certain symmetry requirements.

These results lead to strengthened bounds on the probability
of error for channels wii® Icedback. We find that at low
rates it is possible tc obtain substantially improved error
probabilities with the use of feedback. Although our results
may be invalidated if the feedback channel is noisy, we show
that the results are not effected by a delay in the feedback
channel unless the delay is comparable to the block length.
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Several constructive feedback coding strategies are
presented. Using elaborate inductive arguments, we derive
a class of coding straregle. which are asymptotically optimum
for the binary symmetric channel with feedback over a large
region of rates. It is felt that these strategies could be
profitably applied to problems in the statistical design of
experiments whenever the situation is such that successive
experiments may be modified according to the results of
previous cnes. Most previous studies in the statistical
design of experiments have not permittec such modifications.
By utilizing thi:z "feedback'', we not only find that it is
possible to achieve much smaller error probability, but we

show how.

Thesis Supervisor: Robert G. Gallager
Title: Associate Professor of Electrical Engineering



Preface iv

This thesis is directed toward the problem of block coding
with noiseless feedback, at low rates. For comparison, a chapter
(2) on block coding without feedtack is included, containing several
new results. In chapter 3 we attack the zero-rate coding prcblem
for channels with noigseless feedback, and in Chapter 4 we consider
the construction of coding strategies for the binary symmetric
channel with noiseless feedback.

Familiarity with the material summarized in the introductory
Chapter 1 is the sole prerequisite to any of the other chapters.
The three final chap::rs are sufficiently independent of each other
that any of these chapters may be read with a minimum of reference
tc the others. Although rthe results of these chapters are related,
it 1s expected that they will appeal to different groups. Chapter
2 will be of primary interest to the error exponent theorists of
the Shannon-Fano tradition; Chapter 4 will be of greater interest
to algebraists and number theorists interested in problems
relating to the statistical design of experiments. Chapter 3
may have an intermediate appeal.

Despite restraining efforts by the author, a large number
of symbols are introduced. To aid the forgetful reader, an
included glossary tabulates each of these symbols, together with
its definition and/or the page where the definition may be
found. -

To curtail errors which tend to be introduced by continual
revision of the manuscript, the formulas have been numbered by
the decimal system. (2.055 nccurs between 2.05 and 2.06.)

Research on most of the problems discussed in this thesis
is still underway. The author expects to write various papers
including these (and, hopefully, scronger) results in the next
year. For this reason, the author would greatly appreciate
any and all comments and suggestions, helpful, critical, or
otherwisc.
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Chapter 1

HISTORICAL BACKGROUND

This thesis is concerned with the transmission of information over discrete
memoryless channels having K inputs (al, cees aK). J outputs (bl. ceey bJ)’ and a known
probability transition matrix, pj' K Pr(bj/ak). The source selects one of M=exp RN
equiprobable messages. The coder at the source then attempts to inform the decoder at
the receiver which message was chosen by sending a sequence of N symbols across the
noisy channel. N is the block length; R is the information rate in nats.

We consider this problem in t§v0 different cases. In the feedback case, the
communication system also includes a reverse channel, running from the receiver back
to the source, which is noiseless and delayless and has an unlimited capacity. The
receiver uses this channel to keep the source informed of the received symbols; the
transmitter is then permitted to utilize this feedback information (as well as the selected
message) in deciding which symbol to transmit next. In the conventional one-way case,
there is no reverse channel at all, and the transmitter must select all N transmitted
symbols independently of what the source receives. In either case, after the entire
block of N symbols is received, the decoder selects that message which appears most
probable. If this choice does not coincide with the message selected by the source, the
decoder has committed a decoding error. We are interested in the behavior of Pe' the
probability of decoding error, for various channels when the source and the receiver
use the best possible coding strategy.

The behavior of Pe for large M and N and fixed R is of considerable interest.
In 1948 C.E. Shannon showed that any such channel has a capacity, C, with the

property that for any fixed R <C, Pe goesto 0 with increasing M and N, but for any



fixed R > C, Pe remains bounded away from zero for all M and N. Later Wolfowitz
(1961) showed that in fact Pe goesto 1 as M and N increase with fixed R >C. C is
the same for both the feedback and the one-way case. In 1955 A. Feinstein showed that
for any R < C, the one-way Pe actually goes to O at least exponentially in N. Later

R. M. Fano (1961) showed that in fact Pe gees to 0 exponentially. This leads to the
definition

E(R) = lim sup -1/N InP T (1.01)
N=— = €

as the optimum one-way exponent, which is a function of the rate R and the channel.
E(R) expresses the inherent !imitations on communication at rate R, 0 <R <C. For
this reason, E(R) is of fundamental importance.

In a similar manner, we define F(R) as the optimum exporent for the same
channel with feedback.

F(R) = lim sup -1/N1n Pe (1.02)

N — o
Since the source and receiver can ignore the feedback channel if they so desire, it is
clear that
E(R) = F(R) for all0 <R <C. (1.03)
At zero rate, these exponents are no longer well-defined, for they may depend
on the manner in which M and N go to infinity. This leads to the consideration of

exponents for finite numbers of wecrds.

EM =1lim -1/Nln Pe for the best one-way code with M codewords (M = 2)
N — a

and block length N. Likewise FM is the corresponding quantity for the channel with

feedback. Obviously EM = FM. Finally, we define

T This definition avoids the logical difficulty arising from the conceptual possibility

that lim =1/N1n P_ might not exist.
n— e



E =1lim E, . ; E(@)=1lim E() and similarly (1.04)
@ M
F_ = lim FM ; F(@) =1lim F(R) (1.05)
M — o R—O0

It is apparent that

ER,) =ER) =E0) =E_, =E =E_=<E,

2 ™
and
F(R,) =FR,) =F0) =<F, = sz = le =F,
for any
()<R1<R2<C;2<m1<m2 (1.06)

For some channels, E2 may be infinite. E(R) may be infinite for some region
0<R< COS C, where C0 is the zero-error capacity introduced by Shannon (1956). A
channel has a positive Co iff it has some pair of inputs which have no outputs in common.
It Co >0, then Co = j bit.

This thesis will primaril, be concerned with channels which have no zero
error capacity. We shall find that if Co =0, then F2 < =, whence EM and FM
are finite for all M.

The function E(R) has been studied by Shannon (1959), Fano (1961), Gallager

(1964) and others. Their basic results for discrete memoryless channels without zero

error capacity are summarized as follows: For any R,
Erand(R) = Eexp(R) =ER) =F(R) = Esp(R)
Esp(R) is the sphere packing bound.

Eran d(R) is the random coding bound.

Eexp(R) is the improved lower bound resulting from certain



expurgation procedures applied to random ensembles of codes.

Eank

New Shannon-
Known Bounds Gallager Bound

Figure 1-1 Figure 1-2 Figure 1-3

Above some critical rate R ___,
crit

= = =
Erand(R) Esp(R) for Rcrit R=C

Thus E(R) is known for Rcr‘

it =R =C. E(R) approaches zero parabolically as

R approaches C. For sufficiently small rates, Eran d(R) is a straight line of slope -1.

Eran d(O) = Rcomp' a rate which has significance in the sequential decoding procedures



of Wozencraft and Reiffen (1961) and Fano (1963). Excerpt for certain pathological cases,

the rate at which Eran d(R) ceases to be a straight line of slope -1 is Rcrit' at which

Eran d(R) joins Esp(R) tangentially. At a lower critical rate Ro, Eexp(R) leaves Eran d(R)
tangentially (except, again, for certain pathological cases). In all cases Bexp(R)
approache_s a higher limit than Eran d(R). Eexp(o) > Eran d(0).

For channels across which at least one output is accessible from every input,
Esp(O) is finite, and E2 = F2 = Esp(O) ; for channels across which each output is
inaccessible from at least one input, there exists a rate C: at which the sphere packing

+ + +
= = . = . iti

bound ceases. ESP(R) ® for 0 =R < Co Clearly C0 C0 Co may be positive
even when C0 =0.

The most elegant derivation of these results is that given by Gallager (1964).

He introduces the function Eo( p), defined by

—_— l+p
_ _ 1+p
Eo(p) = m;x In F(‘i Pkp.' K > (1.10)

In terms of this function, the significant rates are given by

C = E!0) (1.11)

= \

R omp = Eo) (1.12)
= R?

Ry = ELD (1.13)

Co = lim E ()/p=max-lamax ) P (1.14)

p== P ] k for which
p. ,.>0
Ifc:=o, then ik
P
E,©) = E (=) = m;x “n(Z 7S (1.15)

The expurgated bound Eexp(R) is given by another, more complicated expression. At



zero rate, its value is given by

1 1
E 0)=max = Z PP, (-In T p* 2 1.16
exp() i Py ( ij- Pix ! ( )

Attacking the large difference between Eexp(R) and Esp(R) for low rates,
Shannon and Gallager - (1965) have recently found a new, improved upper bound on
exponents. Their result states that if one has any arbitrary upper bound on E(R) given
by Ea b(R) , which is tighter (i. e. lower) than ESP(R) for small rates (or even for the
single rate R = 0), then one can extend this bound along a straight line ESG' tangent to
both Earb and Esp' Similarly for channels with feedback, if one has an arbitrary upper
bound on F(R) given by Farb(R)' then one can extend this bound along the Shannon-
Gallager - line F SG(R). tangent to both Farb(R) and Esp(R). (Recall that the sphere
packing bound applies to both E(R) and F(R).)

For certain special channels, such as the binary symmetric channel, there are
known low-rate upper bounds on exponent, such as the Elias (See Gramenopoulos, 1962)
bound, from which the Shannon-Gallager bound can be extended. For most channels,
however, no such upper bound at low rates was previously known, either with or without
feedback.

The exponents EM were first implicitly studied by Plotkin (1951) for the binary
symmetric channel. More recently, Dobrushin (1962) has computed EM for a larger
class of symmetric binary channels. The nonsymmetric channels pose additional diffi-
culties, however, which have prevented previous computation of EM. Finally, the

exponents F, = have not previously been studied at all, even for the binary symmetric

M

channel.



Using a sequential transmission procedure for the birary symmetric channel
with noiseless feedback, M.Horstein(1963) was able to demonstrate significant exponential
improvement over normal block coding without feedback. However, it was not clear
what part of his improvement resulted from the sequential transmission procedure and
what part resulted from the use of feedback. Prior to this thesis there have been no
conclusive studies of the limitations of block coding with feedback.

For R > Rcr » it is known that E(R) = F(R). It can further be shown that, at the

it
other extreme, E2 = F‘2 . This leads one to wonder whether the error probability using
feedback is ever exponentially better than the corresponding one-way system. Another
important question concerns the simplicity of coding with feedback. For the binary
erasure channel, it is apparent that coding with feedback is quite simple: one need only
repeat each bit until it is received unerased. For certain multi-level channels,
S. S. L.Chang (1956) has demonstrated conceptually simple coding schemes which achieve
an exponentially decaying probability of error, but the resulting exponents are inferior
even to those attainable by one-way procedures using random coding. Can one find
explicit feedback coding schemes for the binary symmetric channel? Can they be used
to attain exponentially optimum error probabilities?
GOALS

The two major objectives of this thesis are to tighten the upper bounds on
exponents for block coding, both with and without feedback, and to examine various
feedback strategies in relation to these bounds. The upper bounds are tightened by
deriving new general low rate results irom which the new Shannon-Gallager line can

be extended. Particular attention is given to E_ and ¥_, which serve as convenient

upper bounds on E(0) and F(0). Although certain basic properties of good feedback



strategies are demonstrated in general, the actual construction of asymptotically
optimum feedback strategies is restricted to the binary symmetric channel.

It is conceded at the outset that a model which assumes unlimited, delayless,
error-free feedback does not realistically apply to most physical communication systems.
Nevertheless, the study of this case is interesting from a theoretical viewpoint. It
provides an interesting comparison with the normal one-way situation, and between
these two extremes one might interpolate these results to find bounds on the performance
possible with limited, delayed, noisy feedback loops.

A more promising area for the direct appiication of some of the results of this
thesis is in the statistical design of experiments, a mathematical subject which is iso=
morphic to the theory of error correcting codes, although the terminology is quite
different. The only real difference between these two disciplines is their point of view.
Coding theory, following Shannon, tends to emphasize mainly the asymptotic results;
the design of experiments, descended from the study of Steiner triple systems and Latin
Squares, tends to be concerned almost entirely with questions of the existence and
construction of particular fixed composition codes (called "incomplete balanced block
designs") of certain block lengths having certain specified distance properties.

The applications of the two subjects are also different. "Codes" are constructed
to correct errors expected in the transmission of information over noisy channels;
"block designs™ are constructed to equalize the anomalous effects expected in the results
of a set of noisy experiments (often psychological experiments). In the latter applica~
tion, it is usually possible to modify subsequent experiments according to the known
outcomes of previous experiments, i.e., to make use of the unlimited, delayless,

noiseless feedback. Yet prior to this thesis, most of the research in the statistical



design of experiments, as well as in error correcting codes, has been concerned only
with one~way situations.

For example, one may wish to determine which of M suspected dietary ingred-
ients (e.g., various cholesterols, sugars,...) is the primary cause of a particular
fatal disease (e.g., heart attacks). There are N animals, each of which is to be placed
on a particular lifetime diet containing only some subset of the M suspected ingredients.
Which sets of diets will most conclusively reveal the guilty food? One can consider this
as a coding problem for a binary asymmetric channel with the inputs indicating presence
or absence of the dietary ingredient, and the outputs specifying death due to the disease
or to other causes. If all of the N animals are tc be tested simultaneously, we have a
one-way coding problem; if they are to be tested sequentially (as might be possible with
short-lived animals) with each diet modified according to the outcomes of the previous
tests, we have a feedback coding problem.

Like most practical examples, this illustration suffers from several objections:
there might be several guilty foods (more than one selected message), and the probabi-
lities relating the incidence of the disease to the diets (the channel probabilities) are
imprecisely known. Nevertheless, the theoretical results obtained from an analysis of
the abstract problem might well prove helpful to the wise experimenter who tempers
his applications of the theory with common sense.

Following the educational biases of this author and his committee, this thesis
is written in the language of coding theory. For further discussion of block designs, the

interested reader is referred to Bose(1947), Hall(1958), Mann(1949) and Ryser (1963).



Chapter 2
ZERO RATE EXPONENTS FOR ONE-WAY CHANNELS

Chapter Abstract

In this chapter we examine the behavior of EM' the error exponent for M
codewords, for one-way discrete memoryless channels. For a large class of "pairwise
reversible® channels, which satisfy

1 1
2 p? Inp .= Zp?

1
Zp? . p: . 2 Inp,
7 Pini Pl TPy 3 DinkP Piok

Ji
for all input pairs (ai, ak), we obtain an exact expression for EM which descends to
Eexp(O) hyperbolically with increasing M. This expression also serves as a general

lower bound on E, for nonsymmetric channels. Finally, we derive a general upper

M
bound on EM.AIthough this bound is often weak for finite M, it proves sufficient to
establish the general result, E_ = E ).
© exp

As an example of the usefulness of this result, we compute E_ for Reiffen's
(1963) very noisy channel. We find that E_= Rcomp' thus obtaining upper and lower
bounds on E(R) which coincide at all rates for very noisy channels.

A revised version of this chapter, together with the derivation of the new

Shannon-Gallager line (Figure 1-3), will probably appear in a forthcoming PGIT paper

(Shannon, Gallager, & Berlekamp, 1965).
Definitions:

Ey,= lim <1/NInP_ (2.01)
N—=

where Pe is the probability of error of the best code with block length N and M

equiprobable codewords.
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Pr(xe»x’) = Pr(x’erx) is the probability of confusing x and x’,

Pr(decoder selects x’ /x sent) + Pr(decoder selects _JS/E’ sent)

We first observe that the probability of error for any code of M equiprobable

codewords is given by

P =1/2M ZZ Pr(xesx’) (2.02)
e w— —
x#x’

There are only M(M-1) terms in this sum. Since M(M-1) remains fixed while N goes

to infinity, it is clear that the worst pair alone determines EM.

EM =lim min - 1/N ln Pr(xex’) (2.03)
N—= x, x’

Since (2.03) holds for all M, it is also valid for EQ.
An asymptotic expression for the error exponent between two given codewords,

x and x’, of very large block length, N,follows directly from a theorem of Gallager(1965)

lim -1/Nln Pr(xex’) =lim 1/N l.u.b. - EX N

s l-s t
In Z p, . p. (2.04)
N— e N— O<s<l ik i b

i,k itk

where N. , is the number of times a. occurs in x opposite a, in x/. ZZ N, = =N.
i,k i - k= ik ik

It is convenient to introduce the function

— . S l-s
ui.k(s) = =ln ZJ: pj.i pj,k (2.05)

Graphs of this function for certain input pairs of certain channels are plotted in Figs.2-1
through 2-6. Notice that uk' i(s) = ui. k(l-s). If ai and ak have no common
output, then u, k(s) = =. If this happens for any pair (ai. ak), the channel has

a zero error capacity, Co' as introduced by Shannon (1956) , and C0 satisfies

T 1l.u.b. means least upper bound.
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THE FUNCTION u, 2(8) FOR SEVERAL CHANNELS
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C0 = ] bit. On such channeis it is possible to transmit at any rate R = Co with a
probability of error that is identically zero. Since the exponents EM are not finite, we
exclude such channels from further consideration.

If the channel has no zero error capacity, then ui' k(s) is defined for all pairs
(ai, ak). For 0<s <1, ui. k(s) > 0, except in the degenerate case that Pj, i= ink for
all j, which we may remove from further consideration by combining the identical
inputs a; and a.

If the inputs a; and a, lead to the same set of channel outputs with nonzero
probabilities, then ui' k(s) is continuously differentiable over the closed interval
0 =s =1, with

o ()= [=p5. P S, /p. ] /(ZPS . pTS) (2.055)
i,k j i ik j. k" i1 j i Tk

Some channels, such as the binary erasure channel and the completely
asymmetric binary channel shown in Fig. 2-2, do not satisfy this condition for some
pairs of inputs. For such channels ui k(s) and ui' k(s) may not be well-defined at s=0

? ’

or s=1. We remove these ambiguities by setting ui k(0) = lim " ui k(s);

s—0
’ = 1i ’ . =1i cu? =1i r i
ui. k(0) sgna_'_ ui. k(s) ; and ui' k(1) Sl:x’nl- ui'k(s) H ui' k(1) Sl_linl_ ui.k(s). The function

ui k(s) is then convex upward and continuously differentiable over the closed interval
0 =s =1. We may then replace the least upper bound of (2.04) by a maximum and

define an "error exponent” between the two codewords x and x’ by

E(,x’) = 1/N max SZ N, (2.06)

u, , (s)
Ocs<l 1k Lk Lk
(2. 04) assures us that this exponent is asymptotically correct; (2.03) assures us that this

exponent, for the worst pair of codewords, determines EM'
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The maximum of the sum on the right hand side of (2.06) cannot excede the sum

of the maximums, SO

’ < 1/ >
E(x, x ) = 1/N i}l:c Ni.k 0::;} “i,k(s) (2.07)

with equality iff the same value of s simultaneously maximizes all u, k(s) for which

N 0. If M = 2, then we clearly do best to set N.l k= N for the best pair of inputs

ik

(ai,ak). and all other Ni 'k = 0. This gives

E2=max max \u, k(s) (2.08)
i,k 0=s=l ’

It is interesting to compare this expression for E2 with ESP(O). the sphere

packing bound at zero rate, as given by Gallager (1965).

Py

E (0O)=max =lnX 7T 1.15
sp() ] ( )

P k (pj- k)

It is apparent that Ez = ESP(O). with equality iff P*, the value of P which
maximizes the expression for Esp(o)' has only two nonzero components.

Having found the best pair of inputs for E‘.2, (ai. ak). it clearly does not matter
whether we set Ni,k = Nor Nk.i = N. However, we must not attempt to form some
linear combination of these two optimum solutions, for by making both Ni. Kk and Nk.i
nonzero we may violate the condition for equality in (2.07). For example, suppose we

choose a two=word code for the completely asymmetric binary channel of Fig. 2-2 by

setting Ni k- Nk i = N/2. The disastrous result is depicted below:

Code 1: 5_1 = alalalalalalalalalalalalalalala1a1ala1alalalala1

_)£2 = 3.23.23.2?2323232323.23232& 23.28.2323.23232323232323232



Code 2: x = alalalalalalalalalalala1a232323232a2323232a2a232

X3 T 82%5%2%2%2%5%5%5%2%2%2%2% 1 111111 * 1211141

Using either code, an error will occur only if the received sequence consists entirely

of bl's. For Code 1, 5(51'52) = «ln p ; for Code 2, E(ii._{z) =-1/21np.

If both Ni and N i are nonzero, then there can be equality in (2.07) only if

k k

the same value of @ maximizes both u, , (s) and w .(s)y =u, ,(1-s). If there is a value
i,k sl i,k

of s which does this, it is given by s = 1/2. This works iff ui' k(1/2) =0. Since

u; k(s) is convex upward, any stationary point is a global maximum. Carrying out the

differentiation gives the condition

1 1 1 1
=pZ . p?, Inp. .= Zp?_ p2

1 .
PPk P T PPk Pk (2.09)

If (2.09) holds for some pair of inputs (ai, ak). then it is permissible to reverse
the order of the symbols ai and ak between two codewords (as was done above) without
changing the error exponent between the two words. If (2.09) holds for all pairs of

channel inputs, ai and ak, the channel is said to be pairwise reversible. The class of

pairwise reversible channels includes all of the symmetfic binary input channels
considered by Dobrushin (1962) (which are defined in a manner that guarantees that

u; k(s) = uk. i( s) for all s), and many other binary input channels, such as the one in
Fig. 2-4 (as the reader is invited to verify). For multi-input channels, there is no
relationship between the class of pairwise reversible channels and the uniform channels
discussed by Fano (1961), p. 126). The channel of Fig. 2+5 is pairwise reversible but
nonuniform; from any pair of inputs it looks like a binary erasure channel. The channel

of Fig.2-6 is not pairwise reversible even though it is uniform; from any pair of inputs

16



it looks like an asymmetric binary erasure channel.

For a pairwise reversible channel, the error exponent between two codewords
is given by

"y =
E(x,x’) =1/N EZ]:( Ni

- Kk ui' k(1/2) (2.10)

Since u; k(1/2) =u i(1/2). we are able to define a symmetric "distance"

between the pair of inputs (ai. ak) by

1

1
= = = - 2 2
di.k dk,i ui' k(1/2) In ZJ: pj.i pj.k (2.11)

The distance between the two.codewords x__ and x__, is
-m -m

’
= Nmm)

= N Lk (2.12)

D&yt Xye) = ‘?

Notice that d,. . =0; D(x_,x_) =0.
i,i =m’>=m
The distance is asymptotically the logarithm of the probability of error between
these two words. According to (2.03), the error exponent over the whole code of M

codewords is given by the minimum distance between any two codewords.

E,,=lim 1/ND_. (2.13)
M N —w min
where
D . = min Dx_,x ,) (2.14)
min G gme M —m

Proceeding in the manner first introduced by Plotkin (1951) for the binary
symmetric channel, we note that the minimum distance cannot excede the average

distance.

Dmm = 1/(M(M=1)) gﬁn, D(zm.gm,) (2.15)

17
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The total distance can be computed on a column by column basis.

M M N K K
z Z B ,x )= I I M(@M®d (2. 16)
m=1 m’=1 >m'~m’ n=l i=] k=1 @ M‘k ik

where Mk(n) is the number of times a_ occurs in the nth column. Let Ml: denote the

k

number of times a, occurs in the best possible column,

| 3

max ZZ M, d.
=M =M ik 1KbE

Combining (2. 13) through (2.17) results in a bound for pairwise reversible channels.

= IRV
212 Mi IVIk di.k (2.17)

EM = 1/(M(M-1)) 21217( M'i'M.l:di'k (2.18)

We now show that this bound can always be achieved. To do this, we select the
first column of the code so that it has the prescribed composition, a, occurring M; times.
Then we choose as subsequent columns of the code all possible permutations of the first
column. The number of columns is given by N = M /'.'lr( MI:'. . If a larger block length
is desired, we can repeat the whole code as many times as desired. This enables us to
obtain the arbitrarily large block lengths required by the limit in (2. 13).

In the constructed code, every column contributes the same maximum amount to
the total distance, assuring equality between (2. 16) and N times (2.17). Every pair of
codewords is the same distance apart, assuring equality in (2. 15). Because of these
two facts, (2.18) holds with equality.

This construction can likewise be used for channels that are not pairwise symmetric.
The constructed code has the property that Nﬁlllc' m’) = N}(:'l' m’) = Ni. K independent of

m and m’. This guarantees that, for this code, (2.06) is maximized by setting s=1/2,



for w k(s) + w i(s) always attains its maximum at s=1/2, even when u, k(s) does not.

However, it is often possible to improve this exponent for channels which are
not pairwise reversible by choosing Ni K # Nk o aswe have seen. We summarize
» »
these results in a theorem..

Theorem:

1 1
E._ =1/(M(M-1))max Z=Z M.M,(-ln Zp? _ p?_ ) 2.2)
M = /M( s © K i My j P, i Pj,k (

with equality for channels which are pairwise reversible.

We next compare this result with Eexp(o)' Gallager's (1964) lower bound to E(0),

the error exponent at infinitesmal rates. Eexp(O) is given by Gallager as

1 1
E 0) = max =Z P, P, (-ln £ p? . p?
exp©® 2 Ixh 'k’ ; Pj, i Pj, k)

(1.16)

P is the probability vector specifying the composition of the code. The vector P is
unrestricted by the Diophontine constraints placed on the vector M*/M (MI: is the kt
component of M* ). This additional freedom can only improve Eexp(O). This proves

the first of the two corollaries.
Corol.larz 1: For pairwise reversible channels,

EM = M/(M-1)) Eexp(o) (2.201)

Corollary 2: For any channel,

Eyp = (M/(M-1) Eexp(O) - (1/4M(M-1)) (Ku .+ i;:kz @ (/2 =u )
(2.202)

where K is the number of channel inputs and

19
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u = minu, ,6(1/2) (2.203)

min itk ik

Proof: In this proof, we let [x] denote the greatest integer less than or equal to x;
[x] +, the least integer greater than x. [x]+ =[x] +1,
P* is the vector which optimizes the expression for Eexp(o)'
Let Z be the number of k's for which PE =0. Z isan integer, 0 <Z = K-2.
Let A = = rvw];]+ - MP? ) (2.204)
A is an integer; 0 =A =K - Z

th « 1t .
Now let Gmax be the value of the A" largest ([ MPk] MPk ).

Define M by

M'k = [MPI:] for A different k's, each of which has
5 = (MP*1T-MP)=1
max k k

M, = [MPl‘(]+ for the other (K-A-Z) k's, each of which has

- +
0—([MP;] .Mpl:)samax . (2. 205)

The vector M then satisfies

_ Ld + - =
“i".cN[k-Zl?([MPk] A=M (2. 206)
M, =0 if P¥ =0 (2.207)
O pax™D) = M -MBD) =6 (2. 208y
Define 6, =M, - MP: ; 6_=6 max- 172 (2.209)

i = H = i . = H
Notice that ?{ Gk 0; Sk 0 if Pk 0; (2.21'0)
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and |5k- aol =1/2. (2.211)
Then from Theorem 2.2
M(M-1) E,, = L:‘E MiMkui.k(l/Z) (2.212)
1 L2 2 pe pe
MM-1) EM M Eexp(O) = 2:.}1:( (MiMk M Pi Pk) ui'k(l/Z)
(2. 213)
= - L]
?E (6,6, + MP?5,_+ MPR 6,) ui_k(1/2)

We can discard the two latter terms on the right by invoking the fact that the

probability vector P* maximizes the expression for Eexu(o)' Using the LaGrange

multiplier A, we define

f(P) = Z':E PiPkui.k(l/z) - A(iPk-l) (2. 220)

According to well=known results of mathematical programming,

max f(P) = i(P*) only if

Io

of = 0 with equality unless P* =0 (2.221)
9P |p=p* h

Computing the derivative gives

if—h = 2P w (/D% SRy (/22
= 22?7 (172 -2 @. 222)
Hence
i Pru, (1/2) =a/2, with equality unless P = 0. (2.223)

Recalling (2.210), we have



. =
?E éiPkui'k(l/Z) 0

Applying this to (2. 213) gives

2
M(M-1) EM' M Eexp(O) = ZZ Giék ui'k(l/Z)

i#k

|
=

ZZT 66, +ZZ 6.6, (., ,(1/2) =u__.)
i#klk ik ik'ik min

where u in " fnin .ui' k(1/2)
i£k

For the first term,

2 2
0=(Zo)"=F o + ?iaiak
ZX 6.6 ‘-262--2(6-6 +(5)2
i i i'k kK k gk %07 %

2 2
- i(ﬁk-do) + KGO

2
= o T(6, =6
l(( k O)

v

- K/4 by 2.211

For the second term, by (2. 208) and (2. 209), if 6i6k

6.6 =6 () ) = (60 +1/2) (60- 1/2) = -1/4

ik max max-1

So Gin = -1/4.

Substituting (2.237) and (2. 234) into (2. 226) yields the corollary.

<0, then

(2.224)

(2.225)

(2. 226)

(2.227)

(2. 230)

(2.231)

(2.232)

(2.233)

(2. 234)

(2.236)

(2. 237)

Q.E.D.

Certain other corollaries of this type may be proved using the methods of Niven

(1963).

22
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Corollary 2 holds with equality for channels which are Doth pairwise reversijble

and pajrwjse uniform (ui k(1/2) = umin for al} pairs j # k)T If K is evep and M jg

Dobrushijn (1962) computed EM for a clasg of 'symmetric binary input

channpe)s" (for which u1 2(5) = u2 1(s) ). His results show that for such channels,

ui 2(1/2') =0, as stateq in (2. 09) ,
We now Proceed to derjve a general upper bound op EM. Although our

argument js €arried out in the general case, we will make frequent references to the

of Codewords,

T Examples of Such channejg are given in Exercjise 2-1(Upper bound) a¢ the end of

this chapter, Pairwjse reversibility Cinches €quality in Theorem 2, 2; pairwise
uniformity eliminateg the second term in (2. 226). For such channels, Pk“ =1l/K. If ¢
is even ang Misa multiple of K/2 but not of K, then Gk =% 1/2; and 60 =0, giving
€quality in (2. 233) and (2. 234),
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Definition: x__ dominates x iff
s N™®™) 172 =0 (2.30)
ik bk i,k - ’

Notice that either x dominates x_,, or x_, dominaies x_, or both, because
-m -m -m -m

N(m.m') - N(ml.m) ; ui', k(l/z) _ -ui:. 1(1/2)

ik k, i
SO
(m’, m) _ (m,m’)
Zf?: Ni.k u'i_k(1/2) =-z3 Ni'k ui"k(l/Z) (2.31)

For the TUC the codeword consisting’ of all al's dominates any other codeword whicl contains
at least as many az's as a3's. but it is dominated by any other codeword which contains

at least as many a3's as az's.

Notice that dominance is not transitive except when K = 2 and the input alphabet
is binary. In general, we may have x dominate x’ and x’ dominate x” without having
x dominate x”.

Lemma: If x_ dominates Xmt* then

B X)) = /N Z2 Ng‘;c'm )(ui'k(1/2)+l/2 U ((1/2) (2.32)

Proof: Recall from (2.05) that

’ = h
E(x,x’) 1/N max zz Ni,kui.k<s) (2.33)

o=s=1 1k
The tangent line to a convex upward function is an upper bound on the function.

Taking this tangent at s = 1/2 overbounds E(ﬁm,zc_m,).



(m, m’)

E(_:gm,gc_m,) =1/N max ZZ Ni,k

o=s=11k W (17D +(s-1/2u] L (1/2)).

(2.34)

From (2. 30), this linear function of s is maximized at s*=1. Q.E.D.

We now proceed to extract from our original code of M codewords a certain
subset of at least log M codewords which form an "ordered” code, in which each word
dominates every subsequent word. This is accomplished in the following manner: We
first find the word in the original code which dominates the most others. This word *
must dominate at least half of the other words. We select that word as x; in the
ordered code. All words in the original code which are not dominated by x | are then
discarded. From the remaining words in the original code, we select the word which
dominates the most others and choose it as X, in the ordered code. The words which
are not dominated by x, are then discarded from the original code. This process is
continued until all words of the original code are either placed in the ordered code or
discarded. Since no more than half of the remaining words in the original code are
discarded as each new word is placed in the ordered code, the ordered code contains at

least log M codewords.

Within the ordered code, for any ! =m< m’ = log M we now have

- (m, m’)
E(x %) =1/N 21>13c Nk (u; (/D + 1720, (1/2)) (2.35)

We define the asymmetric "distances"®

di,k =u k(1/2) +1/2 u;. k(1/2) (2.36)

25
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A graphic interpretation of cii is given in Fig.2-7. Convexity assures that both d.

lk l.k

and dk ; are nonnegative. Unless the channel has a positive zero error capacity, all
’

of the di K 2re finjte and we may define
dma.x = max di.k (2.365)
i, k
Figure 2-7
din
. o (p)
ik

[

Similarly we define the distance between a pair of codewords Xn and x_,

(for m < m'’)

_ (m, m/’)
D(?_ﬁnlnf_m;) = z‘.i bll' Kk di. Kk (2.37)
Substituting (2. 36) and (2. 37) into (2. 35) yields
Ex ,x_,) <1/NDX_.,Xx_ ,) for m < m’ in the ordered code.
-m —m -—m -1
(2.38)

We should now like to invoke the usual Plotkin argument that the minimum dis-

tance is less than the average distance, and the average distance can be computed on a
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per column basis. Unfortunately, this direct approach does not work because it is

possible for many columns to make undeservedly large contributions to the total distance.
For example, consider a code for the TUC, A column whose top fourth contains a l's,

whose middle half contains az's, and whose bottom fourth contains a3's contributes
=1/2in 1/10 - 1/8 In 9/10" to the average distance. We wish to show that Dmm/N.

the minimum distance per digit, is actually no better than -1/3 In 1/10 -1/3 1n 9/10.

We cannot do this directly because of columns of the type just mentioned. We note,

nowever, that this column which contributes so heavily to the total distance contributes

lirtle to distances between words in the same quarter of the block. It happens that all such
strange columns have some fatal weakness of this sort, which we exploit by the

following construction.
Figure 2-8

Halving an ordered code

7//<// . AN\

4
\ : ’

\ b

v

< N

Before After

Given an ordered code with 2M words of block length N, we can form an
ordered code with M words of block length 2N by annexing the (M+i)th word to the ith

word, foralli=1,...,M, The distance from fm to Em' (m < m’) in the new code

is the sum of two distances in the old code, D(im’im') + D(£m+M'£m'+M) .

Any sum of ordered distances in the new code is the sum of twice as many ordered



distances in the old code. The minimum distance of the new code is at least twice the
miuim:um distance of the old code. The minimum distance/digit, Dmin/N' is not
decreased by the halving operation.
We define the probability vector p(n), n=1,...,N, as the average composition
of the nth column of the old code. The number of ak's in the nth column is given by
T

Mpk(n)' Likewise we define p’(n), n=1,...,2N, as the average composition of

the nth column of the new code. By the halving construction

p(n) = 1/2 (p’(n) + p' (n+N) ) (2. 50)

We also define

I(n) =p’(n) - p(n) forn=1,...,N (2.51)

Then forn=1,...,N

P’ (+N) = p() - z(n) (2.52)

I(M)=1/2 (') - p'(+N) ) (2.53)

The average composition of either code is given by

_ N _ 2N
PpP=1/N Z pm)=p’ =1/2N Z p’ () (2. 54)
n=1 n=1

The average variance of the column compositions is defined in the obvious

manner, the compositions being treated as vectors and the square being taken as the dot

product with itself, p(n)2 = Z pk(n)2 .
- k

t There should be no confusion of p’(r) with any undefinable derivative of P -



N 2 N 2, -2
Var(p) =1/N Z (p(m) -p) = (/N Z p(m)”) -P

n=1 n=1
2N 2 2N 2 2
Var(p’) = 1/2N Z (p’(n) -p")" =(@1/2N Z p'(m)) - P’
n=1 n=1
Since
0= pk(n) =1, for all k and n
o Var(B) <1
AV = Var(B’)- Var(p)
2N 2 N 2
=1/N@1/2 Z p'@m” - Z pm~)
n=1 n=1
N 2 2 N 2
=1/N {1/2 Z (@' +p/@+N)) -1/4 Z (' (n)+p’ (n+N)
n=1 n=1
N 2
=1/N Z ((p'(n) - p’'(n+N) )/2)
n=1
N 2
=1/N Z z(n)
n=1

N 2
1/N = R(n) = 0
n=1

where we have defined the scalar

1
2

R@) = @)

Notice that 0 = R(n) < 1, and any component of r(n) satisfies

rk(n) = R() < 1.

1

P

(2.

(2.

(2.

(2.

(2.

(2.

(2.

2.

(2.

@.

2.

55)

56)

565)

57)

58)

585)

59)

60)

61)

62)

63)
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Furthermore,

2 %
Zlr, I/ K=(=Z|r_|°/K (2.635)
= Ix, 7,

because no mean can excede the corresponding root mean square.
If AV is small, then most columns of the old code have essentially the same
composition in the top half as in the bottom half. This enables us to bound the average

of the MZ distances from any of the first M codewords to any of the second M codewords.

R ; th s
The contribution to this average from the n~ column is given by

’ ’ \§
lZE di, kP (n) Py (n+N) (2.64)

From (2.51) and (2.52) we have
pi’ (n) pl’( (n+N) = (pi(n) + ri(n)) (pk(n) - rk(n) ) (2.641)

= pi(n) pk(n) +1,(n) pk(n) - pi' () r, @) (2.642)

T This well-known theorem, originally due to Cauchy (1821), can be derived at once
by verifying that

1
=2

1 .
0= z* I J- R)® = 2RK¥ 2 K7 - e, | /K)

This is a special case (obtained by serting q = 1/K) of the theorem of the means, which

states that f(s) =(Zq rs)l/s is a monotonic nondecreasing function of s for any nonnegative
numbers r;_ and any probability distribution q. Proof is given by Hardy, Littlewood, and
Polya, p. 2%. The great generality of this theorem is indicated by the following observa -
tions: f(- =) = Trhig’ f(-1) = harmonic mean; f(0) = geometric mean; f(l) = arithmetic
mean; f(2) = root mean square; f(w) = Thax



|p/(mypy (M) - p,(m)p, (m)| = [r (m)p, (n) - p!()T, ()|

?>]:c di’ k(|pi'(n) pL@+N) - pi(n)pk(n)| ) =d_ .. ‘12 ;Jklri(n)pk(n)-pi'(n)rk(n)l

(2.643)

(2.644)
= !
< dpay T3 (rmp @+ [pim)r, @) (2.645)
=2d i |rk(n)| (2.646)
1
2
= 2K dma.xR(n) by (2.635) (2.647)
Averaging this over all N columns gives
N 1 N
’ ’ - 2
[I/N 2 ZZd, , elmpy(e+N) - p@p @)| < 2K*d . = R@/N
n=1 1k n=1
1 N 2 1
= 2K2d (Z R(Mm)/N)? (by Cauchy)
max
n=1
3 3
= 2K dmax(AV) (2.65)
We define
2kt 3 2.66
€= 2K%d___(AV) (2.66)
We now compute the desired bound on the minimurn distance
M 2M 2
Dmin/N =1/N = z D(x .)_cm,)/M (2.67)
m=1 m’=M+1 -m
N
= 4 !’
1/N nZ=31 Z;i di.kpi(n) pk(n-f-N) by (2. 64) (2.68)
N
< 1/N n§1 Zlii di. kpi(n)pk(n) + € (2.69)
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N
= = ==
1/N = 2 : 1/2 (di'k+dk.i)pi(n)pk(n)+e (2. 70)
n=1 i<k
N L 1
=1/N £ 2 =X p(n)p,(n) (-ln = pZ . pZ ) +e€ 2.71)
_ . i k i Ti.itink
n=1 i<k J
g =z = pf pt
= - + .
1/N z 3 p,(mp, (n) (-1n ; pj'ipj'k) € (2.72)
1 1
= ST P*P*(-ln Z p? .p? )+e€ 2.73
=% {Pp (-1ln = Py, Pix) (2.73)
= Eexp(O) +e€ (2.74)

We now show that for sufficiently large M, AV (and consequently €, as given by
(2.66)), may be taken as an infinitesmal, €’. The average variance of the column com=
positions of the original ordered code must be nonnegative. As we halve the code again
and again, the variance cannot decrease (2.61). But the variance must always remain
less than one (2.57). Consequently, if we halve the code /e’ times consecutively, at

some stage the variance must increase by less than €’ . At such a halving, we invoke

(2. 67) through (2. 74).
21/6 :
For given €, we start with an original unordered code containing M = 2

. . . 1/¢€’
codewords. The ordering process gives us an ordered code containing = 2 /

codewords. This code is halved up to 1/€’ times, until at some halving AV <€ r.

/€’
We conclude that if M = 22 , then E._<E ) + € or,
M exp
1 1
D 2 z
EM < Eexp(o) + 2K dmax/ (log logM) (2.75)
E =E__(©. (2.76)
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Application to Very Noisy Channels

Definition: A channel is "very noisy" if
| l-(pj'i/pj.k)l «< 1 for all i, j, k (2.801)

For any channel, and any given input probability distribution P, the output

probability distribution g is defined by

qj = i Pkp‘.k (2.802)

We may define ej Kk by
.. =ql +e€, 2.803

Pik qJ( J» Y ( )
Straightforward manipulation shows that

Zqge =0 2. 804

=945, k ( )

>l:< Pkej,kz 0 (2. 805)
For very noisy channels, definition (2. 801) implies that for all j, k

| ej,kl «< 1 (2. 806)

The concept of a very noisy channel was first introduced by Reiffen (1963) and
extended by Gallager (1964). Although conceptually equivalent, our definition (2. 801)
differs from previous formulations. Definition (2. 803) leads to the computationally
useful (although not strictly necessary) properties (2.804) and (2. 805), which our formu=-
lation preserves. Although it follows immediately from (2. 801), the necessary property

(2. 806) cannot itself be taken as a definition, for our Ej k depend on the channel input
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probabilities P as well as on the channel transition matrix, pj k'

We may compute the capacity by a straightforward power series expansion in €

P.
C = max ZZ P p , In —Lk (2.811)
P ik ED %
in -EJi =ln(l+¢€, )=¢ - /2+o(63) (2.812)
. LK Sk Sk
Y 9 3 y(e. - €2 /2+o(e)) (2.813)
Pk T, = qre; ) (&5 Sk :
=q(e. , + 2 /2 + (63)) 2,814
—q]. ik €j,k p 2. )
C=max =% P qe  +€ /2+0()) (2.815)
P j k KNikT Sk :
1 2 3
= m;x 3 ??(quj Ej.k+ o(e") (2.816)

Similarly we may compute the entire Eran d(R) curve, using Gallager's function Eo(p)

1
1+p
E (o) = max -In fz_ (= Pkp.H;’: (1.10)
o 2 L j \ k Js I J
m 1+p
= max -In | Z q[Z P (1+e€ ) (2. 822)
P ] Nk k 1
P /
1 €
(1+€. k)“”°= 1+ 1{;‘; - £ 3 e.2k+o(e3) (2.823)
) 21+0)” P
1
TP (+e€ k)1‘“" =1- —"—2 z P & ot o()) (2.824)
k b 2(14p)° kK ° )



35

2 3
= - pa) ——t
Eo(p) m;x In I: ; qj(l 3(1+p) i Pk Ej.k + o(€ )):’ (2.825)
_ P 2 3. _ pC 3
-mix 2(1+p) ?i q. P € k+o(e ) = ) +o(e ) (2. 826)

This shows that the input distribution, P, which attains capacity is also optimum at all
lesser rates 0 =R = C. It follows at once that C = ES(O) = C, in accord with our

= Eé(O) =C/4, as

previous computation. We also have R =E (1)=C/2, and & __.
comp o crit

was shown by Reiffen (1963) and Gallager (1964). Similarly we may compute E_

1 L
E_ =max 2 E PP ( -ln ijz jzi) (1.16) and (2.76)
P »
3ok 3
Zp? 2 = Zq.(l+e. l+e, . 2.832
0] kP T Zayliee PP e (2.832)
1 1,2 2 3
= Zj:qj l:l+§ (Gj,k+€j.i+€j,kej,i)-§ (ej.k+€j.i+ zej,kej,k)+ o(e)
(2. 833)
1 1 2 2 3
=14+=2Z -=2Zq.(e, +e€. )+ o(e 2.834
329 G55, 8 St P o) (2. 834)

1 2 2 1
E =max ZZ PP |= Z q(e., + €. . o+ 2.83
i [ j qJ bk eJ.l) 4 ,qJ J.k jod o(e )J (2.836)

1 2 2 3
= — E . 22 P_ . + I B .
m;x i qJ [i > 1Pk(€J.k ej'l) 2(2i Pie )(Z: k i k)+ o(e )] (2.837)
= max 1 Zq. 2ZZ PP 6.2 + 0(53) (2.838)
P 8 7 ik 1kik
_ 1 2 3
= rn;x 3 Z}:(-? qj Pkej.k +o(c) (2.839)
3
- 1c+oEd=R + o(ed) (2. 840)

2 comp
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The significance of this result is that, when this expression for E_ is used as
starting point for the Shannon-Gallager (1965) line which overbounds E(R), the resulting
bound coincides with the lower bound to E(R) found by Gallager (1964). Thus, for very

noisy channels, the exponent rate curve is completely known, for all rates 0 =R = C.

Its graph is shown in Figure 2-9.
o= C
= T

%

)
]
1
\
1
\
\

Figure 2-9

E(R) vs R for very noisy channels

Exercises

Exercise 2-1: Prove that 1/4 E2 = E_O = (K-1)/K Ez. where K is the number of

channel inputs. Give an example of equality at the lower bound. For each K, give an

example of equality at the upper bound.

«=1/2: P =0 for

. fon” = - -
Lower bound solution: Let E2 ui,.k,(s ). Set Pi" Pk k

k* #k #i*. Then
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EQ = zli PiPk Lli. k(l/z) =1/2 ui..k.(l/z)

=1/4 (di',k'+ dk-' i')

=1/4 ui_.k,(s‘) = 32/4

For the completely asymmetric binary channel of Fig. 2-2, page 12, E2 = -In p;

E =-1/41np.

a0
Upper bound solution: Let P* maximize the expression for E_. Then select x and x '
2

= - L ]
Al ?iPk )

; = » px i .
with Ni.k A Pi Pk for all i #k; Ni

= A(K-1)/K, because 0 = i (P]:- 1/K)2= 2;3( P;z - 1/K. By the construction

.=0forall i. ThenN= ZZ N.
1 ik Lk

N E(x,x') =A Em

E, =E(,x') =A/NE_ = (K-1)/K E_

Equality here holds for the K-level pairwise erasure channel which is uniform from the
input. For such a channel each input a, has an associated output bk' which it reaches
with Pr(bk/ak) = q, and each pair of inputs (ai, ak) have an associated output bi. K with
Pr(bi. k/ak) = Pr(bi. k/ak) = p. No other transitions are possible so q+ (K-1)p = 1. The
toral number of outputs is given by J = ( I; ) + K, although for channels of this type the
usual notation bj' j=1,...,] is cumbersome.

The K-level Hamming metric channel, with J=K, pj. k- q iff j =k, and pj' K P

iff j #k , (again q+ (K-1) p = 1) also yields equality of the upper bound.

Exercise 2-2: Show that it is possible to do exponentially better than the repeated 8-word

1st order Reed-Muller code (1954) for the completel ~symmetric binary channel.
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Solution:
Reed-Muller Improved
0000000 000
1111000 ] 001
1100110 010
0011110 01l
1010101 Repeated N/7 times 100 Repeated N/3 times
0101101 101
0110011 110
1001011 111
The exponent between the second The exponent between any two words
and third words is -2/7 ln p. is either -ln p or ~1/3 1n p.

Exercise 2-3: Nevertheless, show that the zero rate sequence of repeated lst order

Reed-Muller codes is asymptotically optimum for any binary input channel.

Solution: There are only two requirements for asymptotic optimality at the zero-
rate point E_ : 1). Every column of the code must have the optimum composition, P*. 2)
The code must be equidistant, with distances measured by the function ui’ k(]./ 2) =
uk. i( 1/2).

For any binary input channel, K = 2. There is only one distancer as p* =
a /2,1/2). All group codes (including Reed-Muller) satisfy this composition require-
ment, and lst order Reed-Muller codes are equidistant.

At positive rates, however, P* may no longer be optimum. For example, the
input distribution which attains channel capacity for the channel of Fig. 2-4, page 13,
is different from (1/2, 1/2).

For multi-input pairwise reversible channels, there is no general expression
for the optimum P even at zero rate. For example, for the channel of Fig. 2-5, page 13,

P* = (4/23,9/23,10/23).

T Distance here is uj, (1/2), not dj i . See previous paragraph.
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Exercise 2-4 For given small M > 2, find a necessary and sufficient set of conditions
on the channei such that EM = EZ'

Solution: It is apparent that E(}_m , Em') must be the same maximum value for all input
pairs m, m’ = 1,... M. This immediately requires that all M letters in any column
of the code must be different. Thus K = M. Furthermore, there can be no harm in

selecting each codeword entirely of the same input letter:

Xm = AP R R KR KKK K

for some k(m). If all codes of this type fail, nothing else will work, for we have seen

(pp. 15-16) that any mixing only reduces the exponent. If such a code works, then

evidently the set S of M input letters satisfies the condition:

maxu, ,(s)=u for all i,k in S
s i,k max

The existence of such a set S, containing M elements, is the necessary and sufficient

condition. It may be guaranteed by certain symmetry properties of the channel, for

example, pairwise uniformity (ui k(s))= u;, k,(s) oru,, i,(s), for all pairs (i, k) and
1] » - ’

(i’ ,k’) ). It may, however, be satisfied by channels without any such condition.

-8y
e

Asymmetric channels for which E‘.3 = E2 =-lnp.



Exercise 2-5
the following hold in general:

1) 2Rcrit = Rcomp =1/2C

2) C=
) Esp(O)

3) 2E =E
) 2E_ )

Show by a single counterexample that all these conjectures are false.

Solution: (H.L. Yudkin and R.G. Gallager)

Consider the K-input erasure channel, with ] = K + 1, defined by

= —3 - - - . £
pK+l.k pk.k 1/2 for all k 1,... K; pj.k 0 for k #] ZK+ 1.
1
E () =max -In £ [z pp *P° e
o B j k k ,k
1
—\ 1+p
= - Lo1,14p 1 ) .o
= =ln (K(K(Z) ) + 2) (Since Pk 1/K)

=ln2-ln(l+KP)

E’ (o) = (n K) /(1 + k)

As K — =
C=1/21nK -
R =1n2-1n(1+K-1) —~1n 2
comp
R, =nK)/(@1+K) -0
Esp(O) =1In 2 =1In 2

Eexp(o) =({(K-1)/K) In 2 —1In2

In view of the Very Noisy Channel result, one might conjecture that

(1.10)

40
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Chapter 3
ZERO-RATE EXPONENTS FOR CHANNELS WITH FEEDBACK

Chapter Abstract

In this chapter, we first congsider an example for which the
F(R) curve coincides with the Shannon-Gallager upper bound. This
example provides an indication—of the proof of that bound, and
motivates our subsequent effortg to compute Fbo'

We find that, in general, Fz - Bz. For larger M, however,
Fﬁ generally exceeds BH' We succeed in computing th only for
certain special classes of channels. 1In all known cases, Foo - Fh,
for some finite M. In fact, we know of no example for which
Fﬁo < P3. For channels whose best pair of inputs has only one
common output, we prove that Fﬁo - Pz. For channels which have
every output inaccessible from at least I inputs (I>0), F(0) = Foo
= Fp_p (and possibly also Fo = Fy for certain lesser M).

After considerable labor, we show that, for the binary
symmetric channel, F}D - F3 < Fz. The result generalizes to
symmetric binary-input channels, giving

Foo = <ln & pyie}

We show that these results remain valid if the noiseless
feedback channel contains a small delay, so long as the delay
is much shorter than the block length.

All of these results are obtained by examining the behavior
of a certain constructive class of coding strategias, called
order strategies. For any given M, we exhibit an asymmetric
binary channel for which FH - Fz, but Fé::der) < Fz, using
any order strategy for M+l codewords. It is not known whether

nonorder strategies have this same limitation.
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Chapter 3
ZERC RATE EXPONENTS FOR CHANNELS WITH FEEDBACK
Introduction
For some channels, coding with feedback presents no problems.
The binary erasure channel, shown in Figure 3-1, 1s such a case.

Figure 3-1. The Binary Erasure Channel
% .b

ar 1
b,
a # h3

One starts with an ensemble of M = ZRN codewords, or, equivalently,
a message sequence containing RN bits. These bits are transmitted
one by one across the channel. Whenever a bit is erased, it is
repeated until it is received without erasure. A decoding error
can occur only if the channel erases more than (1-R)N of the N
transmitted bits. This happens with a probability that 1is
asymptotically give by

Pe = ((lljk)ha p(1-RIN g®e

F(R) = H(1-R) - (1-R) Inp - R ln q

This curve F(R) coincides with the sphere-packing bound,
F(R) = gsp(n), for all rates, 0 S R C =q. In particular,
at zero rate we have

F(0) = Esp‘o) - 32 = - 1lnp
Furthe rmore, even with feedback, if the channel erases every

bit, the probability of error is (1 - 1/M ). Thus, F, = F(0) = F

2 M
for all M.

For most channels, the coding problem is considerably more
complicated. Not only must our coding strategies be more
sophisticated, but, in general, we will be unable to achieve the
sphere packing exponent at low rates.
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An example of what happens is given by the uniform, pairwise
reversible ternary unilateral channel shown in Figure 3-2. This
example was suggested by Prof. C. E. Shannon.

‘—'F.—. 2
Figure 3-2. “2 2= fn
Shannon's channel and its F(R) curve
a Yz — b
1 Uz 1
a Yz b2
Ve

a3 bs

cr=c

:%3/2

For this channel, the sphere-pncking bound degenerates
intoca:wall located at C = cof = 1n 3/2. Yet, it is apparent that
co = 0, for any two input symbols will lead to the same output
symbol with probability 1/2. If two input sequences differ in
every position, then they will be confused with an exponent
given by

Bz = 1ln 2

Coding for this channel poses no great problem. From the
receiver's viewpoint, at any stage, there is a certain set of
input codewords which might be the selected message, and all of
these possible messages are equally likely. The a posteriori
probability of the other codewords is zero.

The best coding strategy trisects the possible messages at
each transmission, placing 1/? qﬁ them each on a,, a,, and a,.
Thus, if there are m possible messages after the first n questions,
then after the first n+l questions, there are mo " 2mn/3 possible
messages. Taking into account the Diophontine constraints (i.e.,
m may not be divisible by 3), we can upper bound L by ;n' s
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(@n is not necessairly an integer.) ;; satisfies

B+l

The solution to this recurrence is

-2,3-11 + 1 ; mO-M

o, = (2/3)7 -3) +3
Hence, after asking N, = ln M / ln (3/2) questions, we have
- N
= (2/3)"L (M-3) + 3 = (M-3)/M+3 < 4
le < le

Since oy is integral,
1
my S 3, whence oy 41 S 2
1 1

There still remain N, = N-N, or N-Nl-l digits to be transmitted.
The channel users can do no better than to play the two remaining
possible words against each other at each of these final Nz
questions. Within a factor of 2, this gives

p = 27N2
e

F(R) = NZIN ln 2 = (1- R/ln 3/2) 1ln 2

In particular, we again have
F(O) = Fho - Fz - Ez

The general Shannon-Gallager (1965) upper bound on error
exponents 1s obtained in a manner quite analagous to the procedure
which is quite obvious for this simple special case. Omne argues
that the probability of error is at least the product of the
probability that the receiver finds L or more words at least as
probable as the correct word after Nl digits have been received,
and the probability of error for (L+l) codewords with Nz - N-N1
digits. The first probability is bounded by the sphere packing
bound; the second probability may be bounded by any known low-
rate upper bound on exponents. When the overall bound is optimized

over L and N,, one finds that the resulting bound is tangent to
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both the sphere packing bound and the low rate bound, as shown
in Figure l1-3. For the channel of Figure 3-2, the best bound is
attained with L=1 aad N, = ln M/1ln 3/2.

For channels such as the one shown in Figure 3-2(T) the
Shannon-Gallager bound gives the correct F(R) curve, as we have
seen. For most channels, unfortunately, there is no known coding
scheme which achieves this bound. Nevertheless, this is the
tightest bound known. For this reason, we shall devote the
remainder of this chapter to calculation of the zero -rate
exponents, with the intention of using the point poo as an origin
for the Shannon-Gallag er bound. We must confess that our methods
do not yield lower bounds at positive rates, and we are not even
able to prove that our answers are correct at rate €, for
conceivably F(0) < Fﬁo' There is a good deal of heuristic
evidence, some of which will be considered in Chapter 4, against
such conceptual possibilities. We are led to conjecture that,
for channels with feedback, the Shannon-Gallager uppér bound on
exponén:s, drawn from Fho to the sphere packing bound, can always
be achieved. We have seen that this is true for certain special
channels. In chapter 4 we shall exhibit constructive procedures
which come very close to achieving this bound for the binary
symmetric channel.

For the remainder of this chapter, we direct our efforts

toward the computation of F;D.

(T) Generalizations of this case are considered in Exercises 3-4
and 3-6.
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For the simplest case, (M = 2), FM is known. Shannon and
Gallager have shown that, in general, Fz - Ez. The proof of this
theorem is similar to the proof that F(R) < Esp(R)'

Note that this result does not say that the probability
of error for two codewords is not improved with the use of
feedback. In some cases it is (c.f. Exercise 3-3). The
theorem guarantees that any such improvement is not exponential

in N.

We have seen that for the channels of Figures 3-1 and 3-2,
Fp, = Fz- Exercise 3-7 contains one straightforward generalization
of that result. The following theorem gives another generalization.

Theorem:
If the best pair of inputs reach. only one common:

output with nonzero probability, then Fm = E,-

The best pair of inputs is that i,k which maximizes the
expression for Fz - 32 (Equation (2.08), p. 15)
Proof: Since we shall use only the best pair of inputs, we may

restrict our considerations to them. Without loss of generality,
we then have the asymetric binary erasure channel of Figure 3-3.

Figure 3-3 The asymmetric binary erasure channel

X
a b
Y 1 P+Q=1=p+gq
b PSP
2
max u, 2(s) = -ln p
a, —& —b, O<s<t
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Our coding strategy is very simple. We place one codeword on a,
and the remaining M-1 codewords on a,. As long as we receive

the output bz. we continue transmitting the same thing. If we
ever receive an output b,, we know that the lone word currently

at a, is the selected message, and we may quit. If we ever receive
an output bz. we know that the lone word at a, is not the message,
80 we digcard it from further consideration and move one of the -
words at a, up to a, to replace the discarded word. If we reach
the end of the block without ever receiving a bl’ the decoder
selects the lone word at a4, as his choice of the selected message.

An error cam occur only 1if the correct message remains at a,
throughout the block. The total number of discarded words cannot

exceed M-2. Thus, the probability of error is bounded by
M"Z r~

Pe < = (D pN-m qm

m=0

F, = 1lim -1/N ln P = <lnp =F
M e e 2

Since this holds for all M, it also holds for Fﬁo

q.e.d.
Other investigations have revealed other classes of channels
for which Fao - Fz. Notable among these cases are. the K-level

Hamming-metric channels, K > 2. Such channels have K inputs and

K outputs, with each input leading to its corresponding output with

a probability q, and to each wrong output with probability p.

q + (K-1)p = 1. This channel is the multi-level generalization of
the binary symmetric channel for which the one-way codes of

Peterson (1961) et. al. are designed. Unfortunately our argument
that Fbo - Fz is lengthy and tedious. Parts of the proof have not yet
been completely rigorified, and for this reason we will not present the
proof here. There are indications that this result can also be
extended to all K-level channels (K>2) which are uniform from the
input, although this statement must presently be treated as an

open conjecture.



CODING FOR THE BINARY SYMMETRIC CHANNEL

Introduction

We now consider the problem of coding for the binary
symmetric channel (Figure 2-1) with noiseless, delayless
feedback. In this chapter we shall evaluate Fho; in Chapter 4
we shall consider strategies at positive rates. We will often
refer to the coding process as a game between two hostile
opponents: Coder, a partnership including the transmitter
and the receiver, and Nature, who controle the channel transitions.

The game of transmitting one block of information on this
channel is played as follows: Originally the socurce selects one
message from an ensemble of M words. He attempts to convey this
choice to the receiver by transmitting N bits across the noisy
channel. Some of these transmissions may depend on information
the source receives from the feedback channel as well as on the
selected message word.

We adopt the point of view that just prior to each forward
transmission the receiver asks the source a yes-no question:
Tisrtheccorrect message among the set si?" (s1 is a subset of
the M possible messages.) The question is transmitted back to
the source over the noiseless feedback link, and the source's
answer is then sent to the receiver via the noisy channel. The
source receives a noisy answer, and then asks another question.
At each stage the questioned set, si, may depend on the entire
past history of the game.

It may first appesr that this viewpoint necessitates an
unusually large amount of feedback, since at each stage the
receiver transmits back a subset Si, which may be any subset
of M possible message words. This transmission seems to require
1052 M bits of noiseless feedback. Actually, however, only one
bit of feedback is required for each bit transmitted, because the
transmitter may be endowed with the same deterministic subset-
selecting machine as the recéiver. The only inputs into this



subgset-selector are the results of previous questions, i.e. the
received sequence of bits. Thus the evolution of the questioning
process 1is determined only by the received sequence of answers.

If the feedback channel can accommodate one noiseless bit for each
noisy bit sent down the forward channel, the source can be kept
informed of the received sequence. He then knows as much as the
recelver, and additional feedback cannot be of any additional help.

Any strategy may be viewed as a clean-question, noisy-answer
process of the type just described. One need only consider the
set of possible selected messages which would cause the source to
transmit a one next, and call this the questioned set. The
question-answer viewpoint involves no restriction on the types of
strateglies permissible.

Th= rTeceiver may regard zach answer he receives as a vete
against a certain subset of words. As the process proceeds,
different words acquire different numbers of unfavorable votes.
After all N transmitted bits are received, the receiver must
decide which word was transmitted. He obviously does best to
select that word which has received the fewest unfavorable votes.

As an example, let us suppose that M = 8, N = 11. We denote
the 8 possible messages by A,B,C,D,E,F,G,and H. We start with all
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8 codewords having no votes against them, and 11 questions remaining.

The game might proceed as shown in Figure 3-4a.



Questions Remaining

Votes

Against 11 10 9 8 7 6 5 4 3 2 1 0
0 ABCDEFG ADEH DE D D

1 BCFG ACFHCEF F DF F

2 BG AGH ACE A AD ADF "DF F

3 B BGH BCEG EG - A AD . ADF A
4 H BC BCEG EG - - DF
5 H - BC BCEG EG -
6 H - - BC EGBC
7 H - - -
8 H - -
9 H H

Figure 3-4a A Sample Game
For example, when there were 5 questions remaining, the
receiver asked the question: '"Is the selected message among the
set FEGH ?" The reply that was received was ''No'.

In this game, Nature caused at least three channel errors.
If it caused only three errors, than A was the selected message,
and Nature's errors occurred at questions 10, 9, and 4. It is
also possible that D yas the selected messpge, in which gase
Nature caused four errors, at questions 7,6,3, and 1l: or that
F is the message, in which case the four errors occurred at
questions 11,5,2, and 1. 1If any of the other codewords was the

message, then Nature committed six or more errors.

In Chapter 4 we shall consider the number of words at each
level as a function of the number of questions remaining. For the
game just shown, this function is

Questions Remaining

Votes

Against 11 10 9 8 7 6 5 4 3 2 1 0
0 8 4 2 1 1 o o (0] (4] 0 0 0
1 4 4 3 1 2 1 (4] 0 0 0 0
2 2 3 3 L 2 3 2 1 (4] 0
3 1 -3 & 2 0 1 2 3 1
4 1 2 4 2 0 0 2
5 1 (¢} 2 4 2 0
6 1 0 0 2 4
7 Figure 3-4b 1 0 0 0

Numbers of words at various levels

50
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.. In this chapter, we will scmetimes refer to the trajectory
BE a given word. For example, we may use Roman numeral subscripts,
HI and "11 to denote the words which finished first and second.
Xy and 11 (both functions of n, the number of questions remaining)
denote the number of votes against these words, respectively.
The trajectories of Xy and X1 for the game of Figure 3-4a are

shown in Figures 3-4c-and 3-4d

Questions remaiming

Votes T
against 11 10 9 8 7 6 5 4 3 2 1 0
o x x
1 I IxI ,
2 X, X, X, X, X
I I I I I )
3. Xy Xp Xp X4
Figure 3-4c

The Trajectory of WI (codeword A)
Votes
against Questions remaining

11 10 9 8 7 6 5 4 3 2 1 0

0 *1r *11 *rr *ir *i
*11
2 Xp1 *r1r *rr
4 II "I
5 II
Figure 3-4d
The Trajectory of Wit (codeword D)
Some of our proofs in subsequent sections of this chapter - -
v T2
require arguments based on the trajectories of the currently
most probable word, or the currently second most probable word, ...
We denote the most probable word by wl, and the number of votes
against it by x5 the currently second most probable word by wz
and the number of votes against it by Xypeoo The reader is warned

not to be confused by our use of x, as the number of votes
currently against the most probable word. Thus, Xx;< X, < X4 -
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even though we talk of "I as being on top of the list. Although
perhaps this terminology gives rise to unnecessary confusion in
the remaining portions of this chapter, any other definitions would
be inconsistent with the investigations we pursue in Chapter 4,
and the natural point cf view adopted there.

Figure 3-4e plots K thej:rajegcory.qf "1’ for the game of

Figure 3-4a.
Questions remaining
Votes
Against 11 10 9 8 7 6 5 4 3 2 1 0
(] xq X % X X
1 X X
g X X X .
4 1 A

Figure 3-4e The trajectory of the currently
most probable word

Order strategies

Among the varilous strategies available to Coder, some strategies
have the property that the words are partitioned into the two
questioned subsets in a manner which depends only on the order
of their probabilities, as viewed by the receiver. For example,
in the game of Figure 3-4a, Coder used an order strategy which
always played the first, fourth, fifth, and eighth words against
the second, third, sixth, and seventh. He broke ties by
conventionally using alphabetical order among words which had
equal numbers of votes against them.

Notice that sometimes in the course of the game,
word that was wj becomes w5+1 and vice versa. -~ . . Such
an occurrence is called a j,j+l crossunder. In the game of Figure

3-4a, 1,2 crossunders occurred at questions 10, 6, 5, 4, 3, and 2.
Because of crossunders, it is difficult to count the number

of ways in which the words can end up in various positions. However,

averages which include all the words whose labels change at the
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crossunder can be more readily enumerated. Since we shall have
frequent use for these averages, we introduce a special notation:

Definition: xj,k = 1/(k-j+1) 121 xg

For example, X, 3 is the average of the top three words. A plot
»
of this average for the game of Figure 3-4a is given in Figure 3-4f,

Questions remaining

Votes 11 10 9 8 7 6 5 4 3 2 1 0
Against

x x
1/3 1,3 1,3x
2/3 x .3
4/3 % .3
5;3 x1.3

7/3 x

10/3

11/3 Figure 3-4f 1,3

The trajectory of the average of the
top three words, x| 3
?

Most of the remainder of this chapter is devoted to a detailed
study of the behavior of certain order strategies for the binary
symmetric channel at zero rate. We first compute F3, then Fs,
and finally, FM.

In order to6 minimize the number -oi crossunders, it -is
conveénient  to:relabel the words as infrequently as possible, rather
than to adopt a fixed (alphabetical) ordering for breaking ties.
Thus, if A and B both have the same number of negative votes, we
call Hl whichever of them was most recently ahead. Only 1if they
have been tied throughout all previous questions do we use the

alphabetical ordering to label tied wards.
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Any reasonable strategy for partitioning three codewords has
the property that it always asks one of the words against the other
two. If the single word falls, x1'3 falls by 1/3; if the pair of
words falls, x1’3 falls by 2/3. 1f, after N questions have been
asked, the pair of words have kallen k times, then the lone word
has fallen N-k times and the average has fallen (N+k)/3. There
are (:) different sets of k questions at which the two words can
fall; thus there are precisely (£5 ways in which the average of
the three words can end up at xl’3 = (N+k)/3. This is true for
any strategy which does not waste any questions by asking all
three words against nothing.

The strategy which always plays the most probable word against
the other two has an additional property which enables us to bound
its error probability: there is never more than one word much
above average. To show this we first observe that the second and
third words are always within one vote of each other.

Xy £ %< x2+1. This observation is readily proved by induction.
Initially Xy=xg- By considering the possible cases which can
cause one of these words to change labels with x,, we find that
there is no way to separate the bottom two words. Each question
partitions them into the same subset. From

X £ X x5 8 x2+1
we conclude that
Xy 2 X1,3 " 1/3, with equality iff X =x, = x3-1.

The probability of any given particular pattern of e channel errors
which causes some wrong word to end up on top is given by PeqN-e.
The right word ends up with e votes against it, so either x,=e, or

xy=e. In either case e > X 4 - 1/3, so
’
- 1 -
peqN e < (q/p) /3 p*L,3 qN x1,3

This bounds the probability of error for any particular path
by which the average ends up at L (N+k)/3. We have observed
2
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that there are (z) such paths. Thus, the probability of error is

bounded.

N (N+1)/3 (2N-1)/3
T ()P q
p g 1 ] 1/3g2/3 + p2/391/3)N

e 1 -1/3 -
R /3 q / p1/3q 1/3

After investigating certain properties of this bound, we
shall be able to show that it is exponentially optimum. No
strategy for three codewords can do exponentially better.

Asymptotic Properties of the Bound

The Dominant Term N
If a sum of positive terms T ak(N) approaches zero
k=0

exponentially in N, then for large N the sum is exponentially
dominated by the maximum term. This maximum term is often most
readily found by setting the ratio ak+1/‘k = 1 and solving
for k as a function of N, assuming N large.

In the above case this gives

(Nk)/3 q(2N-k)/3 /3 q-1/3/k

s = GOP i e /e = 0K pl

This ratio =1 1££ k = k___ = N/(1+(a/p)'/?)

As p varies from 0 to 1/2, k _ varies from 0 to N/2.

In order to show that (p113q2/3 + p2/3q1/3)N is an exponentially

optimum bound, it is sufficient to show that the number of paths

ending with the first and second words tied at (N+k )/3 has the
same exponential behavior as (iN ) - ZNH(kmax/N).
max
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Ignorable Tetms(f)

The total number of paths which take the right word down to
a level e 1is given by (:)- 1f (:) p® qN-e S (Pl/:"flzl3 + P2/3q1/3)N

there 13 no error in exponent if we assume that all paths of e
errors will be incorrectly decoded. A particular value of e
satigsfies the above inequality iff e > eig’ where eig is a fraction
of N which may be determined by equating the two. sides of the above
inequality and solving. The solution is messy and unenlightening.
It suffices for our purposes to note only that

(N+kmax)/3 < ¢ig < N/2 for any O < p < 1/2

In particular, there is never any exponential error in assuming
that all patterns of N/2 or more errors will cause a decoding
failure. We shall use this fact frequently in our calculations
of the exponents for 5 codewords, and for M codewords.

A Lower Bound to the Probability of Error with Three Codewords

In order to derive a lower bound to the probability of error,
we will show that for any coding strategy, and any k < N/2, there
are an exponentially large nymber of paths ( ZNH(k/N) ) which end
with x; < x, < (N+k) /3. Since in particular this result holds
for km‘x, it will follow that for any coding strategy, Fhe » ’
probability of error is exponentially no better than _that for
the strategy which always plays the top word against the other two.

At the beginning of the game, Coder must let Nature know N
and.p (and hence kmnx = K). However, he need not give her any
hints concerning what strategy he plans to use. He may change this
strategy in the course of the game depending on how Nature happens
to be plotting against him.

(T) The result of this subsection is not used in the following s
section, but it is given here for future reference.
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The strategy by which Nature clobbers Coder is the
following: Two words must be kept above (N+K)/3 in essentially
(:) ways. Define Yy = (N+K)/3 - X, - Then Y1 2 Y3 2 ¥y As the
game procedes, the y's decrease. Eventually y; may go negative,
Nature plans to keep £ and Y1 positive. In:l.t:i.ally',yl.3 = (N+K)/3.
During the first part of the game, Nature need only track this
average and keep it sufficiently large. Specifically, let Nature
play so that for any r, when there are r questions remaining,
¥1,3 2 r(K+N)/3N. We show tn Appendix A that the number of ways
of accomplishing this fete for all r = N, N-1,...R is exponentially
equivalent to the number of ways of accomplishing it only for r=R.
This is the number of ways of selecting the (N-r)K/N times that

a pair of words falls from the (N-r) questions, or C(sf;gil .

Now as long as all three words remain sufficiently close to their
average, Nature can continue tracking only the average. If, however,
the second and third words fall sufficiently far below average,
disaster threatens. Both Yo and yy may fall negative, although
the average remains quite high because Yy is large. When this
situation is imminent, Nature must abandon the third word entirely,
and track the second one. By concentrating on keeping this
second one up, Nature can ensure that both Y1 and Yy remain
positive.

The time when Nature abandons the average is determined by
the condition y3 < rK/N < yy < rK/N + 1. When this happens,

1,3 2 r(N+K) /3N, and hence L - 3y1’3 Yy Y3 2 r(N-K)/N -1

Let "11 be the word then at Yo and HI the word at Yy- These
two words may subsequently change places, but we will not change
their labels. For the final r questions, Nature takes care to
vote against "11 no more than rK/N times, and against "I no more
than r - rK/N times. If these two words are pitted against each
other at every question: (Coder's best attempt), then Nature can
do this in (r;/N) different ways. If Coder wastes some questions

FR—
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by playing these two words together, Nature must avoid voting
against both of them the first time such a question is asked, but
on successive wasted questions Nature has more options. She can
get in j votes against them both out of the first w wasted questions
in (;) different ways. By the theorem of Appendix A, this can be
done so that the first W wasted questions always have no more than
J = Wj/w negative votes, with no exponential loss in the number

of such combinations. Thus Nature can keep ylbqqd Y, positive for
the last r questions in essentially er(K/N) different ways .

We conclude that the number of paths by which Nature can
keep x; £ %, K (N+K) /3 1is exponentially Z(N-r)H(K/N) er(K/N)

- -NH(K/N). T is the number of questions after which Nature
switches from tracking the average to tracking only the top two
words. Coder bas some control on r, but it does him no good.

For any r that he might rwish to select, Nature still retains
the ability to hit him with the maximum exponent. Thus, for
any feedback strategy for transmitting three codewords,

Fy < -ln (17343 + p2/341/3,
Middle word vs the Top and Bottom
Introduction

We next consider another strategy for Playing three codewords:
always ask the middle word against the top and the bottom.

This analysis will show that the abrupt change in Nature's
strategy which was described in the previous section is no mere
figment of our bounding procedure. Against the coding strategy
which plays the middle word against the top and bottom words,
the dominant terms in the probability of error are those which
arise from such nonuniform behavior by Nature.

The techniques of analysis introduced in this section are
quite similar to those which we use in subsequent sections.

They are introduced here in a simple setting where they can be
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more readily understood.

Our major goal is to show that this strategy is exponentially
as good as the strategy which always plays the top word against the
bottom two. In order to do this, we will show that for any k < N/2,
there are exponentially no more than (:) paths in which the second
word ends up above (N+k)/3.

The number of paths which leave two words above (N+k)/3

Throughout this subsection, we assume that N and k are fixed.
All paths we consider have the property that they end with
x, < (N+k) /3. We first classify all such paths according to the
question at which the second and third words last exchanged places.
Let Nb be the number of questions before this final crossunder
occurred; let Na be the number of questions after (and including)
this final crossunder. At the final crossunder between x, and Xqs
let Wr» “11 and "III denote the words emerging at X1 X and xq.
These labels are kept on these words for the rest of the gane,
even though HI and HII may subsequently crossuunder each other.

We now define the quantities k‘ and kb in a deliberately
inconsistent manner.
Let ka be the number of times "II fell during the last Na

questions.
Let kb be the number of times the first and third words fell

during the first Nb questions.

The number of times the second word fell during the first Nb
questions is given by N5 - kb' and the average of the top three
words after the first Nb questions 1is (Nb + kb)l3. At this point,
however, Xy = X3 < (Nk) /3 - L (Recall that Wyys» which falls

exactly ka times in the final N; questions, is one of the two
words which ends above (N+k)/3. ) Thus, at the final crossunder,

x1-3x13-x2-x32 Nb-k,b-2(N-l-k.)/3-l--2ka
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During the last NL questions "I and "11 were always the first
and second words (in one order or the other), and were always asked
against each other. Hence, VI fell N; - k‘ in the last N, questions.
Since W, was one of the two words which ended above (N+k)/3, we

conclude that at the crossunder point,

X < (MK)/3 - (N, - )

Comparing this with the previous..formula.gives .- _ ... .
- Ny + ky - 2(Nk) /3 + 2ka < (Nk)/3 - N, + k_
which reduces to
k. + kb <k
We define the sum of ka and‘kb as k8 - k‘ + kb

The number of paths with given N., Nb’ ka’ kb is overbounded

b& (ﬂh} (E:} The number is actually less than this, for some
a
subsets of kb of the first “@ questions do not end with Xy = Xgq,

and some subsets of k.a of the final Na questions cause x, to
cross under xq again. Nevertheless, this expression 1is a valid
(but weak) upper bound. The total number of paths is bounded by
summing over all possible values of Ng» Ny, k., and k

Number of paths ¢ Z z C::) (&) - z (k:) =N (]:L>

Na+Nb-N ka+kb.ks Na+Nb-N

Since k > k_, p(WK)3 _(2N-K)/3 o [ (N+kg)/3 (2N-kg)/3

Hence, -
P < I oW (Y p(¥ka)/3 q(Nke)/3 _ \(1/3.2/3 | [2/31/3)N
8 8
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DOMINANT ERROR.PATTERNS .FOR 3. CODEWORDS USING ORDER STRATEGIES

Number of questions asked———>

N

w

Figure 3-5 Top vs Bottom 2
1/3

k =k .x = N[1+(q/p)" "]

Figure 3-6 Middle vs Top and Bottom
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In the double sum for the number of paths, the dominant term
is the one feor which ka/Na - kb/Nb = k/N. To do the most harm,

before the final crossunder between the second and third words,
Nature must let the first and third words drop with a frequency
km‘x/N < 1/2, but after the final crossunder, Nature should let
the second word drop withk this frequency. Figure 3-6 shows a
smoothed out plot of this dominant error pattern. All the
dimensions are given on the graph. A straightforward calculation
of the intersection of the initial Xy, = x4 line with the line at
which Nature changes strategies reveals that this event occurs
Just after 2/3 of the questions have been asked. This transition
point of the dominant error pattern is independent of kmax and p.

Conclusions About 3 Codewords

We have seen that for three codewords, an optimum probability
of error may be attained by either of two order strategies. The
bound on the probability of error for the strategy which asks the
middle word against the other two is a factor of N worse than the
bound on the probability of error for the strategy which always
asks the top word against the bottom two. However, this extra
factor is felt to be caused by the bounding procedure rather than
by the strategy.

The dominant error patterns are those in which the average
descends too slowly until some critical time at which the second
and third word are sufficiently low. For the remainder of the
block, the third word sinks to the depths, but the second word
descends too slowly. Finally.bothithe:second: word and the first
word end up with approximately (N+kmax)/3 votes against each of
them.

The critical point at which Nature switches strategies depends
heavily on the coding strategy employed by the channel users. If
Coder. dlway$ plays .the top word against the other two, most error
patterns occur when the top word never gets much above the others.
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In fact, using random walk theory(r) it can be shown that if there
is an error, with overwhelming probability no word was ever more :
than about Nllz votes above the other two. Because of thisg, the
second and third words will probably not fall below Natures's
crossover line until almost the end of the block. The switch in
Nature's strategy might well gotumnoticed. (c.f. Figure 3-5)

If instead Coder always plays the middle word against the
other two, Nature is forced to let one word temporarily remain
a congiderable distance above the others. This is the only way
that Nature can keep the average up during the first two-thirds
of the block. During the last third of the block, however,
Nature abandorts one of the bottom two words and causes the top
word to sink back to the level of the second one. At the end of
the block, the decoder is umable to decide between the word which
got off to the big initial lead and the word which just barely
caught up with it by a gallant finish.

Since both of the coding strategies we have examined are
exponentially optimum, it appears that any hybrid strategy, which
always plays the two top words against each other but assigns the
bottom word arbitrarily, is also exponentially optimum. Conceivably
one could also attain optimum exponential behavior by including
some questions which play the bottom word against the top two,

(f) One can, in fact, obtain an explicit generating function for
the probability of error with three codewords using the order
strategy which always plays the top word against the bottom two.
Starting from the random walk formula given by Feller (1950,p.319),
one can obtain a generating function for the last crossunder. The
denominator of this generating function (letting s be the variable
of enumeration) is 8p2qs3 - ((1-4pqsz)1,2)3 . By examining the
poles of this generatiﬁé function in the complex plane, one can
deduce the same asymptotic results we have presented here.
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so long as all such seemingly poor questions occur at the very .
first part of the block. Near the end of the block such questions
are virtually wasted. Without feedback there is a certain
nonneglible fraction of the questions at the end of the block which
must be of this type. That is precisely the reason why it is
possible to do better with feedback. F3 is greater than 33.

The Invariance of Exponent to Small Delay

We show here that the probability of error is exponentially
unchanged if a small delay of T bits is inserted into the noiseless
feedback channel.

Let Coder adopt the strategy which plays the top word against
the other two. Because of the feedback delay, the transmitter
will not know which word is currently on top, but he does know
which word was on top T bits ago. This is the word he asks
against the other twc. For all the first T questions, before any
feedback is received, he plays one arbitrarily selected word
against the other two.

Using this strategy, Coder prevents the difference in
votes between the second word and the third word from exceding T,

B, < (/R)2T/3 /35273 | 2/3,143)N

The probability of error is exponmentially unchanged if T<<N.

Similar arguments can be used to show that other feedback
exponents we derive in this chapter are uneffected by sufficiently

small delays.
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5 CODEWORDS

Introduction

We now consider a particular order strategy for 5 codewords:

w
W,
bk
W,
Ws

The second and third words are always asked against the other
three. There are several obvious restrictions on the types of
situations which can arise when this strategy is used. We first
note that the second and third words remain together, and the
fourth and fifth words remain together.

Xg S X3 5 Xy +1 X, S Xg < X, + 1

This restriction is very similar to that which arose for three
codewords when the top one was always ~played against the bottom
two. The proof again is a straightforward induction argument which
is established by verifying the claim in the various possible
crossunder situations. The other property of this strategy is

that the difference between the positions of the top and bottom
words, Xg - X;, cannot decrease.

There are now two basically different types of crossunders
possible. One occurs when the right side of the partition
(w2 and w3) drops; the other occurs when the left side (W ,wa,ws)
drops. The former is called a right crogsunder; the latter,
a left crossunder. Immediately preceding a left crossunder,
X =X, After this crossunder occurs, the labels on W, and WZ
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(or possibly Hi and Ha) must be interchanged. After the interchange
of labels, xy is the same as it was before. However, Xg increased
because W sunk with the left side of the partition. Thus any
left crossunder increases the difference between the top and bottom
words, Xg - X -

Right crossunders occur when Xy = X, and the right side then
drops. Following a right crossunder, the labels on Wy and w,
(and possibly W, and/or ws) must be interchanged. The difference
*5 - X, may or may not be increased by a right crossunder. The
difference X4,5 ~ Xp» however, is always increased by any right
crossunder.

The details of the four possible right crossunders are given

in Figure 3-7.
Figure 3-7 Crossunder Detalls

Before After
X, X XaX X X
475 273 X,Xg 273
X2
x4x5 x3 x‘. 8283
X
5
X X,X X
4 273
xs x4x5 x3
X
2
*4 *3  x X2X3
Xs 45

Notice that immediately following the crossunder, we always
have Xg = Xg + 1.

The average xl,S increases by 3/5 iff the right side of the
partition drops, and by 2/5 iff the left side drops. This average
is always well-behaved, even when crossunders occur. Other averages
are not so polite. Except on right crossunders, x1’3 increases by
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1/3 1iff the left side drops, and by 2/3 iff the right side drops.
On right crosaunders, however, x1’3 may increase by 1/3, or it
may not increase at all, even though the right side drops.
Similarly, xy increases iff the left side drops, except on left
crogssunders. In conclusion, x1,3 is well-behaved except at right
crossunders; xy is well-behaved except at left crossunders.

Outline of proof that this order strategy is exponentially optimum

Our plot to bound the error probability for this strategy is
esgsentially this: we will divide the N questions up into various
regions, such that in each region some of the averages are well-
behaved (although others need not be). Within any given reglon,
we will track the well-behaved averageé, and then relate them
to each other at the boundaries between the regions. At the end
of the game, we are interested in the average of the top three
words, x1’3. We will show that the number of paths by whichnthis
average can end up at (NM+H)/3 is exponentially no more than (H)’
for any 0 < H < N/2. Since all words but wl are essentially
below this average (x2 < x1.3 " 1/3), the probability of error
for any such path is bounded by the probability of the right ward
ending below x1,3' The result then follows just as it did for
three codewords when the top one was consistently played againgt
the second and third.

The details are given in five parts.

Part 1) Partitioning the block into well-behaved regions
Part 2) Definitions of H, and Li

Part 3) Behavior of averages

Part 4) Bounding the number of regions

Part 5) Bounding the number of paths
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Part 1) Partitioning the block into well-behaved reglons

Definition: A region is a set of consecutive questions.

We now divide up the block into four types of regions according
to the following plan. All consecutive crossunders of the same type
are placed in the same region. These regions are called right
regions or left regions, respectively, depending on whether they
contain right crossunders or left crossunders. A right region
starts with a right crossunder and ends with a right crossunder;

a left region starts with a left crossunder and ends with a
left crossunder. Left regions contain no right crossunders, and
vice versa. '

The questions in between left regions and right regions
contain no crossunders at all. These questions comprise a
transition region. A transition region begins just after a
crossunder of one type, and ends just before a crossunder of the
other type. Transition regions are called left-right regions or
right-left regions, depending on whether they are preceded by a
left region and followed by a right region or vice versa.

Non-transition regions must contain at least one crossunder.
As a minimum, such regions contain only one question. Transition
regions, on the other hand, have no such restrictions. Suppose,
for example, that wl’"h’ and "5 fall on the first question. After
relabeling, Hz and w3 fall next. The first question is a left
region; the second question begins a right region. The left-right
transition region between them is empty.

As stated above, our procedure ambiguously defines the region
following the last crossunder. The ambiguity is resolved by the
assumption that a left crossunder would occur before any right
crogsunders if the game were continued. Thus, if the final
crossunder 1s a left crossunder, all subsequent questions are
considered part of that left region; if the final grossunder is a
right crossunder, the subsequent questions are considered as a

right-left region,
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Since this assumption is taken as a part of the rules for
partitioning the block into regions, it logically requires no
further justification. Nevertheless, we note that it makes good
sengse. If a decoding error occurs, it is very likely that the top
two words end very close to each other, the correct ome finishing
second. If the questioning process were continued, another 1,2

erossunder might be expected very soon.

Part 2) Definitions of Hi and Li

In the proof of the exponential optimality of the 3 codeword
strategy which always played the middle word against the other two,
we defined numbers ki differently in different regions. In a
similar manner, we now define numbers H1 and Li'

In any given region Hy and Li are the number of right falls
and left falls, in one order or the other depending on the type
of region. We use the notation Hy for the heavy side and L, for
the light side. In a right region or a left-right region we are
interested in the top five words, and the left side is heavier;
in a left region or a right-left region, we are interested in the
top three words, and the side is heavier. In either case

g tLy=ny

One of the reasons for these seemingly nonuniform definitions
is given by the following theorem:
Theorem In any nonterminal region of length n, > 0, H

<L
Proof: First consider a transition region. Since therie areino
crossunders, the relative positions of the various words are
unchanged if the number of left falls equals the number of right
falls. 1In that case, Hi - Li' Before another right crossunder
can occur, the right side must drop more than the left, and vice
versa. Thus, the theorem is true for transition regions.

By the same argument, we can also show that in any crossunder-

less sequence of questions prceding a right crossunder, the number
of right falls must exceed (or equal) the number of left falls,
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and vice versa. Hence the claim is also true for nontransition
regions, since any nontransition reglon can be subpartitioned up
into crossunderless subregions separated by crossunders. Each
crossunderless subregion precedes a crossunder in which the light
side falls. So in che’jfh;suptegioﬁ,:ajv53Lj, The crossunders
themselves are light falls, incrementing L but noE H. q-e.d.

Part 3) Behavior of the averages

Definition: Let &, Xk denote the increase in X5k which occurs
?

th

during the 1 reglion.

Theorem: In any region of length n,, 8; X, 4 2 (ni + Hi)/3 - 1/3
]

Proof:

Left regions and right-left regions: In these regions, no

3,4 crossunders occur, and the left side is light. Throughout
the region, x, 5 increases by 1/3 iff the light side falls

]
and by 2/3 iff the heavy side falls.

Aixl,S - (L, + 2H1)/3 - (ng + Hi),3

Left-right regions: Similarly, in a left-right regiom

84%) 3 = (o, +'Ei)l3 2 (o + Hi)/3

Equality occurs here iff n, = Li - H1 =0

Right regions: In right regions, Aixl,s and Aix1 are easily
computed

Aixl,S - (Zni + Hi)IS

The averages are related by the equations
3 X3 - x + 2 x2'3
5 X5 = 3 X1 .3 + 2 X4,5

x = 5/6 X1,5 + 1/6 x) - (x4.5 - x2’3)/3

1,3
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Both boundaries of a right region occur just before or after
a 3,4 crossunder. At the boundaries, from Fig. 3-7,

0< X4,5 " X3 3 £ 1
The increase in X 4 is its difference between the two

boundaries.
A1x1,3 2> (ni + Hi)/3 - 1/3

Part 4) Slack, bounding the number of regions

Intuitively, slack is the amount that xy and x4 can rise and
fall between hitting x and X, 5 Formally, we shall have occasion
»
to use either of the two following definitions:

8 = (x4 - x3) + (x2 - xl)

' - -
8 84,5 xl

It is clear that these two definitions are approximately equal.
ls - s'| < 372
Slack does not change except at crossunders. Duering a trans-
ition region, slack stays constant. In a right-left transition
region, (x2 - xl) decreases to zero, but (x4 - x3) increases.
At the start of such a region, 0 ¢ (x4 - x3) £ 1. In a left-
right transition region, the roles of (x2 - xl) and (x4 - x3)
are interchanged. 1In either case, if we let s denote the slack
during the transition region Ry, we have
H +8 g Li SH +8 + 1
At a crossunder, slack can only increase. s' increases by
at least 1/2 at each crossunder. (See Figure 3-7). Between
every two left-right regions, there 1s at least one left region and
at least one right region, so s' increases by at least one unit.

Consequently, in the kth left-right region, s > k-3/2

n2H +L 22R +s> k- 3/2.
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Let K-1 be the total number of left-right regicns. Summing the
lengths of all of them gives (recalling that at least one right -
region and one left region [both nonempty] occur between any two
left-right regions)

K-1 K-1
N> £ n 2 T (ktl/2) 2 (K-1)/2
k=1 k=1

K < (ZN)”2 + 1

We note that the total number of all types of regiomns 1is no
more than 4K.

Part 5) Bounding the number of pachs(f)
n
In any region Ry» there are certainly no more than (Hi) paths

which have the parameter “1' Actually, there are usually far fewer.
Most patterns of Hi falls of the heavier side of the partition would
violtate the boundary conditions on the region R, . Nevertheless,
(;i) is an upper bound. The total number of paths having given

sets H1 and ny is beocunded by

@b
i=1 i

In order to find the total number of paths which have a given
He= EHi, and a given N = ¥ n;, we must sum this product over all

decompositions of H and N into no more than 4K parts. This results
in a double sum. For any fixed decomposition of N, the sum over
all decampositioms of H is given by

(f) The reader may be tempted by the direct argument that at each
step, either the light side can fall or the heavy side can fall.
Over all N questions, this can happen (g) ways. Unfortunately this
argument is invalid, because a given set of “heavy! falls may
correspond to several paths. Until the regions are specified, the

relationship between paths and sequences of lights and heavies is not
l to 1.
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ZHL-H
Finally, the number of decompositions of N into at most 4K

parts is given by (using Sterling's inequality (1730)f)

4K 4K , 1/2
kto (z) - (4:) - '(_t.NxT < (2 n/32)2CM e ¢ <‘(2N)1/2

We observe from the first four parts of this proof that the
probability of error for any path with given H is

< (q/p)*K/3 p(WHY/3 (N - (N + H)/3 , with

strict inequality unless perhaps if there are no left-right
transitions of non-zero length.

Combining this with the result of the last section,
1/3 .2 i (@2 +1) 4, 2/3 _ _2/3 1/3.N
P, < (/3 @an?) @/3q%/3 + p2/3 113

Conclusions about 5 codewords

From the results of parts 3) and 4), we note that the paths
which make a significant contribution  the probability of
decoding error are those for which no significant fraction of the
block is spent in left-right tramsition regions. During the
first few questions, almost anything can happen. After that,
however, Natwe must get down to business to clobber Coder.

For a while, Nature allows x; to rise considerably above Xgy oo oXge
This 1s a right region. Then Nature abandons X, and Xgs and lets

X, 8gradually sink back to x, and Xq- This is a right-left transition
region. Finally x; meets x, and Xq5 and from then on, Nature keeps
all three top words together, causing a final left region.

The two extreme cases of this strategy are essentially the
same as those shown in Figurés,3-5 and 3-6,'with'x2’3 replacing
x, and'x4’5 replacing Xq- In Figure 3-5, the final left region
occupies almost the entire block; in Figure 3-6, the initial
right region occupies 2/3 of the block; the right-left transition

(1) Details are given on p. 216 of Fano (1961).
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region, 1/3; and the final left region is virtually nonexistent.

The strategy which plays wl, w3, and w5 against Wz and W,
can be analyzed in a similar manner. This strategy also results inan
exponentially optimum error probability.
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EXTENSION TO M CODEWORDS

In this section we extend the results of the previous section
to the case of M codewords, where M is any finite number. This is
the strategy we shall use:

w

1

Wo¥,
WAL

We¥,
WgWg

We again note that adjacent pairs of words will remain
together. For any k, after any number of questions have been
asked,

Xk S Xopel S X * 1

We again distinguish two possible types of crossunders.
Left crossunders occur when, for some 1, i+l = X4i+2 and the left
side of the partition then falls, necessitating an interchange of
labels among H41+1 and w41+2 (and possibly also Hai and/or W41+3).
Right crossunders occur when, for some 1, Xog41 ™ X4i and the right
side of the partition then falls, necessitating an interchange of
labels among W,,_ ;, and W,, (and possibly also W,, - and/or W, ;)
1f all the words whose labels change are among the set H21_1, Woy»
w21+1, V21+2, for some one particular i, then this crossunder is
called a single crossunder; if not, it 1s called a multiple
crogssunder. For example, Wl may cross under wz on the same question

that “5 crosses under '6'
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Another peculairtype of crossunder: occurs when, for some 1,

Xoq41 crosses under Xo146° We call these degenerate crossunders.
Prior to a degenerate crossunder, Xog41 ™ X242 = X243 " Xog4g

= Xoi45 " X2146° At the crossunder X2i+5 also crosses:under X0046°

8o every degenerate crossunder is also a multiple crossunder. The
converse statement 1is not true.

Degenerate crossunders are unusually nasty, in that none of
the averages is well-behaved. For example, 1if x; crosses under
Xg» then x1’3 does not increase at all. During the first part of
the block, every crossunder 1s a degenerate crossunder. However,
if M << N, then eventually degenerate crossunders cease. None
occur toward the end of the block. In fact, all degenerate
crossunders generally occur consecutively.

At any positive rate, degenerate crossunders occur at every
question. X1 Xg, and x, may cease to be involved in these
degenerate crossunders, but *M/2 continues to misbehave. x; may
dive back down into the pack of other codewords beheath it and again
suffer degenerate crossunders.

We postpone further investigation of degenerate crossunders
until Chapter 4. Here we circumvent the problem by assuming that
all pairs of words are separated when we start:

X] <Xy 3 < X465 < v <Xy

This assumption is no restriction iff M <<KN. In that case
we can afford to play favorties by arbitrarily biasing various
codewords with up to M votes initially. Since each word will
recelve a fraction of N (generally between N/3 and 2N/3) negative
votes by the end of the block, the relatively insignificant initial
bias cannot exponentially effect the probability of error.

Since there are no degenerate crossunders, the averages
are well-behaved except at left crossunders; the averages

X1,41i+41
X) 44-1 8re well-behaved except at right crossunders. We will
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again be able to define a heavy side and a light side of the partition
in each region, such that the increase in the averages can be

calculated.

Our method of establishing the expomential optimality of this
strategy is the same as the previous section. However, additional
complications force us to modify sections 1), 3), and 4). We give
the necessary modifications and certain collateral results in Parts
1'), 3'), and 4'). Parts 2) and 5) apply without essential changes.

Part 1') Partitioning the block into well-behaved regions

Although the plot here is basically the same as Part 1), the
details are more complicated. For one thing, we distinguish among
many subtypes of the four basic types of regions.

A 21-1,2i region 1is internally bounded on each side by a
2i-1,2i crossunder. Although this region may contain many 2i-1,2i
crossunders, it contains no 2j-1,2j crossunders for any j < i or
for j = i+l.

If 1 i8 odd, a 21i-1,2i region is a left region; if i is even,
it is a right region.

A 21-1,21;2i+1,2i+2 increasing transition region follows a
214,21 region and precedes a 2i+1,21+2 region. A 2i+1,2i+2;2i-1,2i
decreasing transition region follows a 2i+1,2i+2 region and precedes
a 21-1,21 region. Neither of these transition regions contain any
23-1,2) crossunders for any j < i+l. Both increasing and decreasing
transition regions are subclassified as right<left and left-right
regions, depending on whether the preceding region is right and the
following region is left or vice versa.

The first 2i+1,2i+2;2i-1,21i decreasing transition region that
eventually follows a given 2i-1,2i;21i+1,2i+2 increasing transition
region 1s called its compensating region. Likewise the last 2i-1,2i;
21+1,2i+2 increasing transition region before a given 2i+l,2i+2;
21-1,2i decreasing transition region is called its compensating region.
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We shall see that transition regions occur in compensating pairs.
A compensating pair of transition regions corresponds to a mated
pair of parentheses. Increasing transition regions act as left
parentheses; decreasing transition regions act as right parentheses.
Notice that any pair of compensating regions consists of one left-
right reglon and one right-left region.

If the first crossunder of the block is a 3,4 crossunder, the
first 3,4;1,2 transition region does not have a Preceding compensating
region in the normal sense. In this exceptional case, we assume
that an empty 1,2;3,4 transition region precedes the first question
of the block. This is equivalent to assuming that the last
crossunder befare the block started (an obviously hypothetical
notion) was a 1,2 crossunder. As in Part 1), we also introduce
here the additional assumption that a 1,2 crossunder would occur
next if the block were extended beyond the final question. This
assumption avoids the ambiguities that would otherwise arise in
the partitioning of the lattermost part of the block.

To pax tition the path into regions we first locate all 1,2
regions, then all 3,4 regions, then all 1,2;3,4 and 3,4;1,2 regions,
then all 5,6 regions, then all 3,4;5,6 and 5,6;3,4 regions, ...
until all questions belong to some well defined region. A formal
program for doing this is given on the following page; an example,
on the page after that.

The example given im Figure 3-8 is hypothetical in that it
assumes a sequence of crossunders which might well be impossible
in any actual path. The partitioning process as stated on the
next page can be applied to any sequence of crossunders, even
such hypothetical ones.



79

PROGRAM FOR PARTITIONING ANY GIVEN PATH INTO REGIONS

Initialization: Annex 1,2 crossunders just before the beginning
and just after the end of the block.

1,2 regions: Locate all 1,2 crossunders and all 3,4 crossunders.
Each cluster of 1,2 crossunders not containing any 3,4 crossunders
is placed within a 1,2 region. Then with { = 1,

Loop: 2i+l1,2i+2 regions: Consider only the as-yet-undefined regions,
which will be denoted by R:i‘1’21. Each such region lies between
two 21-1,2i regions. It contains no 2j-1,2j crossunders for any )
£ 1, but it does contain at least one 2i+l1,2i+2 crossunder. Locate
all 2i+1,2i+2 crossunders and 2i+3,2i+4 crossunders in 8§1'1’21.
EBach cluster of 2i+1,2i+2 crossunders not containing any 2i+3,21i+4
crossunders is placed within a 21i+1,2i+2 region.

Transition regions: The preceding step resulted in at least
one (and possibly more) 2i+l,2i+2 regions in each region 851'1’21.
That part of B2 1?1 preceding its first 21+1,2i+2 region within
it is taken as a 21-1,21;21+1,2i+2 increasing transition region;
that part of R21"1:21 following 1es Iast 21+1,21+2 region within
it is taken as a 2i+l,2i+2; 2i-1,21i decreasing transition region.
(Either or both of these tramsition regions may conceivably be
empty.) These two transition regions form a compensating pair.

If all regions are now defined the partitioning process is
finished. If there remain any undefined regions, each lies between

two 2i+1,2i+2 regions. Increase i by one and return to LOOP.

End of program
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Figure 3-8 PARTITIONING A HYPOTHETICAL PATH INTO REGIONS
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We note at this point that there are several other ways of
defining the regions which lead to similar proofs of the exponential
optimality of this sections's order strategy for M codewords. Among
these alternate definitions, the simplest merely lumps together each
4,5;6,7 regions with its corresponding 6,7;4,5 region and all they
enclose into a single deep region. According to that system of
classification, there are only five types of regions: 1,2 regions,
3,4 regions, 1,2;3,4 regions, 3,4;1,2 regions, and deep regions.

The more detailed classification programmed on the preceding
page has the advantage that it leads to certain collateral results
which provide additional insight into the behavior of the order
strategy. It is possible to analyze the structure of the deeper
regions in more detail. The most enlightening theorem in this
direction is the following -

Theoremgr) Between any two questions in a 2i-1,2i region,

*21,21+1 T *21-4,21-3 < *24-2,21-1 ~ *21-6,21-5 S - -
S %24,25+41 ~ *¥2§-4,25-3 £ ¥2§.2,2§-1 ~ X24-6,2§-5 S ***

S Xg.9 " X5 S Xe,7 7 ¥2,3 S¥,5 7%
for 1 > j+2 > 8
For example, a typical spacing of words in a 9,10 region is
1
X2,3
*4,5
X6,7
*8,9
X10,11

(r) The proof of the exponential optimality of the order strategy
for M codewords does not depend on this collateral theorem. Readers
interested only in that major result may skip at once to Part 3').
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Proof: For any j < i1, there is a compensating pair of 2j-1,2j;2j+1,
2j+2 and 2j+1,2j+2;2j-1,2) transition regions which surround the

given 21-1,21 region. Throughout these transition regions and all

the regions they enclose there are no 2k-1,2k crossunders for any

k < j. Immediately preceding the 2j-1,2j; 2j+1,2j+2 transition region
is a 2j-1,2j region ending with a 2j-1,2j crossunder. t the

boundary between these two regions, x2j+1 - x2j-2 +1 a (1f
unclear - on this points, review Figure 3-7.) At the boundary,

X25-2,25-1 ~ *25-6,25-5 2 *2§,2j+L " *2§-4,23-3 ~ 1

with equality iff

X23-6 = *25-5 " *25-4 T *235-3

and -1

Xpj-2 = X25-1 = Xg5 " 1 = X554
Immediately following the 2j-}2j;2j+1,2j+2 transition region
is a 2j+1,2)+2 crossunder. This crossunder decreases x2j 25+1 -

X2§-4,2§-3 by either 1/2 or 1, accordingly as Xo5+1 = X2541 °F

x2j+1 - xzj, just before the crossunder occurs. In either case,

immediately following the crossunder,

X25-2,23-1 ~ *23-6,23-5 2 *23,2j41 - *23-3,2j-4
Further crossunders can only further decrease the right side,
so the inequality remains valid at least until the next 2j-1,2j

region.
This proves all of the inequalities claimed in the theorem

with the possible exception of the first. To prove this, we note
that any point in the 2i-1,2i region lays between two 2i-1,2i
crossunders. Immediately preceding the crossunder following the
point in question,

XKgy = Xgq_p A0d Xpy 4 > X945

(r) To include the exceptional case that j=l1, we may have to

interpret x, to mean X, .
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These imply
Xpg-3 > ¥pq.¢ a0d X5y 1< Xy 5 + 2

Hence
X01-2,24-1 - *¥21-6,21-5 & *21,24+41 - *21-4,21i-3

with equality iff

-1 +1

X21+1 =Xy T Xaq-1 T X242

and - -
Xy5-6 = X24-5 " X254 v 1 =Xy 4

The former condition is an impossibility, for it implies that
x2j+1 ¢ xzj; x21-1 4 X2432 following the previous 2j-1,23} crossunder.

+ 1

This contradicts the fact that X2541 = ¥24-2 +1 following any
nondegenerate 2j-1,2) crossunder. Hence we have strict inequality
of the claim just before the next crossunder following the point
in question. Since neither side of the inequality can change except
at crossunders, the inequality 1s valid between any two questions
in a 21-1,21 region.

q.e.d.

Part 3') Behavior of averages

Transition regions: In a 2j-1,2j; 2j+1,2j+2 or 2j+1,2j+2;2§-1,2)
left-right transition region, there are mo confusing crossunders
and the right side is light. The increases in the averages are given

by
8y x; = Hy by X ,3 = (a; +Ly)/3
8y Xy 5 = (2n;+H,)/5 8y X,7 = Gng +L,)/7

84 X1,25+41 " (Jn;+8,)/(2j+1) where S, = H iff ) even

§; = L; 1ff j odd

In a similar right-left transition region, the left side is
light. This gives
Ai x, = Li Ai xl’3 = (ni + Hi)/3
etc., as above with L and H interchanged.



84

In any case,
8y %Xy 2541 2 Ung + Hy)/(2)+41)

Nontransition regions
In a 2j-1,2) region, there are no 2i-1,21 crossunders for 14

or £f = j +1. This at once implies that the averages x1’21_1 are
well-behaved, and are given by the expressions derived above for
transition regions. Right regions are like left-right regions
(right side light); left regions are like right-left regions
(left side light).

The average x1,2j-1 is not given by its expression for
transition regions, because it is affected by the 2§-1,2)
crossunders. However, we can compute this average by relating
it to the other averages. We start with three identities, valid

anywhere.
(23-1) %) 53.1 = (23-3) x| p5.3 * 2 X34.2,25-1

(2341) x) 5349 = (23°1) %) 54y + 2 Xp5 294

Solving for xl,Zj-l gives

X1,2§-1 = ((21-3)/2(21-1))31’23_3 + ((23+1)/2(23-1)) X),2§+1
" (k52941 T %23-2,29-17/ 7D

At the ends of a 2j-1,2j region we have 2j-1,23) crossunders,
so that X24,2441 " X23-2,23-1 < 1. This effectively eliminates
the last term in the expression for X),2§-1" The averages X1,25-3
and X, 2§41 are well-behaved throughout the region, and theilr
increases across the region are given by the expressions computed
for transition regions. Plugging these into the formula for

x),25-1 gives

(U-1)ny + H - 1)/(23-1) < 8 x) o5y < (G-Lng + Hy + 1)/(25-1)
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By summing over all regions, we can calculate the increase in
the value of an average over the entire block. The average of major
concern to us is X) 3» which is given by

’

x1’3 - z: ,Ai x1’3 = (N+k)/3 where
all regions
k = Z Hy + z L, + €/3
left regions .left-right regions

& right-left regions & deep regions
& 4,5 regions

where € < number of 4,5 regions. We shall see in Part 4') that
the nondegenerate assumption introduced at the beginning of this
section (just before Part 1') enables us to claim that every
transition region is nonempty. This includes the transition
regions preceding 4,5 regions. In each such transition region,
Hi < Li' The excess introduced in these regions mar e than makes
up for €, and we have

k> ) H - H

all regions

This result will enable us to prove the desired exponential
optimality. It also shows that Nature cannot allow any non-zero
fraction of the block to be spent in left-right regions or deep
right regions without conceding an exponentially smaller probability
of decoding error. (For rigorification of this claim, one needs to
invoke a theorem on increasing slack which will appear in Part 4'.)

In order to reach conclusions about the overall increase in the
other averages, one must subpartition the shallower regions according
to the crossunders of the desired averages. The details are
straightforward and will be omitted. From the above computations
one then deduces the following general results for the overall

increase in the averages during the entire block.
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x1,3 > (N+H)/3
X5 > (2N+H) /5
x) 7 2 (3MH)/7
X1, 25+1 2 (IN+H) / (23+1)

This furnishes additional insight into the types of errors
possible. We see that successive higher pairs of words tend to
end lower and lower. Thus, although xl’3 might be as little as
N/3, x1,5 must be at least 2N/5. This leads us to the conclusion
that even when the top three words énd in a tie, all the rest of
the words must end up with almost N/2 (or more) votes against them.

Part 4') Bounding the number of regions

The basic goal here is to show that the words spread out
sufficiently far sufficiently fast, so that the result: of Part 5
is still exponentially valid. We strive for a considerably
stronger result than completely necessary. We shall show that
even 1f one considers all crossunders (including those with
very high subscripts, which usually are buried unnoticed in
the shallower regions when the block is partitioned according to
the program given in Part 1'), successive clusters of right and
left crossunders must be separated by longer and longer
transition regions.

Intuitively, we can consider the two sides of the partition

as two intermeshed combs: r X
*1
X2,3
*4,5 x
6,7
*g,9
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We pick up the combs by the handles as shown. Suppose we
bashed the combs back and forth several times, and that every
time two opposite teeth hit, they bent (permanently) by an amount 4.
It 1is intuitively obvious that if we bashed the combs back and forth
enough times, we could eventually accumulate as much slack as we
desire. (Slack is the amount we can move the combs between pushing
until some teeth hit and pulling until some other teeth hit.)

Unfértunately, attempts to rigorify this intuitive formulation
are fraught with difficulties. Starting in the obvious manner, we
define slack between the two sides of the partition by

s-m;n( -x_) + min ( _-x_)
i X41 41-1 F *43-2 43-3

or alternatively

1] - -
8' =min(x,; 4541 ~ %41-2,41-1

L 43-2,43-1"" *43-4,43-3]
(To include the possibility that 4j-4 = O in this last subscript,

we conventionally define x = x.).
0,1 1

) + min (x
J

Degenerate crossunders cannot occur unless the slack is O.

False Conjecture: From any ''conceivable' position, slack cannot

decrease. Here conceivable may be defined in any way which admits
the following counterexample. It remains open to question whether
or not it is possible to reach such a position from a given initial

position.
Counterexample: Before right falls to After
1 *1
X, X XX XX
475 273 273
X, Xg
XX X X X X
879 67 677
XgXg

*12*¥13 X12%13  *10*11
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Before, s = g' = (xa-x3) + (x6 - xs) -0 + Xg - Xg

After, g = g* = (x12 - xll) + (x6 - xs) =0 + Xg = Xg
The slack decreased by one unit.

This counterexample places in evidence the type of Diophantine
Problems that plague us here. They are very similar to the pProblems
encountered in the proof of the deep region theorem of Part 1').

To show that this behavior is indeed locally eccentrtc, and
does not invalidate our intuitton, we prove the following

Theorem: Slack can never decrease by more than one umit. If it
does decrease at some particular crossunder, then it increased
on the immediately previous crossunder, and it must also increase
on the immediately following crossunder. In other words, over
Pairs of crossunders, slack is monotonic nondecreasing.

Proof: We prove only part of the claim, namely that the next
crossunder results in an increase. The proof that the previous

one also did is similarly tedious and unenlightening. The skeptical
reader can readily construct the Proof for himself along lines
similar to that given here.

If the next crossunder is the same direction as the nasty
one, there is no problem. During two consecutive crossunders of
the same direction, all words on the falling side of the partition
fall either one unit or two units; all words on the stationary gide
fall either zero units or one unit. At the start of the two
consecutive (same direction) crossunders, one of the minimums
is zero. (We are using s, rather than s', as the definiction of
slack;) That minimum cannot further decrease. The other minimum
is the difference between a word on the falling side and a word
on the stationary side. But all words on the falling side fall
by at least one unit, which is as much as any words on the
stationary side. So this minimum cannot decrease éither. This
verifies the case when both crossunders are in the same direction.

In order for the slack to decrease at a single crossunder,
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the zero minimum must remain zero and the other minimum must decrease.

This decrease can occur only 1if it i1s the difference between a word
on the falling side which remains stationary and a word on the
stationary side which falls. If the minimum was degenerate, all
pairs of adjacent words which were equal to the minimum must behave
in this same way. Thus there is no loss in generality in assuming
that the minimum was unique, say Xop T Xop-1° We further note

that the only possibility is Xk ™ k41’ Xok-1 ™ Xok-2 Just

after the nasty transition. At this point Xne+2 = Fop4l "

X2 = Xyp.3- However, some other Xp342 = X25+1 = 0, where

j and k have the same parity mod 2 (i.e., these differences are
in the same direction).

If the next crossunder 1is of the opposite direction, it occurs
between ok and Xge-1- At the crossunder, their difference goes
from zero to one. The other minimum comprising the slack is
x2j+2 T Xgj41e which cannot decrease at this crossunder. Hence
the second crossunder increases the slack. q.e.d.

Having sampled the tedious labor apparently required to
rigorify even the simplest and most obvious theorems of this type,
we will omit the proof of the next theorem.

Theorem: Given M codewords with slack s, there exists a function
£f(M), independent of 8, such that the slack will be increased

by any sequence of crossunders which alternates direction £(M) or
more times.

Conjecture: £(M) = [(M-1)/4]

The worst case seems to be the situation in which all the differences
are equal in both of the minimums defining the slack.

Concluding as in Part 4),

K g (2f(M)N)1/2 bounds the total number of transition regions
of either type. For large N >> M, N >> £(M), K is negligible
compared to N. Thus the results of Part 5) still apply.
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GENERALIZATION TO SYMMETRIC BINARY-INPUT CHANNELS

Symmetric binary-input channels were first considered by
Dobrushin (1962). Such channels are symmetric in the sense
that, 1f the outputs are numbers numbered such that

P11 2 P21 2 o2 Py.1 2 e 2 Py,1° then

pj’2 = PJ+1-j,1 for ail j = 1,...J

We may take this as the definition of a symmetric binary-
input channel.

We will outline here the straightforward but tedious method
by which the results of the previous sections for 3 codewords,

5 codewords, and M codewords may be generalized from the BSC
to the class of symmetric binary-input channels.

- Instead of considering the number of votes against a
particular codeword, we considér the logarithm of the probability
oF the received output sequence under the assumption that a
particular codeword was the selected message. The decoder
computes this quantity for each word as the game progresses.

The trajectories of these functions correspond to the trajectories
plotted in Figures 3-4.

The codewords may still be ordered according to their rankings
as computed by this function, and the order strategy which plays
the most probable word with the fourth, fifth,... words against the
second, third,... words may still be used. Whenever a digit
is received, both partitions generally fall, but one will fall more
than the other. Some received symbols (approximately equiprobable
from both inputs) will cause both sides of the partition to fall
about the same amount.

Although it is no longer true that Xy < Xy F 1, it is possible
to find some number & such that X3 < %, + 6. (T)

(T) Such a § cannot be defined for channels which have Py,2 = P31 " 0
H ]
but the result can be extended to these channels by a simple

auxiliary argument.
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8 18 a function only of the channel, and does not depend on the number
of questions already asked or the number of questions remaining.

The number of crossunders can still be bounded as in Part 4').
One can still define a heavy side and a light side of the partition
within any given region. Instead of the number of heavy falls and
the number of light falls, H1 and 1’..1 now become vectors Bi and Li'
whose components count the number of times that the heavy side fell
by the various possible amounts. The averages within any given
region may then be bounded by a manner analagous to Part 3'), and
the total number of paths may be bounded as in Part 5'). The
calculations are complicated by the presence of multinamial ..
coefficients instead of binomial coefficients.

The result that one obtains in this manner is that, for any
symmetric binary input channel,

1/3 _2/3

Fp = F3 = -In FP1Py2 T uy 2(1/3)
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THE BINARY ASYMMETRIC CHANNEL

We close this chapter with an investigation of the binary
asymmetric channel of Figure 2-3. This channel enables us to
proceed with our arguments without the obscuring complications
of multinomial coefficients which one encounters with multioutput
channels, yet this channel is sufficiently complicated that we
are unable to determine Fao‘ We shall show only that the best
order strategy 1s unable to attain the exponent 32. Our arguments,
as stated here, are not completely rigorous, but they could be
made so by sufficiently glaborate calculations.

As In the previous section, we consider the legarithm of
the probability of the received sequence,<under the hypothesis
that a‘partiécdlar word is the message. We plot this trajectory

for each codeword.

We start with a code containing M codewords (M small),
We use an order strategy which plays the most probable ward on
the input a,, and all the other (M-1) words on the input a, .
Let k be the number of received bl’s. Then a typical plot of
the trajectories might be as shown in Figure 3-5.

’('A,@nP

C(M-&)ﬂn Q

b g
{-(N’ﬁ)ﬁny

Figure 3-9

An Asymptotic Trajectory
(Binary Asymmetric Channel)
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There is a critical value of k, given by K 1n P + (N-K) 1ln Q
= Kln q + (N-K) 1ln p

or K/(N-K§ - 2 (Q/p) (3.901)
1n (q/p)
We write
P "t (:) I S (:) [q(u-l)/u pL/M)k [Q1/n p(u-l)/M]N-k
k<K K>K

(3.902)
where the ''='" means equal in exponent as N goes to infinity.

The justification of this claim is as follows: For all k/N < K/N
the top word stays above the others almost the entire block length.

In fact, it can crossunder only a finite number of times. In the
other case, when k/N > K/N, then asymptotically;, crossunders must
occur frequently, and in fact all M words will end approximately tied.

More precisely, one can show that the deviation of any of the words
1/2

from the average of all words is a term which behaves as N

The terms &1 the above sum are plotted in Figure 3-10

i
!
t
|

z...- -—am ———

Case 1 K _Na(®) Case 2

Nnla)
j+r(s) | +n(n)

Figure 3-10 The Terms of (3.902) vs k
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To evaluate the above expression for Pe, we consider the two sums
separately. If the first sum is taken over all the terms, its value
is 1. The dominant term occurs when k/(N-k) = q/p.

Next we consider the sum

Z GO (@1 @ HE - (@®l70 4 p% )N

K (3.903)
The dominant term is given by

k/(N-k) = q®PL"8/G1"%p® = r(s) by definition.  (3.904)

The function r(s) is monotonic increasing in s, and convex downward.
It takes values from P/Q to q/p as s varies from O to 1. A plot

of r(s) is given in Figure 3-1l. =
f
) 20 %
n(»
2. %/pP
E |
R
s

Figure 3-11 The Fu::tion r(s) vs s
We next note that there exists some particular value of s,
denoted by S, for which K/(N-K) = r(S). This follows from the
fact that
P/Q < 1n (Q/P) / ln (q/P) < q/P (3.905)

To prove the left side, we reduce it to
?
H(P) < -P1lnq-Qlnp (3.906)

For fixed P and A, the right side of (3.906) attains its unique
minimum when q = P; p = Q. That case is outlawed as it reduces the
channel to a degenerate one with zero capacity. In all other cases,
the inequality holds. The right side of (3.905) can be similarly
proved.
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Returning now to (3.902), we find two possibilities, as graphed in
Figure 3%10.
In Case 1, the dominant term occurs when k/(N-k) = :(s)

>1ln (Q/P) / 1n (q/P), with 8 = 1 - 1/M

In this case the dominant error pattern involves frequent crossunders,
and the probability of error is given by

P, "-"(r( 1-1/M ))“ (3.907)

In Case 2, the dominant term occurs at the kink between the
two expressions, when k = K as defined by (3;901). In this case
there are dominant error patterns which have no crossunders at all.
The probability of error is given by

A I X ak e (3.910)
Its exponent is given by E = -K/N ln[q/(K/N)]- (1-K/N) ln[p/(1-K/N)]
(3.911)
= -K/N In[P/(K/N)] - (1-K/N) 1n(Q/(L-K/N)] (3.912)
where
K/N=1/[1+ (ln q/P)/(ln Q/p) ] (3.913)
(N-K)/N=1/[1+ (ln Q/p)/(ln q/P)] (3.914)
so the exponent of (3.910) is given by
g = - lnla(l+(ln o/P)/(ln Q/p)] - in[p (1+(ln Q/p)/(ln q/P)]
I +((ln q/P)/(ln Q/p)] L + [(ln Q/P)/(1n q/P)]
(3.920)
_ - 1n(PQA+(1n q/P)/(ln Q/p)] - In[Q (1+(1ln Q/P)/(1n q/P)]
1+ [(lm q/P)/(1n Q/p)] 1 + [(ln Q/P)/(1n q/P)
(3.921)

Since these two expressions for E are equal, we ,may ingterpolate
linearly between them and get
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g = TIn[Q"P R (406 G/PY/(n0e/p))]  -1n[p"Q  E(1+(ln Q/p)/(ln q/P))]
1 +[(In q/P)/(In Q/p)] 1 + [(In @/p)/(In q/P)]

(3.922)

The value of E here is independent of X, 80 x may be arbitrarily
set to whatever value most simplifies any particular computation.

We next compare this result with Gallager's expression for
E -
2 B, = max - 1n (zp} p}‘;) (2.08)
0<s<l J ’ ’
Differentiating the inner expression reveals that, at the
maximum,
- 1-
a®P' "%/ p%Q'™® = (1n Q/p)/Tinm a/p) (3.925)

This equation can be solved for 8, but such a step is tedious and
Proves unnecessary. Instead, we may manipulate directly with
the expression for 32. From the identity, that

/(l4+x) + 1/Q+xY) =1 (3.926)
we have
E, = max 2RI 2L + p%¢" "% /g%l %)) 1n[p%ql P (1 + %Rl "%/pSQl "]
8 I + [P’Ql-s/qﬂpl-s] 1+ [qspl-s/psql-s]

(3.927)
Applying (3.925) where applicable reduces the maximand of (3.927) to
(3.922), with x replaced by s. But we have observed that this
expression is in fact independent of 8, 8o the maximization over
this now-extraneous parameter can be ignored.

We have shown that the error exponent for M codewords,
pPlayed according to the strategy of the top word vs all the others,
is given by

Fﬁ - max
: 0 s <1/M

o 1-1/M <s<1

l-g 8 l-s)

-1ln (qu +pQ
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In Case 1, the maximum occurs at s = 1/M or 1-1/M; In Case 2,
the maximum occurs at some gnterior point.

Let m be the least dnteger for which 1 - 1/m > s*, where s*>1/2
maximézes the expression for 52. We have seen that the order
strategy which plays the top word against the bottom (m-1) words
is limited to an exponent less than Bz. So we instead consider
the order strategy which plays the top and bottom words against
the middle (m-2) words. But this strategy 1s also limited to the
same exponent, because now, for any value of k, there will be (:) ways
(m-1) words end at -k In q - (N-k) 1ln p. If k < K, then all
words but the bottom word end there; if k > K, then all words
but the top word end there. In either case, the second word
ends there. Thus the probability of error for this strategy

is given by

pn(lorder) - u]_, z(l‘llm)

where m is the least integer for which 1-1/m > s* >1/2. 1t is
readily seen that no other order strategy for m codewords

can do any better.

Whether this limitation applies to all feedback strategies
or merely to order strategies is not known.
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EXERCISES

Exercise 3-1

Find the necessary and sufficient conditions on the channel
probabilities so that the sphere packing bound is completely
degenerate, C = c:.

Solution (Gallager, 1964):
Condition 1): py = 0 or Py, for all k for which £, > 0.
»
*
Condition 2): pjexp -C = E Pk pj,k for all j.

C is the capacity, given by C=1nZp
]

J
Exercise 3-2
*
Show by example that P, may depend on k and p.1 may depend
on j, even though 0 = Co < co = C.

Solution: *
= P
3/9 a,
2/9 a,
C. = 0;
o 2/9

C-C:-ln 1.8
1/9 a,

1/9

Exercise 3-3
Show that, for M=2 and N=3, it is possible to do better
with feedback than without feedback on the following channel.

Does this contradict the result that Ez - Fz?

6/
8~ Dy

M=2
N=3 3/7

b 2 2
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Solution: Since 3<< oo, this result is not inconsistent with BZ-FZ.

Without feedback, the best code is x = a a;a,; x'

1 term

3 terms

3 terms

1l term

Pr(y/x)
pr(bi/ai) - 216/343

p:(bsz/.i) - 36/343
eecosEiad -
oy <D

- a8,a,
Pr(y/x')

Pr(u}/ad) = @342

eyl - GG

Pr(b,b2/a3) = 48/343

Pr(bg/ag) - 64/343

The probability of error may be computed from the formula

These minimum terms have been circled above.

Pe -1l/2 ¢ min
Y y=x or x'

Pe = (27 + 3:36 + 3:6 + 1)/2°343
with feedback, we may adopt the following strategy.

Pr(y/v)

Summing them,

= 78/343

For

the first symbol, we will send an a; if x was selected, and an a,
if x' was selected. As long as bi's are received, we continue

sending the same inputs.

the inputs.

Pr(y/x)
Pr(b b b,/a;a,a,) = 216/343

Pr(blblbzlalalal) = 36/343

Pr(b,b,b,/a,a,a,) =

B

Pr(bzblbllalazuz) -

Pr(blbzbzlalalaz) = 24/343

:

Pr(bzblbzlalazaz) -

Pr(bzbzbllalazal) = 24/343

g

Pr(bzbzbzlalalal) -

Whenever a b2 is received, we switkh

Pr(y/x')
Pr(b; b, b, /aja,a,)=
Pr(b;b by/a)a,a,)=
Pr(blbzbllazazal)- 72/343
Pr(bzblbllazalal)- 144/343
Pr (b, byby/aye,e)) <2134
Pr(bzblbzlazalal)- 24/343
Pr(b,b,b, /a,a,8,)=

Pr(bzbzbzlalalal)- 16/343

Sumning, P, =(27 + 36 + 18 + 9 + 12 + 12 + 12 + 4)/2-343 = 65/343
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Exercige 3-4 +
Show that if C, > 0, F(0) = F_ = Fea1
Solution:
+ z o* . .
Let C, = -ln max P, 2 -in [(K-1)/K]
3 k for
which
pj,k>°

Let L be the number of words which the decoder perceives as
possible messages after n digits have been received. At each stage
of the transmission process, the transmitter divides these o words
into K sets, the kth set containing P: . words, as nearly as possible.

We overbound L by ;n’ where
T = M; Bl T

This is a valid upper bound because actually, if the jth output

- +
m  exp -C° + K-1

symbol is received, *
z: [m_P, ]i *
Pl T I:. S my ) Bt D
k for whic k for.which

Py, >0 Py i > O

from which the upper bound follows by the definition of C:.
The solution of the recurrence for the upper bound is

- - +
= m + (M - "cn) exp -nco

mn @
vhere By = (K-1)/(l-exp-CJ) < (K-1)
Select N1 = 1ln M/ c:, then ;ﬁl - E%o + 1 - EQD/M < K(K-1)

These final K(K-1) words may be reduced to (K-1) words with
less than K more questions, since if one or more words is
placed on each input, at least one word may be discarded at
each question. Hence,
+
F(R) 2 Fg_, (N-N;)/N = F,_,(1-R/C))

F(0) = Fy
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Exercise 3-5:
Show that 1f C_ > O, then F(R) = co for 0 < R < c:, and

F(R) = Bsp(a) for C° < R<C.

Solution (Shannon, 1964)

For R < c:, the solution follows directly from Exercise 3-4.
For R > C+, we may define L by
L = - dzsp(R)/dR

This L, introduced by Elias (1955), is equivalent to Gallager's
P- According to theorems first provedby Elias and later extended
by Gallager (1964), the exponent of the probability that the selected
message does not appear among the top L+l most probable wards
of a randomly chosen one-way code is given by Esp(n). So, given R
and L, one may use random one-way coding with list decoding for
the first N-log(L+l) digits. For the last log(L+l) digits, we
may treat the channel with zero error capacity as a noiseless
binary channel (by sending only two inputs that lead to no common
outputs) and resolve any doubt the receiver may have about which
of the (L+l) codewords was selected. Since L depends only on R
(and not on N), the result follows as claimed.

Exercise 3-6

Consider a channel for which

Every input may reach A outputs (A . 0)

Every pair of inputs may reach B outputs (B > 0)
Every output is reachable from (K-I) inputs (I > 0)
All non-zero transition probabilities are given by p

Prove that, for such a channel, F(R) is a straight line.
What are its endpoints?
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Solution:
From Exercise 3-1, it is apparent that c: =« C = 1n pJ.
From Exercise 3.4, Fho -’FK-I’ and F(R) is underbounded by
the straight line between F, , and C, . From the ShannoncGallager

theorem, F(R) is overbounded by this same straight line.
From Exercise 2-4, Fy_, 2 Eg_; 2 Eg = E,- Thus,
Fg.y " Fp = =1n pB.
Exercise 3-7
Show by an example with K=4, I=1 that it is possible to

+
have c° > 0 and roo < Fz

Solution:
a,\
-+
co >0
- a
Fﬁo P3 < Fz 2

Notice that F, = -ln( 4 -.00L +.5)1/2 ¢ about 1/2 1n 1000.
However, we can see that F3 is about 1/3 1ln 1000, for given any
triplet of inputs, they have a common output, which is reached
from at least two of them with probability of the order of 1
and from at most one of them with a probability of the order
of .001.
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Exercise 3-8

Show that F = -ln T pl',3 p2,3 for the following
© ;P11 P2

symmetric binary channels, using only the BSC result.
b

1

®,
a, b3 a, b3
b

Channel 1 Channel 2

Solution
For channel 1,

N
N N-
Pem T G P31 [(1-p, IPIN™ where P is the probability of
error per digit for a BSC with channel error probability of
P =Py ,/(P; 1*Py ;). For large block lengths,

’ » ,

(ﬁ1/3q3/3 + R2/3 q1/3)_

P = Substituting this in the expression

for Pe yields the claimed result.

For channel 2, let A denote the number of received
bl's and ba's. Since we could ignore all such received symbols
if we so0 choese,

N- 1
P, < GO L) [(-py IPITA uwhere P - ®1/3q2/3 + p2/341/3y,
P = p3,1/(92,1 + p3’1), * However, we do not igngre such recéived

symbols. Whenever one is received, we may discard half of the
words (since our order strategy has half the words on a, and half
on a,, within the nearest integer). If A > 1 + log M, Pe = 0, so

'(2).15 only algebraic in N and the claim is true.



104

Chapter 4

ERROR CORRECTION CAPABILITY OF THE BINARY SYMMETRIC CHANNEL
WITH FEEDBACK AT POSITIVE RATES

Chapter Abstract

After demonstrating the relationship between error exponent and error correcting
capability, we evaluate the error correcting capabilities of various strategies for the
binary symmetric channel with feedback. We first consider two simple-minded strate -
gies: probability strategies and order strategies. We then derive general bounds on the
error correction capability, and exhibit constructive procedures which asymptotically
achieve these bounds over a large region of rates. The deficiencies of the simple-minded
procedures are then exposed, and we conclude with comments on the problem of achieving
asymptotically optimum error exponents.

Pages 48-53 of Chapter 3 are prerequisite to this chapter.

Distance, Error Correction Capability and Error Exponent

Ever since Hamming's (1950) pioneering paper on error correction codes, the
concept of minimum distance has been widely used. It is defined as the minimum
number of places in which any two codewords differ. Following the lead of Prange (1957),
algebraists such as Bose-Chaudhuri(1960) and Mattson-Solomon(1961) have used this

concept as a means of evaluating various codes which they have designed for one-way
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binary symmetric channels and other Hamming metric channels.

o A closely related concept is error correction capability, which we define
as the maximum number of errors which the code is certain to correct. For one-way
channels, the error correction capability, e, is the greatest integer less than half the
minimum distance.The ultimate goal of coding is to minimize the error probability,
not to maximize e, a point which the algebraists tend to overlook.T However, these
two criteria are closely related, a point which the error exponent theorists sometimes
overlook.

Many codes which have relatively poor error-correction capability actually
have quite good exponents, because they succeed in correcting the overwhelming
majority of error patterns which contain substantially more than e errors, even though
there are a few patterns of only e errors which cause them to fail. Most random
codes, for example, will have only a modestly good error-correction capability,
yet they succeed in almost-certain error correction for any rate below capacity, as
Shannon first proved in 1948. In the long run, the channel may be expected to make
about Np errors. Any scheme which plans to utilize this channel by setting e/N = p-g¢,
then correcting all patterns of e errors and no more, is inherently restricted to a rate
far below capacity. It is possible, for example, to transmit information at a nonzero
rate over a channel whose error probability is 49% (C = 2.9 x 10-4 bits/bit). Yet no
code of any positive rate and sufficiently large block length can correct all error
patterns even with e/N = 25% , as has been demonstrated by Plotkin (1951). Roughly

speaking, random codes will correct almost all error patterns of weight less than 2e,

t Led by A. M. Gleason, the algebraists have recently been devoting considerably
more attention to errors beyond the minimum distance. Particularly noteworthy are
contributions by MacWilliams (1963) and Pless (1963).



even when they fail to correct some error patterns of weight e.
In spite of all these contrary facts, there is actually a close relationship
between the error-correcting capability and the error-exponent curves if the channel

error probability is small. Since there is some uncorrectable error pattern of weight

e+ 1,
e+l CIN-e-l (4.10)

Peap

Furthermore there are no fatal error patterns of weight e or less.

N

N k N- 4.11

P,== (jOpa" K @10
k=e+l

The sum is dominated by the first term if p/q < 1 -e/N (a quite reasonable assumption,
since it is implied by /N < 1/4if p =3/7, or by e/N < 1/3 if p = 2/5). So for large

N these two bounds can be written as

-e/Nlnp-(1-e/N)Inq = -1/N1n P = -e/N lnp~ (1-e/N)!n q + H(e/N)
(4.12)

For very noisy channels, in which both p and q are of the order to 1/2, the term
H(e/N) is dominant and these bounds are worthless. In these cases minimum distance
is not an important property. The behavior of the error-exponent vs rate curves in
this and other very noisy situations has been studied by Reiffen (1963) and the asymptotic
form of E(R) as p goes to 1/2 is known, thanks to the coincident lower and upper
bounds given by Gallager (1964) and Shannon, Gallager, and Berlekamp (1965). (Some
of the details are given in the last section of Chapter 2.)

We observe here that in the opposite limiting situation, as p goes to zero,

the maximum error-correcting capability alone determines the exponent. From the

above bounds, we see that
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lim lim -1/N log Pe — -e/Nlog p (4.13)
p—~0 n—wx=

For infinitesmal channel error probability, the error exponent is the error-

correction capability times -log p.

For channels without feedback, if the error-eorrection capability is e, then

there is at least one code word at distance 2e+l.The probability of error is bounded

by

2e+1
P =172 (*Fhptlge (4. 14)

2e+l
because there are ( ) ways of changing e+l of the 2e+1 bits in which the two codewords

differ. (It makes no difference whether any errors are made in the N-2e4bits in which

the words agree.) Asymptotically,

-In P_ = -In (4p9)° (4.15)

At zero rate, the maximum error-correction capability was shown by Plotkin

(1951) to be asymptotically N/4, which gives

E(0) = -1/4 In (4pq) | (4. 16)

For channels with feedback, the term log 4% can no longer be legitimately
added to the error exponent. Minimum distance is no longer a well-defined concept,
because there is no relation between the number of channel errors required to make
the received word look exactly like some nontransmitted word and the number of

errors required to make the transmitted word look more like this received word than

T From Chapter 2 it is apparent that this holds with equality.
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any other. It is no longer true that there must be at least(ze:l) ways of causing
failure by making only e+l channel errors. In general, no term of the type ln A®
(A > 1 and independent of p) can be added to the error exponent. As a proof, note

that for sufficiently small p,

p1/3 q2/3 + p2/3 q.1/3 < A1/3 l31/3(12/3 4.17)

This contradicts a result of Chapter 3, which states that for the BSC,

F_ = -in03q¥/3 + %3473 . 18)

For feedback channels, the minimum distance is evidently no longer a useful
concept. Since there is no prescribed code word associated with each message, there
is no relation between the number of errors necessary to make transmitted message

X look exactly like transmitted message Xo the number of errors required to make
X look more like X, than like X and vice versa in both cases.

Equations (4. 14) through (4. 16) are invalid for channels with feedback.
However, the maximum number of channel errors which can be certainly corrected
is still well -defined as the error-correction capability, and equations (4. 12) and (4. 13)
still apply directly to binary symmetric channels with feedback.

Thus the search for feedback strategies having maximum error-correction
capability is justified. In addition to the interest it enjoys in its own right, the
solution to this problem gives the limiting form of E(R) for very clean Hamming-

metric channels.

Before proceeding to the investigation of general partitioning strategies, we

derive a fundamental bound on the error -correcting capability using only three codewords
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and we investigate the error- correcting capability of certain simple-minded

strategies.
Error-Correction Capability Using Three Codewords

The error correction capability possible using only three codewords with
feedback can be immediately deduced from certain results of Chapter 3. However,
since we do not wish to require readers of this chapter to remember results of
previous chapters (other than the first chapter), we give here an alternate derivation
of this special case.

We assume Nature's role, take control of the channel, examine the users'
feedback strategy, and maliciously select positions in which to place N/3 errors so as to
lead the decoder astray. Our plot is to cause the received sequence to be such that
two words end in a dead tie, and neither of them has more than N/3 votes against it.
Whatever word the decoder selects might then be wrong even if no more than N/3
channel errors had occurred,

The method by which we cause two words each to accumulate less than N/3
unfavorable votes is as follows: As long as all three words are still in the running
(i.e. none has accumulated more than N/3 negative votes) we answer the decoder's
question in favor of whichever set contains 2(or 3) words, and against whichever set
contains only 1 (or 0). Eventually one word might accumulate N/3 + 1 negative votes.
It is then effectively out of the race, since the max-likelihood decoder will never
decide in favor of it no matter what happens subsequently. When faced with the
choice between the two words remaining, we answer in favor of the current underdog,
and against the current leader. By this scheme, we prevent any answer from ever

voting against more than 1 of the competitive words. Thus, after 3e +1 questions,
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only one of the words can have received more than e negative votes. Conclusion:

n = 3e + 2.

R. G. Gallager has suggested a slightly different plot by which Nature can

also accomplish this same wicked end.

Probability Strategies

When one first considers the problem of selecting good partitions, he is likely
to feel intuitively that the best strategies will partition the words into approximately
equiprobable subsets. One would like the probability that either side of the partition
fails to be as nearly equal to 1/2 as possible. We call any strategy which partitions

the words in such a manner a probability strategy.

On the surface, probability strategies appear promising for several reasons.
Only by probability strutegies can the receiver obtain, on the average, the maximum
amount of information about the selected message. Furthermore, Horstein (1963)
has demonstrated certain sequential transmission procedures, using probability
strategies, which give surprisinglylarge positive exponents at all rates less than and
equal to capacity. Nevertheless, we shall show that for block coding, probability
strategies have error correction capabilities which are markedly inferior to those of
certain other strategies.

Let us assume that M = 13, and the channel probability is small, p < 1/13.
Under these circumstances, 12p/q < 1, so if one word has even a single-vote lead

over the other 12, the probability strategy will play the top word against all the others:
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In general, the probability strategy will partition the words on the higher
levels evenly, until it comes upon a level with an odd number of words. The words at
that level will be partitioned as evenly as possible, and all lower words will be placed
together against the side which got the larger half. Specifically, each of the following
situations will be partitioned as shown:

13=7+6; 7 3 _
6 67 0 ° 10 ~ 10

If the channel behaves in a particular manner, the following sequence of

states will occur:
13 7 3 1
6 10 12 13

It is possible for this cycle to recur again and again. During each four
questions, each word accumulates only one additional negative vote, During N
questions, each word accumulates only N/4 negative votes. We conclude that the
error correction capability of any probability strategy is at most N/4, if M = 13,
and p < 1/13.

We know that at zero rate it is possible to correct up to N/3 errors using order
strategies.f It is apparent that, under the circumstances mentioned above, probability
strategies have error-correction capabilities which are inferior to the error-correction
capabilities of order strategies. From the result of the previous section, it follows
that the error exponents for probability strategies are likewise inferior, for
sufficiently clean binary symmetric channels. In particular, for probability strategies
on channels with p < 1/13,

1/4 3/4

F135-lnp q < -1n (

t For proof, apply (4.13) to F_

1/3 2/3  2/3 1/3
p/q/+p/ a'? )
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Order Strategies t

As in Chapter 3, we now consider order strategies. An order strategy is one
which always partitions the words into two sets which depend only on the ranks of the
various words, and not on the relative differences in the number of votes against

them. For example, consider the order strategy that plays the lst, 3rd, 5th, 7th,...

most probable words against the 2nd, 4th, 6th, 8th, ... most probable words.
Figuratively,
1
2
3
4
5
6
7

This order strategy fulfills our desire to bisect the words above any given
level as nearly as possible. It happens that this order strategy is exponentially
optimum at zero rate, as we mentioned in Chapter 3. In this section we will investigate
the error-correction capakility of this strategy at positive rates.

Let wj(n) denote the number of words with j votes against them after n

questions have been asked. Then, except for Diophantine constraints,
wj(n+1) =1/2 (wj(n) + wj_l(n) )

and initially, K
wo(O) =2

t Readers unfamiliar with Chapter 3 should omit this section and skip to p. 120, after
looking at Figures 4-4 and 4-5 on p. 118 and 119.



113

The solution of this recurrence is

wim =270 ()

which may be verified directly. Let j’ be the number of votes against the Lth word. Approxi-

mately, j’ =~ j, where j is given irnplicitly by

i i
L=xw =205 (D
m
m=0 m=0

Asymptotically,

In L =k - n+ nH(j/n)

If In L << n, then the left hand side may be ignored, giving

H@(/n) =1 - k/n

For fixed k, this gives a relationship between j and n as the game progress. A plot
of this relationship is given in Fig. 4-1.

We next observe that the Diophantine constraints we so blithely neglected are,
in fact, of no asymptotic consequence. To see this we note that, at each question, we
can obtain an inequality comparing j’, the actual number of votes against the Lth word
with the j defined above. To get the bound in one direction, we remove the topmost
word from the game after each question which favored it. By ignoring that word, we
assure that at least half of the words above the Lth word have fallen. To get the
bound in the other direction, we insert a new word on top of the pack after each
question which did not favor the top word. Counting the new word, at most half of the
words above the L.th word have just fallen. Due to the added or deleted words, after
n  questions the word that is actually in the Lth position may now appear as high as

th
the (L-n)’:h position or as low as the (I_+n)tl-l . Thus, the acrual position of the L~ word



114

Figure 4-1 Trajectory of the surface of the pack

IA N

Figure 4-2

Trajectory with small error correction capability
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is bounded by

where

[
1
=]
n
™M
£
F1]
-
=]
L}
™M
€

Since ln n < < n, the asymptotic relation

H(’/n) =1 - k/N is still valid if In L < <n.

This equation, as plotted in Fig. 4-l,defines the trajectory of the top of the
pack. Immediately beneath this trajectory there must be a great number of words.
Above this trajectory, however, there are very few words. It is possible that there are
no words at all above the pack. Certainly there must be less than n words above the
pack. Further considerations show that actually there must be far fewer than n
words there, because all of the words there are being played against each other at every
question. Even if there are only two words above the pack, they cannot remain there
indefinitely, for their average must fall by 1/2 at every question. The top of the pack
always falls more slowly, so eventually we can expect the second word to sink back
into the pack. It may happen, of course, that this may be hindered by crossunders
with the third word, which is also above the pack, but this cannot persist indefinitely
either. In general, we expect only a small number of sparsely spaced words above
the pack.

Since the first and second words must fight each other unmercifully as long
as both are above the pack, the most probable single error pattern (i.e., the pattern
which limits the error correction capability) results when the second word remains on

the surface of the pack until quite near the end of the game. For the first N’ questions,



the top word receives no negative votes whatsoever. During these N’ questions the
second word stays on the surface of the pack, accumulating e negative votes, where

e is given by

H(e/N’) =1 - k/N!

Then the final e questions all favor the second word. During these final e
questions, the first word drops by e votes and ends the block tied with the second word.
This trajectory is plotted in Fig. 4-2. The total block length is given by N = N’ + e or
N/N’ =1 +e/N’. The relationship between the fractional error-correction capability,
e/N and the rate R = k/N, may be readily determined graphically. Let R’, (e/N)’,
be a point on the Hamming volume bound curve of Fig.4-3. The point R=R’"/(1+(e/N)’),
e/N = (e/N)’ /(1 + (e/N)’), then lies on the error correction capability curve for the
order strategy. This curve is plotted in Fig.4-3 at the end of this section.

It can also be shown that other order strategies do just as poorly, or worse.
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GENERAL STRATEGIES WHICH CORRECT ALL PATTERNS OF e ERRORS

We now turn our attention to the problem of selecting a questioning strategy
which guarantees that after all N questions have been asked, the receiver will be able
to deduce correctly which word was transmitted unless the channel has made more than
e errors. As before, after each question we tally the number of negative votes against
each code word. However, we may now throw Some of the words away before the end
of the game. Since the number of channel errors is = e, words which accumulate
more than e unfavorable votes may be disqualified from further consideration.

After each question, we record the number of words which have 0 negative
votes, the number which have 1 negative vote, ... the number which have ¢ negative
votes. We write these numbers as components of a column vector, and call this vector
the state of the game. If there are n questions remaining, this vector is called an
n-state. The topmost components of this vector are often zeros. For this reason, we
index the components from the bottom up and omit any zeros above the highest nonzero

component:

n. N0 0 o
]
10

]
o = N W &

The component <, denotes the number of words which have received e-i negative
votes.
The receiver partitions the present state of the game into two substates, and

asks the source which substate contains the message. The (noisy) answer constitutes



a vote against one substate or the other. The next state of the game is then a new list
of numbers of words having received various numbers of negative votes. The general

situation is depicted below:

n-state partition resulting(n-1)-state resulting(n-1)-state
if answer favors left if answer favors right

€4 24 b, 3y by

c3 33 b3 a3+b4 a4+b3
cy a, b2 a2 + b3 a, + b2
c1 a, b1 a1 + b2 32 + b1
co ao b0 aO + b1 a1 + bo

= r = ! =
a;+b =¢ i3 tbiy =3 *h

It is frequently more convenient to discuss only the current state and the pair
of states which may result from it, without being too concerned about the details of
the partition which brings this about. This nonchalantness is justified by the following

theorem:

Partitioning Theorem: There exists a partition which reduces the state x into the

states y aad z iff
1) x =20y =02=0 (all components are nonnegative)
2) x.  +x =y .+ 2z foralli,0 =i=<e
i i i i

3) Forall , 0 =i=e

e e e

= = =

Z Vo2 =F Zgip ST Yy

i=I i=I i=I
and

e e e

=

= =
Zi fov2 S5 V2 < E o
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For given x, y, and 2, this partition is unique.
Proof: Without 1), the vectors x, y, and z are not really states and partitioning
is meaningless. Among nonnegative vectors, a partition exists iff there are two

substates u and v such that

=u, +vVv ;z, =V, +u, f i.
y.=u. + i i i1 or all i

We will show that given y and z, both x and the unique partition can be
determined subject to conditions 2) and 3). Solving for X is most readily
accomplished by computing the highest components first and working down.

X =u_ +v_ =y +z
e e e

e e

In general, x. +x =u.+u  ,+v.+v _ =y +z, and thus X can be
i i i i i+l i i -

i+l +1

computed from the topmost component working down, using the equation X =Y

+2z =X .
i i+l

We may also solve for u and v interms of y and z

e e e e
I Yo T E Mgyt Vo)t T 2p T EC T uyy)
i=l i=I i=I i=l
e e
Vor = EWpi = Vi) = (g Vo)
i=I i=I

Similar expressions are found for the odd components of v, and for the odd
and even components of u. Condition 3) is the statement that these components

be nonnegative. Q.E.D.

For some n-states, it is possible to devise a partitioning strategy for the

remaining n questions which ensures that all words but one will eventually receive
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more than e negative votes; for other n-states no such strategy exists. We call the
former winning n-states; the latter, losing n-states. A O-state is winning iff only
one word has e or less negative votes. These considerations justify the following

definitions:
A O-state x is winning iff Zx. < 1. A nonzero winning O-state is called a singlet.
X is winning if i g singlet

An n-state is winning iff it can be reduced to two winning (n-1)-states. (The two

winning (n-1)-states need not be distinct.)
Several lemmas follow at once:

Lemma l: Any vector which is a winning n-state is also a winning j-state, for any
j > n. Singlet states are winning n-states for all n.
Any vector which is a winning j-state but a losing (j-1)-state is said to be a

borderline winning j-state.

Lemma 2: The only borderline winning l-state is

No:

Omitting top zeros, this state is written as 2.
If Exi =2, x is called a doublet. The winning partition of any doublet plays

the two words against each other. This consideration leads to the following result:

Lemma 3: A doublet ¢ is a winning n-state iff Z?ici =< n-1, with equality in the

borderline case.
Lemma 4: If ¢ =d (meaning ¢ = di for all i) and d is a winning n-state, then c

is also a winning n-state.

The conclusion of Lemma 4 is also valid under slightly weaker hypotheses:
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e e
Lemma 4’: If = c:i = Z di for all k, and d is a winning n-state, then ¢ is
i=k i=k

also a winning n-state,

Lemma 5: M is a winning n-state iff M =< 2". The best partition of the state M is

one which plays half the words against the other half.
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Figure 4-6

SOME WINNING n-STATES, 1 =n=9

i - 9 8 7 6 5 4 3 2 1
0 512 256 128 64 32 16 8 4 2
1 50 28 16 8 4 2 2
0 12 4 0 8 8 6 0 1
2 1 1 1 1 1 11
1 0 0 0 0 0 0o o
0 456 219 99 42 16 5 1
2 1 1 1 1 1 1
1 43 22 11 4 1 1
0 36 21 11 14 10 0
2 2 2 2
0 0 0 0
182 70 20 0
2 2
20 6
2 22
7 3
0 0
190 145
7 3
15 14
40 19
8 4
0 0
144 108
8 4
8 8
64 36
1 1 1 1 1 1
4 1 1 0 0 0
14 10 0 1 1 0
58 36 35 15 0 1
1 1 1
) 0 0
5 0 0
24 22 6
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A table of some of the winning n-states, for 1 = n =9 is given in Fig. 4-6.

An examination of this table leads us to some deeper results. Foremost among
these is a volume bound, which is a generalization of Hamming's (1950) bound for
one-way codes. The primary difference is that our bound surrounds words at different
levels with different sizes of spheres.

The appropriate definition of the volume of an n-state x is obtained by
surrounding all words at height j by a sphere of radius j:

e .
V= Zx = (]

i=0 ' j=0

Theorem (Conservation of Volume): Let x be any nontrivial n-state, and let y and z

be the (n-1)-states which result from it following any given partition. Then
V=V _ @0+ _ @,
Proof: Let x =u+yv be the partition which reduces x to y and z. Then the

theorem becomes

e e n e i n-l
2(u_+v.)E(.)=Z(u,+v.+u.+1+v.+1)2 ( j)
i=0 i i i=0 ] i=0 i i i i j=0

Since X, is arbitrary, an equivalent theorem is

i i i
-1 -1
z(H=z (H+ = D
j=0 j=0 j=0
This is true, because by expanding both sides into factorials one readily verifies that

(‘; = (“j'l)+('}:}) Q.E.D.

One immediate application of this result is the following



Volume Bound Theorem: If x is a winning n-state, then Vn(_;_c_) = 2",

Proof: The theorem is true for n=0, for in fact a singlet state satisfies any volume

bound:

(=2
0

T ()=
k=0

ﬁMc—.

For arbitrary n, the theorem follows directly from the conservation of volume

theorem by induction. Q.E.D.

In some special cases this bound is the only requirement. Lemma 5 showed one
such case. Doublet states are another, as is shown by the following restatement of
Lemma 3:

Lemma 3’: A doublet state ¢ is a winning n-state iff Vn,(g) = 2n. Equality occurs
in the borderline case.
Proof: Let the only nonzero components of ¢ be ¢, = 1= cj (where possibly i = j).
Then the borderline case of Lemma 3 becomes i + j = n-1. In this case

i j i n n
VE=Z(D+Z (=2 (O+Z (o =Z (g)=2" QE.D.
k=0 k=0 k=0 k=n-j k=0

Lemma 3’ has shown that for doublets, the volume bound is the conly restriction
that must be satisfied. In general, however, there are losing states which still satisfy
the volume bound. For example, consider the 4-state g . It's volume is
3( ( 3 )+ ( ? ))=15<16 = 24. but this is nevertheless a losing state. We proved
earlier that n = 3e + 2; this precludes the possibility of a winning 4-state with e = 1.

A generalized version of this limitation is the following

Translation Bound Theorem: If Exi = 3, then x cannot be a winning n-state unless Tx

is a winning (n-3)-state. Tx is the translation of x, defined by ('I‘zc_)i =X
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Proof: The basic idea is again an induction on n. We first verify by exhaustion
that the theorem is true for small n. Figure 4-6, page 125, . Now suppose that
the theorem is true for n <k-1, and that x is a winning k-state. There must
then exist some partition of x which reduces it to y and z, which are winning
(k-1)-states. When this same partition is applied to Tx, it reduces Tx to Ty and
Tz. If Eyi = 3 and Zzi = 3, then the induction hypothesis guarantees that Ty
and Tz are both winning (k-4)-states. Thus, Tx is a winning (k-3)-state.

In the exceptional case that Zyi = 2, we must resort to special considerations.
The translation bound, as stated, does not apply to such states. In fact, from
Lemma 3, if the doublet y is a borderline winning n-state, then Ty is a borderline
winning (n-2)-state. If y is not a borderline (k-1)-state, then Ty is a winning (k-3)
state. Thus only the borderline doublet must be considered.

i ’ r =0 x? = ’ ") = .
Define x'’ by xc> 0; xk xk for all k > 0. Thenx' =x and Vn(5 ) <Vn(_§)

e e e
Since y is a reduction from x, = A = T x,= Z x!. Thus x’ is a singlet
i=0 i=1 ' i=0
!, and the proof is completed. If

or a doublet. If it.is a singlet, so is Tx = TX'
x’ isa doublet, there are two possibilities. Either x’ =y, or x! isa borderline
winning k-state (because the doublet x reduces to y and yisa borderline winning
(k-1)-state). If x’ =y then Tx = Ty and Tx is a winning (k-3)-state (because it is
a translate of the winning doublet (k-1)-state).

If instead, x’ is a borderline winning k-state, then it satisfies the volume
bound with equality: Vk(lc_') = 2k. But x is also a winning k-state. X = x' is the
only possibility. In this case Tx is not a winning (k-3)-state, but x is a doublet,

so this case lies outside the hypotheses of the theorem.

Having verified the theorem in all the exceptional cases, we have completed



the proof. Q.E.D.

Together, the volume bound and the translation bound immediately eliminate
most of the losing states. They are not exhaustive, however, for there are a few
losing states which satisfy both bounds. For =xample, 5% is a losing 9-state, even
though it satisfies the volume bound and 51 is a winning 6-state. In spite of such isolated
cases, however, we shall find that in the asymptotic cases of interest, these two bounds
are all inclusive.

The volume and translation bounds apply to all possible n;states. The
special n-states of greatest interest are ones in which the initial state I contains only

k

one nonzero component: Ie =M=2", We wish to find the minimum N for which I

is a winning N-state. The information rate is then defined by R = k/N; the allowable

error fraction is denoted by f = e/N. For small values of N, the possible values of
R and f can be derived from our table. We note, for example, the occurrence of 0
among our list of winning 7-states. (There is actually a one-way partitioning strategy
which accomplishes this win, called the Hamming (7, 4) single-error-correcting code.
(Hamming, 1950).) For N > 9, however, the detailed extension of the table involves
considerable labor and we must rely instead on asymptotic bounds which we shall now

derive. We are interested in the cases when N grows very large while f and R remain

fixed.

The Volume Bound and Its Tangents
kS N, _.N
Recall f = e/N. We first consider the volume bound: 2= = ( j )y =2,
j=0

Asymptotically this becomes H(f) = 1-R, or R = 1-H(f). This is identical to Hamming's
bound for one-way codes. A plot of the bound is found in Figs. 4-3, 4-4 and 4-5 at the

beginning of this section, (pages 117-119).
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Because of their frequent occurrence in the subsequent sections, the tangents
to this curve are quite important. We digress here briefly to derive the equations for

these tangent lines.

Consider a straight line which intercepts the f axis at fo' the R axis at Ro'
and which is tangent to the curve R / 1-H(f) at the point R = Rt' f= ft. Define g = 1-f.
Then the equations giving the point of tangency are
R(ft) = l-H(ft) = Ro(l-ft/fo)

R’(ft) = log (ft/gt) = -Ro/fo

and

ft+gt=1.

These quantities are depicted in Fig. 4-7.

Figure 4-7
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Subtracting ft times the second equation from the first equation gives
=1+
Ro 1+ log g,

Substituting this expression into the second equation and exponentiating gives

Yo &
g

2ft ¢

=1

Introducing the quantity
= ; = i f = s R_o=(f -1/(1+
s gt/ft. log s Ro/fo, ft 1/(1+s); Rt fo 1/(1+s)) log s
permits the problem to be transformed into an equation in only one unknown:
f g g

1=2 ftogt°= 2¢s °- 2sg°/(1+s)

or

g
2s% = 14s .

In the special case in which go is a rational number, this equation is

algebraic. s =1 is always an extraneous root of this equation; it may be removed

by dividing through by s-1. The computation of the coordinates of the tangency point

then reduces to the solution of this final algebraic equation.
Example:

g, = 2/3. In this case the equation is

2/3

2s = l+s

852=53+3sz+35+1

3
0=s - 552+ 3s+1=(s-1) (52-45 -1)

/2

s=2+ 51 =( (‘l+5]'/2)/2)3

1/2.-1 _

ft=(3+5 ) ~ =.19095
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R, = (1/3 - 1/3 + 5% ) 1og(2 + 51/%) = . 20650

R_=log ((1+ 5172y /2y = . 69425

A Plotkin-like bound
More bounds on f and R for large N may be obtained by combining the

. . - . . k -
translation bound with the volume bound in various ways. Since 2~ =3 in the
asymptotic case of interest, we conclude at once that f = 1/3.

The most obvious improvement of this bound may be obtained by examining a

typical sequence of n-states that might occur as the questioning progresses:

2k 1
0 k.
0
0
e
L o
K
0 5y 2
— k——y—3e—
C—OINE >

The original N-state 1 has all 2* words at level e, The first k questions can
do no better than to bisect each component at each partition. After k questions, the
(N-k)-state has a j':h component whose value is ( el:!j ). The second component from
the top is k > 3, and hence at least 3e more questions are needed to bring this down.

The conclusion is that N = k + 3e, or R = 1-3f.

The weakness of this direct approach is that actually a good many questions

may be needed after the first k questions before the resulting state is sparse enough to be

finished off with only 3e more questions. Attempts to measure this excess fail, but a
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more devious attack does result in the desired bound:

The Tangential Bound

The best possible asymptotic bound is obtained by the following argument:
We first apply the translation theorem: If the initial state [ (which has 2k
words at height e) is a winning N-state, then ™ 1 must be a winning (N-3m)-state, for

any 0 < m < N/3. Applying the volume bound to this state gives

k A N<3m N-3m

2 (oim ) =2

Define x = N-3e; y = e-m. The bound becomes

x-k
-

v x+3
8 Y Xty <2

y
The validity of this bound is restricted only by the requirement that 0 < y <e,
and it behooves us to choose the best y to obtain the strongest bound. This is accomplished
by maximizing the left size of the above inequality. This can be done most readily by
setting equal to one the ratio of the value of this expression tor y to its value for y+1.

For large y, this gives

3
| - _(xt3y)
8 y(x+2y)>

0 = (xty) (x2- 5y°)

y= 5-1 /2 x
Plugging this value into the bound, and taking logarithms gives

x(1#3 - 5% naye+st’?) = xa+3 - st/ 3

or



-1/2 /2

Ra+3 - 572 = (1-3p) 1-HA/@+5 D))

The result is valid in the region 0 <y < e, which is equivalent to the requirement that

1/2.-1

@3+5 7% <f<1/3

Comparing these numbers with the computed tangents to the volume bound,
we see that this bound is a straight line which goes from the point R =0, f =1/3 to
the volume bound, where it comes in tangentially and then ends. A plot of this bound
is given in Fig. 4-4, page 119.

The form of this bound is quite analagous to a general one-way bound which
Shannon and Gallager have recently derived for error exponents. For infinitesmal
channel error probability, this bound coincides theirs.

In the next section we shail show that this bound is actually attainable.
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SEQUENCES OF WINNING STATES

Having completed proofs of the volume bound, the translation bound, and
their asymptotic combination, we are naturally led to investigate the possibility of
finding specific winning states which lie on or close to these bounds. We start by an
examination of our table of winning states for small n, (Figure 4-7 ). We know that in
order to find any substantial (= 3) number of words at the top component, we are
restricted to states for which n =3e + 2. Thus ife =0, n = 2, and we find that 4 is
indeed a winning 3-state. If € =1, n =5, and we find that g is a winning S-state.
Continuing, we find that g is a winning 8-state. This is quite a bit better than we
had bargained for '. Wzﬁknew that § is a losing 7-state, and were inquiring merely
as to whether it is a winning 8-state. We find that not only can we put 4(>3) words on
top, but a sizeable number of additional words may be added at the lower levels. If

4
we continue this investigation, we find that 32 is a winning ll-state. Further ex-

152
tensions of this sequence are found in the first column of the table of Fig. 4-8,

on page 142, - There immediately arises the question of whether this process
can be continued indefinitely, or whether this fortunate behavior for small n is merely
a luck fluke. We shall show that the former situation prevails, and that in this case

our faith in the orderliness of the universe is justified.

Construction of the Table in Fig. 4-8 and Proof of its Principle Properties

Contrary to our usual philosophy of exposition, at this point we temporarily
resort to an axiomatic development. The preceding discussion (hopefully) has
clarified the motives behind these manipulations. Lest the reader lose sight of our

immediate objectives, all the results we shall now derive have been summarized and
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listed beneath Fig. 4-8 at ii:e end of this sectica, page 142,
Definition: The values in the table are defined recursively as follows: The first

two rows are postulated as initial conditions:

2

A 1=4; Al. Kk

L = 2; Al, =1 for k = 3.

A =8; A =6; A =4; A =1; A

2,3 2,4 2,k =0 fork=5

The remainder of the table is derived recursively by the following rules; applicable

only when i = 3.
For j=3, A, .=A

For j=2, A; 5 =4; 3+4,

For j=1, Ai.l =Ai,2+Ai.3
o A, .
Definition: The state A = "'1,j
e —— -m,
2,j
m, )
Theorem: For j=3 =i, A . =2 ((1+5'/%)/2)3171°2 { 5((1_51/2) ) 3i-i-2

1)

Proof: Notice that the first three columns are defined only in terms of themselves.

We introduce the single sequence ap by the transformation:

a iff k=0 mod 3

k= Aa+3)/3, 1

a iff k=2 mod 3

k= Aacrd)/3, 2

ak=A(k+5)/3,31ffk =1 mod 3



The recurrence relations defining Ai . then become

']

—_— 1 =
ak = ak_1 + ak-2' valid for k = 4

The general solution of this equation is of the form

k k
ak-Br1+C r,

where B and C are constants determined by the two initial conditions, a, = 6 and

ag= 8. rl and r, are the roots of the equation

Solving gives r = (1 + 572 /2, B=C = 2.

Transforming back from the a, to the Ai j gives the desired result. Q.E.D.

Corollarz-.. This theorem also holds in the extended range i =j, i = 3.
Proof: These values are obtained by the same recurrence relations as their counterparts
in the first three columns, to which they must be equal.

Theorem: A . can be reduced to A . ,and A .
- -m,j -m-1, j-2 -—m, j+1

Proof: We first patch up the exceptional columns on the left boundary, for j < 2, by

=A

A -m, 2°

defining ém-l. 0~ 2m,3’ ém-Z. -1
The recurrence relations defining the table are then uniformly stated for all m = 0.
The proof consists of verifying conditions 2) and 3) of the partitioning theorem.

Condition 2) becomes

= +A._
Ai -1 T AL e T AL -2

If i =1 or 2, we observe that this condition is satisfied by the initial conditions. For

larger i, we have
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= +
ALy T AL -1 Y AL g2

AL =241, T AL -1

Subtraction of these two equations yields condition 2).

A sufficient condition for satisfying 3) is

z

and 2,02 =Y = %

Yoir2 = Z2i+1 = Y24

In the present situation this condition becomes

Afez, -2 S A5 01 T4 a2

The latter inequality follows from the fact that Ai.j is a monotonic nonincreasing function
of j, for any fixed i. This monotonicity may be established by induction on i and the
observation that the mcnotonicity holds for j =3, where Ai.j is given by an explicit
formula.

The former inequality is verified as follows:

= = =
A T AL T A e T AL T A2, 51 T A2, -2 T A52,5-2 QUELD.

Corollaryr .ﬁm j is a winning (3m-j)-state. (proof by induction).

Corollary: Vam_j(ﬁ\_m j) = 23'“'J (proof by induction, using conservation of volume

theorem).
This concludes our proof of the remarkable properties of the table of Fig. 4-8, p. 142.
We can use the first column of this table to cbtain a lower bound on f and R

for large N. The manipulations are simple:

X< ((1+51/2)/2)3(j_1) =A. (to the nearest integer)

j, 1

so if k-1 = (j-1) 3 log (1+537%)/2)



we have
= T A T
I=A i1 which is a winning 3(e+j-1)-state
Thus we may protect 2k words from e errors by N questions if

k-1 = (n-3e) log ((1+5"/%)/2)

R = (1-3f) Ro ; Ro = log ((1+51/2)/2)

Since this is identical to the line we obtained as an upper bound on R, we conclude

that for all rates in the region 0 <R < Rt = .30, (or equivalently, for all error fractions
.19 = ft <f=e/N= fo = 1/3) this straight line gives the best possible asymptotic resuit.
For higher rates (or lower error fractions), however, the bounds differ. The upper
bound on R and f departs from the straight line and follows the curve 1-H(f). The

lower bound obtained by this simple comparison with the first column of Fig. 4-8, p. 142,
unfortunately, remains on the straight line for small error fractions, f.

We soon decide that in the region of this discrepancy it is the straight line,
rather than the volume curve, which is the weak bound. Among other observations, we
know from Gilbert's (1952) bound for one-way codes that it is possible to get the rate
R ap to 1 for sufficiently small error fractions f. We are thus goaded to find other
sequences of winning states which provide better achievable bounds for high rates.

In this region the restraining limits are imposed by the volume bound rather
than the translation bound. Intuition suggests that we would do well to construct
infinite sequences of winning states which build up more slowly, having fewer nonzero
components,but much greater weight. These bottommore components must carry the
load for small e/N. Tlese desires can be fulfilled by requiring that the translate of

a borderline winning n-state be a borderline winning (n-4)-state instead of an
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(n-3)-state. The attecinpt to construct a table with this property proves successful.
The result is shown in Fig. 4-9 at the end of this section.

In fact, for any integer t = 3, we can compute a similar table of winning
states. The first two lines of this table are defined as

t-1 2t-u

2 oo 1 1 ... 11 111...

2 2ty ... 2@ 2ty L. 25l  2Yevel . 114100,

The remainder of the table is recursively defined to fulfill the relation

+ = +
Ai:j Ai'llj Alp]"'l Ai'l.j'(t'.l)
This definition cinches condition 2) of the partitioning theorem. Condition 3)
of the partitioning theorem is readily verified by methods similar to those illucidated

for the special case t = 3. This then proves that the constructed table has the basic

property:

A, jreducesto By 1 20 2y o)

To compute the rate of exponential growth of the components of the first

column of this table, we can again change variables to ak. The first t columns then

become

39%2c-1 ... %41

238301 " o4l

In terms of the ak' the recursion relation becomes
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from which we get an algebraic equation for the growth rate r

1't +1= 2rt.1

t PP .
The growth rate of the first column, s = r , satisfies the equation

s+1= 25(':-1)/t

In terms of s, the achievable asymptote becomes

skSBsJ;j+esnt
k = (nt-e) log s

R = (t-f) log s

Comparing these equations with those derived in the section on tangents to the volume
bound (page 131 ), we note that they are identical:. This bound is a straight line, em-
anating from the point fo = 1/t (or equivalently, r, = (t-1)/t) and proceeding up to a
point where it touches the volume bound tangentially, and then continues on to the R
axis. For lower and lower rates, the best bounds result from higher and higher

values of the integer t. The envelope of all these straight line bounds is indicated on
the graph on page 119.

Attempts to eradicate the small gaps remaining at high rates between the volume
bound and the achievable bounds have been as yet unsuccessful. If it were possible to
devise tables of winning states which gave rise to straight lines emanating from
arbitrary rational points (not restricted to the form fo = 1/ integer), the problem would
be solved. It is strongly conject ured that such states exist, although as yet we have not
been able to demonstrate them. The case fo = 2/7 has been examined at some length.

The desired recursion relations are known, and they coincide with the roots of the
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equation for the line tangent to the volume curve and passing through the point fo =2/7.
Unfortunately, however, no successful scheme for assigning the initial values on the

table has been devised.
Figure 4-8

INFINITE SEQUENCE OF BORDERLINE WINNING STATES

Column: 1 2 3 4 5 6 7 8 9 101 121314...
row

1 4 2 1 1 1 1 1 1 1 1 1 111
2 8 6 4 1 0 0 0 0 0 0 0 00O
3 36 22 14 10 5 1 0 0 0 0 0 00O
4 152 94 58 36 24 15 6 1 0 0 0 00O
5 644 398 246 152 94 60 39 21 7 1L 0 00O
6 2728 1686 1042 644 398 246 154 99 60 28 8 1 00
7 11556 7142 4414 2728 1686 1042 644 400 253 159 88 36 9 1
: MOST IMPORTANT PROPERTIES

Let Aij be the number in the ith row and the jtl.l column: A—m i = A2.j

Qm _is a borderline winning (3m-j)-state. It satisfies volume bound with equality.

It can be reduced to ém, G+1) and é—(m-l). G-2)

+

Ai,j A G+1) A(i+1). (+2) (unless i = 2)

Ifi=jandi =3, then

A= 2004522317172 4 5((1-51/2) /2317172
Figure 4-9
ANOTHER INFINITE SEQUENCE OF BORDERLINE WINNING STATES
8 4 2 T 111 P11 1L
64 3 20 11 4 1 0 0 0 0 0
744 404 220 120 67 35 16 5 1 0 O
8512 4628 2516 1368 744 407 222 118 22 6 1
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Concluding remarks

The partitioning strategy of Fig. 4-8 has asymptotically optimum error
correction capability at all rates less than . 2965 bits/bit. At that rate its error ex-
ponent is asymptotically optimum on any binary symmetric channel with any transition
probability, p. At this rate, this strategy is asymptotically a perfect code.

The other, similar strategies described in the previous section are each
perfect at some other particular rate, given by the corresponding tangent to the volume
bound as shown in Fig. 4-4, p.119.

By examining the properties of these strategies, the weaknésses of our initial
simpleminded probability strategies and order strategies are evident. The probability
strategies fail because they are too eager to play everything else against the top word;
the order strategies, because they are too reluctant. The optimum strategies of
Figs. 4-8 and 4-9 are quite flexible in their method of handling this problem. If the top
word is near the surface of the pack, very few words are played against it. As it rises
above the pack, however, more and more words are played against it. This either forces
the top word to come back down or it further depresses the level of the surface of the
pack, thus avoiding the disastrous phenomenon of Fig. 4-2, p.114.

The optimum strategies do not depend on the capricious channel probability, p.
Since in many applications this parameter is imprecisely known, this property is a real
advantage. Conversely, the strong dependence on p is one of the primary reasons why
probability strategies fail. When a decoding error occurs, the frequency of channel
errors over the undecodable block is given by p’, a tilted probability which is always
greater than p. By bisecting probabilities based on p, the probability strategies are

fighting straw men and ignoring the real dangers.
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At rates below . 2965 bits/bit, we do not know whether the strategies of Fig.4-8
have optimum error exponent or not. They do have optimum error correction capability,
but as we showed in the second section of this chapter, this is equivalent to optimum
error exponent only in the limit of infinitesmal channel error probability, p.

At these low rates, the real problem with the strategies computed from the
table of Fig. 4-8 is that they are imprecisely defined. For example, suppose we start
with M = 8,192 = 213 codewords, which we wish to protect against all patterns of 50

or fewer errors. From Fig. 4-8 we deduce that this can be accomplished in 169

questions since 2 0
6 0

22 0

94 0

398 > 0

1686 1042

7142 7142

v 0

As7,1 0

The former is a winning 169-state, and Lemmas 4 and 4/ apply. But how do we partition
this state? The table says only that it should be partitioned in such a way that it is

0
dominated by e

0

1042
4414

There are many partitions that do that. At every subsequent question, we will have
similar options. Depending on which options we choose, we may be victorious over
almost all patterns of 51, 52, and 53 errors, or we may concede defeat to most

patterns of only 51 errors.
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Basic improvement of the results of this chapter can result only from constructing

explicit algorithms for determining good partitions, not from the construction of

additional tables. As far as they go, our tables are as good as possible.
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A STRONG CONVERSE TO CHERNOV'S BOUND

Antroduction: Chernov bounds are used to bound the probability that
the sum of a large number of random variables is significantly larger
then their average. For identically distributed independent random
variables, (the only case considered here), Chernov gives an upper
bound to the probability that the sum of the n random variables is
substantially larger than expected. The bound decreases exponentially

in nt n
Pr (121%1 > nzé) <.exp -nE

where z, is a random variable with probability distribution P(z); z°
is any fixed number such that z°> zZ= fz P(z) @z; and E is
Chernov's exponent (dependent on zo and P(2) ).

The direct converse to Chernov's bound states that in fact this

bound is exponentially optimums:

n
1li -1 P - -
n*u‘; /n  log Pr (151 zi > nzo) E

The proof of Chernov's bound follows directly from a few simple
manipulations with mowment-generating functions: the proof of the
converie involves application of the Central Limit Theorem or
Chebycheff's inequality to a tilted probab%lity diatributionrderived
from P(z). Further discussion of these points can be found in
several places (for example, see Appendix B of Gallager: Iow _DPensity
Parity~Check Codeg), and we will not give any further details here.

The theorem which we prove here is stronger than the q%rect
converse of Chernov's bound. It states that not only will. &, 2;> nZ_,
with a probability which is exponentially E, but all partial sums
will similtanecusly be that large with the same exponential
probability.

(T) Tilted probabilities were apparently first introduced by
Feller (1943)
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k 147
lim -i/nlnPr (L 2z >kZ for allk <n) =E =
ny .'L-l]{ i=-""0 -
lim =-1/n ln Pr ( T 2; 2 0n2)) A.01
ny&d i=1

Proof: Without loss of generality. we assume that z = O; Z >0 A.02

Suppose it is possible to gselect some Z. > zo such that 2. has a

1 1
greater Chernov exponent than zoz
n zZ, > n2
lim -1/nPr (£ % 27" ) =E'; E<E' < o A.03
nlym i=1 -
If no such zl exists, then the theorem is trivial. If such a Zl

exists, then we cen choose non-negative, integral-valued monotonic
functions M(n) and m(n) such that

Mz, -2) > 2, A.1l1

lim m= 1lim M = o A.12

n»w

lim na/m = 1lim n/m = @ A.13

n>»mw n>@

For any fixed E > O, limn exp -mE = O A.l4
NH0

| V4ed
For example, one might choose m(n) = n/- s rounded up or down.

The theprem mentions the event that
N

(*1) T 2. >k2 for all k > n
. i- o -
i=l

Our proof introduces several other events

I
(*li) 121 zi > 12%
I
(*11) b z, < Izo

i=1
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(*1') = U (*1})
I=1

Note that (*1°') is the complement of (*1)

(*21) z, 2 z1
M
(*2) =N, (*2))
M+3jm
(*3)) T z, > m2
3 imM+(j=1)m+1 i - °
PRI [(n-H)/m]*
(*3) = N (*3))
j=1 3
dm+M
(*q_) T z >m2
I j=p41 + T %

wherel? dm-o-H-Ism

We shall show that (¥3)] has the desired exponent, that (*2) is
sufficiently probable that it can be assumed without exponential loss,

and that together the events (*2) and (*3) virtually assure (*1).

Since (*1) implies (*ln).

o8
lim -1/n 1ln Pr (*1) > E
n-» oo A.20

On the other hand, since (*2) and (*3) are independent events,

Baye's Rule becomes
in Pr (*1) > 1ln Pr (*1 & *2 & *3)

= 1n Pr (*2) + 1ln Pr (*3) + 1ln Pr((*1)/p2+k3)

A.21

Our goal is to show that in the limit this equation is

lim =-1/n ln Pr (*1) <O + E + O A.22
n oo =
A.22 and A. 20 will them prove the theorm.

We verify the claims term by term.
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(*1') = U (*1})
In]l

Note that (*1°') is the complement of (*1)

(*21) z, > z1
M
(*2) -fll (*zi)
M+3jm
(*3) T z, > m2
i=M+(j=l)m+r + = ©
e [n-M)/m)”
(*3) = N (*3))
I
dm+M
(*4_ ) T z >m2
1 fuzey d 1

wherelg dm + M-I <m

We shall show that (¥32] has the desired exponent, that (*2) is
sufficiently probable that it can be assumed without exponential loss,

and that together the events (*2) and (*3) virtually assure (*l1).

Since (*1) implies (*ln).

”
lim =-l/n 1ln Pr (*1) > E
ny o A.20

On the other hand, since (*2) and (*3) are independent events,

Baye's Rule becomes
in Pr (*1) > 1ln Pr (*1 & *2 & *3)

= 1n Pr (*2) + 1n Pr (*3) + 1ln Pr((*1)/p2+k3)

A.21

Our goal is to show that in the limit this equation is

lim -1/n 1n Pr (*1) <O + E + O A.22
n'a =
A.,22 and A, 20 will them prove the theorm.

We verify the claims term by term.
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Eirst term: u
ln Pr (*2) =  _ ln Pr (-21) =M1ln Pr ( z > 21) A. 30
i=1 =
1im =1/n ln Pr (*2) = O, by A.1l3 A .31
n-»w
Second term:
m
Inpr (*3) = £ ln Pr (*3) = (a-M)/m InPr ( T z; 2 mZ_ ) A.32
J i=l .
iim =1/n 1ln pr (*3) = lim . {1=-M/n) (-1/m 1n Pr()s 2. > mZ ) A. 33
h> 00 new i=1 A - o
m
= lim'(-1/m lnPr ( % 2z, > nz) =E A. 34
ny® i=1 °

For any j, we have Pr (‘3j) = exp -m (E -ro(m)) where o(m) goes to

zero as m goes to @ . A. 35
Third term:
We first claim that (*1i & *2 & *3) implies ('4i)
Proof: Using the division algeorithm,
I-M = dm - r, determining the integers d and r <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>