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Coloring Bipartite Graphs with Semi-small
List Size

Daniel G. Zhu

Abstract. Recently, Alon, Cambie, and Kang introduced asymmetric list
coloring of bipartite graphs, where the size of each vertex’s list depends
on its part. For complete bipartite graphs, we fix the list sizes of one part
and consider the resulting asymptotics, revealing an invariant quantity
instrumental in determining choosability across most of the parameter
space. By connecting this quantity to a simple question on independent
sets of hypergraphs, we strengthen bounds when a part has list size 2.
Finally, we state via our framework a conjecture on general bipartite
graphs, unifying three conjectures of Alon–Cambie–Kang.
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1. Introduction

Let G = (V,E) be an undirected, finite, and simple graph. The concept of list
coloring was introduced independently by Erdős–Rubin–Taylor [1] and Vizing
[2], who defined a graph to be k-choosable if, for any set of colors C and any list
assignment L : V → (

C
k

)
, there exists a coloring c : V → C, with c(v) ∈ L(v)

for all v ∈ V, such that c(v) �= c(v′) whenever vv′ ∈ E. The choosability ch(G)
(also known as the list chromatic number) is the minimum k such that G is
k-choosable. Observe that ch(G) is at least the chromatic number χ(G), by
considering the case where L is a constant function.

When G is bipartite, χ(G) ≤ 2, but no such absolute bound holds for the
choosability; in fact, Erdős–Rubin–Taylor [1] showed in 1980 that ch(Kn,n) ∼
log2 n. After considering the choosability of random bipartite graphs, Alon
and Krivelevich conjectured in 1998 that a similar bound holds for general
bipartite graphs in terms of the maximum degree Δ:

Conjecture 1.1. (Alon–Krivelevich [3]) If G is bipartite, then ch(G) = O(log Δ).
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So far, relatively little progress has been made towards this conjecture
beyond the trivial bound ch(G) = O(Δ). In 1996, Johansson [4] (see also [5])
proved a bound of O(Δ/ log Δ) for all triangle-free G, while in 2019 Molloy [6]
found a different proof of this result, improving the constant.

Recently, Alon et al. [7] introduced an asymmetric variant of list coloring
for bipartite graphs. Given a bipartite graph G with bipartition A�B, we call
G (kA, kB)-choosable if each list assignment L : A → (

C
kA

)
, B → (

C
kB

)
admits

a coloring, following the same rules as k-choosability. (In this paper every
bipartite graph will come with an explicit ordered bipartition.) Letting ΔA and
ΔB be the maximum degrees of vertices among A and B, respectively, Alon,
Cambie, and Kang derive various conditions for the choosability of complete
bipartite graphs in terms of kA, kB , ΔA, ΔB . They then proceed to conjecture
that similar bounds hold for general bipartite graphs, which can be construed
as asymmetric generalizations of Conjecture 1.1:

Conjecture 1.2. (Alon–Cambie–Kang [7]) Let G be a bipartite graph with ΔA,
ΔB ≥ 2 and let kA and kB be positive integers. Then,
(a) for any ε > 0 there is a Δ0 such that G is (kA, kB)-choosable whenever

kA ≥ Δε
A, kB ≥ Δε

B , and ΔA,ΔB ≥ Δ0;
(b) there exists an absolute C > 0 such that G is (kA, kB)-choosable whenever

kA ≥ C log ΔB and kB ≥ C log ΔA;
(c) there exists an absolute C > 0 such that G is (kA, kB)-choosable whenever

ΔA = ΔB = Δ and kB ≥ C(Δ/ log Δ)1/kA log Δ.

Remark 1.3. The condition that ΔA,ΔB ≥ 2 is not present in [7]; we make it
here to avoid division-by-zero issues with log ΔA and log ΔB .

While Conjecture 1.2 and its analogous theorem on complete bipartite
graphs give asymptotic bounds on specific parts of the four-dimensional pa-
rameter space (ΔA,ΔB , kA, kB), a more holistic treatment is lacking.

In this paper, we generalize Alon, Cambie, and Kang’s work to apply
to a much wider swath of the parameter space. We start by considering the
choosability of complete bipartite graphs G = KΔB ,ΔA

when kA is held fixed,
finding that for each fixed kA, the (kA, kB)-choosability is determined, up to
a constant factor, by the quantity ξ(ΔA,ΔB , kA, kB) = ΔB log(ΔA)kA−1/kkA

B .
(We will henceforth omit the parameters of ξ if clear from context.) Specifically,
we show the following result:

Theorem 1.4. For every positive integer kA, there exist positive constants
C1(kA) and C2(kA) such that, for all complete bipartite graphs G = KΔB ,ΔA

and positive integers kB with ΔA ≥ kA and ΔB ≥ kB , G is (kA, kB)-choosable
whenever ξ < C1 and not (kA, kB)-choosable whenever ξ > C2.

Moreover, the quantity ξ can often determine the (kA, kB)-choosability
of a complete bipartite graph G in an asymptotically tight manner. By defin-
ing ξm(kA) to be the infimum value of ξ over all triples of positive integers
(kB ,ΔA,ΔB) such that KΔB ,ΔA

is not (kA, kB)-choosable, we have the fol-
lowing results:
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Theorem 1.5. Fix a positive integer kA. For all ΔA ≥ kA there exists a con-
stant c(ΔA) such that the smallest ΔB such that G = KΔB ,ΔA

is not (kA, kB)-
choosable is asymptotic to c(ΔA)kkA

B as kB → ∞. Moreover, c(ΔA) ∼ ξm(kA)/
log(ΔA)kA−1 as ΔA → ∞.

Theorem 1.6. Fix a positive integer kA. The minimum Δ such that KΔ,Δ is not
(kA, kB)-choosable is asymptotic to ξm(kA)kkA

B /(kA log(kB))kA−1 as kB → ∞.

The proofs of Theorems 1.5 and 1.6 rely on procedures of graph ampli-
fication, which take graphs that are not (kA, kB)-choosable to larger graphs
that are not (kA, k′

B)-choosable, for some k′
B > kB . These techniques are likely

useful even when generalizing to the list coloring of bipartite graphs which are
not complete.

Owing to their definition over a wide variety of possible graphs and lists,
determining the value of ξm(kA) for even a single value of kA > 1 is already an
interesting question. Moreover, determining the value of ξm(kA) corresponds
to a natural question involving the independent sets of hypergraphs. (Recall
that at an independent set of a hypergraph is a subset of the vertices that does
not contain any edge.)

Lemma 1.7. The graph G = KΔB ,ΔA
is (kA, kB)-choosable if and only if the

following statement is true: “For all kA-uniform hypergraphs H with ΔB edges
and families F consisting of ΔA subsets of size kB of the vertices of H, there
is an independent set of H that intersects every element in F .”

In this paper, we specifically address the case where kA = 2, where the
hypergraph reduces to an ordinary graph. Using probabilistic techniques, we
obtain the following bounds:

Theorem 1.8. 1
2 log 3 ≤ ξm(2) ≤ log 2.

In particular, combining Lemma 1.7 and the lower bound of Theorem 1.8
yields the following result, which could be of independent interest:

Corollary 1.9. Let H be a graph with e edges and let F be a set of subsets of
size k of the vertices of H. If |F| < 3

k2
2e , then there is an independent set of

H that intersects every element of F .

After addressing bipartite list coloring when kA is fixed, we proceed to
vary kA and examine the resulting asymptotic behavior of ξm(kA). Defining a
quantity ξ∗

m(kA) which effectively acts as an upper bound on ξm(kA), we prove
the following using similar methods of graph amplification:

Theorem 1.10. The limit limkA→∞ log(ξ∗
m(kA))/kA exists.

We conclude with a discussion of applicability to general bipartite graphs.
Inspired by the above results, we make the following conjecture, which we show
implies all three parts of Conjecture 1.2:

Conjecture 1.11. There exist positive constants ξg(kA) such that all bipartite
graphs G satisfying ξ < ξg(kA) are (kA, kB)-choosable. Moreover, if the ξg(kA)
are chosen to be the largest possible constants such that the above statement is
true, then limkA→∞ log(ξg(kA))/kA exists.
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Outline

Section 2 contains basic results on the choosability of complete bipartite graphs.
In Sect. 3, we introduce graph amplification techniques and develop properties
of ξm(kA), proving Theorems 1.4, 1.5, and 1.6. Section 4 focuses on bounding
ξm(2) and proves Lemma 1.7 and Theorem 1.8, while in Sect. 5, we study
the asymptotic behavior of ξm(kA) and ξ∗

m(kA), proving Theorem 1.10. We
conclude with a discussion in Sect. 6 regarding extensions to general bipartite
graphs and discuss Conjecture 1.11.

2. Basic Results

Fix positive integers kA and kB . In this section, we let G be the complete bi-
partite graph KΔB ,ΔA

, with our goal being to broadly determine the (ΔA,ΔB)
such that G is (kA, kB)-choosable. We begin with some basic facts about choos-
ability on complete bipartite graphs:

Proposition 2.1. If ΔA < kA or ΔB < kB , then G = KΔB ,ΔA
is (kA, kB)-

choosable.

Proof. Suppose ΔA < kA. Given a list assignment L on G, color every vertex
v in B with an arbitrary element of L(v). Then, for each vertex v′ in A, there
are at most ΔA colors that cannot be used to color v′, so since |L(v′)| = kA

every vertex in A can be colored.
If ΔB < kB , a similar argument holds by swapping the roles of A and B.

�
Furthermore, observe that the set of (ΔA,ΔB) such that G is (kA, kB)-

choosable is monotonic, in the sense that if KΔB ,ΔA
is (kA, kB)-choosable, so

is KΔ′
B ,Δ′

A
for any Δ′

B ≤ ΔB and Δ′
A ≤ ΔA.

The following proposition will be our main source of uncolorable complete
bipartite graphs:

Proposition 2.2. Let r, kA, and ai be positive integers, for 1 ≤ i ≤ r. Then, if
ΔA = kr

A and ΔB =
∑

i akA
i , then G = KΔB ,ΔA

is not (kA,
∑

i ai)-choosable.

Proof. We define a list assignment L that admits no colorings. First, define
kA

∑
i ai colors divided into kAr “blocks” C

(j)
i of size ai, where 1 ≤ i ≤ r

and 1 ≤ j ≤ kA. Now assign to the vertices in A the
∑

i akA
i sets of kA colors

consisting of a element from C
(j)
i for all j as i is fixed. Assign to the vertices

in B the kr
A sets of

∑
i ai colors C

(e1)
1 ∪C

(e2)
2 ∪ · · ·∪C

(er)
r , for (e1, e2, . . . , er) ∈

{1, 2, . . . , kA}r
.

Suppose L admits a coloring c. Then, note that for all i there cannot be
vertices v1, v2, . . . , vkA

∈ B such that c(vj) ∈ C
(j)
i for all j, since that would

contradict the vertex in A with list {c(v1), c(v2), . . . , c(vkA
)} . Thus there exists

a tuple (e1, e2, . . . , er) ∈ {1, 2, . . . , kA}r such that, for all i, no vertex in B is
colored with an element of C

(ei)
i . However, this contradicts the vertex with list

⋃
i C

(ei)
i . �
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Corollary 2.3. Proposition 2.2 admits the following special cases:
• The graph G = KΔB ,ΔA

is not (kA, ar)-choosable where ΔA = kr
A and

ΔB = akAr.
• Moreover, G is not (kA, kB)-choosable if either (ΔA,ΔB) = (kA, kkA

B ) or
(ΔA,ΔB) = (kkB

A , kB).

Proof. For the first part set all the ai equal to a. For the second part, further
set r = 1 or a = 1, respectively. �

From this, it is easy to see that Proposition 2.1 cannot be improved.
Moreover, one can notice that, for fixed kA, the “interesting” values of ΔB

grow polynomially in kB , whereas ΔA can grow exponentially.
By monotonicity, we are now able to show that all sufficiently large com-

plete bipartite graphs are not (kA, kB)-choosable.

Proposition 2.4. Suppose that ΔA ≥ kA, ΔB ≥ kB , and ΔB log(ΔA)kA−1 >

22kA−1 log(kA)kA−1kkA

B . Then G = KΔB ,ΔA
is not (kA, kB)-choosable.

Proof. Let r =
⌊
logkA

ΔA

⌋
and a = �kB/r� . If r > kB , we are immediately

done by the second part of Corollary 2.3 since ΔA ≥ kkB

A and ΔB ≥ kB .
Thus, we may assume otherwise, which implies that r and a are both positive
integers.

By the first part of Corollary 2.3, we now need to show that kr
A ≤ ΔA

and that akAr ≤ ΔB . The first is obvious, while the second follows from the
two estimates r > logkA

(ΔA)/2 and a < 2kB/r, which imply that

akAr <
2kAkkA

B

rkA−1
<

22kA−1kkA

B log(kA)kA−1

log(ΔA)kA−1
< ΔB ,

as desired. �
The constants involved here are probably far from tight. For example,

when kA = 2, more careful analysis yields the following bound, which improves
the constant by a factor of about 4.

Proposition 2.5. Suppose ΔB ≥ k and ΔB log ΔA > 1.4k2. Then G = KΔB ,ΔA

is not (2, k)-choosable.

Proof. Again let r = 
log2 ΔA� , and note that if r > k we are done. Otherwise,
we have r ≥ 1

log2 3 log2 ΔA = 1
log 3 log ΔA.

Since r ≤ k, we can let ai (for 1 ≤ i ≤ r) be positive integers that sum
to k with the least possible variation. Letting k = rq + r′ with 0 ≤ r′ < r, we
obtain that

∑

i

a2
i = rq2 + 2r′q + r′ =

k2 + r′(r − r′)
r

≤ k2

r
+

r

4
≤ 5

4
k2

r
.

It is obvious that 2r ≤ ΔA, so it suffices to show that
∑

i a2
i ≤ ΔB .

Indeed, we have

ΔB >
1.4k2

log ΔA
≥ 1.4

log 3
k2

r
>

5
4

k2

r
,

as desired. �
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Having proved that G is not (kA, kB)-choosable for large values of (ΔA,
ΔB), we conclude this section by showing that G is (kA, kB)-choosable for
small values of (ΔA,ΔB).

Lemma 2.6. Fix some kA > 1. Let f(u) = 1 − u + u log u and let the global
maximum of the quantity uf(u)kA−1 over the interval u ∈ [0, 1] be α(kA),
achieved at u = u0. For every ε > 0, there exists a Δ0, depending on ε and
kA, such that whenever ΔA > Δ0 and ΔB log(ΔA)kA−1 < (1 − ε)α(kA)kkA

B ,
G = KΔB ,ΔA

is (kA, kB)-choosable.

The proof follows a probabilistic procedure found in [7], which we will
repeat here for clarity. We will need the following Chernoff bound:

Fact. (See e.g. [8]) Let X1, . . . , Xn be i.i.d. binary random variables that are
1 with probability p. Then for 0 ≤ δ ≤ 1 we have

P

(
∑

i

Xi < (1 − δ)np

)

< e−npf(1−δ).

Proof of Lemma 2.6. Observe that the statement of the lemma gets strictly
stronger when ε is decreased, so it suffices to prove the lemma for ε sufficiently
small.

If ΔB < kB we are done by Proposition 2.1, so assume otherwise. Then
we know that

log ΔA <

(
(1 − ε)α(kA)kkA

B

ΔB

)1/(kA−1)

< α(kA)1/(kA−1)kB .

Set p = 1
f(u0)kB

(1 + ε/kA) log ΔA. Since

p <
α(kA)1/(kA−1)kB

f(u0)kB
(1 + ε/kA) = u

1/(kA−1)
0 (1 + ε/kA),

we find that p < 1 for sufficiently small ε.
Given a list assignment L, we will color the vertices with the following

procedure:
• Let C ′ be a random subset of the set of colors C, chosen by independently

placing every color c ∈ C in C ′ with probability p.
• If there are at least u0

f(u0)
(1+ε/kA) log ΔA vertices v ∈ A with L(v) ⊆ C ′,

abort.
• For each vertex v in A with L(v) ⊆ C ′, choose an arbitrary color in L(v)

and remove it from C ′. (Whether this is done simultaneously across all
such vertices v or sequentially is irrelevant.)

• Color the vertices in A with colors not in C ′. Color the vertices in B with
colors in C ′. If this is impossible, abort.

After the first step, the expected number of vertices in A with no available
colors is pkAΔB . Thus the probability that this procedure aborts in the second
step is, by Markov’s inequality, at most

pkAΔB
u0

f(u0)
(1 + ε/kA) log ΔA

= (1 + ε/kA)kA−1 (ΔB log(ΔA)kA−1)/kkA

B

u0f(u0)kA−1
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< (1 + ε/kA)kA−1(1 − ε).

This quantity depends only on ε and is strictly less than 1 for small ε.
If the procedure does not abort in the second step, every vertex in A

has an available color in the last step. The probability that a fixed vertex v
in B does not have an available color is bounded above by the probability
that |L(v) ∩ C ′| < u0

f(u0)
(1 + ε/kA) log ΔA = u0kBp after the first step. This

probability can be bounded with the aforementioned Chernoff bound, where
we set n = kB , Xi to be 1 if and only if a color is reserved for B in the first
step, and 1 − δ = u0. Combining this with a union bound over all ΔA vertices
in B, we find that the probability of some vertex in B not having an available
color after the procedure is at most

ΔAe−kBpf(u0) = ΔAe−(1+ε/kA) log ΔA = Δ−ε/kA

A .

As ΔA grows, this quantity can become arbitrarily small, so the total prob-
ability of failure, bounded above by (1 + ε/kA)kA−1(1 − ε) + Δ−ε/kA

A , must
become less than 1 for sufficiently large ΔA, as desired. �

To better contextualize Proposition 2.4 and Lemma 2.6, we introduce the
following quantity:

Definition 2.7. Given ΔA, ΔB , kA, kB , define the quantity ξ(ΔA,ΔB , kA, kB)
to be ΔB log(ΔA)kA−1/kkA

B .

In this notation, the condition in Proposition 2.4 simplifies to ΔA ≥ kA,
ΔB ≥ kB , and ξ > 22kA−1 log(kA)kA−1, while the condition in Lemma 2.6
becomes ξ < (1 − ε)α(kA) for sufficiently large ΔA.

3. Graph Amplification

In this section, we describe two ways to enlarge graphs which are distinct from
the standard graph products. Through a variant of the “tensor power trick”,
we sharpen some of the bounds of the previous section and show the existence
of an asymptotic across multiple regimes.

3.1. Graph Amplification Procedures

While in this paper, we will only use graph amplification for complete bipartite
graphs, we present definitions that are applicable to all bipartite graphs. Thus,
for this subsection, let G be an arbitrary bipartite graph with bipartition A�B.

Definition 3.1. Let r be a positive integer and let G be a bipartite graph with
bipartition A�B. The r-fold blowup of G, denoted G�r, is the bipartite graph
G′ with vertex parts A′ = A × [r] and B′ = Br. Draw an edge between some
vertex (v, i) ∈ A′ and (v1, . . . , vr) ∈ B′ if and only if vvi is an edge in G.

Remark 3.2. This notion of blowup differs from notions of graph blowups de-
fined elsewhere in the literature.
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A B A B A B
G G�2 G�2

Figure 1. G, G�2, and G�2 when G is a path graph with 4
vertices

Definition 3.3. Let r be a positive integer and let G be a bipartite graph with
bipartition A � B. The r-fold expansion of G, denoted G�r, is the bipartite
graph created by replacing each vertex in A with r copies of itself, connected
to the same vertices in B.

Example 3.4. If G is the path graph with 4 vertices, its 2-fold blowup and
expansion are shown in Fig. 1.

These constructions are useful for the following reason:

Lemma 3.5. If G is not (kA, kB)-choosable, then neither G�r nor G�rkA are
(kA, rkB)-choosable.

Proof. Say G has a list assignment L on a set of colors C that admits no
colorings. We will define a list assignment L′ on G�r using the colors C×[r], by
setting L′((v, i)) = {(c, i) | c ∈ L(v)} for all (v, i) ∈ A′ and L′((v1, . . . , vr)) =
{(c, i) | c ∈ L(vi), i ∈ [r]} for all (v1, . . . , vr) ∈ B′.

Suppose L′ admits a coloring c′. For a fixed i, consider coloring every
vertex v ∈ A with the color c such that c′((v, i)) = (c, i). Since this cannot
be extended to a coloring of L, there must exist some vi ∈ B such that for
all c ∈ L(vi) there exists an adjacent vertex v′ such that (c, i) = c′((v′, i)).
This creates a contradiction with the vertex (v1, . . . , vr) ∈ B′. Thus, G�r is
not (kA, rkB)-choosable.

Now, we deal with G�rkA . Call the parts A′ = A× [r]kA and B′ = B. We
again define an unchoosable list assignment L′ with the colors C × [r].

For each v ∈ A arbitrarily order the elements of L(v) and call them �i(v),
for 1 ≤ i ≤ kA. Then, for j1, j2, . . . , jkA

∈ [r], assign

L′((v, j1, . . . , jkA
)) = {(�1(v), j1), (�2(v), j2), . . . , (�kA

(v), jkA
)} .

For v ∈ B′, just set L′(v) = L(v) × [r].
Suppose L′ admits a coloring c′. Consider coloring each vertex v ∈ B

with the color c such that c′(v) = (c, j) for some j. This cannot be extended
to a coloring of L, so there must exist some v′ ∈ A with neighbors vi ∈ B,
for all 1 ≤ i ≤ kA, satisfying c′(vi) = (�i(v′), ji) for some ji ∈ [r]. Then, there
are no available colors for (v′, j1, . . . , jkA

) ∈ A′, meaning that G�rkA is not
(kA, rkB)-colorable. �
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3.2. Asymptotic Existence for Complete Bipartite Graphs

For this subsection, we return to the case when G = KΔB ,ΔA
is complete

bipartite. In this case, Lemma 3.5 rewrites as follows:

Corollary 3.6. If G = KΔB ,ΔA
is not (kA, kB)-choosable, then neither G�r =

KrΔB ,Δr
A
nor G�rkA = KrkAΔB ,ΔA

is (kA, rkB)-choosable.

Example 3.7. It is easy to see that G = K1,kA
is not (kA, 1)-choosable. There-

fore, (G�r)�akA = KrakA ,kr
A

is not (kA, ra)-choosable. This reproduces Corol-
lary 2.3.

Based on this, we can now remove various conditions from Lemma 2.6 to
produce the following general statement:

Lemma 3.8. If ξ < α(kA), then G = KΔB ,ΔA
is (kA, kB)-choosable.

Proof. If kA = 1, then it is easy to show that G is (kA, kB)-choosable if and
only if ΔB < kB . Accordingly, ξ = ΔB/kB and α(1) = 1. Now assume kA > 1.

If ΔA = 1, we can apply Proposition 2.1. Otherwise, suppose G =
KΔB ,ΔA

is not (kA, kB)-choosable. Then, by Corollary 3.6, we have that
KrΔB ,Δr

A
is not (kA, rkB)-choosable. However,

ξ(Δr
A, rΔB , kA, rkB) =

rΔB log(Δr
A)kA−1

(rkB)kA
= ξ(ΔA,ΔB , kA, kB) < α(kA),

which implies by Lemma 2.6 that KrΔB ,Δr
A

is (kA, rkB)-choosable for suffi-
ciently large r. This is a contradiction. �

Combining Proposition 2.4 and Lemma 3.8 proves Theorem 1.4.
Motivated by the ability to amplify a given unchoosable graph into larger

ones, we define the quantity ξm(kA) to describe the “smallest” non-choosable
graph. It will turn out to be crucial for understanding certain asymptotics.

Definition 3.9. If kA is a fixed positive integer, let ξm(kA) be the infimum of
ξ over all (ΔA,ΔB , kB) such that KΔB ,ΔA

is not (kA, kB)-choosable.

Proposition 3.10. α(kA) ≤ ξm(kA) ≤ (log kA)kA−1.

Proof. The lower bound follows from Lemma 3.8. The upper bound follows
from any part of Corollary 2.3. �

We conclude this section with proofs of Theorems 1.5 and 1.6.

Proof of Theorem 1.5. If kA = 1 then G is (kA, kB)-choosable if and only if
ΔB < kB . Thus c(ΔA) = 1 and ξm(1) = 1, so the theorem is true in this case.
Now assume kA > 1.

Fix a value of ΔA ≥ kA. Suppose that G = KΔB ,ΔA
is not (kA, k0)-

choosable if ΔB = c0k
kA
0 , for a positive integer k0 and positive real c0. Then,

by considering G��kB/k0�kA , by Corollary 3.6 we get that KΔ′
B ,ΔA

is not
(kA, �kB/k0� k0)-choosable and thus not (kA, kB)-choosable if Δ′

B = c0

�kB/k0�kA kkA
0 ∼ c0k

kA

B .
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Let c(ΔA) be the infimum of c0 over all such c0, k0. By the definition
of c(ΔA), the minimum ΔB such that G is not (kA, kB)-choosable is at least
c(ΔA)kkA

B . Moreover, by the previous paragraph, it is, for all ε > 0, eventually
bounded above by (c(ΔA) + ε)kkA

B . Since ξm(kA) > 0, c(ΔA) > 0, so the
minimum ΔB is indeed asymptotic to c(ΔA)kkA

B .
Now, we consider varying ΔA. By monotonicity we have that c(ΔA) is

nonincreasing in ΔA. Moreover, suppose that G = KΔB ,ΔA
is not (kA, kB)-

choosable for a given ΔA and ΔB = c0k
kA

B . Then, for any positive integer r,
by Corollary 3.6 we get that G�r = K

c0rk
kA
B ,Δr

A

is not (kA, rkB)-choosable.

We conclude that c(Δr
A) ≤ c(ΔA)/rkA−1.

The definition of ξm(kA) may be rearranged to

ξm(kA) = inf
ΔA≥kA

c(ΔA) log(ΔA)kA−1,

so c(ΔA) ≥ ξm(kA)/ log(ΔA)kA−1. Moreover, given some integer Δ0 ≥ kA,

c(ΔA) ≤ c(Δ

⌊
log ΔA
log Δ0

⌋

0 ) ≤ c(Δ0)/
⌊

log ΔA

log Δ0

⌋kA−1

∼ c(Δ0) log(Δ0)kA−1

log(ΔA)kA−1
,

so for every ε > 0 we have c(ΔA) ≤ (ξm(kA)+ ε)/ log(ΔA)kA−1 for sufficiently
large ΔA. Since ξm(kA) > 0, this proves c(ΔA) ∼ ξm(kA)/ log(ΔA)kA−1. �

Proof of Theorem 1.6. For a positive integer Δ, let k(Δ) be the maximum
positive integer kB such that KΔ,Δ is not (kA, kB)-choosable, or 0 if no such
kB exists. Note that k(Δ) must exist since KΔ,Δ is (kA,Δ + 1)-choosable. We
claim that k(Δ) ∼ (Δ log(Δ)kA−1/ξm(kA))1/kA .

We first deduce the theorem assuming this claim. For a positive integer
i, let Δi be the minimum Δ such that KΔ,Δ is not (kA, i)-choosable. By
monotonicity, Δi is also the minimum Δ such that i ≤ k(Δ). Hence, if Δi > 1,
k(Δi − 1) < i ≤ k(Δi). Moreover, since k(Δ) exists for all Δ, we also have
limi→∞ Δi = ∞.

Since

1 = lim
i→∞

k(Δi − 1)
(Δi log(Δi)kA−1/ξm(kA))1/kA

= lim
i→∞

k(Δi)
(Δi log(Δi)kA−1/ξm(kA))1/kA

,

we conclude that

1 = lim
i→∞

i

(Δi log(Δi)kA−1/ξm(kA))1/kA
. (*)

The statement of Theorem 1.6 is equivalent to

1 = lim
i→∞

ξm(kA)ikA

(kA log(i))kA−1Δi
.

To finish, it suffices to show that log(Δi) ∼ kA log(i), which is apparent by
taking the logarithm of (*).

We now prove that our claim that k(Δ) ∼ (Δ log(Δ)kA−1/ξm(kA))1/kA .
First of all, by the definition of ξm(kA),

Δlog(Δ)kA−1

k(Δ)kA
≥ ξm(kA) ⇐⇒ k(Δ) ≤ (Δ log(Δ)kA−1/ξm(kA))1/kA .



Coloring Bipartite Graphs with Semi-small List Size

Now, suppose that G = KΔB ,ΔA
is not (kA, kB)-choosable. Letting

r1 =

⌊(
Δlog(ΔA)
log(Δ)ΔB

)1/kA
⌋

and r2 =
⌊

log(Δ)
log(ΔA)

⌋
,

we obtain that (G�r
kA
1 )�r2 = K

r
kA
1 r2ΔB ,Δ

r2
A

is not (kA, r1r2kB)-choosable.

However, it is easily checked that rkA
1 r2ΔB ,Δr2

A ≤ Δ, so k(Δ) ≥ r1r2kB . In
particular,

lim inf
Δ→∞

k(Δ)
(Δ log(Δ)kA−1/ξm(kA))1/kA

≥ kBξm(kA)1/kA

Δ1/kA

B log(ΔA)1−1/kA

,

which can be made arbitrarily close to 1 by the definition of ξm(kA). This
concludes the proof. �

Remark 3.11. The statements of Theorems 1.5 and 1.6 imply that the thresh-
old between choosable and non-choosable graphs occurs at ξ ≈ ξm(kA) in the
regimes ΔB � ΔA and ΔA ≈ ΔB . Similar techniques will imply the same
whenever ΔA grows subexponentially in ΔB . As an example of when ξm(kA)
ceases to be relevant, observe that for fixed ΔB , the largest kB such that
KΔB ,ΔA

is not (kA, kB)-choosable never exceeds ΔB .

4. Independent Sets and Bounds on ξm (2)

In this section, we phrase the (kA, kB)-choosability of complete bipartite graphs
in terms of the set avoidance of independent sets of a “color hypergraph” H.
We then use this formulation to prove Theorem 1.8.

4.1. The Color Hypergraph

In this section, we prove Lemma 1.7. The main idea is that, given a (kA, kB)-
list on a complete bipartite graph, the kA-sets of colors assigned to vertices in
A have a natural “graph-like” structure.

Proof of Lemma 1.7. Call a list assignment L on G maximal if no two vertices
in A or no two vertices in B are assigned the same set of colors. It is easy to
see that if G has an unchoosable list assignment, than it has an unchoosable
maximal list assignment as well, so as far as the choosability of G is concerned,
non-maximal lists can be ignored.

Given a maximal list assignment L on G, define H(L) to be the hyper-
graph with set of vertices C and edges {L(v) | v ∈ A}. Also, let F(L) be the
set of subsets of size kB of C that are L(v) for some v ∈ B.

Since any kA-uniform hypergraph H with ΔB edges and family F of ΔA

sets of size kB of the vertices of H can be represented as H(L) and F(L) for
some list assignment L, it suffices to show that L is unchoosable if and only
if every independent set in H(L) is disjoint from an element of F(L). If there
exists a coloring c consistent with L, then I = {c(v) | v ∈ B} intersects every
element of F(L), but is an independent set of H since for all v ∈ A there must
exist some color in L(v) not in I.
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Conversely, if I is an independent set of H intersecting every subset in F ,
then for every vertex v ∈ A the set L(v) intersects the complement of I, while
for every vertex v ∈ B the set L(v) intersects I. Thus, one may construct a
valid coloring of G by coloring each vertex v ∈ A with element of L(v)\I and
each vertex in v ∈ B with an element of L(v) ∩ I. �

Example 4.1. If H = Kk,k, then every independent set in H must be dis-
joint from one of its parts (or both if it is empty). Therefore Kk2,2 is not
(2, k)-choosable. More generally, in the case where kA = 2, the construction in
Corollary 2.3 corresponds to H being r disjoint copies of Ka,a, which can be
shown to not be (2, ar)-choosable by letting F be the 2r ways to choose one
part from each copy of Ka,a.

4.2. A Probabilistic Algorithm

For the remainder of this section, we prove the lower bound in Theorem 1.8,
as the upper bound has already been proven in Proposition 3.10. Specifically,
given a graph H and a subset family F , we will probabilistically construct
an independent set that intersects every element of F . The algorithm used
to construct this independent set I is actually quite simple: one chooses a
uniformly random order of the vertices and then processes every vertex in
that order. The action of processing a vertex v consists of adding v to I if
none of its neighbors are already in I.

In order to prove Theorem 1.8, we need to analyze the probability that
I is disjoint from any given set S.

Proposition 4.2. If I ∩ S = ∅, then every vertex in S has a neighbor not in S
that was processed before it.

Proof. Take a vertex v ∈ S. Since v /∈ I, at the time of processing v, some
vertex v′ in its neighborhood must have been previously processed and placed
in I. It cannot be the case that v′ ∈ S, so we must have v′ ∈ N(v)\S. �

For any given subset S′ of the vertices of H, the order in which the vertices
in S′ are processed follows a uniform distribution on the set of orderings of S′.
Hence, Proposition 4.2 allows the probability that I and S are disjoint to be
upper-bounded by a probability that is dependent only on the structure of H
“near S”. Specifically, we make the following definitions:

Definition 4.3. Let H ′ be a bipartite graph with bipartition A � B. Given a
order on the vertices of H ′, call a vertex v ∈ A shadowed if it has a neighbor
in H ′ that precedes it. Let p(H ′) be the probability that every vertex in A is
shadowed under a uniformly random order of the vertices of H ′.

Definition 4.4. For a subset S of the vertices of H, let TS denote the set⋃
v∈S N(v)\S. Let HS be the bipartite subgraph of H with bipartition S �TS ,

consisting of all edges in H between S and TS .

In this language, we now have the following corollary of Proposition 4.2:

Corollary 4.5. The probability that I ∩ S = ∅ is at most p(HS).
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We now proceed to bound p(HS), with our main tool being the following
recursion:

Lemma 4.6. Let H ′ be a nonempty bipartite graph with bipartition A�B. Then
p(H ′) = 1

|A|+|B|
∑

v∈B p(H ′\N [v]), where H ′\N [v] denotes the subgraph of H ′

obtained by deleting the vertices in the closed neighborhood N [v].

Proof. Consider the first vertex v in H ′ in the order. If it is in A, it cannot
be shadowed. Otherwise, v ∈ B shadows all of its neighbors, so whether all
other vertices in A are shadowed only depends on the relative ordering of the
vertices in H ′ that are not v or a neighbor of v. Since any such ordering is
equally likely, the probability that every vertex in A is shadowed conditional
on v being chosen first is p(H ′\N [v]). This concludes the proof. �

Lemma 4.7. Let H ′, A,B be as in Lemma 4.6, with the additional condition
that A is nonempty. If H ′ has no edges then p(H ′) = 0. Otherwise

p(H ′) ≤
(

1 +
|A| Δ
|E|

)−|A|/Δ

,

where |E| is the number of edges of H ′ and Δ is the maximum degree among
any vertex in B.

Remark 4.8. When applying Lemma 4.7, we will frequently use the easy-to-
show fact that this bound is increasing in Δ, meaning the bound of Lemma 4.7
holds even when Δ is replaced with any positive integer r ≥ Δ.

Before we state the proof of Lemma 4.7, we need a quick result about
quantities related to the degrees of vertices in B:

Definition 4.9. For a given H ′ with bipartition A�B and |B| = �, let v1, v2, . . . ,
v� be the vertices of B. Let di be the degree of vi and Di be the sum of the
degrees of the neighbors of vi.

Proposition 4.10.
∑

i d2
i /Di ≤ |A| .

Proof. Since the function x �→ 1/x is convex, by Jensen’s inequality we have
∑

u∈N(vi)

1
deg u

≥ di

Di/di
.

Now sum over all i. The left hand side becomes
∑

i

∑

u∈N(vi)

1
deg u

=
∑

u∈A′

deg u

deg u
≤ |A| ,

where A′ is the set of non-isolated vertices in A. �

We will also need the following inequality. As the proof is rather tedious,
we defer it to Appendix A.
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Lemma 4.11. If a, b, β, and γ are nonnegative reals satisfying a ≤ 1 and
γ > max(a, b), then

(
1 + β

γ − a

γ − b

)−(γ−a)

≤ (1 + β)−γ(1 + βa2/b).

Proof of Lemma 4.7. The case where H ′ has no edges is obvious, so assume
otherwise.

Consider a counterexample H ′ that minimizes |B| . If there is an isolated
vertex in A, then p(H ′) = 0 and the result is trivial, so assume otherwise.

By Lemma 4.6, we have

p(H ′) =
1

|A| + |B|
∑

i

p(H ′\N [vi]).

We now claim that

p(H ′\N [vi]) ≤
(

1 +
|A| Δ
|E|

)−|A|/Δ (
1 +

d2
i

Di

)
,

which implies the result by Proposition 4.10. In the case where N(vi) = A, we
have di = |A| , Di = |E| , and Δ = |A| , so we wish to prove that

1 ≤
(

1 +
|A|2
|E|

)−1 (

1 +
|A|2
|E|

)

,

which is true. Otherwise, since A has no isolated vertices, H ′\N [vi] has at
least one edge. By the minimality of H ′ (and Remark 4.8) we therefore have

p(H ′\N [vi]) ≤
(

1 +
(|A| − di)Δ
|E| − Di

)−(|A|−di)/Δ

,

so it remains to show that
(

1 +
(|A| − di)Δ
|E| − Di

)−(|A|−di)/Δ

≤
(

1 +
|A| Δ
|E|

)−|A|/Δ (
1 +

d2
i

Di

)
.

This inequality follows from Lemma 4.11 upon substituting β = |A| Δ/ |E| ,
γ = |A| /Δ, a = di/Δ, and b = Di |A| /(|E| Δ). �

Proof of Theorem 1.8. The upper bound is due to Proposition 3.10. To show
the lower bound, we need to show that KΔB ,ΔA

is (2, k)-choosable as long
as ΔB log(ΔA)/k2 < 1

2 log 3, which is equivalent to ΔA < 3k2/(2ΔB). (Here k
serves the role of kB .) By Lemma 1.7, we wish to show that for every graph
H with ΔB edges and a family F of ΔA < 3k2/(2ΔB) vertex subsets of size k,
there exists an independent set in H intersecting every element of F .

Consider the process of iteratively deleting the vertex in H with maxi-
mum degree. Suppose the maximum degree after i deletions is Δi. Note that
after j deletions, the number of edges remaining is ΔB − ∑

0≤i<j Δi.

We claim that there must exist some 0 ≤ i < k with Δi ≤ (2k − 2i −
1)ΔB/k2 and Δi′ > (2k − 2i′ − 1)ΔB/k2 for all 0 ≤ i′ < i. If such an i did not
exist, we must have Δi > (2k − 2i − 1)ΔB/k2 for all 0 ≤ i < k, which implies
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that after k deletions the number of edges is less than ΔB −∑
0≤i<k(2k −2i−

1)ΔB/k2 = 0, a contradiction. Note that H has at least k vertices since the
elements of F have size k.

If we assume that i has the above properties, then after i deletions, which
yields a graph H ′, the number of edges is at most

ΔB −
∑

0≤j<i

(2k − 2j − 1)ΔB

k2
=

ΔB(k − i)2

k2

and the maximum degree is at most 2(k − i)ΔB/k2. We choose a random
independent set I of H ′ according to our procedure. Since each set in F shares
at least k− i vertices with H ′, by Corollary 4.5 and Lemma 4.7 the probability
that I is disjoint from any fixed set of F is at most

(
1 +

(k − i)2(k − i)ΔB/k2

ΔB(k − i)2/k2

)−(k−i)/(2(k−i)ΔB/k2)

= 3−k2/(2ΔB).

Here we have used the fact that the bound (1 + |A|Δ
|E| )−|A|/Δ of Lemma 4.7 is

increasing in Δ (as remarked in Remark 4.8) and |E| . Thus some choice of I
intersects every element of F , as desired. �

Examining the proof of Lemma 4.7 suggests that, up to isolated vertices,
equality holds only if H ′ is the disjoint union of several identical complete
bipartite graphs. However, such a situation is seemingly contradictory with
the fiducial estimate of Δi ≈ 2(k − i)ΔB/k2. Therefore, it appears unlikely
that ξm(2) = 1

2 log 3 in reality. In fact, we make the following conjecture:

Conjecture 4.12. ξm(2) = log 2.

One possible way to approach Conjecture 4.12 is to strengthen Lemma 4.7
so that it relies solely on local parameters of the graph H ′, instead of the global
parameter Δ. In particular, the following bound seems to be true:

Conjecture 4.13. Let H ′, A,B be as in Lemma 4.6, such that there are no
isolated vertices in B. If M is the minimum of

∑
i ei log(1 + ei)/di over all

nonnegative reals ei (1 ≤ i ≤ |B|) that sum to |A| , then p(H ′) ≤ e−M .

A useful set of “local” parameters that sum to |A| are defined by fi =∑
u∈N(vi)

1/deg u, so one might think to prove the following stronger state-
ment:

p(H ′) ≤
∏

i

(1 + fi)−fi/di .

However, it is false, with the following graph as a counterexample:

A
B
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5. The Behavior of ξm (kA)

Conjecture 4.12 may seem to suggest that ξm(kA) = log(kA)kA−1. However,
in this section, we define ξ∗

m(kA) and we prove Theorem 1.10, which disproves
this conjecture for large kA. We also show that ξm(kA) < log(kA)kA−1 for
smaller values of kA.

5.1. Concrete Bounds on ξm (kA)
Before considering asymptotics, we prove that ξm(kA) < log(kA)kA−1 for many
values of kA.

Proposition 5.1. ξm(3) < (log 3)2.

Proof. Erdős–Rubin–Taylor [1] showed that K7,7 is not (3, 3)-choosable. So

ξm(3) ≤ 7 log(7)2

33
< log(3)2. �

We even have the following result:

Proposition 5.2. If kA is composite, then ξm(kA) < (log kA)kA−1.

The proof of Proposition 5.2 requires a quick fact about exponential func-
tions:

Lemma 5.3. Let a and b be positive and let g(x) = be−ax. Then there are at
most three reals x with g(g(x)) = x.

This is proven in Appendix A.

Proof of Proposition 5.2. Write kA = ar with a ≥ r > 1. By Corollary 2.3,
KΔB ,ΔA

is not (kA, kA)-choosable when ΔB = akAr and ΔA = kr
A. Observe

that

ΔB ≥
√

kA

kA
√

kA = k
(kA+1)/2
A > k

√
kA

A ≥ ΔA.

By symmetry KΔA,ΔB
is not (kA, kA)-choosable; we claim that

ΔA log(ΔB)kA−1

kkA

A

< log(kA)kA−1.

From here it will be useful to work with δA = log ΔA and δB = log ΔB . Letting
α = 1

kA−1 and β = k
kA/(kA−1)
A log(kA), we have δA = βe−αδB , while we wish

to prove that δB < βe−αδA . Thus, letting g(x) = βe−αx, we want to show that
δB < g(g(δB)).

At this point, we observe that g swaps log kA and kA log kA. Since g is
monotonically decreasing, it has a fixed point x0 in between these two numbers.
We claim that x0 < δB < kA log kA. To show the first inequality, we use the
fact g(δB) − δB = δA − δB < 0 = g(x0) − x0, which suffices as x �→ g(x) − x is
a decreasing function. The second inequality is equivalent to akAr < (ar)kA ,
which is clear.
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The function g ◦ g has fixed points at log kA, x0, and kA log kA. By
Lemma 5.3 it cannot have any more fixed points, so g(g(x)) − x �= 0 for
all x0 < x < kA log kA. Thus, to show that g(g(δB)) − δB > 0 it suffices to
show that there exists some x0 < δ < kA log kA with g(g(δ)) − δ > 0.

To do this, we will show that the derivative of g ◦g at kA log kA is strictly
less than 1. To start, observe that g′(x) = −αg(x). Therefore, the derivative
of g(g(x)) at kA log kA is, by the chain rule,

g′(log kA)g′(kA log kA) = α2(log kA)(kA log kA) =
kA log(kA)2

(kA − 1)2
.

We wish to show that kA log(kA)2 < (kA −1)2. Since equality holds at kA = 1,
we only need to show that the derivative of the left hand side is less than the
derivative of the right hand side for all kA > 1, i.e., log(kA)2 + 2 log(kA) <
2(kA − 1). Equality again holds at kA = 1, so by taking the derivative again
we need to show

2(log kA + 1)
kA

< 2 ⇐⇒ kA − 1 > log kA.

This is well-known. �

We have now shown that ξm(kA) < (log kA)kA−1 for a wide variety of kA:
specifically, if any counterexamples greater than 2 exist, they must be primes
at least 5. Especially given that Theorem 1.10 implies that only finitely many
counterexamples do exist, it is attractive to conjecture that in fact none exist.
However, constructions for small primes at least 5 remain elusive.

5.2. ξ∗
m (kA) and Growth Rates

Definition 5.4. Let ξ∗
m(kA) be the infimum value of ΔB log(ΔA)kA/kkA

B over
all ΔA,ΔB , kB such that KΔB ,ΔA

is not (kA, kB)-choosable.

In fact, since for such ΔA,ΔB , kB we have

ΔB log(ΔA)kA/kkA

B ≥ ξm(kA) log(ΔA),

we have the following result:

Proposition 5.5. ξm(kA) log(kA) ≤ ξ∗
m(kA).

We will now prove bounds on the growth rates of ξm(kA) and ξ∗
m(kA).

First, by Proposition 3.10, ξm(kA) ≥ α(kA). Here, we determine the asymp-
totic behavior of α(kA).

Proposition 5.6. limkA→∞ log(α(kA))/kA = 0.

Proof. To prove an upper bound, first note that since α(kA) ≤ 1, we have that
lim supk→∞ log(α(kA))/kA ≤ 0.

Now, set u = 1/kA. Since log(1 − x) ≥ −2x for sufficiently small positive
x, for small u we have

log(1 − u + u log u) ≥ −2 log(ekA)
kA

.
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Therefore, for sufficiently large kA,

α(kA) ≥ u(1 − u + u log u)kA−1 ≥ (1 − u + u log u)kA

kA
≥ 1

e2k3
A

,

which shows lim infkA→∞ log(α(kA))/kA ≥ 0. �

Proposition 5.7. lim supkA→∞ log(ξ∗
m(kA))/kA ≤ log 2 + log log 2.

Proof. Erdős–Rubin–Taylor [1] showed that KΔ,Δ is not (kA, kA)-choosable if
Δ = k2

A2kA+1. Therefore,

ξ∗
m(kA) ≤ k2

A2kA+1((kA + 1) log 2 + 2 log kA)kA

kkA

A

= k2
A2kA+1

(
log 2 +

log 2 + 2 log kA

kA

)kA

.

The logarithm of this is asymptotic to (log 2 + log log 2)kA, as desired. �

5.3. Asymptotic Existence

We start with a quick lemma using graph amplification:

Lemma 5.8. Suppose KΔB ,ΔA
is not (kA, kB)-choosable. Let a and b be non-

negative integers and let r = 2a3b. Then K(6ΔB)r/6,(6ΔA)r/6 is not (rkA, rkB)-
choosable.

Proof. Observe that it suffices to show the result for r = 2 and r = 3, after
which the result for general r will follow by chaining steps that multiply r by
2 or 3.

If r = 2, we want to show that K6Δ2
B ,6Δ2

A
is not (2kA, 2kB)-choosable.

To do this, note that (KΔB ,ΔA
)�2 = K2ΔB ,Δ2

A
is not (kA, 2kB)-choosable.

Applying another 2-fold blowup with the roles of A and B reversed implies
that K4Δ2

B ,2Δ2
A

is not (2kA, 2kB)-choosable, as desired.
Similarly, we can show that K27Δ3

B ,3Δ3
A

is not (3kA, 3kB)-choosable. Since
27 < 62, we are done. �

Proof of Theorem 1.10. First observe that by applying Propositions 5.5 and
5.6, the quantity lim infkA→∞ log(ξ∗

m(kA))/kA exists. We will find a function
f(x, kA) with limkA→∞ f(x, kA) = x such that if

log(ξ∗
m(k0))
k0

< x,

then we have

lim sup
kA→∞

log(ξ∗
m(kA))
kA

≤ f(x, k0).

This shows that for all x > lim infkA→∞ log(ξ∗
m(kA))/kA, we can deduce that

lim supkA→∞ log(ξ∗
m(kA))/kA ≤ x, which will finish the proof.

For a real number s, let r(s) be the smallest number of the form 2a3b

that is at least s, where a and b are nonnegative integers. Since log(3)/ log(2)
is irrational, lims→∞ r(s)/s = 1.
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Now take some x and k0 such that log(ξ∗
m(k0))/k0 < x. Thus there exist

ΔA,ΔB , kB such that KΔB ,ΔA
is not (k0, kB)-choosable and

ΔB log(ΔA)k0

kk0
B

< exk0 ⇐⇒ Δ1/k0
B log(ΔA)

kB
< ex.

For a positive integer kA, note that by Lemma 5.8, K(6ΔB)r(kA/k0),(6ΔA)r(kA/k0)

is not (k0r(kA/k0), kBr(kA/k0))-choosable and therefore not (kA, kBr(kA/k0))-
choosable. Therefore

log(ξ∗
m(kA))
kA

≤ log
(6ΔB)r(kA/k0)/kAr(kA/k0) log(6ΔA)

kBr(kA/k0)
,

where the right-hand side approaches

log
(6ΔB)1/k0 log(6ΔA)

kB
< x + log

(
61/k0

log(6k0)
log(k0)

)

as kA → ∞ (we used the fact that ΔA ≥ k0). Therefore

f(x, kA) = x + log
(

61/kA
log(6kA)
log(kA)

)

is the desired function, completing the proof. �

By applying Propositions 5.5, 5.6, and 5.7, we know that the limit
limkA→∞ log(ξ∗

m(kA))/kA is at least 0 but at most log 2+log log 2 ≈ 0.3266. De-
spite appearances, the question of whether the limit limkA→∞ log(ξ∗

m(kA))/kA

is zero or positive is relatively unimportant compared to determining the ac-
tual value of the limit. To see this, observe that changing the base of the
logarithm used to define ξ∗

m(kA) will multiply values by an exponential in kA,
changing the value of the limit by a constant.

It is natural to make the following conjecture:

Conjecture 5.9. The limit limkA→∞ log(ξm(kA))/kA exists and is equal to the
limit limkA→∞ log(ξ∗

m(kA))/kA.

However, applying similar methods to attack this problem does not di-
rectly work, since one cannot rule out the case where the values of ΔA wit-
nessing a low value of ξm(k) grow extremely quickly. Therefore, resolving this
conjecture appears to require a deeper understanding of list coloring beyond
graph amplification techniques.

6. On General Bipartite Graphs

When G is allowed to be any bipartite graph with the maximum degrees ΔA

and ΔB , the combinatorial tools required to prove the (kA, kB)-choosability of
many relevant bipartite graphs are far more elusive.

Definition 6.1. Define ξg(kA) as the infimum value of ξ over all kB and bipar-
tite graphs G with maximum degrees ΔA,ΔB that are not (kA, kB)-choosable.
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The main difference between ξg(kA) and ξm(kA) is that, in the general
bipartite case, there is no analogue to Proposition 2.5, meaning that it is
possible that ξg(kA) = 0. It is unknown whether this is the case for any kA,
but proving the contrary for any kA > 1 seems to be very difficult:

Proposition 6.2. Suppose ξg(kA) > 0. Then, for any bipartite graph G, we have
ch(G) = O(Δ1/kA log(Δ)1−1/kA).

Proof. By the definition of ξg, if

Δ log(Δ)kA−1

kkA

B

< ξg(kA),

then G is (kA, kB)-choosable, and thus (k′, k′)-choosable for k′ = max(kA, kB).
So

ch(G) ≤ max
(
kA, ξg(kA)−1/kAΔ1/kA log(Δ)1−1/kA + 1

)
,

as desired. �

Therefore, a proof that ξg(kA) > 0 for any kA > 1 would imply major
progress towards resolving Conjecture 1.1.

Interestingly, even if the positivity of ξg(kA) is assumed, proving ana-
logues to Theorems 1.5 and 1.6 would not result from a simple reapplication
of the techniques of this paper. The main difficulty in doing so is that our use
of graph amplification sometimes does not respect the local structure of the
graph; in particular, ΔA(G�r) = ΔA(G) |B(G)|r−1

.
Finally, more complex properties of the ξg(kB) correspond to generaliza-

tions of Conjecture 1.1. In particular, Conjecture 1.11 posits that ξg(kA) > 0
for all kA and that limkA→∞ log(ξg(kA))/kA exists. We conclude the paper
with the following claim:

Theorem 6.3. Assume Conjecture 1.11. Then all three parts of Conjecture 1.2
are true.

Proof. We will actually only use the fact that ξg(kA) > 0 for all kA and

lim inf
kA→∞

log(ξg(kA))/kA > −∞,

which is equivalent to ξg(kA) > ckA for some positive c. Therefore, G is
(kA, kB)-choosable whenever

Δ1/kA

B log(ΔA)1−1/kA < ckB .

To prove part (a), fix some positive ε. Pick Δ0 sufficiently large such that
log Δ > 1, Δ−ε < ε/2, and Δε/2/ log(Δ) > 1/(cε) for all Δ ≥ Δ0. Now
assume ΔB ≥ ΔA > Δ0. Then, if kA ≥ Δε

A and kB ≥ Δε
B , we have

Δ1/kA

B log(ΔA)1−1/kA < Δε/2
B log(ΔB) < cΔε

B ≤ ckB ,

as desired.
To prove part (b), note that since log(ΔA) ≥ log(2), there is some

c′, namely c′ = c log(2), such that G is (kA, kB)-choosable whenever Δ1/kA

B



Coloring Bipartite Graphs with Semi-small List Size

log(ΔA) < c′kB . This condition is equivalent to Δ1/kA

B log(Δ1/kB

A ) < c′. There-
fore, letting q > 1 be such that q log q < c′, it is sufficient to show that
Δ1/kA

B ,Δ1/kB

A ≤ q, which is equivalent to kA ≥ log(ΔB)/ log(q) and kB ≥
log(ΔA)/ log(q). Thus 1/ log(q) is the desired constant C.

Finally, we prove part (c). If ΔA = ΔB = Δ and kB ≥ C(Δ/ log Δ)1/kA

log Δ, we have

Δ1/kA

B log(ΔA)1−1/kA ≤ kB/C.

If C > 1/c, then G is (kA, kB)-choosable. �
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Appendix A: Supplemental Proofs

A.1. Proof of Lemma 4.11

Observe that the inequality holds when β = 0, so we will be done if we can
show that for every β > 0 the logarithmic derivative of the left hand side is at

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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most the logarithmic derivative of the right hand side. Thus, we want to show
that

− (γ−a)2

γ−b

1 + β γ−a
γ−b

≤ −γ

1 + β
+

a2/b

1 + βa2/b
.

Clearing denominators (all of which are positive), this rearranges to

a2(1 + β)(γ − b + β(γ − a)) − γ(b + βa2)(γ − b + β(γ − a))
+(γ − a)2(1 + β)(b + βa2) ≥ 0.

After expanding, we are left with an inequality that is only degree 1 in γ, as
follows:

γ((a − b)2 + βa(1 − a)(2a − b) + β2a2(1 − a)) − a3β(1 − a)(1 + β) ≥ 0. (†)
The coefficient of γ in (†) is nonnegative, since it can be rewritten as

(1 − a)((a − b)2 + βa(a − b) + β2a2) + a(a − b)2 + βa2(1 − a);

thus we only need to check γ = max(a, b) to ensure that the inequality holds
for all γ ≥ max(a, b). If a ≥ b then setting γ = a in (†) yields

a(a − b)(a − b + βa(1 − a)) ≥ 0,

which clearly true. If b ≥ a then setting γ = b in (†) yields

(b − a)(b(b − a) − βa(1 − a)(b − a) + β2a2(1 − a)) ≥ 0,

where the second term is nonnegative as it is equal to

ab(b − a) + a(1 − a)(b − a) + (1 − a)((b − a)2 − βa(b − a) + β2a2).

This concludes the proof.

A.2. Proof of Lemma 5.3

We use the Schwarzian derivative

(Sf)(x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

.

It is known (see e.g. [9]) that S(g ◦ f)(x) = (Sg)(x)f ′(x)2 + (Sf)(x). It is
simple to compute (Sg)(x) = −a2/2, so we have (Sh)(x) < 0 for all x, where
h = g ◦ g. Observe that since g′(x) < 0 for all x, h′(x) > 0 for all x.

Suppose there exist at least four distinct solutions to the equation h(x) =
x. Then, by the mean value theorem there exist b1 < b2 < b3 with h′(b1) =
h′(b2) = h′(b3) = 1. Let b∗ be in the interval [b1, b3] such that h′(b∗) is minimal.
We may further assume that b∗ is in the open interval (b1, b3), since if h′

achieves a minimum at either b1 or b3, we may take b∗ = b2.

Now, by the second derivative test, we have h′′(b∗) = 0 and h′′′(b∗) ≥ 0.
This implies that (Sh)(b∗) ≥ 0, a contradiction.
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