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Abstract
The Delsarte linear program is used to bound the size of codes given their block length n
and minimal distance d by taking a linear relaxation from codes to quasicodes. We study
for which values of (n, d) this linear program has a unique optimum: while we show that
it does not always have a unique optimum, we prove that it does if d > n/2 or if d ≤ 2.
Introducing the Krawtchouk decomposition of a quasicode, we prove there exist optima to
the (n, 2e) and (n − 1, 2e − 1) linear programs that have essentially identical Krawtchouk
decompositions, revealing a parity phenomenon among the Delsarte linear programs. We
generalize the notion of extending and puncturing codes to quasicodes, from which we see
that this parity relationship is given by extending/puncturing. We further characterize these
pairs of optima, in particular demonstrating that they exhibit a symmetry property, effectively
halving the number of decision variables.

Keywords Delsarte linear program · Linear programming bound · Codes · Coding theory ·
Quasicode · Krawtchouk polynomials

Mathematics Subject Classification 94B65

1 Introduction

The practical problem of communicating over a noisy channel, whose study was initiated by
Hamming [9], can be modeled by the problem of choosing as many words as possible for our
code such that no two words are less than d distance apart. Let Fq denote an alphabet with
q elements, and let |x − y| denote the Hamming distance between words x, y ∈ F

n
q , i.e., the

number of indices for which the words have different letters. This notation suggests Fq has
the additional structure of a finite field, which is often used to describe certain particularly
elegant codes, but is not necessary for the definition of the problem. However, we will pick
a distinguished word 0 ∈ F

n
q and define the weight of x , denoted |x |, to be |x − 0|.
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A code of length n is then simply a nonempty subset C ⊆ F
n
q . Its minimal distance d is

given by

d = min
x,y∈C
x �=y

|x − y|.

The value of d corresponds to how error-resistant the code is: if we only use words in C rather
than arbitrary words in F

n
q , then if up to d − 1 letters are changed (perhaps due to an error

in storage, or due to communication over a noisy transmission channel), it is impossible for
one word to be changed to another valid word, so any such modified word will be detected
as a word not in the code. Thus, we say that the code detects d − 1 errors, and similarly it
corrects �(d − 1)/2� errors, in the sense that if at most �(d − 1)/2� errors occur, the original
word can be determined.

Immediately, a tradeoff manifests itself: in order to transmit more information per word,
one would like the code to have larger size |C|, i.e., the number of words in the code, but this
causes the minimal distance to decrease, reducing the code’s resistance to errors. Hence, the
basic question of codes is, given length n, alphabet size q , and a lower bound for the minimal
distance d , what is the maximum possible size of the code?

One may view this problem as the sphere-packing problem in Hamming space Fn
q rather

than Euclidean spaceRn . The sphere-packing problem is the problem of how to most densely
pack unit balls into R

n without overlap, or equivalently the problem of picking “as many"
points in R

n as possible such that the minimal distance d is at least 2, where “as many"
refers to the density of points contained in a closed ball as the radius of this ball goes to
infinity. It has been solved for n ≤ 3 (see Hales [7, 8]), as well as famously for n = 8 by
Viazovska [12] and for n = 24 by Cohn, Kumar, Miller, Radchenko, and Viazovska [2]. One
complication that arises in Hamming space compared to Euclidean space is that due to the
continuity of Rn , the choice of the lower bound on minimal distance d does not matter as
the space can be dilated appropriately, but this is not the case in Hamming space, where the
choice of d nontrivially changes the structure of the largest codes. For more background on
sphere-packing, error-correcting codes, and their connections, we refer readers to Conway
and Sloane [3].

We now introduce concepts that will be useful in addressing the question of the largest
possible code given n and d , where we fix q = 2 for the remainder of the paper. The j-th
Krawtchouk polynomial is defined by

K j (i; n) =
j∑

k=0

(−1)k
(
i

k

)(
n − i

j − k

)
,

which we typically write as K j (i) as n will be clear from the context. We will use the
convention that

(a
b

) = 0 if 0 ≤ b ≤ a does not hold, so K j (i; n) = 0 if j /∈ [0, n] or
i /∈ [0, n], where we define [a, b] = {x ∈ Z | a ≤ x ≤ b}. For a word x ∈ F

n
2 of weight i ,

the Krawtchouk polynomial K j (i) is the sum of (−1)〈x,y〉 over all words y ∈ F
n
2 of weight j ,

where 〈x, y〉 is the inner product of x and y over the finite field F2, which up to parity equals
the number of indices for which x and y are both 1. From this interpretation, we typically
consider i and j for 0 ≤ i, j ≤ n, so the Krawtchouk polynomials can be condensed into the
Krawtchouk matrix K , the (n + 1) × (n + 1) matrix given by K ji = K j (i) for 0 ≤ i, j ≤ n.
Hence, we let K j denote the j-th row of K , representing the j-th Krawtchouk polynomial.

The distance distribution of a code C ⊆ F
n
q is the vector A = (A0, . . . , An), where

Ai = 1

|C|
∣∣{(x, y) ∈ C2 : |x − y| = i

}∣∣
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Unique optima of the Delsarte linear program

for 0 ≤ i ≤ n. The normalization factor of |C|−1 ensures that A0 = 1 and
∑n

i=0 Ai = |C|. If
a lower bound d on theminimal distance is specified, this corresponds to requiring Ai = 0 for
all i ∈ [d−1], where [a] denotes the set {1, . . . , a}. The support of C is S = {i > 0 | Ai > 0}.

Delsarte [4] proved that the distance distribution of any code must satisfy certain inequali-
ties expressed in terms of Krawtchouk polynomials. This yields theDelsarte linear program,
which, for a given pair of integers (n, d) such that 1 ≤ d ≤ n, is given by

max
n∑

i=0

Ai

such that
n∑

i=0

Ai K j (i) ≥ 0 for all j ∈ [n]

Ai = 0 for all i ∈ [d − 1]
A0 = 1

Ai ≥ 0 for all i ∈ [n]. (1)

The inequalities in Eq. (1) are referred to as the Delsarte inequalities. Any code C ⊆ F
n
2

whose minimal distance is at least d has a distance distribution that is a feasible point of
the Delsarte linear program, and as |C| = ∑n

i=0 Ai , we find the optimal objective value of
the Delsarte linear program is an upper bound on |C|. As an arbitrary feasible solution A
may not actually be realized as the distance distribution of a code, we refer to these points
A = (A0, . . . , An) as quasicodes. Let the feasible region for this linear program, which is a
convex polytope in R

n−d+1 corresponding to variables Ad through An , be denoted by P .
The dual of the Delsarte linear program is given by

min
n∑

j=0

c j

(
n

j

)

such that
n∑

j=0

c j K j (i) ≤ 0 for all i ∈ [d, n]

c j ≥ 0 for all j ∈ [n]
c0 = 1.

By complementary slackness, for any optimal quasicode A∗ and optimal dual solution c∗,
for all i ∈ [d, n], if A∗

i > 0 then
∑n

j=0 c
∗
j K j (i) = 0. And for all j ∈ [n], if c∗

j > 0 then∑n
i=0 A

∗
i K j (i) = 0.

The main results of this paper comprise Sects. 4 and 5. We introduce the Krawtchouk
decomposition of a quasicode A, which is the vector b = (b0, . . . , bn) given by

b j = 1(n
j

)
n∑

i=0

Ai K j (i),

so that for all i ,

Ai =
(
n

i

)
(b0K0(i) + · · · + bnKn(i))/2

n .

Weprove that there exist optima, i.e., feasible points achieving the optimal value, of the (n, 2e)
and (n − 1, 2e − 1) Delsarte linear programs whose Krawtchouk decompositions agree on
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indices 0 through n − 1, inclusive. This reveals a previously unseen parity phenomenon in
the Delsarte linear program. Moreover, this parity phenomenon manifests from the general-
ization of extending and puncturing codes to quasicodes. Two common practical operations
performed on codes are extending a code by adding a parity check bit and puncturing a code
by removing a bit. We introduce the generalization of these two operations to quasicodes,
and show that solutions to the (n−1, 2e−1) and (n, 2e)Delsarte linear programs can be sent
to each other by extending and puncturing, while still preserving the optimal value. Thus,
extending a (n − 1, 2e − 1) optima yields a (n, 2e) optima, and vice versa for puncturing.
In particular, puncturing corresponds to truncating the Krawtchouk decomposition, proving
the parity phenomenon.

The parity phenomenon suggests that quasicodes fundamentally possess the same struc-
ture as codes with respect to extending and puncturing. We additionally prove a symmetry
phenomenon that shows the structure of even codes persists among quasicodes. When d is
even, efficient codes are typically even, meaning the distance distribution A has even support
S ⊂ 2Z. We prove that when d is even, the (n, d)Delsarte linear program always has an even
optimum, demonstrating that the evenness structure extends from codes to quasicodes. The
quasicode A being even corresponds to the Krawtchouk decomposition b being symmetric,
i.e., b j = bn− j for all j , and thus this proves our symmetry phenomenon.

In Sect. 2, we provide some preliminary properties of the Krawtchouk polynomials that
will be important for later sections. In Sect. 3, we prove that if d > n/2 or if d ≤ 2, the
Delsarte linear program has a unique optimum. We also show that the dual does not have
a unique optimum in many cases, and present some examples in which the primal does not
have a unique optimum. In Sect. 4, we define the Krawtchouk decomposition of a quasicode
and then present the parity and symmetry phenomena. In Sect. 5, we generalize the notion of
extending and puncturing codes to quasicodes, allowing us to prove the parity and symmetry
phenomena via extending/puncturing quasicodes.

2 Preliminaries of the Krawtchouk polynomials

We now introduce numerous classically known properties of the Krawtchouk polynomials
that will be useful throughout the paper.

Lemma 2.1 (Reciprocity of the Krawtchouk polynomials; see [11, p. 152])For all 0 ≤ i, j ≤
n, we have

(n
i

)
K j (i) = (n

j

)
Ki ( j).

The well-established basic properties in Lemma 2.2 directly follow from the definition of
the Krawtchouk polynomials and Lemma 2.1.

Lemma 2.2 The Krawtchouk polynomials satisfy the following properties, for all 0 ≤ i, j ≤
n:

(1) K0(i) = 1.
(2) K j (0) = (n

j

)
.

(3) Kn− j (i) = (−1)i K j (i).
(4) K j (n − i) = (−1) j K j (i).
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Lemma 2.3 (Orthogonality of the Krawtchouk polynomials; see [11, p. 151]) For all 0 ≤
j, k ≤ n,

1

2n

n∑

i=0

(
n

i

)
K j (i)Kk(i) =

(
n

j

)
δ jk,

where δ is the Kronecker delta function.

Lemma 2.3 allows you to recover the coefficients of a linear combination of Krawtchouk
polynomials: if v = (v0, . . . , vn) = b0K0 + · · · + bnKn , then

1

2n

n∑

i=0

(
n

i

)
vi K j (i) =

(
n

j

)
b j .

It also implies K 2 = 2n I , as

(K 2) jk =
n∑

i=0

K j (i)Ki (k) =
n∑

i=0

(n
i

)
K j (i)Kk(i)(n

k

) = 2nδ jk .

In particular, K is non-singular and theKrawtchouk polynomials K j are linearly independent.
The following result gives the column sums of the Krawtchouk matrix K .

Lemma 2.4 ([11, p. 153]) For all n,
n∑

j=0

K j = (
2n, 0, 0, . . . , 0

)
.

The Krawtchouk polynomials also satisfy a three-term recurrence.

Lemma 2.5 ([11, p. 152]) For all 0 ≤ i, j ≤ n,

( j + 1)K j+1(i) = (n − 2i)K j (i) − (n − j + 1)K j−1(i; n).

While typically n is kept fixed, we present the following useful recurrence for Krawtchouk
polynomials between block lengths n and n − 1.

Lemma 2.6 ([1, Proposition 2.1(1)]) For all n ≥ 1 and 0 ≤ i ≤ n − 1,

K j (i; n) = K j (i; n − 1) + K j−1(i; n − 1)

for any 0 ≤ j ≤ n.

In the reverse direction, we provide another relation moving from block length n − 1 to
n.

Lemma 2.7 ([1, Proposition 2.1(4)]) For all 0 ≤ i, j ≤ n − 1,

2K j (i; n − 1) = K j (i; n) + K j (i + 1; n).

It is known that the magnitude of K j (i) over all integers 0 ≤ i ≤ n is maximized at i = 0
and n (see, for example, Dette [5]). The following result shows that i = 1 and n − 1 are next
largest, i.e., |K j (i)| over all 1 ≤ i ≤ n − 1 is maximized at i = 1 and n − 1, except when
j = n

2 so that K j (1) = (n
d

) n−2 j
n = 0.

Lemma 2.8 ([6, Corollary 10]) If j �= n
2 , then for all i ∈ [n − 1],

|K j (1)| =
∣∣∣∣

(
n

j

)
n − 2 j

n

∣∣∣∣ ≥ |K j (i)|.
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3 Uniqueness of optima

3.1 The upper half case

In this section, we prove that the Delsarte linear program has a unique optimum when
2d/2� > n − d , roughly corresponding to d being at least n/2: precisely, if d is even,
then 2d > n, and when d is odd, then 2d ≥ n.

Theorem 3.1 If 2d/2� > n−d, the Delsarte linear program has a unique optimum, namely
the quasicode A∗ given by

A∗
i =

⎧
⎪⎨

⎪⎩

1 if i = 0
n

2d−n if i = d

0 otherwise

when d is even, and

A∗
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if i = 0
d+1

2d−n+1 if i = d
n−d

2d−n+1 if i = d + 1

0 otherwise

when d is odd.

Proof We first address the even d case. The objective value of A∗ is 2d
2d−n , and all of the

constraints trivially hold except for the Delsarte inequalities, which become

n∑

i=0

A∗
i K j (i) =

(
n

j

)
+ n

2d − n
K j (d) ≥ 0

for all j ∈ [n], or equivalently

K j (d) ≥ n − 2d

n

(
n

j

)
.

Applying reciprocity of the Krawtchouk polynomials yields

Kd( j) ≥ n − 2d

n

(
n

d

)
.

As 2d > n, Lemma 2.8 implies this inequality for all j ∈ [n − 1]. For j = n,

Kd(n) = (−1)d Kd(0) =
(
n

d

)
> 0 >

n − 2d

n

(
n

d

)
,

which completes the proof that A∗ is feasible.
Consider the dual solution c∗ given by

c∗
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if j = 0
2d−n+1

(2d−n)(2d−n+2) if j = 1
1

(2d−n)(2d−n+2) if j = n − 1

0 otherwise.
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It has dual objective of 2d
2d−n , so demonstrating it is a feasible solution proves A∗ is optimal.

As 2d > n, we find that c∗
j ≥ 0 for all j ∈ [n], so it remains to show that for all i ∈ [d, n],

n∑

j=0

c∗
j K j (i) ≤ 0.

Note that K0(i) = 1, K1(i) = n − 2i , and Kn−1(i) = (−1)i (n − 2i), yielding

n∑

j=0

c∗
j K j (i) = 1 + (n − 2i)

2d − n + 1

(2d − n)(2d − n + 2)
+ (−1)i (n − 2i)

1

(2d − n)(2d − n + 2)
.

When i is even, as i ≥ d this becomes

1 + n − 2i

2d − n
≤ 1 + n − 2d

2d − n
= 0,

and when i is odd, we have i ≥ d + 1 as d is even, so the RHS becomes

1 + n − 2i

2d − n + 2
≤ 1 + n − 2d − 2

2d + 2 − n
= 0,

as desired. Notice that these constraints are tight if and only if i = d or d + 1.
Hence, A∗ and c∗ are optimal solutions to the primal and dual, respectively. By comple-

mentary slackness, as the dual constraint is strict for i > d + 1, any optimum to the primal
must satisfy Ai = 0 for all i > d + 1. Hence, A0 = 1, Ad , and Ad+1 are the only potentially
nonzero values. As c∗

1, c
∗
n−1 > 0 then the Delsarte inequality must be tight for j = 1 and

n − 1 for any primal optimum. These conditions become

n + (n − 2d)Ad + (n − 2d − 2)Ad+1 = 0

n + (n − 2d)Ad − (n − 2d − 2)Ad+1 = 0,

which requires Ad+1 = 0 and Ad = n
2d−n , proving that A∗ is the unique optimum.

We now address the odd d case, where 2d ≥ n. The objective value of A∗ is 2d+2
2d−n+1 , and

all of the constraints trivially hold except for the Delsarte inequalities, which become

n∑

i=0

A∗
i K j (i) =

(
n

j

)
+ d + 1

2d − n + 1
K j (d) + n − d

2d − n + 1
K j (d + 1) ≥ 0

for all j ∈ [n]. Multiplying by n!
(d+1)!(n−d)! yields the equivalent inequality

(
n

d

)
K j (d)

2d − n + 1
+

(
n

d + 1

)
K j (d + 1)

2d − n + 1
≥ − n!

(d + 1)!(n − d)!
(
n

j

)
,

and after applying reciprocity of Krawtchouk polynomials, this becomes

Kd( j)

2d − n + 1
+ Kd+1( j)

2d − n + 1
≥ − n!

(d + 1)!(n − d)! .

By Lemma 2.6, this is equivalent to

Kd+1( j; n + 1) ≥ − n!(2d − n + 1)

(d + 1)!(n − d)! =
(
n + 1

d + 1

)
(n + 1) − 2(d + 1)

n + 1
.

As d + 1 > n+1
2 , Lemma 2.8 implies this inequality holds for all j ∈ [n]. Hence, A∗ is a

feasible solution.
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Consider the dual solution c∗ given by

c∗
j =

⎧
⎪⎨

⎪⎩

1 if j = 0
1

2d−n+1 if j ∈ {1, n}
0 otherwise.

It has dual objective of 2d+2
2d−n+1 , so showing c∗ is a feasible solution proves A∗ is optimal.

The assumption that 2d ≥ n ensures c∗
j ≥ 0 for all j , and so it remains to show that for all

i ∈ [d, n],
n∑

j=0

c∗
j K j (i) ≤ 0.

We have
n∑

j=0

c∗
j K j (i) = 1 + n − 2i

2d − n + 1
+ (−1)i

1

2d − n + 1
.

When i is even, i ≥ d + 1 so this becomes

1 + n + 1 − 2i

2d − n + 1
≤ 1 + n − 2d − 1

2d − n + 1
= 0,

and when i is odd, as i ≥ d we find

1 + n − 1 − 2i

2d − n + 1
≤ 1 + n − 2d − 1

2d − n + 1
= 0,

as desired. These constraints are tight if and only if i = d or d + 1.
Thus, A∗ and c∗ are optimal solutions to the primal and dual, respectively. By comple-

mentary slackness, any primal optimum must additionally have Ai = 0 for all i > d + 1.
As c∗

1, c
∗
n > 0 then the Delsarte inequality must be tight for j = 1 and n for any primal

optimum, i.e.,

n + (n − 2d)Ad + (n − 2d − 2)Ad+1 = 0

1 − Ad + Ad+1 = 0.

Substituting the latter into the former yields

n + (n − 2d)(Ad+1 + 1) + (n − 2d − 2)Ad+1 = 2n − 2d + (2n − 4d − 2)Ad+1 = 0,

whose solution is Ad+1 = n−d
2d−n+1 . Requiring Ad = Ad+1 + 1 yields A∗ as the unique

optimum. ��
Example 3.2 For an example of a code realizing the optimum from Theorem 3.1, the binary
simplex code [11, Ch. 1, §9], which is the dual of a Hamming code, has n = 2r − 1 and
d = 2r−1, where the code is supported at exactly this one distance, i.e., S = {d}. It has size
2r , and thus has distance distribution given by A0 = 1, Ad = 2r −1, and Ai = 0 everywhere
else. This matches the even case of Theorem 3.1, and puncturing this code, i.e., removing a
bit from the code, corresponds to the odd case of Theorem 3.1.

Remark 3.3 The case 2d > n is known as the Plotkin range. For codes, which must have

integer size, the Plotkin bound (see [11, p. 43]) upper bounds the size of codes by 2
⌊

d
2d−n

⌋
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when d is even, and 2
⌊

d+1
2d−n+1

⌋
when d is odd. These are the same bounds as for quasicodes

from Theorem 3.1, except rounding down to the nearest even integer. Provided enough
Hadamard matrices exist, the Plotkin bound is tight (see [11, p. 50]).

Delsarte [4, Theorem 14] provided an upper bound of 2d
2d−n on the optimal objective value

of the Delsarte linear program in the Plotkin range. Theorem 3.1 proves this bound is tight
when d is even, and improves the bound to 2d+2

2d−n+1 < 2d
2d−n when d is odd, which is tight

for the optimal objective value of the Delsarte linear program.

3.2 Non-uniqueness of dual optimum

Studying the cases d = n and n − 1, we find that the dual of the Delsarte linear program
does not generally have a unique optimum, i.e., a unique feasible point achieving the optimal
value, for all pairs (n, d).

Proposition 3.4 When d = n, the dual of the Delsarte linear program has a unique optimum
if and only if n ≤ 2.

Proof By complementary slackness with primal optimum A∗ = (1, 0, 0, . . . , 0, 1) from
Theorem 3.1, a dual optimum must have

n∑

j=0

c j K j (n) = 1 +
n∑

j=1

c j (−1) j
(
n

j

)
= 0, (2)

using properties from Lemma 2.2. As c j ≥ 0 for all j , clearly c j = 0 for any positive even j ,
as otherwise we can decrease it along with some c′

j > 0 for odd j ′ to decrease the objective
value while preserving the necessary equation, Eq. (2). Thus, any dual optimum must have

∑

1≤ j≤n
j odd

c j

(
n

j

)
= 1, (3)

which implies the objective value is 2, which is optimal, so this condition, along with c j = 0
for all positive even j , is necessary and sufficient for a dual optimum.

For n ≤ 2 this clearly yields a unique dual optimum, but for n ≥ 3, we find Eq. (3) is a
equation over multiple variables, yielding multiple optimal solutions. ��

Theorem 3.5 When d = n − 1, the dual of the Delsarte linear program has a unique
optimum if and only if n is even, in which case the unique dual optimum is c∗ =(
1, 1

n−1 , 0, 0, . . . , 0,
1

n−1

)
.

Proof As d = n − 1 ≥ 1, we have n ≥ 2. From the proof of Theorem 3.1, we find that, with
respect to the unique optimum A∗, the constraint

∑n
i=0 A

∗
i K j (i) ≥ 0 is strict for all j ∈ [n]

except j = 1 and j = 2�n/2�. By complementary slackness, any optimal dual solution c
can thus only have positive entries c0 = 1, c1, and c2�n/2�. Complementary slackness when
A∗
i > 0 also yields

∑n
j=0 c j K j (i) = 0 for i ∈ {n − 1, n} if n is even, and for i = n − 1 if n

is odd.
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For even n ≥ 2, implementing these observations from complementary slackness allows
the dual to be rewritten as

min 1 + nc1 + cn

such that 1 − (n − 2)c1 − cn = 0

1 − nc1 + cn = 0

c1, cn ≥ 0.

The first two constraints have a unique solution c1 = cn = 1
n−1 , meaning the unique dual

optimum is c∗ =
(
1, 1

n−1 , 0, 0, . . . , 0,
1

n−1

)
.

For odd n ≥ 3, we rewrite the dual as

min 1 + nc1 + ncn−1

such that 1 − (n − 2)c1 − (n − 2)cn−1 = 0

1 − nc1 + ncn−1 ≤ 0

c1, cn−1 ≥ 0.

The first constraint yields c1 + cn−1 = 1
n−2 , which fixes the objective value to be 1 + n

n−2 ,
which is the optimal value by Theorem 3.1. So any feasible solution is a dual optimum,
and namely substituting cn−1 = 1

n−2 − c1, the second constraint becomes c1 ≥ n−1
n(n−2) .

Combining this with the nonnegativity constraint 1
n−2 − c1 = cn−1 ≥ 0 yields

n − 1

n
· 1

n − 2
≤ c1 ≤ 1

n − 2
,

so there are multiple values for c1, all of which yield a nonnegative value for cn−1. Each of
these yields a feasible dual solution, which must then be a dual optimum, so the dual does
not have a unique optimum when n is odd. ��

3.3 The case d = 1

When d = 1, we see that both the primal and dual have unique optima.

Theorem 3.6 When d = 1, the Delsarte linear program has a unique optimum, namely the
quasicode A∗ given by A∗

i = (n
i

)
for all 0 ≤ i ≤ n. In addition, the dual linear program has

a unique optimum, namely the dual solution c∗ = 1.

The fact that A∗
i = (n

i

)
is optimal is well-known; see Levenshtein [10]. For completeness,

we prove that it is not only optimal, but also unique, and additionally address the dual linear
program.

Proof Define vectors K ′
j = (K j (1), . . . , K j (n)) for all 1 ≤ j ≤ n. We first show that these

vectors are linearly independent. Suppose we have b1, . . . , bn such that b1K ′
1+· · ·+bnK ′

n =
0. Define vectors K j = (K j (0), . . . , K j (n)) for all 1 ≤ j ≤ n, and let v be the vector

v = b1K1 + · · · + bnKn =
(
b1

(
n

1

)
+ · · · + bn

(
n

n

)
, 0, . . . , 0

)
.

By the orthogonality of the Krawtchouk polynomials, for all 1 ≤ j ≤ n,
(
n

j

) (
b1

(
n

1

)
+ · · · + bn

(
n

n

))
=

n∑

i=0

(
n

i

)
vi K j (i) = 2n

(
n

j

)
b j ,
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so

b1

(
n

1

)
+ · · · + bn

(
n

n

)
= 2nb j

for all j . Hence b1 = · · · = bn , and the necessary equation is

b1

((
n

1

)
+ · · · +

(
n

n

))
= b1

(
2n − 1

) = 2nb1,

which yields b1 = · · · = bn = 0, implying the vectors K ′
j for 1 ≤ j ≤ n are linearly

independent.
We first show that A∗ is the unique optimum of the primal linear program. The linear

independence of the vectors K ′
j implies that there is at most one vertex A of P that has

Ai > 0 for all i ∈ [n], namely the unique solution to
∑n

i=0 Ai K j (i) = 0 for all j ∈ [n]
where A0 = 1. This point is A∗, as

∑n
i=0

(n
i

)
K j (i) = 0 for all j ∈ [n] via orthogonality

of the Krawtchouk polynomials, using K0(i) = 1 as the other polynomial. Optimality of
A∗ can be shown by finding a dual solution that achieves the same objective value, namely
2n . The dual solution c∗ = 1 is such a solution, as it yields an objective value of 2n and is
feasible because for any i ∈ [n],

n∑

j=0

K j (i) = 0

by Lemma 2.4.
By complementary slackness with this optimal dual solution c∗ = 1, this means the

Delsarte inequalities
∑n

i=0 Ai K j (i) ≥ 0 must be sharp for all j ∈ [n]. We know that there
is only one solution to this system of equations, which is A∗, so A∗ is the unique optimal
quasicode.

To show that c∗ = 1 is the unique optimum of the dual linear program, by complemen-
tary slackness with optimal primal solution A∗ where A∗

i = (n
i

)
> 0 for all i , the dual

inequalities
∑n

j=0 c j K j (i) ≤ 0 for all i ∈ [n] must be sharp. Equivalently, we must have∑n
j=1 c j K j (i) = −1 for all i ∈ [n]. The linear independence of vectors K ′

j implies that the
n× n matrix K ′ given by K ′

i j = Ki ( j) is non-singular, so its columns, which are the vectors
(K1(i), . . . , Kn(i)) for 1 ≤ i ≤ n, are linearly independent. Thus, the system of equations∑n

j=1 c j K j (i) = −1 for all i ∈ [n] has a unique solution, which we have already shown is
given by c1 = · · · = cn = 1. Therefore, c∗ = 1 is the unique optimum of the dual. ��

3.4 The case d = 2

In this section we will show that although the primal always has a unique optimum when
d = 2, the dual almost always does not.

Theorem 3.7 When d = 2, the Delsarte linear program has a unique optimum, namely the

quasicode A∗ given by A∗
i =

{(n
i

)
i is even

0 i is odd
for all 0 ≤ i ≤ n.

Similar to the case d = 1, it is already known that the stated A∗ is optimal; see Leven-
shtein [10]. However, the uniqueness of this optimum, as well as the dual as addressed in
Theorem 3.8, have not been demonstrated previously, so for completeness we provide a full
proof of the result.
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Proof Notice that the objective value for A∗ is 2n−1.We claim that c j = n− j
n for all 0 ≤ j ≤ n

is a dual solution with objective value 2n−1, which proves A∗ is optimal.
To show c is a feasible solution to the dual, we will show that for all i ∈ [2, n],

n∑

j=0

c j K j (i) = 0.

Notice that
n∑

j=0

c j K j (i) =
n∑

j=0

K j (i) − 1

n

n∑

j=0

j K j (i) = −1

n

n∑

j=0

j K j (i)

by Lemma 2.4, so it is equivalent to show

n∑

j=0

j K j (i) = 0.

Directly from the definition of K j (i), we see that K0(i) = 1 and K1(i) = n − 2i , meaning

i = n

2
K0(i) − 1

2
K1(i).

Using Lemma 2.2 and then Lemma 2.3, we find

n∑

j=0

j K j (i) = 1(n
i

)
n∑

j=0

(
n

j

)
j Ki ( j) = 1(n

i

)
n∑

j=0

(
n

j

)(
n

2
K0( j) − 1

2
K1( j)

)
Ki ( j) = 0

for all i ∈ [2, n], as desired.
The objective value of c is

n∑

j=0

c j

(
n

j

)
=

n∑

j=0

n − j

n

(
n

j

)
= 2n − 1

n

n∑

j=1

j

(
n

j

)
= 2n

1

n
n · 2n−1 = 2n−1,

where the combinatorial identity

n∑

j=1

j

(
n

j

)
= n2n−1

can be easily seen by noticing both sides count the ways to choose a subset of a set of n
elements, where one element of the subset is distinguished: the left hand side first picks the
subset of j elements and then picks the distinguished element, while the right hand side picks
the distinguished element and then considers whether each of the remaining n − 1 elements
are in the subset.

By complementary slackness, as c j > 0 for all j ∈ [n − 1], any optimal quasicode A
must satisfy

n∑

i=0

Ai K j (i) = 0

for all j ∈ [n − 1]. Note that A∗ satisfies these conditions, because expressing A∗ by

A∗
i =

(
n

i

)
(K0(i) + Kn(i))/2
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yields

n∑

i=0

Ai K j (i) = 1

2

n∑

i=0

(
n

i

)
(K0(i) + Kn(i))K j (i) = 0

by Lemma 2.3 for all j ∈ [n − 1]. We have n − 1 linear equations, one for each j ∈ [n − 1],
that must be satisfied for any optimal quasicode A; given that A1 = 0, we also have n − 1
variables, A2, . . . , An . Let K

(2)
j = (

K j (2), . . . , K j (n)
)
for j ∈ [n − 1]. If the vectors K (2)

j
for j ∈ [n − 1] are linearly independent, then this implies there is a unique solution to our
system of n − 1 linear equations, and thus A∗ is the unique optimal quasicode.

Suppose b1K
(2)
1 + · · · + bn−1K

(2)
n−1 = 0. Let v = b1K1 + · · · + bn−1Kn−1, using the

same definition K j = (K j (0), . . . , K j (n)) as in Theorem 3.6. Using orthogonality of the
Krawtchouk polynomials with K0(i) = 1, we find

0 =
n∑

i=0

(
n

i

)
vi = v0 + nv1,

and using Kn(i) = (−1)i , we find

0 =
n∑

i=0

(
n

i

)
vi (−1)i = v0 − nv1.

This implies v0 = v1 = 0, so v = 0. Hence, for all j ∈ [n − 1], we find

0 =
n∑

i=0

(
n

i

)
vi K j (i) = 2n

(
n

j

)
b j ,

so b1 = · · · = bn−1 = 0, and the vectors K (2)
j are linearly independent.

This completes the proof that A∗ is the unique optimum. ��
By contrast, the dual almost never has a unique optimum.

Theorem 3.8 When d = 2, the dual of the Delsarte linear program has a unique optimum if
and only if n = 2.

Proof Proposition 3.4 implies the result when n = d = 2, so it suffices to show that for all
n ≥ 3, the dual of the Delsarte linear program with d = 2 does not have a unique optimal
solution.

As the objective value was demonstrated in Theorem 3.7 to be 2n−1, a dual solution c is
an optimum if and only if the following properties are satisfied:

n∑

j=0

c j

(
n

j

)
= 2n−1 (4)

n∑

j=0

c j K j (i) ≤ 0 for all i ∈ [2, n] (5)

c j ≥ 0 for all j ∈ [n] (6)

c0 = 1. (7)

Expressing c as a linear combination of the Krawtchouk polynomials, i.e., for all 0 ≤ j ≤ n,

c j = b0K0( j) + · · · + bnKn( j),
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then notice that Eq. (4) is equivalent to

1

2
= 1

2n

n∑

j=0

(
n

j

)
c j = 1

2n

n∑

j=0

(
n

j

)
c j K0( j) = b0,

using the orthogonality of the Krawtchouk polynomials. By first applying reciprocity and
then orthogonality of the Krawtchouk polynomials, we find

n∑

j=0

c j K j (i) = 1(n
i

)
n∑

j=0

(
n

j

)
c j Ki ( j) = 2nbi .

Therefore, Eq. (5) is equivalent to bi ≤ 0 for all i ∈ [2, n].
If n ≥ 3 is odd, we claim the dual solution c given by

c j = 1
2K0( j) + 1+ε

2n K1( j) − ε
2Kn( j) = 1

2 + 1+ε
2 − 1+ε

n j − (−1) j ε
2

=
{
1 − 1+ε

n j j is even

(1 + ε)
n− j
n j is odd

for any 0 ≤ ε ≤ 1
n−1 is an optimal solution. As b0 = 1

2 in this case and bi = 0 for all
i ∈ [2, n − 1] and bn = −ε/2 ≤ 0, we find Eqs. (4) and (5) hold. We directly verify c0 = 1,
and thus it remains to show c j ≥ 0 for all j ∈ [n]. If j is odd, as 0 ≤ j ≤ n, we find c j ≥ 0.
If j is even, then as n is odd, we have j ≤ n − 1, and thus

c j = 1 − 1 + ε

n
j ≥ 1 − (1 + ε)

n − 1

n
= 1 − (n − 1)ε

n
≥ 0,

as ε ≤ 1
n−1 . Hence any 0 ≤ ε ≤ 1

n−1 yields a distinct optimum c, so for odd n ≥ 3, there
are multiple dual optima.

If n ≥ 4 is even, then we claim the dual solution c given by

c j = 1

2
K0( j) + 1 + ε

2n
K1( j) − ε

2n
Kn−1( j) =

{
n− j
n j is even

1 + ε − 1+2ε
n j j is odd

for any 0 ≤ ε ≤ 1
n−2 is an optimal solution. As b0 = 1

2 in this case and bi ≤ 0 for all
i ∈ [2, n], we find Eqs. (4) and (5) hold. We directly verify c0 = 1, and thus it remains to
show c j ≥ 0 for all j ∈ [n]. If j is even, as 0 ≤ j ≤ n, we find c j ≥ 0. If j is odd, then as n
is even, we have j ≤ n − 1, and thus

c j = 1 + ε − 1 + 2ε

n
j ≥ 1 + ε − (1 + 2ε)

n − 1

n
= 1 − (n − 2)ε

n
≥ 0,

as ε ≤ 1
n−2 . Hence any 0 ≤ ε ≤ 1

n−2 yields a distinct optimum c, so for even n ≥ 4, there
are multiple dual optima. This completes the proof. ��

3.5 Non-uniqueness of primal optimum

While our previous results for d = 1, 2, and for the upper half 2d/2� + d > n have all had
a unique primal optimum, this uniqueness does not hold in general. The smallest n for which
the Delsarte linear program does not have a unique optimum is (n, d) = (17, 5), and the next
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smallest cases are (21, 5) and (23, 5). For example, the optimal solutions for (17, 5) are the
points on the line segment between the two quasicodes

(
1, 0, 0, 0, 0, 52,

304

3
,
176

3
,
250

3
,
520

3
,
368

3
,
112

3
, 32, 20, 0, 0, 1, 0

)

and

(
1, 0, 0, 0, 0, 51,

307

3
,
191

3
,
235

3
,
490

3
,
398

3
,
142

3
, 22, 15, 5, 1, 0, 0

)
.

These three cases were found via a computer search solving a system of linear inequalities
and equations using the optimal objective value, Delsarte inequalities, and complementary
slackness conditions. No other cases exist for 1 ≤ d ≤ n ≤ 23. This prompts the question
of when the Delsarte linear program has a unique optimum.

Question 3.9 For which values of (n, d) does the Delsarte linear program have a unique
optimum? Similarly, for which values of (n, d) does the dual have a unique optimum?

4 Krawtchouk decomposition of optimal quasicodes

In this section, we further characterize optimal quasicodes by first applying a transformation
to the quasicodes. Suppose A is a quasicode of the Delsarte linear program for a given pair
of values (n, d). Let A′ be the vector given by A′

i = Ai · 2n/(ni
)
for 0 ≤ i ≤ n. If A is the

distance distribution of a code C, then A′
i is 4

n/|C| times the proportion of ordered pairs (x, y)
of words x, y ∈ F

n
2 a Hamming distance i apart whose two elements x and y are both in C.

Then there is a unique vector b such that A′ = bK , given by b = 1
2n A

′K , or equivalently

b j =
n∑

i=0

Ai Ki ( j)(n
i

) = 1(n
j

)
n∑

i=0

Ai K j (i).

This means for all i ,

Ai =
(
n

i

)
(b0K0(i) + · · · + bnKn(i))/2

n .

We will refer to this vector b as the Krawtchouk decomposition of the quasicode A. Then
the Delsarte inequalities for A can be rewritten as

(n
j

)
b j ≥ 0 for all j ∈ [n], or equivalently

simply b j ≥ 0. And the objective function simplifies to b0:

n∑

i=0

Ai = 1

2n

n∑

i=0

(
n

i

) n∑

j=0

b j K j (i) = 1

2n

n∑

j=0

b j

n∑

i=0

(
n

i

)
K j (i)K0(i)=

n∑

j=0

b j

(
n

j

)
δ j0 = b0.
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Hence, theDelsarte linear program can be rephrased using theKrawtchouk decomposition
as follows:

max b0

such that
n∑

j=0

(
n

j

)
b j = 2n

n∑

j=0

b j K j (i) ≥ 0 for all i ∈ [n]

n∑

j=0

b j K j (i) = 0 for all i ∈ [d − 1]

b j ≥ 0 for all j ∈ [n].
Theorem 3.6 shows that the unique optimal quasicode A∗ when d = 1 has Krawtchouk

decomposition b = (2n, 0, 0, . . . , 0). Similarly, Theorem 3.7 shows that when d = 2, the
optimum A∗ has Krawtchouk decomposition b = (2n−1, 0, 0, . . . , 0, 2n−1).

The Krawtchouk decomposition of the unique optimum for the upper half is given in the
following result. But first, we will introduce some notation to simplify our future discussions.
Define h = n − d , and let k = 2d/2� be the smallest even integer at least d . Using this
notation, the upper half condition simply becomes k > h.

Theorem 4.1 For all d ≥ 1 and all h ≥ 0 such that k = 2d/2� > h, the unique optimum
to the Delsarte linear program with (n, d) = (d + h, d) has Krawtchouk decomposition b∗
given by

b∗
j = 1 − Kk( j; h + k)

Kk(1; h + k)
.

Proof If d is even, then our expression for b∗ becomes

b∗
j = 1 − Kd( j; n)

Kd(1; n)
.

Then the corresponding quasicode is given by

Ai =
(
n

i

) n∑

j=0

b∗
j K j (i; n)/2n .

By Lemma 2.4, the constant 1 term in b∗ contributes 1 to A0 and 0 everywhere else. Thus
we expand b∗

j to yield

Ai = δi0 −
(
n

i

) n∑

j=0

Kd( j; n)

Kd(1; n)
K j (i; n)/2n = δi0 −

n∑

j=0

Kd( j; n)

Kd(1; n)

(
n

j

)
Ki ( j; n)/2n

= δi0 −
(
n

d

)
δid

1

Kd(1; n)
= δi0 + δid

n

2d − n
,

using reciprocity and orthogonality of the Krawtchouk polynomials. But this expression
equals the unique primal optimum A∗ as given by Theorem 3.1.
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If d is odd, then our expression for b∗ becomes

b∗
j = 1 − Kd+1( j; n + 1)

Kd+1(1; n + 1)
,

and the corresponding quasicode is given by

Ai = δi0 −
n∑

j=0

Kd+1( j; n + 1)

Kd+1(1; n + 1)

(
n

j

)
Ki ( j; n)/2n

= δi0 −
n∑

j=0

Kd+1( j; n) + Kd( j; n)

Kd+1(1; n + 1)

(
n

j

)
Ki ( j; n)/2n

= δi0 −
(

n

d + 1

)
δi,d+1

Kd+1(1; n + 1)
−

(
n

d

)
δid

Kd+1(1; n + 1)

= δi0 + δid
d + 1

2d − n + 1
+ δi,d+1

n − d

2d − n + 1
,

where we use Lemma 2.6 to reduce Kd+1( j; n+1) to block length n. This expression equals
the unique primal optimum A∗ as given by Theorem 3.1, completing the proof. ��

The presence of k = 2d/2�, which rounds d up to the nearest even integer, suggests
that there are some parity connections between neighboring values of (n, d). In particular, if
d = 2e is even, then (n − 1, 2e − 1) and (n, 2e) have the same values of k and h, and thus
their unique optima b∗ of the Krawtchouk decomposition LP are the same, up to truncating
the nth entry b∗

n for the (n−1, 2e−1) case. This parity phenomenon holds for all 1 ≤ d ≤ n,
not just the upper half, as seen in the following result.

Theorem 4.2 For all positive integers n and e where 2e ≤ n, there exist optima AE and AO

of the (n, 2e) and (n− 1, 2e− 1) Delsarte linear programs, respectively, whose Krawtchouk
decompositions agree on indices 0 through n − 1, inclusive.

We need additional tools, developed in Section 5, in order to prove Theorem 4.2, so we
defer the proof to Section 5.

We also have another result on the symmetry of the optimal Krawtchouk decompositions
that is closely related to the aforementioned parity phenomenon. Again, we defer the proof
to Section 5.

Theorem 4.3 For all 1 ≤ d ≤ n where d is even, the Delsarte linear program for (n, d) has
an optimum AE whose Krawtchouk decomposition bE satisfies bEj = bEn− j for all 0 ≤ j ≤ n.

We first comment that this symmetry property is equivalent to the quasicodes being even,
i.e., having a support contained in the set of even integers. From this interpretation, it is
intuitively clear why d must be even. If the symmetry property holds, then for odd i , we find

Ai =
(n
i

)

2n

n∑

j=0

b j K j (i) =
(n
i

)

2n

n∑

j=0

bn− j (−1)i Kn− j (i) = −
(n
i

)

2n

n∑

j=0

b j K j (i) = −Ai ,

so Ai = 0 for odd i . And if Ai = 0 for all odd i , then

b j = 1(n
j

)
n∑

i=0

Ai K j (i) = 1( n
n− j

)
∑

0≤i≤n
i even

Ai K j (i) = 1( n
n− j

)
∑

0≤i≤n
i even

Ai Kn− j (i) = bn− j .

123



R. Li

5 Extending and puncturing quasicodes

Two common practical operations performed on error-correcting codes are extending and
puncturing codes, which respectively increase and decrease the block length by one. In this
section, we generalize both operations to quasicodes, and use these operations to prove
Theorems 4.2 and 4.3 along with a further refinement of these optima. Theorem 5.4 collates
all of these results.

For a given code C ⊆ F
n
2, we may extend C to a new code C′ ⊆ F

n+1
2 by adding a parity

check bit, i.e., adding a bit that ensures the sum of the bits is always even. If two codewords
in C differ by an odd number of bits, then in C′ the corresponding codewords differ on their
parity check bit as well, increasing their Hamming distance by 1; if two codewords in C
differ by an even number of bits, then their Hamming distance is unchanged by extension.
Hence, if A is the distance distribution of C, then the distance distribution A′ of C′ is given
by A′

i = 0 for all odd i , and A′
i = Ai + Ai−1 for all even i . If the minimal distance of C is

d , then the minimal distance of C′ is 2d/2�, i.e., rounding d up to the nearest even integer.
We can naturally generalize the definition of extension to quasicodes by applying the same
transformation taking A to A′. We will thus call A′ the extension of the quasicode A. While
it is obvious that if C is a code, then C′ is also a code, it is not immediately clear whether
A being a valid quasicode implies A′ is a valid quasicode. However, we will prove that this
is indeed true: if A is a feasible solution to the (n, d) Delsarte linear program, then A′ is a
feasible solution to the (n + 1, 2d/2�) Delsarte linear program. To do so, we first prove the
following lemma.

Lemma 5.1 For n a positive integer, j ∈ [n+1], and 0 ≤ i ≤ n, we have K j (2i/2�; n+1) =
K j (i; n) + Kn+1− j (i; n).

Proof If i is even, this immediately follows fromLemma 2.6. If i < n is odd, then by Lemmas
2.2 and 2.6,

K j (i + 1; n + 1) = (−1) j K j (n − i; n + 1) = (−1) j (K j (n − i; n) + K j−1(n − i; n))

= K j (i; n) − K j−1(i; n) = K j (i; n) + Kn+1− j (i; n)

as desired. If i = n is odd, then

K j (n+1; n+1) = (−1) j
(
n+1

j

)
= (−1) j

((
n

j

)
+

(
n

j−1

))
= K j (n; n) − K j−1(n; n)

= K j (n; n) + Kn+1− j (n; n),

completing the proof. ��
This allows us to prove the extension of a quasicode is a quasicode.

Proposition 5.2 If A is a feasible solution to the (n, d) Delsarte linear program, then its
extension A′ is a feasible solution to the (n + 1, 2d/2�) Delsarte linear program.
Proof The only nontrivial constraints that we need to verify are the Delsarte inequalities. But
Lemma 5.1 immediately implies that for all j ∈ [n + 1],
n+1∑

i=0

A′
i K j (i; n + 1)=

n∑

i=0

Ai K j (2i/2�; n+1)=
n∑

i=0

Ai K j (i; n)+
n∑

i=0

Ai Kn+1− j (i; n) ≥ 0

by the Delsarte inequalities for A, where if j = n + 1 the first sum vanishes and the second
sum becomes simply

∑
Ai ≥ 0 by the nonnegativity constraints. ��
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Note that this result implies that the optimal objective value of the (n−1, 2e−1)Delsarte
linear program is atmost the optimal objective value of the (n, 2e)Delsarte LP, as any feasible
solution of the (n − 1, 2e − 1) LP can be extended to a feasible solution of the (n, 2e) LP
with the same objective value.

We now prove the reverse direction, that any feasible solution of the (n, d) LP can be
mapped to a feasible solution of the (n − 1, d − 1) LP with the same objective value. We
do so by generalizing the notion of puncturing from codes to quasicodes. One may puncture
a code C ⊆ F

n
2 to yield a new code C′ ⊆ F

n−1
2 by simply removing a bit, i.e., an index. It

is easy to see that if C had minimal distance d ≥ 2, then C′ is a valid code with minimal
distance at least d − 1. If C has support S, then C′ has support S′ ⊆ (S ∪ (S − 1)) \ {n},
where S − 1 := {i − 1 | i ∈ S}. It is important to note that the behavior of puncturing a
code depends on which index is removed: especially if C is not symmetric with respect to its
indices, even the distance distribution A′ of C′ may depend on the choice of removed index.
Our definition of puncturing a quasicode, which need not be realized by a code, conveniently
has no such ambiguity. If quasicode A has Krawtchouk decomposition b = (b0, . . . , bn),
then puncturing A yields a quasicode AP given by the truncated Krawtchouk decomposition
bP = (b0, . . . , bn−1). We now show that if A is a feasible solution to the (n, d) Delsarte
linear program and has support S, then AP is a feasible solution to the (n−1, d−1)Delsarte
linear program with support S′ ⊆ (S ∪ (S − 1)) \ {n}, thus exhibiting the same properties as
punctured codes.

Proposition 5.3 If A is a feasible solution to the (n, d) Delsarte linear program for d ≥ 2
and has support S, then its punctured quasicode AP is a feasible solution to the (n−1, d−1)
Delsarte linear program with support S′ ⊆ (S ∪ (S − 1)) \ {n}.
Proof Let b be the Krawtchouk decomposition of A. We will show bP satisfies the necessary
constraints. Using Lemma 2.7, for 0 ≤ i ≤ n − 1,

n−1∑

j=0

b j K j (i; n − 1) = 1

2

n∑

j=0

b j (K j (i; n) + K j (i + 1; n)) − 1

2
bn(Kn(i; n) + Kn(i + 1; n))

= 1

2

n∑

j=0

b j (K j (i; n) + K j (i + 1; n)) − 1

2
bn((−1)i + (−1)i+1)

= 1

2

n∑

j=0

b j K j (i; n) + 1

2

n∑

j=0

b j K j (i + 1; n).

For i = 0, as d ≥ 2 this yields

n−1∑

j=0

b j

(
n − 1

j

)
= 1

2

n∑

j=0

b j

(
n

j

)
= 2n−1,

using the constraints that b must satisfy for the (n, d) linear program. These constraints for
b also imply that for i ∈ [d − 2], this expression equals 0, and more generally for i ∈ [n− 1]
it is nonnegative. In fact, if positive integer i /∈ (S ∪ (S − 1)) \ {n}, then as Ai = Ai+1 = 0,

this implies AP
i = (n−1

i )
2n−1

∑
b j K j (i; n − 1) = 0. Hence, bP is a feasible solution to the

(n − 1, d − 1) Delsarte linear program with support S′ ⊆ (S ∪ (S − 1)) \ {n}. ��
Proposition 5.3 implies that the optimal objective value of the (n, d) Delsarte linear pro-

gram is at most the optimal objective value of the (n − 1, d − 1) Delsarte LP, as any feasible
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solution of the (n, d) LP can be punctured to a feasible solution of the (n−1, d −1) LP with
the same objective value, as b0 is unchanged. Combined with Proposition 5.2, this implies
the (n − 1, 2e − 1) and (n, 2e) Delsarte linear programs have the same optimal objective
value. This now enables us to prove Theorems 4.2 and 4.3.

Proof of Theorem 4.3 Consider an optimum A∗ to the (n−1, 2e−1) LP. By Proposition 5.2,
extending A∗ to AE gives an optimal quasicode to the (n, 2e) LP. In particular, extension
creates an even quasicode, and thus the corresponding Krawtchouk decomposition bE is
symmetric. ��

To prove Theorem 4.2, we simply puncture AE .

Proof of Theorem 4.2 Puncturing AE yields an optimum AO to the (n − 1, 2e − 1) LP, and
the corresponding Krawtchouk decompositions bE and bO agree on indices 0 through n−1,
inclusive. ��

In fact, there are further patterns for AE and AO , as seen in the following result.

Theorem 5.4 For all positive integers n and e such that 2e ≤ n, there exist optima AE and AO

of the (n, 2e) and (n−1, 2e−1)Delsarte linear programs, respectively, with corresponding
Krawtchouk decompositions bE and bO, such that the following properties hold:

(i) For all 0 ≤ j ≤ n, we have bEj = bEn− j .

(ii) bO = (bE0 , . . . , bEn−1).

(iii) For all even i ∈ [n], we have AE
i = AO

i−1 + AO
i and AO

i−1

(n−1
i

) = AO
i

(n−1
i−1

)
, where we

define AO
i = 0 if i /∈ [0, n − 1].

(iv) If AO is the unique optimum for (n − 1, 2e − 1), then AE is the unique optimum for
(n, 2e).

Proof We have already shown we may choose optima AE and AO so that the first two
conditions hold. We now address the third property. We trivially have AE

0 = AO
0 = 1.

For even i ∈ [0, n − 1], using the Krawtchouk recurrence from Lemma 2.6 as well as the
symmetry of bE ,

n∑

j=0

bEj K j (i; n) =
n∑

j=0

bEj (K j (i; n − 1) + K j−1(i; n − 1))

=
n∑

j=0

(
bEj K j (i; n − 1) + bEn− j (−1)i Kn− j (i; n − 1)

)

= 2
n−1∑

j=0

bEj K j (i; n − 1).
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For odd i ∈ [n − 1], a similar argument yields

2
n−1∑

j=0

bEj K j (i; n − 1) =
n∑

j=0

bEj K j (i; n − 1) −
n∑

j=0

bEn− j Kn− j−1(i; n − 1)

=
n∑

j=0

bEj
(
K j (i; n − 1) − K j−1(i; n − 1)

)

=
n∑

j=0

(−1) j bEj (K j (n − i − 1; n − 1) + K j−1(n − i − 1; n − 1))

=
n∑

j=0

(−1) j bEj K j (n − i − 1; n) =
n∑

j=0

bEj K j (i + 1; n).

Combining these, we find for even i ∈ [n − 1],

AO
i−1 + AO

i = 1

2n−1

⎛

⎝
(
n − 1

i − 1

) n−1∑

j=0

bEj K j (i − 1; n − 1) +
(
n − 1

i

) n−1∑

j=0

bEj K j (i; n − 1)

⎞

⎠

= 1

2n

⎛

⎝
(
n − 1

i − 1

) n∑

j=0

bEj K j (i; n) +
(
n − 1

i

) n∑

j=0

bEj K j (i; n)

⎞

⎠

=
(n
i

)

2n

n∑

j=0

bEj K j (i; n) = AE
i .

Additionally, this shows

AO
i−1

AO
i

=
(n−1
i−1

)
(n−1

i

) ,

as desired. If n is odd, the proof is complete; however, if n is even, it remains to show
AE
n = AO

n−1 and AO
n−1

(n−1
n

) = AO
n

(n−1
n−1

)
. The latter can be immediately addressed because

both sides equal zero, as
(n−1

n

) = AO
n = 0. For the former, as n − 1 is odd, using the same

argument as before gives

AO
n−1 = 1

2n−1

n−1∑

j=0

bEj K j (n − 1; n − 1) = 1

2n

n∑

j=0

bEj K j (n; n) = AE
n ,

completing the proof.
Finally, for the fourth property, if AO is the unique optimum for (n − 1, 2e − 1), then

consider any optimum A∗ of the (n, 2e) linear program. Puncturing A∗ must yield an optimum
for (n−1, 2e−1), which can only be AO . Thus theKrawtchouk decomposition b∗ of A∗ must
satisfy b∗

i = bOi for all 0 ≤ i ≤ n− 1. The first constraint of the Krawtchouk decomposition
LP then fixes b∗

n as well, implying there is a unique optimum to the (n, 2e) linear program,
which must be AE . ��

Hence, extending AO yields AE , and puncturing AE yields AO .
The fourth condition implies that if (n − 1, 2e − 1) has a unique optimum, then so does

(n, 2e); however, the converse does not hold in general. As shown in Section 3.5, the (18, 6)
Delsarte linear program has a unique optimum, but (17, 5) does not.
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The third property of Theorem 5.4 follows from the symmetry of bE , which requires
bO to satisfy a truncated symmetry. Constraining the (n, 2e) and (n − 1, 2e − 1) Delsarte
linear programs to have symmetry and truncated symmetry, respectively, i.e., b j = bn− j ,
results in a stronger parity phenomenon: these two symmetry-constrained linear programs
are equivalent, i.e., have the same feasible region and objective.

Proposition 5.5 For all positive integers n and e such that 2e ≤ n, the symmetry-constrained
(n, 2e) and (n − 1, 2e − 1) Delsarte linear programs, where we add the constraint that
b j = bn− j for all 0 ≤ j ≤ n, are equivalent.

Proof We may write the symmetry-constrained (n, 2e) Delsarte LP as

max b0

such that
n∑

j=0

(
n

j

)
b j = 2n (�)

n∑

j=0

b j K j (i; n) ≥ 0 for all i ∈ [n] (��)

n∑

j=0

b j K j (i; n) = 0 for all i ∈ [2e − 1] (���)

b j = bn− j for all j ∈ {0, 1, . . . , n}
b j ≥ 0 for all j ∈ [n].

Similarly, we impose the symmetry condition on the (n − 1, 2e − 1) Delsarte LP, yielding

max b0

such that
n−1∑

j=0

(
n − 1

j

)
b j = 2n−1 (∗)

n−1∑

j=0

b j K j (i; n − 1) ≥ 0 for all i ∈ [n − 1] (∗∗)

n−1∑

j=0

b j K j (i; n − 1) = 0 for all i ∈ [2e − 2] (∗ ∗ ∗)

b j = bn− j for all j ∈ [n − 1]
b j ≥ 0 for all j ∈ [n − 1].

In the (n−1, 2e−1)Delsarte LP, wemay add the variable bn with the constraint bn = b0 ≥ 0
without affecting the LP, allowing the symmetry and non-negativity conditions, i.e., the last
two constraints, of the two LPs to be identical, using the same decision variables b0, . . . , bn .

We first show that constraint (�) is equivalent to constraint (∗), and so on. Using the same
argument as in the proof of Theorem 5.4,

n∑

j=0

(
n

j

)
b j =

n∑

j=0

b j K j (0; n) = 2
n−1∑

j=0

b j K j (0; n − 1) = 2
n−1∑

j=0

(
n − 1

j

)
b j ,

which implies (�) is logically equivalent to (∗).
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The (��) and (���) constraints are structurally identical, so we will address them together.
Firstly, for odd i ∈ [n], notice that by symmetry,

n∑

j=0

b j K j (i; n) =
n∑

j=0

bn− j (−1)i Kn− j (i; n) = −
n∑

j=0

b j K j (i; n),

which implies this sum must equal 0, and thus (��) and (���) trivially hold for odd i , and
these constraints can be removed from the (n, 2e) LP. For even i ∈ [n − 1], by the proof of
Theorem 5.4,

n∑

j=0

b j K j (i; n) = 2
n−1∑

j=0

b j K j (i; n − 1),

so the (��) and (���) constraints for even i are equivalent for i ∈ [n − 1], and for odd
i ∈ [n − 1],

2
n−1∑

j=0

b j K j (i; n − 1) =
n∑

j=0

b j K j (i + 1; n).

Thus, the constraint for odd i in the (n−1, 2e−1) LP is equivalent to the constraint for even
i + 1 in the (n, 2e) LP. Hence, using the symmetry constraints, the (���) constraints hold for
all i ∈ [2e − 1] if and only if they hold for all even i ∈ [2e − 2], which is equivalent to the
(∗ ∗ ∗) constraint holding for all i ∈ [2e − 2].

The (��) and (∗∗) constraints are also equivalent, though we take a bit more care in
differentiating the cases depending on the parity of n. If n is even, then the relevant (��)
constraints are the even i ∈ [n]; the even i ∈ [n − 2] constraints are equivalent to the (∗∗)
constraints for i ∈ [n−2], and the (��) constraint for i = n is equivalent to the (∗∗) constraint
for i = n − 1, and thus the (��) constraints are equivalent to the (∗∗) constraints. If n is odd,
then we directly see that the relevant (��) constraints are the even ones, i.e., even i ∈ [n−1],
which following our previous reasoning are equivalent to the set of (∗∗) constraints for all
i ∈ [n − 1].

This shows that the two symmetry-constrained LPs are equivalent. ��
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