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Chapter 1

Introduction

1.1 Motivation

The Unix shell is a unique and fundamental environment. The shell allows program-

mers to compose scripts written in different languages and provides an easy and simple

way of stringing a series of commands to create data pipelines that can utilize a single

or multiple processors. This makes the shell the primary choice for specifying succinct

and simple scripts for data processing, system orchestration, and other automation

tasks.

Recent systems [31, 39, 33] accelerate such tasks by exploiting data parallelism:

using ahead-of-time (AOT) analysis and transformation, these systems parse, analyze,

and transform shell scripts into new scripts that execute in parallel. Unfortunately,

AOT parallelization quickly becomes intractable due to the dynamic nature of the

shell: dynamic features such as variable expansion and command substitution, per-

vasive in shell scripts, generate and consume values at run-time while depending on

and interacting with the broader environment—i.e., the filesystem, the environment

variables, and the shell interpreter itself. Additionally, modern shells offer several dif-

ferent configurations and execution modes, leading to complex behaviors described in

hundreds of pages of POSIX standards [2]. The complexity of these interactions and

their side-effects lead existing parallelization tools to an unavoidable trade-off between

(1) being conservative, aborting on scripts that use dynamic features, or (2) being
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unsound, possibly breaking scripts during parallelization. Recent systems [31, 39, 33]

tend to be conservative, operating only on fully expanded shell pipelines and having

a hard time even on simple uses of variables (see §3.2). In first part of this thesis,

I present PaSh-JIT [20], the first JIT compiler for the shell, focusing on my con-

tributions around commutativity awareness and dependency untangling. PaSh-JIT

achieves speed-ups of up to 33.7x over Bash and improves over PaSh-AOT by 2x on

average.

Additionally, scaling out shell computations remains challenging: Whereas most

developers can quickly stitch together shell scripts to compute on a single computer,

scaling them out to multiple computers requires expert labor. As a result, shell scripts

forego all of the benefits of distributed computing—the ability to speed up expensive

computations or process data that would not fit into any single machine.

To understand this second problem, consider a shell script that calculates term

frequencies over a set of inputs:

1 cat * | tr -cs A-Za -z\n | tr A-Z a-z | sort | uniq -c | sort -rn |

head 5 > out→˓

This program creates a character stream, breaks it into words, transliterates to

lower-case, sorts to group duplicates, reduces duplicates to a counter, sorts counters

in descending order, picks the top five results, and writes them to a file out. All these

commands and other commands exist in the environment and can be written in any

programming language. On a single computer and with a few GBs of input data,

this pipeline takes a few seconds to execute; but scaling to multiple computers, this

pipeline would need to be rewritten in one of the relevant models of distributed com-

putation such as Hadoop [1] and Spark [42]. Only a few of these frameworks support

language-agnostic third-party components, central among them Hadoop streaming

[40]. Such manual rewriting is expensive and can introduce new bugs, cascading

changes, and divergence from legacy functionality. In the second half of my thesis, I

present Distributed-PaSh, the first JIT compiler for the shell capable of distribut-

ing shell scripts computations. I evaluate Distributed-PaSh against BaSh and
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PaSh-JIT using 10 different scripts. I adapt the scripts to read from a distributed

file system instead of local disk. Distributed-PaSh achieves a speedup of up to

8.17x over Bash and 4.65x over PaSh-JIT.

1.2 Contributions

This thesis makes two key contributions. First, it contributes commutativity aware-

ness and dependency untangling to the PaSh-JIT system, both of which are crit-

ical to its performance. Second, it contributes a design and implementation of

Distributed-PaSh, a JIT compiler for the shell that the can utilize cluster com-

puting and distributed file systems to scale out shell scripts.

1.3 Thesis Outline

The thesis is organized as follows:

• Chapter 2 gives a brief background overview of the shell and related systems.

• Chapter 3 describes PaSh-JIT and my main contributions to the system.

• Chapter 4 explores the Distributed-PaSh design, implementation, and eval-

uation.

• Chapter 5 concludes my thesis and provides directions for future work.
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Chapter 2

Background and Related Work

2.1 Shell Interface

The Unix shell is one of the most fundamental parts of any Unix OS. The shell lan-

guage agnostic model and toolbox philosophy makes it one of the most dynamic envi-

ronments to create and execute automation and data processing scripts. Shell scripts

communicate using a variety of the following mechanisms, central among which:

1. Files using operator (> File, < File).

2. Named pipes (mkfifo).

3. Anonymous pipes (|).

These mechanisms, especially anonymous pipes, enable easy and efficient compo-

sition of data pipelines. A series of commands can be simply stringed together using

the pipe operator to create complex data processing pipelines.

2.2 PaSh-AOT

PaSh-AOT uses semantic annotations to convert a script into a dataflow graph. The

annotation conveys the behaviour of a command and their flags. The following classes

are defined in the PaSh-AOT annotation system, ordered from easiest to parallelize

to impossible:
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• Stateless: commands that don’t store any state across invocations. Examples:

grep, cat, tr.

• Parallelizable Pure: commands that are purely functional but maintain an in-

ternal state. This class of commands could be parallelized given an aggregator

function. Examples: sort, wc, head.

• Non-parallelizable Pure: commands that are purely functional but their state

depends on prior state which makes parallelizing them non trivial. Examples:

sha1sm.

• Side-effectful: commands that have side effects on the environment and system.

Examples: cp, rm, env.

Flags can change a command’s class. PaSh-AOT provides a domain-specific

language to easily add annotations for commands and their flags. PaSh-AOT also

provides annotations for the most common Unix commands and their flags. However,

developers might still need to add annotations for less known commands or user-

defined functions and executables.

This powerful, yet simple, annotation system allows PaSh-AOT to decide which

parts of the dataflow graph can be split into multiple nodes that could run in parallel

and at what point the output should be merged back to preserve correctness. PaSh-

AOT optimizes the dataflow graph to push the merge node as far as possible to

avoid the overhead of splitting and merging repeatedly. The system shows significant

speedups (0.89–61.1×, avg: 6.7×) [39].

2.3 POSH

POSH focuses to shell applications with I/O-heavy components, particularly data

processing workloads that read files from remote storage systems where networking

and I/O are a major bottleneck. POSH offloads workloads to Proxy servers that

are closest to the data. It also uses an annotation system for declaring splittable
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commands across input arguments. This differs from PaSh-AOT in multiple ways,

and perhaps easiest to show the difference between the two systems with an example:

• Consider the pipeline: cat A | grep “the” | wc. PaSh-AOT would split

the file A into multiple chunks, each chunk would run in parallel through grep

and wc. Finally a wc aggregator would sum up the results of the wc commands

run in parallel and return the output. On the other hand POSH would run this

full pipeline on a Proxy server closest to the machine where file A is stored.

• Now let’s consider the pipeline: cat A B C | grep “the” | wc. Here POSH

will execute the grep command on files A, B, C in parallel while utilizing the

closest proxy server for each file to process that file. Finally, files will be merged

and the wc command will run on the full output.

POSH focuses on improving performance by being aware of the data locations,

utilizing proxy servers, and sometimes splitting the processing across multiple full files.

While PaSh-AOT is mainly concerned with creating highly parallel data pipelines

on the host machine even for a single file.

2.4 Parallel shell scripting

Recent work addresses significant challenges related to automatic shell script par-

allelization. POSH [31] and PaSh-AOT [39] are mostly-automated ahead-of-time

shell-script parallelization systems; as described earlier, these systems focus on fully

expanded shell pipelines that do not make use of dynamic features.

Recent work explored an order-aware dataflow model as a foundation for mod-

eling the transformations these systems perform and proving them correct [16]. To

enable divide-and-conquer parallelism, KumQuat [33] proposes a program-synthesis

technique for generating aggregators for black-box commands.

PaSh-JIT builds on all this prior work, addressing fundamental limitations in

static, ahead-of-time parallelization: AOT approaches apply to a very small subset

of real shell scripts.
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By opting for just-in-time parallelization, PaSh-JIT achieves parallel script be-

havior that is practically indistinguishable from the sequential execution—and ample

opportunities for additional acceleration.

Other work on shell script parallelization either requires manual effort or is ap-

plicable to a smaller subset of scripts than our work. Such work includes: utilities

like qsub [12], SLURM [41], and parallel [35]; shells with non-linear pipe topolo-

gies [11, 24, 34]; and using the shell itself as a DSL for concurrency [14].

2.5 Unix-related parallelization

There has been a significant body of work on parallel (and distributed) Unix and

Unix-like environments [28, 26, 4], including shell-oriented efforts such as Plan9’s

rc [29]. Contrary to PaSh-JIT, these systems did not (aim to) offer full compatibility

with the sequential Unix shell. They also focused on systems-level and program-

runtime support, rather than automated program analyses and transformations.

2.6 Just-in-time compilation

Just-in-time compilation has been studied for long time [3], mainly in two contexts:

(1) as a compilation technique for interpreted languages such as JavaScript [13], where

critical type information is unavailable prior to execution; and (2) as a performance

optimization over ahead-of-time compilation, allowing for specialization [37, 17], loop

unrolling and function inlining [8, 30], and other profile-guided optimizations [27,

21]. PaSh-JIT draws inspiration from work in both contexts—resolving unavailable

dynamic information at run-time and performing additional optimizations. It also

leverages the optimistic compilation technique employed commonly by just-in-time

compilers: when it fails to compile (parallelize), it simply runs the original fragment

using the shell interpreter as a fallback option. PaSh-JIT differs from most JITs,

dealing with different challenges: it operates at a higher level of abstraction, in a

unique programming environment with no single unified runtime.
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PaSh-JIT also draws inspiration from staged compilation [9] and partial evalua-

tion [18]. These techniques perform some compilation ahead-of-time, waiting for the

runtime to specialize and further optimize when there is more information about the

environment of the target program and how it is used.
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Chapter 3

PaSh-JIT

3.1 Introduction

The ahead-of-time compiler in PaSh-AOT works well for simple scripts, but its ability

to parallelize a script becomes limited as the complexity of the scripts increases. This

mainly stems from the dynamic nature of the shell; dynamic features in the shell, such

as variable expansions and command substitution, are very common. The ahead-of-

time compiler, in many cases, can’t possibly know what a variable would refer to at

later point in the script; this forces the compiler to make very conservative decisions

in the initial compilation stage. PaSh-JIT addresses these limitations by creating

a just-in-time compiler for the shell. PaSh-JIT achieves impressive speed-ups of

up to 33.7× over Bash on a 64-core machine and improves the state of the art [39]

(PaSh-AOT) by 2× on average.

This chapter gives an overview of the PaSh-JIT system and its main components

as published in [20]. In the remaining parts, I focus on my contributions to it, namely,

its commutativity awareness (§3.4) and dependency untangling (§3.5) capabilities.

3.2 Example & Overview

Below is a shell program that downloads a compressed archive of text files (books

from Project Gutenberg), extracts them in a directory, and then performs an analysis
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to find the frequencies of all words of a specific form.

IN=${IN:-$TOP/pg}

mkdir $IN

cd $IN

echo 'Download will take some time, be patient...'

wget $SOURCE/data/pg.tar.xz

if [ $? -ne 0 ]; then

echo "Download failed!"

exit 1

fi

cat pg.tar.xz | tar -xJ

cd $TOP

OUT=${OUT:-$TOP/output}

mkdir -p "$OUT"

for input in $(ls ${IN}); do

cat "$IN/$input" | tr -sc '[A-Z][a-z]' '[\012*]' |

grep '^....$' | sort | uniq -c > "${OUT}/${input}.out"

done

The program makes pervasive use of the shell’s dynamic features. For example, it uses

environment variables such as $TOP, variable expansion like ${OUT:-\$TOP/output} to

assign default values, command substitution $(...) as part of the loop condition, and

state reflection on the file system by running ls on $IN (itself resolved dynamically).

None of the values of these variables can be known ahead of time just by analyzing

the program’s source code. They become known only at run-time, when the shell

interpreter reaches these points in the program’s execution. A sound AOT compiler

such as PaSh-AOT [39] or POSH [31] would fail to parallelize—foregoing all the

performance benefits of data-parallel execution spread across many files in $IN.

PaSh-JIT instead takes a JIT approach that interjects parallelization opportuni-

ties during and throughout the script’s execution (Fig. 3-1).
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3.3 Design

script PASH-JIT
Preprocessor (§3.3.2)

PASH-JIT
Parsing Library 

instrumented
script

State (vars, set, files)

...

source jit.sh

...

PASH-JIT
JIT Engine 
(§3.3.3)

PASH-JIT
Compilation Server 
(§3.3.4) 

User Shell

Figure 3-1: PaSh-JIT architecture overview

PaSh-JIT addresses the limitation of PaSh-AOT by moving the compilation

from ahead-of-time to just-in-time. The JIT compiler aims to make parallelization

decisions at a later point during the script execution; this allows the compiler to safely

expand and know the values of variables and other substitutions and thus can make

better decisions. If at a later point, a variable changes its value, the compiler is able

to make accurate and less conservative decisions based on the new assignment.

3.3.1 Component overview

The following are the PaSh-JIT components:

Parsing Library: the parsing library contains Python bindings for the dash parser

[15] which translates dash’s AST to a Python AST and an implementation unparsing

to translate to shell script.

Preprocessor: the preprocessor parses the shell script and instruments it with calls

to the parallelizing compilation server.

Annotations: The annotations used by the compiler depends on PaSh-AOT an-

notations for dataflow graph parallelization.

JIT Engine: The JIT engine works through the interaction of the instrumented

calls and the stateful long-lived compilation server.

The Compilation Server: A stateful long lived server that handles compilation

requests for parallelizing regions of the script.
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3.3.2 Preprocessor

Dynamic script interposition without any shell-interpreter modifications is hard.

To achieve this, PaSh-JIT opts for a light-weight script instrumentation pre-

processing step: it marks possible parallelizable regions with code that dynamically

determines whether or not to invoke the compiler.

The intuition behind PaSh-JIT’s preprocessor is that a syntactic analysis of a

shell script is enough to suggest potential parallelizable regions. This analysis is

imprecise: there is no way to determine whether a command invocation will be pure

ahead of time. Its goal however, is not to find parallelizable regions exactly, but rather

to find potential compilation sites—PaSh-JIT sorts out the details at run-time, using

up-to-date information about the system’s state.

There is a trade-off when choosing the right size for these regions: the larger

the region, the more opportunities exist for analysis and optimization but the less

likely it is for the entire region to be parallelizable. PaSh-JIT targets a middle-

ground: maximal schedule-free regions—i.e., command sequences composed using

shell primitives that do not impose scheduling restrictions. By focusing on maximal

schedule-free regions, PaSh-JIT minimizes the number of compiler invocations and

maximizes the cross-command parallelization opportunities for the compiler.

The preprocessor finds maximal possible parallelizable regions by searching the

AST bottom-up, combining subtrees that are possible parallelizable regions when they

are composed using constructs that do not introduce scheduling constraints (e.g., &,

|). When a region cannot outgrow a certain subtree, it is replaced with a call to the

JIT engine. If successfully compiled, a region is transformed to a dataflow graph—a

convenient and well-studied computation model amenable to transformation-based

optimizations [16]. The instrumented AST resulting from the compilation is finally

translated (unparsed) back to shell code and sent over to the underlying shell for

execution.
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3.3.3 JIT Engine

The PaSh-JIT preprocessor identifies possible parallelizable regions and instruments

the shell script to dynamically determine whether they can be optimized by invoking

the JIT engine. The JIT engine faces two key challenges: it must not change the

original script behavior, and it must run with low overhead as it is invoked multiple

times per script.

The JIT engine is a reflective shell script: by inspecting the state of the shell and

that of the broader system, it can transparently work with the compiler to determine

whether or not to parallelize a script (Fig. 3-2). When running scripts with PaSh-

JIT, it is helpful to think of the shell as having two modes: (1) conventional shell

mode, where scripts execute in the original shell context, and (2) PaSh-JIT mode,

where the runtime reflects on shell state and invokes a compiler to determine whether

to execute the original or an optimized version of the target region. To switch from

shell mode to PaSh-JIT mode, the JIT engine must carefully save the state of the

user’s shell; to switch back, it must carefully put things back just the way they were.

A shell’s state is quite complex: beyond saving and restoring variables, the runtime

must account for various shell flags along with other internal shell state (e.g., the

previous exit status, working directory).

JIT Stages

shell mode PASH-JIT mode

S

C

R

E

…

S

D

R
…

S Save shell state and 
set PASH-JIT state

C Query parallelizing 
compiler server

R Restore shell state

E Execute (optimized or 
original) fragment

D Gather execution and 
debug information

debug
mode

Figure 3-2: Overview of JIT engine stages.

When running normally, the JIT engine transitions into and out of PaSh-JIT
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mode once per possible parallelizable region (Fig. 3-2): the JIT engine saves the shell

state and switches into PaSh-JIT mode ; then it tries to compile the current fragment

(C); whether successful or not, the JIT engine restores the state and switches back

to shell mode ; and, finally, either the original fragment or the optimized parallel

version is executed (E). With debugging enabled, the JIT engine switches back into

PaSh-JIT mode to collect debugging information (D), restoring again afterwards .

Saving : When entering a possible parallelizable region, the first step is to save the

shell state—recording the previous command’s exit status, the values of environment

variables, and the configuration of the shell—essentially, a continuation that can later

be restored to execute the target fragment. Once the state is saved, PaSh-JIT mode

reconfigures the user’s shell to avoid changing script behavior. For example, if the

user’s shell has the -e “exit on error” flag set, the shell should exit immediately when

a command (or a pipeline) returns a non-zero exit status, unless that command is in

a checked position (e.g., after !, or in the condition of an if or while) [2]. However,

failing commands should not stop the JIT itself, so -e is unset (and will be restored

later in ).

Compilation (C): With the state saved and shell reconfigured, PaSh-JIT tries to

compile the script fragment: the JIT engine queries the compilation server (§3.3.4)

with the script fragment (already parsed during preprocessing) along with the saved

shell state, so that the compilation server can try to expand all of the words in

the fragment. The server responds to indicate whether it managed to optimize the

fragment.

Restoring : Whether or not compilation was successful, the JIT engine exits PaSh-

JIT mode, restoring the continuation saved earlier (S) to prepare to execute the frag-

ment. One particular challenge in this mode is to restore state while accommodating

different shell modes. Suppose PaSh-JIT is in -e mode, trying to run some possible

parallelizable region, and the command before this region exited with status 47 in

a checked position, i.e., without forcing the shell to exit. The JIT engine saves the

exit status so as to not overwrite it. The fragment may depend on the exit status, so
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PaSh-JIT needs to restore it before running the fragment. But it must be careful—

simply running (exit 47) would force the shell to exit. Thus PaSh-JIT runs the

subshell in a checked position:

if (exit "$pash_previous_exit_code"); then

source "${fragment}"; ...

else

source "${fragment}"; ...

fi

This odd code ensures that the fragment (in identical branches) has access to the

previous exit status (in the checked, conditional position of the if) without exiting

when -e is set.

Execution (E): Back in shell mode, the JIT engine executes the fragment. If the

compiler was successful, then the JIT engine selects the optimized script fragment.

If the compiler failed, the JIT engine falls back to the original fragment. Either way,

control flows back to the original shell.

Debug mode (D) : When PaSh-JIT is in debugging mode, the JIT engine will

re-enter PaSh-JIT mode after execution (E) in order to log information about the

script, such as execution time and exit status. Standard execution skips this extra

save/restore cycle.

3.3.4 Compilation server

For each possible parallelizable region, the JIT engine queries the compiler: can this

region actually be optimized? To answer this question, PaSh-JIT builds on ideas

from the PaSh-AOT [39] dataflow compiler (§3.3.5). As ever, it focuses on preserving

behavior and minimizing overhead.

To preserve correct behavior in the face of the shell’s dynamism, PaSh-JIT ex-

pands each script region prior to compilation.

To minimize overhead due to fixed startup costs—e.g., initialization, dependency

loading, logging setup, and output file arrangement—PaSh-JIT packages the new
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compiler as a stateful compilation server communicating via Unix domain sockets.1

The compilation server is also augmented to support a larger set of optimization

opportunities, by storing and using information from one compilation to help another.

The design decision to use a long-lived stateful compilation server has significant

implications on performance and the capabilities of the JIT engine:

1. It improves performance and the startup overhead of re-initializing the compiler

for each compilation request.

2. It allows us to maintain a state about previous dataflow regions, their status,

inputs, outputs, and their execution time. This enabled us to implement fea-

tures like dependency untangling, and parallelization factor adjustment during

run-time.

3.3.5 Command Annotations

PaSh-JIT uses the command annotation and specification framework introduced

by PaSh-AOT [39, 16], extended to also indicate whether a command invocation

is commutative (§3.4.1). This framework provides information about a command

invocation’s parallelizability class, inputs, and outputs. A command annotation can

be used to extract high-level information about a specific command invocation, i.e.,

a precise instantiation of its flags, options, and arguments. For example, annotations

determine whether a given command invocation is pure and what its inputs and

outputs are.

PaSh-JIT uses this annotation framework to extract information for commands

that are not shell builtins—that is, commands like sort and grep. Annotations

enable analyses and transformations over command invocations by lifting them to

pure dataflow nodes in a dataflow intermediate representation (IR) [16]. For ex-

ample, grep -f dict.txt src.txt > out.txt is a dataflow node with two input files

(dict.txt and src.txt) and one output file (out.txt), which are all extracted from

1We experimented with both socket and FIFO-based communication, but we saw no significant
performance differences.
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the annotation of the grep command. Annotations also describe parallelization oppor-

tunities, e.g., grep "pattern" src.txt processes each line of src.txt independently,

and so it can be parallelized.

3.4 Commutativity Awareness

One of the performance concerns in PaSh-AOT is that when splitting an input across

parallel data sections (Fig. 4-2), we need to determine the number of lines to be able

to accurately split the stream to multiple output sinks. This is done by making two

passes on the input stream. In the first pass, we read the whole input into a temporary

file to count the number of lines in the input streams. In a second pass, we split the

input stream we stored in temp file equally (by number of line) across the provided

sinks. There are two main problems with this approach:

1. In the first pass, we have to write the full input stream from memory into disk;

depending on disk speed, this could be a significant hit to performance.

2. When the input is split in the second pass, the data is written sequentially across

sinks. This means that for N given sinks, sink 𝑖 will not start receiving data

until all sinks < 𝑖 completely consume their input. This reduces the amount of

parallelism and thus reduces performance.

To address these concerns, we introduced a new splitting model that uses a round-

robin strategy for splitting the input stream across the given sinks. Rather than

reading the entire input before deciding how to split it, input can be split via small

incremental steps that are immediately handed off to data-parallel commands for

processing. This splitting model relies on the the commutative nature [32, 22] of

many shell commands. Commutative commands can improve parallelization gains by

allowing PaSh-JIT to split and process data in small and order-independent batches.

Splitting input into many small batches eliminates both of the problems mentioned

above for the following reasons:
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1. Constant batch size allows us to split the input stream without knowing the full

size ahead of time. This completely eliminates the need to store any temp files

on disk.

2. Small batch size increases the pipeline parallelism and improves CPU utilization

by overlapping input splitting and processing. Commands across all sinks can

start processing their input rather than waiting for the whole input to be read

and distributed.

The PaSh-JIT compiler uses these insights to produce more efficient parallel

implementations of scripts that contain commutative commands. It introduces a

few auxiliary nodes in its intermediate representation (IR) that orchestrate parallel

execution for stateless and commutative commands, and compiler transformations

that insert these nodes in a dataflow graph. It also provides efficient implementations

of these nodes that are instantiated in the parallel target script.

3.4.1 Compilation: Dataflow Model

The PaSh-JIT compiler operates intra-regional compiler builds on the PaSh-AOT

compiler, where commands correspond to nodes and communication channels corre-

spond to edges between nodes. To enable commutativity-aware transformations,

PaSh-JIT extends PaSh-AOT’s annotation framework (§3.3.5) to indicate whether

a command invocation is commutative (in addition to its parallelizability character-

istics).

Runtime

PaSh-JIT introduces the following four dataflow nodes, which are available as part

of PaSh-JIT runtime:

• c_split: node takes a single input stream and N output streams. It splits

its input into small batches, prepends a header on each batch identifying its

sequence number, and then forwards it to one of the N outputs depending
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on a load-balancing strategy. Currently, PaSh-JIT implements a round-robin

strategy.

• c_merge: node performs the inverse operation: it merges N input streams into

one and removes any headers.

• c_wrap: command is used to wrap stateless commands. It removes the header,

forwards the input to the command, and then adds the header back to the

command output. forks a new process to execute the wrapped command for

each new block_id.

• c_strip: is a single-input-single-output header-removal node that often pre-

cedes commutative commands.

Compiler

We modified the PaSh-JIT runtime to take advantage of the new runtime. We first

added a new property to our annotation which indicates if a command is commutative

or not. Additionally, all stateless commands are commutative by default. Given the

new annotations we modified the dataflow transformations to use the new commuta-

tive run-time nodes whenever possible.

To expose the parallelism of commutativity, PaSh-JIT performs the following

transformations. The first transformation introduces a pair of c_split and c_merge

before any commutative (e.g., sort) or stateless (e.g., grep) command.

Another transformation then tries to eliminate unnecessary splits and merges,

delaying c_merge as far as possible (i.e., enclosing the biggest possible part of the

graph). If a stateless command follows a c_merge, the command is wrapped with

c_wrap and the c_merge is commuted after it. If a commutative command follows a

c_merge, the command is parallelized and c_merge is transformed to a set of c_strips.

Finally, if a c_split follows a c_merge, then the two are fused together to the identity

function, connecting the inputs of c_merge with the outputs of c_split.
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An important execution invariant is that c_splits and c_merges (or c_strips)

satisfy the requirements of well-formed parentheses, i.e., a c_split must always be

followed by a c_merge or a set of c_strips. PaSh-JIT’s dataflow graphs are essentially

bimodal, since subgraphs that are between c_splits and c_merges will execute with

batches, requiring all commands in them to be wrapped with c_wrap, while the rest

of the dataflow graph executes like the original.

3.4.2 Runtime: Commutativity Implementation

For commutativity to show performance improvement over the previous approach, the

runtime needs to be highly efficient. The cost of (1) forking new processes and (2)

adding and removing headers for every mini-batch need to be almost non-existent.

Otherwise, constant overheads dominate over any performance gains we get from

commutativity. For this reason, we implemented the runtime in C and paid careful

consideration to all aspects of the implementation. This involved things like minimiz-

ing buffer copying, choosing the optimal internal buffer size, and using non-blocking

pipes when possible. The following sections describe some the optimizations and spe-

cial considerations we had to implement to maintain high performance across many

input sizes and situations.

Protocol

To reconstruct the order of different outputs while merging, PaSh-JIT needs to keep

track of the ordering as input batches are sent to different command copies for pro-

cessing and, more generally, as input-output batches flow throughout the parallelized

script. To achieve this, PaSh-JIT wraps all input batches with a header that con-

tains the three following fields: block_id, for ordering blocks; block_size, the size of

the block in bytes; and is_last, a boolean value, set to true only for the last block

with a given block_id.

struct header {

int block_id;
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uint64_t block_size;

bool is_last;

}

Utilization and deadlocks

PaSh-JIT must avoid deadlocks during write operations between the wrapper com-

mands and the commands they wrap—i.e., the two should never be blocked trying to

write at the same time. Additionally, the wrappers must maximize utilization of the

command they wrap, i.e., they should never wait on input unnecessarily. To avoid

deadlocks, PaSh-JIT wrappers use non-blocking read and write; and to increase

utilization and reduce waiting time, they write in small chunks of 32KB.

Handling inputs with long lines

An input may contain lines that are longer than the c_split block size. Such an event

leads to non-uniform block sizes and high memory consumption, because each block

must be read and sized completely before splitting and adding to the header. PaSh-

JIT addresses this issue by introducing the is_last header field in every batch: if a

block exceeds the specified size due to containing large lines, the block is split into

multiple blocks; all blocks share the same block_id but only the last sets is_last

to true. All blocks with the same id are forwarded sequentially which means we

don’t need to keep track of of the order within the same id. Downstream commands

can then use the is_last information to correctly reconstruct the output. Block

splitting reduces memory requirements and improves performance, as it allows for

higher utilization regardless of the frequency of newlines. And blocks maintain a

constant size throughout the flow, despite the presence of commands with high output-

to-input ratios, such as curl.

Handling small inputs

Inputs that are smaller than c_split’s block size lead to a single block and thus

sequential execution. PaSh-JIT’s c_split addresses this issue by first attempting
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to read an input size 𝑠 equal to sink_count * block_size bytes before forwarding

any blocks. If the total input is larger than 𝑠, this buffering ensures that all parallel

instances will get at least one block; if the total input is smaller than 𝑠, then the

input read is re-split into blocks fairly and forwarded downstream. The size 𝑠 is

configurable and defaults to 1MB, which we empirically determined avoids both high

overhead and low utilization.

An example of the output of the compiler with commutativity enabled can be seen

below.

c_split /tmp/fifo8 /tmp/fifo9 /tmp/fifo10 &

c_wrap 'grep "^....$"' </tmp/fifo9 >/tmp/fifo11 &

c_wrap 'grep "^....$"' </tmp/fifo10 >/tmp/fifo12 &

c_strip </tmp/fifo11 >/tmp/fifo13 &

c_strip </tmp/fifo12 >/tmp/fifo14 &

sort </tmp/fifo13 >/tmp/fifo15 &

sort </tmp/fifo14 >/tmp/fifo16 &

eager.sh </tmp/fifo15 >/tmp/fifo17 &

eager.sh </tmp/fifo16 >/tmp/fifo18 &

sort -m /tmp/fifo17 /tmp/fifo18 >/tmp/fifo19 &

3.5 Dependency Untangling

The design of the JIT compiler makes it possible to maintain a state across data

regions. The compiler uses this additional state to make decisions of whether it is

safe to run the following data region in parallel with other data regions that are still

running. A direct example of this is for-loop bodies, when the compiler is called on

iteration 𝑖, it knows the status (compiled successfully, done, still running) and the

input and outputs of all previous iterations and thus can make decision on whether it

is safe or not to run the next iteration in parallel. To do this, the compilers checks for

(1) all currently regions have been compiled successfully and thus have no side effects

and (2) the inputs and outputs of all currently running iterations have no conflict
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with the dataflow under consideration.

39



3.6 Evaluation

In this section, I focus on the performance evaluation for Commutativity (§3.6.1) and

Dependency Untangling (§3.6.2). For this evaluation, we used a variety of bench-

marks and workloads that expose both cross-regional and intra-regional paralleliza-

tion opportunities (Table 3.1). The complete evaluation of PaSh-JIT correctness and

performance in comparison to PaSh-AOT and Bash can be found in the PaSh-JIT

paper [20].

Table 3.1: Benchmark summary. Summary of benchmarks used to evaluate Commutativity
and Dependency Untangling performance for the thesis

Benchmark Set Short Label Sections Scripts LOC Input Source

1 Common & Classic One-linersClassics §3.6.1 10 123 14G [6, 5, 36, 19, 25]
2 Bell Labs Unix50 Unix50 §3.6.1 36 142 21G [23, 7]
3 Microbenchmarks MicroBench §3.6.1 1 6 — custom
4 COVID-19 Transit Analytics COVID-mts §3.6.2 4 79 3.4G [38]
5 Natural-Language Processing NLP §3.6.2 21 306 1060 books [10]

Hardware & software setup: The evaluation was run on a ThinkStation P340

machine with 20 physical × 2.80GHz Intel(R) Core(TM) i9-10900 CPU with 32GB

of Ram, Ubuntu 18.04.

3.6.1 Commutativity Awareness

To evaluate the benefits of commutativity, we focus on scripts with individual region

parallelization potential: Classics, Unix50, COVID-mts, and AvgTemp. Toggling on

the commutativity optimization achieves an average speedup of 1.43x and a maximum

speedup of 2.43x compared to toggling it off. Fig 3-3 shows the speedup in relation

to Bash as a baseline.

40



oneliners unix50 analytics-mts
benchmark

0

1

2

3

4

5

6

7

8

sp
ee

du
p

disabled commutativity
enabled commutativity

Figure 3-3: Commutativity speedup over Bash baseline

3.6.2 Dependency Untangling

To evaluating Dependency untangling we focused on scripts with cross-region par-

allelization potential. Independent for-loop iterations are ideal candidates for cross-

region parallelization. Turning on the dependency untangling optimization achieves

an average speedup of 3.43x and max of 4.42x on NLP in comparison to toggling it off

(Fig. 3-5). The average speed-up of PaSh-JIT is 1.94x with dependency untangling

enabled and 0.64x when disabled (Fig. 3-4). The reduction in performance with de-

pendency untangling is caused by constant overheads from invoking the JIT compiler

over tight for-loop iterations.
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Chapter 4

Distributed-PaSh

4.1 Intro

The move from parallel to distributed execution seems like a natural progression;

however, the use cases and trade-offs of PaSh-JIT change fundamentally when mov-

ing from the one-machine model to the distributed model. This system faces three

key challenges: it should maintain the same behaviour as local execution, it should

require no or very minimal changes to the script, and finally the distribution benefits

should overweight the high network overheads compared to parallel execution.

In this chapter, I present Distributed-PaSh, the first distributing JIT compiler

for the shell. Distributed-PaSh aims to efficiently utilize cluster’s resources across

multiple dimensions such as computing and network resources, as well as data locality.

Distributed-PaSh blends the parallel and distributed execution models to achieve

higher performance than what’s possible by each model individually. In §4.2, I explain

the design for executing shell scripts in a distributed fashion. In §4.3 I explore the

integration of distributed file systems (HDFS in particular) into our system. This

allows Distributed-PaSh to make decisions based on data locality with respect to

how to distribute and run parallel data pipelines. In heavy data processing scripts,

Distributed-PaSh can achieve higher performance than single machine sequential

and parallel shells like Bash and PaSh-JIT.

43



4.2 Distributed Execution

4.2.1 Design

We wanted the design to naturally fit on top of PaSh-JIT. The new system should

be able to leverage the power of PaSh-JIT since the benefits of the JIT engine are

relevant to distributed execution. The JIT engine’s ability to make parallelization

decisions closer to the point of execution is critical for correctness. Other optimiza-

tions, such as commutativity awareness and dependency untangling, are even more

relevant in the distributed model. Distributed-PaSh could unroll a for-loop and

run iterations in distributed fashion, which would allow for higher utilization of clus-

ter compute resources and could lead to significant speed-ups if the for-loop body

is doing a heavy computation. Furthermore, commutativity allows Distributed-

PaSh to efficiently utilize network resources by sending small chunks of data across

machines in round-robin fashion.

Figure 4-1: Distributed PaSh design

4.2.2 Components

Distributed-PaSh has the following components:

• PaSh-JIT: The JIT compiler as described in 3.3 the pre-processing and com-
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pilation of the dataflow regions.

• Worker Manager: Takes the optimized dataflow graph and divides it into

different subgraphs that are sent to available workers in the cluster.

• Workers: The primary unit of execution. A worker accepts execution re-

quests from the worker manager. An execution request contains a dataflow

graph objects which the worker compiles into a shell script and runs on its local

machine. The design decision to transfer dataflow graph instead of ready-to-run

shell script allows us to dynamically generate any required temp files without

needing any prior information about the worker’s particular file system layout.

This also allows us to run a second round of parallelization on the subgraphs

themselves, making it possible to take advantage of the workers’ additional

cores.

4.2.3 System Setup and Assumptions

We assume that all machines in the cluster are able to communicate freely on any port.

The system administrator needs to do an initial setup to install the Distributed-

PaSh run-time and establish a worker process once on every machine in the cluster.

We also assume that the users, servers, and network are trusted; Further work can

improve security through isolation, encryption, and other methods.

We also do not implement any fault tolerance mechanism in the system; adding

fault tolerance to this system would require a fair amount of complexity that we could

not justify. The user can simply rerun the script in the rare occasion a worker dies or

network partition happens. We believe that this level of fault tolerance is acceptable

for most users who will be using this system.
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4.2.4 Runtime and Implementation

Workers

Each machine intended to be used should have a long-lived worker running. The

worker receives requests to execute dataflow graphs from the worker manager. Ev-

ery request contains a serialized dataflow graph object and any functions defined or

exported in the shell script. The worker compiles the dataflow graph into a shell

script and then runs it after importing the supplied functions. The worker also runs

a Discovery service in a different process. The discovery service helps the read

and write ends of the distributed pipes identify each other. The discovery service

is implemented as a gRPC server with two RPC calls, a put RPC which stores an

mapping between an key and address in an in memory hashmap and a get RPC which

retrieves the address for a given key.

Worker Manager

The worker manager sits next to the PaSh-JIT compilation server. When the compi-

lation server receives a request from the JIT engine to compile a dataflow region, the

compiler optimizes the region, and if compilation succeeds, it gets sent to the worker

manager. The worker manager can safely split the parallel dataflow graph into mul-

tiple subgraphs and then distributes these subgraphs to workers for execution. The

manager learns about the workers in the cluster using a config.json file defined in the

Distributed-PaSh home directory. This cluster configuration file can be extended

to include things like the number of cores on each machine. This could be utilized by

the manager to more efficiently distribute work. The worker manager performs two

key tasks:

1. Graph splitting: The graph splitting algorithm tries to split every continuous

parallel and sequential section in the graph into its own subgraph figure 4-3. We

replace some of the previous UNIX pipelines with our implementation of dis-

tribute UNIX pipes so that subgraphs can move data across machines. A couple

consideration need to be made for correct execution and to maintain local shell

46



behavior. In particular, named fifo, standard input and output, and files are

usually relative to the directory where the shell was executed from and are local

to the machine. We should be able to handle them without affecting correctness

and without making assumptions about the file system or working directory of

the client or workers. To solve this problem, we generate an additional script

that runs directly in the shell where the user ran Distributed-PaSh; This

script handles redirection to and from local files, FIFOs, and standard input

and output.

2. Work distribution: The worker manager distributes the work to workers accord-

ing to a defined policy.

Distributed Pipe

We introduced a new runtime primitive to simulate a UNIX data pipes over a network.

The distributed pipe was implement using go and it is essentially a wrapper around

sockets. It includes a gRPC client that connects to the discovery service to query and

publish the read and write ends of the socket. In detail, a distributed pipe takes the

following arguments.

• Type: Determines whether the node is at the read or write end of the pipe.

This is analogous to the read and write ends of a normal UNIX pipe.

• UID: Every distributed pipe has a unique identifier. The read and write ends

of the pipe use the same UID.

• Discovery Service Address: The read and write ends of a distributed pipe iden-

tify each other using the UID. In particular, a write publishes an address rep-

resented by a host and a port number to the discovery service. The read end

then queries the discovery service to get the address to read the data from. If

the discovery service doesn’t have a particular UID, it returns an error. This is

common, as the write end could take a little longer to publish its address. The

read end retries for 10 seconds before failing.
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Figure 4-2: Dataflow graph before splitting

Figure 4-3: Dataflow graph after splitting

Figure 4-4: Second round of parallelization on worker’s machine
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4.3 Distributed File Systems

Interacting with the local file system is the heart of the UNIX shell and one of its

primary functions. Most shell commands interact directly with the file system to

read, store, and process files. When we started working Distributed-PaSh, we

had to give special attention to how user interactions with the file system change

when moving from the one machine model to the distributed model. We quickly

realized that distributed file systems should be first-class citizens in a distributed

shell. We decided to pursue a design that is general enough to incorporate most

distributed file systems. However, in our implementation, we decided to focus on

the Hadoop Distributed File System (HDFS). In the following sections, I give a brief

overview of NFS and HDFS and why we choose to primarily focus on HDFS in our

implementation. Then I describe our design and the implementation for a data-

locality-aware Distributed-PaSh.

4.3.1 Background

The two most common distributed file systems we came across were the Network File

System (NFS) and the Hadoop Distributed File System (HDFS). Both of these file

systems are widely used in distributed clusters but their capabilities and use cases

are fundamentally different.

NFS

The Network File System is a protocol that was developed by Sun Microsystems in

1984 to allow a client to view store and update files over a computer network. NFS

primary purpose is to allow users to access and modify files on other machines as if

the file was on the local machine. NFS does not provide any replication for files, as

it is primarily an interface to access another computer disk.
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HDFS

The Hadoop Distributed File System is designed to be run on commodity networked

computers or nodes. The file system provides fault tolerance by replicating the file

across multiple nodes. This is done by splitting the file into blocks of configurable

size (usually 125 Megabytes) and then replicating the blocks across multiple machines.

The default replication factor is 3 and block size is 125 Megabytes; both of these can

be configured for the whole file system system and/or for individual files.

In this work, we focus on HDFS instead of NFS for the following reasons:

• The HDFS filesystem stores files by splitting them into blocks and distributing

these blocks across many nodes. This property fits very well with PaSh dataflow

parallelization model which usually starts by splitting the input stream (figure

4-2).

• HDFS file replication provides fault tolerance, but that is only one benefit.

Replication reduces the network, disk, and processor usage on any particular

machine and therefore significantly improves performance as file block can be

fetched from any machine that contains a replica of that block. This solves

many of the common bottlenecks NFS suffers from, especially when multiple

users access the same file.

• HDFS is commonly used in big data processing alongside frameworks such as

the Hadoop Map-Reduce framework.

4.3.2 Design

The network is usually one of the first bottlenecks that appears when dealing with

large files, and it is usually difficult for developers to address it without significant

changes to their infrastructure and code. Additionally, a common pattern in many

shell scripts and map-reduce jobs is that data size gets smaller as we progress in the

dataflow graph. This usually means that delaying data movement until a later stage
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would usually lead to moving less data across machines. We decided to augment our

design in 4.2 to take these factors into consideration when distributing work across

workers.

Let’s take the following the following script:

hdfs dfs -cat $IN | tr A-Z a-z | grep foo | sort

This script reads the file IN from HDFS, converts all letters to lower case, then greps

the word foo, and finally sorts the output. Executing this script either in Bash or

PaSh-JIT would require the the HDFS cat to move the whole file over the network

for this script to fully execute. The cost of transferring files over a network could be

substantial, in our experimental cluster we measured around 280s for just executing

the first HDFS cat command while executing the file script took around 290s. This

shows that most of the execution time was spend on transferring the file across the

network. The size of the data after grep is likely to be orders of magnitude smaller the

file itself and the commands tr and grep are stateless commands which PaSh-JIT

can easily parallelize (Fig. 4-2). Distributed-PaSh improves the performance this

script by (1) executing the as much as possible on the machine containing the data

and (2) directly operation on the pre-split HDFS file blocks and thus eliminating the

bottleneck of having to merge all the blocks into one file.

Remote File Resources

To integrate distributed file systems into our distributed execution model, we intro-

duced a new type of file resource. Previous file resources consisted of (1) file resources

that represents files on a user’s local machine, (2) file descriptor resources representing

named pipes, and (3) ephemeral resources representing anonymous pipes. We added

a remote file resource, which primarily includes additional information about the lo-

cation of the data and supports having multiple locations in case of replication. This

allows the worker manager to take data location into consideration when assigning

jobs to workers.
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Design benefits

The augmented design allows Distributed-PaSh to efficiently utilize cluster re-

sources on three primary dimensions:

1. Disk resources: Executing tasks on workers who have the data locally leads to

tasks finishing faster due to data locality and no networking overhead.

2. Networking resources: The network traffic overall since shell scripts and map-

reduce jobs output is much smaller than the input.

3. Processing resources: Distributed-PaSh can parallelize the graph sections as

in figure 4-4 and therefore can take advantage of both the cluster nodes and the

cores on every node.

Distributed-PaSh is able to do this without requiring developers or casual

users to make any modifications to their scripts. Distributed-PaSh can achieve

significant improvements of up to 8.17x over Bash and 4.65x over PaSh-JIT in our

benchmarks. We expect these results to greatly vary based on network bandwidth

and condition, node computing power, type of disk, and other factors. However, we

expect Distributed-PaSh to be faster than running the script in the Bash shell

when dealing with large amounts of data that is located on a distributed file system.

HDFS integration

Our design assumes the following:

• The user has access to HDFS by either being part of the cluster nodes or through

a client.

• The nodes in the cluster have Distributed-PaSh runtime installed and work-

ers running.

When the JIT compiler is operating on a dataflow region, we check if the input

file resource is an HDFS file. When we detect an HDFS file resource, we query HDFS

for the location of the file blocks and initialize remote file resources for each block.
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We then create a stream per block which effectively replaces what used to be the split

node in PaSh-JIT (Fig. 4-2). This does not affect the semantics and correctness

of the PaSh-JIT compiler. The remainder of the execution goes through the same

process described in 4.2 with a slight change in the worker manager policy.

Policy

The policy for determining which worker would operate on which part of the graph

was augmented to take into account the location of the file resources. If a worker

is available where the data is, we execute the task on that worker; if the data is

replicated and multiple workers have these data blocks on their local disks, we choose

the worker with the least amount of work.

4.3.3 Implementation

Remote File resources

The RemoteFileResource described above is an interface that includes an addition

method is_available_on(host). The method should return True or False depend-

ing on whether the resource is available on a given host. Every remote file resource

would implement this interface and method.

Every HDFS blocks is represented by DFSSplitResource which is a class that

implements RemoteFileResource. This class contains information about the primary

block it is representing and other blocks in the file. This is necessary since HDFS

doesn’t always split a file on newline characters which would require us to fetch a

small part of the following block sometimes.

DFS File Reader

The file reader is a grpc service that is part of the worker on every machine. The

primary function of the file reader is to read the local file or block from the worker’s

disk given a path. The file reader server and client are implemented in Go and

communicate through protocol buffers (protobufs). The RPCs of the main server, the
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client functions and the configuration structure are described in listing 1. The client

takes as input a configuration describing the blocks of the file and their locations, a

primary split number if the file consists of more than one block, and finally a prefix if

the file path needs additional custom prefix based on the worker machine. The config

structure is flexible enough to represent files that are stored in various ways including

HDFS and NFS. A file stored on NFS can be described with a configuration consisting

of one block and one host, while a file on HDFS would have many blocks and many

hosts per block. The file reader also makes sure that every block is terminated with

a newline character, this is done by reading logical splits instead of the raw block. A

logical split is a block starting at the first full line and ending at a new line character.

The file reader achieves this by reading up until the first newline character in the next

block. The full algorithm for reading a block is described in Appendix A (listing 2).

Config Structure : []Blocks {

Path string // a string representing the block path.

Hosts []string // an arrays of addresses containing this block.

}

Listing 1: File Config Structure

4.4 Evaluation

4.4.1 Experiment Setup

The experiment setup consists of a cluster of 4 nodes. For ease of deployment, we used

docker swarm to deploy HDFS and the Distributed-PaSh runtime on a 4 machine

swarm. All machines are identical, with 6 core Intel(R) Core(TM) i7-10710U cpu and

1 terabyte of SSD. All machines were located in the same room and we measured the

bandwidth between them to be 90.8 Mbits/sec. The benchmarking of single machine

shells (Bash & PaSh-JIT) was done on a machine with 20 physical × 2.80GHz

Intel(R) Core(TM) i9-10900 CPU with 32GB of Ram. All benchmarks were run in

Ubuntu 18.04 docker containers.
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4.4.2 Benchmarks

To evaluate Distributed-PaSh we minimally modified the scripts in Classics to

take input from files hosted on HDFS instead of local disk. The average input size

to the scripts was around 3GB. We measured the execution time of each test using

Bash, PaSh-JIT, and Distributed-PaSh.

4.4.3 Results

Distributed-PaSh achieves an average of 3.34x and a max speedup of 8.17x over

Bash (Fig. 4-5). Additionally, since Distributed-PaSh performs both paralleliza-

tion and distribution of parallel dataflow pipelines, we benchmark it against PaSh-

JIT to isolate the performance improvements of distribution. Distributed-PaSh

achieves an average of 1.64x and a max of 4.65x speedup over PaSh-JIT (Figure

4-6). Only one scripts from Classics (diff) had worse performance than using Bash

and PaSh-JIT; the script utilizes named FIFOs in its computation, which requires

Distributed-PaSh to move large amounts of data back and forth between the clus-

ter machines and the client machine (to preserve local shell semantics). Improved

heuristics could potentially improve this scenario.
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Figure 4-5: Speedup over Bash
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Figure 4-6: Speedup over Bash
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Chapter 5

Conclusion

5.1 Summary

In this thesis, I explored the current state-of-the-art shell parallelization and distri-

bution methods. I described the PaSh-JIT system and my contribution to it. I also

presented Distributed-PaSh, the first distributing JIT compiler for the shell. I

explored the design and implementation of this system and showed that such system

is capable of significantly improving the performance of shell scripts in distributed

environments.

5.2 Future work

This work serves as a foundation for advancing the capabilities and performance of the

UNIX shell. The integration of distributed pipeline execution and a JIT compilers

remains relatively unexplored. There is still work to be done in optimizing, defin-

ing and implementing the right abstractions, features, and tools for the distributed

model. Other extensions, such as fault tolerance and security could be explored. In

addition, this work could serve as a foundation adapting the shell to new and emerging

computing models. I detail some ideas for future work:
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5.2.1 Fault Tolerance

Distributed-PaSh doesn’t implement any form of fault tolerance. It is not clear

what level of fault tolerance we should aim for; we haven’t defined what situation

we would like to recover from and what situation we should consider unrecoverable.

Recovering when a server machine dies in middle of execution would require some form

of check-pointing in addition to careful control and possibly duplication of data flowing

to and from, files, named pipes, standard input and output. In addition, recovering a

server running stateless commands could be done more easily than recovering servers

running stateful commands, the latter might require a maintaining a mirror which we

can switch to in case of failure.

5.2.2 Security

The current system assumes that both the client is trusted, realistically this might

not always be the case. Some for of containerization, access control, and stream

encryption could help elevate most security concerns.

5.2.3 Data driven decision making

Currently we don’t collect any health metrics in our implementation. It might be

useful to insert nodes that measure the dataflow and can report if a machine is being

slower than other machines either to having slower network connection or strained re-

sources. The worker manager can take this data into consideration when distributing

future work. This data can also be used for checking the health of the workers which

would help us catch bugs such as leakages causing disk or compute over utilization.

5.2.4 Optimistic execution

Distributed execution comes with heavy costs. The overheads communicating and

moving data between processes could be very large and it is much more pronounced

than in the parallel execution model. In addition, network speed and bandwidth
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could be very inconsistent in comparison to single machine communication methods.

In some scripts, these overheads dominate any benefit that could be gained from

running distribution and sometimes even from parallelization. A possible remedy

for optimizing scripts is to optimistically execute the sequential script during the

compilation stage of the parallel or distributed scripts.

5.2.5 Policy

The current work distribution policy uses some simple heuristics to determine the

best worker. In addition to the data-driven approach mentioned above (§5.2.3), it is

possible to improve the policy from a higher-level perspective. The characteristics of

distributed clusters, such as network throughput, compute power, and predicted usage

patterns vary greatly; developing abstractions and tools to improve work allocation

would be beneficial not only for Distributed-PaSh, but also for large-scale data

processing systems in general.

5.2.6 Serverless PaSh

Research about adapting the shell to new and emerging computing models such as

serverless is still in its early stages. The work done in PaSh-JIT and Distributed-

PaSh could aid in the design and development of a serverless shell that allows users

to utilize the power of serverless computing seamlessly.

5.2.7 Traditional distributed shell

It could be interesting to create a shell that mixes between the traditional distributed

shells used for system administration and Distributed-PaSh. This would involve

adding an interactive interface in addition to any other features that those shells

typically provide.
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Appendix A

Listings

func read_logical_split(config, block_num):

skip_first_line = True

local_file_reader = FileReader(config.path[block_num])

if block_num == 0: // First block doesn't skip the first line

skip_first_line = False

if skip_first_line:

err = local_file_reader.seek_to_delim('\n')

if err == EOF: // This block belongs to previous logical split

return

Stdout.write(local_file_stream) // Write remaining

for block in blocks[block_num + 1]:

// read the first line of the following block

err = read_first_line(block, Stdout)

if err == EOF: // no newline -> keep reading

continue

else:
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break

Listing 2: Algorithm for reading file logical splits
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