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Abstract

Because of the acoustic similarities between some letters, automatic recognition
of continuously-spoken letters is a difficult task. By constraining the problem to the
recognition of spelled words, knowledge of the rules of spelling may be exploited to
aid in recognition. This thesis studies the acoustic-phonetic and lexical character-
istics of continuously-spelled words to determine how to combine information from
these sources of knowledge.

A lexical study using a large dictionary is conducted to quantify some of the rules
of spelling. Statistics dealing with the frequency of letter sequences are gathered.

Experiments are performed to determine the sufficiency of acoustic information
for the recognition of spelled strings. Both auditory perception tests and spectro-
gram reading tests are conducted, and results are compared. An acoustic study of
the spelling corpus is conducted to determine the characteristics of spelled speech
that differ from ordinary speech. The study also examines specific errors made
by subjects of the recognition experiments to determine their causes. Experiments
in acoustic resolution of the worst substitution errors are also conducted to find
acoustic parameters to distinguish between easily confused pairs of letters.

Finally, ways of integrating acoustic-phonetic and lexical knowledge are ex-
plored. A model for a spelling recognition that incorporates information from both
sources is proposed and discussed.

Name and Title of Thesis Supervisor: Victor W. Zue
Associate Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Speech Recognition

The computer is one of the most important tools employed by people today, and as
time goes on, its use will become more widespread and its functions more diverse.
Therefore, finding ways to provide graceful communication between humans and
computers is both desirable and essential. Currently, people communicate with
computers primarily via text, a method which is reliable, but also slow and often
awkward. Since voice is the most natural and efficient means of communication for
humans, it would be advantageous to provide voice as an alternative method for

communication with computers.

1.1.1 Current Speech Recognition Systems

So far, almost all speech recognition systems that have been successfully imple-
mented are speaker-dependent, isolated-word recognizers with limited vocabulary.
Such systems use a variety of techniques to recognize words, including template
matching and dynamic programming techniques [18]. In this method, the input
signal is compared with stored templates using dynamic time warping and a dis-

tance measure (e.g., the Itakura distance [8]) until the best match is found. This

9
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technique yields a recognition rate of better than 95% for limited vocabulary tasks
in which the system has been trained for a particular speaker. Pattern matching
works fairly well for isolated word recognition, but is not readily extendible to con-
tinuous speech recognition. In contiruous speech, boundaries between words are
not clearly defined and coarticulation, the influence adjacent sounds or words have
on each other, becomes an important factor.

IBM (9] has developed both a successful speaker-dependent isolated word recog-
nition system and speaker-dependent continuous word recognition system. Both
systems employ Hidden Markov Modeling [13], a probabilistic approach to recog-
nizing speech. In this approach, the input speech signal is sliced into segments and
statistics are used to find the best phonetic match. Using a vocabulary of 1000
words, the continuous speech recognizer has a success rate of about 91%, and with
a vocabulary of 5000 words, the isolated word recognizer is correct 95% of the time.

Other systems, such as HARPY [14] and Hearsay [5], rely more heavily on
higher-level speech knowledge. HARPY, which was developed in the 1970s as part
of the ARPA speech understanding project, is a continuous speech recognition sys-
tem that allows a limited set of grammatical constructions. Its recognition rate
is over 95%. Similarly, Hearsay, another continuous speech recognizer, uses high-
level knowledge of semantics and syntax, but very little low-level knowledge of the
acoustic-phonetic features of the signal. With a vocabulary of 1000 words, the sys-
tem is only able to correctly guess that a word is one of 50 candidates in 70% of
all cases. However, Hearsay’s overall recognition rate (after syntactic and semantic

constraints have been applied) was as good as HARPY.

1.1.2 The Use of Speech Knowledge

Despite some successes, none of these systems represent the realization of the ul-
timate goal of speaker-independent unlimited vocabulary continuous speech recog-

nition. Current technology in speech recognition possesses many limitations. For
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example, most systems can only recognize isolated words; the few that recognize
continuous speech can only do so in certain highly constrained circumstances, such
as only allowing a small number of possible sentence structures. In addition, most
of these systems require training on a single speaker and are only capable of ac-
curately recognizing the speech of that person. Also, all of the systems mentioned
above are limited vocabulary recognizers, and because of the ways they have been
implemented, increasing the vocabulary size means increasing the amount of mem-
ory required, increasing the amount of necessary training, or needing additional
time to perform the task. None of these requirements is desirable, so a different
approach must be taken to solve the problem.

While helpful for a restricted set of applications, the current technology does
not extend directly to the desired goal of continuous speech recognition. Speech
is more difficult to deal with when words are spoken continuously because the
acoustic properties of a word can vary depending on its context. On the other
hand, as in isolated word recognizers, syntactic and semantic constraints aid in
recognition. Also, the system ideally ought to be speaker-independenti, and therefore
needs to exploit interspeaker properties of speech signals, using acoustic features and
syntactic constraints in order to recognize utterances. Present and future work on
speaker-independent, unlimited vocabulary continuous speech recognizers depends
not only on conventional signal processing techniques, but also on being able to
apply speech knowledge, such as information about stress [1] or broad phonetic
features [21,7] toward solving the problem.

A phonetically-based approach may offer the solution, but the problem is too
difficult to tackle without imposing some restrictions. Solving a small portion of
the problem will hopefully make the overall goal of speaker-independent unlimited
vocabulary continuous speech recognition one step closer to realization.

One way to reduce the size of the problem is to restrict one of the parameters

mentioned above, such as vocabulary size, when developing a phonetically-based



CHAPTER 1. INTRODUCTION 12

recognizer. This makes it easier to extract both low-level and high-level knowledge
and to determine what information is relevant to the task.

One vocabulary that has been widely used in this approach is that of the digits
zero through nine. Obviously, continuous digit recognition is a popular task because
it can be used in a w' ‘e variety of applications. Digits form a good vocabulary to
use because they are acoustically distinct. Hcwever, continuous digit recognition
does present some challenges, because coarticulation greatly modifies the phonetic
features of speech, and syntactic constraints are non-existent, since any digit may
follow another in a given string. Several successful continuous digit recognition
systems have already been developed [2,12]. Another interesting vocabulary, one
that is somewhat more complicated than digits, is that of the letters of the alphabet.

However, continuous letter recognition has not yet been successfully achieved.

1.2 The Spelling Task

1.2.1 Motivation

Continuous letter recognition is a meaningful task both because of its contribu-
tion toward solving the continuous speech recognition problem and because of its
immediate practical applications. Like continuous digit recognition, recognition of
continuously spoken letters is a small enough task to be manageable since only a
limited vocabulary is used. However, letter recognition is more difficult than digit
recognition. First of all, the number of words in the vocabulary has increased, from
ten to twenty-six. Secondly, letters are not as acoustically distinct as numbers. Peo-
ple often have difficulty distinguishing the letters of the alphabet from one other,
hence the common practice of giving a clarifying example (e.g.,“D as in DOG”)
when spelling words. However, there are a few ways in which letter recognition
may be easier than digit recognition. For instance, digit strings may be affected

more by coarticulation than do letter strings because, in general, speakers may say



CHAPTER 1. INTRODUCTION 13

digit strings casually. Also, syntactic constraints are non-existent in digit strings:
knowledge of the ordering or structure of a string gives no useful information since
digits may appear any number of times in any order. On the other hand, unless
random letters are being spoken, syntactic constraints that may aid in recognition
do exist for letter strings.

The development of a continuous spellirg recognizer is a wortnwhile task which
has several applications. It can be used to distinguish between homonyms (e.g.,
“bear” and “bare”), or to recognize acronyms (e.g., “MIT” or “IBM” or “VLSI")
whick occur frequently in technical situations. In addition, a spelling recognizer
would be useful in cases in which an utterance is ambiguous: a speaker could be
asked to spell a word not recognized by the system. It could alzo be used to add
words to the vocabulary of a speech recognition system. Of course, a continuous
letter recognizer could be used to recognize any string, but reccgnizing spelled

English words is a manageable and well-defined task.

1.2.2 Difficulties of Task

The twenty-six letters of the alphabet can be divided into subclasses based on their
acoustic-phonetic properties. One such approach is to classify letters based on their
contained vowels. This means the letters B, C, D, E, G, P, T, V and Z form a
subclass (the /i7/ set), as do A, J and K (the /e¥/ set), F, L, M, N, S and X
(the /s/. set), I and Y (the /a7/ set), and Q and U (the /u/ set). O, R and
W are singletons or unique elements. Another method is to group letters based
on general phonetic characteristics. For example, the letters that fit the pattern
[FRICATIVE][VOWEL] are C V and Z. These two classification methods can be
combined to further subdivide the vocabulary. Ideally, there should be enough
acoustic-phonetic cues to place each word in its own subclass, thereby facilitating
recognition. However, this goal has not as of yet been reached. The obvious acoustic

similarities between some letters, such as B and V, or M and N, make continuous
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Figure 1.1: Spectrograms of (a) THAT and (b) TAJT

letter recognition a difficult task.

In order to get a better idea of the difficulties involved in continuous letter recog-
nition, it is instructive to examine isolated letters first. A system for recognizing
isolated letters and digits which uses acoustic features for discriminating among
sounds has been developed by researchers at Carnegie-Mellon University [3,4]. The
system, known as FEATURE, has an average accuracy rate of 89.5% when tested
on 10 male and 10 female speakers. However, since FEATURE’s analysis depends
on the fact that the endpoints of letters are known, its extendibility to continuous
letter recognition is questionable.

In general, it is difficult to apply isolated word recognition techniques to con-
tinuous speech because the signal is difficult to segment into individual words. For

example, a system may be hard-pressed to determine whether an unknown utterance
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Figure 1.2: Spectrograms of (a) L and (b) IL

is AJ or HA without knowing where the boundary is. Figure 1.1 shows wideband
spectrograms of the utterances THAT and TAJT spoken by the same person, and it
can be seen that the two spectrograms are virtually identical. Also, coarticulation
can be quite severe in spelled strings. Part (a) of Figure 1.2 shows a spectrogram of
the letter L spoken in isolation, and part (b) shows a spectrogram of IL extracted
from comtinuous speech. It can be seen that the L in part (b) of the figure is mod-
ified by its phonetic environment: the preceding I has raised the beginning of the
second formant of the L.

The letters are remarkably similar acoustically (especially the /i¥/ set) and
people often have difficulty distinguishing between them. In addition, segmenting
the an utterance of spelled speech into individual letters may be difficult. The
development of a recognition method must take into account both the characteristics

of spelled speech and the difficulties associated with it.
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1.2.3 Knowledge Sources

The best way to approach the spelling task is to use information from all relevant
sources of knowledge. The two primary sources of knowledge that are available are
acoustic and syntactic.

The acoustic knowledge source is rich in information, and listeners are usually
able to extract enough from it to recognize continuous speech. However, current
speech recognition systems are unable to perform as well as humans. Some recog-
nition cues are too subtle and cannot be detected using currently available signal
processing techniques. This means that acoustic information is insufficient for the
realization of this task.

Since the problem cannot be solved solely by relying on acoustic features, other
methods of analysis must be considered. In the general speech recognition problem,
if the permissible combinations of the words are constrained, then syntax may be
used to aid in recognition. Similarly, in this task, if the strings of letters to be
recognized form words, then the rules of English spelling may be used to help
recognize the letters.

In situations where acoustic ambiguities cannot be completely resolved, as in
trying to determine if an utterance is either “CHAT” or “ZAJT,” knowledge of
spelling rules of English would definitely point to the first alternative as being the
correct choice. So the solution to the problem of connected letter recognition can

be found by combining information from the two knowledge sources.

1.3 Thesis Overview

1.3.1 Problem Statement

In order to recognize words from their spellings, both acoustic-phonetic information

and lexical constraints may be used. The purpose of this thesis is to study the
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acoustic-phonetic and lexical knowledge sources and to determine what information

is useful to spelling recognition and how the knowledge sources might be integrated

to accomplish the task.

1.3.2 Summary

A number of steps are taken to realize the goals of this thesis. First, a lexical
study is undertaken in an effort to obtain information about syntactic constraints
in spelled words and to try to quantify the rules of spelling.

Also, the relationship between acoustic-phonetic and lexical information is ex-
amined. We surmise that both knowledge sources are used to recognize spelled
words, but the relative importance of each one to the realization of the task is not
known. In order to determine the individual usefulness of the knowledge sources,
experiments to determine the sufficiency of acoustic information for recognizing
spelled speech are performed. Auditory perception tests are conducted to estab-
lish a benchmark recogrition rate as a goal for a speech recognition system, and
spectrogram reading tests are conducted because spectrogram readers use a feature-
based approach to speech recognition that we could emulate in order to implement
a spelling recognition system.

The results of these experiments are analyzed and errors made by listeners and
readers are compared to try to determine why they occur and how they might be
resolved: As part of this analysis, the acoustic characteristics of spelled speech
are studied to try to determine what makes it different from ordinary coatinuous
speech.

Finally, ways of integrating acoustic-phonetic and lexical knowledge are ex-
plored. A model for a spelling recognition system that incorporates information

from both sources is proposed and discusesed.



Chapter 2

Exploring Lexical Constraints

2.1 Introduction

2.1.1 Description of Task Vocabulary

The letters of the alphabet form a vocabulary with several distinctive properties.
The vocabulary contains twenty-six symbols, all but one of which are monosyllabic.
The letters are structurally similar to one another: most follow either the pattern
[CONSONANT|[VOWEL] or [VOWEL][CONSONANT]. The letters are composed
of twenty-six different phonemes out of the set of forty ordinarily found in English.
All the letters except W contain one vowel out of the set /a, a7, ¢, e’, 17, o¥,
A, u/ (W contains two). Consequently, many letters share the same vowel, and
this results in a great deal of acoustic similarity between letters. As can be seen
by the example of the spectrogram of the letters GPT shown in Figure 2.1, the
parts of the letters that are different are often overwhelmed by the parts that are
similar. These acoustic similarities make many letters difficult to distinguish from
one another. Acoustic similarities between letters can not only cause problems in
recognizing individual letters, but can also create additional difficulties when trying

to recognize letters in continuously-spelled strings. For example, Figure 2.2 shows

18
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Figure 2.1: Spectrogram of the letters GPT

a spectrogram of the letters O and L, each spoken in isolation. Figure 2.3 shows
O and L spoken continuously. In the former case, the letters are separated from
each other and are quite distinct. However, in the latter case, it is much harder
to decide how many acoustic segments there are and where the boundary between
them is. Asanother example, if spelled quickly, the string BEET could be mistaken
for BET.

Even if the signal contains all the acoustic cues necessary for identifying the
letters, some of these cues are more subtle than others and are more difficult to
extract. Consequently, attempts to recognize continuously-spoken letters solely
based on acoustic cues are prone to errors. In order to recognize the letters reliably

from the acoustic signal, other sources of information are necessary.
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Figure 2.4: Comparison of 3pelling to General Speech Recognition Task

2.1.2 Characteristics of Syntax

In the general speech recognition problem, knowledge of syntax often aids in the
realization of the task. Syntax rules place constraints on the possible sequence of
recognition units. As shown in Figure 2.4, if we know that a string of words to
be recognized comprise a sentence, we can use the rules of English grammar to
facilitate recognition. Similarly, in continuous letter recognition, if we know that
there are syntactic constraints on spelled strings, we can exploit such knowledge
to achieve our goal. Specifically, if the task is limited to the recognition of spelled
English words, then the rules of spelling can be used to aid in recognition. In order
to determine how strong lexical constraints are, and how much lexical knowledge
might help in spelling recognition, an effort to determine what they are must be
made. Some constraints are easier to define than others: for example, the letter
Q is always followed by U. However, other rules are not as obvious; these rules of

spelling must all be quantified.
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2.2 Data Collection

2.2.1 Lexicon

In endeavoring to determine the rules of spelling, it is instructive to study as many
words as possible, in hopes that certain lexical patterns will emerge. If they do,
these patterns may be used to induce spelling rules. The largest body of words
available to us for a lexical study is the twenty-thousand word Merriam Pocket
Dicticnary (MPD) with Brown’s Corpus counts for word frequency.

A good way to find lexical patterns in a large lexicon such as this is to gather
statistics about the frequency of letters and sequences of letters, both dependent
on and independent of context. This is necessary in order to provide an indication
of what letter sequences are more likely than others in certain situations. Also,
frequency statistics such as these can also show what letter sequences are possible,
if not for English in general, at least for the lexicon in question. However, one may
expect that the larger the lexicon, the closer the statistical characteristics of the
lexicon are to general English.

Finding letter frequencies in the lexicon by weighting the words by frequency of
occurrence in English can give an idea of what word patterns are common. On the
other hand, studying the lexicon in the same way, but weighting each word equally
gives a clearer picture of what word patterns are possible. In this study, the MPD

is analyzed in both ways.

2.2.2 Gathering Letter Frequency Statistics

The statistics gathered in this lexical study were obtained by using a lexical analysis
package called ALexiS [10]. Statistics were gathered about the frequency of the
following letter sequences: individual letters, pairs of letters and triplets of letters.
These statistics included overall frequency of appearance of letter sequences, and

also frequencies of occurrence of sequences at the beginnings and ends of words. In
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Event Most | Freq(%) | Top N | Comprise
Common P%
Single Letter E 12.4 10 75
Word Initial Letter T 19.0 10 80
Word Final Letter E 24.0 10 80
Pair of Letters TH 5.4 10 25
“ “ “ 125 85
“ “ “ 200 95
Word Initial Pair TH 14.1 10 41.0
Word Final Pair HE 10.8 10 40.2
Triplet of Letters THE 5.6 20 18.6
“ “ “ 100 38.0
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Table 2.1: Weighted Case

addition, forward and backward dependent probabilities of appearance were also
calculated.

An examination of the results reveals some interesting facts. First of all, al-
though the statistics for words weighted by frequency of occurrence differ from
those for words weighted equally, they share some of the same characteristics. This
can be seen by comparing the statistics in Tables 2.1 and 2.2.

Table 2.1 contains a summary of statistics for letter frequencies using words
weighted by appearance. Each row of the table gives information about a certain
aspect of the statistics. For example, the first row indicates that E is the most
common single letter in the MPD; 12.4% of all letters in the lexicon are E. The first

row of Table 2.1 also shows that the ten most frequent letters occur 75% of the time;
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Figure 2.5: Cumulative individual letter frequencies (weighted)

that is to say, any given letter of a word has a 75% chance of being one of these
ten letters. (The cumulative individual letter frequencies are shown in Figure 2.5.)
The other rows of the table can be interpreted in the same way. This figure also
shows the ordering of the letters of the alphabet by frequency of appearance. The
constraints on letters in word-initial and word-final positions are even stronger: in

both cases, the ten most frequent letters occur 80% of the time.

For pairs and triplets of letters, similar frequencies were found, and some results
are shown in the table. It can be seen that the results are greatly influenced by the

word THE, which is extremely common.

Table 2.2 lists similar statistics found when each word in the MPD was weighted
equally. Although the frequency of appearance of specific letter sequences are dif-
ferent from the weighted case, it is true here, as in the weighted case, that the
ten most frequent letters occur 75% of the time. Figure 2.6 shows the cumulative
letter frequencies for the unweighted case, and it can be seen that the cumulative

distributions are similar in the two cases.

By weighing all words equally when analyzing the MPD, knowledge of what
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Event Most | Freq(%) || Top N | Comprise

Common P%

Single Letter E 10.7 10 75
Word Initial Letter I 16.7 10 80
Word Final Letter E 15.1 10 80
Pair of Letters IN 4.2 10 25

“ “ “ 125 85

“ “ “ 200 95

Word Initial Pair CO 3.9 10 23.0
Word Final Pair ON 6.3 10 35.8
Triplet of Letters ION 1.0 20 10.6
“ “ “ 100 25.2

Table 2.2: Unweighted Case

Figure 2.6: Cumulative individual letter frequencies (unweighted)
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letter sequences occur can be obtained. It was found that all one-letter sequences,
A to Z, can be found in the lexicon. Also, it was discovered that 82.2% of ali
possible two-letter sequences and only 28.3% of all possible three-letter sequences
can be found in lexicon. Of the two-letter sequences, the most frequent one-third of
all existing letter pairs comprise 95% of all letter pair occurrences. This means that
the majority of possible letter pairs rarely occur, and that most words are composed
of a combination of letter pairs drawn from a total of approximately two hundred.

The conclusion that can be drawn from these results is that the more letters
known in a word, the greater the constraints that are placed on what the other
letters in the word could be.

Another statistic obtained from the MPD measures the frequency of appearance
of phonemes. The most common phoneme is /i7/, which is not surprising. This
is because /i7/ is found in nine letters, including E and T. Both are among most
common letters and together comprise approximately 23% of all letter occurrences
(Figure 2.5). As expected, the four most common phonemes are all vowels, since
every letter must contain a vowel and the set of vowels found in this vocabulary is
somewhat limited. The frequencies for this statistic are shown in Figure 2.7 for the
case when the words are weighted by frequency of appearance. These frequencies
map directly to the letters in the MPD because each letter was substituted for its

phonemic transcription in order to obtain this statistic.

The final statistic of importance deals with the lengths of words in the MPD.
It was found that all the words in the lexicon are between one and sixteen letters
long, and that the average number of letters per word is 7.35 when the words are
weighted equally and 3.98 when the words are weighted by frequency of appearance.
The graphs in Figure 2.8 show that the distributions for word lengths, particularly
for the case in which words are weighted equally, look Gaussian in nature. The
standard deviations for word lengths, weighted and unweighted, are 2.40 and 2.12,

respectively.
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Figure 2.7: Phoneme frequencies (weighted)

The statistics obtained for the MPD described above are valid for the lexicon,
and one may argue that these statistics can be considered to describe the entire
English language. However, for lexicons of smaller sizes, the statistics may not
reliably reflect properties of the language.

In order to establish the robustness of the statistics, twenty lexicons of two-
thousand randomly-selected words each were taken from the MPD and the means
and variances of single letter and letter pair frequency statistics were obtained,
weighting each of the words equally. Means of single letter frequencies for the MPD
and these smaller lexicons are shown in Figure 2.9 and.Figure 2.10. The ordering
and actual probabilities of occurrence for the two lexicons are very similar. A closer
look at the statistics show that, while the frequency means for these smaller lexicons
are close to the original ones, the standard deviations are very large. This is due to
the fact that the size of the sublexicons is too small.

Graphs for the letter frequency statistics obtained for the MPD (words weighted
and unweighted by frequency of appearance) and the smaller lexicons (words un-
weighted by frequency of appearance) can be found in Appendix A, along with letter

triplet frequency statistics obtained for the MPD (words weighted and unweighted).
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Figure 2.8: Lengths of words in the MPD, weighted (a) and unweighted (b)
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Figure 2.9: Individual letter frequencies for MPD (unweighted)
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Figure 2.10: Individual letter frequencies for smaller lexicons (unweighted)
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2.3 Discussion of Lexical Constraints

2.3.1 Analysis of Results

It was found in the last section that there are a large number of letter sequences that
rarely or never occur, which places strong syntactic constraints on what letters may
make up a particular word. This was particularly striking for three-letter sequences:
less than 30% of all possible letter triplets can actually be found in words. Also, the
letter sequence frequency statistics were found to be robust for the smaller lexicons.
These findings allow us to hypothesize that over a small set of words, the statistics
gathered will be reasonably sound, unless the word set is pathological or skewed in
some way. Of course, very small lexicons cannot be expected to behave this way:
the larger the lexicon, the more closely its frequency statistics will match those of
the MPD. Also, the statistics can be considered valid for the English language in
general. Increasing the size of a lexicon means that its frequency statistics become
closer to their true values, but as the size of the lexicon increases, the marginal
change in frequency statistics decreases to the point where a further increase in
lexicon size produces no noticeable change in its statistical makeup. The MPD, by
its robust statistics, can be considered to capture letter combinations of the English
language as a whole.

The apparent strong constrains on possible sequences of letters point to redun-
dancy in spelled strings. For example, in the case of the letter sequence QUA,
the U following the Q is redundant: that is, it conveys no additional information.
Measuring this redundancy is helpful in determining the predictability of letters in

English words.

2.3.2 Redundancy of Letters in Words

Claude Shannon (20] attempted to measure the information content of letters in

words by determining the redundancy of spelling. Redundancy measures the amount
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of constraint imposed on a text in the language due to itz statistical structure. He
attempted to measure the entropy (H), or average number of bits per letter nec-
essary to represent a word. Shannon studied N-gram entropies first, in which N
was the number of adjacent past letters known, in order to see how much increasing
amounts of knowledge about past letters fostered redundancy. To calculate N-gram
entropy, Shannon used frequency of letter sequences tables used by cryptographers

[16] and the following formula:

Fx =~ ¥ p(bi, ) log, s, (4)

in which Fy is the N-gram entropy
b; is a block of N — 1 letters [(N — 1)-gram]
p(bi,7) is the probability of the N-gram b;, 5
pi.(7) is the conditional probability of letter j after the block b;,
and is given by p(b;, 7)/p(b;)-

The entropy of letters can be obtained in the following way:

H = lim Fy

N—oo

Table 2.3 below compares Shannon’s N-gram entropies for N = 1, 2, 3 and over
an entire word to those obtained for the MPD.

Shannon calculated the N-gram entropies using 26 symbol and 27 symbol (the
letters of the alphabet, plus the blank symbol) character sets. He also discounted
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N-gram Entropy
N | Shannon (26) | Shannon (27) | MPD
1 4.14 4.03 4.13
2 3.56 3.32 3.08
3 3.30 3.1 2.52
Word 2.62 2.14 2.12
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Table 2.3: Comparison of N-gram Entropies

boundaries between words in text, so that many two- and three-letter sequences not
found in the MPD are included in his measure. Consequently, the predictability
of Shannon’s letter sequences is lessened. Also, Shannon’s method for obtaining
Fy is somewhat questionable: since the only three-letter sequence statistics he had
available to him were for letter triplets within words, he approximates probabilities
for three-letter sequences across word boundaries using a “rough formula” that gives
an F3 he admits is “less reliable” than the other entropies he calculates.
Shannon’s results, as well as the results obtained for the MPD, show that past
information is helpful in predicting future events: the more letters known, the
greater the redundancy of information, as demonstrated by the lowering entropy
rate for higher N. According to Shannon, the entropy of spelled words, F,.q4, is
2.62 bits per letter. His entropy rate is higher than it is for the MPD because
Shannon used word frequency statistics for the entire language, whereas in this

study, statistics were obtained using for only twenty-thousand words.
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2.4 Possible Uses of This Knowledge Source

2.4.1 Exploiting the Predictability of English

The lexical study conducted using the MPD indicates that the constraints on letter
sequences within words are very strong. These constraints can be used in a variety
of ways, among which could be using them as rules for the synthesis of words.

A string generator that uses letter frequency statistics to compose a string would
be more likely to generate real words than a random string generator, and the chance
of generating actual words increases as the order of the statistics used increases. For
example, a string generator is more likely to synthesize a word if it uses information
about the frequency of letter pairs rather than single letters. In addition, knowing
proper lengths of words is also helpful in generating words.

A string generator using information about letter pairs and triplets was devel-

oped to aid in another aspect of this thesis. It is described in Chapter 3.

2.4.2 Conclusion

The conclusion that can be drawn from this study is that lexical knowledge aids
spelling recognition because it greatly constrains letter syntax. While the primary
source of information is still acoustic-phonetic, syntactic constraints are important
because we are not always able to extract adequate acoustic-phonetic information
from the signal to recognize continuously-spoken letters.

Lexical knowledge is important, but it is difficult to quantify its importance
in the spelling task: how much lexical information is necessary for a listener to
recognize a spelled word? Also, how much of the lexical information available to a
listener does he use to recognize the letters?

In order to determine how important lexical information is to spelling recog-
nition, it is necessary to determine the sufficiency of acoustic information. This

can be done by conducting continuous-letter recognition experiments in which the



CHAPTER 2. EXPLORING LEXICAL CONSTRAINTS 34

only available knowledge source is that of acoustic-phonetic constraints. The per-

formance of subjects in these experiments will help to determine the importance of

lexical information to this task.



Chapter 3

Establishing Confusability

3.1 Introduction

Because of acoustic similarities between various letters of the alphabet, confusions
are bound to occur. However, what confusions actually occur is not known, nor is
the severity of these confusions.

In order to find out more about the acoustic confusability of letters in spelled
strings, a set of recognition experiments was conducted. In these tests, subjects
were asked to recognize letters using only acoustic-phonetic information. This was
done to determine the sufficiency of acoustic information and to measure acoustic
confusability. Both words and non-word strings were used in these experiments for
two reasons. Firat of all, although we ideally would like to conduct experiments
using only words since the task is spelling recognition, lexical knowledge might
be used to guess some letters. Secondly, using both types of strings allows for
comparisons of results.

Auditory perception tests were conducted to find out what letters were confus-
able to listeners, and spectrogram reading tests were conducted because the tech-
niques employed by spectrogram readers incorporate explicit speech knowledge, and

acoustic similarities between letters are easier to quantify in this acoustic feature-
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based approach than in listening tests.

3.2 Preliminary Experiments

3.2.1 Isolated Letter Reading Experiment

To obtain an initial impression of what letters are often confused with each other,
a pilot experiment was conducted. Four speakers spoke the letters of the alphabet
in isolation and in random order, and ten trained spectrogram readers were asked
to read spectrograms of the utterances and to identify the letters. Besides the
spectrogram itself, the only information given about an utterance was the identity
of the speaker.

It was found that in 1040 trials, the readers correctly identified the letter being
spoken 923 times on the first choice and an additional 30 times on the second choice,
giving first and top two choice accuracy rates of 88.8% and 91.6%, respectively. An
extensive analysis of errors was then done, and a confusion matrix was formulated

(Table 3.1). The confusion matrix is a plot of actual utterances versus confusions.

In analyzing the results, several interesting patterns emerge. The majority of
confusions fall within letter groups that contain the same vowel (87 out of 117,
or 74%), so in most cases, vowel recognition is not the problem. Most of the
confusions resulted from mistaking members of the /i¥/ set for one another: Out
of 117 confusions, 81 fall in this category. Some of the confusions appear to be
among consonants having the same place of articulation. For instance, B-V and V-
B confusions occur presumably because they are both labial, and thus have similar
formant transitions into /i¥/. Also, there may not have been much frication noise
in the /v/, causing it to be mislabeled as a /b/.

Unusually large amounts of frication noise were observed in many consonants,
often causing unvoiced stops such as /t/ to be mistaken for affricates such as /j/.

Also, voiced and unvoiced stops were confused because in most instances, voice
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Table 3.1: Confusion matrix for isolated letters
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onset times (VOTs) for voiced stops were longer than usual, and there was a greater
amount of turbulence noise than expected in the voiced stops. This may be due
to the fact that speakers tried to enunciate the letters as clearly as possible, but

instead created distortions due to overarticulation.

3.2.2 Speaker Dependent Nonsense Strings

Experiments on isolated letters are important in order to determine what features
could be used to distinguish among them. However, since the task is the recog-
nition of spelled words, experiments on continuously spoken letters should also be
conducted. In continuous speech recognition, coarticulation across word boundaries
makes the segmentation of utterances into recognizable words much more difficult.
In our case, segmentation means the breaking up of spelled strings into their cor-
responding letters. However, we suspect that coarticulation may not be a severe
problem here because of the nature of the task. Letters are not spoken as continu-
ously as other sounds; speakers subconsciously tend to insert pauses or glottal stops
between letters to clarify the utterance (Figure 3.1). Also, letter pairs thought to
be confusable, such as UI and UY may have enough acoustic differences that they

can be distinguished from each other (Figure 3.2).

In order to study the effects of coarticulation, the following steps were taken:
first, a list of all pairs of letters occurring in English words was made. Then, strings
of random length were generated by selecting pairs at random from the list in such
a manner that each pair of consecutive letters in a list actually occurs in English.
This procedure ensures that we do not examine coarticulation for situations that
will not occur. Thus, the random string OXQUI would be acceptable, while the
string OXQJI would not. Random strings were used to ensure that readers would
not guess letters based on lexical information. Next, fifty such strings were given
to a speaker, who was asked to spell each as if it were an actual word. Next,

spectrograms were made of the utterances, and several expert spectrogram readers
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Figure 3.1: Spectrogram of ABSURD which shows pauses and glottal stops being

inserted a.t letter boundaries
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Figure 3.2: Spectrograms of (a) UI and (b) UY
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Type of Error | % of Total

Substitution 71.3
Insertion 14.7
Deletion 14.0

Table 3.2: Description of errors made in a continuous letter recognition experiment

were asked to read them. Once the readers had completed their task, their answers
were analyzed to determine the effects of coarticulation on the spoken ietters. The

results are shown in Table 3.2.

3.2.3 Evaluation of Results

Results of these preliminary experiments indicate that acoustic confusability is
clearly a problem in spelling recognition. Similar confusions were made in both
experiments, but the overall results from the first test were slightly better than the
second: readers scored 91.6% on isolated letters versus 92.3% on continuous letters.

There are a number of reasons why readers may have done better in the second
experiment. First of all, some cues may be clearer in continuous letters than in
isolated letters. For example, B-V confusions are less likely to be made in continzious
letter recognition because the closure portion of the ,'b/ of B, not found in V, is
discernible, whereas in isolated letters, since /b/ appeas at the beginning of the
utterance, the stop gap is not observable.

Also, letters embedded in a string are not prone to endpoint errors. Finally,
the readers were more familiar with the task in the second experiment: the first
experiment could be regarded as “training” of the readers in letter recognition.

However, statistics on these confusions cannot be obtained reliably from such a
small set of data. In order to do an extensive study of confusions, a much larger

amount of data collected from multiple speakers must be used.
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3.3 Data Collection

3.3.1 Corpus Development

In order for strings to be considered devoid of lexical information and thus eligible to
be included in the corpus, they must meet certain requirements. The strings must
be “wordlike,” that is, they must have some of the same characteristics as words,
while not necessarily being words. For instance, witkin strings, each pair of letters
should be one that actually exists in English words. The effect of coarticulation on
two adjacent segments that are an impossible combination in an English word (e.g.,
QX) are not relevant to the task.

As mentioned befcre, we have argued that the corpus should not be entirely com-
posed of real words because lexical information can potentially distort the results of
an acoustic confusability experiment. On the other hand, the corpus should not be
made up entirely of non-words for the same reason: because knowledge that a string
cannot be a word is in itself a lexical constraint. The solution is to create a corpus
containing words and non-words, and withhold information on the distribution of
words and non-words from the subjects of an experiment.

The corpus is made up of a total of 1000 strings, 350 of which are words and
650 of which are non-words. All strings are between three and eight letters in
length, because approximately 70% of all words are of those lengths, as shown in
Figure 2.8(b). No nine- and ten-letter strings are included in the corpus, even
though words with these many letters are quite common, as can be seen in the
figure. This is because very long strings are harder to spell naturally. In addition,
lexical information is more likely to be used to identify longer words.

Of the 350 words in the corpus, 310 were selected at random from MPD without
regard to their frequency of appearance in English. In order to include enough J,
Q, X and Z tokens, 10 each of strings containing these letters were added in. There

are no duplicate words.
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Figure 3.3: Histogram of letter occurrences for spelling corpus

650 strings were generated using the statistics obtained in the lexical study and |
a set of rules. The rules are as follows: strings must begin with a pair of letters that
could begin a real word, and must end with a pair of letters that could end a real
word. Within the word, three-letter sequences are ones that could be found in a
real word. This means that strings like CAPPOST could be generated, while ones
like GTAQIZ could not. Beginning and ending pairs, as well as intraword triplets,
were selected at random from a list of pairs and triplets that are found in words,
weighted by frequency of appearance. Of the total number of letter pairs that can
be found in English, 68.7% are covered in this database. There are a total of 5607
letters in the spelling corpus.

Statistics of single letter occurrences can be found in Figure 3.3. When compar-
ing them to Figure 2.9, it can be seen that the distributions of letters in this corpus
are similar to those in the large lexicon analyzed in the lexical study. Eight of the
ten most frequently-occurring letters (E, A,R,N, T, I, O and S) are common to
both the MPD and the spelling corpus.

Use of these rules yield very wordlike strings: in fact, out of the 650 generated

for this corpus, 56 (8.6%) were real words. Many of the non-words differed by only
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one letter from a word (e.g., LYLLABLE), and most were at least “pronounceable.”
Also, because statistics were used to create the strings, some letter sequences were

included in several strings: for example, CON was generated five times.

3.3.2 Recording

After the corpus was created, it was recorded by twenty speakers, ten male and
ten female, of standard American English. Recording was done using a Sony chest
microphone in a sound-treated room. Each subject spelled 50 strings, of which, on
the average, 35% were words and 65% were non-words. Each string in the corpus
was spelled once by only one speaker. All the letter strings were subsequently

digitized and stored on a computer using the SPIRE [10] facility.

3.4 Auditory Perception Experiment

3.4.1 Purpose and Procedure

An auditory perception experiment was conducted to establish a baseline recogni-
tion performance against which spectrogram reading and recognition system per-
formance can be measured. The corpus was divided into ten groups of one hundred
words each, five words from each speaker. h of these groups constituted a lis-
tening test. Eight subjects listened to one or two tests each, for a total of fourteen
tests. The tests were administered using headphoaes in a sound-treated room. The
utterances were randomized within each test, and each utterance was said twice in
succession. Subjects were told that they were listening to spelled strings, and were

allowed to provide one answer per string.
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Word Length
Error Type || 3 4 |5 6 7 8 | Total | % of Total
Substitution || 7.5 ) 11.5 | 6.0 [ 140 | 9.5|12.0| 60.5 68.4
Insertion 0 0]05(| 10] 15| 75 10.5 11.9
Deletion 0 O 0] 10| 20| 5.5 8.5 9.6
Exchange 0 o o 0| 25| 25 5.0 5.6
Boundary 05| 2.0{05]| 1.0 0 0 4.0 4.5
Total 80)13.5)7.0|17.0|15.5 (275 885 100

Table 3.3: Distribution of listening test errors

3.4.2 Results

The overall listener accuracy rate in recognizing letters was 98.4% with a stan-
dard deviation of 0.72% (a detailed breakdown of errors made in this test can be
found in Table 3.3). Also, the subjects performed with an accuracy rate of 98.4%
and a standard deviation of 0.87% across speakers (Figure 3.4). Listeners made
proportionately the same number of errors on words as on non-words: 41% of the
strings in the corpus were words, and listeners made 42% of their errors on word
strings. Errors made by listeners included substitution, insertion, deletion and gem-
ination or boundary errors. Each error made was weighted according to how many
people listened to the string in question. In one type of substitution error, a letter
is incorrectly transcribed (e.g., J transcribed as G.) In another type of substitution
error, a phoneme is incorrectly transcribed, resulting iu two incorrect letters. For
example, if part of an utterance is labeled /e¥i/, when instead it should be /eTi/,
the reader will transcribe those segments as HE rather than AG. In a deletion er-
ror, a letter is omitted from the transcription, and in an insertion error, a letter
is added. In a gemination or boundary error, a phoneme is incorrectly divided,

usually at a letter boundary. For example, SE could be transcribed as SC if the
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Figure 3.4: Listening test errors grouped by speaker

subject mistakenly assumes that /s/ is shared by two letters.

The most common errors made by listeners were substitution errors. Of all
errors made, 68.4% were of this type. The worst confusions made by listeners were
B-D, 8-F, M-N, O-L and P-T (Table 3.4).

Other significant errors made include insertion or deletion errors, which account
for 21.5% of all errors. These errors tended to occur in sonorant regions, and were
usually due to the insertion or deletion of a vowel (e.g., BOL mistaken for BL).

Listeners also made a few exchange errors (5.6%) and gemination/bcundary
errors (4.5%). In exchange errors, letters are correctly identified, but are in the
wrong order (e.g., TAC mistaken for CAT). This happened only on seven- or eight-
letter non-word strings, and could be attributed to listeners’ lack of attention or poor
short-term memory. Boundary errors occurred primarily on short, quickly spelled
strings, which makes letter segmentation somewhat more difficult than usual.

Listeners made very few string length errors ( 1.9%). Of these errors, 68.4% were

made on eight-letter strings. The fact that so many.of these errors were made on
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Mlstaken For:
AlB|c]|D G|H|1 LiM|N]oO]|P R T v Y|z

A 2 0.5

B 4 2.5

C 0.5 2 0.5
D

E S| 1 0. 0.5
r

[e) 1

H

1 9.5 0.5
J]

K

L 1.5

M 3.5

N 1.5

o 3

P 2 0.5 0.5 3

Q !

R

s

T 2. 4

U 0.5

v 0.8 0.5

w

X

Y

2z .5

Table 3.4: Confusion matrix for substitution errors made by listeners
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long strings may again be partly due to listeners’ poor recall.

3.5 Spectrogram Reading Experiment

3.8.1 Purpose and Procedure

The purpose of this experiment was to determine the sufficiency of acoustic informa-
tion in recognizing letters from spectrograms. A spectrogram reading experiment
is useful because, in contrast to the listening test, subjects are explicitly using
acoustic-phonetic knowledge. Because of this, we can get an idea of the recognition
performance that we can expect based on our current acoustic-phonetic knowledge.
However, these results may provide only an upper bound, since spectrogram reading
results are typically better than currently-available acoustic-phonetic front-ends.

Six trained spectrogram readers attempted to read spectrograms of some of the
one-thousand utterances in order to simulate computer recognition of speech. Each
of the six readers was given one hundred utterances, five from each of the twenty
speakers. Approximately one-third of the one hundred spectrograms given to each
reader were spectrograms of real words, and the rest were of non-words.

Readers were told that some of the spectrograms were words, but were not
told the exact proportion. Other information provided included the identity of the
speaker, the fact that each utterance contained between three and eight letters, and
that all —the strings were “wordlike,” as described in the previous section. They
were asked to transcribe each utterance using letters of the alphabet rather than
phonetic symbols. In cases of uncertainty, readers were encouraged to write down
second or third choices for segment transcriptions.

In generé.l, spectrogri.m readers transcribe an utterance phonetically, and then
propose an orthography for the sentence based on this transcription. There were
two reasons for asking readers to transcribe the utterances with letters. First of

all, it would make the conditions of the spectrogram reading test similar to those
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Reader | % Correct | % Correct (Top 3 Choices)
1 94.8 96.1
2 93.3 97.2
3 91.8 94.1
4 90.7 93.2
5 88.4 94.7
6 86.8 92.6

Table 3.5: Individual recognition rates of spectrogram readers

of the auditory perception test, thereby enabling a direct comparison of results.
Secondly, a reader’s proposal is based not only on acoustic evidence but also on
lexical access and syntactic constraints. However, in this experiment, syntactic
constraints were minimal, so a reader’s guess would be primarily based on acoustic
information, and in cases of uncertainty, on the best available acoustic features for
correctly identifying a segment. For example, if a reader phonetically transcribes a
segment as /te?/, he then must decide if the segment should really be /ke¥/, for K,
or /ti¥/, for T. The letter the reader chooses indicates which features he considers

most important.

3.5.2 Results

As a group, spectrogram readers were asked to identify a total of 5601 tokens
in 600 spectrograms. They did so with an overall accuracy rate of 91%. Individual
accuracy rates ranged approximately between 86% and 95% (Table 3.5). Although
accuracy rates improve somewhat when second and third choice transcriptions are
included, rising from 91.0 £ 2.6% to 94.6 + 1.6%, the higher rate is not as infor-
mative as the original one, because some readers are more conservative in guessing

than others. Interspeaker variability in error rate was more striking than in the
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Figure 3.5: Spectrogram reading test errors grouped by speaker

listening tests: across the twenty speakers, error rates were between 2.4% and 16%
(Figure 3.5). As can be seen from the figure, readers had more difficulty recognizing

female speech than male speech.

Readers were more likely to make mistakes on non-words than on words. Al-
though 41% of the utterances read by the readers were words, they only made 27%
of their errors on this group. When questioned, all of the readers emphatically
stated that they did not use lexical access to aid their transcriptions when uncer-
tainties arose. However, knowing that strings were “wordlike” may have had some
influence on their final transcription.

The types of mistakes made by the readers were substitution, deletion, insertion,
and gemination errors. A detailed breakdown of results from this test can be found
in Table 3.6. Exchange errors were not made by spectrogram readers, presumably

because they need not rely on memory.

As might be expezted, substitution errors accounted for the majority of the

errors. 92% were substitution errors, and of these, over 80% were single-letter
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Error Type | Number | % of Total
Substitution:
By Letter 274 84.3
Across Letters 25 7.7
Insertion 15 4.6
Deletion 8 2.5
Boundary ?_ 0.9
‘ Total 325_ 100.0

Table 3.6: Distribution of spectrogram reading test errors

substitution errors. As can be seen in Table 3.6, insertion and deletion errors were
infrequent: about 7% of the errors are of either type. In fact, out of 600 strings, only
23, or 3.8%, were transcribed with the wrong number of letters. A confusion matrix
for single-letter substitution errors was constructed (Table 3.7). Substitution errors
made by both listeners and readers are plotted her ‘o aid direct comparison. The
confusion matrices contain a great deal of information about the types of errors
made by readers and listeners. As can be seen from the plot, some errors are
symmetric, that is, roughly the same number of Letter 1 to Letter 2 confusions
were made as Letter 2 to Letter 1 confusions, while others were not. Some of
the errors are unimportant; for example, U in the string-final position was once
transcribed as F, a mistake not likely to be made often. A summary of the most
common errors can be found in Table 3.8. The table is arranged so that Letter 1
to Letter 2 errors are paired with Letter 2 to Letter 1 errors so that the presence
or absence of symmetry can be seen.

This summary shows that the most common errors made by spectrogram readers
are symmetric, and that most of the errors can be attributed to confusions between

only a few letter pairs. In fact, the four most frequent confusions, G-T, A-E, M-N
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Mistaken For:
AlBlcC E a Jlk|[L{mM|[N]oO T v z
A 20
B 3 4
c ! 2 2
D | 4 3
Eig|2
r
a 2 7 10 1 5
H
115 2
J 1
K 4 {
L 1 1S
M 17
N | 12
) 11
P 1 (] 2 7
Q 1
R 2
s
T 4. 2% 213 \
U 3
Y 1 1 4
w
x
Y
z 2

Table 3.7: Confusion matrix for substitution errors made by readers
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Table 3.8: Most common substitution errors for (a) readers and (b) listeners

Pair | # of Errors | Pair | # of Errors || Total
T-G 27 G-T 10 37
A-E 19 E-A 16 35
M-N 16 N-M 11 27
L-O 15 O-L 11 26
F-S 7 S-F 3 10
G-J 7 J-G 1 8
P-T 7 T-P 1 8
R-I 6 IR 2 8
O-1 5 IO 2 7
(a)
Pair | # of Errors | Pair | # of Errors | Total
T-P 4 P-T 3 7
S-F 4 F-S 1 5
M-N 3.5 N-M 1.5 5
O-L 3 L-O 1.5 4.5
B-D 4 D-B 0 4
(b)

53
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and O-L, account for 47% of the single-letter confusions. Also, these four confusions
occur significantly more frequently than any other; the fourth most common one,
L-O, occurred 26 times, while the fifth most common, F-S, occurred only 10 times.
Some of the errors were asymmetric, such as R-I confusions. R was incorrectly
transcribed as I 6 times, while I was mistaken for R only twice.

The accuracy rate for this experiment was slightly lower than that in the pilot
study in which readers tried to identify letters in random strings spoken by one
person (91% versus 92.3%), and this may simply be due to the fact that this exper-
iment used multiple speakers, so there was more variability in speech than in the

pilot experiment.

3.6 Conclusions

3.6.1 Comparison of Experiments

The two sets of experiments performed were similar in that they used the same
corpus, and each test taken by subjects contained the same number of strings, but
there are many more differences between them. The subjects used in the perception
test were different from the ones used in the reading test. Also, none of the speakers
were subjects for either experiment. Different information about the strings were
given in the tests: listeners were told they would be hearing strings of letters, while
readers \;vere told they would be seeing “wordlike” strings of letters. Also, readers
were told speaker identities, and they knew each string had to be between three
and eight letters long. Listeners only heard each string twice, whereas readers were
allowed unlimited time, and were also allowed to collaborate with other readers.
Listeners were given less information than readers because they have a slight ad-
vantage over readers to begin with: the auditory system easily and automatically
processes speech.

The purpose of the auditory perception experiment and the spectrogram reading
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experiment was to determine the sufficiency of acoustic information. It can be seen
from the accuracy resuits, 98.4% and 91.0% respectively, that acoustic information
is the primarily knowledge source for obtaining information to recognize spelled
strings. A comparison of results of the tests suggests some interesting similarities
and differences between them.

Listeners did significantly better than readers, and had less variation in results,
both across subject and across speaker. Both listeners and readers guessed the
correct number of letters very accurately (98.1% and 96.2%). Substitution errors
predominated for both listeners and readers (68% and 92%). Also, most of the
substitution errors made by readers were also made, to a lesser degree, by listeners,
as shown in Tables 3.4 and 3.7. However, listeners and readers usually did not
make the same specific errors: that is to say, they rarely made mistakes on tﬁe

same tokens.

3.6.2 Summary of Acoustic Confusabilities

As mentioned above, most errors made in both experiments were substitution errors.
Some of the errors were more likely to be made by readers than by listeners. For
example, the confusion B-D, one of the worst errors made by listeners, was rarely
made by readers. Some of the errors, such as G-T, A-E and M-N were symmetric,
and others were asymmetric, such as P-G and I-R.

The results of these experiments raise a number of questions about the nature
of spelled strings and errors that are made in trying to recognize them. An acoustic
study is necessary to determine what characteristics of spelled strings make them
different from ordinary speech, to answer questions about why certain errors occur

and to explore ways in which tliese errors can be resolved.



Chapter 4

Acoustic Study of Spelling Corpus

4.1 Purpose of Acoustic Study

In order to develop a method for recognizing spelled strings, an understanding
of their acoustic properties is essential. Therefore, the next step is to undertake
an acoustic study in an effort to determine what differences exist between spelled
strings and ordinary speech, and whether or not these differences could be exploited
to aid in recognition. Alsc, this study offers the opportunity to study the spelling
corpus more closely. The results of the auditory perception and spectrogram reading
experiments lead to a number of questions about the types of errors made that are
best answered by a study of this kind. For example, why did the mistakes made by
listeners differ so much from the mistakes made by readers?

Some of the possible errors anticipated before beginning the recognition experi-
ments rarely or never occurred. For example, the problem of insertion and deletion
of segments was much less serious than expected. A study of sonorant regions
(where this problem was expected to appear), concentrating on vowels in the con-
text of a vowel followed by a vowel would help determine how two adjacent vowels
can be distinguished from a single vowel.

In addition, the errors made by the subjects of the experiment were mainly

56
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substitution errors, and an acoustic study presents the means for examining these
errors, determining their causes, and exploring ways to resolve them.

This acoustic study was undertaken using SPIRE, a speech processing software
package, and SEARCH, another software package which allows users to interactively

explore ways to analyze acoustic data [10].

4.2 Phonological Properties of the Corpus

4.2.1 Characteristics of Vocabulary

The acoustic properties of individual letters are not discussed here in detail, be-
cause they have been documented in the literature [3,4]. For example, the success
of the FEATURE system indicates that a great deal about these acoustic features
is known. But continuous speech has the problem of ambiguous letter boundaries,
which means the acoustic features cannot be solely relied upon for accurate recogni-
tion. However, the letter recognition task is aided by syntactic constraints on letters
and the insertion of glottal stops. Unfortunately, continuously spoken letters are

subject to gemination errors as well, especially at boundaries between vowels.

4.2.2 Lexical Constraints on Letters

Spelled strings differ from ordinary speech in a number of ways. First of all, they
are composed of a limited set of symbols, namely, the twenty-six spoken letters
of the alphabet. The letters contain only twenty-six of the forty phonemes found
in English, and the possible combinations of phonemes that may occur in spelled
strings is limited. For example, if a phoneme is known to be /¢/, it must be followed
by either /f/, /1/, /m/, /n/, /s/ or [ks/ because it must be part of one of the letters
F,L, M, N,SorX.

Even less specific phonetic constraints, such as broad classification by manner
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FRIC | VOWEL | VOWEL | AFF | VOWEL | STOP | VOWEL
C H A B
\Y4 })] D
Z I K
0 P
A G T
J

Figure 4.1: Letter combinations for [FRIC]|V][V][AFF]|[V][S][V]

of articulation [21,7], greatly reduces the possible sequences of letters that could be
found in a spelled string.
For example the word CHAT when spelled, can be phonetically transcribed

using broad manner classes as
[FRICATIVE|[VOWEL|[VOWEL|[AFFRICATE]|[VOWEL|[STOP|[VO WEL)]

The only letters that can begin the string are C, V and Z, because they are
the only ones that are composed of a fricative followed by a vowel. Similar state-
ments can be made about the other segments in the string, and all the possible

combinations of letters are shown in Figure 4.1.

Another distinctive property of spelled strings is that most syllables are stressed.
This characteristic is beneficial to recognition because the acoustic-phonetic features
of stressed syllables are clearer and easier to extract than those of unstressed or

reduced syllables.
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4.2.3 Glottal Stop Insertion

One of the most interesting characteristic of the spelling corpus is that it contains
a far greater number of glottal stops that would be found in ordinary speech. The
average number of glottal stops in the corpus is about 2.3 per string. A closer look
at this feature may lead to an understanding of the properties of glottal stops and
why they are so prevalent in spelled speech.

In Chapter 1, differences between isolated and continuously spoken letters were
discussed. We surmised that for the problem of finding letter endpoints in con-
tinuous speech, letter boundary detection would not be easy, because finding word
boundaries in ordinary continuous speech is a difficult task.

If this is truly the case, then it is to be expected that attempts to recognize
spelled speech would be prone to a large number of insertion or deletion errors.
However, in the auditory perception and spectrogram reading experiments described
in the previous chapter, both listeners and readers made far more substitution
errors than insertion and deletion errors combined. 68% of the listeners’ errors
were substitution errors, and 21.5% were either insertion or deletion errors. Results
for the readers are more striking: 92% of their errors were substitutions, while only
7% were insertions or deletions. In fact, both listeners and readers chose the correct
number of letters very accurately (98.1% and 96.2%). This leads to the conclusion
that finding letter boundaries in spelled speech is not as difficult as anticipated.

It appears to be the case that when people spell words, they know from expe-
rience that many letters are easily confusable. As a result, they tend to enurciate
clearly to make the letters easier for listeners to recognize. In sonorant regions of
speech, the consequence is often the insertion of glottal stops.

Glottal stops are produced by a change in the rate at which the vocal cords
vibrate by a sudden closing and opening of the glottis during voiced speech, without
changing the rest of the vocal tract configuration (17, pp. 38-42]. Acoustically, this

means that the speech waveform becomes irregular in the fundamental period, but
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Figure 4.2: An example of a glottal stop

the formant frequencies remain the same. Figure 4.2 shows an example of a glottal
stop.

Glottal stops account for 17.2% of the phonetic segments in the spelling corpus,
and 99% occur between letters, forming clear—lettef boundaries. The other 1% of
the glottal stops occur between a /a/ or /t/ and a vowel. In all cases found, the
preceding letter is an M, N or H. Figure 4.3 shows an example of this type of glottal
stop insertion. If the inserted /a/ is considered to be part of the preceding letter,

then all glottal stops occur at letter boundaries.

Although there are many situations in which two vowels are adjacent in the
phonemic transcription of a string, these vowels are often separated by a glottal
stop in the phonetic transcription. In the spelling corpus, glottal stops were inserted
between 66.5% of the adjacent vowels, while an additional 22.2% were separated by
aglide. This meant that in the spelling corpus, the sequence [VOWEL]/2/[VOWEL]
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Figure 4.3: An example of an inserted /3/ in the word NEN (/ensi¥en/)

was gix times more common than the sequence [VOWEL|[VOWEL] and three times
more common than [VOWEL]|(inserted)GLIDE|[VOWEL).

Speakers tend to deliberately insert glottal stops between vowels: 60.2% of the
glottal stops in the corpus occur between vowels, and an additional 16.2% occur
before a word-initial vowel. All of the remaining glottal stops occur either in the
environment [VOWEL|/?/[GLIDE] or [GLIDE]/2/[VOWEL]. Since so many vowels
are separated by glottal stops, the likelihood of insertion or deletion errors is re-
duced. This is confirmed by the fact that the number of insertion and deletion errors
was small in both the auditory perception and spectrogram reading experiments.

A closer look at insertion and deletion errors reveals that listeners and readers
respectively made about 71% and 80% of their insertion and deletion errors on
vowels, and about 14% and 20% on glides. As discussed in Chapter 3, most of these
errors occur in short, rapidly-spoken strings. In these cases, fewer glottal stops are

inseried and vowel durations are shortened, making.insertion and deletion errors
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Figure 4.4: KRAAL /keTareYe’el/

more likely.

4.2.4 Analysis of Vowel Gemination Errors

Another anticipated problem in spelling recognition is that of errors due to gemi-
nation, that is, the blending of two similar or identical ini:o one. An example of this
is recognizing the string BEET as BET by mistaking /i7i7/ for /i7/.

When gemination occurs in ordinary continuous speech, the total duration of
the two segments is usually lengthened, but the total duration is less thar twice the
combined durations of the individual segments in other contexts. In the spelling
task, single vowels are sometimer mistaken for two consecutive vowels, and vice-
versa. Figure 4.4 shows the spelled string KRAAL. In situations such as this, the

number of vowel segments in the region may be determined from its duration.

A study of [VOWEL] and [VOWEL|[VOWEL)] regions confirms this hypothesis.
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The average duration of single vowels is 142 milliseconds and average duration of
vowel pairs is 286 milliseconds. Some examples of duration distributions are shown
in Figures 4.5a and b. It can be seen that the duration of two consecutive vowels is
almost exactly double that of a single vowel, suggesting that gemination of vowels

does not greatly increase the difficulty of the task.

According to Klatt [11], the median duration of a stressed vowel is 130 millisec-
onds. The longer average duration of these vowels may be attributed to the fact
that approximately 75% of the vowels in this corpus are tense. Figure 4.6 shows
smoothed distribution for durations of tense and lax vowels. The tense vowels in
this corpus, /i7, ¢7, @’ a o", u, u, &/, have an average duration of 155 milliseconds,
while the lax vowels, /€ A #/ have a average duration of 117 milliseconds. A table
of average durations of individual vowels spoken by male speakers can be found in
Table 4.1.

In ordinary continuous speech, pre-pausal lengthening tends to increase the du-
ration of phrase- or sentence-final segments [15]. This trend is also found in the
spelling corpus. The average durations of vowels in string-final and non-string-final

positions are 201 and 139 milliseconds, respectively (Figure 4.7).

4.3 Comparison of Errors

The results of the experiments described in Chapter 3 confirm that some of the
letters of the alphabet are easy to distinguish from each other acoustically, but
some are very difficult. As discussed in Chapter 2, some letters are similar in their
phonological structure, with the vowel portion of a letter being similar or identical.
While the vowel serves to reduce the number of letter candidates, the rest of the
letter, usually a relatively small part of it, must provide the acoustic information
necessary to make a final decision. As an illustration, consider a letter whose

structure is known to be [CONSONANT)]/i¥/. Given this information, the letter
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Vowel 4 (msec) | o (msec) | # of Tokens
17 146.7 47.9 1027
(24 157.6 44.2 324
a’¥ 208.8 48.7 273
a 140.7 33.6 205
- 138.2 229 7
o 157.2 429 188
u 138.4 549 81
u 113.6 42.1 51
€ 121.3 33.1 639
¥ 58.6 25.9 28
A 77.2 21.8 28

[ovERALL:[ 1460 | s03 2851

Table 4.1: Statistics for Vowel Durations
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Figure 4.8: Spectrogram of S (/es/) and F (/ef/)

could be either B, C, D, G, P, T, V or 2.

Based on existing speech recognition systems’ performance, [9,14,5], we can hy-
pothesize that they would be able to recognize acoustically dissimilar letters. How-
ever, such a system would probably have great Zliﬁiculty distinguishing some letters,
such as M and N. It is therefore instructive to focué on errors made by subjects of
the auditory perception and spectrogram reading tests described in Chapter 3.

One of the questions that arises from analyzing the results is why the listen-
ers made different mistakes from the spectrogram readers. Altbough listeners and
readers sometimes made the same type of mistake (e.g., substituting B for D), one
of the groups made it proportionately far more often than the other, and usually

not on the same particular token.

An illustration of the difference in results is shown in Figure 4.8. The figure

shows a spectrogram of the letters S and F, which is a pair of letters that the
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listeners confused more often than the readers. Spectrogram readers can distinguish
between the /s/ of S and the /f/ of F more easily than listeners can because they
can see the difference in energy between the two phonemes in the mid-frequency
range more easily than listeners can hear it. Spectrogram readers performed poorer
in other instances, presumably due to the fact that they had not learned to utilize
subtle acoustic cues. From this we may conclude that listeners and readers make
different errors because some acoustic cues are more obvious to listeners than to
readers, and vice-versa.

When examining the errors, we should focus on those made by spectrogram
readers rather than listeners, because spectrogram reading makes explicit use of
acoustic-phonetic knowledge that can potentially be extracted and implemented in
a recognition system. Also, the emphasis should be placed on studying substitu-
tion errors, since they comprise 68% and 92% of listening and reading test errors,
respectively.

Substitution errors made in these tests were described in Chapter 3. Some of
the errors were symmetric; Letter 1 was mistaken for Letter 2 about as often as
Letter 2 was for Letter 1. Other errors were asymmetric. Why these asymmetric
errors occur and how they can be resolved are questions that may be answered by

examining specific asymmetric confusions.

4.4 Analysis of Readers’ Asymmetric Errors

Some of the most common asymmetric errors are listed in ‘Table 4.2. Together, they
comprise 30% of all asymmetric errors.

The letter R is more likely to be called an I than the other way around, and
an examination of I-R errors helps explain why these confusions occur. Figure 4.9
shows a spectrogram of the string CRUR, which was tranacribed as CIUR by a
spectrogram reader. Unlike the second R, the first R of the string does not have
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Letter Pair # of Errors
Ist | 2nd | 1st mistake for 2nd | 2nd mistaken for 1st
I R 2 6
I o 2 5
G P 0 6

Table 4.2: Most Common Asymmetric Errors Made by Readers
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Figure 4.9: Spectrogram of CRUR (/si’aryuar/)
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Figure 4.10: Spectrograms of (a) /a’/ and (b) /ar/

a low third formant characteristic of /r/. Instead, it is raised due *o the influence
of the following /y/, causing it to strongly resemble /a7y /, shown in part (a) of
Figure 4.10. Most of the R tokens that were m}staken for-I were followed by /y/ or
/i/. Part (b) shows a typical /ar/, and a comparison of the two shows that if an R
is followed by a segment that raises or lowers the second and third formants, it can
be confused with an I. J

The asymmetric confusion between I and O has a similar explanation. O was
more likely to be mistaken for I than vice-versa, and an examination of the tokens
on which this error was made show why. If O was followed by U, it was sometimes
called I, because, as in the I-R confusion, the third formant of the O was raised from

its characteristic low position (see part (a) of Figure 4.11) to a higher frequency

more typically seen in the letter I (shown in part (b) of Figure 4.11). Once again,



CHAPTER 4. ACOUSTIC STUDY OF SPELLING CORPUS 71

(a) (b)

Figure 4.11: Spectrograms of (a) /o"/ and (b) /a7/

as in the previously described confusion, the right context of the O can cause it to
be mistaken for I.

This explains why O and R are sometimes’called I, but it does not explain why
the reverse is not as common. In order for I to bé called an R or O, it could be
followed by a segment that lowers the third and second formants, respectively. This
situation did not occur in the spelling corpus. However, it was found that both
I-R confusions occurred when I was at the ead of a string. Segments at the ends
of utterances are subject to pre-pausal lengthening, and this makes the formant
transitions more gradual than is usually seen in /a?/. Also, the signal near the end
of an utterance can be noisy due to excess aspiration, and in both confusions, the

trajectory of the third formant was hard to track. Both of these characteristics are

shown in Figure 4.12 for the last two letters of the string RIANCEPI. The figure



CHAPTER 4. ACOUSTIC STUDY OF SPELLING CORPUS 72

Time (secouds)

11T

R MLl [
il
il iy,

- _}‘ ] TH‘ Ii # kR

—rt | .". :!
~—mm—— |

Figure 4.12: Spectrogram of PI (/pifa’/)

shows the last iwo letters, PI, which were transcribed by a spectrogram reader as
PR.

I-O confusions occurred when the right context of the I caused the second for-
mant of /a¥/ to be lowered so that it resembled /o"/. Figure 4.13 shows a spec-
trogram of IL, the last two letters of the string MISTIL, which were transcribed by
the reader as OL.

The third asymmetric confusion in the table is for G versus P. The letter P was
mistaken for G six times, but the opposite mistake was never made. A closer look
at this confusion reveals that 5 of the 6 P-G errors were made when P occurred in
a string-initial position, as shown in the spectrogram of P from the string PRIN in
part (a) of Figure 4.14. String-initial /p/ is unusually strong and the release contains
a great deal of aspiration noise, so that it resembles the /j/ shown in Figure 4.14b.

An ordinary /p/ is far less likely to be mistaken for a /j/, since it has the pencil-
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Figure 4.14: Spectrogram of (a) P (/pi’/) and (b) G (/ji’/)
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thin burst and comparatively little frication noise. Also, /j/ is voiced while /p/ is
unvoiced, and evidence of this distinction is usually seen by examining the voice bar
and voice onset time of the segment. The voice bar is found in the closure portion
of voiced stops and affricates, and is caused by tissue vibration around the neck.
The voice onset time is shorter for voiced segments than unvoiced ones. However,
sentence-initial segments usually do not contain prevoicing, whether or not they
are voiced, so that cue for distinguishing between /p/ and // is not available to
the reader. Therefore, he is forced to rely on the presence of aspiration noise in
the burst and voice onset time, both of which are misleading for /p/. These /p/
segments are not pathological, they are merely products of overarticulation which
can sometimes be a problem.

Examining specific asymmetric confusions has led to some interesting insights
as to why they occur, and allows us to conclude that such confusions arise because
the acoustic properties of some phonemes are modified when they occur in certain
phonetic environments. These confusions may be resolved if context is taken into

account when attempting to recognize the letter.

4.6 Analysis of Readers’ Symmetric Errors

4.5.1 Introduction

While some confusions are asymmetric and can be explained and resolved by taking
their context into account, others occur independent of phonetic environment and
are more symmetric. Symmetric errors are more prevalent than asymmetric errors,
and they occur presumably because subjects cannot find the right acoustic-phonetic
cues for distinguishing between certain pairs of letters or phonemes. Resolution of
these errors may be possible by studying the confusing pairs and finding acoustic
cues for distinguishing between them.

Spectrogram readers made fifty-one different substitution errors, but the four
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most frequent confusions, G-T, A-E, M-N and O-L together comprise 42.8% of the
total. If acoustic cues can be found for resolving these symmetric errors, the number
of confusions and the overall error rate will be drastically reduced. Therefore,
we conducted a set of experiments focusing on finding acoustic features that can

distinguish these letter pairs.

4.5.2 Description of the Experiments

In these experiments, acoustic features are used to determine the identities of letters.
However, the ccnditions under which these experiments are performed differ from
those of the auditory perception and spectrogram reading experiments. First of all,
in this experiment, the endpoints of the segments we are trying to recognize are
given: that is to say, we assume that segmentation of the signal has already been
done. Also, the decision being made here is a binary one: the segment in question
must be one of only two. These two combine to make the task easier than that of
the listeners and spectrogram readers. Other differences between the experiments
include difference in information given about speaker identity. Listeners were given
no speaker information, readers were given speaker identities, and in the acoustic
resolution experiment, male tokens were separated from female tokens.

Most of the acoustic resolution experiments were performed on male data only.
Because of the smaller dimensions of the female vocal tract, the fundamental fre-
quency of female speech and is higher than for male speech. The optimal window
for processing male speech is too long for female speech [17, pp. 310-314], which
means that the frequency resolution of female speech is greater than desired. As
shown in the spectrogram of Figure 4.15, strong harmonic structures, particularly
in the region around the first formant, are often present for female speakers. A
trained spectrogram reader has learned to ignore these extraneous spectral peaks.
However, automatic formant trackers will have a great deal of difficulty with them.

For this reason, female speech is not used in most of these experiments.
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Figure 4.15: Spectrogram of R (/ar/) spoken by a female speaker.

Different acoustic parameters determined by examining approximately 90% of
the data. Once the appropriate parameters were determined from the training
data, these cues were tested on the remaining 10% of the data to determine their

effectiveness.

4.5.3 G-T Confusions

The most common substitution error made by spectrogram readers was mistaking
G for T, and vice-versa. Spectrograms of the two letters are shown in Figure 4.16.
The confusion is between the /t/ in T, which is often unusually strong in spelled
speech due to overarticulation, and the /j/. Two features were used to resolve this
confusion. The first is the presence or absence of voicing in the closure portion
of the consonant, before the burst. Since /j/ is voiced and /t/ is not, we would

expect to see some prevoicing during the closure for /j/ but not for /t/. This is
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(a) (b)

Figure 4.16: Spectrograms of (a) G (/fi’/) aad (b) T (/ti¥/)

77



CHAPTER 4. ACOUSTIC STUDY OF SPELLING CORPUS 78

a good feature except for string-initial G and T tokens, because prevoicing does
not ordinarily occur at the beginning of an utterance. The second feature is the
characteristics of the noise following the bursc. Since /j/ is an affricate, it contains
frication noise, and since /t/ is a stop, it contains aspiration noise. Frication noise
tends to have a flat spectrum, while the aspiration noise contains peaks in energy
around the higher formant frequencies of the following sonorant. For /t/ this means
that the second and third formant are visible in the noise, as can be seen in Fig-
ure 4.16. This difference in noise type is expressed quantitatively by the amount
of energy found in the region 3100-3600 Hz for males. For /t/, this represents the
region between the emerging third formant and higher-frequency frication noise.
Even though the appropriate frequency band varies from speaker to speaker, such

variability is greatly reduced since all the /t/ tokens are followed by Ji7/.

The results of this experiment are shown in the first row of Figure 4.17 with
the training and testing accuracy rates combined, along with the results from the
auditory perception and spectrogram reading experiments. The results from this
experiment are shown for male speakers only, whereas the results from the other
experiments are for both male and female speakers. These results are shown in
the form of confusion matrices that indicate how well each individual confusions
are resolved. Average error rates are shown in Figure 4.18 for easier comparison
of overall results. It can be seen from both figures that while listeners have the
best performance record for distinguishing G from T (99.5% correct), the acoustic
resolution test using only one or two acoustic features has a higher accuracy rate

than spectrogram readers (96.8% versus 89.9%).

4.5.4 A-E Confusions

The second largest group of substitution errors were A-E confusions. Spectrograms
of these two letters are showr in Figure 4.19. The formant trajectories of the vowels

/e?/ and /i¥/ are sometimes modified by phonetic context in such a way as to cause
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Correct Letters (%)

Guessed Letters (%)

Acoustic
Listeners Readers Experiment
G T G T G T
G | 100 0 G | 89.3 | 10.7 G946 5.4
T | 09 }|99.1 T | 11.5 | 88.5 T ] 0.9 | 99.1
E A E A E A
E|99.1 | 0.9 E (973 2.7 E|978 | 22
A| 0 | 100 A| 33 |96.7 A| 11 | 989
o L (0] L o L
0984 | 1.6 O0]98.4| 1.6 O0]944| 56
L| 0 | 100 L] 103 |89.7 L] 45 | 955
M N M N M N
M([(985]| 15 M|894|106| M |803] 19.7
N | 0.8 |99.2 N| 78 |92.2 N| 6.2 | 93.8

Figure 4.17: Analysis of Worst Substitution Errors
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Figure 4.18: Symmetric Errors

Figure 4.19: Spectrograms of (a) A (/¢?/) and (b) E (/i?/)
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Figure 4.20: Spectrograms of ME (/emi7/)

them to be mistaken for each other. As shown in Figure 4.20, for example, if the
letter E is preceded by the letter M, the /m/ of the M can lower the second formant
of the following /i7/ 8o that it resembles /e7/.

A number of acoustic features were tested—on the A and E tokens, and it was
found that the best separation results were obtained when the tokens were separated
according to left phonetic context. Tokens preceded by phonemes such as /1/, /w/
or /m/ were partitioned from the rest, and then the same features were used to
resolve tokens in both groups. The two features used were the average value of the
first and second formants across each token, which are generally lower for /i¥/ or
/e?/ preceded by /1/, /w/ or /m/.

A-E confusion matrices and overall error rates for the three recoguition experi-
ments can be found in Figures 4.17 and 4.18, respectively. A comparison of results

for this experiment to those of the previous recognition experiments show that, as
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(b)

Figure 4.21: Spectrograms of (a) O (/o"/) and (b) L (/¢l/)

in the case of G-T, the listening test yielded the highest accuracy rate (99.5%),
followed by this acoustic resolution experiment (98.3%) and the spectrogram read-
ing experiment (97.0%). Once again, a careful acoustic analysis gives better results
than those obtained by spectrogram readers, and this not only be because formants
were more accurately measured, but also because the identity of the left phonetic

context was known.

4.5.5 O-L Confusions

Spectrogram readers also had difficulty distinguishing O from L. At first glance, this
confusion is a surprising one, since the acoustic differences between these letters are
evident to a listener. However, the letters are actually very similar acoustically,

so much so that even listeners occasionally mistook one for the other. Figure 4.21
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shows spectrograms of the two letters which demonstrate the resemblance between
the letters; each is composed of a vowel followed by a semivowel. The semivowels,
/w/ aad /1/ are one of the most ditticult pairs of English phonemes to resolve.
Efforts made to use the semivowel part of each letter to help distinguish them from
one another proved fruitless, so attention was instead directed towards the vowel
portion.

Tne vowel of O, /o"/, is a back vowel, while the vowel of L, /¢/ is a fron vowel,
8o the average value of the second formant is a good feature for distinguishing
between them. However, using the average value of the formant over the entire
vowel yields poor results because the following semivowel lowers the last part of the
second formant, resulting in average second formant frequencies for /o%/ and /g/
that are virtually the same. Using the average second formant calculated over the
first seventy-five milliseconds of vowel gives better separation results.

As ia the A-E resolution experiment, the vowel formants are modified by the
phonetic environmeut, so the data is partitioned by context and the same features
is used to distinguish O tokens from L tokens within each group. Here, tokens that
are preceded by phonemes that tend to raise the second formant, such as /177, [y/
and /&/, are separated from the rest.

Besides the average value of the beginning of the second formant, duration of
the vowel segment is also helpful for resolving O-L ccnfusions. The vowel /e/ is a
lax vowel, while /o"/ is not, and therefore $ypically has a skorter duration than
/o¥/.

Using these two features, we can acoustically resolve O and L tokens with an
overall accuracy rat: of 95.0%. This is a higher accuracy rate than that obtained
by spectrogram readers (94.0%), but, once again, the listeners’ performance was

siguificantly better (99.2%).

4.5.6 M-N Confusions
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Figure 4.22: Spectrograms of (a) M (/em/) and (b) N (/en/)
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The letters M and N are the final pair of symmetric confusions to be examined.
This confusion was often made not only by spectrogram readers, but by listeners
as well. Spectrograms of M and N are shown in Figure 4.22. Both M and N consist
of the vowel /¢/ followed by a nasal, /m/ or /n/.

Acoustically, the letters M and N are almost identical. The primary difference
between them is in the place of articulation The place of articulation, labial for /m/
and alveolar for /n/, influences the trajectory of the preceding vowel. Figure 4.22
shows thal in M, the labial /m/ causes the formants of the preceding /e/ to fall
sharply at the end of the vowel. An examination of the formant frequencies of N in
the same figure show no such rapid changes in /¢/.

The second formant of /e/ in M is affected by the following labial more than
the other formants, while the second formant of /¢/ in N is more stable than other
formants. The locus for the second formant of an alveolar sound is approximately
1800 Hz for male speakers, so we would expect that the second formant of /¢/ would
be at that frequency immediaiely before the /n/, and that it would be fairly level.
A good way to express this difference quantitatively is as a measure the slope of the
second formant duriug the last ten milliseconds of the vowel.

Using this feature, an attempt was made to separate M tokens from N tokens. As
in the previous experiments, comparisons of the results of the auditory perception,
spectrogram reading and acoustic resolution experiments are shown in Figures 4.17
and 4.18. This time, both the overall accuracy rates of the auditory perception
and spectrogram reading experiments (98.9% and 90.8%) were better than those
obtained in the acoustic resolution experiment (87.1%).

The fact that this acoustic resolution experiment did not yield better separation
results than those obtained in the spectrogram reading experiment is due to two
factors. First, unlike the other acoustic resolution experiments, only one feature
was used to try to accurately partition the data. All three of the other experiments

used two features, and higher accuracy rates than those in the spectrogram reading



CHAPTER 4. ACOUSTIC STUDY OF SPELLING CORPUS 86

experiment were obtained. Obviously, the feature used did not adequately capture
the scoustic differences between M and N. Secord, as was mentioned before, the
techniques used in these experiments to find formant frequencies do not work well for
female speech, and sometimes perform poorly on male speech. Formant information
is imperative for resolving many confusions. However, formant tracking is error-
prone, which partially explains the difficulty in acoustically resolving M and N.
Since only the last ten milliseconds of the vowel were used, this meant an error in
formant tracking could not be smoothed out very well.

There are two paths that may be taken to better resolve this confusion. First of
all, the acoustic resolution experiment can continue as before, and other features can
be tested to see how well they separate the tokens. For example, the nasal murmur
itself has not yet been used to try to distinguish N from M. According to Glass
[6], there are some spectral differences betwen /m/ and /n/, but they are usually
diminished in a large data-set such as this because the differences are speaker- and
context-dependent. However, in this experiment, speakers are separated by sex and
the left phonetic context is the same for all tokens. Features of the nasal, along
with better measurements of formant movement at the end of the vowel may lead
to better separation of M tokens and N tokens.

Secondly, a different approach developed by Seneff [19], in which the spectrum of
the vowel portion of a letter is characterized without specifically tracking formants,
may be the answer. This method, which incorporates a non-linear auditory model
into the analysis of vowel spectra, yields spectrographic representations of these
vowels that consist of a series of lines, call:d “line-formants.” Once obtained, these
line formants contain enough information about formant frequencies and trajectories
to be used to discriminate between vowels. '

Line formants for /¢/ followed by /m/ and /n/ are 1¢presented in a two-dimen-
sional probability distribution of the frequency and slope of the lines, and are shown

in Figure 4.23. It can be seen that acoustic differences between the two sets of / e/
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Figure 4.23: Line formants for /¢/ followed by /m/ and /n/
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Figure 4.24: Resolution of M vs. N using Line Formants

tokens are accentuated by the application of the auditory model. In a preliminary
experiment using the majority of /¢/ tokens for training and the remainder for
testing, the auditory model was used to attempt to discriminate between M and N

tokens. The results are shown in Figure 4.24.

The overall recognition rate for this test, which was performed on both male
and female data combined, was 88.6% for training data and 82.0% for test data.
Although this is lower than the rates obtained in the other recognition experiments,
the data does include both male and female speakers. This approach seems to
be promising and may eventually lead to imProved resolution of M-N and other

confusions.

4.6 Conclusions

Spelled strings differs from ordinary continuous speech in three major ways: spelled
strings are composed of a smaller phoneme set and a limited number of permissible
phonetic sequences within letters, they are primarily made up of stressed syllables,
and they contain a far greater number of glottal stops. All of these features can be
used to facilivate continuous letter recognition.

Errors made i1 trying to recognize spelled strings are primarily susbstitution
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ones. Other errors, which result from not being able to find letter endpoints within
a string, do not often occur because natural boundaries formed by, among other
things, glottal stops, help to segment strings into letters. Some substitution errors
were asymmetric, and occur because the effects of coarticulation cause one letter to
resemble another, while the opposite problem does not occur. These errors may be
resolved by taking the phonetic environment of a letter into account when trying
to determine its identity.

Other errors were symmetric, and tended to occur independent of context. By
measuring certain acoustic differences between the letters, three of the four worst
symmetric confusions were resolved with a higher accuracy rate than that obtained
by spect.ogram readers, who used a similar approach.

These results lead to two conclusions. First of all, since better overall perfor-
mance than spectrogram readers was achieved in these acoustic resolution experi-
ments, using only one or two simple and rather crude acoustic measurements, we
expect that accuracy results wouid be even better if a greater number of more so-
phisticated acoustic features were used. Second, since the accuracy rate for these
experiments is so high for these difficult confusions, we expect even higher accu-
racy rates for other, less acoustically similar confusions. Therefore, we hypothesize
that if spectrogram readers can achieve an accuracy rate of approximately 91%
using only acoustic-phonetic information, a spelling recognition system using only
acoustic measurements similar to those described in the above acoustic resolution

experiments may be able to achieve an even better performance rate.



Chapter 5

Conclusion

5.1 Summary of Results

Although acoustic-phonetic information is important for recognition, it is not suffi-
cient; continuously-spoken letters are difficult to recognize due to acoustic similari-
ties between some of them. Information from other knowledge sources may aid in
spelling recognition.

In the general continuous speech recognition problem, syntactic constraints may
be exploited to facilitate recognition. In continuous letter recognition, if the task is
restricted to recognizing spelled words, then kncwledge of the rules of spelling can
improve accuracy.

Knowledge of spelling rules aids in continuous letter recognition because lexical
constraints on words are stroag. A lexical study conducted using the MPD showed
that not only were some letters and sequences of letters much more likely to occur
than others, but also that there were a limited set of letter combinations that
were per.nissible. The predictability of English was demonstrated; the more letters
known in a word, the greater the constraints on what the other letters could be and
the greater the redundancy of information contained in the word.

Both acoustic-phonetic and lexical information are used to achieve recognition of
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ordinary spelled words. However, it is difficult to determine how much information
is derived from each of the knowledge sources. Although acoustic-phonetic informa-
tion alone is not adequate for perfect spelling recognition, its actual performance
rate is not known. Determining the sufficiency of acoustic information shows the
relative importance of each of the available knowledge sources.

Spelling recognition experiments were conducted using a corpus composed of
words and “wordlike” non-words to determine the adequacy of acoustic-phonetic
knowledge alone. In an auditory perception experiment, listeners achieved an ac-
curacy rate of 98.4% and in a spectrogram reading experiment, spectrograra read-
ers achieved an accuracy rate of 90.7%. These results show that listeners may
rely almost exclusively on acoustic-phonetic information to recognize continuously-
spoken letters. Also, spectrogram readers, who use similar recognition techniques
as would be used by a spelling recognition system, perform fairly well using only
acoustic-phonetic information. Adding lexical information and doing a more sophis-
ticated acoustic analysis should further increase the accuracy rate of the acoustic-
phonetic feature-based approach used by spectrogram readers. The next step is
to explore possible ways of integrating information from the acoustic-phonetic and

lexical knowledge sources.

5.2 Integration of Knowledge Sources

Based on the results of the spectrogram reading experiment, the assumption that
we can develop a fairly accurate spelling recognizer using just acoustic-phonetic
information and the techniques used by spectrogram readers is a valid one. Spelled
speech possesses certain acoustic characteristics which are not found in ordinarily
continuous speech. These include a limited vocabulary and phoneme set, a large
number of glottal stops and a predominance of stressed syllables. These features

may be exploited to aid in recognition.
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Figure 5.1: Phonetic transcription lattice for the word CHAT.

Letter Lattice

Figure 5.2: Letter lattice for the word CHAT.

92



CHAPTER 5. CONCLUSION

Oth Order | 18t Order | 2nd Order
CHAT 947.8 1.0921 .00381
ZHAT 20.97 0 0
ZAJT 0.589 0 0
CAJT 26.698 0 0

93

Table 5.1: Path probabilities (x 10~%) using Markov Models

Acoustic-phonetic information alone can reduce the number of possible letter
transcriptions of a spelled string. As an example, suppose we are asked to recognize
the spelled string CHAT. Using only acoustic information, a phonetic transcription
lattice, shown in Figure 5.1, may be obtained. Using knowledge about the phonetic
characteristics of letters, the phonetic transcription lattice can be translated into a
leiter lattice, which is shown in Figure 5.2.

Any one of the paths shown in the letter lattice of Figure 5.2 is acoustically
valid. However, only one at most is actually correct. The next step is to determine
the best way to decide which path to follow.

One approach is to simply follew the best acoustic path. When creating the pho-
netic transcription lattice, the signal is segmented and one or more phonetic tran-
scriptioné is proposed for each segment. Ordinarily, the transcriptions are ranked
according to probability of correctness, and this ranking could be taken into account
when determining the final transcription of the word.

The fact that there is more than one reasonable path proves the insufficiency of
acoustic information. However, if the letter string must form a word, then knowledge
of the syntax of English words as expressed by the rules of spelling can be used.
Lexical information can be applied toward finding the best path through the lattice

to come up with the most likely word candidate.
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Lexical Lookup

Table
Phonetic T — Find Best
Waveform — (jassifier ranscription pm: {?{ough L e Word
attice

Figure 5.3: Proposed spelling recognition system.

The application of lexical knowledge can be demonstrated using CHAT once
more as an example. Information about the frequencies of letters and letter se-
quences gathered in the previously-conducted lexical study can be used to find the
best path through the letter lattice. Table 5.1 lists path probabilities using zeroth-,
first- and second-order Markov Models. The order of the Markov model describes
how many past states are used to determine the probability of the proposed next
state. For example, in a second-order model, given that a two letter sequence is
CH, what is the probability that the next letter of the éequence is A7 From the
table, it can be seen that no matter which Markov model is used, the best path is
always the- one for CHAT, which also happens to be the only word among all the
candidate strings.

The example described above shows a methodology for recognizing words from
their spellings that could be incorporated into a model for a spelling recognition
system. Figure 5.3 shows a block diagram for a proposed recognition system. The
system takes the input spelled speech waveform and performs as fine an acoustic

analysis on it as possible. This acoustic analysis yields a phonetic transcription
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lattice, which is in turn transformed into a letter lattice using the phonetic charac-
teristics of letters as a guide. Lexical knowledge is then applied to the letter lattice
to find the best path through it, and the result is an orthographic transcription
that hopefully corresponds to the input spelled word.

5.3 Suggestions for Future Work

There are many ways in which this work may be extended. First of all, the acoustic
study of the spelling corpus can be continued in an effort to find out more about
acoustic-phonetic features particular to spelled speech. Also, ways to better resolve
spelled speech acoustically can be explored. _

The system described in the previous section assumes that the acoustic analysis
of the waveform will result in detailed segmental classification in order to obtain
a sparse letter transcription lattice. However, as was demonstrated in Chapter 4,
even broad classification reduces the number of possible letter sequences due to the
structural characteristics of letters. Althongh broad classification generally leads to
a more dense letter transcription lattice than detailed classification, lexical knowl-
edge may still be able to find the correct path through the lattice. Experimentation
would indicate how detailed the segmental classification should be in order to obtain
accurate orthographic transcriptions.

Work: can also continue in the area of fine acoustic resolution. As discussed
in Chapter 4, although the most difficult confusions could be resolved with a few
acoustic parameters better than by spectrogram readers, the accuracy rates ob-
tained were still not in the same range as those realized by the listeners. It may be
possible to further improve scores by using more sophisticated features. Also, using
alternate means of representing the signal, such as in the form of line formants, may
provide another way of improving recognition scores.

The lexical study should also be extended because more information about lex-
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ical constraints are needed. Although the statistics obtained about the frequency
ard existence of letter sequences are powerful and very useful to this task, they do
not fully capture the rules of spelling. The inherent structure of words has not been
exploited; for example, the rule thai all words must contain at least one vowel letter
(i.e., A, E, I, O, U or Y) has not been used.

Although substituticn errors are by far the most common error made in spelling
recognition, other errors, such as deletion and insertion errors, do occcur. Ways for
resolving these and other types of errors should also be studied.

In order to implement a spelling recognition system, information from the lexical
and acoustic-phonetic knowledge sources must be combined. The optimal integra-
tion of information from these two sources may be obtained through experimenta-
tion. From the results of the recognition experiments described in Chapter 3, it can
be seen that the primary source of information is acoustic-phonetic, but the proper
weighting of information from the two sources is not yet known.

In addition, the relative importance of knowledge from each of the sources may
vary. In some cases, a fine acoustic resolution of a spelled string is not neceassary,
since lexical knowledge can compensate for acoustic uncertainty. For example, in
Chapter 4, attempts were made to disambiguate the four most common substitution
errors made by spectrogram readers. However, not being able to distinguish between
these letters may not matter if the distinction can be made using lexical information.

An analysis of the MPD was conducted to explore this hypothesis. Specifically,
we looked for all minimal pairs of words that differ only in one of the four minimal
pairs of confusable letters that we investigated. i'or example, the word BAT could
be confused with the word BAG if T were confused with G. Table 5.2 shows the
percent of words containing at least one of the confusable letters that would be
aubject to such a confusion. The table shows that an inability to resolve one of
these confusions matters for only a small percentage of words containing one of the

confusable letters. Therefore, we conclude that perfect acoustic resolution may not
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Confusable Pair | % Confusable Words
G-T 2.3
A-E 2.9
O-L 0.6
M-N 1.5
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Table 5.2: Percent of words that are confusable due to containing one of a confusable

letter pair

be necessary to obtain the correct solution.



Appendix A

Summary of Letter Frequency

Statistics

This appendix contains information about letter frequencies to supplement what is

shown in the text of this thesis.

A.1 Equally-Weighted Words

Figure A.1: Histogram of Beginning Letter Occurrences
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A.2 Words Weighted by Frequency of Appear-

ance

Figure A.10: Histogram of Single Letter Occurrences

Figure A.11: Histogram of Beginning Letter Occurrences
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A.3 Statistics for Unweighted Words from Twenty
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