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SUMMARY
The Omicron variant features enhanced transmissibility and antibody escape. Here, we describe the Om-
icron receptor-binding domain (RBD) mutational landscape using amino acid interaction (AAI) networks,
which are well suited for interrogating constellations of mutations that function in an epistatic manner.
Using AAI, we map Omicron mutations directly and indirectly driving increased escape breadth and
depth in class 1–4 antibody epitopes. Further, we present epitope networks for authorized therapeutic
antibodies and assess perturbations to each antibody’s epitope. Since our initial modeling following
the identification of Omicron, these predictions have been realized by experimental findings of Omicron
neutralization escape from therapeutic antibodies ADG20, AZD8895, and AZD1061. Importantly, the AAI
predicted escape resulting from indirect epitope perturbations was not captured by previous sequence
or point mutation analyses. Finally, for several Omicron RBD mutations, we find evidence for a plausible
role in enhanced transmissibility via disruption of RBD-down conformational stability at the RBDdown-
RBDdown interface.
INTRODUCTION

The severe acute respiratory syndrome coronavirus-2 (SARS-

CoV-2) Omicron (B.1.1.529) variant of concern (VOC) has spread

globally due to an apparent fitness advantage over the Delta

variant.1 Several of Omicron’s spike mutations have been

observed in other VOCsand are known toenhance transmissibility

and confer varying degrees of escape from neutralizing anti-

bodies.2–6 However, numerous Omicron mutations have not

been observed on previous VOCs nor characterized rigorously in

termsof their functional effects. Thepositionofmany uncharacter-

izedOmicronmutations within dominant antibody epitopes there-

fore prompted concerns that the efficacy of vaccines and thera-

peutic antibodies could be significantly reduced against

Omicron, leading to policy decisions and research prioritizations

with far-reaching consequences.

In this study, we analyze the receptor-binding domain (RBD)

mutational landscape of Omicron using amino acid interaction

(AAI) networks.7,8 AAI network analysis is particularly well

suited for understanding the impact of constellations of muta-

tions residing within and adjacent to an antibody epitope as oc-

curs on the Omicron variant. For example, AAI network analysis

considers how mutation of a residue that does not directly
Cell Repo
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interact with a given antibody paratope (e.g., via a hydrogen

bond between side chain and antibody complementarity deter-

mining region [CDR]) may still perturb antibody binding if the

residue plays a significant structural role in supporting other

sites that interact directly with the antibody.8,9 Such indirect ef-

fects have been conceptualized as mutations outside of the

direct antibody epitope that alter higher-order protein structure

or perturb protein ‘‘breathing.’’10–12 AAI networks quantitate

these indirect relationships through which Omicron’s mutation

constellation may substantially perturb the chemical and phys-

ical properties of RBD epitope surfaces. We apply the AAI

network lens to map the potential impacts of Omicron RBD mu-

tations on polyclonal antibody responses and therapeutic

monoclonal antibodies. We further discuss the limitations in

predicting efficacy of therapeutic antibodies against emerging

variants based on existing in vitro data for isolated mutations.

Finally, we present possible functional roles for Omicron RBD

mutations that are not predicted to substantially enhance anti-

body evasion. Our analysis using a fixed-backbone Omicron

homology model and a recently released Omicron spike struc-

ture suggests Omicron mutations may modulate RBD-up

versus RBD-down conformational dynamics toward enhanced

infectivity.
rts Medicine 3, 100527, February 15, 2022 ª 2022 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. RBD epitopes and variant mutational constellations

(A) AAI networking between a panel of antibodies and nanobodies across the

four anti-RBD antibody classes (x axis) and RBD sites (y axis) is shown, with

total networking strength annotated as heatmap intensity (colorbar). Only RBD

sites that interact with at least three antibodies in the panel are shown for

clarity. RBD sites mutated on the Omicron, Beta, Delta, and PMS20 RBDs are

highlighted by red, blue, purple, and green arrows along the y axis, respec-

tively. The Beta and Delta variant mutations primarily reside at sites corre-

sponding to class 1 and 2 antibodies, the PMS20 mutations occur at sites

residing within class 1–3 epitopes, and the Omicron mutations cover the

epitopes of all four antibody classes.

(B) VOC mutations affecting class 1–4 antibody epitopes. Two surface rep-

resentations of RBD are shown for each variant, with the top view displaying

surfaces targeted by class 1 and 2 antibodies and the bottom view displaying

surfaces targeted by class 3 and 4 antibodies. The surface view highlights

the extent of Omicron’s mutational breadth (across all four antibody classes)

as well as depth (extent of accumulated mutations within a given epitope

surface).
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RESULTS

The impact of Omicronmutations on polyclonal antibody
evasion
Toward investigating the antigenic impact of the Omicron RBD

mutations, we first mapped direct and indirect effects of Omi-

cron mutations on RBD antibody epitopes using AAI networks.

Our RBD epitope map included at least 10 antibodies from

each of the four structural classes of anti-RBD antibodies13

and thus represents the dominant functional components of

population-level polyclonal antibody responses.14 First exam-

ining Omicron escape breadth, we found that Omicron muta-

tions occur at RBD sites that interact with all antibodies exam-

ined and span the four antibody classes (Figure 1). In contrast,

our analysis showed that the RBD mutations of the Beta and

Delta variants are confined to sites within class 1 and 2 anti-

body epitopes, except for Beta N501Y, which interacts indi-

rectly with certain class 3 antibodies. This is consistent with

experimental evidence documenting Beta escape from class

1 and 2 antibodies15,16 and Delta escape primarily from class

2 antibodies.17 Our analysis therefore suggests that Omicron’s

increased antibody escape breadth as compared with previous

variants is driven by mutations in class 3 and 4 antibody

epitopes.

Class 3 antibodies are potent neutralizers that are immunodo-

minant for certain individuals,5 while class 4 antibodies tend to

be weakly neutralizing.13 Our network analysis associated Omi-

cron mutations N440K, G446S, G496S, and Q498R most

strongly with enhanced class 3 antibody escape based on these

sites having the strongest network interactions with the anti-

bodies surveyed. The RBD of PMS20, a research variant that es-

capes neutralization from most convalescent and polyclonal

sera, features similar class 3 mutations to Omicron at sites 440

and 445, yet also features an R346K mutation that Omicron

lacks.18 Our analysis found that R346 is the most strongly net-

worked residue for certain class 3 antibodies, including C135.

This suggests that PMS20 may escape more effectively from

the class 3 antibody component of sera than Omicron, high-

lighting a key caveat in comparisons between Omicron and

PMS20.

The AAI analysis suggested an additional set of Omicron mu-

tations (G339D, S371L, S373P, S375F) may contribute to class 3

and 4 antibody epitopes via predominantly indirect mechanisms,

with mutations at these sites appearing to affect nearly all class 4

antibodies in our panel, as well as select class 3 antibodies,

including S309, S2M11, C110, CV38-142, Ab 812, and PDI-96.

While mutational scanning of point mutations at these sites sug-

gested these mutations are unlikely to confer significant class 3

and 4 antibody escape in isolation,5 it is plausible that the com-

bined indirect effects of these four non-conservative mutations

could meaningfully alter the local structure in this RBD region

and thus perturb class 3 and 4 antibodies. In contrast to escape

from class 3 antibodies, however, Omicron lacked mutation at a

site that is strongly networked tomultiple class 4 antibodies such

as 368-9, 377-8, 384, or 434.

Further, we observed that Omicron mutations may enhance

escape depth from class 1 antibodies beyond that observed

for the Beta variant due to accumulation of additional mutations



Figure 2. VOCs versus therapeutic mAbs

Cumulative AAI networking between mutated sites

on the Beta, Delta, Omicron, and PMS20 variant

RBDs and the currently authorized therapeutic

antibodies REGN10933, REGN10987, LY-CoV16,

LY-CoV555, AZD1061, AZD8895, and S309 is

shown and broken down into direct, indirect, and

total components. Networking strength is anno-

tated as heatmap intensity (colorbar). Network di-

agrams describing connectivity between specific

sites are provided in the supplement as Figures

S1–S3. Direct networking results are consistent

with point mutation analyses and do not identify

certain antibody epitope perturbations resulting

from the Omicron mutations such as occurs for

AZD1061. Introducing an indirect networking

metric that accounts for indirect interactions suc-

cessfully identifies the Omicron-AZD1061 pertur-

bation. The combination of both direct and indirect

features in total networking is highly consistent

with experimental observations
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in class 1 antibody epitopes. The polyclonal antibody response

to infection and vaccination has been shown to broaden over

the months following exposure due to persistent somatic muta-

tion of antibody CDRs.19 This broadening process can increase

an antibody’s tolerance of escape mutations within its epitope,20

resulting in polyclonal responses with enhanced neutralizing ca-

pacity against the Beta variant over time. We found that Omicron

has accumulated multiple tightly clustered mutations and

therefore may have enhanced escape from matured polyclonal

responses that are tolerant of certain class 1 antibody escape

mutations such as K417N and N501Y (see Figure 1). That is,

Omicron’s accumulated class 1 mutations may reduce Omi-

cron’s susceptibility to class 1 antibodies tolerant of canonical

class 1 escape mutations such as K417N. Specifically, Omicron

mutations at residues Q493, G496, Q498, and Y505 clustered

closely with the Beta and Omicron escape mutations at residues

K417 and N501 indicating class 1 escape depth. Such escape

depth could have contributed to PMS20’s escape from conva-

lescent and vaccinee sera,18 as it can be seen in Figure 1 that

PMS20 also features multiple class 1 mutations. Notably, how-

ever, PMS20 was shown not to fully escape from polyclonal re-

sponses generated from infection followed by vaccination,18

suggesting that Omicron’s class 1 escape depth and class 3

escape breadth alone may not confer this ability.

Omicron mutations and their effects on therapeutic
antibodies
We subsequently applied AAI networks to examine the Omicron

mutations in the context of their ability to evade neutralization by

therapeutic antibodies of current clinical relevance (Figure 2). An

important perspective offered by our network approach is the

impact of mutations that are not directly located at the interface

of antibody-antigen complexes, yet may still disrupt the antibody

interaction. Specifically, it is important to consider the allosteric

effects of the many Omicron mutations and how they may coop-

eratively affect antibody binding to the Omicron RBD by modu-

lating the structural and chemical features of the epitope surface.

Our results present an accessible and concise visualization of
the network interactions between RBD sites mutated on Omi-

cron and authorized therapeutic antibodies.

We found that Omicron mutations occur at sites that are

strongly directly networked to REGN10987 + REGN10933 (casir-

ivimab + imdevimab; sites 417, 440, 446, 484, 493, 496, 498) and

LY-CoV016 + LY-CoV555 (bamlanivimab + etesevimab; sites

417, 484, 493, 501, 505), suggesting the binding of these anti-

bodies will be directly perturbed by Omicron mutations. In

contrast, AAI networking revealed Omicron mutations do not

appear to strongly directly interact with S309 (sotrovimab) or

AZD8895 + AZD1061 (tixagevimab + cilgavimab). Our findings

on the basis of direct networking between epitope residues in

Omicron variant and paratope residues in the neutralizing anti-

bodies align with existing analyses and commentary for these

therapeutic antibodies derived frommutagenesis screens based

on the binding perturbation induced by the Omicron mutations

individually and in isolation.5,21–23

However, point mutation analyses and AAI direct networking

do not explain interactions observed between these antibodies

and the Omicron variant in the full context of the set of Omicron

RBD mutations. Specifically, analysis of the AZD1061 network

found that Omicron mutated sites are highly networked to sites

directly networked to AZD1061, resulting in significant indirect

networking (Figures 2 and S1A). Meanwhile, we observed that

the Omicron mutated sites result in a large number of moderate

direct and indirect interactions for AZD8895 (Figure S1B). Since

the submission of this analysis, multiple studies reported signif-

icant reductions in pseudovirus neutralization for AZD8895 and

AZD1061,23,24 which is consistent with the cumulative Omicron

mutations resulting in perturbation of these epitopes.

Examination of the S309 AAI network showed indirect interac-

tions between S309 and the Omicron mutated sites 339, 373,

440, and 446 (Figure S2). Since the submission of this manu-

script, multiple studies have reported an approximately 3-fold

reduction in neutralization for S309 against Omicron.21,23–25

This reduction is consistent with the AAI model prediction that

the cumulative indirect effects of the Omicron mutations moder-

ately perturb the S309 binding surface. Building on this
Cell Reports Medicine 3, 100527, February 15, 2022 3
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observation, we noted that the AAI network indicated R346 is

important to the epitope network of S309, and R346 K/S muta-

tions had been detected in Omicron subclades.23 Further AAI

analysis showed that R346 is networked both directly and indi-

rectly to the S309 paratope in the context of the other Omicron

mutations. While isolated mutations at R346 only minorly affect

S309 binding and neutralization,21,26 the AAI network suggests

R346 mutations are likely to have a greater impact in the context

of the other Omicron mutations. Liu et al. and Cameroni et al.

further tested Omicron + R346K and found no significant addi-

tional reduction in neutralization.23,25 Importantly, R/K is a con-

servative mutation, highlighting how the physiochemical fea-

tures of a mutation are critical to understanding whether the

mutation will result in a significant perturbation of the AAI

network with effect on antibody function. Therefore, it is impor-

tant to monitor whether there is a further reduction in the suscep-

tibility (>5-fold change as defined in the sotrovimab emergency

use authorization [EUA] fact sheet27) of subclades with other

R346 mutations to neutralization by S309, as R/S has also

been observed on Omicron subclades and could result in more

substantial perturbation of the epitope network.

Similarly, our analysis suggested that such indirect effects

may affect the recently identified anti-RBD antibodies such as

ADG-2 that target the conserved epitope shared across clade

1a and 1b coronaviruses.28 Using the AAI network model, we es-

tablished that Omicron mutations at sites 496, 498, 501, and 505

are networked to the critical ADG-2 epitope residues D405,

G502, G504, and Y505 (Figure S3). Rappazzo et al. further re-

ported that Y505 C/N/S knocked down ADG-2 binding po-

tency.28 Single point mutation analysis on an epitope does not

consider the extent to which mutations at proximal residues

may affect the epitope-paratope binding interaction. For

example, ADG-2 does not bind the RaTG13 RBD, and RatG13

shares sequence identity with Omicron at the four critical ADG-

2 binding sites 405, 502, 504, and 505, demonstrating the impor-

tance of the network context of these four critical sites. Since the

submission of this manuscript, Adagio reported a 300-fold

knockdown of ADG-2 neutralization potency against Omicron

in both pseudovirus and live virus experiments,29 consistent

with AAI network observations and highlighting the importance

of indirect effects in assessing monoclonal antibody function

when multiple mutations occur within or adjacent to an epitope.

Potential additional functional roles of Omicron RBD
mutations
Given the substantial transmission advantage of Omicron over

Delta, it is plausible that Omicron RBD mutations contribute to

enhanced transmission by mechanisms other than or in addition

to antibody escape. Above (Figure 1), we identified several Omi-

cronmutations thatdonotappear toplayamajor roleaspolyclonal

epitope constituents or whose predicted contribution to antibody

evasion is unlikely to confer a substantial fitness advantage due

to the mutations occurring in class 4 antibody epitopes. Here,

we highlight two mechanisms by which these RBD mutations

may contribute to Omicron’s fitness via enhanced transmissibility.

Enhanced ACE-2 binding

There is existing evidence that certain Omicron mutations

enhance ACE-2 binding, and this is a leading hypothesis to
4 Cell Reports Medicine 3, 100527, February 15, 2022
explain Omicron’s enhanced transmission. In particular, Zahrad-

nı́k et al. identified enhanced ACE2 binding by RBD’s bearing

Q498R and S477N when combined with the N501Y mutation.30

Importantly, these mutation combinations resulted in a synergis-

tic effect extending beyond the increased ACE-2 binding pre-

dicted when the effect of these mutations assayed individually

was summed. It is therefore likely that a similar synergy effect oc-

curs on the Omicron variant at these three sites and may also

include additional Omicron mutations. Using AAI networks to

examine the local residue dependencies in this vicinity, we

observed a network extending from the known synergistic pair

498 + 501 to position 505, suggesting Omicron H505maymodu-

late the synergistic ACE-2 binding effect for Q498R + N501Y.

RBD-RBD interface stability

While Omicron’s mutations at sites 371, 373, and 375 may

contribute to escape from class 3 and 4 antibodies, evolution

of such a triplet mutation toward this escape function is not

parsimonious given that other single mutations have previously

been identified as conferring greater class 3 and 4 antibody

escape.5 We therefore hypothesized that mutations S371L,

S373P, and S375F might provide a fitness advantage other

than or in addition to escape. To test this hypothesis, we sought

to analyze the mutations in the context of different conforma-

tional states of the RBD in the trimeric spike protein. In a literature

review, we found that Wrobel et al. had previously identified a

role for sites S371 and S373 in stabilizing the RBDdown-RBDdown

interface in the spike three RBD-down conformation for SARS-

CoV-2 as compared with the related RaTG13 CoV.31 Further,

Wrobel et al., identified interactions between sites 369, 371,

373, 403, 440, 493, and 505 as plausibly driving differences be-

tween SARS-CoV-2 and RaTG13 in RBDdown-RBDdown interface

stability with implications for the RBD-up transition that enables

ACE-2 binding and subsequent infection. Remarkably, Omicron

mutations occur in five of these seven sites. The potential for a

significant perturbation at this interface was also captured by

the AAI network analysis, which identified numerous direct and

indirect interactions from sites 371, 373, 375, 440, 493, and

505 extending across the RBDdown-RBDdown interface (data

not shown). Additionally, mutations such as D614G have previ-

ously been linked to increased infectivity via destabilization of

the RBD-down spike protein conformation (thus promoting the

active RBD-up conformation) offering a plausible structure-func-

tion relationship.32

Given that no structure of the Omicron spike in the three

RBD-down state was available in the days following the first

identification of the Omicron variant, we built a fixed-backbone

homology model of the Omicron RBDdown-RBDdown interface in

the three RBD-down state to investigate the potential influence

of the Omicron mutations on interface stability (Figure 3A). Our

homology model suggested Omicron mutations disrupt the

closed-state RBDdown-RBDdown interface. Specifically for the

sites highlighted by Wrobel et al.,31 the modeled Omicron mu-

tations disrupted hydrogen bonds from Y505 to S373 and Y505

to R403. The loss of these bonds was reflected in positive DDG

for Y505H and S373P, yet partially compensated for by a more

energetically favorable R403 environment. A positive DDG was

also observed upon mutation at site 375. Further,

interface analysis of our Omicron model revealed that the



Figure 3. The effects of Omicron mutations

on the RBDdown-RBDdown interface

(A) The RBDdown-RBDdown interface in the three

RBD-down conformation, with the repacked WT

structure (PDB: 6ZGI)31 and our Omicron fixed-

backbone model shown in light blue and pink,

respectively. Omicron mutations S373P, S375F,

and Y505H reduced the energetic complemen-

tarity of the RBDdown-RBDdown interface at these

sites, but enabled a more energetically favorable

conformation for R403. Interface buried surface

area and surface complementary were also

reduced for Omicron by 40 Å2 and from 0.60 to

0.54, respectively.

(B) Structural model of the RBDdown-RBDdown

interface in the one RBD-up conformation, with the

WT (PDB: 6XM3)33 and Omicron (PDB: 7TB4)34

structures shown in light blue and pink, respec-

tively. Alignment of the protomer 1 ofWT andOmicron RBDdown showed a 7 to 10 Åmovement of theOmicron protomer twoRBDdown toward the distal RBDup (not

shown), which is annotated as red arrows, resulting in loss of all three interface bonds and 190 Å2 of buried surface area per RBD.
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RBDdown-RBDdown interface buried surface area decreased by

40 Å2, as compared with a 65 Å2 change for SARS-CoV-2

versus RaTG13, and the interface surface complementarity

decreased from 0.60 to 0.54.

Since our initial modeling effort, a structure of Omicron spike

in the one RBD-up conformation was released (PDB: 7TB4).34

When compared with wild-type RBD in the same conformation

(PDB: 6XM3),33 the Omicron RBDdown-RBDdown interface

showed a dramatic physical separation, loss of all three

RBDdown-RBDdown interface bonds, and an accompanying

190 Å2 reduction (�62%) in buried surface area (Figure 3B).

The separation was similarly pronounced when the Omicron

one RBD-up was compared with the same conformation for

other wild-type structures and the Alpha, Gamma, Kappa,

and Delta variants (data not shown; PDB: 6ZOW,35

7EDG,36 7M8K,37 7SBR,38 7SBL38). Our model indicating a

decrease in chemical and physical complementarity for the

RBDdown-RBDdown interface is therefore consistent with these

structural finding for the one RBD-up conformation. Further,

Zhou et al. highlight a new bond between RBDdown F486 and

the distal RBDup F375, which they hypothesize to stabilize the

one RBD-up conformation.34 Together, these data suggest

the Omicron mutations may destabilize the RBDdown-RBDdown

interface and stabilize the RBDdown-RBDup interface. In partic-

ular, S375F may function simultaneously at both the

RBDdown-RBDdown and RBDdown-RBDup interfaces to stabilize

the one RBD-up Omicron conformation, although other Omi-

cron mutations such as S373P likely alter the local structure

to facilitate this function. Interestingly, such a functional change

may also bear a fitness tradeoff due to increased surface expo-

sure of the RBD-neutralizing epitopes. These predictions can

be validated experimentally and explained in more mechanistic

detail once an Omicron spike structure in the three RBD-down

conformation is solved. Indeed, early work by Yin et al. to solve

a three RBD-down structure with accompanying thermal shift

and hydrogen-deuterium exchange mass spectrometry experi-

ments observed significant shifts for Omicron as compared

with wild-type (WT) spike,39 suggestive of decreased three

RBD-down state stability.
DISCUSSION

The network-basedanalysis of theOmicronmutational landscape

presented here describes Omicron’s escape breadth and depth.

We find evidence for enhanced escape breadth of Omicron as

compared with the Beta and Delta variants due primarily to class

3 escape mutations as well as increased escape depth within

class 1 epitopes. We further identify plausible class 4 antibody

escape via the mutations at sites 371, 373, and 375, which may

alter class 4 epitope surfaces indirectly, but note that escape

from class 4 antibodies is unlikely to confer a meaningful escape

fraction from sera and that these sites are not the dominant class

4 escape sites. Additionally, clades of Omicron bearing R346 K/S

should be monitored closely23 as this mutation is likely to further

enhance Omicron antibody evasion.

Importantly, although neutralizing antibody titers are corre-

lated with vaccine protection against infection,40 vaccine effi-

cacy against severe disease is likely to be preserved even in

the case of complete antibody escape due to non-neutralizing

antibodies and T cell responses.41 The high degree of major his-

tocompatibility complex (MHC) class I polymorphism at the pop-

ulation level means that, while CD8 T cell escape can occur via

MHC class I escape within an individual during a chronic infec-

tion such as HIV, T cell escape at the population level would

require mutation of nearly all T cell epitopes and is therefore un-

likely to occur for SARS-CoV-2.11 Analysis by Tarke et al. pre-

dicts that Omicron CD8 epitopes are 86% conserved and CD4

epitopes are 72% conserved across the Omicron spike pro-

tein.42 A second analysis of 52 CD8 T cell epitopes spanning

six human leukocyte antigen (HLA) haplotypes found just two

of these epitopes contained a single Omicron mutation.43

Together these data bode well for preservation of protection

from severe disease provided by vaccination and convales-

cence. However, early evidence suggests that 30% (CD8) and

45% (CD4) of immunocompromised individuals (those receiving

anti-CD20 therapy in the study) do not maintain detectable T cell

response against Omicron even following a booster vaccine

dose.44 This finding therefore highlights the critical need to

extend additional resources to protect vulnerable populations
Cell Reports Medicine 3, 100527, February 15, 2022 5
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fromOmicron and future VOCs. These results from immunocom-

promised individuals also provide evidence that vaccine

boosters may enhance the frequency and potency of T cell re-

sponses against Omicron, wherein T cell breadth has previously

been associated with mild disease courses.45

Further, it will be important to determine if the accumulation of

class 1 escape mutations, which provide escape depth, reads

through to a meaningful escape impact or reduction in vaccine ef-

ficacy. Thus far, such depth seems to provide little additional

escape benefit given that the combination of K417 and N501 mu-

tations appears sufficient to escape from class 1 antibodies in

most convalescent and vaccine sera.46 However, it is notable

that the PMS20 variant was unable to fully escape frompolyclonal

responses generated by infection followed by vaccination.18 Such

‘‘hybrid’’ immunity provided exceptionally potent and broad poly-

clonal responses.42 It is plausible thatOmicron’s additional class 1

antibody escape mutations provide a benefit against such re-

sponses, which could suggest these Omicron mutations repre-

sent multiple rounds of virus-host evolution. Teasing out these

specifics of Omicron’s escape breadth and depth will be particu-

larly informative for designing vaccine boosters resilient to con-

stellations of escape mutations both across antibody classes as

well as within immunodominant class 1 and 2 epitopes.

Previous variants presented with mutations on largely orthog-

onal epitope surfaces targeted by distinct antibody classes, yet

Omicron’s RBD mutational landscape is clustered within over-

lapping antibody epitopes. Throughout this study we therefore

highlight the importance of considering the complex structural

and chemical relationships between combinations of mutations

within or adjacent to antigenic surfaces. While point mutation

escape studies are unlikely to provide a complete mapping of

how mutation constellations may perturb antibody binding, our

AAI network approach maps these complex relationships be-

tween proximal residues and interface structure. The direct

component of our network analysis was consistent with predic-

tions on therapeutic antibody escape provided by traditional

point mutation predictions. In contrast, the indirect component

identified allosteric interactions between Omicron mutation sites

and the AZD1061, S309, and ADG-2 epitopes.

Finally, we find evidence for mechanisms other than immune

escape through which Omicron mutations may enhance fitness.

While mutation combinations such as Q498S and N501Y have

previously been shown to epistatically enhance ACE-2 binding,

our analysis suggests that Omicron mutations such as Y505H

may also indirectly influence the ACE-2 interaction. Further, based

on the previous work of Wrobel et al.31 and our Omicron three

RBD-down fixed model, we present evidence of a potential role

for Omicron mutations in destabilizing the RBDdown-RBDdown

interface. This finding is complementarywith recentwork showing

stabilization of the one RBD-up conformation via a new bond at

the RBDdown-RBDup interface,34 as RBDdown-RBDdown destabili-

zation could promote both transition from three RBD-down to

one RBD-up as well as maintenance of the one RBD-up state.

These effects may synergize to increase the propensity for the

RBD-up conformation. Increased occupancy of the RBD-up state

may also present a fitness tradeoff resulting from greater surface

exposure of the RBD-up antibody epitopes. Omicron’s antibody

evasion mutations may largely negate this penalty, and it is plau-
6 Cell Reports Medicine 3, 100527, February 15, 2022
sible that such RBDdown-RBDdown interface mutations are only

enabled in the context of Omicron’s unique degree of immune

escape. We also note that the Omicron BA.2 subvariant, which

appears to have a transmission advantage,47 features distinct

RBD-RBD interface mutation S371F and additonal interface mu-

tations T376A, D405N, and R408S. This observation further sup-

ports a relationship between mutations in this region and

enhanced transmissibility. Importantly, AAI analysis of the BA.2

RBD mutations showed reduced antibody escape breadth rela-

tive to BA.1 due to the lack of the G446S mutation. This suggests

BA.2’s growth advantage is unlikely to be driven by superior im-

mune escape.

In light of probable continued Omicron dominance, deter-

mining the various functional roles of the Omicron mutations is

critical. In particular, it is important to understand the complex

relationships between Omicron mutations, and the contribution

of these indirect effects to Omicron’s antibody escape and

enhanced transmissibility. Network-based approaches such as

those presented in this study are particularly well suited for

modeling such indirect interactions.

Limitations of the study
Limitations of our study include (1) sampling a representative poly-

clonal response from a set of individual antibodies and nanobod-

ies at sufficient resolution, (2) performingOmicron analyses based

on antibody interactions withWT SARS-CoV-2, and (3) the lack of

a structural model of the Omicron spike in the three RBD-down

conformation.We limit the impact of (1) by sampling at least 10 an-

tibodies from each of the four major anti-RBD antibody classes,

and observe a high degree of similarity between antibodies, sug-

gesting these samples span the dominant epitope-paratope inter-

actions for each class. Further, AAI network analysis is somewhat

less sensitive to structural resolution than traditional structural an-

alyses that rely heavily on interpretation of specific bonds. Limita-

tion (2) exists for all predictive approaches to assessing antibody

function against a recently identified variant based on existing

data describing interactions between the given antibody and a

prior spike structure. However, as shown in this manuscript, pro-

tein network analyses appear more robust for predicting the

impact of combined mutations than other analyses relying on

aggregating the cumulative effects of multiple point mutations.

Due to (3), we are limited in our ability to predict whether the Om-

icron RBDdown-RBDdown interface in the three RBD-down confor-

mation is sufficiently perturbed to result in a phenotypic effect.

However, the recently released two RBD-down one RBD-up

model (PDB: 7TB4)34 offers additional evidence, which we incor-

porate into our analysis in addition to our fixed model. Further

early evidence of decreased three RBD-down conformational sta-

bility is provided by thermal shift assay and hydrogen deuterium

exchange mass spectrometry in Yin et al.39 Together, these

data and the data on RaTG13 versus SARS-CoV-2 from Wrobel

et al.31 support our hypothesis and warrant further investigation

of Omicron mutations at the RBDdown-RBDdown interface.
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d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Structural data generated experimentally by others describing epitope-paratope interactions between antibodies/nanobodies and

recombinant spike protein or the spike RBDwas analyzed. The antibodies/nanobodies analyzed are listed in Table S1. Table S1 addi-

tionally includes Protein Data Bank accession codes for the structural model corresponding to each antibody/nanobody—where

further experimental details for each structure determination are available—and DOIs for the accompanying publications describing

biological experimental details such as production and purification of each antibody.
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METHOD DETAILS

Amino acid interaction (AAI) network
AAI networks were quantified as described in the quantification and statistical analysis section. The quantification includes definition

of Direct, Indirect, and Total networking metrics which are referenced in the below STAR Methods subsections.

Amino acid interaction (AAI) matrix and clustering
Total networking scores between each RBD site and the entirety of the antibody or nanobody paratope and framework regions were

computed and normalized as described above. Subsequently, these data were aggregated into a single matrix describing the

network interactions between all antibodies (Table S1) and all RBD sites. This matrix was then plotted as a heatmap and clustered

using clustermap from the Seaborn statistical data visualization package.54 Dendrograms were generated for RBD sites (rows) and

antibodies (columns) using the ‘canberra’ distance metric. For quantifying potential networking perturbations between individual

therapeutic antibodies and variants of concern such as Omicron, the total networking between the given antibody and all RBD sites

mutated on the given variant was summed to obtain a single value. Repeating this process for a panel of antibodies and a panel of

variants results in computation of a refined AAI network matrix, which was subsequently visualized as a clustered heatmap using

clustermap as described above. Note that the heatmap in Figure 1 was manually annotated with vertical dotted lines and labels

for each antibody class designation, as well as arrows indicating the mutations for each variant shown on the right-side. The surface

representations of RBD were constructed in PyMOL. Note that Figure 2 is a composite of three heatmaps, in which the only modi-

fication of the output is that two of the three identical color maps (legends) are removed for clarity.

AAI Network visualization for therapeutic antibodies
AAI networkswere visualized (Figures S1–S4) for certain therapeutic antibodies as second- and third-order networks as follows. First,

the set of all RBD sites that are networked to the given antibody paratope or framework regions was computed. These sites, which

interact directly with the given antibody, form the core of the interaction network between the antibody and RBD. Next, all RBD sites

that are networked to first layer of sites was computed. Both sets of RBD sites were combined and used to build a network using

NetworkX,52 wherein RBD sites were defined as nodes and edges were constructed between all pairs of RBD sites with non-zero

networking and weighted according to AAI networking strength. Node positions were computed from these edge weights using

the Fruchterman-Reingold force-directed algorithm as implemented in NetworkX spring_layout with the optimal node distance

defined as 10 times the inverse square root of the network order, such that pairs of RBD sites that are strongly networked appear

as nodes that are tightly-clustered and separated by a short edge. Finally, all nodes and edges were plotted, with nodes assigned

colors based on whether they are directly or indirectly networked to the antibody paratope/framework, and whether or not they are

mutated on the Omicron variant. In the case of antibody ADG2, in which no structure is publicly available and so RBD sites directly

networked to the antibody cannot be determined algorithmically, the four ‘‘critical’’ epitope sites 405, 502, 504, and 505 reported in

Rappazzo et al.28 were chosen as the first directly-networked set or the network ‘‘core’’. Four directly-networked sites is fewer than is

typically observed for antibodies suggesting that additional RBD residues are likely involved in direct interactions with the antibody.

To ensure that we captured all RBD sites that may be indirectly networked to antibody ADG2 in our network visualization, we there-

fore added an additional network layer to the epitope network for ADG2. That is, we followed the same workflow described above for

the other antibody networks, but included an additional degree of indirect networking such that the ADG2 network is represented as:

four critical sites / first layer of indirectly networked sites / second layer of indirectly networked sites. Note that legends were

manually annotated on top of the raw network figures for all four supplemental figures.

Omicron RBDdown-RBDdown interface analysis
A fixed-backbone model was used to analyze the Omicron RBDdown-RBDdown interface mutations in the 3-RBD down conformation,

as homology modeling is limited in its ability to accurately predict RBD structure in the context of 15 Omicron RBDmutations, partic-

ularly for probable backbone perturbations conferred bymutations such as S373P that residewithin the specific interface in question.

The fixed-backbone approximation offers initial insight into whether or not mutations in the RBDdown-RBDdown interface could result

in structural alterations and divergent conformational preferences in the Omicron spike trimer. First, a homology model of the Om-

icron RBDdown-RBDdown interface was constructed via SWISS-Model49 using the 6ZGI31 template. Subsequently, with the backbone

fixed, all side chains within 30 Å heavy atom distance from site 505 were repacked on the two RBD protomers of the homology model

in PyRosetta.55 This repacking process was also performed for the SARS-CoV-2 wild-type (WT) template (6ZGI) as a control. Finally,

the Omicron andWTRBDdown-RBDdown interfaces were analyzed using PDBePISA,48 which reports dG values at each site for theWT

and Omicron RBDdown-RBDdown interfaces as well as buried surface area for the interface. Surface complementarity was computed

using the InterfaceAnalzyerMoveer in PyRosetta according to the sc_value metric. Interfaces visualizations were generated using

PyMOL.56 For analysis of the 1 RBD-up Omicron spike structure, the RBDdown-RBDdown interface was first obtained from PDBs

6XM333 and 7TB434 For interface analysis, both WT and Omicron RBDdown-RBDdown interfaces were analyzed using PDBePISA

as above to report buried surface area. For visualization in Figure 3B, protomer 1 was assigned to the RBD monomer most distal

from the RBDup for both WT and Omicron, and both promoter 1 were aligned in PyMOL. For Figure 3B, the three hydrogen bonds
e2 Cell Reports Medicine 3, 100527, February 15, 2022
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shown for theWT interface were consistently identified by both PDBePISA and PyMOL. Note that the red arrows indicating the 7-10 Å

shift, the mutation labels and DDG values, and the promoter labels were manually annotated.

QUANTIFICATION AND STATISTICAL ANALYSIS

Amino acid interaction (AAI) network quantification
For each antibody-RBD complex, AAI network scores between every pair of residues within the complex were computed.7,8 Network

scores quantify all contacts for both side-chain and backbone atoms between residues, and weight these contacts according to the

energetics of the expected interaction based on experimental energetic measurements for each interaction type. The following in-

teractions are quantified: hydrogen bonds, pi bonds, disulfide bonds, polar interactions, salt bridges, and Van derWaals interactions.

The following metrics were defined and computed for all surveyed structures from the resulting interaction network. Direct

Networking: For a given residue on RBD, the sum of all interactions between the RBD residue and all residues on the complexed

antibody/nanobody including both the paratope and framework regions. Indirect Networking: For a given residue on RBD, the

sum of all interactions between the RBD residue and all other residues on RBD which have non-zero direct networking to the given

antibody/nanobody’s paratope or framework region. Given that the AAI network is weighted more heavily toward interactions

involving at least one side-chain as compared to backbone interactions, an additional computation was performed for the indirect

networking scores for glycine residues. Specifically, glycine indirect networking was interpolated from nearby residues (within 5Å

of the glycine alpha carbon) based on averaging the network connections from these adjacent residues to their partners. Total

Networking: For a given residue on RBD, the sum of direct and indirect networking scores for the residue. Note that for all networking

metrics, scores are normalized to the highest networking score within each RBD-mAb complex. Structures analyzed and their PDB

identifiers are listed in Table S1. The raw networking matrices from which direct, indirect, and total networking are computed are

available in the key resources table, along with additional software packages50,51,53 required for the described computation.
Cell Reports Medicine 3, 100527, February 15, 2022 e3
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