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Absolute quantification measurements (copies per cell) of peptide
major histocompatibility complex (pMHC) antigens are necessary
to inform targeted immunotherapy drug design; however, exist-
ing methods for absolute quantification have critical limitations.
Here, we present a platform termed SureQuant-IsoMHC, utilizing a
series of pMHC isotopologues and internal standard-triggered tar-
geted mass spectrometry to generate an embedded multipoint
calibration curve to determine endogenous pMHC concentrations
for a panel of 18 tumor antigens. We apply SureQuant-IsoMHC to
measure changes in expression of our target panel in a melanoma
cell line treated with a MEK inhibitor and translate this approach
to estimate antigen concentrations in melanoma tumor biopsies.

MHC class I | immunopeptidomics | antigen presentation

Targeted immunotherapies have varying thresholds of antigen
density required for an optimal antitumor immune response,

and thus absolute quantification of peptide major histocompatibility
complex (pMHC) antigen expression is necessary to inform ap-
propriate therapeutic strategies (1–3). Previously, T cell receptor
(TCR)-mimetic antibodies have been used to estimate copy num-
bers but require a specific high-affinity antibody for each target of
interest, limiting broad applicability (4). Mass spectrometry-based
approaches historically rely on exogenous heavy isotope-labeled
peptide standards for single-point estimation (5, 6), failing to ac-
count for sample processing losses (7) and ion suppression (8).
We previously reported a technique to perform absolute quanti-

fication with an internal calibration curve, combining heavy isotope-
labeled MHCs (hipMHCs) with tandem mass tags (8). While this
method was successful in capturing endogenous expression of
target pMHCs, substantial ion suppression limited standard curves
to a 10-fold range and required replicate samples, limiting the
method’s ease of use and suitability for low-quantity material.
To circumvent these limitations, we developed SureQuant-IsoMHC,

a method for high-sensitivity absolute quantification of MHC-I
peptides from in vitro and in vivo samples. SureQuant-IsoMHC uses
a series of heavy isotope-coded peptide standards (isotopologues)
and SureQuant internal standard-triggered parallel reaction
monitoring (IS-PRM) (9) to generate an embedded standard
curve to estimate endogenous expression levels of 18 melanoma
antigens. Here, we apply SureQuant-IsoMHC to profile changes in
pMHC expression in a melanoma cell line with binimetinib (MEK
inhibitor [MEKi]) treatment and exemplify the approach by profiling
antigen levels using limited input material from human melanoma
tumor punch biopsies.

Results and Discussion
Four isotopologues were synthesized per target with an increasing
number of heavy (1 to 4H) amino acids (Fig. 1A). HipMHCs were
generated using the 1H, 2H, and 3H standards, quantified by an
enzyme-linked immunosorbent assay (ELISA), and added to the
cell lysate at a ratio of 1:10:100 to generate a multipoint calibration
curve with a 100-fold dynamic range. Endogenous and isotopically

labeled pMHCs were enriched (8), and prior to analysis a high
concentration of the 4H standard was added exogenously to serve as
the IS trigger for SureQuant quantitation. Integrated product ion
areas were summed, and a linear fit of the 1 to 3H isotopologues
was used to determine the endogenous concentration.
We selected a panel of 18 pMHC targets (Iso18 panel, Dataset

S1) for SureQuant-IsoMHC quantification from a multiplexed,
discovery immunopeptidomics analysis of BRAF mutant melanoma
SKMEL5 cells treated with binimetinib for 72 h. MEKi treatment
increased surface HLA expression and resulted in dynamic changes
in pMHC abundances relative to the dimethyl sulfoxide (DMSO)-
treated control (Fig. 1 B and C and Dataset S2A), in agreement
with previous literature (10). Iso18 target peptides were predicted
to bind HLA-A*02:01, increased in presentation following MEK
inhibition, and spanned a range of abundances within the immuno-
peptidome (Fig. 1D and Dataset S2B). This panel includes peptides
derived from several well-studied tumor-associated antigens (TAAs),
e.g., PMEL (gp100) and DCT (TRYP2).
To evaluate the linear intensity response of the Iso18 isotopologues

against a relevant background, peptides were added exogenously
at four concentrations (0.1 to 100 fmol) to a prepurified mixture of
MHC peptides (Dataset S3A). For further evaluation, hipMHCs
of half the panel were spiked in across five concentrations (0.1 to
1,000 fmol) to 7.5 × 106 SKMEL5 cells (Dataset S3B). The mag-
nitude of ratio compression within the 1- to 100-fmol titration varied
from 1.75 to 9.35×, emphasizing the need for multipoint calibrants for
accurate quantitation. A sensitivity analysis showed five or more
detectable transitions at 10 attomole across all peptides with one
exception (KLDVGNAEV), suggesting most endogenous targets
present at approximately one copy/cell should be detectable by
SureQuant-based targeting (Dataset S3C).
We applied SureQuant-IsoMHC to quantify changes in ex-

pression of the Iso18 panel in SKMEL5 cells ± MEKi, titrating
1H/2H/3H hipMHCs into 7.5 × 106 cells (5 mg lysate) in triplicate.
As expected, the 1H, 2H, 3H and endogenous (L [light]) peptides
were triggered by the identification of 4H for all Iso18 peptides.
For example, in the first DMSO replicate of “SLDDYNHLV,”
integrated intensities approximated expected ratios, and a linear
fit determined the endogenous concentration at 15.5 fmol or
∼1,200 molecules/cell (Fig. 2 A and B).
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Endogenous pMHC levels spanned a wide range, and in all cases
MEKi treatment increased expression (Fig. 2C). The PRUNE2-derived
peptide, “GQVEIVTKV,” had an estimated 20 molecules/cell
with DMSO and 250 with MEKi treatment, whereas the SLC45A2
sequence, “RLLGTEFQV,” had ∼40,000 molecules/cell with DMSO
and ∼144,000 with MEKi. SureQuant-IsoMHC provided accurate
quantification across nearly four orders of magnitude, high-
lighting the wide diversity in expression levels of tumor antigens in
the immunopeptidome.
The success of targeted immunotherapies will depend in part

on the ability to confidently identify and quantify an antigen
target(s) for each patient. To evaluate the levels of selected TAAs
in patient tumors, we applied SureQuant-IsoMHC to 10 HLA-
A2*01+ human melanoma punch biopsies to identify/quantify the
Iso18 panel. A titration of 1/10/100 fmol of 1H/2H/3H hipMHC
standards were added to 1.1 to 5.0 mg of homogenized tumor
lysate and purified peptides were analyzed by SureQuant-IsoMHC
(Fig. 2D). As tumors represent a heterogenous composition of cell
types including antigen-presenting immune cells, it is challenging to
accurately discern the number of tumor cells in each punch biopsy.
Therefore, we elected to express the total amount of each peptide
as a fraction of the bulk sample to enable comparison across pa-
tients and to SKMEL5 cells, which similarly utilized 5 mg cell
lysate.
Between 2 and 17 pMHCs were quantifiable across tumors, with

only two peptides identified across the entire tumor cohort (Fig. 2E).
A comparison of pMHC concentrations both across and within tumors
highlight the heterogeneity of antigen presentation. For example,
the BCAP31 peptide ranged from 1 to 44 fmol across tumors,
whereas both NONO-derived peptides were detected below 10
fmol in all instances. Perhaps most striking are the eight peptides
that were only identified in four or fewer tumors, particularly
those derived from common TAAs like “SLADTNSLAVV,” a
PMEL peptide identified in just three tumors. As all tumors were
HLA-A2*01+, these data showcase the diversity of endogenous
pMHC presentation among tumors even with a common allele.
The interpatient heterogeneity revealed by our analysis points to
the need for targeted assays like SureQuant-IsoMHC to verify and
quantify expression of antigens used in targeted immunotherapies,
which may serve to better stratify eligible patients and enhance
personalized therapeutic approaches.
To assess the sensitivity of SureQuant-IsoMHC in clinical samples,

we performed data-dependent acquisition (DDA) on another aliquot
of the isolated tumor peptides to determine whether the Iso18 targets

could have been identified in discovery-mode workflows (Dataset S4).
While eight Iso18 targets were identified in discovery mode in T1
(Fig. 2F), most tumors had between zero and two Iso18 target
identifications (Fig. 2G). Indeed, most peptides, quantified be-
low 1 fmol with SureQuant-IsoMHC, were not identified in the
discovery analyses (Fig. 2F), confirming the bias of DDA to-
ward higher abundant epitopes. Moreover, T8, which used just
1.1 mg of tumor lysate input, had zero Iso18 identifications with
DDA and seven with SureQuant-IsoMHC, highlighting the
method’s sensitivity in detecting and quantifying low-abundance
epitopes.
As there are many antigen-specific targeted immunotherapies

in clinical development, verifying the presence and concentration
of target antigens in small quantities of patient tumor specimens
is of increasing importance. SureQuant-IsoMHC provides a high
sensitivity, highly reproducible solution for the accurate quanti-
fication of even low-abundance target antigens. Here we targeted
well-characterized tumor antigens; however, this method may be
similarly leveraged for predicted neoantigens or viral epitopes
using minimal tumor material. These lowly abundant targets have
historically been challenging to identify using DDA, even with
large amounts of sample (11), rendering SureQuant-IsoMHC an
attractive solution.
Future studies may utilize SureQuant-IsoMHC to characterize

the expression levels of known or predicted antigens across a larger
tumor cohort and expand beyond HLA-A*02:01. These data may be
used to better elucidate the relationship between antigen expression
and other biomarker measurements (i.e., transcript/protein expres-
sion), which could prove beneficial in defining which patients may
benefit from specific immunotherapies.

Materials and Methods
Detailed descriptions are provided in SI Appendix.

Patients with metastatic melanoma at Massachusetts General Hospital
(Boston, MA) provided written informed consent for the collection of tissue
and blood samples for research and genomic profiling. This study was ap-
proved by the Dana-Farber/Harvard Cancer Center Institutional Review
Board (DF/HCC Protocol 11-181). Tumor samples were collected, snap frozen,
and stored at −80 °C prior to analysis.

hipMHCs of isotopologues were generated using ultraviolet (UV)-medi-
ated peptide, quantified by ELISA, and added into SKMEL5 cell and tumor
lysates. Heavy and endogenous pMHCs were purified by immunoprecipitation
using a pan-specific HLA class I antibody (w6/32), and peptides were isolated
by size exclusion filtration as previously described (8). The 4H trigger peptide
was added exogenously, and peptides were subsequently analyzed using the
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SureQuant IS-PRM acquisition framework on an Exploris 480 mass spec-
trometer. Data were analyzed using Skyline software (12).

Data Availability. Mass spectrometry data files have been deposited in the
ProteomeXchange Consortium via the PRIDE partner repository with the
dataset identifier PXD024917. Dataset S7 contains a filemap. All other study
data are included in the article and/or SI Appendix.
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