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CHAPTER 1

SUMMARY OF PREVIOUS WORK

High velocity impact may be considered in two parts
(a) impact, penetration of the target material, and forces involved

in impact, and (b) the stress waves set up by the impact.

1.1 Impact

In recent years a large number of papers have been pub-—
lished on the mechanism of cratering and penetration of targets by
high velocity particles (see bibliography of ref, 1). Theories for
penetration and volume of crater produced have been put forward
by many of the authors., These have either been empirical, based on
dimensional analysis, or simple hydrodynamic theory.

Projectiles suffer severe inelastic deformation on striking
their target. Metal missiles may flow plastically, melt, vaporise, or
shattery for instance impact at very high velocity, usually above
4,000 ft/sec may generate enough heat to vaporize a steel projectile.
The kinetic energy of the projectile appears to be finally distributed in

(a) work of deformation and structural changes of

both the target and the projectile material,



(b) work of fracturing of both materials.
fc) kinetic energy of the target and projectile matter
thrown out of crater (or off the target),
(d) energy for melting and vaporizing portions of both
material, and
(e) heating of the material,
The shape and size of the crater produced will depend upon the shape,
mass, and velocity of the projectile and upon the mechanical properties
of the target. Cratering in steel usually results from plastic flow of
the steel. At low velocities, below about 4, 000 ft/ sec, the crater is
simply a straight-sided hole whose cross-section is similar to that
of the impacting missile. At highest velocities, cavitation sets in and
the profile of the hole is more or less circular and the diameter of the
mouth considerably greater than that of the impacting missile, At very
high velocities, greater than about 10, 000 ft/sec, the crater will have
a cup shaped appearance,

Cook (2)*

has observed that a nearly hemispherical crater is

produced when a single particle projectile of spherical form strikes a
r8

target at velocity sufficiently high that JE Pe ( \ = U) is

appreciably greater than the yield strength of the target Y , where

/Op is the density of the projectile, V its velocity, and U the steady

3
The figures appearing in superscript pertain to the references

appended to the thesis.



velocity of penetration. Then the target undergoes plastic flow
urtil: the yield force AI Y balances the dynamic force -!i /0‘, (V"'U)ZA.
where A’ is the cross-sectional area of the hole at depth of
penetration, and A° the cross-sectional area of the projectile.
Where single particles of nearly spherical shape are involved,
this plastic flow is always radial except for conditions right at
the surface of the target where an elevated lip is always observed
owing to some back flow caused by relief of pressure at the
surface.

The reason for the use of the hydrodynamic theory is
that the pressure produced by the projectile at these high velocities
are so much greater than the ultimate strength of the target, that
its strength plays a negligible role in retarding the penetration, hence
the target may be considered as a perfect fluid. The depth of

(2), Pack and Evans(s)
(4)

penetration is given by Cook , and Birkhoff,

MacDougall, Pugh and Taylor "', assuming steady state conditions,

8 = dg ()*/Df/ﬁ)va L

where d is the diameter of the projectile, N a number between

in the form

1 (for a continuous jet) and 2(for a particulate jet), and P the
density of the target. As pointed out this equation is considered to

hold for a target neglecting the effect of yield strength. Pack and
(3)

Evans ™" have modified the steady state theory to take into account the

finite yield strength, by introducing the factor ( | — «, X_ into

PoV



the above equation where N is the dynamic yield strength of the
target and &, a constant which is a function of the densities of the
particle and the target.

(2)

Cook'™’ gives the final hole diameter as

_ a Vjp..,o,x\" e
D=0 \__F"" +(X,o‘,\h'l (&)™ !

where Y is the dynamic strength of the target. The hole volume

for N = 1 is

Yy |,’_ b9
_RP e 3“\@\(

T = 2
|,,’ ‘('b 2 A
pr *Pe l v 3
Engel(s) obtained an expression for the depth of penetration

V.
- 7.2 (\/) 1368 E. p.”
N Ce Pe o S b 2
P Cefe iy C A, 4
Ce
This equation is derived from dimensional analysis, experimental

results, and analysis.

Huth(ﬁ) found the empirical equation

S = 7-95(%) 5

(6) found from semi-empirical method

I

while Vellenburg, Clay and Huth

= bqb P—'\ /C.
e i ( (0 ('.!;—Ilpk’v/c.)l 6
7

, from empirical work, obtained the

Partridge and Clay

expression

s - k™ (V-u) /.



Where M is the mass of the projectile. Helie(g) and, Wessman and

(8)

Rose'"’, found on assuming the resistance to penetration to be the

sum of two terms, a constant and a velocity squared term, that

€ oW _"E. Rerg o (1 + %, V)
where K, and K3 are constants which depend upon such factors as
the shape of the projectile, the density of the target material, and its
resistance to penetration.

(1)

Rinehart'™’ suggested that the size and shape of the crater

(in extremely high velocity impact) depend primarily upon the stress
distribution existing in the target during and immediately following
deceleration of the missle. Stresses greatly in excess of those
required to cause common materials to fail will exist during pene-
tration in thos regions near the area of impact. Penetration depth and
crater shape are arrived at by assuming (a) that the missile is stopped
in a negligibly short distance, (b) that the forces of the impact
distributes itself within the target in accordance with the same geometry
as the stresses produced by a static load, and (c) that the target
material will fail within a region in which the shearing stress exceeds

a certain critical value,.

1.2 Stress Waves

Stress Waves are divided into three types, two of these
namely the elastic and plastic waves depend on the stress level, and

the third type depend on the additional stresses. The stresses in



the elastic waves are such that they obey Hooke's laws, while those
plastic waves occur in material which undergoes permanent defor —
mation as a result of being stressed beyond the elastic limit, Viscous
waves occﬁr when the internal viscous stresses are produced in
addition to the other stresses, i.e. elastic or plastic. The viscous
stresses are fairly small for metals, but are appreciable for materials
that show large time effects in their behaviors under stresses.

For elastic waves a large amount of both theoretical and
experimental work has been done, A review of these may be read

(10) (11) (12)

in Kolsky , Davies'™’, and Abramson, Plass and Ripperger
for bars and beams.

There is little published experimental work on wave
propogation in non-linear visco-elastic solids. The work done in
this field has been recently reviewed by Kolsky(lS).

Plastic waves occur in material for low velocity of impact.

For instance if we consider the impact of a rigid body on an elastic

rod, the velocity that will produce plastic waves is given by
v = Ye
E 8
Where Y is the yield stress of the material, C the velocity of
propogation of longitudinal waves in the material, and E Young's

modulus, For aluminum we have

E = IOTP.s.a'. s

, Y = 50,000 ¢-s.4.y C =20,000 ft/sec

- . b
which gives V = 100 ft/sec, and in the case of steel E= 30 x 10 TR WY

M = 45,000 p-s.x andc = 19,500 ft/sec, hence V= 30 ft/sec.



The general one dimensional problem of the propogation

of plastic waves was investigated independently by Taylor(lq),

(15) (16) (14)

von Karman and Rakmatoolin

Taylor obtained the

expression for propogation (using Eulerian system of coordinates)

e . 0re) 9
,oo Ae

=

where € 1is the strain

o the stress corresponding to ©

el

Po the density of the material.

and < the velocity of propogation.
(15)

Karman obtained the corresponding expression in

terms of Lagrangian system

et & L e
/Jo de 10
Wood(N) has discussed the propogation of longitudinal

waves of large lateral extend in solids for the elastic plastic condition,
The stress-strain relation (assumed to be independent of time)
is derived indirectly from experimental data by means of a suitable
theory of plasticity, assuming the material is uncompressible, A
specific example is worked for 24 S-T  aluminum alloy,

E =)ok xIo psix 5 D= o33

The velocity of the elastic and plastic waves are 2, 46 x 10° in [sec

and 2,01 X 10° in [sec. In a slender wire the corresponding plastic

wave would have been of the order of 2.5 x 1()4 in/sec. This



illustrates that lateral inertia may not be neglected.

Craggs(m)

showed that for an elastic-plastic material,
plane waves of two types may exist, each involving both dilatational
and shear strain, However, the waves studied in Craggs' work have
infinites imal discontinuities in stress and strain existing across

the wave front. ,

Thomas(lg) investigated the propogation of plane plastic
waves by considering the wave front as a singular surface of order
one, Using various conditions, e. g. (i) von Mises theory for perfect
plastic solids and only derivatives of velocity and stress as discon-
tinuities, (ii) Prandtl-Reuss theory with discontinuities in derivatives
of velocity and strees, and G': \.’: i 6;_ \.”\’ = ©

over the wave surface, where o"‘ . G'a. are the deviator stress
and VY, ; ﬁa. the components of the unit normal vector to the
surface, he obtains expressions for the velocity of the wave front,

In the case of the above conditions, the velocity of propogation were

(I) C = O, and(II) either

ot e

(20)

Berg extended this for elastic-plastic work hardening materials.

He found that both dilatation and equivoluminal waves could propogate
in the medium, and that the velocity of each of these waves is a
function of the state of plastic strain of an element on the wave and

of the state of stress on the wave,



Experimental results indicate that there is a strain-rate
effect which should be counsidered in the propogation of plastic waves.
In most cases it is found that an increase in the rate of deformation
will raise (a) the yield stress of the material (b) the entire stress
level of the flow arve, and (c) the ultimate strength of the material.

Taylor 21

found that for mild steel that the dynamic yield stress was
about 3 times the static for impact strain of 10, 000 in/in/sec; also
that the dynamic is nearly the same as the static yield point when
steel with a high static yield is used.

(23)

Malvern modified the one-dimensional theory of
plastic wave propogatioﬁ to introduce the effect of rate of strain
on the stress<strain relation. He assumes a stress-strain relation

of the form

- -

m
o
I

gl g Sa elastic
t° €, = 6‘1 + %(G“‘Eu)
plastic,
and plastic flow occurs when S, >3 (EQ. In order to

approximate for hardened aluminum specimens Malvern assumed
%(c’x,’eu\ = R[_cx . g(ﬁ,)}

and

‘S(E—ﬂ = 26,000 — O
E'l



Comparing theory and practic he concluded that the theory
gave better agreement than the predictions of elementary theory,

but the permanent strain distribution was in worse agreement,

10.



CHAPTER 2

MATHEMATICAL FORMULATION

In the mathematical theory of the mechanics of contin-
uous media, the expression for large strain in direction one (1)
is

Bt = I B
Y

where Gyand gy are the metric tensors for the deformed and

11

undeformed body respectively, in terms of the coordinate system

in the original body. For finite strain this is approximated to

Q, = -!2-((_’_“ — \)
An 12
Except for the simplest cases (Zerna and Green)(42)the equations
resulting from the approximation are unmanageable.

The linear (classical) theory of elasticity assumes infi-
nitesi mal strains, Here the strain-displacement relationsjtby
neglecting products of derivatives of the displacement as compared
with linear terms. For example in an arbitrary orthogonal coordinate

system, if & and w are the infinitesimal strains and rotations,

s . i : o : :
are an approximation obtained from the finite strain expression

iy



the finite strain is given by

2 2
B Ao b« 1T
113

w

In applying the infinitesimal strain approximation to our problem
we preclude any guantitative comparison with the results obtained
in practice for a volume in the region of the crater, However,
St. Venant's Principle leads us to believe that further away we

should expect a good comparison.

(30)

2

In some experimental work carried out by Allen
it was pointed out that there was a similarity between the magnitude
of the stresses measured in a steel plate due to a localized explosive
load and an equivalent theoretical elastic calculation for a shhere
assuming the arnlication of pressure in a spherical cavity at the
center, We carry out a similar analysis here for various theories
since at very high pressure, we can neglect shear in both the
elastic - plastic theory and the hydrodynamic theory (medium strength
is assumed to be zero), taking an impulsive pressure . acting
for a time & , the penetration time, in a cavity of radius 'a' at the
center of an infinite sphere.

The essential difference is that in the sphere we have
spherical symmetry which precludes shear waves consideration,
and the problem reduces to one dimension. Axial symmetric

conditions require that shear in the Rz plane should be taken into

account,

12,



2.1 Hvydrodynamical Theory.

The pressure produced by collision is given by

>
Pe = 2 e v 14

The ultimate yield stress of cartridge-brass is on the order of

16, 000 1b /in2 (0. 0oll megabars). All of the pressures encountered

in impacts above 3, 500 ft /sec are over 10 times in excess of the

yield. Since this pressure is far above the material's yield

strength, the strength may be neglected for a first approximation,
The equations of motion for the process, neglecting the

viscosity and heat conduction, are the compressible, inviscid,

adiabatic hydrodynamic. When the wave reaches the layer at a

distance ¥ from the origin, then, in the Lagrangian method,

we follow the subsequent history of this layer. Let us suppose

that at a time € is has radius R . Then ¥ and € are the

Lagrangian independent variables and the equations of motion are

G D R 53) 15
; " :a dv¢
R 2¥) 16
¢t P ¥R
S G 17

Y = S (f., S) --equation of state 18

13.



2.2 Solid Media

In obtaining the equation of motion for a solid media
we will assume infinitesimal strain

The equation of equilibrium
is

ﬁ__ﬁa_i.@_(ﬂer} |(sah°¢)
DR R® 2R R

19
Where

D indicates the total derivative, and f# 1is the density
of the deformed media

The strain-displacement relation for the medium will
be

ER = B_E&

K - W
) Ee S Eq = =
AR R w 20
The continuity equation is
2 .
S
DL R 23R 21
where \:\Ra B_\_‘e.

Y -

22
If we consider the incompressible solution then the
above equation reduced to

| d (}a . \ -
_— = | w = 0O
R* aR "

which may be written

AL

23
&&+ E.e-\—E.

24
14,



2.3 Equations of State and the Stress-Strain Relations.

The equation of state is the relation between the properties
of the material which uniquely describes the behaviour of the parti-
cular material in terms of only two independent properties, all
other properties being functions of these two independent properties.
For this equation to apply the material must remain in equilibrium.
Furthermore, if phase changes occur a more complex equation of
state will be required. Under explosive loading non-equilibrium
conditions and phase changes do occur; however, in order not to
further complicate the problem, we will neglect these here,

The experimental work required preliminary to obtaining
the equation of state for metals has been carried out in two ways
(I) static tests, and (II) shock propogation, Static tests (B]:'id,t_ggn:lan)z4
gave us the isothermal equation of state, while the shock propogation
method gave the Hugoniot. It is possible to calculate both the
adiabats and isothermal from the theomodynamics and quantum
mechanics consideration using the Hugoniot data as the initial condition.

The calculated offsets between the Hugoniot curve and the
neighboring P--V curves of interest are generally small /Walsh, et
al, 1957/ 28 6 within 4% in compression for pressures below
200 kbs, for most metals /Katz et al, 195@-27. Furthermore, Walsh
et al, 1957, found that the Hugoniot curves which are drawn through

the experimental points are reproduced by analytical fits of the form
r): A}.\. +?>/.."+C.}f 25

where a2 7£ _\ 26
fe

15.



Values of A, B, and C for various solieds are listed(ZG)

P MOV
example, 60:40 brass, this equation gives the pressure in kilobars
for A=1037, B=2177, C=3275. Due to the small offset of the
adiabat from the Hugoniot the error resulting in assuming the adiabat
equation to be that of the Hugoniot would be small for pressures
below 200 kbs.

Using the steady®state condition expression for the impact
pressure, we find that for the present problem the pressures at
impact would be less than 46 kilobars. This means that a would
be less than , 04, hence a good appreximation may be obtained by
assuming incompressibility.

The elastic theory for the propogation of waves in the
elastic media is based on the assumption that Hooke's law is valid,
i.e. the equation of state is of the form & = E S(E-) "
in other words the stress at a given point in the medium at time £
is proportional to the strain & ., At high strain rate, non-Hookean
stresses have to be considered egpecially in the case of non-metallic
alloys. In this respect analyses have been carried out on the
pro~ncation of stress waves for Kelvin-Voigt, Maxwell, and standard
linear solid by Eubanks'??), Lee and Kanter'®® millier'®" etc.
The true picture of deformation following impact would be given
by the analysis of the motion of dislocations,

When a high stress is applied to a crystalline solid, it
acquires elastic strain almost immediately. But in order to under-

take permanent strains, dislocations must first be accelerated

and multiplied, Dislocations comprising the Frank-Read sources

16.



accelerate rapidly because of their small effective mass,: however,
their inherent inertia should result in zero initial strain rate,
followed as the dislocations form and accelerate by an increasing
strain rate, The back stresses produced by the interaction of
dislocations causes the sirain rate to decrease, until finally, it
becomes zero.

The stress-strain relation formulated from the consideration
of the dynamics of dislocation will be a function of the strain rate,
the instantaneous magnitudes of & and €& , and the distribution
of dislocations in the material at that time., The distribution of
dislocations will depend on the stress history of the material and
this is not exactly described by the state of strain alone,

Suitable movement of partial dislocations can produce the
shear dianlacements which occur in mechanical twinning and in some
phase transformations. Frank (1952, private communication with
Narbarro) has discussed the martensitic transformation from face
centered to body centered iron.

Up to the present, dislocation theory has not yet been
sufficiently highly developed to permit derivation of the stress-
strain equation from fundamental principles. In the following
analysis we will neglect time dependent effects on the stress-strain

relation,

In the present analysis we will consider the following

stress-strain relations--



(I) Elastic

Ge " 3 hNe + RGE_
27
where
. __VE itk ~1le +e +e
A= G- D iR, 2

(II) Plastic

The Levy-Mises relation for the stress-strain

increment in a plastic media may be expressed in the form

‘5& = d‘__‘_éa = djq - d__J_}-
jod » » 26
28
where s':{ - Ji (Ec&—oe-q—?) = c‘a-c'

and A is a scalar factor of proportionality. Since these equations

assume the total strain increment, and not the plastic strain increment

these equations are strictly applicable only to a fictitious material

in which the elastic strains are zero, In this case Young's modulus

is indefinitely large, the material remaining rigid when unloaded.
Reuss extended these equations in order to allow for the

elastic component of strain, He assumed

¢ 3 ’
e AT, | A€y | da
. S > “

184



where t‘li is the plastic component of strain. Neither these nor
the Levy-Misés set of stress-strain relations reflect any viscosity
effect,
Since we have introduced a further variable we need one
more equation, this is provided by the yield condition,
fls) =Y

where Y is the yield stress in simple tension.

2.4 Yield Condition

Plastic deformation of crystalline materials is known
to arise from the motion of dislocations. In the uryielded condition,
the dislocations are anchored and the deformation is purely elastic,
while in the nver=trained condition the dislocations are free to
move under the applied stress and so produce plastic deformations.
The yield defines the limit of elasticity under any possible combi-
nation of stress.

Experimental work has shown that the yielding of a metal
is unaffected by hydrostatic pressure or tension either applied alone
or superposed, but varies with the rate of straining. Taylor(21)
has obtained results showing that the yielding of mild steel at the
rate of straining of 10, 000 in/in/sec occurs in the order of three
times the static yield stress. The dynamic yield is nearly the same

as the static yield when steel with a high static yield is used. This

ratio tends to rise as the static yield decreases. In the following

19.



analysis we will neglect tis effect on the yield stress.

The two simplest yield criteria which does not conflict
with the static observation are those of Tresca and von Mises,
Tresca stipulates that during plastic flow the greatest of the

principal shearing stresses has a constant value,

=5 | e =
Sy = i

30

where S, 2 S5 % Sy ownad “ty “n s Om

are the principal stress. Von Mises criterion is

- -3 2 2.
(sl—cm] +(c5-sm\ -\-(U,I-crz) =Y

31

For the shherically symmetrical problem, both the

Tresca and von Mises condition reduce to

for a§ 2 O
where ay >0 implies compressive loading,

2.5 Initial and Boundary Conditions.

The pressure at the cavity is assumed to be that presented

on the target by the projectile, This is expressible in the form

P = o o» U

P i A'Pr Pe Va

7

‘- (F‘:\V» ) (\f‘j’\ll otk <t 33

20,



)
where t is the time for penetration,

“ gl G

These expressions are based on the steady state hydrodynamical

34

theory.
The boundary conditions are at R = a, the current

radius of the cavity

= O
(o). o2t

(Sel, %l ke =06 o <t st

35
and, as R —¥% oo , we have
Lt (o >0 awa Lkt (sJ—> O
R o0 R) R> o0 =]

36

For the plastic problem we have a further condition at
R = elv) i, e. the moving boundary Qg = g & Y 3
this is the Rankine-Hugoniot quantity

o, e Rl = &Yk et
K R R const.,
/) ol

2.6 Theory of Incompressible Flow.

The spherically symmetric flow is described in terms

of a position vector R, which indicates the position of a spherical

21,



shell initially located at ¥ . Clerrly

’R(f‘\:\ = ¥ & \J‘LT,‘;)

38
defining the displacement \-\(‘r, t) . In assuming incompressi-
bility we impose the following conditions

I
o =l B O
vt ¢ 15
A
\) - \/?_
e S 39
On integrating the above equation we obtain
3
R = > a3 S:(L')
40

where 'S(t) is a function of time to be determined. In order to
satisfy the initial state € =0 , R3¢ | hence S(o) =0 .
For small displacements we may expand this expression for R,

R= ¢ % SE) 3. D(QL)

v 41

which from comparison with the above yields,

U‘,(V’)U\ = S(t)

Tl.

42

22.



(I) Hydrodynamic

Differentiating with respect to C |, the equation

Rad e R sea )™

we obtain

R 5L

dt R* 43
and e s 2

SR . RS- als)

Btl ,.RC

2 s
R

h "

On substituting in the momentum equation

. . [ 5
de - _ L ste) _ 2 [ St 1
3R f, r* RS

45

pli- Gelyw]

=

The boundary condition RL-;oo \D == 0O ., gives
E‘ (¢) = o . At R e , we will consider

the pressure to be given, and that it is of the form

Y= - ?lt) ; then on substitution in the above, we

have

S 0Ly ~ E\—‘ Lé(tﬂz“ <« pld) | o 47
h &

222.



v
where & = t_o.!' + 'bSlt)l .

o

For stationary, unstressed initial conditions,
at C=0o | \(J':O\S(O) =S) =0
Transforming the variables to

a = Y_Qi + ?;"s(t)l,}

then

. 3 -
Lda *25‘11_?:& L
(=Y
F

. .2 "
a o *ac\a---léﬂ-"f_{_\:)=0

il
9]

oo ¥ }__'q} - P(‘:)
1 L
P 49

with the initial conditions
t=o, ale) =0  awa 3l =o.
Multiplying through by ®a & and integrating

[+
0.3-.3 = c?.j &) Q_z Ao
P 50
qb

For a step function input P = -\p(\:) = — Po Wk
where ¢, is given by the steady state theory,, we have

on integrating the right hand side,

e e

pv‘ ioplﬂ
—

ol

23.



If we had the initial value a, =0 , then

o (3 &%,

F 52
. €. S’(Q _ _\_Y‘“% f_;f/z l“_'3
93
Hence .
-S-Ll:} - [% %l3: tg_
¢(c) = al%%‘&"t
from which
HfeN ule .‘r E.Y}
pe pla gl (8) G
2 oV pfe\ -1 [2 BT E“}
=[>1‘3 _F‘l i (R) a[B ,01 (a)
o4

. !
For a rectangular pulse of duration L, the

pressure F may be obtained by superimposing a second

I
step of opposite amplitude at a later time T ., Thus
o = glE) - cA(L' -¢')
where v,
2
(¢) ={E .
3 ‘0 ’
hence the pressure ‘3 :
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II) Elastic

The equations for the spherically symmetric

incompressible media is

» :
p ¥ M - é__’:’& x 2 (oo~ {ro\ )
et > R
o e Bl o S sim, s aGe
£, = Ou €, = &, = M
: T s S «
(for i“{é%%?ﬁé%%g} dis-

For small deflections we may approximate

Wq = 5:_(‘_3) ~ Sy

'f" RL

|

hence

€ s - 28 g e s S
R’S R&

Substituting in the equation of equilibrium

Bs& fis.m agém\"p LE §)
5 ,Ru

which on integration gives

19

27

20

55

56

57

IR TN & 100 i SR 10 IS FT0)
i R R4 AINTRE, 4 %

RH

25,

58



The boundary conditions are

R

o + (&) = o
)““\, v 35

Le. (c-ﬁ\ > O
-» o
R 36
since for elastic disturbances the first condition may be assumed

to apply at the undisturbed boundary Q  , hence

59

In the case of small elastic disturbance, negligible error is

. e
involved in ignoring ‘_ S (ﬂl term, hence, we have the much

simpler equation

ey + b _E SG) = o, )
3 e /o’f’

e N

60
Consider the response to the step function ?U‘) = - Yo“(t> ,

the solution to the equation is

3
%(\:\ T A e W + Degourl + 3 fn“o
o

61

where

uwt = b B 62
3



w

On applying the initial conditions we obtain A=o, ®= =3

s,

£

F

hence

(&) = 2 poa,
SLe) : \°_E_"~_ (1 - e wst)

Two points of interest that should be noted are
(i) There is no evidence of the elastic wave type behaviour, a
small disturbance at & is immediately registered at all points
of medium. Thus is as a consequence of the imcompressible
assumption, (ii) The solution involves undamped oscillations of

$(t) about the central value

From this equation

‘ 3
Si(L‘B & -3- \o_o___ﬂ \ag” --m.-.-..\bs\:
E
e kS

which will give

O'Rz/O‘.“' }l-l- ".q‘, ha'?' [ +q Y_a__& ‘:-" hl’tl"‘ Y \ @wt)

‘~ ?n(“ )anu.rt +‘% r:. (‘ko).«q..... usC + Y’°( )(‘ C»e-n\ul.)‘&
S e e Y

B (%) () e 3 8 (bt s
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]
For a rectangular pulse of duration € , the stresses will

be given by
s = %(\:) -«a(t -t')
66

where

%R(h) = ‘?o \- (%a) Camust + (%‘_:jﬁ(\- m\at) + }_,g % (C%:)“M\. “_%

The elasticity approximation remains valid for an elastic-
plastic material until the stress system violates the yield criterion,

i,e. for both von Mises and Tresca yield condition

Sy, - © = Y 67

68

i.e. § (e) = IR

where Ro is the smallest possible value for R to satisfy the
yield condition, For non-vanishing ‘Rb therefore, St} must
attain a non-zero value before plastic deformation ensues, For
the condition S(o) = .S(o) = & . Le, prierie C = O
the medium is at rest and stress free, it follows, irrespective

of the disturbance, that instantaneous plasticity is not possible,

except for ‘RQ = O |

In the case Y,/\’ >>\) , we can approximate ${c)for

small &
&

S’Lt\ = QLX" e 69
=f
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Yielding begins at E=C , at the smallest value of R i.e.

:
Q_"_Y_" t\ = \[Q:
&P 2k
2 _ \f 2
t. o
- v.
70
At this time
& = (‘k + XY 3 s
= —
2E il
=i S Y
L1 3 !
and
%(_l:h = Q‘tvu t‘
%
= Qt‘.:&( L 72
Io

(III) Elastic-Plastic.

Using the yield condition, and the expression

2
for d Mq , we have, on substitution in the equation of

Dt

equilibrium.

s 5 &
don | ay {%}_ﬂﬁz\%wﬂg o
3R R F LY R®
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Te = 2 LeyR v i 5“-)-\-\‘-‘;" ﬁk E} W

Consider the case where the internal pressure
YPU:B at some time €, , induces plasticity at the
internal boundary R=a, . Subsequentto C, , the
situation corresponds to
Elastic-Plastic region <R S cle)
Elasitc region clc) SR S0
where clt)is the moving boundary. In these two regions

the equations are

a I RS c

&, = BY Qq%'\\ +p ‘_- S’L‘") +l"$("ﬂl+\§(\-\

67

. - (&
S, = — LE Sk _S() oy (3] k
R s In

Oy ~ O, = 2 € S()
R >
(E=3G for incompressible media) 59

For the elastic region we have 3 _(£) =0 , since LU (c)= o0
2 R >0
The other boundary conditions are at R=c., Since

. L3 - - .
/) is a constant, and g is continuous, it follows

30.



from the Rankine®Hugoniot condition that Og 1s continuous,

hence O is continuous. (This is derived fromthe yield

condition). These boundary conditions may be expressed

2E Sl - Y
3 76
and
N - _heE SW)
gs(L\ 2

3.8 et | 6T Qﬂ%c’ »

Finally at R = a,

—ple) = 2Y oy S +f& S (¢) _,_,Ltso:\ll (,er.(t)

where ]
7
([ (0\: + 3 S ) S 79

and
T ( 2E & )"" 80
b ¢

The boundary conditions for the solution of the above
equation are obtained from the coundition that S(t) and § (&)

are continuous at the elastic-plastic and elastic boundary,

C=t, . Stey= Yoo o S =
o X 2e ) ‘ (68) ()

Transforming the dependent variable from 3(t) to

V.
o = Lal % mgYy T
79

31.
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we obtain

o .2
aG + 3 o ) 2y + g:.': kY Ny -C\ k
for which the transformed boundary conditions are

\
4%

kT A a :Qb(\“'a’.'.\.') . ék\"' i’(t\) ‘S(t‘)
e€ . .(\*3\.’/25) Qg

(71) (81)

Substituting "en(t) for \o(x\, multiplying through by

2 oo and integrating, we have
3 z,la Y 2.E ol
: + 2 ‘_ + ey 25 (2 1
P Y_u. &, i \ av-lt s g
= Q
4 2Y .Z_(o?-qs)ﬁ - 1)"—-1qu o}} - & o\f‘il
3‘»3 i i 0 3 A, SP o

L, skt st 82

which reduced to

plea - arl + @D (1v i) o (@) g @
Y PR SYSINCIR DR VI S M L

- & 3 3
i < ‘3,,(0; -q‘>

83
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Transforming the independent variable from a to » , where

QT oSy (\ +x3
84

we obtain

S
/0[:(‘”:)‘,1-— o:': Q‘l-ﬁ- “Y io\ x( |+ QQB )
+{q-f(\+7t)—Qi.&Qﬂi“?\(""")“\il"'("‘?_"‘:) lﬁ(qz,'_

3 3 3 3 - & Y (\3 2¢ Re
[ A (."*'N.) HQ\\( \-\')() +Q‘ 9\&%&‘ --_; 'S \
V.
Using a = Q‘o(l"‘ i_l » , and neglecting higher order terms

in (‘f/e), this reduces to

x { 5> (. T X\ Yy %_x[\* \ Q‘"z,( e )]
% 3" &] & 2-':"1 9_.,.%( \-nt.)‘& L?a" '

and the boundary conditions now becomes

\

4

w0 i(t‘) o 3__6?_; e é_i ij%
~a a L EPp

\
817

The complete integration may be effected numerically.
Consider the case when Qg =6 ; as pointed out earlier this
permits instantaneous plasticity., The equation reduces to
/)io..&«w-;a}g-\-?-j{\-»%%zf = pl)
2 3 Y

88
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Plas « 2a% = plo — g

W

89
where
s Ay “ a.el
= = <4 ST
Ps - \ 9““‘3 N
90
The boundary conditions $k) = S(o)=0 ok t=dbecomes
* -
& T 6 o e = g ol
91
A finite &(0Y) makes the second equation redundant, this difficulty
is resolved by imposing that &0\ pe non-infinite for finite pressure

pulses. The condition insures the vanishing of a(o) for f‘.\') = \:6“(\‘-')

Multiphy the equation by 2a" a and integrating

o
92
which for &5(08 &_a(o) 0
reduces to
(=~
P > at = 2_8 Lv(t)-?s-&o." da

o

93

Substituting Yo W(k) for ‘,(\:) © P> ¥s we have

94
ie 2 f? e ¢ 95
e o - =y o SE .

e e
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From this

3 3
- = ( o !f) =
S = ii% R X k
F 06
\{3 \ ‘fl .
e 8 ae t (pa—pslf " U
Y 3 {) L2 ie
; / 2
Sie) = ia (us\g‘\:
/)
and v
2
TEREREE I =l
f
hence
() L.Slt)la
= 2 R — 2y - () 2 LS E
e E*fi R o TR
and
G‘e = \i + G-"\ 67

'
As before, for a rectancular pulse of duration - "

the stresses may be obtained by superimposing a secord step of

{
opposity amplitude at a later time C€
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CHAPTER 3

EXPERIMENTAL METHODS

In order to obtain a comparison between theory and
results obtained in practice, it was decided to carry out some
experimental work. Of necessity, this had to be a simple
experiment which did not involve a great deal of instrumentation,
It was decided to find the extend of the plastic zone in a target
material due to impact by a 1/8 in diameter ball bearing. This
required a high velocity gun and a velocity measuring device,
both of which were available in the laboratory.

Two experimental methods may possibly be used for
determining the deformation of the metal after impulsive loading,
namely (I) a metallographic etching technique, and (II) micro-
hardness technique,

Four metallographic techniques may be used to detect
the extent of the deformation in the interior of a semi-infinite
specimen. There are three techniques for specimens which more
closely approach the ideal rigid-plastic material.

One method uses Austenitic Manganese Steel, heat treated

by holding at 1, 100®F for 30 min and quenching in water. A strain

36



free surface is then produced by grinding, polishing, and etching.
The etching cycle is as follows: Etch 15 sec in 3% nqita],

rinse in ethyl alcohol, etch 15 sec in 10% H Cl1 in alcohol, rinse
15 sec in ethyl alcohol. This is usually repeated three times,
followed by 15 sec in 2% ammonium Hydroxide in alcohol, and
rinsing in ethyl alcohol. The polished and etched face must be
protected carefully from corrosion particularly in humid atmos-
phere. Transformation of austenite to martensite is produced
by deformation, which results in the appearance of slip lines.
The magnetic nature of these lines can be demonstrated by a
special colloid pattern technique, The polished surface of the
specimen is covered with a thin colloidal suspension of magnetic
particles, application of a magnetic field will cause a visible
concentration of the colloid over the magnetic areas,.

For metallographic purposes a drop of the magnetic
solution is placed on the polished specimen and covered with a
microscope cover glass. In the field of the magnet concentrations
of the colloid particles will delineate the magnetic phases.

The second is for a mild steel specimen, here the section
is etched in Fry's reagent which preferentially darkens plastically
deformed zones. Only certain batches of steel respond satisfactorily
to this treatment. a highly sensitive steel is one that contains 0,20%
carbon, 0,52% manganese, and other elements less than 0, 05%.
The third metallographic technique is based on carbide precipitation

described by Wilson(48). In this case the material is a 0. 7% carbon

3T,



steel which is water quenched from 800°C, After impact it is
tempered at 200°C for 15 min. The specimen is then sectioned,
polished and etched in nital which shows the plastically strained
material as a light etching zone.

For 70:30 brass metallographic techniques are available
with which deformation can be detected with a very high sensitivity.
Specimens are annealed at 600°C for 2 hrs establishing a grain size
of 0,05 mm diameter; a grain size of this order is desirable to
facilitate metallographic observations.

The test surface was prepared on abrasive papers to
remnve all evidance of surface grain-rumpling, and then metallo-
graphically polished to remove the surface deformation produced
during the abrasion method. Finally it was etched to develop the
metallographic indications of deformation. The etch used was an
ammonium hydroxide-hydragen peroxide reagent. (Ammonium
hydroxide 1 volume, hydrogen peroxide (3%) 2 volumes, and
water 1 volume); this was applied by swabbing. Previous inves-
tigators (Samuels)(so) have found that this etch will give indications
of deformation of less than 0,1% in compression. The boundaries
determined from this process may be taken as boundaries of constant
strain, because the development of the etching effects indicates
that a more or less definite amount of slip has occurred in the
grain concerned,

The metallographic methods have the advantage that they
allow examination of the strain in a semi-infinite block, They have

the disadvantage that it is only possible to determine one contour
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of uniform strain, and it is difficult to ascribe a definite magnitude
of this strain,

Information regarding the distribution of stress that
existed in an impulsively loaded body, can be obtained by plotting
contours of equal hardness on sections of the body. Only gualitative
results can be obtained and they depend on good hardening charac-
teristics of the target material, otherwise small error in readings
(which can easily occur from the uncertainty of the outline of the
impression) or localized effects, e.g. cracks, will cancel out any

variation that might have existed.
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CHAPTER 4

RESULTS

The pressure produced by impact is given by

(opyt +ord: &

and this is sustained during the penetration which is completed

/
in time © , Where

1

tt C_x— }:fv)\/?.
21 (3

34

Penetration will proceed at a velocity V) 5

U Y.
\ * (x[:,\a ”

and the depth of penetration, which is independent of the velocity

of impact, (providing that this is high enough for us to assume the

40,



applicability of the hydrodynamic theory) is given by

\/'L

- d(\f\’/"e

The final diameter of the crater at the levelofthe original surface

1

is

Y = a V .5

(‘;L_\"‘ N (f‘;?\”' CEANR ey

Since the spherical projectile is capable of sus~-
taining an internal pressure, we will take )\=1. Measured quantities
for the spherical projectile and the 70:30 brass are:

& = ONRES s

f" = 0-23%8 %)-M-—s 3

Pe = O 309 s.x,,.,...

Y

s
E

1

V3,600 p-s.x.

(1]

'S, ubo‘bob‘;.s.l :

The calculated values for the pressure, time of penetration, velocity
of penetration, depth of penetration, and final diameter of the crater
are tabulated for impact velocities from 3500 ft/sec to 7, 000 ft/sec.

Plots of these values are shown in figs. 2, 3, and 4, as well as the

measured values for the depth of penetration and diameter of the

crater,
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V(st|sec) 3500 | 4000 5000 15000  [6500  |7000
t' (sec) S-box16 ®| L-9ox\s® 392x18 ®| 327 x16% | 301 206 2.80%x18
U (st |sec)| 1640 18170 2340 2800 3050 3280
P.('f“""") o1STx1e® | 0-205%10° | ©-320 Al6"| o Lkl K16 0-SuIN0" 8:b2g x10°
S (ws)| 0,110 {0,110 0.10 Jo.130 |6.110 0,110
D (ws)] 0,42 0.48 0,60 0,72 0.78 0.84
The measured values were as follows:
| V (8¢ |sec) {3920 4920 5315 5660 6120 6590 |
S (iws) 10,115 0.140 | 0.140 | 0.155 | 0.155 | 0,160
Dlims) [0.200 | 0.230 | 0.240 | 0.250 | 0.275 | 0-275
c(ws).|0.235 | 0,245 | 0.250 | 0.265 | 0,285 | 0,295

4.1 Calculation of the Extreme Radii of the Elastic-Plastic Boundary

the plastic zone as the yleld condition is independent of the hydro-

static pressure.

and elastic-plastic solution for comparison with the measured values.

The hydrodynamic theory will not give us an estimate of

In view of this we can only consider the elastic

(i) Elastic

the elastic equations will hold for stresses which violate

(2

the static yield condition.

42,
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It was stated earlier that under dynamic loading

has pointed out
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that for many materials the plastic part of the stress-
strain curve tends to become closer and closer to the
continuation of the elastic straight line as the rate of
loading becomes larger and larger, Thus; for extremely
high rates of loading it might be assumed that the stress-
strain curve is linear up to fracture. Assuming that the
elastic equations hold above yield, we may estimate the
extent of the plastic zore from the solution given by these
equations.

The expressions for Ca and S, are

e Po\_(%&\m“t ) (A= com wst)-2 "'(;.ﬁ%w\zl k.

R A AR CA(ERSSEL S AT |

hence the yield condition is

3 d (2} s i 1:
2 fo\a& e (a&) (\- e ux) = 3 f— ( &3 bk
100
On the addition of a negative pressure ¥, after time ¢ %

the magnitude of the resulting wave will be diminished

as the phase difference is small (0, 729 radius is the max.).
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Since the stress magnitude is diminished on application
of the negative pressure, the minimum value of (%ﬂ) will
occur in the interval O - l:' . We can clearly see from
the above expression that this occurs at U=0,ie.
C = 2 ¥ a

TER e 101
Values of ¢ for different values of \fé o, and impact
velocities in the range 3500 ft/sec to 7000 ft/sec are
tabulated below, Y is the dynamic yield stress of the
material, These are plotted in fig, 5, together with the

measured values,

V($¢|see)

L]

%.Ys - 2+

N
C.(-h-.b) i?s -'i'l'

Y—l’;"‘&“ﬁ.o-ﬂﬁ 0.150 | 0.236| 0.340 | 0.400 | 0. 461

200
1«_.-_‘3._;3,0,069 0.090 | 0.141| 0.204 | 0.240 | 0.278
3

3500 4000 5000 6000 6500 7000

°50.173 0.226 0.353| 0.510 0. 599 0. 693

0.087 0.113 0.176 | 0,255 0. 300 0, 347

b

(ii) Elastic Plastic
T Qb = O

The limit of the plastic zone at any time € will

be given by

ol V.
= i%’ig"' i?_- (v.—?s\lsl\—,_ &
3y 3 S5
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where

-2y %_E‘X
‘JS "g K\ * L"‘} ES a0

For the rectangular impulse of duration &, the

complete solution of C fer d$>0 s

il fr e
102

which gives the maximum value of ¢ as

c = SLE-_C 78\,3 2 (vq-vsﬁk"‘ e
) § i_'.*.» —f—

103

We note that the elastic-plastic boundary becomes

stationary at the moment of the removal of the pressure.
Values of ¢ and P, for different values of

Y anda range of impact velocities are tabulated below.

These are plotted in fig. 6.

2. a_¥F o.

The time taken for the material at the surface

of the cavity to reach yield is given by

~3

L. = 7"-#°| % X 10 Sec -

\ 3
VY

S

104
where o  was the original radius of the cavity expressed
in inches and V the velocity of impact expressed in ft /sec,

For example, let us consider the case at the velocity of

impact of 7000 ft/sec assuming a yield of 4 Y_; then for
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Vift /[sec) 3500 4000 5000 6000 6500 7000

[ 1Y
P Cp-od) 0457x10° 6265 A16T 6-320%18 _ SUu1nI0 S'SuIXW  6-b2Bx Wb,
Po. 2 ¢

E - - = - ~4
l:'(sec.\ S-be\ob h-ﬁoub" 392 xlo~ 3'27x16° 3'0iX\5  CBORW

b =
Sﬁs(‘fJ\e-n B-OB‘BMOB 0-0LBx1e”  6:068X10°  6:06EX\D  O0LEXl G0 x\0
Sl |

C (ws) 0,426 0, 460 0, 501 0.522 0,530 0,535

b
v, (2Y.) p:s.i. 013 x10" 6138 x10° 613" o38xe __g;yssx\b“ ©138x% 10
T -y

c(wws) 0.166  0.264 0,357 0.385 0,396 0,405

L) -
¥(2~$‘1=) P 0 182xlp° ©152X10°  ©152x16°  0ns2xw” 015K O52x10”

C (ing) 0.078 0,223 0, 310 0,863 0, 36] 0.37.2
\?s(i'o‘k) psd. OVIRKE G- 178x10® O IRy o 7gxi”  6:178x18
¢ (is) ~" B, 147  6.270 0,817 .0.329 .0, 34)
__Ys( &'S\T.J \‘pts,;,_ O 202x1py° 6262 x\6° s-202xIF Ge2xi  6202x10°
 C(iws) - 0.044 0,235 0.284 0.301 0,315
_P,’(u oY) ?.s.i 5 0226 %10 62 26xt"  S22erie  ©-R26x10
C (ins) — — 0,200 0,262 6,280 0 291

Qs ! 1o, 1 /100 in and 1/1000 in yield begins after a time
521 16 ° sec, o.o2iw\s  sec, and ©-662) X s “sec,
that is after 7.5%, 0.75% and 0, 075% of the total impact
time. At these times the elastic-plastic boundary for the
case 94 = O willbe < = 0,60218, 0,00218 and 0, 000218
ins. respectively. The corresponding stresses at the

elastic-plastic surface will be & = -0.128 x 100 p. 5. i

= - 6 i . 3 3
and o 0.074 x 10° p,s.i.; y is far greater than this cr&.
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When yielding begins at aj, the velocity of

the elastic-plastic boundary will be given by

\y e,
c - i 2¢ i LR il o
\ ay 3 )

= 190 c'b.l

105

= [y n \os ms]s.tc.

This velocity is independent of the initial radius &,

For the &, = © , the corresponding velocity is

é— = 1.04 x 10° in/sec.
These preliminary calculations indicate that the
maximum value of € would be higher for the case
when a, 3 o than & = O, The measured
values for < indicate that the values given by the
elastic-plastic theory for a,%# o would be too high
to be of interest in the present problem. In view of
this and the large amount of numerical calculation
that would be involved in obtaining € , it was decided
not to carry out the numerical integration of the differ-

ential equation in X .

4,2 Metallographic Indications.

The metallographic indications of deformation can be

classified into four distinct groups, each of which are shown in
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figs. 7, 8, 9, and 10. These photographs were taken at increasing
distances from the crater boundary. Each of these four groups were
present in all target specimens, and are particularly prominent, even
thought the distances between two successive groups is relatively small.

(50)

Samuel has classified the four graoups having the following
general characteristics:
Typel . Systems of parallel grooves or lines of etch pits,
orientated acoording to the crystallographic planes of the
particular grains in which thev occurred. Developed at
low deformations. (fig. 10).
Type II. Relatively wide bands orientated similarly to
those of Type I, and apparently a development of them.,
Developed after low to medium deformations. (Fig. 9).
Type III. Two sets of parallel lines, the orientations
of which are related to the direction of compression
and not to those of the grains, Developed after medium
to heavy deformations. (Fig. 8).
Type IV. Two sets of parallel urdulations, the orien-
tations of which were related to the direction of compression,
but at different angles to those of the Type III indications,

Developed only after heavy deformations, (Fig. 7).

Figure 7 shows the grain deformation at the crater boundary.
The unetched block area was the steel projectile that had melted at
impact, and the grey area above, the crater formed by the impact.

Comparing with fig. 10 we see that the grains were exteusively

54,



Fig. 7 Deformation of grain in the vicinity

of the crater. (Type IV).
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Fig. 8 Deformation of grain (Type II).
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XSoo0

Fig. 9. Deformation of grain showing etch

pit lines (Type II and III).
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R Soo

Fig. 10. Deformation of grains showing etch
pit lines and deformed annealing twins

(Type I).
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elongated during impact, the orientation of the elongation being

in the same direction as the impulsive load, Rinehart and Pearson(l)
have pointed out that the tendency of the material to deform by grain
flow increases with high pressure and décreases with high strain
rates. In the area shown in fig, 7, the pressure would have been very
high,

Figure 9 shows grains in which the etch pit lines are closely
spaced, and one grain gives a good example of the etch pits in two
sets of parallel lines. One is lead to conclude that these etch pits
are twinnings in some grains and slip in others, since some are
orientated along twin directions, while the others are not. Twins are
an indication of a high rate of strain,

Figure 10 shows the structure in the less deformed grain
area. Definite evidence that deformation took place are the curved

annealing twins; also, the parallel etch pit lines,
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CHAPTER 5

CONCLUSIONS

Experimental work was limited to the' manganese steel
and 70 : 30 brass targets. The reason for this was that the other
steels were not available in small quantity Furthermore, only
one impact test was carried out with the Hatfield's manganese
steel, because of its 'commercially unmachinable '(46)properties.

No comparisons with theory were made; the experimental results

for the single test is presented below

5.1 Manganese Steel Target

The suspended magnetic colloid apparatus, described
earlier, could not be made available. A spring-balanced suspended
magnet, which works on the same principle as the magnetic colloid
was tried, but was found to be mok: sensitive enough to determine
the martensitic zone. In this case we had to resort to the micro-
hardness indentation method

From the plot, fig. 11, we can see that there was a large
variation in the hardness number at distances greater than 0.45 cm

from the center of the crater Variations in readings at a particular
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radius precluded the drawing of iso-hardness contours. Near
the crater, and approaching towards it, the hardness number
increases rapidly

The difficulty in obtaining consistent results can be
put down to two causes:

(a) The hardness and work-hardening property

of the manganese steel, and

(b) Surface pitting (dirty steel)
High loads had to be used in order to obtain accuracy in measuring
the diaganol length of the indentation Because of the work hardening
property of the steel, this could give false readings of the hardness
number However, it should give the correct indication as to the
extent of the plastic zone. In fig 11 the radius of the plastic zone
was taken to be 0. 95 c¢m, but this could be equally well drawn to

give a radius of 0. 75 cm.

Bz 70: 30 Brass

Theoretical estimation of the depth of penetration and
radius of the crater give a very poor comparison with the measured
values. The difference must arise from streungth consideration.
If we take the yield for steel to be between 80, 000 and 90, 000 D.8. 1.,
the impact pressure as estimated by the hydrodynamic theory, was
only 2 to 8 times this value. This strength would lower the projectile's
flow velocity. In this case we expect a higher penetration and a
smaller crater radius, the plots bear out this conclusion No known

experimeuntal evidence exists to compare the actual value of the



penetration pressure with the theoretical estimate, and this could

be the main source of error in the predictions.

5.3 Boundary of the Plastic Zone

The boundary determined by the ammonium hydroxide -
hydrogen peroxide etching method may be regarded as being the
elastic-plastic boundary in the sense that it is the boundary between
the zones in which the slip and twinning has occurred in the
majority of the grains and the zone which it has not. There was a
degree of uncertainty as to the exact location of the boundary;
however, the repeatability of these observations was quite good. An
example are the points (all of which were the average of at least
three readings) for the 5, 310 ft/sec impact velocity in fig. 12.
Furthermore, this boundary should not have been affected by the
elastic wave reflected from the boundary of the target specimen
as the time taken by the elastic wave (velocity approximately
12, 000 ft/sec) to reach the boundary of the target ( a cylinder radius
1 in, height 1 in ) was too long (6.9 x IO—SSeCS) We can deduce
that the plastic wave should have a velocity of less than 1/4 the
elastic wave velocity for the back of the outgoing wave to have
interacted with the front of the reflected wave inside the measured
plastic zone. This is lower than the expected speed of the plastic
wave.

The plastic boundary obtained from the observation of

the etch pit lines were found to approximately lie on a hemisphere
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with the point of impact as origin, for the four highest velocities
of impact. The two lower velocities gave radii which were appre-
ciably less than the depth. In this case the radius of the plastic
zone was taken as the depth to the elastic-plastic boundary at the
center line of the crater.
(i) Elastic
Allen(SO) has shown that the stresses produced
by an explosive load at the surface of a semi-infinite
plate have the same magnitude as that predicted by the
elastic theory if the same charge was detonated in a small
cavity at the center of an infinite sphere. We expect
this agreement for a high velocity impact, since the
phenomenon is similar to an explosion, i e. high
pressure of short duration.
In the present work, the results and theory give
insufficient information to base any definite conclusions.
Some of the limitations are obvious; for example, the
increase in the radius of the cavity is assumed to be less
than Y/aE times the original radius, which is far too small.
Hence, we have to take various values of a o for
different combination of pressure and its time of appli-
cation. The imcompressible flow assumption implies
an infinite rate of straining; in order to allow for this,
a different value of Y will have to be assured for various

impact velocities.
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In the plot of the radius of the plastic zone
against the velocity, fig. 5, the measured values fit
theoretical points for values of Oub\(s/Y from slightly
less than 1/100 at 3, 920 ft/séc impact velocity, to

slightly over 1/200 for 6, 590 ft /sec impact velocity.

(ii) Elastic-Plastic

The elastic-plastic theory plot, fig. 6, indicates
that the dynamic yield corresponding to impact velocities
of 3,920 ft/sec and 6, 590 ft/sec should be approximately

)

70

N

.Y, and 3.7 Y, respectively. We note that above
5, 300 ft /sec impact velocity the measured radius of the
plastic zone closely follows the theoretical prediction,
assuming a dynamic yield of 3.7 Ys .

Taylor (21)

has measured values for the yield
stress in mild steel at high rates of strain. He found for
a rate of straining of 10, 000 in/in/sec that the dynamic
yield was three times the static. The reasons for the
increase in yield may be explained by consideration of
the anchored dislocations just beyond the perimeter of the
yielded region. These form obstacles to the passage of
released dislocations from the region. The propogation
of the yielding failure must involve the release of these

anchored dislocations. If this is to happen quickly the

stress on these dislocations must be high. Furthermore,
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(34)

Barrett has pointed out that there is a greater increase
in resistance in the soft metals than in the hard ones The
author has been unable to find any published work which
relates to the dynamic yielding of 70:30 brass.
It can easily be shown that the von Mises and
Tresca yield criterion will give the maximum shear
stress as 0.58 Y and 0. 50Y respectively. Hence in the
regions of very high pressure ( o >» Y ), if we
neglect shear, the error involved in calculating the
stresses should not be high. However, this could lead
to error in calculating the elastic-plastic boundary.
For example, the von Mises yield condition in the axial
symmetrical distribution of stress contains the term G‘Cz'h_
ey
(G“- (s'ef' ¥ (oy- 6‘7_\2' + (s,- s&\z'-a- (o“(.?'&.’_ = E’.\fl

Now, Cook(Z)

has pointed out that when a single particle of
nearly spherical shape strikes a target at high velocity, then
the target undergoes plastic spherical deformation. (The
exception is at the surface of the target where an elevated
lip in always observed owing to some back flow caused by
relief of pressure at the surface.) In this case, we expect

the spherical assumption to be a good approximation,

except at the surface.
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5,4 Suggestions for Future Work

During the course of the present work, the author came
upon several interesting problems where the present knowledge
is either superficial or non-existent. Some of these are listed
below under two headings (i) theoretical, and (ii) experimental.

(i) Theoretical.

(a) The calculation of the boundary of the plastic
zone at higher velocity of impact, where
compressibility would have to be taken into
account.

(b} The calculation of the boundary of the plastic
zone due to high velocity impactfor a semi-
tik?gi Eclai.g‘eg}e)% Orﬁ%t%arr‘iga?tf (o] %Ses lfrrfgzi)rirglpr egsible;

also for the compressible material.

(c) Theory for the dynamic yield at high rates of

strain.
(ii) Experimental.

(a) Since more in known about the dynamical yield
stress in steel a check could be made of the
present theory using mild steel targets. This
would check the theories (i a) and (i b). Details
of the experimental technique may be found in
Chapter 3.

(b) Estimate the impact pressure and its duration.

(c) Obtain the dynamic yield for several materials

The solutions of these broblems would add greatly to our
understanding of the phenomenon of high velocity impact.
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APPENDIX A

We are concerned with singular surfaces. (Weak type
discontinuity, in that only discontinuities in the derivatives of
the functions occur). which may occur to the von Mises and

Prandtl-Reuss equations of plasticity. These equations are

§—f % F U-u.,o\ = o (Equ. of continuity)
DL

6"*(5 . f3 = f, C;_U'“ (Equ. of motion)

Ao
LA = O (Equation of
incompressibility)
*® »
Sl Ty s K (quadratic yield condition)

-
where the S o o are the components of the deviator stress

tensor o g
d € .. = qu.- AN (von Mises)
~3 *5
or o ?_"'__ = cg* AN~ 6«(5:3 (Prandtl-Reuss)
£ HE —_—
: v 2C
d Ei } = \-.-_.__- 2' v Q)A G_,', .

E
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Let S(t) be the surface given by i ", b) = O

4
in a region R (k) and that S > 8 \.k> O , then
L S’) J»/ S:i g :
‘ 3y
is a unit vector normal to S(v) and.

© = —= 3%

:'gt ’S)ig’i

is the displacement speed, i.e. the normal component of velocity,
of S). If R(x) is occupied by a continuous medium moving with
a velocity w™* which is continuous on S(x) then © — U'J\ vj,
represents the normal component of velocity of Sl relative
to the material particles instantaneously comprising it. If on this
wave surface we assume SU&) to be singular of order one., we take
the density P the velocity components v, and the stress
components 0‘&[-., continuous across S (x) while at

least one of their first partial derivatives with respect to space
coordinates, is discontinuous at points of SUT) . Denoting by
the bracket [ _/ the difference in the values of a guantity on

the two sides of S(t) in the usual manner, it can be shown that for

a singular surface S(L‘)of order one, we shall have the relations,
- = 2 > B S - — .
‘;6*51-"\1 = = \)t ) &g‘“‘x =g

{Jsl ) RX

1)

Bs Vn ias%‘:x W
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[ o s R, T e

where oL« : ; and \é are quantities
A F»

defined over S (¢) , the \)‘R are the components of the unit

normal vector to the surface and ©  denotes the velocity

of the surface relative to the coordinate system in the direction

specified by the vector
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