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ABSTRACT

[he theory of high speed spherical flow in incompressible

materials is presented for a pressure applied at the center of the

sphere. This theory is used to estimate the radius of the zone of

plastic deformation in a semi-infinite block due to impact by a

small, high velocity, projectile, which is assumed to penetrate

the target in the manner predicted by an hydrodynamic theory,

assuming steady state.

The theoretical predictions are compared with the measured

values obtained for targets of 70:30 brass, and 1/8 in diameter

hardened steel projectiles.
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CHAPTER 1

SUMMARY OF PREVIOUS WORK

High velocity impact may be considered in two parts

(a) impact, penetration of the target material, and forces involved

in impact, and (b) the stress waves set up by the impact.

i. 1 Impact

[In recent years a large number of papers have been pub-—

lished on the mechanism of cratering and penetration of targets by

high velocity particles (see bibliography of ref. 1). Theories for

penetration and volume of crater produced have been put forward

by many of the authors. These have either been empirical, based on

dimensional analysis, or simple hydrodynamic theory.

Projectiles suffer severe inelastic deformation on striking

their target. Metal missiles may flow plastically, melt, vaporise, or

shatters for instance impact at very high velocity, usually above

4,000 ft/sec may generate enough heat to vaporize a steel projectile.

The kinetic energy of the projectile appears to be finally distributed in

)) work of deformation and structural changes of

both the target and the projectile material,



5)

ic)

work of fracturing of both materials.

kinetic energy of the target and projectile matter

thrown out of crater (or off the target),

»

energy for melting and vaporizing portions of both

material, and

‘e) heating of the material.

The shape and size of the crater produced will depend upon the shape,

mass, and velocity of the projectile and upon the mechanical properties

of the target. Cratering in steel usually results from plastic flow of

the steel. At low velocities, below about 4, 000 ft/sec, the crater is

simply a straight-sided hole whose cross-section is similar to that

of the impacting missile. At highest velocities, cavitation sets in and

‘he profile of the hole is more or less circular and the diameter of the

mouth considerably greater than that of the impacting missile, At very

high velocities, greater than about 10, 000 ft/sec, the crater will have

a cup shaped appearance.

Cook (2)% has observed that a nearly hemispherical crater is

produced when a single particle projectile of spherical form strikes a

target at velocity sufficiently high that i Pe ( V — uv) is

appreciably greater than the yield strength of the target Y , where

A, is the density of the projectile, V its velocity, and U the steady

%
The figures appearing in superscript pertain to the references

appended to the thesis.



velocity of penetration. Then the target undergoes plastic flow

urtil: the yield force A’ XY balances the dynamic force + Pe (V-UYA.

where A’ is the cross-sectional area of the hole at depth of

penetration, and A, the cross-sectional area of the projectile.

Where single particles of nearly spherical shape are involved,

this plastic flow is always radial except for conditions right at

the surface of the target where an elevated lip is always observed

owing to some back flow cauaed by relief of pressure at the

surface.

The reason for the use of the hydrodynamic theory is

that the pressure produced by the projectile at these high velocities

are so much greater than the ultimate strength of the target, that

its strength plays a negligible role in retarding the penetration, hence

the target may be considered as a perfect fluid. The depth of

penetration is given by Cook?) Pack and Evans (3) and Birkhoff,

MacDougall, Pugh and Taylor™®, assuming steady state conditions.

in the form \

$s = dg, ( Npe [pe)”
where de is the diameter of the projectile, N a number between

Ll (for a continuous jet) and 2(for a particulate jet), and ya the

density of the target. As pointed out this equation is considered to

hold for a target neglecting the effect of yield strength. Pack and

Evans (3) have modified the steady state theory to take into account the

‘inite yield strength, by introducing the factor ( | — «, x Yinto
PeV



the above equation where Y is the dynamic yield strength of the

target and X, a constant which is a function of the densities of the

particle and the target.

Cook?) gives the final hole diameter as
‘2

D - dy =VprpeN Ean
L pet + (On Pe) |

vhere Y is the dynamic strength of the target. The hole volume

orA=x1°

i, AP eX )- Vs AT 2. Ia
L re * Ae \

Engel! obtained aun expression for the depth of penetration

v

s 1-2 (4) \36°8 Ep,”= Ce Pe ~ To 3; 2
Y ==Pe C, Fe ¥ Cc t 4

Ce Pe
This equation is derived from dimensional analysis, experimental

results, and analysis.

Tuth (6) found the empirical equation

5 - Tas(Y)

while Vellenburs, Clay and Huth ©) found from semi-empirical method

—( Pe\ Vy
- ‘YY 5 fo CcS - o 9 ( a——— Va

Pel (3=1bbVe)?
Partridge and clav'? from empirical work, obtained the

axpression

s = kn” (V-v)/



Where M is the mass of the projectile. Helie © and, Wessman and

Rose®), found on assuming the resistance to penetration to be the

sum of two terms, a constant and a velocity squared term, that

™ *)S = K, a Reg (V+, V
where K, and Kg are constants which depend upon such factors as

the shape of the projectile, the density of the target material, and its

resistance to penetration.

Rinehart) suggested that the size and shape of the crater

(in extremely high velocity impact) depend primarily upon the stress

distribution existing in the target during and immediately following

deceleration of the missle. Stresses greatly in excess of those

required to cause common materials to fail will exist during pene-

tration in thos regions near the area of impact. Penetration depth and

crater shape are arrived at by assuming (a) that the missile is stopped

in a negligibly short distance, (b) that the forces of the impact

distributes itself within the target in accordance with the same geometry

as the stresses produced by a static load, and (c) that the target

material will fail within a region in which the shearing stress exceeds

a certain critical value.

.. 2 Stress Waves

Stress Waves are divided into three types, two of these

namely the elastic and plastic waves depend on the stress level, and

the third type depend on the additional stresses. The stresses in

3



the elastic waves are such that they obey Hooke's laws, while those

plastic waves occur in material which undergoes permanent defor —

mation as a result of being stressed beyond the elastic limit, Viscous

waves ocour when the internal viscous stresses are produced in

addition to the other stresses, i,e. elastic or plastic, The viscous

stresses are fairly small for metals, but are appreciable for materials

that show large time effects in their behaviors under stresses.

For elastic waves a large amount of both theoretical and

experimental work has been done. A review of these may be read

in Kolskyl0), Davies and Abramson, Plass and Ripperger 12)

for bars and beams.

There is little published experimental work on wave

propogation in non-linear visco-elastic solids. The work done in

this field has been recently reviewed by Kolsky 13).

Plastic waves occur in material for low velocity of impact.

For instance if we consider the impact of a rigid body on an elastic

rod, the velocity that will produce plastic waves is given by

vy = Ye
Ec

Where Y is the yield stress of the material, C the velocity of

propogation of longitudinal waves in the mat*erial, and E Young's

modulus. For aluminum we have

a

E=10 psx, Y = 50,000 ¢-siy C =20,000 ft/sec
6

which gives V = 100 ft/sec, and in the case of steel E=x= 30 x 10 p.5.5

 Af = 45,000 y.s.x andc = 19,500 ft/sec, hence V= 30 ft/sec.



The general one dimensional problem of the propogation

of plastic waves was investigated independently by Taylor®)

von Karman (1?) and Hakmatoolintt®, Taylor (14) obtained the

expression for propogation (using Eulerian system of coordinates)

Nhere

3

¢ . (Qre) ds

Pe dc
© 1s the strain

&gt; the stress corresponding to

Po the density of the material.

and C the velocity of propogation.

Karman (15) obtained the corresponding expression in

‘erms of Lagrangian system

_ A

a

= 1 do

Po de

Wood?) has discussed the propogation of longitudinal

waves of large lateral extend in solids for the elastic plastic condition.

The stress-strain relation (assumed to be independent of time)

is derived indirectly from experimental data by means of a suitable

theory of plasticity, assuming the material is uncompressible, A

specific example is worked for 24 S-T aluminum alloy,

E = lor xiv pS + " Y= 0-33

The velocity of the elastic and plastic waves are 2.46 x 10° in/sec

and 2,01 X 10° in/sec. In a slender wire the corresponding plastic

wave would have been of the order of 2.5 x 10% in/sec. This



illustrates that lateral inertia may not be neglected.

Craggs18) showed that for an elastic-plastic material,

nlane waves of two types may exist, each involving both dilatational

and shear strain, However, the waves studied in Craggs! work have

infinites imal discontinuities in stress and strain existing across

the wave front.

Thomas‘! investigated the propogation of plane plastic

waves by considering the wave front as a singular surface of order

one. Using various conditions, e. g. (i) von Mises theory for perfect

plastic solids and only derivatives of velocity and stress as discon-

tinuities, (ii) Prandtl-Reuss theory with discontinuities in derivatives
/ 2 rr -

of velocity and stress, and S, Vv, * Gc, vy, = 0

over the wave surface, where cs! \ SI are the deviator stress

and  V, J Vv, the components of the unit normal vector to the

surface, he obtains expressions for the velocity of the wave front.

[n the case of the above conditions, the velocity of propogation were

(I) C = O, and (II) either

{r+as2 ©, / 1"e\ a¢ A + 3 Ss [pt
Berg 20 extended this for elastic-plastic work hardening materials.

He found that both dilatation and equivoluminal waves could propogate

in the medium, and that the velocity of each of these waves is a

‘function of the state of plastic strain of an element on the wave and

of the state of stress on the wave.



Experimental results indicate that there is a strain-rate

effect which should be considered in the propogation of plastic waves

[In most cases it is found that an increase in the rate of deformation

will raise (a) the yield stress of the material (b) the entire stress

level of the flow curve, and (c) the ultimate strength of the material.

Taylor 2) found that for mild steel that the dynamic yield stress was

about 3 times the static for impact strain of 10, 000 in/in/sec; also

that the dynamic is nearly the same as the static yield point when

steel with a high static yield is used.

Malvern 23) modified the one-dimensional theory of

plastic wave propogation to introduce the effect of rate of strain

on the stress2strain relation. He assumes a stress-strain relation

~f the form

Z. ©,

F Ce. S. + q (su €.)

alastic

plastic.

and plastic flow occurs when cc. © 5 (e)). In order to

approximate for hardened aluminum specimens Malvern assumed

y (o,,8,) = leo, = SC)

aud

$e) = 206 » O00 — ‘Oo

be



Comparing theory and practic he concluded that the theory

gave better agreement than the predictions of elementary theory,

out the permanent strain distribution was in worse agreement.

3



CHAPTER 2

VIATHEMATICAL FORMULATION

[n the mathematical theory of the mechanics of contin-

ious media, the expression for large strain in direction one (1)

E, - Je -
Au

vhere Gand gy are the metric tensors for the deformed and

undeformed body respectively, in terms of the coordinate system

ln the original body. For finite strain this is approximated to

Lot(2 =) )

Except for the simplest cases (Zerna and Green) *2ine equations

resulting from the approximation are unmanageable,

The linear (classical) theory of elasticity assumes infi-
2s

nitesimal strains, Here the strain-displacement relations/by

neglecting products of derivatives of the displacement as compared

with linear terms. For example in an arbitrary orthogonal coprdinate

system, if &amp; and wr are the infinitesimal strains and rotatious,

are an approximation obtained from the finite strain expression



‘he finite strain is given by

2
2 &lt;eaal8+ Grease) (18,7 0]

(3

In applying the infinitesimal strain approximation to our problem

we preclude any quantitative comparison with the results obtained

in practice for a volume in the region of the crater, However,

St. Venant's Principle leads us to believe that further away we

should expect a good comparison,

In some experimental work carried out by Allen!3?)

it was pointed out that there was a similarity between the magnitude

of the stresses measured in a steel plate due to a localized explosive

load and an equivalent theoretical elastic calculation for a shhere

assuming the arrlication of pressure in a spherical cavity at the

center, We carry out a similar analysis here for various theories

since at very high pressure, we can neglect shear in both the

elastic - plastic theory and the hydrodynamic theory (medium strength

is assumed to be zero), taking an impulsive pressure yp, acting

for a time e' , the penetration time, in a cavity of radius 'a'! at the

center of an infinite sphere.

The essential difference is that in the sphere we have

spherical symmetry which precludes shear waves consideration,

and the problem reduces to one dimension. Axial symmetric

conditions require that shear in the Rz plane should be taken into

account

9



2.1 Hydrodynamical Theory.

The pressure produced by collision is given by

Po ~ z fe 4

The ultimate yield stress of cartridge-brass is on the order of

16, 000 1b /in2 (0. o0oll megabars). All of the pressures encountered

in impacts above 3, 500 ft/sec are over 10 times in excess of the

yield. Since this pressure is far above the material's yield

strength, the strength may be neglected for a first approximation,

The equations of motion for the process, neglecting the

viscosity and heat conduction, are the compressible, inviscid,

adiabatic hydrodynamic. When the wave reaches the layer at a

distance ¢ from the origin, then, in the Lagrangian method,

we follow the subsequent history of this layer. Let us suppose

that at a time © is has radius R . Then ¥ and © are the

Lagrangian independent variables and the equations of motion are

2
P ® (2)2 dv

3°R
dt -

_\(EH)
Dg

~
NJ

P = 5 Cp, S) --equation of state

-

7



2.2 Solid Media

[n obtaining the equation of motion for a solid media,

ve will assume infinitesimal strain. The equation of equilibrium

ya
Du 2Dug _ Ld (K oc ) — 1 (Sy—

J

where D indicates the total derivative, and fF 1s the density

of the deformed media.

The strain-displacement relation for the medium will

- 9
Ee = Ue ) © = Ve

AR KR
ge = Ne
TX

The continuity equation is

opdi T &gt; 2 (¥2 sel ba) SO

vhere Ww, = Suge
Ar

J

29

[f we consider the incompressible solution then the

above equation reduced to

dD ( e -— R Ww =R* aR R «)  ih

which may be written

C3 i

= 2 (R wo) - -d

b=  |



2. 3 Equations of State and the Stress-Strain Relations,

The equation of state is the relation between the properties

of the material which uniquely describes the behaviour of the parti-

cular material in terms of only two independent properties, all

other properties being functions of these two independent properties.

For this equation to apply the material must remain in equilibrium,

Furthermore, if phase changes occur a more complex equation of

state will be required. Under explosive loading non-equilibrium

conditions and phase changes do occur; however, in order not to

further complicate the problem, we will neglect these here.

The experimental work required preliminary to obtaining

the equation of state for metals has been carried out in two ways

(I) static tests, and (II) shock propogation. Static tests (Bridgman)&gt;?

gave us the isothermal equation of state, while the shock propogation

method gave the Hugoniot. It is possible to calculate both the

adiabats and isothermal from the theomodynamics and quantum

mechanics consideration using the Hugoniot data as the initial condition.

The calculated offsets between the Hugoniot curve and the

neighboring P--V curves of interest are generally small [ Walsh, et

al, 1957] 28 40 within 4% in compression for pressures below

200 kbs, for most metals [Katz et al, 195572", Furthermore. Walsh

et al, 1957, found that the Hugoniot curves which are drawn through

the experimental points are reproduced by analytical fits of the form

where

P = Am +9 uF C8

4

A mama

» \

) 5

Sn

’,
1

 5



Values of A, B, and C for various solieds are listed(26), for

example, 60:40 brass, this equation gives the pressure in kilobars

for A=1037, B=2177, C=3275. Due to the small offset of the

adiabat from the Hugoniot the error resulting in assuming the adiabat

equation to be that of the Hugoniot would be small for pressures

helow 200 kbs.

Using the steady®state condition expression for the impact

pressure, we find that for the present problem the pressures at

impact would be less than 46 kilobars. This means that » would

be less than .04, hence a good appreximation may be obtained by

assuming incompressibility.

The elastic theory for the propogation of waves in the

elastic media is based on the assumption that Hooke's law is valid,

i, e., the equation of state is of the form &amp; = E S(e)

in other words the stress at a given point in the medium at time E

is proportional to the strain &amp; . At high strain rate, non-Hookean

stresses have to be considered especially in the case of non-metallic

alloys. In this respect analyses have been carried out on the

pro~ncation of stress waves for Kelvin-Voigt, Maxwell, and standard

linear solid by Eubanks &gt;&gt;), Lee and Kanter 36) Hillier 37). etc.

The true picture of deformation following impact would be given

oy the analysis of the motion of dislocations.

When a high stress is applied to a crystalline solid, it

acquires elastic strain almost immediately, But in order to under-

take permanent strains, dislocations must first be accelerated

and multiplied. Dislocations comprising the Frank-Read sources



accelerate rapidly because of their small effective mass, however

their inherent inertia should result in zero initial strain rate,

followed as the dislocations form and accelerate by an increasing

strain rate. The back stresses produced by the interaction of

dislocations causes the strain rate to decrease, until finally, it

becomes zero,

The stress-strain relation formulated from the consideration

of the dynamics of dislocation will be a function of the strain rate,

the instantaneous magnitudes of &amp; and € , and the distribution

of dislocations in the material at that time. The distribution of

dislocations will depend on the stress history of the material and

this is not exactly described by the state of strain alone,

Suitable movement of partial dislocations can produce the

shear disnlacements which occur in mechanical twinning and in some

phase transformations. Frank (1952, private communication with

Narbarro) has discussed the martensitic transformation from face

centered to body centered iron.

Up to the present, dislocation theory has not yet been

sufficiently highly developed to permit derivation of the stress-

strain equation from fundamental principles. In the following

analysis we will neglect time dependent effects on the stress-strain

relation.

[n the present analysis we will consider the following

stress=strain relations~-

-



(I) Elastic

S ., 3 hNe + RGE,

3)\e + 2G EE

-»
pn
fe + 2G Eg |

where

1
VE

(rer = 29)

(II) Plastic

» wa CR e «1(egve veg)

The Levy-Mises relation for the stress-strain

ncrement in a plastic media may be expressed in the form

c ASL

dE = dE = Ae, = 2a
hod * te GSe Sa Seo

= - + (20, ~0g~ og) 2 C,~C
and AW is a scalar factor of proportionality. Since these equations

assume the total strain increment, and not the plastic strain increment

these equations are strictly applicable only to a fictitious material

in which the elastic strains are zero, In this case Young's modulus

is indefinitely large, the material remaining rigid when unloaded.

Reuss extended these equations in order to allow for the

2lastic component of strain. He assumed

° ° ?
he R d © ®@ = dCe ~ aJL
=, = st 2¢ 2Q

2
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where €1 is the plastic component of strain, Neither these nor

the Levy-Mises set of stress-strain relations reflect any viscosity

affect.

Since we have introduced a further variable we need one

more equation, this is provided by the yield condition.

f(s) 2 Y

vhere Y is the yield stress in simple tension,

2. 4 Yield Condition

Plastic deformation of crystalline materials is known

to arise from the motion of dislocations. In the uryielded condition,

the dislocations are anchored and the deformation is purely elastic.

while in the over=trained condition the dislocations are free to

move under the applied stress and so produce plastic deformations

The yield defines the limit of elasticity under any possible combi-

nation of stress.

Experimental work has shown that the yielding of a metal

is unaffected by hydrostatic pressure or tension either applied alone

or superposed, but varies with the rate of straining. Taylor 2D

has obtained results showing that the yielding of mild steel at the

rate of straining of 10, 000 in/in/sec occurs in the order of three

times the static yield stress. The dynamic yield is nearly the same

as the static yield when steel with a high static yield is used. This

ratio tends to rise as the static yield decreases. In the following



analysis we will neglect this effect on the yield stress.

The two simplest yield criteria which does not conflict

with the static observation are those of Tresca and von Mises.

Tresca stipulates that during plastic flow the greatest of the

orincipal shearing stresses has a constant value,

J

(0)

where SI 2 Ss % Sw o wa “ty ny Tm

are the principal stress. Von Mises criterion is

2 x 2

(o7 -5) * (og ~) + (og —e.) =a
3]

wor the shherically symmetrical problem, both the

[resca and von Mises condition reduce to

“or

— Sa
Rad

t &gt;  GC

where ay »o implies compressive loading.

2.9 Initial and Boundary Conditions.

The pressure at the cavity is assumed to be that presented

on the target by the projectile. This is expressible in the form

Ps  oO

AP, Pe mY oct t'ss= ry L(pa* + (np)

Ao

Po



I

where t is the time for penetration,

TR - 20s (2)
“4

These expressions are based on the steady state hydrodynamical

theory.

The boundary conditions are at

radius of the cavity

(oe).

 nn ® a. the current

A ”

“J - C

(Se). + ple) 0S mn
 -» RS4

and, as R -—  ny we have

LCR-» 00 (00) 0 Aw A lc (o o) —» O
RD oO

,

For the plastic problem we have a further condition at

R= &lt;(v) i, e. the moving boundary SS, —

‘his is the Rankine-Hugoniot quantity

— oa. (&amp;.=2) = const.

2.6 Theoryof Incompressible Flow.

The spherically symmetric flow is described in terms

of a position vector R, which indicates the position of a spherical

)



shell initially located at ¥. Clearly

Re kb) = Na = ule, c)
To

defining the displacement ul, c) . In assuming incompressi-

hility we impose the following conditions

RAR
Ce Xs

ay
- \

=

i

On integrating the above equation we obtain

R ~ 3 3 S(t)

where S(t) is a function of time to be determined. In order to

satisfy the initial state C=0 , Rar, hence So) =O

For small displacements we may expand this expression for R,

R= v a § Lx) + o (5%)

vhich from comparison with the above vields.

 cv) = § (x)
LJ

9



(I) Hydrodynamic

Differentiating with respect to ©
3 73Rox +3 Se))

, the equation

ve obtaln

wi ¥

3R
EY

IR
yer =

RS) - al sel)

SL)
R®

5Le) _ &gt; [5]
RE EX

On substituting in the momentum equation

.e . [3

vp. _ 0 sly) 2 [ste |3R PL r* PY

 iL

. » 2

LPs Gel x W|f R 2 RN \

’ Lt I'd pe 0 .The boundary condition R-&gt; 0 , gives

3. (¢) =o . At R =a | we will consider

he pressure to be given, and that it is of the form

- volt) ; then on substitution in the above, we

nave

. . 2

SLE)~A (SE) = «pled gq -

19a



vhere a x Lal sas]

For stationary, unstressed initial conditions,

C=o0, P=0 | So) = So) =

Transforming the variables to

«x = Lal + 25)?

Pt

ae &amp; «2 -— 3 +1 2 — (©Loa 2a] = S 296 49
P

2-1 af — pled
P

Se + 3&amp;8 — ple)
R p

™

“g

with the initial conditions

cro, alo) =o awa 3) =o.

Multiplying through by Rak oa and integrating
a

2 = 2 ple) or Aa
r 50

- (t)For a step function input P= — lv) = — Qa H

where PY, 1s given by the steady state theory,. we have

on integrating the right hand side.

.

dh safe 3d

LA



If we had the initial value a, = -
-

oY [5 Bl
hen

3 cE|EES3 (e

Hence
Yo 2

$(e) = [2 2" c

3
—

Ya
) zy el$e

‘rom which

0 Pela et (5) Bel @]

NRIRER EIRENE
5

For a rectangular pulse of duration c, the

pressure P may be obtained by superimposing a second

step of opposite amplitude at a later time ¢ . Thus

qlt) - § (b=!)
vhere

(keq (¥) -[2 1* c
hence the pressure Pp

4



II) Elastic

The equations for the spherically symmetric

incompressible media is

&lt;

ed ua - 95a * 2 (enn So)
De dR

*

- -
- A =

Lis € S 2 ¥F,., = Ge
A

Suge '
OR

E. €. = Ua
? _Q

(for infinitesimal dis-
)

F'or small deflections we may approximate

Fo, Stel 0 50)
oc a 3

ence

ce «= 25(¢) Ee = Ey = (x)=.= aL 3
rR ) R

Substituting in the equation of equilibrium

OS . $y ~ 2 LEN) he $0) sw 1% RS _®
3

vhicihh on integration gives

. a

~ Sle SCY) (— w ESL)+3(x)apy ad S-
3)

5



The boundary conditions are

[(e ] Le)
9

 dD
a

Le . oc ypRF © ( «) =

~~

ne?

IE

YQ,

since for elastic disturbances the first condition may be assumed

to apply at the undisturbed boundary Q_ , hence

2 -

Co) - LEW) + BES) = a, ple)
§ (x) 22 3 Pe P

34

[n the case of small elastic disturbance, negligible error is
° e

involved in ignoring L S (ey) term, hence, we have the much

simpler equation

Sle) + 4 = SG) = a ple)
Pag P

50

Cousider the response to the step function pl) = po MLE)

the solution to the equation is

S (1) = A aL. Ar  Be 2

3

C+3 f.%D ccous = &gt;

31

where

hf
- »

——; bE_
3 a

PoE

&gt;i

JA
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On applying the initial conditions we obtain A=o, B==3 P,%

be E
-

hence

Me) = 2 :
t) o Fos (1 = ce wet) ~~

Two points of interest that should be noted are

(i) There is no evidence of the elastic wave type behaviour, a

small disturbance at &amp; is immediately registered at all points

of medium. Thus is as a consequence of the imcompressible

assumption, (ii) The solution involves undamped oscillations of

§(t) about the central value

S : 2 Poy
kh Te

From this equation

GH) == 3Sp,

= neo
us

 ® 5

§ (6) = 3 Pe eo w® comwrt
he

which will give

3 r3 2 6 3
5 m -3 p.%. Ww cmuwl +9 oO uv &gt; e+  1-R Pi-2 E rR 2 ani fe \ cms )

\- te (%) tonwrl +3 Ps (Ze) edu + ¥(223 (= comme) \R gc \ wR *\R

wi
— PF) mt + (2)emt) Ee (Faber)

&gt; 2G = el(%) - %0\*5 0 e ( 2 Caos (3) (\- I 2 xe (5) awe) 65



For a rectangular pulse of duration &lt; , the stresses will

pe given by

2
 oo»

wo = q (t -t')

vhere

3 ob) = Ve |: (3) Cooust + (2Y0- aval) + 2 e: (5 art]

[he elasticity approximation remains valid for an elastic-

plastic material until the stress system violates the yield criterion,

[.e. for both von Mises and Tresca yield condition

: Se) = IR.
2c

where R. is the smallest possible value for R to satisfy the

yield condition. For non-vanishing rR, therefore, Slt) must

attain a non-zero value before plastic deformation ensues. For

the condition S(o) = S (0) = 0 , i.e. priorto T= O

the medium is at rest and stress free, it follows, irrespective

of the disturbance, that instantaneous plasticity is not possible.

axcept for rR, = O

In the case Po [Nr &gt;&gt;) . we can approximate ${)for

small

La
WE \ Q Vvo | o wt

2 Fa

*

3



Yielding begins at E=t , at the smallest value of R i.e. eo

c,26Po
2p

{ a
2 E

- tpsA
Ye.

hy

At this time

- A

( Xe * 3Y ad )2E ®

Va

2) NS IE
nd

SE) = NV ©
0

&lt;&lt; | £ el"Ep
6

(ITT) Elastic-Plastic.

Using the yield condition, and the expression
R

‘or d Me, we have, on substitution in the equation of

De

aquilibrium,

oe - 8

O oq = 7 + \ Sx) a 21s L )} 7AR R [ rR" RS

y-
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“ s &lt;

Tr 2 RY eR vp”Sw, Bl 74
Consider the case where the internal pressure

p(t) at some time C| , induces plasticity at the

internal boundary Rz=a, | Subsequentto C, , the

situation corresponds to

Elastic-Plastic region &amp; &amp; WR c(t)

Elasitc region c(t) SR &lt;o©

where clt)is the moving boundary. In these two regions

the equations are

a

5  eo

—

“i
ha

“

LRSs¢C
* 2

&lt; Lie) :

2 2 eqR+p \- % +1 3 [+39

 SS. = \

wo old

 = RE Sl) _ SQ (3£50 4p]-30uy Hal ]43 00,
3. - O_ = 2 Sk)

a8 RT ——
R

(E=3G for incompressible media) 59

For the elastic region we have 3 _(t) =o , since kU (c)=&gt;o0
2 RD

The other boundary conditions are at Rx=c. Since

is a constant, and , is continuous, it follows

1A



from the Rankine®Hugoniot condition that Op 1s continuous.

hence © is continuous. (This is derived fromthe yield

condition). These boundary conditions may be expressed

QE SLE)

a

y () == _kE Sk)
FY — 2 Rey Cc

finally at 3 = a,

ve &amp;
 ol) = - $e) 1

iE) = 2Y fay©+p|; 2) -4 Bal] WSL) Je
here

~~ (a, - a

» N

i

oy
-—

$\"(*=%) { 1

I'he boundary conditions for the solution of the above

=quation are obtained from the condition that S(t) and S (&amp;)

are continuous at the elastic-plastic and elastic boundary,

cae, po Ste)=Ye Se) = S
2c

Iransforming the dependent variable from Se) ve

(a
Vy

A 38)

68) (72)

-



we obtain

ARR RISER RUNES on

‘or which the transformed boundarv conditions are

. v | . c C7

£ G.= GQ (! + 3Y &gt; a= Sc) " S(E,)
’ RE ) \ ? 3 “la ey2\ + Vee) Bh,

(71) (81)

anal Natt

Substituting yp, Wt) for ple), multiplying through by

&gt; oor and integrating, we have

Lat * EpL 1. + vs Lee, AEN

~2| 2(La) ed )—-2 JE i)3 3 ° Seog ( ay) ae Logo . 3 Pe a a

-

hr’  kt gt AN

 3
fe)

which reduced to

pleat 2 arl +I @-aD(1s tn 28) 4 (2) peg)

i— (ef = 2) Lem (a7 -a) — a Soy o~ ", 9 — a

2 3&lt; Pe (=a)
x.
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I'ransforming the independent variable from a to x , where

Vv.

a. (\ +2)

we obtain

. . zepla HZ — a + Lei + Lee =)Qr+x)"?

AY (1430) aQa| (4x)-a2 —(2-&lt;}) Ree, (a - ad)
n=

3
; 3 3 = 2 a 2

(tax) foro ( Vt) a, Loot § 3 Yo '
3 :

Using Q = ao(14 2) , and neglecting higher order terms
 Ee

in (y/e), this reduces to

par 132 Cad Pos Vw ar fie a3) + 0g (X05),
\ dx

2 eg) * ze - Sey (1200 = bp.
2A

and the boundary conditions now becomes

Ko

A

J) = 34, ~ 3 \ Te.{
=, a. Ep

Y 3
{

The complete integration may be effected numerically.

Cousider the case when a 6 ; as pointed out earlier this

vermits instantaneous plasticity. The equation reduces to

pad +3 atl +» { |vET=ple)

2 2



Plod+28% = plo)-ye
J oJ

vhere

SER AREE S|
~~

[he boundary conditions

PN

50) = S(0)=o ak t=0becomes

 nN oy
— a

bd

Cue a

J]

A finite (0) makes the second equation redundant, this difficulty

is resolved by imposing that &amp;(0) be non-infinite for finite pressure

pulses. The condition insures the vanishing of &amp;( 0) for pl) = pa ME)

Multiphy the equation by 2a" a and integrating
a

PAE mp @(o)al(e) = 2 \ Lp ps) ofdapr x ~~ P Oo. (o o (Oo = ¥ Ps

vhich for
2060) a¥(0) oy

-— OO
reduces to

 Oo «
. &amp;

[w = 2 - \o do0s( p (£)

Substituting vp, W(t) for p(t) © We2- we have

2 z= Pe = Ys

fr ,
- 1% (ve_¥{ LC.3

4

"3



From this

~ — 7
(tk) = 2 ( te

5 ) A 3 &amp; Yo 0s) =
a y

72 Ce){ez|= 15 ° —¥:

3

C () 2 1% (remy (™ LC
11d

&gt;)

Sy = 24% ‘ese
hence

.e . «

3, = 2Sey B ~ 21 pf 29, BL
38

| i

1 - &lt;&lt;, .

)

As before, for a rectancular pulse of duration t

the stresses may be obtained by superimposing a second step of

opposity amplitude at a later time €
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CHAPTER 3

EXPERIMENTAL METHODS

In order to obtain a comparison between theory and

results obtained in practice, it was decided to carry out some

experimental work, Of necessity, this had to be a simple

experiment which did not involve a great deal of instrumentation

It was decided to find the extend of the plastic zone in a target

material due to impact by a 1/8 in diameter ball bearing. This

required a high velocity gun and a velocity measuring device,

both of which were available in the laboratory.

Two experimental methods may possibly be used for

determining the deformation of the metal after impulsive loading,

aamely (I) a metallographic etching technique, and (II) micro-

hardness technique,

Four metallographic techniques may be used to detect

the extent of the deformation in the interior of a semi-infinite

specimen. There are three techniques for specimens which more

closely approach the ideal rigid-plastic material.

One method uses Austenitic Manganese Steel, heat treated

oy holding at 1, 100®*F for 30 min and quenching in water. A strain

»y -



free surface is then produced by grinding, polishing, and etching

The etching cycle is as follows: Etch 15 sec in 3% nital,

rinse in ethyl alcohol, etch 15 sec in 10% H Cl in alcohol, rinse

15 sec in ethyl alcohol, This is usually repeated three times,

followed by 15 sec in 2% ammonium Hydroxide in alcohol, and

rinsing in ethyl alcohol. The polished and etched face must be

protected carefully from corrosion particularly in humid atmos

phere. Transformation of austenite to martensite is produced

by deformation, which results in the appearance of slip lines.

The magnetic nature of these lines can be demonstrated by a

special colloid pattern technique, The polished surface of the

specimen is covered with a thin colloidal suspension of magnetic

particles, application of a magnetic field will cause a visible

concentration of the colloid over the magnetic areas.

For metallographic purposes a drop of the magnetic

solution is placed on the polished specimen and covered with a

microscope cover glass. In the field of the magnet concentrations

of the colloid particles will delineate the magnetic phases.

The second is for a mild steel specimen, here the section

is etched in Fry's reagent which preferentially darkens plastically

deformed zones. Only certain batches of steel respond satisfactorily

to this treatment. a highly sensitive steel is one that contains 0.20%

carbon, 0.52% manganese, and other elements less than 0, 05%.

The third metallographic technique is based on carbide precipitation

described by Wilson(48), In this case the material is a 0. 7% carbon



steel which is water quenched from 800°C. After impact it is

tempered at 200°C for 15 min, The specimen is then sectioned,

polished and etched in nital which shows the plastically strained

material as a light etching zone,

For 70:30 brass metallographic techniques are available

with which deformation can be detected with a very high sensitivity.

Specimens are annealed at 600°C for 2 hrs establishing a grain size

of 0.05 mm diameter; a grain size of this order is desirable to

facilitate metallographic observations,

The test surface was prepared on abrasive papers to

remnve all evidance of surface grain-rumpling, and then metallo-

oraphically polished to remove the surface deformation produced

during the abrasion method. Finally it was etched to develop the

metallographic indications of deformation. The etch used was an

ammonium hydroxide-hydragen peroxide reagent. (Ammonium

hydroxide 1 volume, hydrogen peroxide (3%) 2 volumes, and

water 1 volume); this was applied by swabbing. Previous inves-

tigators (Samuels)!®?) have found that this etch will give indications

of deformation of less than 0, 1% in compression. The boundaries

determined from this process may be taken as boundaries of constant

strain, because the development of the etching effects indicates

that a more or less definite amount of slip has occurred in the

crain concerned.

The metallographic methods have the advantage that they

allow examination of the strain in a semi-infinite block. Thev have

the disadvantage that it is only possible to determine one contour

19



of uniform strain, and it is difficult to ascribe a definite magnitude

of this strain,

[aformation regarding the distribution of stress that

existed in an impulsively loaded body, can be obtained by plotting

contours of equal hardness on sections of the body. Only qualitative

results can be obtained and they depend on good hardening charac-

teristics of the target material, otherwise small error in readings

(which can easily occur from the uncertainty of the outline of the

impression) or localized effects, e.g. cracks, will cancel out any

variation that might have existed.

dy



CHAPTER 4

RESULTS

The pressure produced by impact is given by

* Zz A = val *

 2 Long,Ye +o) i

and this is sustained during the penetration which is completed

in time © . Where

ho se C2)
3
+ 23

Penetration wiil proceed at a velocity \V

J
u

| (£2) 30

and the depth of penetration, which is independent of the velocity

of impact, (providing that this is high enough for us to assume the



applicability of the hydrodynamic theory) is given by

a

—— i o/s.)* (
 xX

The final diameter of the crater at the levelafthe original surface

)) AV

IE a _
( oe) s ( er) (2 )'

Since the spherical projectile is capable of sus-

taining an internal pressure, we will take N=1. Measured quantities

for the spherical projectile and the 70:30 brass are:

A = 0\2S ou,

P, = 0-238 glow
Pe = © 309 So [ em
Y = V3] oO vs

EE = 1S _ L066 .060.

The calculated values for the pressure, time of penetration, velocity

of penetration, depth of penetration, and final diameter of the crater

are tabulated for impact velocities from 3500 ft/sec to 7, 000 ft/sec.

Plots of these values are shown in figs. 2, 3. and 4, as well as the

measured values for the depth of penetration and diameter of the

~rater.



V(st]sech 3500 4000
5000

5000

327 x8 31 x\6°

7000

2-80 X Vat! (sec) | S-box16°|L-90x\6"| 392x168 °,

U(st|sec)| 1640 11870

p. Cp-a.i)[s15Tx10" 1 ozosnie”
S (ws) 0.110
D (ws) 0.42 |

2800 3050 3280

orlbl X61 G-ShIR0 | 6-b2g Xie”

0.10 0.110  j0.110

0.48 'o0.60 lo.72 lo.78 0.84

The measured values were as follows:

V (8 |sec) 13920 4920 5310 5660 6120

Shwe) lo. 115

Dns) lo.200 | 0.230 | 0.240 ' 0.250 | 0.275

0.155 | 0.155

c (ws). 10.235 | 0 245 "0.250 | 0.265 | 0.285

6590

0.160
| 0.275

 ety

| 0.295

4.1 CalculationoftheExtremeRadiioftheElastic-PlasticBoundary_

The hydrodynamic theory will not give us an estimate of

the plastic zone as the yield condition is independent of the hydro-

static pressure. In view of this we can only consider the elastic

and elastic-plastic solution for comparison with the measured values.

(i) Elastic

[t was stated earlier that under dynamic loading

he elastic equations will hold for stresses which violate

he static yield condition. Kumar (29) has pointed out
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that for many materials the plastic part of the stress-

strain curve tends to become closer and closer to the

continuation of the elastic straight line as the rate of

loading becomes larger and larger. Thus; for extremely

high rates of loading it might be assumed that the stress-

strain curve is linear up to fracture. Assuming that the

=lastic equations hold above yield, we may estimate the

axtent of the plastic zore from the solution given by these

aquations.

I'he expressions for ¢_, and S
N

are

~3po(dVa rl 6x = = p(B) (8)(=come)peo]

A EC (Ei SICA
(5

ow

rence the yield condition is

3 W
&gt; d = a Cc) — &gt; ° da al =2 0 Ea)eet (54) (\-wow)-% Lo (2) a Y

On the addition of a negative pressure Pp, after time €

he magnitude of the resulting wave will be diminished

as the phase difference is small (0, 729 radius is the wmax.).



Since the stress magnitude is diminished on application
 Ad

of the negative pressure, the minimum value of (Fe) will
!

occur in the interval O- LC . We can clearly see from

he above expression that this occurs at ©=0,ie.

= 2 Yo aC 2

Values of €¢ for different values of

1

Ts a, and impact

velocities in the range 3500 ft/sec to 7000 ft/sec are

tabulated below, Y is the dynamic yield stress of the

material. These are plotted in fig. 5, together with the

measured values.

V(St[see)
oY

20) 15° = 2 Yo. 173
a, | stl) ={: 1 0.116

 XYOa £4 ). 087
jocks 4CG 250

4000

0.226

0.150

0.113

0 090

5000

0.353

0.236

0.176

0.141

5000

0.510

0.340

0.255

0.204

6500

0.599

0.400

0. 300

0.240

7000

0.693

0.461

0.347

0.278

(ii) Elastic Plastic

| a= O

The limit of the plastic zone at any time © will

oe given by

{E12 Ge A«= { §4 1% » I r.
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where

es = 2 rem
For the rectangular impulse of duration = the

~omplete solution of C for d$&gt;0 te

- fae Ya oN2 2 roe {e-Ce-¥l}
"ny

which gives the maximum value of c¢ aS

C =ik \* 2 ( v3Y it PoP "e
P (013

We note that the elastic-plastic boundary becomes

stationary at the moment of the removal of the pressure

Values of ¢ and Pp. for different values of

X and a range of impact velocities are tabulated below.

These are plotted in fig. 6.

2. a_.F o.

The time taken for the material at the surface

of the cavity to reach yield is given by

C = Thg a [\ Xo

Vv Y,
SeC

|)4

where a was the original radius of the cavity expressed

in inches and V the velocity of impact expressed in ft/sec.

For example, let us consider the case at the velocity of

Impact of 7000 ft/sec assuming a yield of 4 Y.; then for



_Vift/sed 3500 4000 5000 6000 6500 _ 7000
 pa Cond) ors’ _s206aw’oieexi ound sma suemaw
bled sons’ wees 392x8° vam doin” 2:80n]

pM)psi Goce 68x10" OoLBxie  O-oLBxi’  6:063X1ST O0LRXI SOx.

C (ws) 0.426 0.460 0.501 0.522 0.530 0.535
—p(2Y,) ps.i O138ucT_ S138 x10” oasis” Gtx cud  oasgxle
clws) 0.166 0.264 0.357 0.385 0.396 0.405
% (2-s1) pd 0 1S2xip-_0152X10° 052 xi0”  ons2xw’  O1Sake’ osaxiof

(ws) 0.078 0.223 0.310 0,353 0,361 0.372

P (3-01) Psi. OVIRme Gr 18x® 0 MIRAI OTBX 16S 6178 x10

clws) — 0.147 0.270 0.817 0.329 0.341
p (25) PaS:a. o-202x1p° 0262x160 S202 eax’ 6262 x10

Cn)_—0.0440.235__0.2840.3010.35
Plu)ys. caren’ 6-226x” S22eri’ 226110
C(wms) — _ —— 0.200 0.262 0.280 0.201

a | fiom1/100 in and 1/1000 in yield begins after a time

O21 %® Wo sec, o-021 x \6©sec, and ©-6062\ X 1s "sec

that is after 7.5%, 0.75% and 0, 075% of the total impact

time. At these times the elastic-plastic boundary for the

case 9, = O willbe &lt; = 0,0218, 0,00218 and 0, 000218

ins. respectively. The corresponding stresses at the

elastic-plastic surface will be Go ™ 0.128 x 10° p.s.1

and &amp; = -0, 074 x 106 p.s.i.; v is far greater than this o

3 |
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When yielding begins at aj, the velocity of

the elastic-plastic boundary will be given by

a I .

2. C | 3 cE .1
Xx

J

3.1% x \o° ms|sec.

This velocity is independent of the initial radius Q,

For the %. O the corresponding velocity is

C = 1. 04x10°in/sec.

These preliminary calculations indicate that the

maximum value of &amp; would be higher for the case

when a, % o than og = O, The measured

values for &lt; indicate that the values given by the

2lastic-plastic theory for eg¥o would be too high

to be of interest in the present problem, In view of

this and the large amount of numerical calculation

‘hat would be involved in obtaining € , it was decided

aot to carry out the numerical integration of the differ-

antial equation in

1.2 Metallographic Indications.

The metallographic indications of deformation can be

classified into four distinct groups, each of which are shown in

 Nn



figs. 7, 8, 9, and 10, These photographs were taken at increasing

distances from the crater boundary. Each of these four groups were

present in all target specimens, and are particularly prominent, even

thought the distances between two successive groups is relatively small

samuel’®®@ has classified the four graups having the following

general characteristics:
Typel.. Systems of parallel grooves or lines of etch pits,

orientated acoording to the crystallographic planes of the

particular grains in which thev occurred. Developed at

low deformations. (fig. 10).

Type II. Relatively wide bands orientated similarly to

those of Type I, and apparently a development of them,

Developed after low to medium deformations. (Fig. 9).

Type III. Two sets of parallel lines, the orientations

of which are related to the direction of compression

and not to those of the grains, Developed after medium

to heavy deformations. (Fig. 8).

Type IV. Two sets of parallel undulations, the orien-

tations of which were related to the direction of compression,

but at different angles to those of the Type III indications.

Developed only after heavy deformations. (Fig. 7).

Figure 7 shows the grain deformation at the crater boundary.

The unetched block area was the steel projectile that had melted at

impact, and the grey area above, the crater formed by the impact.

Comparing with fig. 10 we see that the grains were exteusively
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Fig. 7 Deformation of grain in the vicinity

of the crater. (Type IV).

55



{ Lan

fig. 8 Deformation of grain (Type III).

SA



fad

Fig. 9. Deformation of grain showing etch

pit lines (Type II and III).

3



X $00

Fig. 10: Deformation of grains showing etch

oit lines and deformed annealing twins

‘Tvyoe I),
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2longated during impact, the orientation of the elongation being

in the same direction as the impulsive load. Rinehart and Pearson'?

nave pointed out that the tendency of the material to deform by grain

flow increases with high pressure and decreases with high strain

rates. In the area shown in fig, 7, the pressure would have been verv

nigh,

Figure 9 shows grains in which the etch pit lines are closely

spaced, and one grain gives a good example of the etch pits in two

sets of parallel lines. One is lead to conclude that these etch pits

are twinnings in some grains and slip in others, since some are

orientated along twin directions, while the others are not. Twins are

an indication of a high rate of strain.

Figure 10 shows the structure in the less deformed grain

area. Definite evidence that deformation took place are the curved

annealing twins; also, the parallel etch pit lines.
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CHAPTER 5

CONCLUSIONS

Experimental work was limited to ther manganese steel

and 70 : 30 brass targets. The reason for this was that the other

steels were not available in small quantity. Furthermore, only

one impact test was carried out with the Hatfield's manganese

steel, because of its ‘commercially wmadninabie Woronerties

No comparisons with theory were made; the experimental results

for the single test is presented below

5.1 Manganese Steel Target

The suspended magnetic colloid apparatus, described

2arlier, could not be made available. A spring-balanced suspended

magnet, which works on the same principle as the magnetic colloid

was tried, but was found to be mok: sensitive enough to determine

the martensitic zone. In this case we had to resort to the micro-

nardness indentation method

From the plot, fig. 11. we can see that there was a large

variation in the hardness number at distances greater than 0.45 cm

from the center of the crater Variations in readings at a particular

2
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radius precluded the drawing of iso-hardness contours. Near

the crater, and approaching towards it, the hardness number

increases rapidly.

The difficulty in obtaining consistent results can pe

out down to two causes:

 YX The hardness and work-hardening property

of the manganese steel, and

(Lb) Surface pitting (dirty steel)

High loads had to be used in order to obtain accuracy in measuring

the diaganol length of the indentation. Because of the work hardening

property of the steel, this could give false readings of the hardness

number. However, it should give the correct indication as to the

extent of the plastic zone. In fig 11 the radius of the plastic zone

was taken to be 0. 95 cm, but this could be equally well drawn to

oive a radius of 0. 75 cm.

3.2 70: 30 Brass

Theoretical estimation of the depth of penetration and

radius of the crater give a very poor comparison with the measured

values. The difference must arise from strength consideration

If we take the yield for steel to be between 80, 000 and 90,000 p.s.i

the impact pressure as estimated by de hydrodynamic theory, was

only 2 to 8 times this value. This strength would lower the projectile's

‘low velocity. In this case we expect a higher penetration and a

smaller crater radius, the plots bear out this conclusion No known

&gt;xperimental evidence exists to compare the actual value of the



penetration pressure with the theoretical estimate, and this could

he the main source of error in the predictions.

5.3 BoundaryofthePlasticZone

The boundary determined by the ammonium hydroxide -

hydrogen peroxide etching method may be regarded as being the

2lastic-plastic boundary in the sense that it is the boundary between

the zones in which the slip and twinning has occurred in the

majority of the grains and the zone which it has not. There was a

degree of uncertainty as to the exact location of the boundary;

nowever, the repeatability of these observations was quite good

example are the points (all of which were the average of at least

three readings) for the 5, 310 ft/sec impact velocity in fig. 12.

Furthermore, this boundary should not have been affected by the

elastic wave reflected from the boundary of the target specimen

as the time taken by the elastic wave (velocity approximately

12, 000 ft/sec) to reach the boundary of the target ( a cylinder radius

l in, height 1 in) was too long (6.9 x 10 %secs). We can deduce

that the plastic wave should have a velocity of less than 1/4 the

elastic wave velocity for the back of the outgoing wave to have

interacted with the front of the reflected wave inside the measured

Ar

plastic zone. This is lower than the expected speed of the plastic

vave

The plastic boundary obtained from the observation of

the etch pit lines were found to approximately lie on a hemisphere

3 9
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with the point of impact as origin, for the four highest velocities

of impact. The two lower velocities gave radii which were appre-

clably less than the depth. In this case the radius of the plastic

zone was taken as the depth to the elastic-plastic boundary at the

center line of the crater.

(i) Elastic

Al1en!3?) has shown that the stresses produced

by an explosive load at the surface of a semi-infinite

plate have the same magnitude as that predicted by the

elastic theory if the same charge was detonated in a small

cavity at the center of an infinite sphere. We expect

this agreement for a high velocity impact, since the

phenomenon is similar to an explosion, i.e. high

pressure of short duration.

In the present work, the results and theory give

insufficient information to base any definite conclusions.

Some of the limitations are obvious; for example, the

increase in the radius of the cavity is assumed to be less

than Yse times the original radius, which is far too small

Hence, we have to take various values of a. for

different combination of pressure and its time of appli-

cation, The imcompressible flow assumption implies

an infinite rate of straining; in order to allow for this.

a different value of Y will have to be assured for various

mpact velocities.

15



In the plot of the radius of the plastic zone

against the velocity, fig. 5, the measured values fit

theoretical pointe for values of *oVs from slightly
less than 1/100 at 3, 920 ft sec impact velocity, to

slightly over 1/200 for 6, 590 ft/sec impact velocity

ii) Elastic-Plastic

The elastic-plastic theory plot, fig. 6, indicates

that the dynamic yield corresponding to impact velocities

of 3,920 ft/sec and 6, 590 ft/sec should be approximately

and 3.7 Y, respectively. We note that above

5, 300 ft/sec impact velocity the measured radius of the

plastic zone closely follows the theoretical prediction,

assuming a dynamic yield of 3.7Y, :

Taylor 2D has measured values for the yield

A

stress in mild steel at high rates of strain. He found for

a rate of straining of 10, 000 in/in/sec that the dynamic

yield was three times the static. The reasons for the

increase in yield may be explained by consideration of

the anchored dislocations just beyond the perimeter of the

yielded region. These form obstacles to the passage of

released dislocations from the region. The propogation

of the yielding failure must involve the release of these

anchored dislocations. If this is to happen quickly the

stress on these dislocations must be high. Furthermore,

yA



Barrett'&gt; has pointed out that there is a greater increase

in resistance in the soft metals than in the hard ones. The

author has been unable to find any published work which

relates to the dynamic yielding of 70:30 brass.

It can easily be shown that the von Mises and

Tresca yield criterion will give the maximum shear

stress as 0.58 Y and 0.50Y respectively. Hence in the

regions of very high pressure ( o &gt;&gt; NY), if we

neglect shear, the error involved in calculating the

stresses should not be high. However, this could lead

to error in calculating the elastic-plastic boundary.

For example, the von Mises yield condition in the axial

symmetrical distribution of stress contains the term 6,

lL. e.

- LR 2(oq c,) + (co 2) + (s,- so) + bel, = 2"

Now, Cook?) has pointed out that when a single particle of

nearly spherical shape strikes a target at high velocity, then

the target undergoes plastic spherical deformation. (The

axception is at the surface of the target where an elevated

lip in always observed owing to some back flow caused by

relief of pressure at the surface.) In this case, we expect

‘he spherical assumption to be a good approximation,

axcept at the surface



5,4 Suggestions for Future Work

During the course of the present work, the author came

upon several interesting problems where the present knowledge

is either superficial or non-existent. Some of these are listed

below under two headings (i) theoretical, and (ii) experimental.

(i) Theoretical.

(a) The calculation of the boundary of the plastic

zone at higher velocity of impact, where

compressibility would have to be taken into

account.

b) The calculation of the boundary of the plastic

zone due to high velocity impact for a semi-
infinite block target, assuming
‘he target material fo be incompressible;

also for the compressible material.

'c) Theory for the dynamic yield at high rates of

strain.

i.) Experimental.

a) Since more in known about the dynamical yield

stress in steel a check could be made of the

present theory using mild steel targets. This

would check the theories (i a) and (i b). Details

of the experimental technique may be found in

Chapter 3.

(b) Estimate the impact pressure and its duration.

(c) Obtain the dynamic yield for several materials

I'he solutions of these sroblems would add greatly to our

inderstanding of the phenomenon of high velocity impact.



APPENDIX A

We are concerned with singular surfaces. (Weak type

discontinuity, in that only discontinuities in the derivatives of

the functions occur). which may occur to the von Mises and

Prandtl-Reuss equations of plasticity. These equations are

where the

2p + J,
SL i

a

 Va
(Equ. of continuity)

Tye, re
-

A
=oP aL

(Equ. of motion)

« 4 (Equation of
incompressibility)

 -— co” = o\
. oR (quadratic yield condition)

&gt; A are the components of the deviator stress

tensor 8

A €

———

~

~

\
st. dN

hy
(von Mises)

Ar dsl. ) (Prandtl-Reuss)
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Let Se) be the surface given by Ye OF £) = O
a3

in a region R (&amp;) and that S 'S +20 , then

y,

lS a unit vector normal to

-) un

rr

»

; [ens h 3

S(v) and

— 2 Jr,
 Ss the displacement speed, i.e. the normal component of velocity,

of  S(). If R(x) is occupied by a continuous medium moving with

a velocity W™ which is continuous on S(k) then © — uo” V,;

represents the normal component of velocity of Sle) relative

to the material particles instantaneously comprising it. If on this

wave surface we assume S(t) to be singular of order one., we take

the density po the velocity components uv, and the stress

compouents Cup continuous across gle) while at

least one of their first partial derivatives with respect to space

coordinates, is discontinuous at points of sk) . Denoting by

the bracket [ / the difference in the values of a quantity on

he two sides of S(t) in the usual manner. it can be shown that for

2 singular surface S(t) of order one, we shall have the relations,

[oak = ©

Le: =) = BR; Ve

dc; L — aL.BE PA 9

[2s© _— -B; b

Ty



Lp, =) = ¥ Ve [2 = —Xe

where oo .a Bp,
defined over S Ce) , the Vy are the components of the unit

1
A o are quantities

normal vector to the surface and © denotes the velocity

of the surface relative to the coordinate system in the direction

specified by the vector

 |
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