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This study examines the movement of a small freely rotating spherical particle in a two-dimensional trajectory through

a viscoelastic fluid described by the Giesekus model. The fluid equations of motion in the inertialess limit and the

Giesekus constitutive equation are expanded as a power series in the Weissenberg number, for which analytical solu-

tions for velocity and pressure profiles at low order can be determined for the case of a steady-state flow. These steady

solutions are then related to Fourier-transformed variables in frequency space through the use of correspondence rela-

tionships, allowing analysis of time-dependent particle trajectories. The relative unsteadiness and nonlinearity of these

time-dependent flows are quantified through a Deborah and Weissenberg number, respectively. The impact of changing

these dimensionless parameters on the characteristics of the flow is discussed at length. We calculate the predicted

rate of rotation of a small particle undergoing an arbitrary two-dimensional translation through a viscolelastic fluid, as

well as the predicted correction to the force exerted on the particle arising from the interaction of particle rotation and

translation. Finally, we calculate the angular velocity and total force including second-order corrections for particles

executing a few specific trajectories that have been studied experimentally, as well as the predicted trajectory for a

particle being directed by a known time-dependent forcing protocol.

I. INTRODUCTION

Understanding the movement of isolated single spheres

through viscoelastic fluids is a canonical problem that has

been of ongoing interest for several decades among re-

searchers in many fields. A wide variety of both experi-

mental and theoretical research has been conducted to ad-

vance our understanding of flows around spheres in many

circumstances1–4, including sedimentation5,6, rotation7,8, and

immersion in a shear flow9–11. These fundamental studies

have myriad potential applications, ranging from understand-

ing industrially relevant processes like sedimentation of spher-

ical particles from viscoelastic matrix fluids to modeling the

locomotion of microorganisms. Theoretical and numerical

studies have employed a broad array of techniques; many of

these studies have involved the use of a key method in our

work, which is the use of asymptotic expansions to derive an-

alytical approximations for the first corrections to the veloci-

ties, pressures, and stresses in weakly viscoelastic fluids.

Key prior studies in this field using such expansion tech-

niques include seminal work by Hanswalter Giesekus in the

1960s12,13, in which he used ordered fluid expansions of pro-

gressively higher order to derive analytical solutions for the

velocity and pressure profiles around on a sphere moving

steadily through a viscoelastic fluid, as well as the resulting

drag force. Though previous work using such methods ex-

isted at the time, including foundational work by Leslie and

Tanner14, he was the first researcher to publish a correct re-

sult for such a calculation15, and since his original work many

other studies have been conducted into the motion of spheres

through such fluids which rely on similar methods11. In ad-

dition to his work using ordered expansions, many subse-

quent researchers have used Giesekus’ eponymous constitu-

tive model to describe the rheology of the complex fluids they

are studying. Originally published in 196616, and brought

to a wider audience in 198217, the Giesekus model for di-

lute polymer solutions is one of the most widely-used con-

stitutive equations for viscoelastic liquids due to its ability to

capture empirically observed phenomena like shear-thinning,

non-zero normal stress differences, and bounded extensional

viscosity despite its relative simplicity18. The model has since

been used to describe a variety of real fluids19,20, including

both the dilute polymer solutions for which it was originally

formulated21–23 and other viscoelastic fluids like aqueous gum

solutions24 and blood plasma25.

While steady motion of spheres in viscoelastic fluids has

been subject to extensive analytical study1,2,26,27, the problem

of unsteady motion has received less attention. The studies

that do exist regarding unsteady motions have also largely

been limited to one-dimensional movement28–31. However,

there are several real-world applications in which a parti-

cle is being driven in more complex trajectories by mag-

netic, optical, or electrical fields. These include the de-

velopment of guided nano/micro-robots32–34, characteriza-

tion of materials using optically or magnetically trapped

particles35, and precision-controlled directed assembly of

structured materials36, including applications in which these

particles are immersed in viscoelastic fluids37–39. Spheres

being controlled by such external fields can be directed in

2D and 3D trajectories, and we will show in this study that

there are several circumstances in which considering both

the translational and rotational components of the flow aris-

ing from a 2D particle trajectory is necessary for obtaining

a thorough understanding of relevant force-velocity or force-

displacement relationships.

In this work, we derive analytical solutions for the time-

dependent movement of a small, isolated, torque-free sphere

through a weakly viscoelastic fluid in a trajectory that is not

limited to translation in a single direction. The mathemati-
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cal model for this system is described in detail in section II.

In section III, we derive expressions for the particle rotation

arising from an arbitrary movement of this type, as well as the

additional corrections to the force arising from the coupling

of the particle rotation with the translation in each direction of

motion. We will define two dimensionless parameters, a Weis-

senberg and a Deborah number, to measure the relative impor-

tance of flow nonlinearity and unsteadiness, respectively40,41.

The predicted correction to the force for various prescribed

trajectories will be analyzed in a series of contour plots ex-

amining the relative effects of Weissenberg number, Deborah

number, and the Giesekus mobility parameter α in section IV.

Also in section IV, we will use the general solution we de-

rive to compute the angular velocity and total force exerted

on torque-free particles executing some specific trajectories

of interest. We also examine the problem of predicting the

trajectory of a particle in response to some externally applied

force by inverting and integrating the expression for the pre-

dicted force in response to an imposed particle velocity. We

will use this to examine the trajectory of a particle subjected

to a specific, non-trivial time-dependent external force.

II. PROBLEM DEFINITION

A small, solid, torque-free spherical particle of radius a

is submerged in an incompressible, isothermal viscoelastic

fluid and subjected to an arbitrary two-dimensional, time-

dependent flow at low Reynolds number (Re = ρVca/η0 ≪
1), where Vc and tc are the characteristic velocity and time

scales for the prescribed time-dependent motion. In the low-

Reynolds number limit with an a priori unknown Strouhal

number (Sr = tcVc/a) , the governing equations for the sys-

tem are:

Re

Sr

∂v(r, t)

∂ t
=−∇p(r, t)+β∇2

v(r, t)+∇τp(r, t), (1a)

∇ ·v(r, t) = 0, (1b)

and in order to neglect the partial time derivative of velocity,

we require Sr ≫ Re. This is a reasonable limitation to im-

pose for this problem, as the Reynolds number and Strouhal

number values for representative systems of microscale parti-

cle motion36,37 indicate that the Reynolds number will almost

always be significantly smaller than Strouhal number for such

flows, with typical Re ∼ 10−10 − 10−6 and Sr ∼ 10−1 − 102.

With this limitation met, the final momentum balance is given

by:

β∇2
v(r, t)+∇ ·τp(r, t)−∇p(r, t) = 0, (2)

in which the following terms are defined: τp(r, t) is the poly-

meric stress scaled by η0Vc/a where Vc is the characteristic

velocity of the particle, a is the particle radius, and η0 is

the total zero-shear viscosity defined as η0 = ηs + ηp with

ηs being the Newtonian solvent viscosity and ηp being the

polymeric viscosity; p(r, t) is the pressure scaled by η0Vc/a;

v(r, t) is the velocity scaled by the characteristic velocity; and

β is the dimensionless Newtonian viscosity ηs/η0 such that

(1− β ) = ηp/η0. The position vector r is centered on the

particle, and the notation |r|= r will be used throughout. All

times are scaled by a characteristic timescale tc, whose appro-

priate definition will depend on the flow being considered; ap-

propriate choices of time and velocity scales for the problems

studied in this paper will be discussed later in this section.

The evolution equation for the polymeric stress in Eq. 2

must now be defined. The polymeric stress τp can be de-

scribed by a wide variety of constitutive models depending

on the fluid behavior desired or the specific complex fluid be-

ing modeled. In this case, we will use the Giesekus model

to describe the polymeric stress, which in dimensionless form

can be written:

τp(r, t)+De
∂τp(r, t)

∂ t
+

Wi
[

α
(

τp(r, t) ·τp(r, t)
)

+v(r, t) ·∇τp(r, t)− (3)

(

∇v
T (r, t) ·τp(r, t)+τp(r, t) ·∇v(r, t)

)

]

= 2(1−β )e(r, t),

where e(r, t) = 1/2(∇v(r, t)+∇v
T (r, t)) and α is the dimen-

sionless Giesekus mobility parameter quantifying the extent

of shear-thinning and the magnitude of the second normal

stress differences in the fluid. The Weissenberg number Wi

and Deborah number De will be discussed further later in this

section.

Two other key quantities of interest in this work will be

the net force and the torque on the particle arising from the

prescribed motion. The force exerted on the particle by the

fluid is defined as:

F (t) =
∫

S
n · [p(r, t)+2βe(r, t)+τp(r, t)]|r=1

dS, (4)

where the surface traction is evaluted at the sphere surface,

given by r = 1 in the dimensionless form. The torque is:

T (t) =
∫

S
r× [p(r, t)I+2βe(r, t)+τp(r, t)]|r=1

·ndS, (5)

where in both cases dS is the surface of the spherical particle

with an outward facing normal n.

With the general mathematical model established, bound-

ary conditions for a flow with arbitrary velocities in the e1 and

e2 directions are as follows:

v(r → ∞, t) =V1(t)e1 +V2(t)e2, (6a)

p(r → ∞, t) = 0. (6b)

and the torque-free condition:

T (t) =
∫

S
r× [p(r, t)I+2βe(r, t)+τp(r, t)]|r=1

·ndS = 0,

(6c)
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e2

e1
a R

x1 = R cos(2π𝑓t) 
x2 = R sin(2π𝑓t) 

De =2π𝑓λ
Wi = 2π𝑓λR/a

a)

e2

e1
a

𝑌଴
x1 = 𝑉଴𝑡
x2 = 𝑌଴ sin(2π𝑓t) 

De =2π𝑓λ
Wi = 2π𝑓λ𝑌଴/a

b)

FIG. 1. A wide variety of 2D particle trajectories can be analyzed

using the solutions derived in this work, including (a) a particle mov-

ing in a circle with some known radius R, and (b) a particle moving

in a sinusoidal pattern with a displacement Y0.

as well as no-slip and no-penetration conditions applied at the

surface of the sphere:

v(r = 1, t) ·n = 0, (6d)

v(r = 1, t) =Ω(t)×n. (6e)

In this case, the frame of reference is centered on the parti-

cle, so the velocity boundary conditions are applied at r → ∞.

For the equivalent problem of a particle moving through a

quiescent fluid, the velocity boundary conditions in Eq. 6a

would be opposite in sign and applied at the surface, result-

ing in a velocity ṽ(r, t) = v(r, t)−v∞ instead. In the case we

are working with, in which the frame of reference is centered

on the particle, the far-field, imposed velocity consists in gen-

eral of components in both the e1 and e2 directions, with time

variations described by V1(t) and V2(t), respectively. So, for

example, in the circular particle trajectory shown in 1a, the

particle’s velocity will be the derivative of its position, and as

it is moving through a quiescent fluid the appropriate bound-

ary conditions would be:

V1(r → ∞) = 2π f Rsin(2π f t), (7)

V2(r → ∞) =−2π f Rcos(2π f t),

and the torque-free condition described in Eq. 6c gives rise

to the rotation described in Eq. 6e, described by some time-

dependent angular velocity term Ω(t) which must be calcu-

lated based on the interaction of the two imposed flow fields.

In this initial formulation we have explicitly included the ar-

gument for each term, e.g. writing τp(r, t), u(r, t), p(r, t), etc.

to emphasize that these are time-dependent quantities. How-

ever, for the sake of brevity and compactness of equations,

throughout the rest of this work we will not do so, and vari-

ables with no diacritical mark above them should be under-

stood to be time- and space-dependent. When terms with dif-

ferent arguments are introduced, for example the frequency-

dependent term v̂(r,ω), the arguments will again initially be

included and clearly described in the text in their first instance,

and they will then be indicated by the corresponding diacriti-

cal mark going forward.

In the above equations and throughout, Wi and De refer to

the Weissenberg and Deborah numbers, respectively, which

have the following definitions:

De =
λ

tc
Wi =

λVc

a
, (8)

where λ is the single characteristic relaxation time of the

Giesekus model describing the viscoelastic fluid. The Weis-

senberg number Wi provides a relative measure of the mag-

nitude of the nonlinear elastic and viscous forces in the fluid,

and De is a measure of the flow unsteadiness, defined as a ratio

of the relaxation time of the fluid to a representative process

time scale tc, which we define as the timescale on which the

flow is changing; Vc is defined as the maximum absolute value

of the far-field velocity field V (r → ∞, t).
For example, consider a circular trajectory as shown in Fig.

1a where the frequency of the particle motion is 2π f and the

radius of the circular trajectory is R. In this case, an appro-

priate choice of Vc would be Vc = 2π f R, and tc = 1/(2π f )
may be chosen as an appropriate time scale. In this case,

De = 2π f λ and Wi = 2π f λR/a = De(R/a). For the sinu-

soidal trajectory shown in Fig. 1b, the characteristic time scale

tc would again be tc = 2π f λ , and an appropriate velocity scale

may be Vc = 2π fY0. These two forms lead to an essentially

identical definition of the Weissenberg and Deborah numbers

as in the case of a circular trajectory, with the trajectory ra-

dius R for the circular case instead replaced by the amplitude

Y0 for the case of an oscillatory sinusoidal trajectory as shown

in Fig. 1b.

We can once again closely consider the case of the circular

trajectory in Fig. 1 in order to better understand the interplay

of the Weissenberg number, Deborah number, and the ratio of

the particle radius to the trajectory radius, a/R, which we will

henceforth refer to as the “radius ratio" (when referring to the
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Wi = 0  Stokes flows

Increasingunsteadiness
Increasing nonlinearity

a/R<<
 1 -app

roxima
ted as t

ranslat
ion

R/a <<
 1 –app

roxima
ted as r

otation
FIG. 2. The accessible "operating space" for describing a particle moving in a circular trajectory using the methods outlined in this work is

shown as a function of dimensionless parameters Wi, De, and the radius ratio a/R. The red dashed line on the left indicates the limit in which

these flows can be approximated a simple 1D translation through an elastic fluid, and the blue dashed line on the right indicates where they can

be approximated as simple rotation.

ratio R/a, we will use the term “inverse radius ratio"). Fig-

ure 2 shows an operating space in which the solutions derived

in this work are valid. As indicated by the green arrows at

the center of the diagram, increasing the Weissenberg number

increases nonlinearity, while increasing the Deborah number

(moving along the diagonal of this figure) increases unsteadi-

ness. As such, the x-axis of this figure - the case of Wi = 0,

or full linearity - represents Stokes flows of Newtonian flu-

ids. Conversely, the y-axis represents the case of increasing

nonlinearity in the limit of the radius ratio a/R → 0, meaning

that the radius of the trajectory is far greater than the radius

of the particle. This case is asymptotically equivalent to that

of a one-dimensional translation through a viscoelastic fluid,

which has been studied previously6,31. Similarly, as indicated

by the dashed line at a radius ratio of a/R = 1, once the ra-

dius of the trajectory is the same as, or smaller than, the par-

ticle radius (a/r > 1), the motion overall can be increasingly

well approximated as simple particle rotation in a viscoelas-

tic fluid7. However, moving away from either axis into the

central portion of the figure introduces both fluid nonlinearity

and flow unsteadiness, and both particle rotation and transla-

tion as well as their coupling must be considered in this region

to fully characterize the flow.

In the next section, we will derive the rate of particle

rotation and the leading-order force correction arising from

rotation-translation coupling very generally for an arbitrary

particle velocity. However, we will return to the example of

a circular trajectory in section IV and more closely examine

the interplay of the fluid nonlinearity and flow unsteadiness

described by the Weissenberg and Deborah numbers.

III. SOLUTION METHODS

To evaluate general solutions to this class of problems for

2D motions of spherical particles through viscoelastic fluids,
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we make use of techniques developed in our previous work

analyzing the unsteady motion of particles in a simpler 1D

trajectory31. In brief, we use an asymptotic expansion of

the governing equations in powers of the Weissenberg num-

ber. We then use correspondence relationships to connect the

steady-state solutions of the equations at various orders to the

frequency-dependent solutions at those orders, and then use

the Lorentz reciprocal theorem42 to calculate the integrated

force and torque at higher orders using only information from

lower-order solutions. The final solution at each order will

include an expression for the angular velocity of a particle un-

dergoing an arbitrary 2D translation and the correction to the

force as a function of the Weissenberg and Deborah number

exerted on the particle arising from the coupling of this rota-

tion with the particle’s translation.

We write the asymptotic expansion quite generally as:

X =
∞

∑
n=0

Wi(n)X(n), (9a)

X =X
(0)+WiX(1)+Wi2X(2)+ ... (9b)

where X represents the variables in the problem: v, p, τp,

e, F , T . It is worth noting here that throughout the text, the

term "leading order" will be used to describe terms of O(1),
or O(Wi0), "first order" is used to indicate the first correction

appearing at O(Wi), etc.

We can now formulate the governing equations at each or-

der in the expansion:

β∇2
v
(n)+∇ ·τ

(n)
p +∇p(n) = 0, (10a)

∇ ·v(n) = 0, (10b)

as well as the constitutive equation:

τ
(n)
p +De

∂τ
(n)
p

∂ t
+

n−1

∑
m=1

[

α
(

τ
(n−m)
p ·τ

(m)
p

)

+v
(n−m) ·∇τ

(m)
p −

(

∇v
(n−m)T ·τ

(m)
p (11)

+τ
(m)
p ·∇v

(n−m)T
)

]

= 2(1−β )e(n),

where the summation term is used to collect all of the combi-

nations of terms that result in total order n for n ≤ 3.

In addition to the general, time-dependent equations, we

will also be particularly interested in two specific cases of

this problem: at steady-state, and in the frequency domain.

In both of these cases, the governing equations and boundary

conditions will be formally the same as in the time-dependent

case, though the polymeric stress will change depending on

the case in question. Going forward, steady-state variables

will be indicated with a tilde (e.g. τ̃p(r), and the correspond-

ing frequency-dependent ones with a caret (e.g. τ̂p(r,ω). In

the steady-state case, the polymeric stress is:

τ̃
(n)
p (r)+

n−1

∑
m=1

[

α
(

τ̃
(n−m)
p (r) · τ̃

(m)
p (r)

)

(12)

+ ṽ
(n−m)(r) ·∇τ̃

(m)
p (r)−

(

∇ṽ
(n−m)T (r) · τ̃

(m)
p (r)

+ τ̃
(m)
p (r) ·∇ṽ

(n−m)(r)
)

]

= 2(1−β )ẽ(n).

Frequency-dependent variables are defined as the Fourier

transform of their time-dependent counterparts. For any

variable X, the relationship between time-dependent and

frequency-dependent quantities is:

X̂(ω) = F [X(t)] =
∫ ∞

−∞
X(t)e−iωtdt, (13)

and so, in the frequency-dependent case the polymeric stress

is:

τ̂
(n)
p (r,ω) = χ(ω)

(

2(1−β )ê(n)(r,ω) (14)

−
n−1

∑
m=1

[

α
(

τ̂
(n−m)
p (r,ω)∗ τ̂

(m)
p (r,ω)

)

+ v̂
(n−m)(r,ω)∗∇τ̂

(m)
p (r,ω)

−
(

∇v̂
(n−m)T (r,ω)∗ τ̂

(m)
p (r,ω)

+ τ̂
(m)
p (r,ω)∗∇v̂

(n−m)(r,ω)
)

])

,

where the term χ(ω) = 1/(1+ iωDe) scales the polymeric

contribution to the complex viscosity, and the symbol ∗ de-

notes a convolution of two terms. Moving forward, the calcu-

lations performed will primarily involve the frequency-space

terms, and we will once again begin omitting explicit indi-

cations of the appropriate arguments for each variable and

denoting their time or frequency dependence only by their

respective accents (carets for frequency-dependent terms) or

lack therof (for time-dependent terms).

A. Leading order solution

We proceed with our calculations in terms of the frequency-

dependent variables due to their greater convenience for ana-

lyzing time-dependent quantities. At O(1), or leading order,

we recover the Stokes solution, whose governing equations in

frequency space are:

β∇2
v̂
(0)+∇ · τ̂

(0)
p −∇ p̂(0) = 0, (15a)

∇ · v̂(0) = 0, (15b)

and the constitutive equation is:

τ̂
(0)
p = 2χ(ω)(1−β )ê(0), (16)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
2
6
8
3
5



Accepted to Phys. Fluids 10.1063/5.0126835

Time-Dependent Two-Dimensional Translation of a Freely Rotating Sphere in a Viscoelastic Fluid 6

and finally, the boundary conditions are:

v̂
(0)(r → ∞) = V̂1(ω)e1 +V̂2(ω)e2, (17a)

v̂
(0)(r = 1) = Ω̂(ω)e3, (17b)

p̂(0)(r → ∞) = 0, (17c)

and the torque-free condition:
∫

S
r×
[

p̂(0)I+2β ê+ τ̂
(0)
p

]

|
r=1

·ndS = 0, (17d)

where V̂1(ω) = F [V1(t)], V̂2(ω) = F [V2(t)], and Ω̂(ω) =
F [Ω(t)], with F [∗] indicating a Fourier transform:

The frequency-space variables in these equations can be re-

lated to their steady-state counterparts by application of a cor-

respondence relationship43. However, the multi-directional

aspect of this particular flow requires additional notation to

indicate which components of the flow are related to which

imposed flow direction. For example, at leading order we can

write v̂
(0) = v̂

(0)
1 + v̂

(0)
2 where v̂

(0)
1 is the velocity contribu-

tion driven by the imposed flow in the e1 direction, and v̂
(0)
2

is the contribution driven by the imposed flow in the e2 di-

rection. The same convention applies to both steady-state and

frequency space variables. At higher orders, at which point

coupling of flow fields gives rise to variables with contribu-

tions arising from multiple flow directions, additional sub-

scripts would be needed (e.g. τ̂p1,2 indicating a stress com-

ponent impacted by both velocities directed in the e1 and e2

directions). With this in hand, we can establish the leading

order correspondence relationships:

v̂
(0)
i = V̂i(ω)ṽ

(0)
i , (18a)

p̂
(0)
i = V̂i(ω)η∗(ω) p̃

(0)
i , (18b)

τ̂
(0)
p,i = V̂i(ω)χ(ω)τ̃

(0)
p,i , (18c)

where i = {1,2,3}, indicating terms governed by each of the

flow directions. The term η∗(ω) is the complex viscosity of

the fluid, defined as β +(1−β )χ(ω) = η∗(ω), where again

χ(ω) = 1/(1+ iωDe).
The steady-state solutions for the velocity and pressure pro-

files in dimensionless form at leading order (i.e. O(Wi0)) are

the well-known solutions for flow of a Newtonian fluid around

a sphere44:

ṽ
(0)
i (r) =Vj −

[ 3

4r

(

δi j +
rir j

r2

)

+
1

4r3

(

δi j −
3rir j

r2

)

]

Vj,

(19a)

p̃
(0)
i (r) =

3r j

2r3
Vj, (19b)

where j = {1,2} and Vj is thus the imposed velocity in the e1

and e2 directions. The velocities in each direction are, at this

order, superimposed and non-interacting. Finally, the dimen-

sionless, frequency-dependent force at this order is simply:

F̂
(0)(ω) = 6πη∗(ω)

(

V̂1(ω)e1 +V̂2(ω)e2

)

. (20)

As will be the case throughout this work, if the time-

dependent force is the desired quantity, one can simply take

the inverse Fourier transform of this frequency-dependent so-

lution. The inverse Fourier transform of a transformed vari-

able f̂ (ω) is given by:

f (t) =
1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω, (21)

and we will use this formulation of the time-dependent force

to analyze some specific flows in Section IV.

B. Calculation of angular velocity

While the velocity fields at leading order are superimpos-

able and non-interacting, at higher orders this is no longer

true, and they can couple and give rise to a net particle ro-

tation. We can calculate this rotation by first determining the

torque on the particle that would arise at order O(Wi)from the

interactions of the O(1) flow fields generated by movement in

the e1 and e2 directions with each other. Since the particle is

torque-free, this must be exactly balanced by its rotation.

We can use the Lorentz reciprocal theorem to formulate an

expression that allows us to calculate the torque on the par-

ticle arising at O(Wi) using only O(1) terms. We do this

by first defining an arbitrary auxiliary flow v̂
′ with a pres-

sure profile p̂′. This flow will have the boundary conditions

v̂
′(r = 1) =Ω

′× r = U
′, v̂

′(r → ∞) = 0, p̂′(r → ∞) = 0. The

deviatoric stress in this flow is τ̂ ′ = 2η∗(ω)e′, where η∗(ω)
is the complex viscosity normalized by the total zero-shear

viscosity. The rate of strain is e′ =Ω
′ ·S(r) where S(r) is a

third rank tensor known from the solution for simple rotation

of a particle in a Newtonian fluid:

Si jk(r) =
−3

r5
(εikmrmr j + ε jkmrmri), (22)

where εi jk is the Levi-Civita alternating symbol18. We can

then calculate the torque by constructing a standard reciprocal

theorem argument:

∫

V
∇ ·
[

(−p̂(1)I+2β ê(1)+ τ̂
(1)
p

]

· v̂′ dr

=
∫

V
∇ ·
[

(− p̂′I+τ
′)
]

· v̂(1) dr, (23)
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with V indicating the volume of fluid around the particle.

Some rearrangement of terms, application of the divergence

theorem, and several algebraic steps result in a fairly simple

expression for the torque:

T
(1) =

∫

V
S(r) :

(

τ̂
(1)
p −2χ(ω)ê(1)

)

dr. (24)

We can now calculate the first-order contribution to the

torque T
(1) solely using terms whose definitions we already

know, from both the leading order solution for translation and

the solution for a rotating sphere in a Newtonian fluid, which

we use to define the term S(r). The term τ̂
(1)
p − 2χ(ω)ê(1)

in Eq. 24 can be determined simply from Eq. 14 for the case

where n = 2:

τ̂
(1)
p −2χ(ω)ê(1) =−α

(

τ̂
(0)
p ∗ τ̂

(0)
p

)

+ v̂
(0) ∗∇τ̂

(0)
p (25)

−
(

∇v̂
(0)T ∗ τ̂

(0)
p + τ̂

(0)
p ∗∇v̂

(0)
)

.

Using the definition of torque in Eq. 24 and the correspon-

dence relationships as defined in Eq. 18, we arrive at the fol-

lowing equation for the additional contribution to the torque

at O(Wi):

T
(1) =χ(ω)(V̂1(ω)∗ [χ(ω)V̂2(ω)])

∫

V
S(r) :

[

α(τ̃
(0)
p,1 · τ̃

(0)
p,2 )+ ṽ

(0)
1 ·∇τ̃

(0)
p,2 −

1

2
(ṽ

(0)T
1 (r) · τ̃

(0)
p,2 + τ̃

(0)
p,2 · ṽ

(0)
1 )
]

dr

+χ(ω)(V̂2(ω)∗ [χ(ω)V̂1(ω)])
∫

V
S(r) :

[

α(τ̃
(0)
p,2 · τ̃

(0)
p,1 )+ ṽ

(0)
2 ·∇τ̃

(0)
p,1 −

1

2
(ṽ

(0)T
2 (r) · τ̃

(0)
p,1 + τ̃

(0)
p,1 · ṽ

(0)
2 )
]

dr. (26)

Upon evaluation of the integrals in Eq. 26 using the sym-

bolic solver Mathematica and the Einstein notation plugin

EinS45, we arrive at a simpler expression for the first-order,

or O(Wi), correction to the torque:

T̂
(1) =

27π(1−β )

20
χ(ω)×

[

(V̂2(ω)∗ [χ(ω)V̂1(ω)])− (V̂1(ω)∗ [χ(ω)V̂2(ω)])
]

e3,

with the torque acting in the e3 direction as expected. The

particle is torque-free, and thus the torque generated by the

interacting flow fields must be exactly counteracted by the par-

ticle’s rotation. We can thus solve for the particle rotation by

the following balance:

T̂
(0)+WiT̂ (1) = 0, (27)

where the leading-order dimensionless torque

(T (0)(ω)/a2η0Vc) for a sphere in a viscous Newtonian

fluid undergoing a rotation at frequency Ω̂ has the well-

known form44:

T̂
(0) = 8πη∗(ω)Ω̂(ω)e3, (28)

So, we now have defined all terms of the torque balance:

8πη∗(ω)Ω̂(ω) =−Wi
27π(1−β )

20
χ(ω)×

[

(V̂2(ω)∗ [χ(ω)V̂1(ω)])− (V̂1(ω)∗ [χ(ω)V̂2(ω)])
]

,

meaning that the angular velocity of the particle is:

Ω̂(ω) =−
27(1−β )Wi

160η∗(ω)
χ(ω)× (29)

[

(V̂2(ω)∗ [χ(ω)V̂1(ω)])− (V̂1(ω)∗ [χ(ω)V̂2(ω)])
]

.

This form of the angular velocity Ω̂(ω) arising from the

first effects of elasticity can now be used to both model parti-

cle rotation in arbitrary 2D flows and to predict the force cor-

rection arising from interactions between particle translation

and rotation.

C. Calculation of force

The leading-order correction to the force can be calculated

using a similar procedure as that for calculating the parti-

cle rate of rotation. We begin by constructing a reciprocal

theorem argument using the known flow field components

and an arbitrary auxiliary flow, v̂
′ and pressure p̂′ such that

v̂
′(r → ∞) = 0, p̂′(r → ∞) = 0, and v̂

′(r = 1) = u
′. The devi-

atoric stress in this flow is τ̂
′ = 2η∗(ω)e′, where the rate of

strain tensor e′ = u
′ ·R(r) and the tensor R(r), defined in Eq.

32, is known from the solution to the leading order problem.

We can once again construct a standard reciprocal theorem

argument:

∫

V
∇·
[

(− p̂(1)I+2β ê(1)+ τ̂
(1)
p

]

· v̂′ dr (30)

=
∫

V
∇ ·
[

(− p̂′I+ τ̂
′)
]

· v̂(1) dr.

As with the above calculation of torque by a similar

method, there are several intermediate steps involving fur-

ther simplification, application of the divergence theorem, and
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some tedious algebra. Eventually, we arrive at a simple ex-

pression for the correction to the force:

F̂
(1)
( ω) =

∫

V
R(r) :

(

τ̂
(1)
p (ω) (31)

−2χ(ω)ê(1)(r,ω)
)

dr,

in which we know R(r) from the leading order solution, cor-

responding to Stokes flow of a Newtonian fluid:

Ri jk(r) =
3

4r3

(

− rkδi j+
1

r2
(3rir jrk + riδ jk

+ r jδik + rkδi j)−
5

r4
rir jrk

)

, (32)

and the term τ̂
(1)
p (r,ω)−2χ(ω)ê(1)(r,ω)) is defined entirely

in terms of the leading order solution, as shown in Eq. 25.

We can thus now evaluate the predicted force correction

arising from the interaction of translation and rotation. Note

that throughout this derivation up to this point, terms here are

indicated as being first order, as they come from interactions

of two leading order, or Stokes, flow fields. However, the

overall contribution to the force here will be O(Wi2), due to

its dependence on the particle rotation, which scales with Wi

as shown in Eq. 29. Thus, the contribution to the force in Eq.

33 will be denoted F̂
(2)

rather than F̂
(1)

going forward.

The final form of this O(Wi2) force term arising from

translation-rotation coupling is:

F̂
(2)

= χ(ω)(Ω̂(ω)∗ [V̂1(ω)χ(ω)])
∫

V
R(r) :

[

α(τ̃
(0)
p,2 · τ̃

(0)
p,1 )+ ṽ

(0)
3 ·∇τ̃

(0)
p,1 −

1

2
(ṽ

(0)T
3 · τ̃

(0)
p,1 + τ̃

(0)
p,1 · ṽ

(0)
3 )
]

dr

+χ(ω)(V̂1(ω)∗ [Ω̂(ω)χ(ω)])
∫

V
R(r) :

[

α(τ̃
(0)
p,1 · τ̃

(0)
p,3 )+ ṽ

(0)
1 ·∇τ̃

(0)
p,3 −

1

2
(ṽ

(0)T
1 · τ̃

(0)
p,3 + τ̃

(0)
p,3 · ṽ

(0)
1 )
]

dr (33)

+χ(ω)(Ω̂(ω)∗ [V̂2(ω)χ(ω)])
∫

V
R(r) :

[

α(τ̃
(0)
p,2 · τ̃

(0)
p,2 )+ ṽ

(0)
3 ·∇τ̃

(0)
p,2 −

1

2
(ṽ

(0)T
3 · τ̃

(0)
p,2 + τ̃

(0)
p,2 · ṽ

(0)
3 )
]

dr

+χ(ω)(V̂2(ω)∗ [Ω̂(ω)χ(ω)])
∫

V
R(r) :

[

α(τ̃
(0)
p,2 · τ̃

(0)
p,3 )+ ṽ

(0)
2 ·∇τ̃

(0)
p,3 −

1

2
(ṽ

(0)T
2 · τ̃

(0)
p,3 + τ̃

(0)
p,3 · ṽ

(0)
2 )
]

dr,

which, when the integrals are evaluated, can be expressed in a

simpler form:

F̂
(2)

=
27π(1−β )

40
χ(ω) (34)

×
[

(

V̂2(ω)∗ [χ(ω)Ω̂(ω)]
)

e1 −
(

V̂1(ω)∗ [χ(ω)Ω̂(ω)]
)

e2

]

+
63π(1−β )

40
χ(ω)

×
[

(

Ω̂(ω)∗ [χ(ω)V̂2(ω)]
)

e1 −
(

Ω̂(ω)∗ [χ(ω)V̂1(ω)]
)

e2

]

.

For a complete expression for the force correction arising

at O(Wi2), terms arising purely from the translational motion

in the e1 and e2 directions must also be considered. These

terms have been derived previously for the Johnson-Segalman

and Giesekus models31, and are replicated for the Giesekus

model in Appendix A (see Eq. A1). These purely translational

components will be included in the total force corrections for

all of the example flows in section IV.

IV. EXAMPLE FLOWS

To demonstrate how the general solutions derived in this

work can be used to better understand some specific particle

trajectories, we provide three examples: predicting the angu-

lar velocity and total force exerted on a particle moving in

a circular trajectory, as shown in Fig. 1a and described in

Fig. 2; predicting the variations in the angular velocity and

total force exerted on a particle moving in a sinusoidal trajec-

tory, as shown in Fig. 1b; and predicting the trajectory of a

particle subjected to an external time-varying force in a user-

controlled elliptical pattern.

A. Circular trajectory

A particle of radius a moving in a circular trajectory with

radius R at a frequency 2π f , as seen in Fig. 1, has a path

described as:

x1(t) = Rcos(2π f t), x2(t) = Rsin(2π f t), (35)

which results in a time-varying velocity:

V1(t) =−2π f Rsin(2π f t), V2(t) = 2π f Rcos(2π f t).
(36)

The expressions derived for the angular velocity and the

force involve the frequency-space definitions for the imposed

velocities, which in this case are:

V̂1(ω) = i2π2 f R
(

δ (2π f −ω)−δ (2π f +ω)
)

V̂2(ω) = 2π2 f R
(

δ (2π f −ω)+δ (2π f +ω)
)

. (37)
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Note that 2π f , rather than the more conventional ω , is

used here to denote the frequency of the particle’s traversal of

the circular trajectory to avoid confusion as ω has been used

throughout this work to denote the frequency variable in the

Fourier-space terms. In this case, the characteristic velocity Vc

on which terms will be made dimensionless is Vc = 2π f R. As-

suming that the viscoelastic fluid has a single relaxation time

λ , we thus define the Deborah number for this unsteady flow

to be De = 2π f λ . Using the imposed velocity of the particle

defined in Eq. 37, we can calculate the force exerted on this

particle at leading order, the particle’s angular velocity and

the total correction to the force arising at second order in the

Weissenberg number (i.e. at O(Wi2)), Wi = De(R/a).
First and most straightforwardly, we can calculate the time-

dependent force on this particle at leading order using Eq. 20.

While Eq. 20 is for the force in frequency space, this can

easily be converted to the time domain by taking its inverse

Fourier transform F−1[F̂
(0)
(ω)] = F

(0)(t). The result is then:

F
(0)(t) =−6π

(

β sin(2π f t)

+(1−β )
sin(2π f t)−Decos(2π f t)

1+De2

)

e1 (38)

+6π
(

β cos(2π f t)+(1−β )
cos(2π f t)+Desin(2π f t)

1+De2

)

e2.

The angular velocity of the particle can be calculated us-

ing Eq. 29. Once again, Eq. 29 describes a frequency-space

quantity, which can be converted to the time domain with an

inverse Fourier transform F−1[Ω̂(ω)] = Ω(t).

In this case the angular velocity is found to be a constant,

as would be expected for a circular trajectory:

Ω=
−27Wi(1−β )

160

De

(1+De2)
e3

=
−27(1−β )

160

(

R

a

)(

De2

1+De2

)

e3. (39)

The angular velocity, in this case, is influenced by the Deb-

orah and Weissenberg numbers, as well as the dimensionless

polymeric contribution to the viscosity (1 − β ). Substitu-

tion of the definition of the Weissenberg number in this case,

Wi = (R/a)De, results in an expression for the angular veloc-

ity dependent on the viscosity, inverse radius ratio R/a, and

Deborah number. We will primarily examine this problem in

the context of these dimensionless groups.

Finally, the expression for the second-order, or O(Wi2),
correction to the time-dependent force — derived using an in-

verse Fourier transform of its frequency-dependent definition

Eq. 34 — arising from coupling between particle rotation and

translation is:

F
(2)(t) =

243π

6400

(

R

a

)2
De2(1−β )2

(

De2 +1
)3

(

((

3De3 +17De
)

sin(2π f t)+
(

10−4De2
)

cos(2π f t)
)

e1

−
((

3De3 +17De
)

cos(2π f t)−
(

10−4De2
)

sin(2π f t)
)

e2

)

. (40)

The full expression for the force correction arising from

purely translational components is too long and unwieldy to

print here, but can be provided upon request to the authors

via email. However, we can examine its relative influence on

the overall force when compared to the force correction aris-

ing from rotation-translation coupling. Figure 3 shows the

maximum contribution of rotation-translation coupling com-

ponents of the force and purely translational components. We

show the maximum contributions here because, due to the dy-

namic nature of the solution, the value of each of these cor-

rections varies significantly over time; the maximum gives a

clear picture of the magnitude of the force correction through-

out the duration of particle motion. From this figure, it is clear

that both corrections are highly dependent on the radius ratio

a/R. When a/R is very small, the radius of the particle trajec-

tory is much greater than the radius of the particle itself and

the trajectory is well-approximated by pure translation. In this

limit, the translational component of the force correction dom-

inates. However, as a/R increases, the approximation as pure

translation is no longer valid, and the component of the force

correction arising from coupling of rotation- and translation-

dependent terms becomes increasingly important. It even-

tually surpasses the purely translational component and thus

also must be considered to achieve an accurate understanding

of this particle motion. Note that at higher values of the ra-

dius ratio a/R, it appears in Fig. 3 that the translation-rotation

component of the force correction exceeds the total force cor-

rection, which is counter-intuitive. However, this is simply be-

cause the values shown here are the maximum absolute value

of time-dependent functions. Thus, this would indicate at the

points in time where the magnitude of the translation-rotation

component of the force exceeds the total value of the force

correction, it is being counteracted by the translational com-

ponent of the force correction.

We can also examine the time-dependent force exerted

on a particle undergoing a specific circular trajectory in a
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FIG. 3. Maximum total correction to the force arising at second or-

der in Weissenberg for a Giesekus fluid with α = 0.3 and β = 0.001

is shown as a function of the radius ratio a/R for a constant Wi = 1.

This shows that the predominant contribution at low a/R comes from

translation-translation coupling, and that at high a/R there is a transi-

tion to predominant contributions from rotation-translation coupling.

Giesekus fluid. In this case, we examine a fluid with a mod-

erate mobility parameter of α = 0.3 and β = 0.001, indicat-

ing ηp ≫ ηs, as is often the case for semidilute or entangled

polymer solutions23,46. We can examine a specific radius ra-

tio a/R = 0.5 and a Deborah number De = 0.5, meaning the

Weissenberg number is Wi = 1, which approaches the upper

limit at which this solution is expected to be valid. Figures

4 and 5 show the dynamic variations in the total force ex-

erted on the particle in the e1 and e2 directions for a short

segment of dimensionless time t/tc. Once again, we can see

that for this case the magnitude of the force corrections arising

from rotation-translation coupling and pure translation are of

roughly equal magnitude, and overall contribute to a small but

noticeable decrease in the magnitude of the total force when

compared to the leading order solution on its own; for this

specific and relatively moderate set of parameters, the total

decrease in the force is, on average, about 4%.

While investigating specific flows in a fluid with known pa-

rameters can be illuminating, we also have, as shown in Fig. 2,

a broad operating space in which these parameters can be var-

ied. In order to best understand how those parameters affect

the total force being exerted on the particle, we can examine

contour plots of the maximum total correction to the force at

second order in Wi, or O(Wi2), as a function of the Debo-

rah number De, the inverse radius ratio R/a, and the Giesekus

mobility parameter α . Figure 6 shows how these contours

vary for a fixed value of mobility parameter α = 0.3, with De

varying from 0 to 0.5 and the inverse radius ratio R/a varying

from 0 to 2, or from the case in which we can approximate

the motion as pure rotation to that of a particle moving in a

trajectory with a radius twice that of its own. Because the

Weissenberg number is Wi = (R/a)De and the force correc-

0 0.5 1 1.5 2 2.5 3 3.5 4
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-0.5
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0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

-1
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FIG. 4. Variation in the total force over time for a particle moving

in a circular trajectory with De = 0.5, inverse radius ratio R/a = 2,

β = 0.001, and α = 0.3 is shown, as well as individual components

of that force arising at leading order (O(1)) in addition to the sec-

ond order (O(Wi2)) corrections from both translation-translation and

translation-rotation coupling.

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.05

0

0.05

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.05
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FIG. 5. The second-order contributions to the force are shown

here for a Deborah number De = 0.5, inverse radius ratio R/a = 2,

β = 0.001, and α = 0.3 indicating that the corrections arising from

translation-translation and translation-rotation coupling are on the

same order of magnitude.

tion is directly dependent on Wi, we would intuitively expect

the greatest magnitude of the force correction to occur in the

top-right area of the plot, which represents the highest values

of Wi. However, we can also see from this plot that increasing

the inverse radius ratio (R/a) at a constant De and increasing

De at a constant inverse radius ratio have slightly different im-

pacts on the magnitude of the force correction, with increases

in the inverse radius ratio resulting in a more rapid increase in

the overall force correction than increases in De.
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FIG. 6. Contours of the maximum total correction to the force

arising at second order in Wi for a Giesekus fluid with α = 0.3 and

β = 0.001 is shown as a function of the Deborah number De and

inverse radius ratio R/a. The Weissenberg number Wi = De(R/a)
increases toward the upper right corner.

In Figure 7, we vary the mobility parameter α between

α = 0, or the Oldroyd-B model, and α = 0.5 — commonly

recognized to be the physically realistic limit of the Giesekus

model18 — and the Deborah number from 0 to 1 for a con-

stant Weissenberg number of Wi = 1. The constant Wi is

maintained by adjusting the inverse radius ratio to compen-

sate for changes in Deborah number, to satisfy the constraint

Wi≡De(R/a). Here we can see that at any value of the Debo-

rah number, increasing the mobility number, or increasing the

extent of shear thinning, increases the predicted magnitude of

the force correction and thus enhances the total effect of non-

linear viscoelasticity in the system. We see the opposite trend

in this case for unsteady effects, where at a given value of α
the total magnitude of the force correction tends to decrease

with increasing Deborah number above De = 0.1. This can

be attributed to the adjustment of R/a to maintain the Weis-

senberg number Wi = 1; as seen in Figure 3, the total magni-

tude of the force correction is higher at larger values of R/a

due to the larger contributions from the purely translational

terms.

We can perform a similar analysis for a system in which,

again, the mobility parameter α and the Deborah number both

range from 0 to 0.5, but rather than Weissenberg number be-

ing held constant the inverse radius ratio is held constant at

R/a = 2 (meaning the radius of the particle trajectory is twice

the radius of the particle itself), so that Wi = 2De. Contours

of the maximum total correction to the force for such a sys-

tem are shown in Figure 8. In this case, once again, the in-

crease in Wi with increasing De would be intuitively expected

to increase the magnitude of the force correction regardless

of other factors. However, we can also see that at a given De

(and thus given Wi), increasing the mobility parameter again

enhances the effects of elasticity in the system, and that this

effect is more drastic at lower values of the mobility parameter

α .
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FIG. 7. Contours of the maximum total correction to the force aris-

ing at second order in Wi for a Giesekus fluid with β = 0.001 are

shown as a function of the Deborah number and mobility parameter

α for a constant value of Wi= 1, indicating that the inverse radius ra-

tio R/a is adjusted as needed for changing De to maintain a constant

Weissenberg number via the relationship Wi/De = R/a.
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FIG. 8. Maximum total correction to the force arising at second

order in Wi for a Giesekus fluid with β = 0.001 is shown as a func-

tion of the Deborah number De and mobility parameter α for a con-

stant inverse radius ratio R/a= 2, resulting in a variable Weissenberg

number Wi = De(R/a) = 2De.

Finally, it can be useful to examine our solution in various

limits, to ensure we recover the expected behavior in those

limits and to better understand how this solution relates to

other, previously known ones. For example, in the limit of

R/a → ∞ and De → 0, we would expect to recover the solu-

tion for 1D motion of a spherical particle through a viscoelas-

tic fluid. And indeed, in this limit, the angular velocity Ω→ 0,

indicating that the particle does not rotate, and the second-

order force correction arising from rotation-translation cou-

pling subsequently goes to 0 as well. Only the purely trans-

lational term remains, as would be expected for this case, and
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this purely translational term has been shown to be in agree-

ment with previously derived solutions in relevant limits6,31.

Additionally, for the case of β → 1, we would expect to re-

cover the Stokes solution for a Newtonian fluid, which we do,

as all nonlinear terms scale directly with 1− β and thus go

to zero, and the terms at leading order arising from the poly-

meric stress scale with 1−β as well and also go to zero. The

solution thus behaves the way we would expect in these lim-

its, providing some indication that we are accurately capturing

the flow behavior.

B. Sinusoidal trajectory

Due to the generality of the solution derived in III, we can

use the same exact steps used in Section IV A to analyze a

totally different particle trajectory. We will now look at a par-

ticle moving in a sinusoidal trajectory as shown in Fig. 1b,

which has a time-dependent position:

r1(t) =V0t, r2(t) = Y0 sin(2π f t), (41)

which results in a sinusoidally varying velocity:

v1(t) =V0, v2(t) = 2π fY0 cos(2π f t), (42)

which, in frequency space, has the form:

v̂1(ω) =V0δ (ω) (43)

v̂2(ω) = π2π fY0

(

δ (2π f −ω)+δ (2π f +ω)
)

.

In this case, the characteristic velocity Vc can once again

be defined as Vc = 2π fY0, as described in section II. For sim-

plicity we will assume throughout this example that the con-

stant velocity in the e1 direction is given by V0 = 2π fY0,

though that does not necessarily have to be the case. Us-

ing V0 6= 2π fY0 would simply result in an additional constant

scaling factor in some terms. The Weissenberg and Deborah

numbers in this case, following the formulation of section II,

will be De= 2π f λ and Wi= 2π f λY0/a=De(Y0/a), with the

term Y0/a serving a similar function as the inverse radius ratio

R/a in the case of a circular trajectory.

As was the case for the the circular trajectory, we can use

this imposed velocity to calculate the leading order force ex-

erted on the particle, the angular velocity, and the second-

order correction to the force arising from both pure translation

and translation-rotation coupling.

The dimensionless force at leading order in Wi, or the

Stokes flow limit, exerted on a particle undergoing this tra-

jectory is:

F(t) = 6πe1 (44)

+6π
(

β cos(2π f t)+(1−β )
cos(2π f t)+Desin(2π f t)

1+De2

)

e2.
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FIG. 9. Angular velocity over time for a particle executing a sinu-

soidal trajectory, with particle position shown in the upper panel of

the figure and the angular velocity in the lower panel. The circles

at the bottom of the figure are snapshots of the particle’s rotational

position over time, with the black line providing a reference. For

animated gif version of this figure, see: http://tinyurl.com/

3h32286y

which, in the limit of De → 0, recovers the Stokes flow so-

lution, and in the limit of β → 1 recovers the behavior of a

Newtonian fluid.

In this case, the angular velocity of the particle is time-

dependent, and takes the form:

Ω(t) =
−27(1−β )Wi

160
× (45)

De
(

(1+β )Decos(2π f t)+(De2β −1)sin(2π f t)
)

(

1+De2
)(

1+De2β 2
) ,

or, when the Weissenberg number is eliminated in favor of the

Deborah number and the geometric ratio Y0/a:

Ω(t) =
−27(1−β )

160
× (46)

(

Y0

a

)

De2
(

(1+β )Decos(2π f t)+(De2β −1)sin(2π f t)
)

(

1+De2
)(

1+De2β 2
) .

We can visualize the particle rotation over the course of the

particle’s trajectory, as shown in Fig. 9. The top panel of

this figure shows the particle trajectory over time, while the

bottom panel tracks the angular velocity over that same time

period. Lining the bottom of this figure is a series of parti-

cle "snapshots" over the time frame considered, with the black
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FIG. 10. a) contours of the maximum total correction to the force in the e1 direction for a constant Wi = 1 as De and α are varied; b) contours

of the maximum total correction to the force in the e2 direction for a constant Wi = 1; c) contours of the maximum total correction to the

force in the e1 direction for a constant Wi = 2De; d) contours of the maximum total correction to the force in the e2 direction for a constant

Wi = 2De.

line providing a fixed reference for the particle’s rotational po-

sition. It is clear from both the y-axis scale of the bottom panel

and the particle snapshots at the bottom of this figure that the

actual angular velocity and resultant displacement of the par-

ticle arising from its changing rotation is rather small, espe-

cially since the direction of rotation changes back and forth

throughout the cyclical movement, resulting in an average net

rotational displacement of zero. However, even though the

rotation only results in these small, cyclic displacements, it

does significantly impact the total correction to the force. The

force correction arising from the rotation-translation coupling

at second order (O(Wi2)) is:

F1 =
−243π(1−β )2De

(

De(10β +3)
(

4De4 +5De2 +1
)

+
(

(5β −6)De4 − (37β +38)De2 +10
)

sin(4π f t)
)

12800
(

De2 +1
)2 (

4De2 +1
)(

β 2De2 +1
)

−
243π(1−β )2De

(

5De2 +2β
(

3De4 +19De2 −5
)

−37
)

cos(4π f t)

12800
(

De2 +1
)2 (

4De2 +1
)(

β 2De2 +1
)

(47)

F2 =
243π(1−β )2De

(

De
(

β
(

De2 −1
)

−2
)

cos(2π f t)−
(

(2β +1)De2 −1
)

sin(2π f t)
)

640
(

De2 +1
)2 (

β 2De2 +1
)

.
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Once again, the expression for the force correction arising

from purely translational term is very long and not included

here for convenience, but will be made available upon request

to the authors via email. However, we can use similar tech-

niques as in section IV A to visualize the contributions to the

force at second order, by using a series of contour plots to

examine how different variables affect the total force.

Figure 10 shows the contours of the maximum value of

leading-order correction of the force as a function of De and

the Giesekus mobility parameter α . The top row of the fig-

ure shows this correction for a constant Weissenberg number

Wi = 1, and the bottom row for a variable Wi = 2De, with the

e1 component of the force on the left and the e2 component on

the right in each case.

In both cases, similar trends can be observed as in the case

of a circular trajectory. For example, increasing the mobil-

ity parameter at any given De again increases the impact of

elasticity and shear-thinning and results in a greater correc-

tion to the overall force. Similar trends also emerge as were

observed in the circular case for the dependence on De in the

case of constant Wi = 1, which in this case indicates that in-

creasing De must be compensated for by decreasing the ratio

of the trajectory amplitude to particle radius Y0/a. Increasing

De in the constant Weissenberg number (Wi = 1) case tends

to in fact reduce the total force correction at a given mobil-

ity parameter. This effect is observed only in the e2 direction,

and interestingly only at mobility parameters α > 0.1, below

which increasing De at constant Wi causes an increase in the

total force correction. For the case of a variable Weissenberg

number of Wi = 2De, or the bottom row in Fig. 10, we again

observe that, as would be intuitively expected, the maximum

force correction increases with De, since that corresponds di-

rectly to an increase in the Weissenberg number. We can also

see that the impact of this increase in Deborah number is more

drastic at lower values of the Giesekus mobility parameter, for

both the e1 and e2 directions.

C. Particle trajectory in response to an externally applied
time-dependent force

Here we describe a particle trajectory in which a force

is being applied to the particle through some external field,

as in cases of optically or magnetically controlled particle

movement32,37. In such cases, the force-velocity relationship

described in Eq. 33 and Eq. A1 can be inverted and used

to predict how the particle will move under the influence of

a controlled external force. The method for inverting this re-

lationship has been previously described31,47, and is summa-

rized in Appendix B.

In this case we will examine a forcing protocol described

as:

F1(t) = M cos(2π f t), F2(t) = M sin(2π f t +ψ), (48)

or, in frequency space:

F̂1(ω) = Mπ
(

δ (2π f −ω)+δ (2π f +ω)
)

(49)

F̂2(ω) =−iπM(eiψ δ (2π f −ω)− e−iψ δ (2π f +ω)), (50)

in which M indicates the magnitude of the force, 2π f indi-

cates frequency, and ψ represents a phase shift between the e1

and e2 components of the imposed force such that for ψ = 0 a

circular trajectory may be expected, and at ψ = π/2 we return

to a simple, time-dependent 1D translation.

In this case since it is a force being imposed, not a velocity,

it is useful to briefly reconsider the definition of the Weis-

senberg number in this context. Since it depends on the par-

ticle’s velocity, which should scale as Vc = 2π f R = M/aη ,

the Weissenberg number is defined as Wi = Mλ/ηa2. As the

characteristic time scale tc in this case is again tc = 1/(2π f ),
the definition of the Deborah number remains 2π f λ , as it was

in previous examples.

In this case, the primary quantity of interest is the expected

trajectory of the particle. While the inverted force-velocity re-

lationship obviously produces a velocity, the trajectory can be

determined by integrating that velocity from 0 to an arbitrary

time t. Following that protocol, we can calculate the displace-

ment at leading order in Wi, or O(1):

x1(t) =
(1−β )Decos(2π f t)+(1+De2)β sin(2π f t)

De(1+De2β 2)
, (51)

x2(t) =−
2sin(π f t)

De(1+(Deβ )2)
×

(

(1−β )Decos(π f t −ψ)+(1+De2β )sin(π f t −ψ)
)

.

As is the case for the velocity-driven circular trajectory de-

scribed in section IV A, the rotation of the particle is a con-

stant and has a very similar form to Eq. 39:

Ω=
−27Wi(1−β )

160

Decos(ψ)

1+De2
e3, (52)

which when ψ = 0 reduces to the predicted rotation for a cir-

cular trajectory, as would be expected; at ψ = π/2, no rota-

tion is predicted, which is also consistent with unidirectional

translation.

The second-order, or O(Wi2), contributions to the total

expression for displacement are once again too lengthy to be

printed, but we can visualize the predicted particle displace-

ment. Figures 11, 12, and 13 show the predicted displacement

for particles under the influence of an external force described

above for a variety of parameter values.

In Figure 11, we show the predicted trajectory for a particle

starting at (1,−1), moving through a fluid with a Giesekus

mobility parameter of α = 0.3, a Deborah number of De =
0.5, and a Weissenberg number of Wi = 1. The trajectory

is shown for a variety of values of ψ , corresponding to in-

creasingly elliptical trajectories as ψ increases. Such tra-

jectories have been experimentally considered by Spatafora-

Salazar and coworkers36. We see, as we would expect, a cir-

cular trajectory for ψ = 0, a straight line for ψ = π/2, and
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FIG. 11. The predicted trajectory of a particle subjected to the de-

scribed time-dependent forcing protocol for a variety of ψ values,

with De = 0.5, β = 0.001, and α = 0.3.
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FIG. 12. The predicted trajectory of a particle subjected to the de-

scribed time-dependent forcing protocol with ψ = 0, in a Giesekus

fluid with β = 0.001, and α = 0.3 for a variety of Deborah numbers

as indicated on the figure. The dashed black lines indicates the lead-

ing order solution and solid, colored lines indicate the total, corrected

solution including second-order terms.

ellipses of various aspect ratios for intermediate values of ψ .

As a result of the particle’s starting location and the introduced

"lag" between the imposed force and immediately resulting

displacement, all of these trajectories intersect at the starting

point (1,−1), but this intersection is not necessarily at a vertex

of the elliptical trajectory.

We can also examine the case of varying De (i.e. the oscil-

latory frequency) with a constant phase shift ψ , as shown in

Fig. 12. This figure shows the predicted trajectory for a parti-

cle subjected to this forcing protocol with ψ = 0 and Wi = 1

in a fluid with parameters β = 0.001 and α = 0.3. One can

see clearly in this figure that increasing the Deborah number

decreases the predicted radius of the particle’s trajectory if we

keep the Weissenberg number fixed, recovering the behavior

predicted in the velocity-controlled flows examined in previ-

ous examples, which indicated that for a constant Wi, any in-

crease in De must have an attendant decrease in R/a. Addi-

tionally, we can see in this figure that the predicted total ra-

dius of the particle’s trajectory is larger for the cases in which

correction terms have been included than for the leading or-

der solution, which is also consistent with our observations

in section IV A. In that case, we saw that the inclusion of the

second-order correction terms decreased the total magnitude

of the expected force exerted on a particle executing a specific

trajectory; it follows logically that for the case of a known

force being exerted on the particle, the result will be a greater

overall displacement.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1

0

1

2

3

4

a=1

FIG. 13. The predicted trajectory of a particle subjected to the

described time-dependent forcing protocol given by Eq. 48 with ψ =
π/12, at De = 0.5 in a Giesekus fluid with β = 0.001, and α = 0.3.

The dashed blue line indicates the leading order solution and the solid

red line indicates the total, corrected solution including second-order

terms.

Though its impact is shown clearly in Fig. 12, inclusion of

the second-order terms cause the trajectory to differ from the

significantly simpler leading order predictions in even more

dramatic ways for phase shifts of ψ 6= 0. Figure 13 shows

the trajectory including only the leading order terms as well

as the trajectory involving second-order corrections for a rel-

atively small phase shift of ψ = π/12 and moderate Deborah

number of De = 0.5 for a particle immersed in a fluid with

α = 0.3 and β = 0.001. The small phase shift if ψ = π/12

results in a nearly-circular elliptical trajectory with a low as-

pect ratio. While the total radius of the predicted trajectory is

slightly (though noticeably) larger for the full solution includ-

ing the second-order correction terms, it is clearly offset from

the leading order solution at an angle. This indicates that that

incorporating the second-order corrections calculated in this

work is key for accurate prediction of a particle’s trajectory

when subjected to a given forcing protocol, as not only will

the radius of the particle’s trajectory be larger than the simple

leading order approximation would indicate, but the trajec-

tory will likely also be offset or rotated from the leading order
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Stokes-flow approximation.

V. DISCUSSION

In this work, we have demonstrated a method for decom-

posing and systematically analyzing the time-dependent 2D

translation of a small spherical particle moving through a vis-

coelastic fluid described by the Giesekus model. An asymp-

totic expansion of the governing equations in terms of the

Weissenberg number was described, which is valid in the

limit of low Weissenberg number or weak elasticity. The

known leading order, or Stokes-flow, solutions are related to

the frequency-space variables using correspondence relation-

ships. Using the Lorentz reciprocal theorem, the angular ve-

locity Ω of the particle arising from interactions of the lead-

ing order velocity fields and correction to the force arising at

O(Wi2) from coupling of particle rotation and translation are

calculated. The derived solution for the angular velocity and

the force correction are very general and can be used, in prin-

ciple, to describe a variety of different particle trajectories;

they are also invertible and can be used to describe particle

movement resulting from an imposed force.

We have also shown how this general solution can be used

to calculate the angular velocity and total force exerted on a

particle executing specific two-dimensional motions, namely

a circular trajectory and a sinusoidal trajectory. Our analysis

illustrates that for many 2D particle trajectories it is crucial to

consider the rotation-translation coupling to achieve an accu-

rate analysis of the particle motion. We showed in detail how

interplay of the Deborah number, Weissenberg number, radius

ratio, and the Giesekus mobility parameter α affects the pre-

dicted correction to the force arising at O(Wi2). Additionally,

we have shown that this method can be used to predict the

trajectory over time for a particle subject to some known forc-

ing protocol, and that the particle’s predicted trajectory devi-

ates substantially from the simpler leading order approxima-

tion not only in size but in a positional offset. This indicates

that in medical applications, such as micro- or nanorobotics,

where high accuracy is needed in steering and predicting the

trajectory a particle will take through a viscoelastic fluid when

subjected to some external force, it is key to consider these

higher-order correction terms.

The directed motion of spherical particles in nanorobotics

and other applications often relies on trial-and-error testing

for determining how the object of interest will move due to a

given force. The solutions derived in this work open up the

possibility that, given an appropriate model and some calibra-

tion to match fluid properties, the particle’s trajectory can be

predicted in response to a given force without the need for

extensive trial-and-error. This also highlights the generality

of this method; once a model and appropriate parameters are

known for a fluid of interest, its response to any arbitrary forc-

ing protocol within the limitations of this work — namely,

low Reynolds numbers Re ≪ 1 and low Weissenberg num-

bers Wi ≤ 1 — can be predicted.
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Appendix A: Force correction for pure translation

Throughout this work, the total correction to the force at

second order has included the purely translational component

of that force in addition to the rotation-translation component.

This force contribution was derived in a prior paper about 1D

translation in viscoelastic fluids31 and is reproduced here. The

form of the translation-only portions of the force at second

order for a Giesekus fluid with a single relaxation time is:

F̂
(2)
i (ω) =

6π(1−α)(1−β )2α

175
χ(ω)

(

[

V̂i(ω)χ(ω)
]

∗

[

χ(ω)

(

χ(ω)
[

V̂i(ω)∗V̂i(ω)χ(ω)
]

η(ω)

)])

(A1)

+
5652π(1−β )2α2

2275
χ(ω)

(

[

V̂i(ω)χ(ω)
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∗
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−
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([
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∗
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−
3π(1−α)(1−β )2

175
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χ(ω)(V̂i(ω)∗
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]

)
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−
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χ(ω)
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∗
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−
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])

,

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
2
6
8
3
5



Accepted to Phys. Fluids 10.1063/5.0126835

Time-Dependent Two-Dimensional Translation of a Freely Rotating Sphere in a Viscoelastic Fluid 18

where i indicates the direction of translation. This solution

collapses to the solution for an Oldroyd-B fluid for the case

α = 0.

Appendix B: Second-order velocity in terms of an imposed
force

In order to calculate the predicted particle displacement in

response to a known external force as discussed in Sec. IV C,

it is necessary first to calculate the predicted velocity in re-

sponse to a known force by inverting the force-velocity rela-

tionships in Eq. 34 and Eq. A1.

This derivation is simpler when convolution terms, such as

those in Eq. 34, are re-expressed as integrals using the follow-

ing relationship:

f̂ (ω)∗ ĝ(ω) =
1

2π

∫∫ ∞

−∞
f̂ (ω1)ĝ(ω2)δ (ω−ω1−ω2)dω1dω2,

(B1)

such that, for example, Eq. 34 would appear as:

F̂
(2)

=
1

(2π)2
e1

∫∫∫ ∞

−∞
K1(ω1,ω2,ω3)

[

V̂2(ω1)V̂2(ω2)V̂1(ω3)−V̂2(ω1)V̂1(ω2)V̂2(ω3)
]

dω1dω2dω3

−
1

(2π)2
e1

∫∫∫ ∞

−∞
K2(ω1,ω2,ω3)

[

V̂2(ω1)V̂1(ω2)V̂2(ω3)−V̂1(ω1)V̂2(ω2)V̂2(ω3)
]

dω1dω2dω3 (B2)

+
1

(2π)2
e2

∫∫∫ ∞

−∞
K1(ω1,ω2,ω3)

[

V̂1(ω1)V̂2(ω2)V̂1(ω3)−V̂1(ω1)V̂1(ω2)V̂2(ω3)
]

dω1dω2dω3

−
1

(2π)2
e2

∫∫∫ ∞

−∞
K2(ω1,ω2,ω3)

[

V̂2(ω1)V̂1(ω2)V̂1(ω3)−V̂1(ω1)V̂2(ω2)V̂1(ω3)
]

dω1dω2dω3

where the transfer functions K1 and K2 take the form:

K1(ω1,ω2,ω3) =
−729(1−β )2π

4000η∗(ω1 +ω2 +ω3)
× (B3)

χ(ω1 +ω2 +ω3)χ(ω2 +ω3)χ(ω2 +ω3)χ(ω3)

K2(ω1,ω2,ω3) =
−1701(1−β )2π

4000η∗(ω1 +ω2 +ω3)
×

χ(ω1 +ω2 +ω3)χ(ω1 +ω2)χ(ω2)χ(ω3).

Relationships of this type are used extensively in our pre-

vious work studying 1D translation31. For the purpose of the

following derivation, we will adopt the general notation used

there, with transfer functions ξ1(ω) and ξ3(ω1,ω2,ω3) being

used to relate velocity to a known, imposed force and ζ1(ω)
and ζ3(ω1,ω2,ω3) being used to relate force to a known, im-

posed velocity. Thus, the force and velocity can be very gen-

erally represented as:

F̂(ω) =ζ1(ω)v̂(ω)

+
∫∫∫ ∞

∞
ζ3(ω1,ω2,ω3)δ (ω −ω1 −ω2 −ω3) (B4)

× v̂(ω1)v̂(ω2)v̂(ω3)dω1dω2dω3

v̂(ω) =ξ1(ω)F̂(ω)

+
∫∫∫ ∞

∞
ξ3(ω1,ω2,ω3)δ (ω −ω1 −ω2 −ω3) (B5)

× F̂(ω1)F̂(ω2)F̂(ω3)dω1dω2dω3.

where, for example, in this case the leading order transfer

function ζ1(ω) = 6πη∗(ω); this can be seen by inspection

of Eq. 20.

The transfer functions ξ1(ω), ξ3(ω1,ω2,ω3) and ζ1(ω),
ζ3(ω1,ω2,ω3) can be related to one another through the fol-

lowing method, and thus used to invert the force-velocity re-

lationships in Eq. 34 and Eq. A1 and calculate the velocity

resulting from a known, imposed force.

First, the force and velocity are both expanded as a power

series in some small parameter ε , which to second order take

the form:

F̂(ω) = F̂0 + ε2F̂2 +O(ε4) (B6a)

v̂(ω) = v̂0 + ε2v̂2 +O(ε4) (B6b)

where only O(ε) and O(ε2) terms are retained, as no non-zero

terms are expected at O(ε1).

Substituting the expansions of F̂ and v̂ in Eq. B4 and Eq.

B5 into the representation of velocity v̂ in Eq. B6b and retain-

ing only terms up to order O(ε2) yields the following expres-

sion:
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v̂0 + ε2v̂2 = ξ1(ω)ζ1(ω)v̂0(ω)+ ε2ξ1(ω)ζ1(ω)v̂2(ω)+

ε2ξ1(ω)
∫∫∫ ∞

−∞
ζ3(ω1,ω2,ω3)δ (ω −∑

i

δ (ωi)) (B7)

× v̂0(ω1)v̂0(ω2)v̂0(ω3)dω1dω2dω3

+ ε2
∫∫∫ ∞

∞
ξ3(ω1,ω2,ω3)ζ1(ω1)ζ1(ω2)ζ1(ω3)

×δ (ω −∑
i

δ (ωi))v̂0(ω1)v̂0(ω2)v̂0(ω3)dω1dω2dω3

Matching the terms at leading order in ε , or O(1), gives a

simple relationship between ζ1(ω) and ξ1(ω):

ξ1(ω) =
1

ζ1(ω)
(B8)

Matching terms at order O(ε2) can be simplified as:

−
1

ζ1(ω)

∫∫∫ ∞

−∞
ζ3(ω1,ω2,ω3)δ (ω −∑

i

δ (ωi))

× v̂0(ω1)v̂0(ω2)v̂0(ω3)dω1dω2dω3 (B9)

=
∫∫∫ ∞

∞
ξ3(ω1,ω2,ω3)ζ1(ω1)ζ1(ω2)ζ1(ω3)

×δ (ω −∑
i

δ (ωi))v̂0(ω1)v̂0(ω2)v̂0(ω3)dω1dω2dω3

which, using the sifting property of the delta function, can be

re-expressed with ζ (ω) moved inside the first integral:

−
∫∫∫ ∞

−∞

ζ3(ω1,ω2,ω3)

ζ1(ω1 +ω2 +ω3)
δ (ω −∑

i

δ (ωi))

× v̂0(ω1)v̂0(ω2)v̂0(ω3)dω1dω2dω3 (B10)

=
∫∫∫ ∞

∞
ξ3(ω1,ω2,ω3)ζ1(ω1)ζ1(ω2)ζ1(ω3)δ (ω −∑

i

δ (ωi))

× v̂0(ω1)v̂0(ω2)v̂0(ω3)dω1dω2dω3

Comparing the forms of these integrals, we can find the fi-

nal expression for ξ3(ω1,ω2,ω3):

ξ3(ω1,ω2,ω3) =

−
ζ3(ω1,ω2,ω3)

ζ1(ω1 +ω2 +ω3)ζ1(ω1)ζ1(ω2)ζ1(ω3)
(B11)

Using this method, we can express a second-order contri-

bution to the velocity of particle subjected to a known exter-

nal force F̂ (ω)= F̂1(ω)e1+F̂2(ω)e2 arising from translation-

rotation coupling:

v̂2 =
1

(2π)2
e1

∫∫∫ ∞

−∞
H1(ω1,ω2,ω3)

[

F̂2(ω1)F̂2(ω2)V̂1(ω3)− F̂2(ω1)V̂1(ω2)F̂2(ω3)
]

dω1dω2dω3

−
1

(2π)2
e1

∫∫∫ ∞

−∞
H2(ω1,ω2,ω3)

[

F̂2(ω1)F̂1(ω2)F̂2(ω3)− F̂1(ω1)F̂2(ω2)F̂2(ω3)
]

dω1dω2dω3 (B12)

+
1

(2π)2
e2

∫∫∫ ∞

−∞
H1(ω1,ω2,ω3)

[

F̂1(ω1)F̂2(ω2)F̂1(ω3)− F̂1(ω1)F̂1(ω2)F̂2(ω3)
]

dω1dω2dω3

−
1

(2π)2
e2

∫∫∫ ∞

−∞
H2(ω1,ω2,ω3)

[

F̂2(ω1)V̂1(ω2)V̂1(ω3)− F̂1(ω1)F̂2(ω2)F̂1(ω3)
]

dω1dω2dω3

where the kernel functions in Eq. B12 are given by:

H1(ω1,ω2,ω3) =−
K1(ω1,ω2,ω3)

N1(ω1 +ω2 +ω3)N1(ω1)N1(ω2)N1(ω3)

H2(ω1,ω2,ω3) =−
K2(ω1,ω2,ω3)

N1(ω1 +ω2 +ω3)N1(ω1)N1(ω2)N1(ω3)

where K1(ω1,ω2,ω3) and K2(ω1,ω2,ω3) are defined in Eq.

B3 and N1(ω)ζ1(ω) = 6πη∗(ω), per Eq. 20. The same inver-

sion rationale can be applied to the purely translational com-

ponent of the force-velocity relationship in Eq. A1 as well, al-

lowing calculation of the trajectory components arising from

purely translational forces.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
2
6
8
3
5



Accepted to Phys. Fluids 10.1063/5.0126835

e2

e1
a R
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Wi = 0  Stokes flows
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Increasing nonlinearity
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