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Abstract 21 

Single-Particle Tracking (SPT) makes it possible to directly observe single protein diffusion 22 

dynamics in living cells over time. Thus, SPT has emerged as a powerful method to quantify the 23 

dynamics of nuclear proteins such as transcription factors (TFs). Here, we provide a protocol for 24 

conducting and analyzing SPT experiments with a focus on fast tracking (“fastSPT”) of TFs in 25 

mammalian cells. First, we explore how to engineer and prepare cells for SPT experiments. Next, we 26 

examine how to optimize SPT experiments by imaging at low densities to minimize tracking errors and 27 

by using stroboscopic excitation to minimize motion-blur. Next, we discuss how to convert raw SPT 28 

data into single-particle trajectories. Finally, we illustrate how to analyze these trajectories using the 29 

kinetic modeling package Spot-On. We discuss how to use Spot-On to fit histograms of displacements 30 

and extract useful information such as the fraction of TFs that are bound and freely diffusing, and their 31 

associated diffusion coefficients.  32 
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 2 

1 Introduction 45 

DNA-binding proteins such as Transcription Factors (TFs) play key roles in essentially all 46 

nuclear processes including gene regulation, DNA repair, and replication. TFs diffuse throughout the 47 

nucleus as they search for and bind their cognate DNA binding sites and recruit co-factors, chromatin 48 

remodelers, and general transcriptional machinery before dynamically dissociating from chromatin to 49 

begin a new cycle (1) (Figure 1). Much of our current understanding of TFs has come from structural, 50 

biochemical, and genomics approaches. For example, structural methods such as cryo-EM have 51 

revealed how DNA-binding domains interact with DNA at atomic resolution, biochemical 52 

reconstitution approaches have revealed hierarchical and sequential binding of the general transcription 53 

factors, and genomic studies such as ChIP-Seq have shown where in the genome TFs bind (2). 54 

However, many aspects of the dynamic TF lifecycle inside living cells such as diffusion, target search 55 

mechanisms, DNA residence times, and clustering cannot be captured with these static, single snapshot 56 

approaches. Since understanding TF dynamics is essential for understanding TF regulation and 57 

function, live-cell imaging has thus emerged as a powerful tool to overcome these limitations and to 58 

track the real-time kinetics of a TF’s dynamic lifecycle.  59 

Early work using live-cell imaging methods such as Fluorescence Recovery After 60 

Photobleaching (FRAP) and Fluorescence Correlation Spectroscopy (FCS) revealed DNA-binding of 61 

nuclear proteins to be highly dynamic (3–5). In FRAP, a region of interest is photobleached and the 62 

rate of fluorescence recovery to the region of interest is subsequently observed. By monitoring how 63 

quickly bleached proteins exit the photobleached region and are replaced by unbleached proteins, 64 

dynamic protein parameters like diffusion coefficients and residence times can be estimated (6). For 65 

example, a stably DNA-bound protein would be replaced at a slower rate and thus exhibit a slow 66 

FRAP recovery. FCS, on the other hand, measures the change in fluorescence in a small volume of 67 

interest. By analyzing the temporal correlation in fluorescence fluctuations and fitting kinetic models, 68 

one may infer diffusion coefficients, TF concentration, DNA binding and other parameters (7). 69 

However, because both FRAP and FCS probes bulk TF diffusion, target search, DNA binding, and 70 
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DNA unbinding for many of TF molecules simultaneously, analysis of FRAP and FCS data requires 71 

complex reaction-diffusion modeling. Previous work and benchmarking approaches have demonstrated 72 

that conceptually distinct FRAP and FCS models sometimes fit experimental data equally well, which 73 

can make it challenging to quantitatively interpret FRAP and FCS data (5, 6, 8, 9).  74 

Single Particle Tracking (SPT) overcomes these limitations by enabling direct observation of 75 

individual fluorescently labelled proteins in single cells in real time (10). In SPT, TFs are localized in 76 

each frame and then connected across frames to form trajectories. Through analysis of these SPT 77 

trajectories, we can then separate proteins into subpopulations based on their distinct diffusive 78 

behaviors thus illuminating each aspect of the TF lifecycle (Figure 1) (1). For example, since 79 

chromatin is a slow-moving scaffold, DNA binding of TFs can be observed as a change in the 80 

diffusion coefficient from a freely diffusing state (D~1-10 m2/s for most TFs) to a slow-moving 81 

bound state (D~0.001-0.05 m2/s). Furthermore, by following the DNA-bound TFs over time, the 82 

residence time can be estimated (8, 11–13). Once the bound fraction and residence time have been 83 

determined, the TF search time, how long a TF searches on average for a cognate site, can be 84 

calculated (14). Moreover, anomalous diffusion and TF clustering can be inferred (15). As such, SPT 85 

makes it possible to directly observe and quantify each aspect of the TF lifecycle in living cells.  86 

Recent applications of SPT have revealed how anomalous diffusion and transient trapping by 87 

protein clusters accelerate the TF target search mechanism (16) and suggested that longer TF residence 88 

times result in higher transcriptional output (17, 18). Other SPT applications have focused on specific 89 

protein(s) such as the Pre-Initiation Complex assembly (19), TALEN and Cas9 nucleases (20), and the 90 

Polycomb proteins (21, 22). Other SPT studies have quantified TF binding in in mitosis (23, 24) and 91 

how low-complexity domains affect TF dynamics (25). Finally, SPT approaches have now matured to 92 

the point where single TF tracking inside living Drosophila and mouse embryos is possible (26). 93 

At a high level, SPT methods applied to TFs and related proteins fall into at least three classes: 94 

“fastSPT”, “slowSPT”, and “all-in-one SPT”. “fastSPT” approaches such as single particle tracking 95 
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photoactivated localization microscopy (sptPALM) (27) and stroboscopic photoactivation SPT 96 

(spaSPT) (28) utilize imaging at high frame rates (~50-250 Hz) to track both bound and fast-diffusing 97 

TFs. Analysis of “fastSPT” data can reveal diffusion mechanisms, bound fractions, the number of 98 

diffusive states and more, but photobleaching rates are generally too high to infer residence times. 99 

Second, “slowSPT” uses long-exposure times to blur out fast-diffusing proteins and selectively focuses 100 

on slow-diffusing, presumably chromatin-bound TFs (11, 29, 30). Thus, slowSPT makes it possible to 101 

measure the residence time of the DNA-bound subpopulation, but cannot report on fast-diffusing 102 

subpopulations. “All-in-one SPT” approaches combine short exposures with variable dark times to 103 

attempt to simultaneously quantify the entire TF life-cycle including diffusion, number of states, and 104 

residence time (8, 12, 30, 31).  105 

Here, we focus on “fastSPT”, specifically spaSPT experiments. We will discuss how to 106 

optimize experimental and acquisition parameters, and how to analyze the resulting SPT data using 107 

Spot-On, a kinetic modeling framework that makes it possible to extract diffusion coefficients, the 108 

number of diffusive states, and the bound fraction from single-particle trajectories acquired from SPT 109 

experiments (28). SPT experiments have four key steps: 1) cell preparation, 2) imaging, 3) trajectory 110 

generation, and 4) trajectory analysis (Figure 2).  111 

The first step of a SPT experiment is cell preparation. To be able to track single proteins, we 112 

must achieve sparse and bright fluorescent labeling. Typically, a TF is tagged as a genetically encoded 113 

fusion protein. Here, endogenous tagging using genome-editing is preferable, since it can avoid 114 

artifacts often associated with transient overexpression (14, 32). Traditional fluorescent proteins such 115 

as GFP are not well-suited for SPT since SPT requires sparsity. Instead, photoswitchable proteins such 116 

as mEos and Dendra or self-labeling tags such as SNAP-Tag or HaloTag are preferred (27, 31). 117 

HaloTag combined with bright organic dyes is the most popular approach since it combines superior 118 

photostability and brightness with high specificity and control over labeling density. Controlling 119 

labeling density is essential; if too few in-focus proteins are labeled, we obtain no trajectories, but if 120 
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too many are labeled, their paths will cross which leads to tracking errors  (Figure 3). Utilizing the 121 

HaloTag together with cell-permeable dyes such as Janelia Fluor (JF) dyes make it possible to control 122 

labeling density in two ways (Figure 4) (33–35). First, if ‘regular’ JF dyes are used such as JF549 or 123 

JF646 (34), one can obtain a desired labeling density by titrating labeling time (typically 15-30 min) and 124 

dye concentration (typically ~1 pM to 5 nM depending on TF expression level). Second, one can 125 

control density using photoactivatable JF dyes, such as PA-JF549 and PA-JF646 (35) which only become 126 

fluorescent upon photoactivation using 405 nm illumination. With these dyes, one typically uses a 127 

higher labeling density (typically ~5 nM to 100 nM depending on TF expression level) to label many 128 

TFs and photoactivates a small fraction. The use of PA-dyes is recommended since it makes it possible 129 

to track TFs at very low densities such that tracking errors are minimized (Figure 3) and facilitates 130 

simultaneous acquisition of thousands of trajectories by continuously photo-activating new subsets of 131 

TFs to compensate for photobleaching (27, 28). With ‘regular’ JF dyes one generally faces a hard 132 

trade-off between low density (few trajectories, few tracking errors) and high density (many 133 

trajectories, many tracking errors). However, PA-JF dyes are less cell-permeable, less chemically 134 

stable, and more prone to labeling artifacts especially for low-to-moderately expressed proteins 135 

(unpublished observations). Thus, careful labeling control experiments should be performed if using 136 

PA-JF dyes.  137 

Once cells expressing a tagged TF have been mounted on the microscope, we can proceed to 138 

the second step, imaging. In general, successful SPT acquisition requires a microscope with a high 139 

numerical aperture (NA) objective, a sensitive camera, and sufficiently powerful excitation lasers (9). 140 

Most SPT studies use Highly Inclined and Laminated Optical Sheet (HILO) illumination since it 141 

conveniently reduces out-of-focus background fluorescence, thereby increasing the signal-to-noise 142 

ratio (36). However, other modalities are also suitable for SPT, and  a full discussion of suitable 143 

microscope modalities is beyond our scope. Here, we will focus specifically on how to optimize 144 
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stroboscopic photo-activation SPT (spaSPT) imaging acquisition, though several considerations apply 145 

to SPT in general. 146 

First, since chromatin-bound TFs are largely immobile, they produce a diffraction limited 147 

emission spot as expected from a point source, which can be precisely localized (37). In contrast, 148 

detecting and localizing fast-diffusing TFs is challenging because as a frame is acquired, fast-diffusing 149 

TFs move and spread their emission photons across many pixels resulting in an imaging artifact known 150 

as motion blur (Figure 5; (28, 38, 39)). For example, for a typical pixel size of 100 nm and TF 151 

D=3m2/s, 53% of TFs would move at least 3 pixels during a Δ𝜏 =10 ms acquisition time (100 Hz) 152 

assuming Brownian motion ((𝑃(𝑟 > 𝑟𝑀𝐴𝑋) = 1 − 𝑒𝑥𝑝(−𝑟𝑀𝐴𝑋
2 /4𝐷Δ𝑡)). Since most localization 153 

algorithms assume diffraction limited emissions from an immobile point source (40), such motion blur 154 

can lead to both undercounting of the fast-diffusing subpopulation and imprecise localization (28, 41). 155 

Stroboscopic excitation, whereby the excitation laser is pulsed, makes it possible to reduce motion 156 

blurring (Figure 4). For example, using either a 2 ms or 1 ms excitation pulse, would reduce the 157 

fraction of TFs that move at least 3 pixels to 2.35% or 0.06%, respectively (100 nm pixels, D=3 158 

m2/s). Thus, stroboscopic excitation makes it possible to minimize motion blurring, though it requires 159 

sufficiently powerful excitation lasers to generate enough signal during the short exposure.  160 

Second, photo-activation (405 nm) and excitation laser (e.g. 561 or 633 nm) powers should be 161 

optimized in spaSPT (28). To minimize photobleaching, the excitation laser power should be set to the 162 

lowest power that gives sufficient signal-to-noise to reliably and precisely localize particles. To 163 

minimize tracking errors, but still obtain sufficient trajectories, a mean number of ~1-2 in-focus 164 

fluorescent particles per nucleus per frame is typically optimal. To achieve this, the 405 nm photo-165 

activation laser power can be tuned: too high power will lead to too many activated fluorescent 166 

particles resulting in tracking errors; too low power, and there will be too few particles to track. If 167 

continuous photo-activation at low power is used it will contribute background fluorescence. Pulsing 168 
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the 405 nm photo-activation laser during the brief camera read time between frames conveniently 169 

avoids this (Figure 4).  170 

Third, we must optimize the frame rate. If the frame rate is too fast, TF displacements between 171 

frames will be difficult to distinguish from the localization uncertainty. If the frame rate is too slow, 172 

fast diffusing particles will defocalize (move out of the axial detection range of +/- ~350 nm) before 173 

we can track them. The average displacement, assuming 2D Brownian motion, between frames is 174 

given by √4𝐷𝜏. For a typical TF with 𝐷~3
μm2

s
, this translates to ~350 nm displacement for a frame 175 

rate of 100 Hz and ~250 nm displacements for a frame rate of 200 Hz which is substantially greater 176 

than typical 1D localization uncertainties of ~20-40 nm. Thus, for most TFs, frame rates of 100-200 Hz 177 

are optimal.  178 

 Once the movies have been acquired using optimized acquisition parameters we can proceed to 179 

the third step, trajectory generation (42). Here we provide a brief discussion of trajectory generation; 180 

for an in-depth discussion please refer to (40, 42). Trajectory generation consists of two steps: 1) 181 

localizing particles in each frame and 2) connecting the localized particles from frame to frame to form 182 

trajectories. First, sufficient signal-to-noise and low motion-blur is required for particle detection and 183 

precise particle localization (37, 42). Localization involves first filtering and thresholding images to 184 

identify particles, followed by precise sub-pixel localization of the XY-coordinates. Most algorithms 185 

use point spread function (PSF) fitting to achieve this localization, though weighted centroid 186 

estimation is more robust to high motion-blurring (41). Second, once the particles have been localized 187 

in each frame, they are connected across frames in the tracking step to generate trajectories (XY 188 

coordinates for each timepoint). Tracking algorithms vary from relatively simple like the nearest-189 

neighbor and the Hungarian algorithms (43) to more complex such as the Multiple-Target Tracing (44) 190 

and u-track (45). Some of these algorithms are conveniently available through ImageJ plugins such as 191 

TrackMate and the MOSAICsuite (43, 46). Notably, if the SPT data is of high quality and the particle 192 
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density is low (~<1-2 particles per frame), the choice of tracking algorithm plays a relatively minor 193 

role. For a tracking algorithm comparison, please see (40). 194 

After single-particle trajectories have been generated, we can proceed to the fourth step, 195 

trajectory analysis. Here we focus on fastSPT analysis. One approach which we refer to as MSDi uses 196 

mean square displacement (MSD) analysis to estimate the diffusion coefficient of each trajectory, plots 197 

a histogram of diffusion coefficients (Log(D)), and then extracts subpopulations by fitting probability 198 

distributions to this histogram. Other methods attempt to estimate both the subpopulations and the 199 

transitions between them using Hidden Markov Modeling and/or Bayesian approaches (47–50). 200 

However, these methods do not account for defocalization (51), which leads to an overestimation of 201 

the bound subpopulation, and in benchmarking studies MSDi approaches perform quite poorly (28). 202 

These limitations can be overcome by pooling trajectories, fitting displacement histograms as a 203 

function of time, and then modeling defocalization as a function of the inferred diffusion coefficient of 204 

each subpopulation (Figure 6). This approach was elegantly introduced by Mazza et al. in 2012 (8). 205 

We subsequently simplified, expanded, and benchmarked this approach as Spot-On (14, 28). Spot-On 206 

is available open-source in MATLAB and Python, as well as a convenient “no coding required” drag-207 

and-drop web-interface, https://SpotOn.Berkeley.edu/.  208 

The Spot-On web-interface is divided into three main sections 1) uploading single-particle 209 

trajectories, 2) generating histograms of displacements for multiple time points, and 3) fitting the 210 

displacement histograms to a kinetic model in order to estimate subpopulation sizes and their 211 

associated diffusion coefficients (Figure 6). First, single-particle trajectories are uploaded to Spot-On 212 

and summary statistics are displayed (number of traces, their length, number of frames, etc.). Once the 213 

trajectories have been uploaded and assessed they can be used to generate a displacement histogram 214 

for multiple timepoints. After the displacement histogram has been generated, Spot-On proceeds to fit 215 

the histogram to a kinetic model using Brownian motion under steady state conditions without state 216 

transitions (i.e., it is assumed that transitions between the bound and free states are negligible in each 217 

https://spoton.berkeley.edu/
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individual trajectory). Spot-On offers fitting to two kinetic models: a 2-state or a 3-state model (Figure 218 

7). The 2-state model considers a bound and free subpopulation and uses least-squares fitting to 219 

estimate 3 parameters: the bound fraction (FBOUND), the bound diffusion coefficient (DBOUND), and the 220 

free diffusion coefficient (DFREE); the free subpopulation is given by 1 - FBOUND. The 3-state model 221 

considers one bound and two free subpopulations and uses least-squares fitting to estimate 5 222 

parameters: the bound fraction (FBOUND), the bound diffusion coefficient (DBOUND), the slower free 223 

fraction (FSLOW), the slow free diffusion coefficient (DSLOW), and the faster free diffusion coefficient 224 

(DFAST); the faster free subpopulation is given by 1 - FBOUND - FSLOW. A key advantage of Spot-On is 225 

that it accounts for defocalization due to 2D imaging of 3D motion (51), since axially diffusing 226 

particles will gradually exit the focal plane (+/- ~350 nm). The rate of defocalization depends on the 227 

time interval between frames and the diffusion coefficient, leading to under-counting of the free 228 

subpopulations. Spot-On not only corrects for this bias, but the observed rate of defocalization, Zcorr, is 229 

used as additional information to estimate the free diffusion coefficients with higher confidence (8, 14, 230 

28) (Figure 7). Spot-On can also optionally fit the 1D localization error, 𝜎 (standard deviation of 231 

localization uncertainty). Finally, the user can download figures as well as the data and inferred 232 

parameters from Spot-On directly (Figure 6).  233 

We end by briefly discussing 2- vs. 3-state model selection and useful control SPT 234 

experiments. First, is a 2-state or 3-state model better? Given the higher number of free parameters, a 235 

3-state model will always fit the data better. In particular, since diffusion inside the nucleus is 236 

generally non-Brownian and anomalous unlike the underlying Spot-On model, a slight mismatch 237 

between the data and a model fit is expected. Therefore, a slight mismatch between the data and 2-state 238 

model is not necessarily evidence for two freely diffusive states. We therefore generally favor the 2-239 

state model unless the fit is quite poor or unless there are biological and mechanistic reasons to support 240 

the two free diffusive states in the 3-state model. For example, components of the general 241 

transcriptional machinery such as Cyclin T1 and TBP can freely diffuse either as monomers or part of 242 
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a larger multi-protein complex, thus motivating and justifying two distinct diffusive states in the 3-243 

state model (19, 52).  244 

Finally, inclusion of controls is essential for validating SPT approaches. At a minimum, we 245 

suggest a ‘free’ and ‘bound’ control. An ideal ‘free’ control is HaloTag fused to a nuclear localization 246 

signal (Halo-NLS). Halo-NLS should exhibit a minimal bound fraction (<15%) and exhibit a fast 247 

diffusion coefficient (𝐷~8 − 12
μm2

s
); a substantially higher bound fraction or slower diffusion 248 

coefficient is a sign of too high motion blurring (note that the positively charged NLS affords some 249 

DNA binding to Halo-NLS (53)). Similarly, an ideal ‘bound’ control is a stably bound protein such as 250 

a histone. Histone H2B (H2B-Halo) is a popular choice and should show a high bound fraction (>70%; 251 

some unbound H2B is expected if over-expressed from a non-cell cycle regulated promoter). Inclusion 252 

of Halo-NLS and H2B-Halo controls thus makes it possible to validate the ‘dynamic range’ of TF 253 

behaviors that can be quantified. Furthermore, if a TF has a well-defined DNA-Binding Domain 254 

(DBD), we also suggest a ΔDBD-TF-Halo control.  255 

In the following protocol, we discuss step-by-step how to conduct and analyze SPT 256 

experiments using mouse embryonic stem cells (mESCs) expressing an endogenous genetically 257 

encoded TF-Halo fusion protein as an example. This protocol can be modified depending on the cell 258 

line, protein of interest, fluorescent label, or microscope in use. 259 

 260 

  261 
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2 Materials  262 

Below we described the required reagents and resources for the four main steps of a fastSPT 263 

experiment 1) reagents for cell preparation, 2) equipment for microscopy, 3) code for trajectory 264 

generation, and 4) analysis using Spot-On.  265 

2.1 Reagents needed for cell preparation 266 

Cell preparation reagents are highly cell-type specific. Here we use reagents specific to mESCs that 267 

express a Halo-tagged TF as an example. All of the following reagents must be prepared in a biosafety 268 

cabinet, practicing strict sterile technique.  269 

1. Growth Media: In order to prepare your growth medium, combine the following 270 

reagents: Knockout DMEM 1X (ThermoFisher/Gibco, 10829-018),15% Fetal 271 

Bovine Serum (HyClone FBS SH30910.03 lot #AXJ47554), 2mM GlutaMAX 272 

Supplement (ThermoFisher, 35050-061), 1 mM MEM Non-Essential amino acids 273 

solution (ThermoFisher, 11140-050), 1000 U/mL LIF, 0.1 mM 2(β)-ME (Sigma-274 

Aldrich, M-31-48), 100 U/mL Penicillin/Streptomycin (ThermoFisher, 15140122). 275 

Store at 4°C.  276 

2. Matrigel: (Fisher Scientific, 08-774-552) dilute according to manufacturer’s 277 

instructions prior to cell plating. Store aliquots at -20°C. After being diluted in a 278 

serum-free medium, store at 4°C. (see Note 1) 279 

3. Imaging dish: 35mm dish, No. 1.5 Coverslip, 14 mm Glass Diameter, uncoated 280 

(MatTek Corporation, P35G-1.5-14-C) (see Note 2)  281 

4. Trypsin-EDTA (0.05%), phenol red (Thermofisher Scientific, 25300062). Store 282 

at -20°C 283 

5. Sterile 1X Phosphate Buffered Saline pH 7.4 (ThermoFisher Scientific, 284 

10010023). 285 

7. Biosafety Cabinet with Laminar Flow. 286 
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8. Tissue Culture (TC) incubator set to 37°C and 5.5% CO2. 287 

9. Phenol-red free imaging Media: DMEM without phenol red (Thermofisher, 288 

31053028), 15% fetal bovine serum (e.g., HyClone FBS SH30910.03), 2 mM 289 

GlutaMAX Supplement (ThermoFisher, 35050-061), 1 mM MEM Non-Essential 290 

amino acids solution (ThermoFisher, 11140-050), 1000 U/mL LIF, 0.1 mM 2(β)-291 

ME (Sigma-Aldrich, M-31-48) 100 U/mL Penicillin/Streptomycin (ThermoFisher, 292 

15140,122). Store at 4°C. (see Note 3) 293 

10. Dimethyl sulfoxide, sterile filtered (Sigma-Aldrich, D2650-5X10ML) 294 

11. Synthetic Dyes: Halo or SNAP dyes (e.g., PA-JF646 or PA-JF549). We 295 

recommend storing dyes at 1000x the desired concentration in DMSO at -20°C in 296 

single-use aliquots to minimize freeze-thawing (34, 35) (see Note 4). 297 

 298 

2.2 Microscope Set-up 299 

Many microscope modalities are suitable for SPT, including widefield microscopes. Here we use as 300 

our example a custom-built Nikon TI Microscope, implementing highly inclined illumination 301 

(Tokunuga et. Al., 2008) that we previously used (14). Key components include: 302 

1. Live-cell incubation chamber heated to 37°C that maintains a humidified 303 

atmosphere at 5.5% CO2. 304 

2. A high-NA objective. For HILO, we used a 100X / NA1.49 Oil-immersion 305 

TIRF objective (Nikon apochromat CFI Apo TIRF 100X Oil). 306 

3. Powerful excitation lasers matched to the desired fluorophores. We used 561 nm 307 

(1W, Genesis, Coherent) for (PA)-JF549; 633 nm (1W, Genesis, Coherent) for 308 

(PA)-JF646; 405nm (140mW, OBIS, Coherent) for photo-activation. 309 

4. A fast and sensitive camera. Most EM-CCD and back-illuminated high quantum 310 

efficiency sCMOS cameras are suitable. We used an iXon Ultra 897 EM-CCD 311 

camera (Andor). (see Note 5).  312 
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5. Emission filters that match the fluorophores. We used: JF549/PA-JF549: 313 

Semrock 593/40 nm band-pass filter; JF646/PA-JF646: Semrock 676/37 nm 314 

bandpass filter.  315 

6. Control of laser intensity. Rapid control (<100 microseconds) of laser intensity 316 

at multiple wavelengths is essential for stroboscopic excitation. We achieved 317 

this using an AOTF (AA Opto-Electronic, France, AOTFnC-VIS-TN) and DAQ 318 

card (National Instruments, NI-DAQ PCI-6723).   319 

7. Microscope control software. We used Nikon Elements.  320 

 321 

2.3 Localization and Tracking  322 

Once raw SPT movies have been acquired, particles must be localized in each frame (localization) and 323 

then tracked between frames to form trajectories (tracking). Popular and user-friendly algorithms and 324 

implementations to achieve this include MTT (44), u-track (45), TrackMate (43), and the 325 

MOSAICsuite (46). We used the MTT algorithm implemented in MATLAB (see Note 6). For a 326 

performance comparison of tracking algorithms, please see (40). 327 

 328 

2.4 Analysis using Spot-On  329 

To analyze trajectory data using Spot-On, use either the web-interface, the MATLAB or the Python 330 

version (see Note 7). 331 

 332 

3 Methods 333 

 3.1 Cell Preparation   334 

The following steps should be carried out in a biosafety cabinet and everything must be kept sterile. 335 

The steps apply to mESCs that express an endogenous genetically encoded TF-Halo fusion protein 336 

This protocol can be adjusted for the cell line, dye, or fluorophore in use. 337 
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1.  Grow cells for seeding on tissue culture dishes until they are at 70-80% 338 

confluency.  339 

2. Coat the glass bottom 35 mm imaging dish with MatriGel – Add 1 mL diluted 340 

MatriGel per imaging dish, spread and incubate at 37°C and 5.5% CO2 for 30-60 341 

minutes (see Note 8) 342 

3. Aspirate all of the media from the culture dish and wash cells with PBS. Gently 343 

swirl the PBS to ensure all residual media has been removed. 344 

4. Aspirate PBS and add just enough 0.05% Trypsin-EDTA to cover the bottom of 345 

the culture dish and place in TC incubator for ~3 min. 346 

5. Remove cells from the incubator and check if all the cells have thoroughly 347 

dissociated using a light microscope. 348 

6. After cells have dissociated from culture dish, quench with normal culture 349 

medium, resuspend cells, pipette up and down with a P1000 pipette until all cell 350 

clumps have been broken up into single cells (see Note 9). 351 

7. Transfer the desired number of cells to a 15 mL falcon and centrifuge at 300xg 352 

for 3 minutes. Enough cells should be used so that plated cells are ~70% confluent 353 

after overnight growth on the Matek dish. 354 

8. While cells are spinning down, remove MatriGel from Step 1 and add cell 355 

medium to the 35 mm imaging dish.  356 

9. Remove falcon from centrifuge and aspirate supernatant, leaving cell pellet. 357 

10. Resuspend cell pellet in cell medium. 358 

11. Add cells to the imaging dish at the appropriate density for the cell line in use. 359 

After adding cells to the imaging dish, gently swirl the dish to evenly distribute 360 

cells. 361 

12. Place in TC incubator and grow overnight. 362 
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Day of imaging: After seeding imaging dishes the day before and verifying using a tissue culture 363 

microscope that they look healthy and are at ~ 70% confluency, we can proceed to dye labeling and 364 

imaging.  365 

1. Prior to preparing cells for imaging, turn on the microscope and environmental 366 

chamber leaving enough time for the chamber to equilibrate to 37°C and 5.5% CO2 367 

before imaging. 368 

2. Prepare three 15 mL falcons: one with PBS; one with regular medium; and one 369 

with phenol red free Imaging Medium. Place these in the 37°C water bath. 370 

3. Remove the falcon with regular medium from the 37°C water bath and make a 371 

dilution of the synthetic dye (e.g. Halo or SNAP compatible JF dye) to the desired 372 

concentration. Pipette up and down to mix. (see Note 10) 373 

4. Remove medium from the imaging dish and add medium with the desired 374 

concentration of synthetic dye and place in TC incubator for 15 minutes. 375 

5. Wash 1: Remove Halo-dye medium and add pre-warmed PBS, remove PBS, and 376 

add pre-warmed medium and place in incubator for 5 minutes. 377 

6. Wash 2: remove medium and add pre-warmed PBS, remove PBS, and add pre-378 

warmed imaging medium without phenol red (more/longer washes may be 379 

necessary for PA-JF dyes, see Note 11).  380 

7. Cells are now ready to be imaged and can be stored in the TC incubator until the 381 

microscope is ready.  382 
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3.2 Imaging 383 

The specific imaging protocol will be highly dependent on the microscope used, the desired SPT 384 

experiment, and a number of other factors. We briefly comment on some of the main steps below for 385 

fastSPT experiments.  386 

1. Add immersion oil to the objective, then load the imaging dish with labeled cells 387 

on the pre-warmed microscope. 388 

2. Move the objective up until cells are in focus using either brightfield or 389 

fluorescence to focus on the cells.  390 

3. If using HILO illumination, move stage to center the cell to be studied in the 391 

field-of-view. Modulate the TIRF angle until optimal HILO illumination is 392 

achieved (maximal signal-to-background ratio and even illumination of the 393 

whole nucleus).  394 

4. If optimizing laser acquisition settings, then record a short movie (~500 frames) 395 

at the desired frame rate (typically ~100-200 Hz) changing only one parameter 396 

at a time. If using photo-activation, adjust 405 nm intensity and/or pulse 397 

duration until the desired density of particles is achieved (typically ~1-2 in-focus 398 

particles per nucleus per frame). If optimizing the main excitation laser (e.g. 561 399 

nm for JF549), record multiple short movies for different excitation powers and 400 

stroboscopic pulse durations, analyze the movies by generating trajectories, and 401 

overlay trajectories on raw movies. Choose an excitation setting that gives 402 

sufficient signal-to-noise that the localization algorithm misses almost no 403 

particles visible by eye in the raw images. Spending significant time iteratively 404 

optimizing acquisition settings is usually well worth the effort.  405 

5. Once acquisition settings have been optimized, record fastSPT movies one cell 406 

at a time. After centering the field-of-view around a cell and optimizing the 407 
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HILO angle (the optimal angle may need to be adjusted for each cell), crop a 408 

just big enough ROI around the nucleus of interest. Photobleach particles if 409 

necessary if the initial density is too high. Then record a fastSPT movie. Our 410 

default spaSPT acquisition parameters for most mammalian TFs are: 30,000 411 

frames at 134 Hz, using 1 ms stroboscopic excitation (561 or 633 nm, 1W, 412 

100% AOTF power), and pulsing the photo-activation laser (405 nm, 140 mW, 413 

typically 1-4% AOTF) during the ~0.45 ms camera read-out time between 414 

frames.  415 

6. Move at least two full field-of-views away and begin the next movie. We 416 

typically collect 6-8 movies per cell line per condition per day for at least 3 417 

biological replicates performed on different days (at least 18-24 cells in total). 418 

Recording multiple cells is necessary to average over cell-to-cell and biological 419 

variation (e.g., cell cycle phase if cells are unsynchronized) and to obtain robust 420 

results.  421 

7. Once finished with one cell line or condition, clean objective and mount a new 422 

imaging dish with a different cell line or condition.  423 

8. Leave it at least 15 minutes to thermally equilibrate.  424 

9. Then begin the next round of movies. 425 

10. After imaging is complete, transfer all the raw SPT data, clean the objective, and 426 

turn off the microscope. 427 

 428 

3.3 Trajectory Generation  429 

Please see section 2.3 for recommended localization and tracking algorithms. Below, we briefly outline 430 

the recommended steps after a day of SPT data acquisition. 431 
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1. Make sure to visually inspect SPT movies and visually assess the quality and 432 

reliability of the localization and tracking for a few movies by overlaying 433 

trajectories on the raw SPT movies.  434 

2. Optimize localization and tracking algorithm parameters if necessary, but make 435 

sure to use consistent parameters for all conditions and replicates.  436 

3. Once localization and tracking settings have been finalized, batch process all of 437 

the acquired SPT movies if possible.  438 

 439 

3.4 Trajectory Analysis with Spot-On  440 

Once trajectories have been generated, we can proceed to analysis. Here we specifically focus on how 441 

to analyze fastSPT data with Spot-On’s web-interface. Please refer to the Spot-On paper (28) and the 442 

documentation available at https://SpotOn.berkeley.edu/SPTGUI/docs/latest for a more complete 443 

discussion.   444 

1. Go to https://SpotOn.berkeley.edu/ and click “Start spotting!” 445 

2. In “1. Select format” pick the format used for your SPT trajectories (see Note 12) 446 

and drag and drop your data into “3. Select datasets”. 447 

3. Make sure through “Uploaded datasets” that the files were successfully 448 

uploaded and assess “Global statistics” on the bottom right, which will display 449 

metadata for your uploaded SPT data (see Note 13).  450 

4. Proceed to the “Kinetic Modeling” tab.  451 

5. Under “Dataset selection” include all the datasets you would like to analyze. 452 

Click “all” if all the data are from the same condition.  453 

6. Scroll down to “Jump length histograms” and inspect the histograms of 454 

displacements. Under “Display dataset” click through each cell to inspect that 455 

the data looks reasonable. Click “Show pooled jump length distribution” if you 456 

https://spoton.berkeley.edu/SPTGUI/docs/latest
https://spoton.berkeley.edu/
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would like to combine the data from each single cell. Some noise is expected, 457 

but if the histograms are too sparse, the fitting is less likely to be accurate.  458 

7. Scroll back up to “Parameters” and “Jump length distribution” and choose the 459 

desired values for “Bin width”, “Number of timepoints”, “Jumps to consider”, 460 

“Use entire trajectories” and “Max jump” (see Note 14 for a brief discussion of 461 

how to choose these parameters).  462 

8. Next, proceed to “Model fitting”. Choose between the 2-state and 3-state 463 

models, upper and lower bounds on the diffusion coefficients, whether to infer 464 

“Localization error” from the data (choose “fit from the data” or to pre-define it 465 

(default is 35 nm or 0.035 μm)). Choose whether to use the Z-correction and if 466 

so, specify its value (default is 700 nm or 0.7 μm, which is reasonable for most 467 

high NA objectives). Finally, choose whether to use PDF or CDF fitting, 468 

whether to fit each single cell or only the merged displacement histogram of all 469 

of the cells, and the number of fitting iterations (see Note 15 for a brief 470 

discussion of how to choose these).  471 

9. Click “Fit kinetic model”. This may take a few minutes.  472 

10. If single-cell fitting was performed, scroll down to “display dataset” under 473 

“Jump length histograms” and scroll through each single cell and assess the 474 

quality of the fit and the cell-to-cell variation. This way any potentially 475 

problematic datasets can be identified (see Note16). Once each single cell has 476 

been assessed, click “show pooled jump length distribution” to see the pooled 477 

data and fit.  478 

11. Spot-On will display the fitted parameters for each single cell (if single cell 479 

fitting was chosen) and the global fit parameters: DBOUND, DFREE (DSLOW, DFAST, 480 
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if 3-state model), FBOUND, FFREE, (FSLOW, FFAST, if 3-state model),  (if 481 

localization error was fitted), and fitting parameter (I2, AIC, BIC; see Note 17). 482 

12. Iterate through the various options until a desired fit has been obtained.  483 

13. Then scroll to the bottom of the page and click “Mark for download” and enter a 484 

name and description. 485 

14. Next scroll back to the top of the page and click the “Download” tab. Here you 486 

can download individual figures (SVG, PDF, PNG, EPS) or you can click 487 

“Download all (zip) to obtain a copy of the fitted parameters, raw data, as well 488 

as the figures.  489 

 490 
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Figure Legends 505 

 506 

Figure 1. Outline of the dynamic lifecycle of TFs.  507 

TFs undergo a dynamic lifecycle inside the nucleus and can exist in multiple states. They diffuse, 508 

search for and bind to cognate DNA-binding sites, recruit co-factors and the general transcriptional 509 

machinery, and dissociate in search for the next DNA-binding site. 510 

 511 

 512 

 513 

Figure 2. Overview of the key steps involved in conducting a ‘fastSPT’ experiment and analyzing 514 

the data using Spot-On.  515 

A fastSPT experiments has four main steps. 1) Cell preparation: cells expressing a tagged protein of 516 

interest are labeled with a synthetic dye; 2) Imaging: fluorescence microscopy is then used to observe 517 

the movement of single labeled proteins (this figure was adapted from Video 2 from Ref (28) with 518 

permission). 3) Trajectory generation: particles are localized in each frame of the movies and tracked 519 

across frames to obtain SPT trajectories; 4) Trajectory analysis: SPT trajectories are analyzed using 520 

Spot-On to extract information about the diffusion coefficients and the bound and free subpopulations 521 

(shown: simulated SPT data with 50% bound and 50% free with DFREE = 4 m2/s at 100 Hz). 522 

 523 

 524 

 525 

Figure 3. High particle densities result in frequent tracking errors (misconnections) 526 

Top panel: at low particle densities, particle trajectories can be clearly distinguished resulting in few 527 

misconnections. Bottom panel: at high particle densities, particle trajectories frequently overlap 528 

resulting in tracking errors (misconnections shown in red) when localizations are connected across 529 

frames during the tracking step.  530 

 531 

 532 

 533 

Figure 4: Overview and comparison of fastSPT with ‘regular’ dye and spaSPT.  534 

Left: overview of ‘regular’ fastSPT. Here, the protein of interest is labeled with a regular dye that is 535 

continuously fluorescent (e.g. JF549 or JF646) and excited with constant illumination from the excitation 536 

laser.  537 

Right: overview of Stroboscopic Photo-Activation SPT (spaSPT). Here, the protein of interest is 538 

labeled with a photo-activatable (PA) dye that exists in a dark state, but which can be stochastically 539 

photo-activated into a fluorescent state using 405 nm illumination. This allows careful control of the 540 

density of fluorescent particles, and photo-activation of new proteins as existing ones photobleach 541 

which make it possible to obtain large numbers of trajectories, yet at low density. Stroboscopic pulsing 542 

of the excitation laser is used to minimize motion-blurring of fast-diffusing proteins and pulsing of the 543 

photo-activation laser during the camera read time is used to minimize background fluorescence.  544 

 545 

 546 

 547 

Figure 5. Illustration of motion-blurring of fast-diffusing particles.  548 

To illustrate the concept of motion-blurring, we simulated 2D Brownian motion with a timestep of 1 μs 549 

for a bound or slow-diffusing TF (Left: D = 0.01 μm2/s) and for a fast-diffusing TF (Right: 10 μm2/s) 550 

with a 10 ms exposure time with a pixel size of 110 nm. We used an Airy disc, following the 551 

Fraunhofer diffraction pattern for a circular aperture, as the point spread function and added realistic 552 

Poissonian photon shot noise, read noise, and dark current noise. Whereas bound and slow-diffusing 553 
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particles are easily detected, detection and precise localization of motion-blurred fast-diffusing 554 

particles is extremely challenging which leads to bias.   555 

 556 

 557 

 558 

Figure 6. Steps involved in analyzing single particle trajectories using Spot-On. 559 

Schematic of the Spot-On web-interface workflow: 1) upload single-cell datasets of pooled trajectories 560 

and assess global SPT data statistics; 2) generate histograms of displacements (jump lengths); 3) fit 561 

either a 2-state or 3-state model to the data and assess the fit; 4) download the fitted parameters.  562 

 563 

 564 

Figure 7: Overview of 2-state and 3-state models implemented in Spot-On.  565 

Top: The 2-state model implemented in Spot-On models a chromatin-bound and free subpopulation 566 

while assuming Brownian motion. Representative data, fits, and the underlying model are shown. 567 

Middle: The 3-state model implemented in Spot-On models a chromatin-bound and two free 568 

subpopulations corresponding to a slower and a faster free state while assuming Brownian motion.  569 

Bottom: Definitions and defocalization correction implemented in Spot-On.  570 

The datasets used to illustrate the models and fits were simulated using simSPT (28) with the following 571 

parameters for the 3-state model: DBOUND = 0.01 μm2/s; FBOUND = 0.25; DSLOW = 0.25 μm2/s; FSLOW = 572 

0.50; DFAST = 6.0 μm2/s; FFAST = 0.25;  = 25 nm. To illustrate the 2-state model, the following 573 

parameters were used: DBOUND = 0.01 μm2/s; FBOUND = 0.2; DFREE = 3.0 μm2/s; FFREE = 0.80;  = 25 574 

nm. 575 

 576 

 577 

 578 

 579 

 580 

  581 

  582 
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Notes 733 

 
1 When preparing MatriGel make sure everything is done on ice. Thaw individual aliquots on ice for thirty 
minutes prior to diluting in serum-free medium. Coating of glass with 0.1% gelatin is also appropriate, 
though in our experience adherence can be poorer.   
2 A coverglass (e.g. Marienfeld-High-Precision 1.5H cover glasses, 0117650) mounted in an AttoFlour Cell 
chamber (ThermoFisher, A7816) can also be used instead of MatTek imaging dishes. For single molecule 
imaging wash the 25 mm circular coverglasses in isopropanol, then plasma clean and store the 
coverglasses in isopropanol at 4°C until use. They can be stored for >6 months at 4°C.  
3 It is essential to use medium without phenol red for fluorescence imaging to avoid excessive background 
fluorescence.  
4 Janelia Fluor dyes can be inquired about at dyes.janelia.org or purchased from Promega. 
5 One can minimize localization uncertainty by choosing the objective magnification and camera pixel size 
such that the pixel size approximately matches the PSF standard deviation (37).    
6 Our matlab version of the MTT algorithm can be accessed here https://gitlab.com/tjian-darzacq-
lab/SPT_LocAndTrack  
7 The web-interface can be found at https://spoton.berkeley.edu/SPTGUI/ ; the Matlab version at 
https://gitlab.com/tjian-darzacq-lab/spot-on-matlab ; and the Python version at https://gitlab.com/tjian-
darzacq-lab/Spot-On-cli  
8 If extra MatriGel dishes are coated, they can be sealed with parafilm and stored in 4°C for 2-4 days. It is 
recommended to prepare imaging dishes with MatriGel fresh. 
9 Pipette up and down ~10-15 times until cells are dissociated into a single cell suspension. Check under a 
light microscope to ensure that they are in a single cell suspension. If mESCs are passaged in clumps, 
they may differentiate. 
10 Optimization of the dye concentration is typically required. For optimizing SPT experiments, we 
recommend a dye titration experiment using logarithmically spaced concentrations. Labeling will depend 
on protein concentration, cell type, incubation time, and must thus be optimized for each cell line. For 
regular Halo-JF dyes, we typically use between ~1 pM and ~5 nM labeling. For photo-activatable Halo-JF 
dyes, we typically use ~5 nM to ~100 nM. For SPT, complete labeling is neither necessary nor desired. But 
if complete labeling is desired, 500 nM JF-Halo dye is typically sufficient as shown in (54). 
11 When using ‘regular’ JF-HaloTag dyes, two short 5-min washes are generally sufficient. However, for 
PA-JF dyes, more washes and/or longer than 5-min washes may be required. The optimal washing 
protocol can be both dye and cell-type specific. As a control, we recommend labeling and washing a wild-
type cell that does not express HaloTag and making sure that negligible dye remains in this negative 
control.  
12 Click on “learn more” to see the details of the format. If your trajectory format is not identical to any of the 
supported format, it will be necessary to first write a script to convert it to one of the Spot-On supported 
formats. Sample files for each support format are available.   
13 More data is always better, but we recommend having at least 6 single cells per condition and at least a 
few thousand trajectories with at least 3 detections (see Figure 3-figure supplement 12 in (28) for a 
quantification of how the robustness of the Spot-On fit depends on the number of trajectories). It is also 
worth paying close attention to “Particles per frame” – if this number is too high, the SPT data is likely to 
contain frequent tracking misconnections.   
14 For a full discussion of how to choose these parameters, please see Appendix 2 in (28) and the 
documentation available at https://spoton.berkeley.edu/SPTGUI/docs/latest. Here, we provide brief 
guidance:  
Bin width: Bin width used to make displacement histograms and used for PDF-fitting. Default is 10 nm and 
is generally reasonable unless you have very sparse data. 1 nm is the default setting for CDF-fitting, since 
CDF-fitting is more robust and less prone to binning artifacts.  
Number of timepoints: How many timepoints to consider in the displacement histogram. If you allow N time 

points, this corresponds to considering displacements with a maximal time-delay of up to (N-1)t. 
Generally, displacement histograms become sparser at large time-delays and we generally do not 
recommend considering time-delays much above 50-60 ms.  
Max jump: the maximal displacements that will be considered in the analysis. This should be larger than 
the largest displacements in the data. Generally, 3-5 μm is reasonable. 
Jumps to Consider and “Use entire trajectories”: If use entire trajectories is set to Yes, all displacement 
data will be used. If it is set to No, only up to the indicated value of Jumps to consider is used. For 
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example, if Jumps to consider is set to 4 and 8 timepoints, for each trajectory, 4 displacements (if possible) 
will be used to compute the displacement histogram such that a trajectory of 9 frames will contribute 4 

displacements to 1t, 4 displacements to 2t, …, and 2 displacements to 7t. This is a semi-empirical way 
of correcting for additional biases towards bound molecules, and if there is no bias towards bound 
molecules in the raw data, “Use entire trajectories” should be set to Yes. This is a subtle choice and please 
see Appendix 2 referenced above for a more complete discussion. 
15 As noted above, please see Appendix 2 in (28) and the documentation available at 
https://spoton.berkeley.edu/SPTGUI/docs/latest for a full discussion. Briefly: 
Kinetic model: this choice is discussed in the main text. We recommend starting with the 2-state model, 
and only considering the 3-state model if the 2-state fit is quite poor and/or there are biochemical and 
mechanistic reasons to suspect two distinct freely diffusive states.  
Upper and lower bounds on fitted diffusion coefficients: Defaults are [0.0005-0.08 µm²/s] for DBOUND and 
[0.15-0.25 µm²/s] for DFREE. Please see Appendix 2 in (28) for a full discussion, but briefly, it is important to 
pay attention to these and make sure Spot-On does not infer a D at the min or max. Also, DBOUND = 0.08 
µm²/s is almost certainly too high for DNA binding and could indicate that the specified localization error is 
too small and/or problems with microscope stability. It is very useful to perform SPT on a histone control to 
assess what DBOUND to expect from the bound population.  
Localization Error: this is the 1D standard deviation of the localization uncertainty. If this can be estimated 
independently and specified, it will improve the robustness of the fit. If it is fitted from the data, please note 
that it is mainly fitted from the bound subpopulation and that it is not well-fitted if the bound subpopulation 
is negligible. If the localization error is incorrectly specified, typically the fit to the bound subpopulation will 
be poor.  
Z correction and dZ: since SPT generally involves 2D imaging of 3D motion, we must correct for 
defocalization. On most SPT microscopes, the axial detection range is ~700 nm – if particles move out of 
this range, they generally cannot be detected. Using ~700 nm is generally safe, but please see (28) for 
advice on how to experimentally measure it. In some organisms such as some yeasts and bacteria, the cell 
is so small, that the observation slice is comparable to the axial detection range, in which case the Z 
correction should be set to “No”, since there is no defocalization.  
Model fit: You can either fit the PDF or CDF of the displacement histogram. Generally, CDF-fitting is more 
robust since it is less susceptible to binning noise, especially for moderately sparse datasets. However, the 
two approaches give equivalent results for sufficiently large SPT datasets, and comparing PDFs and fits is 
generally more intuitive.  
Perform single cell fit: We generally recommend fitting each single cell and assessing each single cell fit. 
This can be a great way of identifying potentially problematic single cell movies and for assessing cell-to-
cell variation. The only downside is that it will take significantly longer for Spot-On to run.  
Iterations: Spot-On uses least-squares fitting, which is subject to trapping in local minima during 
optimization. For each fit iteration Spot-On will generate a random initial guess for each fitted parameter 
and proceed with optimization for a hard-coded number of steps or until convergence. To avoid trapping in 
local minima, multiple iterations of this are repeated. For the 2-state model, 3 iterations are typically more 
than enough to ensure that the global minima is identified. For 3-state model fitting, or if the fit looks poor, it 
may be worth increasing the number of fit iterations. The only downside to increasing the number of 
iterations is a slower fit.   
16 Problematic dataset refers to potential outliers in the overall experimental dataset. E.g. if an unhealthy 
cell or a mitotic cell was accidentally chosen, or if the particle density was too high, or is the acquisition 
settings were chosen poorly (e.g. improper TIRF angle, etc.). Looking at each single cell as well as the 
overall population can be a great way to assess cell-to-cell variation and to assess the robustness of 
conclusions.   
17 BIC and AIC are information criteria that can be used to compare the “goodness of fit” for different 
models, while penalizing models with more parameters. However, since Spot-On models protein diffusion 
as Brownian, which it never truly is in cells, we note that using BIC or AIC to compare the goodness of fit of 
the 2-state and 3-state models can be misleading.  
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