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FAST TRACK
Quantifying the COVID-19 endgame:
Is a new normal within reach?
Hazhir Rahmandad* and John Sterman

Abstract

Eradication of COVID-19 is out of reach. Are we close to a “new normal” in which people can
leave behind restrictive non-pharmaceutical interventions (NPIs) yet face a tolerable burden of
disease? The answer depends on the ongoing risks versus communities’ tolerance for those risks.
Using a detailed model of the COVID-19 pandemic spanning 93 countries, we estimate the bio-
logical and behavioral factors determining the risks and responses, and project the likely course
of COVID-19. Infection fatality rates have fallen significantly due to vaccination, prior infections,
better treatments, and the less severe Omicron variant. Yet based on their estimated tolerance
for deaths, most nations are not ready to live with COVID-19 without any NPIs. Across the world
the increased transmissibility of Omicron, combined with the decay of immunity, leads to
repeated episodes of reinfections, hospitalizations, and deaths, complicating the emergence of a
new normal in many nations.
Copyright © 2022 The Authors. System Dynamics Review published by John Wiley & Sons Ltd
on behalf of System Dynamics Society.

Syst. Dyn. Rev. 38, 329–353 (2022)

Additional Supporting Information may be found online in the supporting information tab for
this article.

Introduction

The COVID-19 pandemic disrupted nearly every aspect of life around the
world, resulting in more than 6.3 million officially recognized deaths by June
2022 per the Johns Hopkins dashboard (Dong et al., 2020); overloaded hospi-
tals, burnout among frontline health workers, and delayed care for non-
COVID-19 conditions; costly business shutdowns, supply chain disruptions,
and unemployment; interruptions to education; aggravated political polari-
zation; and large increases in stress, mental health issues, and long-COVID,
among others. Moreover, the pandemic’s global extent, substantial asymp-
tomatic transmission, gradual loss of immunity from prior infection and vac-
cination, emerging variants, lack of access to vaccines (primarily in
developing nations), and vaccine hesitancy mean eradication is highly
unlikely (Kofman et al., 2021). In response to these harms and challenges
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the global community made impressive progress in vaccine design and
administration (Kashte et al., 2021), new drug development (Borah
et al., 2021), and non-pharmaceutical interventions (NPIs) including
masking, testing, voluntary isolation, and mandated actions that kept the toll
of the pandemic well below what it would have been otherwise. That
progress, along with the emergence of a milder dominant variant of SARS-
Cov-2, Omicron, gives hope that a transition to living with COVID-19 is
feasible and imminent. People around the world are eager to move into a
“new normal” in which life largely returns to pre-pandemic conditions, with
tolerable, low rates of infection, hospitalization, and death.

Any new normal will entail an ongoing burden of disease and some
changes to our routines compared to the pre-pandemic era. Whether, and
when, a community is willing to bear those harms and costs depends on the
magnitude of the harms and costs and its willingness to accept the ongoing
burden of disease and death. Both are highly uncertain. The burden of
COVID-19 during the acute phase of the pandemic, from roughly March
2020 through spring 2022, varied dramatically across countries, with
morbidity and mortality varying by more than a factor of 100. Tolerance for
economically and socially costly NPIs such as lockdowns, remote schooling,
social distancing, and mandatory masking also differed substantially
across nations. These dramatic variations cannot be explained by differences
in the virus, demographics, or other biological conditions, but depend on
the behavioral responses of governments, businesses, and the public (Covid-
National-Preparedness-Collaborators, 2022; Lim and Rahmandad, 2022).
Similarly, assessing what lies ahead requires models that integrate biological
factors such as transmissibility, virulence, and the duration of immunity
after infection or vaccination with social and behavioral processes such
as the availability and allocation of testing and treatment resources, how
people and governments assess the risk from COVID-19, how perceived risk
alters individual behavior and mandatory policies including distancing, self-
quarantine, mandatory lockdowns, and vaccine uptake, and how these
responses may erode in the face of growing “pandemic fatigue.” The task is
complex, but inevitable: whether using formal or mental models, policy
makers and citizens have to plan for the coming months and years. From
the timing of a wedding to government budgeting, many plans require
assumptions about what lies ahead. Absent more formal projections, important
decisions will be based on inconsistent intuitions and politics, may diverge
from biologically and behaviorally feasible options, and disappoint or mislead.

To address these issues, we first provide a simple model to develop intui-
tion for the key factors relevant to understanding long-term COVID-19
dynamics. We then build on an existing and more detailed dynamic model
of COVID-19 to project the long-term (more than a year ahead) evolution of
COVID-19 for all nations for which enough data exist to estimate the parame-
ters, a total of 93 nations covering ~5 billion people (Rahmandad et al., 2021).
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The model endogenously integrates the biological, epidemiological, social,
and behavioral factors above, and includes vaccination, risk perceptions and
response, adherence fatigue, three distinct variants, and other factors.

Methods

To understand long-term COVID-19 trajectories we start with a very simple
Susceptible-Infected-Removed-Susceptible (SIRS) model. The model yields
intuition about the dynamics but is too simple to provide useful, empirically
grounded projections. We then build on recent research suggesting that long-
term projections for the pandemic are feasible and require mechanistic
(causal) models in which community responses (e.g. adopting NPIs) respond
endogenously to the evolution of the disease (Rahmandad et al., 2022). Spe-
cifically, we expand the model described in Rahmandad et al. (2021), an
extension of the Susceptible-Exposed-Infectious-Removed (SEIR) model that
incorporates endogenous behavioral responses and many other operational
issues that condition the evolution of the pandemic.
The project is ambitious and entails grappling with many uncertainties.

Some can be quantified using historical data. Specifically, we estimate the
likely actual number of infections and deaths based on reported data and
testing rates, infection fatality rates (IFRs), the duration of immunity
acquired from vaccination and infection, the effectiveness of vaccines
against transmission and severe disease, the impact of existing variants on
transmission, severity, and vaccine effectiveness, and the impact of seasonal
weather on transmission. We also estimate country-specific response func-
tions quantifying risk perceptions and the responsiveness of NPIs to per-
ceived risk, adherence fatigue, treatment capacity and effectiveness, and
improvements in treatment over time.
Nevertheless, the model omits or simplifies many potentially relevant

factors. Computational constraints and data limitations prompt us to keep
the model aggregated (a single SEIR structure per country); we ignore
sub-communities, travel, and distinct types of NPIs adopted by nations,
including, among others, testing requirements, mask mandates, travel bans,
remote schooling, and stay-at-home restrictions. More importantly, although
the model allows us to examine the impact of new variants and differences
in their impact on vaccines, and the impact of new drugs, it is impossible ex
ante to know if and when new variants might emerge and their impacts on
these factors. As such, we offer aggregate (country-level) projections based
on what is known today. Nevertheless, the results offer insight into a new
normal that is internally consistent and informed by more than 2 years of
data across the globe.
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Intuitions from a simple model

To understand the likely dynamics of COVID-19 after it becomes endemic,
we first consider a simple SIRS model in which loss of immunity returns
people to the Susceptible state. The model is well-known (Murray, 2002)
with the following formulations capturing the dynamics of stock variables
(S, I, and R modeled as fractions of total population; extension to SEIRS is
straightforward and offers no additional qualitative insights):

dS
dt

¼ R
τR

�βSI ;
dI
dt

¼ βSI � I
τI
;
dR
dt

¼ I
τI

1� fð Þ� R
τR

; 1¼Sþ I þR: (1)

Here β represents the transmission rate, τI and τR the average duration of dis-
ease and immunity, and f the IFR. Noting that f is very small (<0.01), the
long-term dynamics can be approximated as a constant population with
equal steady-state flows among the three stocks. Solving for the resulting
equilibrium flows, the long-term per capita death rate in the endemic
state, D, is:

D¼ fI
τI
¼ f R0�1ð Þ
R0 τI þ τRð Þ , (2)

where the basic reproduction number, R0 ¼ βτI . The formulation assumes the
transmission rate, β, is constant. We now extend the model to account for
risk-driven behavioral responses that may reduce transmission rates due to
the perceived risk of death (Funk et al., 2010). Specifically, assuming β

responds to the perceived death rate D’ according to β¼ β0
1þD0

α

, and noting that

in equilibrium D’ ¼D, the steady-state death rate with behavioral
response is:

D¼ f R0�1ð Þ
R0 τI þ τRð Þþ f =α

(3)

The parameter α represents the tolerable risk level (in deaths per capita per
day) in the community. Smaller values of α represent communities willing
to adopt NPIs at lower levels of risk.

To develop intuition into the potential outcomes, consider two distinct
regimes. First, if responsiveness and death rates are both high relative to reg-
ular transmission rates, R0 τI þ τRð Þ� f

α, as was the case early in the pan-
demic, then the steady-state death rate is largely a function of
responsiveness and the basic reproduction number, but not the IFR. The
resulting death D� α R0�1ð Þ. Consider plausible values for parameters early
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in the pandemic: R0 �3; τR �100; τI � 10; f ¼ 0:01; α should be estimated
for each country but one death per million per day (α~1e�6) is plausible for
modestly responsive countries. Then R0 τI þ τRð Þ ¼330ð Þ� f =α ¼ 10000ð Þ and
thus D≈ 2e�6 and is independent of the IFR. The decoupling of death rates
from the IFR may be surprising, and points to the importance of the behav-
ioral response function. When communities are willing to change their
behavior significantly in response to perceived risks, observed death rates
reflect the level of deaths the community is willing to tolerate. Deaths will
not be higher even if the disease is deadlier because people will adopt NPIs
sufficient to stabilize death rates at the tolerable level; likewise, deaths will
not be lower even if the disease is less deadly as people respond by relaxing
the NPIs, thus increasing transmission and deaths until the tolerable level is
reached. The delays in this critical negative feedback process mean fluctua-
tions are likely (and have been observed), even without the introduction of
new variants, vaccines, or new treatments.
Now consider a second regime in which low responsiveness to the risk of

death (large α) or a low IFR (small f ) weakens the behavioral responses. As
the term f/α approaches zero, the steady-state death rate becomes a linear
function of the IFR:

D� f R0�1ð Þ
R0 τ1þ τRð Þ : (4)

For example, with α ≈ 1e�5 and f ≈ 1e�3, death rates increase to D ≈ 6e�6
per day, higher than before despite significantly lower IFR, because
behavioral responses are not strong enough to reduce transmission rates.
The second regime is more common in younger, low-income, countries as
well as in the later stages of the pandemic after IFR has come down due to
vaccines and treatments. This regime can also arise despite a higher IFR if
pandemic fatigue causes individuals and governments to become less
responsive to deaths, as appears to characterize some nations in 2022.
In such settings new treatments that bring down the IFR would significantly
reduce the long-term burden of the disease. Moreover, in this regime deaths
drop as the duration of immunity grows, increasing the value of repeated
vaccination (boosters) and vaccines designed to confer more durable
immunity. The result also underscores the importance of accurately quanti-
fying the duration of immunity after infection and vaccination (τR) to assess
the outcomes under any new normal.
The basic reproduction number (R0 ¼ β0τI in the simple model) matters in

both regimes, but less so in the second regime and especially when it grows
above a value of 1. In the second regime, the death rate under higher repro-
duction numbers simplifies to D� f = τI þ τRð Þ. Therefore, a rise in the basic
reproduction number, arising for example from the emergence of new, more
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transmissible variants, may increase the long-term burden of disease, but less
so at higher basic reproduction numbers when a true new normal with lim-
ited behavioral response is established.

Finally, responsiveness to risk, 1=α, directly reduces the burden of disease
in the first regime. The reduction comes at some modest costs in the form of
reduced contacts and social interactions relative to pre-pandemic levels, as
the result of, for example, voluntary or mandated isolation, restrictions on
activities, masking, and other NPIs. The reduction in these activities relative
to normal is given by:

1
1þD=α

¼ τI þ τRþ f = αR0ð Þ
τI þ τRþ f =α

: (5)

The costs of the NPIs are nonlinear, and only notable if behavioral response
is strong and the basic reproduction number high. The increased costs due
to increasing R0 with new variants may be exceedingly challenging to some
countries that were initially very successful in containing the burden of dis-
ease through proactive adoption of NPIs at very low death rates (e.g. China’s
zero-tolerance policy, where the spread in early 2022 of the much more con-
tagious Omicron variant led to massive mandatory lockdowns with more
limited success compared to the first wave in 2020).

The simple SIRS model provides a framework to consider the determi-
nants of outcomes under a new normal. With community-specific estimates
for R0, α, τR, f , one could use the results above to project long-term mortality
and disruptions to life in a new normal. Estimates of these parameters, how-
ever, are not readily available for many nations, and have been changing
over time as data accumulate and with the advent of vaccinations, better
treatments, and new variants. Moreover, the steady-state equilibrium
assumption is problematic. The pandemic has so far unfolded in distinct
waves, due to the delays in risk perception and response (Rahmandad
et al., 2021; Lim and Rahmandad, 2022) as well as the impact of seasonality
on transmission. Average outcomes in nonlinear oscillatory systems are dif-
ferent from the steady-state approximation. These limitations call for a more
detailed model that allows for reliable estimation of relevant parameters and
can endogenously capture the dynamics including potential future waves.

A detailed model

Our extended model builds on our earlier work (Rahmandad et al., 2021).
Here we provide a brief overview, focusing on the extensions and modifica-
tions to the model made here. Figure 1 presents an overview of the model,
showing the main stock and flow structure and a high-level representation of
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the critical feedbacks. We refer interested readers to the previous paper and
model documentation for details.

Disease states and flows

The model captures all nations that provide data sufficient to estimate the
parameters. We estimate the parameters simultaneously across all countries
considered to ensure consistency across country-level estimated parameters.
The model backbone is the classical SEIRS model (the SEIR sequence
followed by a return to the Susceptible state after an immunity period)
disaggregated to distinguish the following states after exposure: pre-symptomatic,
pre-detection, post-detection, and removed. We disaggregate further to
account for individuals in different states capturing their (i) test status
(tested or not), (ii) treatment status (hospitalized or not), and (iii) vaccination
and prior immunity status (three states including naïve, recently vaccinated,
or having residual protection against severe disease due to past vaccine or
infection). The latter factor is new in this version of the model because the
original model was completed before vaccines were available. Loss of
immunity is also new in this version of the model as there were no data on
immunity loss when the original model was developed. Although the model
retains the classical compartment-model paradigm in the SEIR tradition, we
model the distribution of disease acuity across the infected compartments
using a (zero-inflated) Poisson distribution that captures the heterogeneity
in disease severity and symptoms expected for individuals in each stock. We
track the distribution of severity analytically (Rahmandad and Hu, 2010),
which allows us to model the behavioral decision processes health care

Recovery
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Dead

Infection

Emergence
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Immunity Loss

Risky Interactions
+

++ +

Contact/Risk
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Fig. 1. Overview of
model structure and key
feedback loops. The
actual model is more
complex and
distinguishes populations
based on the following
dimensions: vaccination/
prior exposure (naïve,
recently vaccinated,
previously exposed/
vaccinated); testing
(tested, untested);
hospitalization; and
symptoms (asymptomatic,
symptomatic) [Color
figure can be viewed at
wileyonlinelibrary.com]
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providers and hospitals use to allocate testing and treatment capacity to the
more severe cases, quantify demand for testing based on symptom severity,
reduce the underlying acuity with vaccines, and determine the IFR as a func-
tion of the state individuals are in. The analytical acuity levels also depend
on the dominant variant. For example, the estimation results show that Omi-
cron reduced acuity compared to prior variants such as Delta. A new feature
in the current model is the explicit estimation of the fraction of the popula-
tion covered by testing as a function of testing rates. Limited testing capacity
in many nations has significantly limited the available data, often to a few
affluent and urban centers, omitting large areas of some countries from offi-
cial statistics. We use per capita testing rates to capture the undersampling
in an empirically estimated equation and assume the infection dynamics
resemble what is observed in the subset but not reflected in official case
counts.

Infections and deaths

The flow of new infections depends on contacts between the susceptible
population and those infected, with the possibility that individuals have dif-
ferent contact rates and hazard rates of infection given contact depending on
the stage of the disease (e.g. pre- vs. post-symptomatic) as well as test and
hospitalization status. To these we add the impacts of endogenous changes
in behavior (discussed below), weather conditions based on Xu et al. (2021),
and vaccine efficacy, which depends on the dominant variant.

Infected individuals may get tested based on the severity of their symp-
toms, the availability of tests, and the demand for testing from those without
COVID-like symptoms. We estimate how the availability of tests (per capita)
may exclude a fraction of population from testing and thus from being cap-
tured in official case counts. The demand for testing from those without the
disease depends on people’s perceptions of risk, which we model as an
increasing function of recent official cases. Those with more severe symp-
toms are more likely to go to or be taken to a hospital. The burden of COVID-
19 patients can overwhelm hospital and health care capacity, resulting in
care rationing and delayed treatment for those with COVID-19 and those
with other conditions. In the model, the greater the demand for treatment
relative to capacity, the more severe COVID-19 symptoms must be to be
admitted for treatment. Thus, the IFR depends endogenously on whether
treatment facilities are overloaded, the age structure of the population, and
the efficacy of treatments. Specifically, the IFR depends on an age-adjusted
country-level baseline, the fraction of people able to receive treatment and
their acuity level, and the efficacy of treatments, which itself improves fol-
lowing a learning curve (see below). The IFR also depends on the dominant
circulating variant as well as the state of the individuals, particularly
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whether they are naïve to the virus, recently vaccinated, or have a degree of
immunity from vaccines or prior infection.

Behavioral feedbacks

Three behavioral feedback processes are critical to the dynamics: behavioral
responses to risk, adherence fatigue, and IFR reduction. First, regarding
responses to risk, in classic SEIR models the contact frequency and probabil-
ity of transmission given a contact with an infectious individual are con-
stants. In reality, as discussed above, people alter their behavior based on
the risk of harm they perceive from the disease. Prior work shows that these
feedbacks have a first-order impact on the dynamics compared to, for exam-
ple, the structure of the contact network among individuals (Rahmandad
and Sterman, 2008). In the context of COVID-19, higher levels of perceived
risk, including the likelihood of infection and the likelihood of severe dis-
ease or death given infection, lead people to adopt NPIs including self-isola-
tion, social distancing, and improved hygiene (handwashing, masking), and
to support government actions mandating such measures. Risk perception is
estimated as a function of recent death rates, with an asymmetric delay time
for upward versus downward adjustment of perceived risk. Second, adher-
ence fatigue is captured as a reduction in the magnitude of the behavioral
responses to risk when those responses have been actively applied in the
recent months. The more people have engaged in NPIs, the stronger the pres-
sure to reopen businesses and schools and cut back on NPIs that are econom-
ically, socially, and psychologically costly. In the model, a given level of
perceived risk elicits a stronger behavioral response initially, but responses
to the same level of perceived risk become weaker as the cumulative costs of
NPIs rise. Finally, health care providers have learned over time how to better
care for COVID-19 patients. Such learning includes drugs (e.g. Remdesivir,
Dexamethasone, Paxlovid, and other anti-viral and anti-inflammatory treat-
ments), improved non-pharmaceutical treatments (e.g. proning, better venti-
lator protocols, better diagnostics for patient condition), and reduced
interactions among those most at risk through use of personal protective
equipment and better protocols. We capture such developments using a stan-
dard learning curve in which the IFR falls by a given fraction for each dou-
bling of cumulative deaths.

Vaccines and variants

We expanded the original model to include vaccines and new SARS-Cov-2
variants. Table 1 summarizes the most important modifications and paramet-
ric assumptions informing those changes and the estimation of their
strength. During the historic period in the simulations the vaccination rate is
given by the data. In the projections, vaccine adoption is modeled using a
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© 2022 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.
DOI: 10.1002/sdr

 10991727, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1715 by M

assachusetts Institute O
f T

echnology, W
iley O

nline L
ibrary on [10/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



T
ab

le
1.

N
ew

m
od

el
co

m
p
on

en
ts

an
d
ke

y
fo
rm

u
la
ti
on

s
M
ec
h
an

is
m

E
qu

at
io
n
s
(“
*”

id
en

ti
fi
es

es
ti
m
at
ed

p
ar
am

et
er
s)

E
q

n
o.

T
h
e
fr
ac
ti
on

of
th
e
p
op

u
la
ti
on

w
it
h
ac
ce
ss

to
te
st
in
g
(a
n
d
th
u
s
ca
p
tu
re
d

in
of
fi
ci
al

st
at
is
ti
cs
),
f t
,i
s
a
fu
n
ct
io
n
of

cu
rr
en

t
p
er

ca
p
it
a
te
st
in
g
ra
te
s,

T
,w

it
h
co

ef
fi
ci
en

ts
α
�
an

d
β�

es
ti
m
at
ed

(t
h
e
la
tt
er

is
as
su

m
ed

to
be

be
lo
w

1)

f t
¼
M
in

1,
α
� T

β�
�

�
6

A
m
em

be
r
of

th
e
p
op

u
la
ti
on

ca
n
be

in
on

e
of

3
st
oc

k
an

d
fl
ow

ch
ai
n
s:

(1
)
n
ot

va
cc
in
at
ed

or
in
fe
ct
ed

,i
.e
.“
N
aï
ve

”
;
(2
)
R
ec
en

tl
y
va

cc
in
at
ed

,
“V

x”
;(
3)

O
th
er
s,
“N

V
x”
.M

em
be

rs
of

th
e
V
x
gr
ou

p
ev

en
tu
al
ly

lo
se

th
e

d
eg
re
e
of

im
m
u
n
it
y
co

n
fe
rr
ed

by
va

cc
in
at
io
n
w
it
h
a
th
ir
d
or
d
er

d
el
ay

of
τ� V

x
,a

n
d
re
-e
n
te
r
th
e
su

sc
ep

ti
bl
e
N
V
x
gr
ou

p
.N

V
x
in
d
iv
id
u
al
s
w
h
o
ar
e

in
fe
ct
ed

an
d
re
co

ve
r
re
m
ai
n
fu
ll
y
im

m
u
n
e
fo
r
an

av
er
ag
e
of

τ� N
V
x
an

d
th
en

fl
ow

ba
ck

to
th
e
su

sc
ep

ti
bl
e
st
at
e

τ� V
x

τ� N
V
x

7

V
ac
ci
n
at
io
n
s
ar
e
gi
ve

n
by

th
e
h
is
to
ri
c
d
at
a.

P
ro
je
ct
ed

va
cc
in
at
io
n
s

co
n
ti
n
u
e
ba

se
d
on

h
is
to
ri
c
ca
p
ac
it
y
an

d
sa
tu
ra
te

at
a
m
ax

im
u
m
.T

h
e

m
ax

im
u
m

va
cc
in
at
io
n
fr
ac
ti
on

(V
M
ax
)
is

es
ti
m
at
ed

ba
se
d
on

d
at
a
fo
r
th
e

cu
m
u
la
ti
ve

va
cc
in
at
ed

fr
ac
ti
on

of
th
e
p
op

u
la
ti
on

to
d
at
e
(V

C
m
l)
fi
tt
ed

to
a
ge
n
er
al
iz
ed

lo
gi
st
ic

cu
rv
e

E
st
im

at
io
n
:

V
C
m
l
tðÞ
¼

k
�

c�
þ
ex

p
�B

�
t�

q�
ð

Þ
ð

Þ1 v�

V
M
ax
¼
M
ax

V
C
m
l
la
st

ð
Þ,

k
�

c�
1 v
�

�
�

8

A
cu

it
y
is

m
od

el
ed

as
a
ze
ro
-i
n
fl
at
ed

P
oi
ss
on

d
is
tr
ib
u
ti
on

,w
it
h
av

er
ag
e

ac
u
it
y,

a,
es
ti
m
at
ed

fo
r
th
e
n
aï
ve

p
op

u
la
ti
on

w
it
h
or
ig
in
al

va
ri
an

t
a� 0

an
d
ad

ju
st
ed

by
va

cc
in
at
io
n
st
at
u
s
(V

S
;e

� av
s
¼
1
fo
r
“N

aï
ve

”)
an

d
va

ri
an

t
im

p
ac
t
on

ac
u
it
y
(e

� av
t
V
rn

½
�).

D
el
ta

is
as
su

m
ed

to
be

si
m
il
ar

to
th
e

or
ig
in
al

va
ri
an

t;
O
m
ic
ro
n
’s
im

p
ac
t
on

se
ve

ri
ty

is
es
ti
m
at
ed

.

a
¼
a� 0
e� av

s
V
S

½
�e� av

t
V
rn

½
�

9

T
h
e
im

p
ac
ts

of
va

cc
in
at
io
n
on

tr
an

sm
is
si
on

ar
e
ca
p
tu
re
d
as

a
m
u
lt
ip
li
er

bu
t
on

ly
af
fe
ct
s
th
e
re
ce
n
tl
y
va

cc
in
at
ed

(r
vx
)
to

ca
p
tu
re

th
e
fa
d
in
g

ef
fi
ca
cy

of
va

cc
in
at
io
n
an

d
p
as
t
in
fe
ct
io
n
ov

er
ti
m
e.

T
h
e
ef
fe
ct

d
ep

en
d
s

on
va

ri
an

ts
th
ro
u
gh

t� vr
(e
st
im

at
ed

fo
r
bo

th
D
el
ta

an
d
O
m
ic
ro
n
)

ca
p
tu
ri
n
g
th
e
p
ot
en

ti
al

re
d
u
ct
io
n
in

va
cc
in
e
ef
fi
ca
cy

w
it
h
n
ew

va
ri
an

ts

r v
x
¼
1
�
0:
1t

� vr
V
rn

½
�

10

V
ar
ia
n
ts

d
ir
ec
tl
y
af
fe
ct

tr
an

sm
is
si
on

ra
te
s
th
ro
u
gh

a
m
u
lt
ip
li
ca
ti
ve

fu
n
ct
io
n
(r

vr
)
w
it
h
ea
ch

n
ew

va
ri
an

t
p
ot
en

ti
al
ly

in
cr
ea
si
n
g
th
e

tr
an

sm
is
si
on

ra
te

ov
er

th
e
p
re
vi
ou

s
on

e

r v
r
¼
1
þ
P V
rn
r� vr

V
rn

½
��

1
11

*D
en

ot
es

p
ar
am

et
er
s
th
at

ar
e
es
ti
m
at
ed

.

338 System Dynamics Review

© 2022 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.
DOI: 10.1002/sdr

 10991727, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1715 by M

assachusetts Institute O
f T

echnology, W
iley O

nline L
ibrary on [10/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



generalized logistic curve estimated separately for each nation based on the
vaccination data for that nation, with an estimated saturation point con-
strained to be no more than 95 percent of the population. Future vaccination
rates are bounded by historical vaccination capacity and allow nations to
reach and maintain the estimated maximum vaccination rate. We do not dis-
tinguish between different types of vaccines and assume boosters will be
administered to keep the vaccinated fraction of population freshly boosted
(subject to historical maximum capacity). Relevant parameters relating to
vaccine efficacy should be seen as averages across the globe rather than spe-
cific to each country.
We explicitly model the three most important variants through spring

2022: the initial strain, Delta, and Omicron, with country-specific dates for
the introduction of each selected from data (from covariants.org) or, absent
introduction date data, estimated with the other parameters so as to fit avail-
able data including cases. New variants gradually displace prior dominant
strains, altering the parameters affecting transmissibility, vaccine effective-
ness, and acuity. For example, compared to Delta, Omicron is more trans-
missible, less susceptible to most vaccines, and leads to lower acuity levels
and more asymptomatic cases. The introduction of vaccines, and the emerg-
ing evidence on the duration of protection against severe disease conferred
by infection, led to additional disaggregation of the model to distinguish
between individuals who are COVID-naïve (those who have neither been
vaccinated nor previously infected), the recently vaccinated, and those who
have recovered from infection or were vaccinated less recently. That disag-
gregation enables us to estimate the extent to which protection against (re)
infection dissipates as more time passes since recovery or vaccination.

Estimation

The model is estimated across all nations for which the data needed to esti-
mate the parameters are available, a total of 93 nations spanning ~4.92 bil-
lion people. Estimation is pursued by matching model predictions against
time series data on reported cases and deaths. We use a negative binomial
likelihood function to account for excess dispersion and autocorrelation.
Most of the data is procured from the Our World in Data (OWID) site
(Ritchie et al., 2020), which gets its case and death data from the John’s Hop-
kins University Portal (Dong et al., 2020). Estimation is augmented by
including, for each nation, excess deaths that are not officially attributed to
COVID-19 (from The Economist magazine’s estimates; Solstad, 2022) to
account for unreported deaths. Other model parameters are estimated,
except for the date Omicron arrived in each nation (given by data) and the
residence times in the exposed and infected compartments (the mean emer-
gence time and duration of disease), as these are well constrained by prior
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research. The parameters that are likely to vary across nations are estimated
at the country-level using a hierarchical Bayesian framework (Gelman and
Hill, 2006) that ensures the country-level estimates are consistent with one
another, that is, have variances that are in line with expectation. Parameters
that are primarily determined by biological factors, such as the initial age-
adjusted IFR, are expected to have low cross-country variance, while factors
that are strongly conditioned by social and behavioral factors, such as those
governing risk perceptions and responsiveness to risk, are expected to have
higher cross-country variance.

The projected course of the pandemic from a deterministic simulation
model is bound to diverge from observed data over the more than 2 years
since COVID-19 emerged. From holidays to mass gatherings, transmission
rates change as a result of many factors not captured in the model. The pres-
ence of such unobserved variations will cause the states in the model to
gradually drift away from the data over time. More problematic, such drift
may lead to biased estimates of parameters for important processes such as
behavioral responses to risk. The basic solution to this general problem is to
“reset” the state variables based on observed data to correct for the impact of
unobserved process noise and other factors excluded from the model
(Eberlein, 2015). Prior research shows that forecasting performance across a
wide range of COVID-19 models is improved when state-resetting is
included (Rahmandad et al., 2022). Formal state resetting methods such as
Kalman filtering and particle filtering (Cazelles and Chau, 1997) recognize
that noise in a system can cause the state variables to drift away from the
best empirical values for them even if the model is correctly specified (for an
intuitive example, see Forrester, 1961, Appendix K). However, Kalman and
particle filtering in a model of this complexity are computationally very
costly and thus, as a practical matter, infeasible. We therefore adopt a heuris-
tic approach in which we multiply transmission rates by the recent ratio of
observed to expected (model-based) reported cases, effectively resetting
states based on the data to account for drivers of infection not captured in
the model. The adjustment aligns the model with the data and reduces the
risk of biased parameter estimates.

The heuristic approach for state resetting also offers an important addi-
tional benefit: the time series for the ratio of the data on reported cases to the
expected (model-based) reported cases provides an estimate of the patterns
of variation in the course of the epidemic not captured in the model. These
patterns, including their mean, variance, and autocorrelation structure can
then be used to specify random variables that can be introduced to model
projections to quantify future uncertainty in model predictions. We
operationalize this approach by fitting a nonlinear auto-correlated noise for-
mulation (the equations for NP tð Þ below) to the observed ratio in the primary
calibration (data for NP tð Þ from May 2020 until March 2022). We then utilize
the estimated process noise structure (the parameters θ�1�θ�5 for each
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country) to generate process noise used in projections where data are
unavailable, also informing the uncertainty in projections. Specifically, the
sequence is formulated as follows:

NP tð Þ¼ eNc tð Þ (12)

dNC tð Þ
dt

¼w tð ÞNW tð Þþ θ�1�NC tð Þ
θ�2

(13)

w tð Þ¼Min
1

eθ�3þθ�4NC tð Þ ,
�

1
�

(14)

NW tð Þ�Normal 0, θ�5
� �

: (15)

In principle Markov Chain Monte-Carlo methods could be used to estimate
parameter uncertainty, as done in the original study for country-level param-
eters (Rahmandad et al., 2021). However, the focus of the current calibration
is on global parameters (i.e. those shared across countries, such as variant
transmissibility and immunity loss time). Due to the high dimensionality of
the parameter space and the risk of over-confidence in estimating parameter
uncertainty for global parameters we do not attempt to estimate parameter
uncertainty. The online supplement provides additional explanation.

Results

The parameter estimation results for the full model, summarized in Table 2,
are based on data available through April 19, 2022. Table 2 lists the
estimated values of the more important global parameters with country-
specific parameters provided in the online documentation. Table 2 also
reports the elasticities of cumulative cases and deaths with respect to each
estimated parameter in simulations through the end of 2023. The elasticities
inform the robustness of the results to uncertainty and potential bias in the
estimated parameters: a low (high) elasticity indicates low (high) sensitivity
of cumulative cases and deaths to variations in the parameter. High elasti-
cities also suggest which parameters, and the model structure in which they
are embedded, would be fruitful directions for more detailed empirical
studies and modeling.
A few results are notable. First, the time constants for the loss of immunity

after vaccination or infection are short, about 2–4 months. Longer immunity
periods would reduce estimates for cumulative cases and deaths, with mod-
erate elasticity values (e.g. case and death elasticities to τ�Vx are �0.20
and� 0.09, respectively). Reductions in acuity due to past exposure and
especially recent vaccination are large (e�avs NVx½ �=0.60; e�avs Vx½ �=0.21) and
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account for significant reductions in the IFR (to 0.32 and 0.03 relative to the
naïve population).

We also find a significant reduction in the severity of Omicron, with the
Omicron IFR falling by as much as 73 percent compared to prior variants.
The reductions in acuity significantly reduce the severity of cases and the
likelihood of death. Lower acuity also increases the fraction of asymptomatic
cases, which reduces the ascertainment rate (the fraction of actual cases
detected). Assuming current testing rates continue, our model projects a
larger fraction of cases will go undetected and unreported in official data in
the coming months and years.

Results also confirm a significant increase in transmission rates for both
Delta (Shiehzadegan et al., 2021) and Omicron (Ito et al., 2022) compared to
the early variant. Interestingly, the estimated increase in the transmission
rate is larger for Delta, suggesting that the major global Omicron wave has
been as much due to the loss of vaccine protection and erosion of NPIs as to
its innate transmissibility. NPIs in the Omicron wave fell due to lower risk
of death, in turn due to improvements in treatments, the lower severity of
Omicron, and the increased fraction of the population vaccinated. Overall,

Table 2. Estimated
common parameters for
new model components

Parameter Estimate

Elasticity of
cumulative

cases

Elasticity of
cumulative

deaths Explanation

α� 1060 day �0.03 �0.08 Scaling factor for test
coverage

β� 0.70 0.08 0.19 Exponent informing test
coverage fraction

τ�Vx 54.0 day �0.20 �0.09 Immunity duration for
vaccinated

τ�NVx 112.0 day �0.20 �0.11 Immunity duration after
natural infection

e�avs NVx½ � 0.60 �0.32 0.50 Impact of prior infection
on severity

e�avs Vx½ � 0.21 �0.02 0.05 Impact of recent
vaccination on severity

e�avt Omicron½ � 0.56 �0.35 0.52 Impact of Omicron on
severity

t�vr Delta½ � �0.19 0.03 0.01 Reduction in vaccine
effectiveness due to Delta

t�vr Omicron½ � �0.80 0.11 0.04 Reduction in vaccine
effectiveness due to
Omicron

r�vr Delta½ � 2.98 0.27 0.32 Increase in transmission
due to Delta

r�vr Omicron½ � 1.17 0.10 0.08 Increase in transmission
due to Omicron

342 System Dynamics Review

© 2022 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.
DOI: 10.1002/sdr

 10991727, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1715 by M

assachusetts Institute O
f T

echnology, W
iley O

nline L
ibrary on [10/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



these parameters are largely consistent with the direct empirical and labora-
tory evidence for the relevant constructs (Shiehzadegan et al., 2021; Ito
et al., 2022), and offer novel estimates for important factors that are hard to
quantify using experimental and clinical approaches.
Figure 2 compares the model fit to the history of reported cases and

deaths, with median projections through December 2023 for countries with
the most cumulative COVID-19 deaths to date. The projections are based on
the continuation of historical trends: no change in behavioral response, no
new variants, vaccines, or treatments, and vaccination rates reaching and
staying at the maximum estimated for each country. Note that the median
projections hide the waves otherwise visible in single simulations (and his-
torical data). The projections also assume current testing rates will be

Fig. 2. Data and model
results for selected
countries, showing cases
and deaths per million
people per day.
(A) Reported cases (Data:
dotted red; Simulation:
solid blue) with
90 percent confidence
intervals for projections
(dashed lines) and
estimated true cases
(dash-dotted black; right
y-axis). (B) Reported
death rates (data and
simulations with
90 percent confidence
intervals) [Color figure
can be viewed at
wileyonlinelibrary.com]
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maintained. Although we could attempt to model the evolution of testing
endogenously, doing so would introduce speculative assumptions and
parameters and is not justified given the large uncertainty regarding govern-
ment policy and individual decisions regarding testing and the growing use
of at-home tests not reflected in official data. The top panel (A) also shows
projections for the actual number of cases (right scale). The 90 percent confi-
dence intervals for the projections are based on 200 simulations using the
autocorrelated noise derived from the state-resetting process described
above. The projections show the 50th percentile rather than any single simu-
lation to filter out the noise in individual simulations. Note, however, the
volatility, which arises from the impact of weather and the cyclicality in
incidence and prevalence caused by the delays in the negative feedback
involving risk perception, responsiveness, and transmission.

Figure 2 shows that projected reported cases continue to be substantial.
Worse, limitations on testing and the high fraction of asymptomatic cases
mean reported cases significantly undercount true incidence. Globally
(across the 93 countries) we estimate cumulative actual cases by late April
2022 to be 9.8 times the reported number (this estimate is consistent with
recent global estimates; Barber et al., 2022), with cumulative actual deaths
estimated to be 2.0 times the reported number (this estimate is on the lower
end of those from the Economist magazine; Solstad, 2022). Projected actual
cases may well break historical records in many nations, ranging between 6–
10 thousand per million per day, implying a typical person would be
reinfected every 100–150 days. Projected reported cases are lower than the
peaks of major past waves but are not significantly below historical averages.
The gap between the reported and actual cases will grow significantly in the
coming months and years because of the reduced acuity of typical future
cases, which leads to less testing and a reduction in health system surveil-
lance accuracy. Projected reported incidence also remains above historic
levels in many nations. The increase is driven by the reduction in the IFR
due to vaccination, acquired immunity, the emergence of Omicron, and
improved treatments. These developments reduce the risk of severe disease
and death, leading to the erosion and relaxation of NPIs, including both
mandatory government restrictions and voluntary individual isolation, dis-
tancing, masking, and so on. The consequence is an increase in new cases.

The resulting burden of COVID-19 will thus continue to be large for most
nations. Figure 3A reports cumulative deaths per million people projected
by the end of 2023 (note the logarithmic scale and that the confidence inter-
vals only account for uncertainty in future deaths due to process noise, but
not due to parameter uncertainty). We show two scenarios. Red dots denote
the base case in which each nation’s responsiveness to risk follows the his-
torical level. Black dots show cumulative deaths if all NPIs are relaxed
starting in mid-2022 allowing uncontrolled transmission thereafter. Many
countries are expected to suffer cumulative deaths exceeding 1000 per
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million by the end of 2023. For example in the base case we project
approximately 7400 cumulative actual deaths per million for the USA, or
approximately 2.45 million actual cumulative deaths by the end of 2023,
more than twice the official, reported death toll by April 2022. Naturally, the
biggest impact from relaxing behavioral responses comes in nations that
exhibited high responsiveness in the earlier phases of the pandemic, for
example New Zealand, which introduced strong measures at very low levels
of incidence and mortality.
The differences across countries are also projected to be large, spanning

more than one order of magnitude. Projected death rates are low for a few
nations, but these results are likely artifacts of poor surveillance systems and
gaps in the available data for officially reported deaths and excess mortality,
e.g. Nigeria, Togo, or Ghana. However, the estimated differences in death
rates for most nations, including many with excellent surveillance systems,
remain significant. These differences are primarily due to differences in
responsiveness to risk across nations (Lim and Rahmandad, 2022). This
result is due to the critical role of the negative feedbacks captured by the
endogenous treatment of risk perceptions and their impact on the willing-
ness of individuals and governments to adopt NPIs.
The behavioral response feedback can cause the effective reproduction

rate, Re, for the disease to fluctuate around a value of 1: values of Re above
1 lead to a growing wave of new cases and deaths, both depleting the pool of
susceptible individuals and, importantly, causing perceived risk to increase,

Fig. 3. Outcomes across
different countries in a
few scenarios.
(A) Cumulative deaths
(and 90 percent
confidence intervals) per
million by the end of
2023, assuming historical
responsiveness (base
case; red dots) and no
NPIs (black dots).
(B) Ratio of average death
rates (red) and
interactions (blue) in
2023 versus 2021. (C–F)
Changes in the 2023/2021
ratio of deaths and
interactions across four
scenarios. Positive values
indicate improvement
(i.e. reduced death or
increased interaction)
[Color figure can be
viewed at
wileyonlinelibrary.com]
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which leads to a reduction in transmission as people increasingly adopt NPIs
and as the pool of susceptible persons falls. Consequently, Re falls, leading
to a drop in new cases, which, with a delay, causes perceived risk and the
stringency of NPIs to fall, setting the stage for the next wave. At the same
time, gradual loss of immunity among vaccinated and previously infected
individuals increases the susceptible population, providing fuel for the
next wave even in the absence of new variants. The key question is what
level of risk suffices for a country to adopt the NPIs required to bring Re

down to 1. If death rates absent NPIs do not reach the intolerable risk levels
for a nation (e.g. due to reduced IFR with drugs and Omicron variant),
behavioral responses will not be triggered and the country transitions to a
new normal. Otherwise, death rates will settle at levels required for the
people and governments of a nation to adopt NPIs, voluntarily or through
mandates, sufficient to reduce transmission and bring deaths to the level
they are willing to accept. Those estimated tolerance levels vary signifi-
cantly across nations.

The critical role of the negative feedbacks created by endogenous
responses to risk leads to two important results. First, for each nation, pro-
jected death rates in 2023 tend to be similar to those experienced in 2021
despite reductions in the IFR (the red dots in Figure 3B show estimated
death rates for different nations for 2023 relative to 2021 rates). Projected
death rates are similar despite the reduction in the IFR because the initial
drop in deaths due to vaccination, improved treatment, prior infection, and
the milder nature of Omicron cause NPIs to be relaxed or abandoned,
increasing incidence until deaths once again rise enough to trigger the re-
imposition of NPIs. Second, death rates vary significantly across nations
because different nations have different levels of responsiveness to risk
(Figure 3A). Nations that are more responsive to perceived risk implement
and adhere to NPIs at lower levels of risk and thus experience lower average
death rates; those that are less responsive implement NPIs only when risk is
much higher, causing them to endure higher average death rates.

Figure 3B shows the trends in deaths and risky interactions, comparing
the 2023 projections with 2021 experience. For each country we compute
the ratio of the projected death rate in 2023 to the rate in 2021, shown (with
90 percent confidence intervals) in red circles. Similarly, we calculate the
average reduction in risky interactions (compared to the pre-pandemic state)
for 2023 and divide that by the 2021 experience. This measure compares the
drop in normal daily routines and interactions in 2023 to the 2021 experi-
ence (blue squares). A value of 1 in either measure indicates no change;
higher values indicate increased deaths or interactions. Results show that
values of the relative death measure below 1 are common (but not universal)
across nations, indicating a reduced burden of deaths. Relative interaction
measures exceed 1 in about half of the nations, indicating some degree of
return to pre-pandemic levels of interactions in the population, but remain
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below 1 in the rest, suggesting a future in which the degree of voluntary
actions and mandatory measures are similar to or stronger than in 2021.
The baseline results assume no change in responsiveness to risk compared

to the first 2 years of the pandemic. People and governments aspire to a
new normal in which people can return to pre-pandemic levels of social
and economic activity while simultaneously avoiding significant rates of
COVID-19 illness and death. The baseline results suggest such a state is not
feasible for most countries, at least given their historical responsiveness to
risk and tolerance for deaths. The large reduction in the IFR created by
vaccination, prior infection, and the milder character of Omicron lead to the
relaxation and abandonment of the NPIs that brought incidence down, caus-
ing renewed surges in cases until deaths rise enough to convince individuals
to isolate and governments to impose restrictions again. In the baseline, the
more responsive countries continue to respond to the pandemic, settling into
a state with the level of NPIs needed to stabilize transmission at lower death
rates than the less responsive countries. However, the results also identify
a subset of countries (e.g. Columbia, Iran, South Africa) with low responsive-
ness that transition into a “new normal” with low levels of NPI implemen-
tation at the cost of relatively high death rates. Drawing on the analysis of
the simple model, these countries effectively operate in the second regime
where behavioral response is of secondary importance.
These projections assume no changes in many uncertain features.

Figure 3C–F and Figure 4 compare the base case against results under a few
different scenarios. In Figure 3C–F we report changes in country-level relative
death rates and interaction measures (changes in 2023 to 2021 ratios) under

Fig. 4. Global outcomes
over time in the base case
and four scenarios.
(A) Cumulative
infections. (B) Cumulative
deaths. (C) Infection
fatality rates [Color figure
can be viewed at
wileyonlinelibrary.com]
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four scenarios (Figure 4 shows global trajectories under the same scenarios and
baseline):

(C) Enhanced vaccination: We assume that in 2022 the uptake of current
vaccines increases enough to reduce the unvaccinated population by half.
For example, in the base case 23 percent of the U.S. population remains
unvaccinated. In Panel C of Figure 3 that fraction falls to 11.5 percent
starting in the middle of 2022. Vaccine efficacy is assumed to remain
constant.
(D) Enhanced treatment: We assume a new treatment that cuts the IFR in
half becomes globally available in the middle of 2022.
(E) Improved vaccines: We assume a new vaccine that restores effectiveness
against transmission to 90 percent becomes globally available starting in
mid-2022 and is quickly administered to all those adopting vaccines.
(F) Shift to a new normal: Countries adopt a new normal with reduced
responsiveness, meaning perceived risk has only half the impact on interac-
tions compared to historical responsiveness in the first 2 years of the
pandemic.

The scenarios in Figure 3C–E lead to reductions in death rates, with a few
notable exceptions. The reduction in deaths allows a relaxation of voluntary
isolation and mandatory measures, increasing social and economic interac-
tions. Overall, enhanced treatment and more effective vaccines have the larg-
est beneficial impact both in avoiding deaths and improving interactions
(note differences in the scales across Figure 3C–F). Enhanced vaccination
rates also make a major impact in those nations with low vaccination rates
to date. Figure 3F, however, shows that reduced responsiveness to risk, that
is, an attempt to attain a new normal by reducing the use of and adherence
to NPIs, increases deaths, often substantially, in most nations.

Variations in the results are large across nations and reveal some interest-
ing tradeoffs. Countries with lower historical responsiveness
(e.g. Bangladesh, Columbia, Iran, South Africa) may already be ready to
accept a new normal in which deaths due to uncontrolled transmission are
tolerated (based on the estimated historical response function for these coun-
tries). Responsiveness to risk in these nations is already low, so the addi-
tional reduction in Scenario F has little impact on them. Some others
(e.g. Germany, Ireland, Mexico, USA) are close to that threshold and may
gradually shift to a new normal with modest additional mortality. Others,
especially those with historically stronger responsiveness, face a more acute
tradeoff: new laws or regulations prohibiting NPIs or new social norms
reducing individual responses to risk would lead to a (partial) return to pre-
pandemic patterns of social and economic interactions, but at the cost of
large increases in death rates, in many cases more than doubling deaths
compared to their 2021 rates.
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Projections for actual cases and deaths summed over all countries are
shown in Figure 4. We also plot IFR aggregated across all nations (log scale;
Figure 4C). Again, the shift to a new normal increases death rates above past
rates. Besides reduced responsiveness to risk, the significant rise in deaths
is partly explained by the high load of cases that regularly overwhelms
treatment capacity and increases the IFR in the new normal scenario (in our
estimates this effect is most salient in a few large countries, most notably
Russia and India). Also note that the number of cumulative cases is much
larger than the total population of the nations we simulate. With immunity
lasting on the order of a few months, the significantly increased transmission
potential of Omicron, and reduced vaccine effectiveness, many people will
be infected by COVID-19 multiple times, similar to the common cold or
influenza, but with significantly higher morbidity and mortality. Among the
scenarios we explored, a new vaccine that confers more durable protection
is the only one that reduces both cases and deaths. Enhanced treatment, and
even enhanced vaccination, reduce deaths and thus weaken behavioral
responses, actually increasing cases.
The reduction in the IFR over time has been large, bringing death rates

down by an average of 0.037 percent by the end of 2023, more than an order
of magnitude compared to the first year of the pandemic. The reduction is
due to multiple factors: (i) improved treatment and changes in behavior
(towards protecting the most vulnerable), which directly reduce the IFR;
(ii) vaccines, which reduce the IFR by a factor of more than 10; (iii) prior
infections, which, like vaccines, confer some protection against severe dis-
ease (an IFR reduction factor of 0.32); and (iv) the milder disease caused by
the Omicron variant (an IFR reduction factor of 0.27). Across the future sce-
narios, more effective treatments have the largest impact on the IFR, while
enhanced vaccination also brings fatality rates down slightly. Interestingly,
the IFR increases slightly with the introduction of new vaccines that are able
to prevent transmission: by effectively protecting the vaccinated against
infection, a larger fraction of cases occurs among the unvaccinated, who
experience more severe disease if infected, increasing the IFR even as total
deaths decline.

Discussion

We used a feedback-rich country-level model of the COVID-19 pandemic to
consider the future of the pandemic and the feasibility and impact of shifting
to a new normal in which NPIs are largely relaxed and people learn to live
with some level of ongoing COVID-19 incidence, hospitalizations, and
deaths. We estimated the model using a wide range of data, including histor-
ical cases and deaths across 93 nations while accounting for vaccination,
variants, changes in disease acuity, and the incidence of asymptomatic cases
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arising from vaccines, variants, and prior infection, and the impact of
weather and cross-national differences in demographics and hospital capac-
ity. Importantly, and in contrast to other models (surveyed in Rahmandad
et al., 2022), the model includes endogenous allocation of testing and treat-
ment capacity based on disease acuity, improvements in treatments, and espe-
cially endogenous behavioral responses to risk and the impact of pandemic
fatigue. The model provides a framework to project future scenarios consis-
tently with reasonable estimates for the many interdependent factors that
influence what a new normal may look like in each country.

In these projections we find a disease that is significantly less severe than
it was in 2020, yet the overall burden of disease does not drop as much as
many hope and expect today. Vaccines, prior infections, improved treat-
ment, and the milder Omicron variant have already brought down the IFR
by an order of magnitude. Absent new treatments or new, milder dominant
variants, further reductions in the IFR are likely to slow: the COVID-naïve
population is now depleted, with new cases arising largely among vacci-
nated individuals and those with some prior immunity, who, given the attri-
butes of current vaccines, cycle back into the susceptible state after a few
months. The increased transmissibility of Omicron, combined with a rather
short period of immunity (on the order of 2–4 months), leads to repeated
reinfections and large caseloads in the future even if historical responsive-
ness to risk is maintained. The resulting death rates are comparable to those
observed in the first 2 years of the pandemic, and large enough to elicit
behavioral responses including the reimposition of various NPIs in most
nations, assuming they maintain their historical responsiveness.

We identified two general regimes of behavior. In the first the behavioral
response feedbacks remain potent because ongoing death rates exceed what
a nation is willing to accept. In the second, the behavioral feedbacks are
weak because fatality rates have fallen significantly or resistance to
implementing NPIs is strong even when death rates are high. We find most
countries have so far operated in the first regime. For them, reducing societal
responsiveness to risk by avoiding NPIs in the hope of living with the virus
imposes significant tradeoffs. Even partial relaxation of responsiveness
would lead to a significant rise in cases and deaths to levels that most of
these nations did not tolerate historically. In these countries the shift to a
new normal without strong NPIs requires one of two conditions: further sig-
nificant reductions in the IFR (e.g. with better treatments, vaccines, or the
emergence and dominance of even milder variants than Omicron), or a col-
lective decision to live with an ongoing, large toll of COVID-19 deaths that
may even exceed historical levels. The smaller, second group of countries
have already shifted to the second regime, moving to a new normal in which
there are few restrictions on behavior, but at the cost of death rates that are
significantly higher than what could be achieved with ongoing NPIs.
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Projections, using mental or formal models, are inevitable as the global
community considers different options to tackle the enormous challenges
created by the COVID-19 pandemic. Long-term projections are difficult
and highly uncertain. Here we offer internally consistent and empirically
grounded projections that account for important features regulating long-
term COVID-19 trajectories, especially including the behavioral responses
of individuals and governments to the state of the epidemic. Prior work
(e.g. Rahmandad et al., 2021, 2022) shows that these behavioral feedbacks
are essential in explaining the multiple waves seen in the pandemic,
orders-of-magnitude differences in death rates across nations, and for
providing more reliable long-term forecasts. This study identifies the two
distinct regimes a community may face depending on the strength of the
behavioral response feedback, provides estimates of where each nation
may stand in this continuum, and projects the likely future of the
pandemic.
Nevertheless, the results should be interpreted with caution, given the

many uncertainties and limitations that remain. We do not disaggregate
the population by age, socioeconomic status, housing type, responsive-
ness to risk, or preexisting conditions. We do not capture travel, individ-
ual vaccine types, heterogeneity within countries, the attributes of
different NPIs (voluntary isolation vs. mandatory lockdowns, masking,
etc.), nor minor variants of SARS-Cov-2, among others. Distinguishing
among different NPIs is key to identifying pathways to control transmis-
sions with minimal disruption to daily routines (e.g. use of masks), an
important bridge to establishing a new normal while minimizing deaths.
The zero-inflated Poisson framework we impose on the distribution of
case acuity may differ from the actual distribution. Our estimation frame-
work does not fully quantify uncertainty in the estimated parameters and
the large parameter space increases the risk of missing better alternative
parameterizations. We do not capture long-COVID-19 nor the costs
of different NPIs. And of course, we cannot predict whether and when
new variants might emerge, nor their transmissibility and virulence. Nevertheless,
we hope the work can help inform personal and policy decisions as we all face
the highly uncertain and highly consequential challenge COVID-19 continues
to pose.
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