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Abstract
Ride-hailing platforms such as Uber and Lyft promise to reduce the negative exter-
nalities of driving and improve access to transportation. However, recent empirical
evidence has been mixed about the impact of ride-hailing on US cities, often result-
ing in a net increase in traffic congestion and greenhouse gas (GHG) emissions, largely
due to increased travel demand and competition with public transit. Pooled rides, in
which multiple passengers share a single vehicle, are an effective solution to improve
the sustainability of ride-hailing, reducing GHG emissions and traffic congestion and
appealing to price-sensitive population segments by offering relatively cheaper rides.
Yet, most ride-hailing trips are unprofitable currently, resulting from ride-hailing rides
being subsidized (especially pooled) to compete with cheaper transportation alterna-
tives such as public transit. In this paper, we consider whether price optimization can
be used to improve ride-hailing revenues while also reducing the environmental impacts
of ride-hailing, particularly as the cost of ride-hailing is expected to fall into the future
with the introduction of automated vehicles. Using a discrete choice experiment and
multinomial logit choice model with a representative sample of the US population, we
estimate consumer preferences for the attributes of ride-hailing services and use them to
explore how ride prices affect the revenue of ride-hailing platforms and the total vehi-
cle miles traveled (VMT) by the ride-hailing fleet. We show that as the costs of driving
fall, continuously increasing the difference between the prices of individual and pooled
rides is financially optimal for ride-hailing platforms. Importantly, this pricing strategy
also significantly reduces total VMT, resulting in a win–win for ride-hailing platforms
and cities. We perform extensive sensitivity analyses and show that our results are qual-
itatively robust under a wide range of consumer preferences and market conditions but
that the optimal trajectory of prices and realized gains vary, highlighting opportunities
for ride-hailing services to influence the future of urban transportation.

K E Y W O R D S
optimal pricing, ride-sharing, sharing economy, sustainable transportation, urban transportation

1 INTRODUCTION

Improving the sustainability of urban transportation is one
of the top priorities for cities increasingly concerned about
externalities including air pollution (US EPA, 2019) and traf-
fic congestion (Pishue, 2020; Reed & Kidd, 2019). While
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much emphasis has been placed on the introduction of low
and zero-emission vehicles, the speed with which the ben-
efits of these technologies are realized is slow, governed
by factors including consumer acceptance, the maturing of
key technologies such as batteries and sensors, and the
slow rate of turnover of the on-road vehicle fleet (Keith
et al., 2019; Naumov et al., 2022). While this technological
transition unfolds, immediate opportunities to improve the
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2 NAUMOV AND KEITHProduction and Operations Management

sustainability of transportation lie in making effective oper-
ational decisions to maximize the efficiency of our existing
transportation systems. Several such opportunities exist,
including regulations that impose time windows on freight
delivery (Quak & de Koster, 2007) and support crowdsourced
delivery systems (Qi et al., 2018; Ta et al., 2018), managing
overall passenger demand for driving relative to other trans-
portation modes to reduce the total number of miles driven
(Sumantran et al., 2017), supporting existing public trans-
portation infrastructure to prevent its collapse in the wake of
increasing popularity of ride-hailing services (Naumov et al.,
2020), and smoothing transportation flow to ensure those
miles driven are as energy-efficient as possible (Jabali et al.,
2012; Van Woensel et al., 2009).

Potentially, the most impactful of these opportunities is to
increase the current low occupancy of automobiles, provid-
ing the same amount of economic and social mobility with
fewer vehicle miles (Clewlow & Mishra, 2017; Fulton et al.,
2017; Henao & Marshall, 2019b; Ke, Yang, & Zheng, 2020;
Schaller, 2018; Shaheen & Cohen, 2019), and improving the
throughput of our existing road infrastructure. Carpooling
(hereafter referred to in this paper as pooling)—the act
of sharing trips to increase the number of passengers per
vehicle—has enjoyed renewed interest in recent years with
the emergence of on-demand ride-hailing platforms such as
Uber and Lyft. By automating the process of matching pas-
sengers with drivers (Taylor, 2018), ride-hailing platforms
have dramatically reduced the cost of finding passengers
taking similar trips, making it no harder to book a pooled
ride than a regular individual ride, with the potential for
“triple bottom line” benefits for profit, people, and the planet
(Kleindorfer et al., 2009). While a pooled ride has the
potential to be less convenient than a private trip, requiring
passengers to share the vehicle cabin and to take a longer
route to one’s destination to accommodate the other pas-
senger(s), pooling has the benefit of substantially reducing
travel costs, in turn making automotive transportation more
accessible. The market potential of ride-hailing could be
further substantially unlocked by the emergence of auto-
mated vehicles (AVs), which may obviate the need to pay
a person to drive the vehicle (Fulton et al., 2017). In the
most optimistic assessments, it is anticipated that the cost of
driving in ride-sharing fleets could fall from about $1–2/mile
today to $0.40/mile or less by 2030 with the introduction of
AVs (Burns et al., 2012; Fulton et al., 2017).

Ride-hailing has been promoted by platform operators
as being good for cities, putting an end to personal vehicle
ownership and traffic congestion induced by drivers looking
for parking spaces and providing first- and last-mile connec-
tions that facilitate greater use of public transit. The reality,
however, has been mixed. While the impact of ride-hailing on
congestion might depend on traffic patterns and contextual
factors such as weekdays, population density, and consumer
travel mode preferences (see, e.g., Dhanorkar & Burtch,
2021; Yap et al., 2016), many studies (e.g., Clewlow &
Mishra, 2017; Diao et al., 2021; Graehler & Mucci, 2019;
Rodier, 2018) and reports (APTA, 2018; Fitzsimmons, 2018;
Hughes, 2019; MTA, 2018; NYCEDC, 2017; SFCTA, 2018)

have found that ride-hailing has had a significantly negative
impact on urban transportation systems, attracting riders
away from public transit and causing an increase in vehicle
miles traveled (VMT) and traffic congestion. Ride-hailing
services have been estimated to add 2.6 new vehicle miles
driven for each mile of personal vehicle driving taken off the
road (Schaller, 2018), and the introduction of ride-hailing
services has been associated with a 40% increase in weekday
vehicle hours of traffic congestion (Erhardt et al., 2019).
In addition, it has been conservatively estimated that dead-
heading (miles driven without any passengers) accounts for
at least 41% of total ride-hailing miles driven (Henao &
Marshall, 2019b). These outcomes have been attributed in
no small part to aggressive pricing by ride-hailing platforms
seeking to rapidly grow market share at the expense of
profits, including offering various ride-hailing services such
as pooled rides at unsustainably low prices. It is reasonable
then to ask whether the interests of ride-hailing platforms
and cities can now be reconciled. Can ride-hailing companies
price individual and pooled rides in a way that maximizes
revenue while also encouraging riders to choose pooling to
reduce VMT and hence the environmental footprint of urban
transportation? How should prices for individual and pooled
rides be updated if AVs and other automotive technologies
reduce the cost of providing ride-hailing trips in the coming
years?

In this paper, we quantify preferences for the attributes
of ride-hailing services and then use results to develop
optimal pricing for individual and pooled rides. We asked a
nationally representative sample of over 1000 respondents
to choose between an individual ride in a private vehicle
(similar to UberX or Lyft) and a pooled ride in a shared
vehicle (similar to Uber Pool or Lyft Shared). We then
use the resulting data to estimate the coefficients of the
attributes of consumer utility using a multinomial logit
(MNL) model. Quantifying the relative strength of consumer
preferences for attributes such as price and the inconvenience
of pooling is critical to know how consumers will respond
to ride-hailing as a whole and the choice between individual
and pooled rides at different price points. Applying these
preferences in an optimization framework allows us to
explore how ride-hailing operators may price their services
to both maximize revenue and maintain their social license
to operate by reducing traffic congestion by increasing the
use of pooled rides (e.g., Lunden, 2016). While it has been
speculated that reduced prices (e.g., with the introduction
of AVs) will increase the incentive for consumers to choose
pooling (e.g., Fulton et al., 2017), our results imply that if
the cost of driving falls, and firms simply reduce prices for
both individual and pooled rides proportionally, then the
incentive to pool will be reduced because the cost savings
from choosing a pooled ride over an individual ride will be
diminished. We show that to maximize revenues and realize
the full potential of pooling, ride-hailing operators must
choose a pricing strategy that maintains a substantial differ-
ence between pooled and private rides, reducing prices for
pooled rides but not individual rides once the cost of driving
falls.
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We perform extensive sensitivity analyses and show that
our results are robust under a wide range of consumer pref-
erences and market conditions but that the optimal trajectory
of prices (i.e., the difference between individual and pooled
rides) and realized gains (both financial and environmental)
vary, characterizing a window of strategic opportunities for
ride-hailing companies to maximize financial gains while
improving sustainability and accessibility of one of the most
popular urban transportation modes. Importantly, our results
demonstrate the environmental benefits for the ride-hailing
sector only, where we observe a greater market share of
pooled rides and the reduced market share of individual
rides. However, we do not make any assumptions about
the environmental footprint of the alternative transportation
options. Thus, a complete environmental profile would
require an understanding of where new pooling consumers
come from and where consumers who stop using individual
rides go, for example, whether the alternative modes are
more sustainable (e.g., public transit, walking, etc.) or less
sustainable (e.g., privately owned cars) than ride-hailing.

This paper makes important contributions to our under-
standing of whether ride-hailing and pooling can provide
triple bottom line benefits for urban mobility, identifying
pricing strategies that increase revenues for ride-hailing oper-
ators; provide more and better options for users; and reduce
greenhouse gas emissions to the benefit of all. For the lit-
erature on sustainable operations and transportation policy
(Angell & Klassen, 1999; Drake & Spinler, 2013; Naumov
et al., 2020; Sterman et al., 2015), our findings highlight the
attributes of ride-hailing services that influence consumers’
decision to choose pooled rides (or not), providing necessary
connection between individual-level decisions and opera-
tional issues at the organizational level (Venkatesh, 2013).
For the literature on service operations and sharing economy,
we illustrate how the design and management of service sys-
tems, including pricing can be informed through a proper
understanding of customer needs, expectations, and behav-
ior (Bellos et al., 2017; Cohen, 2018; Goldstein et al., 2002;
Guda & Subramanian, 2019).

For practitioners, our analysis informs the development of
effective pricing strategies for on-demand mobility services.
We show that the relative pricing of ride-hailing services is a
critical lever for managing the private and societal impacts of
ride-hailing, with the potential to both maximize revenue and
achieve a net reduction in driving demand if ride-hailing ser-
vices are priced to maintain both profit margins and financial
incentive for consumers to choose pooling.

2 POOLING AND RIDE-HAILING IN
URBAN TRANSPORTATION

Pooling has been available to commuters as long as people
have been traveling by vehicle. From a societal perspective,
the appeal of pooling is the opportunity to increase vehi-
cle utilization to use resources more efficiently, reducing
negative externalities of driving such as air pollution and

traffic congestion (Clewlow & Mishra, 2017; Fulton et al.,
2017; Henao & Marshall, 2019b; Ke, Yang, & Zheng, 2020;
Schaller, 2018; Shaheen & Cohen, 2019). However, the main
appeal of pooling for consumers has always been the lower
cost of travel. While pooling necessarily entails some degree
of inconvenience since passengers face the likelihood of
multiple stops along the route and must share the vehicle
cabin, it allows multiple passengers to share the cost of the
vehicle trip, reducing the per-passenger cost significantly.

While the use of carpooling in the United States has fallen
from about 20% of commuter trips in 1980 to just 9% in 2018
(AASHTO, 2015; US Census Bureau, 2018a), pooling has
enjoyed a renewed interest in recent years with the emergence
of app-based ride-hailing platforms such as Uber and Lyft.
These platforms create value by matching passengers want-
ing to take a trip with drivers willing to provide those trips,
and in turn, have dramatically reduced the cost of matching
multiple passengers taking similar trips. Pooled ride options
now appear alongside individual rides in many ride-hailing
apps, at prices often half to two-thirds of the price of an indi-
vidual ride, making pooling much more attractive, especially
for price-sensitive individuals. Prior to the COVID-19 pan-
demic that saw ride-hailing platforms suspend pooled rides to
minimize social contacts, the popularity of pooling had been
steadily increasing in the ride-hailing context, with more than
20% of all Uber rides globally being pooled in 2016 (Lunden,
2016).

While ride-hailing accounts for only a small fraction of
VMT in the United States today (BTS, 2018; FHWA, 2018),
its popularity is expected to grow in the coming years as
ride-hailing becomes an increasingly attractive alternative
to vehicle ownership, particularly with the emergence of
AVs. The development of AVs that use sensors and advanced
algorithms to control the vehicle without the need for a
human driver has progressed rapidly in recent years, and
while AVs are not yet sufficiently mature for commercial use,
some analysts have predicted that fully autonomous vehicles
will be available commercially as soon as 2025 (ABI, 2018;
Gustafson, 2018). Although AVs are likely to cost consider-
ably more to build than conventional vehicles initially, owing
to the cost of expensive sensor and computing hardware,
many believe that the introduction of AVs will lead to a sig-
nificant drop in the cost of ride-hailing, given that the human
driver accounts for almost 50% of the vehicle operating cost
today (Chen et al., 2016; Cortright, 2017; Fulton et al., 2017).
Without the cost of a human driver, and with additional cost
savings that might be realized as a result of learning curves
and scale economies for sensors and software, some analysts
anticipate that the cost of driving in pooled vehicles may
fall from about $1–2 per person-mile today to less than
$0.40 per person-mile by 2030 with driverless AVs fleets
(Fulton et al., 2017). We note that analyst forecasts about
when fully automated (or Level 5 as per the Society of
Automotive Engineers (SAE) taxonomy) AVs (SAE, 2021)
will be available differ widely, driven mostly by discussions
of technological feasibility. We are less interested in exactly
when AVs become available, so much as in analyzing the
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4 NAUMOV AND KEITHProduction and Operations Management

opportunities to improve the financial and environmental
performance of urban ride-hailing services if the costs of
driving go down, for example, when safe and reliable AVs
are widely available. To be clear, we are not assessing the
full impact of AVs on either urban transportation or ride-
hailing services; instead, we refer to the emergence of AVs
as the most plausible and widely anticipated opportunity to
substantially reduce ride-hailing travel costs.

Since ride-hailing has already made pooling easier, and the
emergence of AVs is expected to make ride-hailing cheaper
and more convenient, it seems plausible that pooling could
play an increasingly prominent role in the future of urban
transportation. At the same time, the falling cost of driving
could have the adverse consequence of reducing the financial
advantage of pooling, making pooling less rather than more
attractive (e.g., Fulton et al., 2017; Litman, 2018). Quantify-
ing what motivates consumers to pool, and how the incentive
to pool is influenced by falling driving costs, is essential to
understand the realistic potential for pooling to address the
negative externalities of driving.

2.1 Literature review

The general focus of our analysis is the system-wide response
of urban transportation to a change in prices of the two
main types of ride-hailing services—individual and pooled
rides. We are interested in assessing the combined finan-
cial impact of such a change simultaneously on ride-hailing
companies, the environment, and consumer behavior. In this
section, we summarize the two main streams of prior work
directly relevant to our research: (i) how ride-hailing plat-
forms can optimize prices to manage the supply and demand
of drivers and riders and the associated societal and welfare
implications (a large research area in the operations manage-
ment (OM) space), and (ii) how pooling affects ride-hailing
services and the society (arguably, a more recent and very
important, but somewhat less voluminous research).

Ride-hailing and car-sharing services have drawn signif-
icant attention from scholars in the OM and transportation
policy community in recent years (see Agatz et al., 2012). The
availability of big data has allowed an unprecedented level
of precision in explaining (sometimes conflicting) insights
(Cohen, 2018). Ride-hailing services are two-sided plat-
forms, and the most important operational decisions are
related to managing the demand of riders and the supply of
drivers. A mismatch between supply and demand can lead to
user frustration with the service (the lack of drivers leaves
unmatched riders unsatisfied, and the lack of riders reduces
drivers’ earnings), so they need to be properly compensated
by the ride-hailing platform (Cohen et al., 2022). Service
price is an effective lever for the control of both demand and
supply in two-sided service platforms, which is why dynamic
pricing has already been used by ride-hailing companies
(Battifarano & Qian, 2019). In addition to balancing supply
and demand, surge pricing (increasing ride price during peri-
ods of high demand) helps to increase capacity utilization,

fleet throughput, and social welfare by reducing congestion
and travel costs (C. Yan et al., 2020). Coupled with con-
gestion charges, surge pricing has been found to not only
reduce traffic but also reduce travel costs outside of conges-
tion areas (S. Li et al., 2021; Ma et al., 2020). Surge pricing
under reward policies that subsidize non-peak hour travel can
also increase passenger utility, driver income, and platform
revenue and profit (Yang et al., 2020).

Matching drivers and riders is crucial to achieve system-
wide optimality (P. Yan et al., 2021), and joint driver–rider
matching and price optimization lead to the best performance
of ride-sharing firms (Özkan, 2020). Profit-maximizing
strategies for monopolistic platforms that match rider demand
and driver supply can improve consumer surplus and social
welfare, depending on competition, prices, and the num-
ber of customers (Zhong et al., 2019). The efficiency of
matching can be improved through various operational levers,
such as trips distance limits (Feng et al., 2021) and surge
prices that directly affect drivers’ behavior and strategies
to maximize earnings (Garg & Nazerzadeh, 2021; Henao
& Marshall, 2019a; H. Sun et al., 2019). Besides pric-
ing, the capacity of a ride-hailing platform can be managed
by blending full-time drivers and independent contractors
(Chakravarty, 2021). However, heterogeneity in independent
drivers’ multi-homing tendencies (registering on multiple
competing platforms at the same time) should also be con-
sidered when designing the platform’s policy. Specifically,
the price and wait time of orders are critical concerns of
low-income drivers (J. Yu et al., 2021).

In the broader context, Zha et al. (2016) find that the
profit-maximizing strategy of a ride-hailing firm might not
be sustainable under certain conditions and that regulating
drivers’ earnings is important to improve social welfare.
While the authors suggest that competition might not lower
prices or improve social welfare, Cohen and Zhang (2022)
propose that coopetition between two-sided ride-hailing plat-
forms where former competitors offer a joint service with
profit-sharing contracts can benefit platforms, riders, and
drivers. Ride-hailing platforms compete directly with taxi ser-
vices, but a hybrid solution where a taxi combines app-based
bookings and curbside hailing can improve platform profits
and social welfare (X. Wang et al., 2016). However, without
government intervention, the on-demand ride-service plat-
form may drive the traditional taxi industry out of the market
(J. J. Yu et al., 2020), so policies should encourage com-
petition between ride-hailing and taxis to lower ride-hailing
prices and maximize social welfare (Zhong et al., 2022).

The question of optimal prices has been extensively stud-
ied in the context of ride-hailing platforms. In a two-ride
service setting, fossil-powered vehicles, and EVs, Hong and
Liu (2022) find an optimal pricing mechanism of a profit-
maximizing ride-sharing platform to regulate demand and
supply. L. Sun et al. (2019) identify an optimal pricing strat-
egy when both ride details and driver location are considered
and assume monopoly. Ke, Yang, Li, et al. (2020) prove that
socially optimal equilibrium prices in a ride-hailing market
with pooling should be lower than in a non-pooling market.
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The idea of differentiating services of a ride-hailing platform
was further studied by Zhong et al. (2020), who considered
the heterogeneity of congestion sensitivity of riders, claim-
ing that offering different services might not always serve
the maximum number of customers but always lead to more
profit, consumer surplus, and social welfare.

To summarize, this stream of literature explores how pric-
ing can affect service performance, consumer surplus, and
social welfare but focuses on short- or medium-term oper-
ational decisions, oftentimes in static equilibrium. We are
interested in how pricing can be used to maximize the
financial and environmental benefits of ride-hailing services,
looking at long-term system-wide implications.

The effect of pooling on congestion undoubtedly has
important societal implications. If its price is low enough,
it might attract riders away from private car ownership (Y.
Wang et al., 2021), reducing congestion. At the same time, it
might entice price-sensitive riders to switch away from public
transit, leading to more congestion and pollution (Clewlow
& Mishra, 2017; Diao et al., 2021). Similarly, the impact
of shared AVs offering even more substantial cost savings
is ambiguous. On one hand, reduced costs and comfort of
travel can increase congestion, compromising social welfare.
On the other hand, AVs have higher driving efficiency, reduc-
ing congestion (Baron et al., 2022). Since the cost reductions
expected in the case of shared AVs are more pronounced rel-
ative to pooling offered with conventional cars (Fulton et al.,
2017), pooled AVs can appeal to even more price-sensitive
consumers, driving riders away from public transit, resulting
in its collapse, higher road utilization, and longer travel time
(Naumov et al., 2020). Recent research suggests that the pas-
senger service rate is always better with pooling than without,
but there is an optimal fleet size for ride-hailing platforms that
minimizes the trip duration of both ride-hailing passengers
and private car users (Ke, Yang, & Zheng, 2020). Similarly,
considering peer-to-peer carpooling (slugging), Cui et al.
(2021) found that if such service is priced, rather than offered
for free, consumer welfare can increase, but it can induce
more cars on the road, leading to more congestion and carbon
pollution. Despite all the potential promises, pooling remains
largely unpopular, and in the context of ride-hailing services,
it requires additional nudges, such as showing information
about time savings at the time of booking a ride (Cohen et al.,
2021).

This stream of literature contrasts many societal benefits
of pooling with potential limitations and side effects but
is largely based on theoretical considerations and assump-
tions about rider preferences. We seek to quantify the impact
of pooled rides on the sustainability of urban transporta-
tion and the financial performance of ride-hailing companies
using stated preference data about consumer behavior. To
the best of our knowledge, our study is the first to com-
bine direct estimations of stated preferences of potential and
existing ride-hailing users in the United States with a system-
wide exploration of pricing policies on both the revenue of
ride-hailing companies and environmental sustainability.

3 MODELING CONSUMER
PREFERENCES FOR RIDE-HAILING
TRIPS

The choice between individual and pooled rides is one that is
frequently made by users of ride-hailing services. In this sec-
tion, we formalize this choice in a discrete choice framework.
Numerous prior studies have estimated the attributes of con-
sumer mode choice, such as the value of driving time, price,
and so forth (e.g., Correia et al., 2019; Kolarova et al., 2018;
Steck et al., 2018; for a review of existing choice studies,
also see Gkartzonikas & Gkritza, 2019). Frequently, how-
ever, these studies do not consider pooling as a mode choice,
or consider pooling as part of a larger choice set, alongside
walking, biking, public transit, and driving (e.g., Asgari et al.,
2018; Krueger et al., 2016; Yap et al., 2015), which does not
allow to estimate the exact trade-off commuters face when
choosing between pooled and individual rides. Here, we con-
centrate on the choice between individual and pooled rides
in the ride-hailing context, a choice that is frequently made
by ride-hailing users in real life, contingent on choosing the
ride-hailing services first. In doing so, we isolate the effects
of pooling specifically from more complex patterns of mode
substitution.

3.1 Attributes of ride-hailing services

In transitioning from mobility-as-a-product (vehicle own-
ership) to mobility-as-a-service, a critical shift occurs in
the attributes that influence consumer choice. Whereas, car
buyers have traditionally valued product attributes such as
purchase price, operating cost, acceleration, and range, the
attributes that users value in the ride-hailing context are pri-
marily service attributes (Venkatesh et al., 2012). Whereas,
few people remember the make and model of vehicle they
traveled in the last time they used a ride-hailing service,
they do remember whether they got from A to B safely,
cost-efficiently, and on time.

The attributes we include in this ride-hailing choice mimic
the attributes that users actually consider when using promi-
nent ride-hailing services such as Uber and Lyft. As we
show in the app interfaces for these services (Figure 1),
riders are commonly shown for each service: a price (in dol-
lars), a pickup time (in minutes), and an estimated travel
time to the destination (in minutes). Because of the dynamic
nature of pooled rides, which can be matched even after
a rider’s trip has started, uncertainty exists in how long a
pooled ride will take to get to the destination, over and
above natural variation resulting from factors such as traf-
fic. We, therefore, represent the travel time of the pooled
ride as a time range as is observed in both the Uber and
Lyft interfaces. For simplicity, we represent the pickup time
for the pooled ride as a deterministic estimate, acknowledg-
ing that Lyft provides a time range estimate for pickup time
also.
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6 NAUMOV AND KEITHProduction and Operations Management

F I G U R E 1 Interface of Uber and Lyft Ride-hailing Apps (shown as of January 2019) [Color figure can be viewed at wileyonlinelibrary.com]

3.2 Model of consumer ride-hailing choice

We model consumers’ choice between an individual ride
and a pooled ride using a discrete choice model based on
the random utility MNL framework (Ben-Akiva & Lerman,
1985; Hensher et al., 2005). The MNL has been widely used
in transportation and travel demand applications to estimate
probabilities of a transportation mode choice (Aloulou, 2018;
Brownstone et al., 2000; de Bok et al., 2018; Keith, Naumov,
& Sterman, 2017; Keith, Sterman, & Struben, 2017; Keith
et al., 2020; Naumov et al., 2020).

We assume, as is common in discrete choice models,
that consumer utility can be decomposed into an observable,
linear-in-parameters part, and a stochastic and unobservable
part that is independent and identically distributed (i.i.d.) over
alternatives and respondents in our sample (Brownstone et al.,
2000; Pullman et al., 2001; Train, 2009; Verma et al., 2006).
In particular, the utility from alternative i for individual n is a
function of observable utility, represented by an intercept 𝛼i,
alternative specific covariates xni with generic coefficients 𝛽
for all alternatives (e.g., pickup time, travel time, ride price,
etc.), individual specific covariates zn with coefficients 𝛾i for
all alternatives except the reference one (e.g., age, gender,

household income, etc.), and unobservable homoscedastic
i.i.d. extreme value error 𝜀ni:

Ui = 𝛼i + 𝛽xni + 𝛾izn + 𝜀ni. (1)

The MNL framework assumes heterogeneity in unob-
served consumer preferences and decisions such that some
commuters will choose to take a pooled ride even if it has
a lower observable utility than an individual ride (Hensher
et al., 2005; McFadden, 1973; Train, 2009). Under the MNL,
the probability of choosing alternative i is given by:

Pi =
eUi∑
j∈Ie

Uj
, (2)

where I is the set of alternatives, which is here the choice of
individual or pooled rides.

Next, building on solid foundation from marketing and
transportation literature (Chandukala et al., 2007; Helveston
et al., 2015), we run a conjoint choice experiment to collect
data on stated preferences toward ride-hailing and use MNL
models to estimate attributes of consumer utility.
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OPTIMIZING THE ECONOMIC AND ENVIRONMENTAL BENEFITS 7
Production and Operations Management

4 DATA COLLECTION

The data we use for this study were collected using an
online survey of a representative sample of the US popula-
tion obtained from Qualtrics, a market research company. We
purchased a sample of 1014 respondents, representative with
respect to gender, income, and political affiliation, which we
included as a proxy for the respondent’s inclination toward
environmental sustainability. We further requested that 36%
of these respondents have experienced using ride-hailing ser-
vices such as Uber and Lyft, and 64% not, consistent with the
most recent estimates of the current fraction of the US pop-
ulation that has experience using these ride-hailing platforms
(Jiang, 2019). Exploring the effect of on-demand mobility as
a large-scale transportation solution requires understanding
consumer preferences across the US population. Today, about
45% of urban residents have used ride-hailing, but only 19%
of rural residents have done so (Jiang, 2019), which could be
a reflection of (i) the limited availability of ride-hailing ser-
vices, and (ii) differing consumer preferences, but we do not
yet know which. Using a sample that comprises the current
distribution of prior ride-hailing experiences allows us to cap-
ture both, and we also do a split sample analysis to compare
the preferences of prior users and non-users of ride-hailing
services.

Before running the full survey using the Qualtrics sample,
we performed a pilot test of the survey on Amazon MTurk,
obtaining a convenience sample from 310 US respondents.
We used the MTurk pilot to refine our questions and fine-
tune the attribute levels, especially in relation to capturing
the effect of uncertainty in travel time. MTurk samples have
been shown to be equal or better quality than student sam-
ples (Goodman & Paolacci, 2017; Hauser & Schwarz, 2016;
Steelman et al., 2014) and are frequently recruited to study
service operations (e.g., Abbey & Meloy, 2017; Abbey et al.,
2019; Modi et al., 2015; Ta et al., 2018; Tokar et al., 2016).
Both MTurk and Qualtrics platforms have the lowest differ-
ence with residential attributes of the US population (Heen
et al., 2014). The results we obtained in the MTurk pilot do
not differ meaningfully from the results we present below
obtained through Qualtrics.

4.1 Respondent characteristics

Our sample is closely representative of the US population
with respect to age, gender, political affiliation, and prior
experience with ride-hailing services (Table 1). To obtain
the representative sample of 1014 respondents, Qualtrics
had to screen more than 15,000 prospective respondents.
The sample has slightly fewer 18–25-year-old people, more
65+ respondents, and relatively fewer people with $150K+
income, which is not uncommon in a sample from an online
survey pool.

For those respondents who indicated that they had used
ride-hailing services before, we asked about their frequency
of use of ride-hailing services, individual and pooled, and

TA B L E 1 Respondent’s Demographic Information (N = 1014)

Variable %, Sample Count %, U.S.

Age*,1

18-25 7.50 76 10.5

26-35 18.15 184 13.9

36-45 15.09 153 12.6

46-55 14.99 152 12.6

56-65 19.82 201 12.8

65+ 24.45 248 15.3

Gender*,1

Female 49.01 497 51.0

Male 50.99 517 49.0

Political affiliation*,2

Democrat 28.11 285 34.0

Republican 28.60 290 25.0

Independent 41.12 417 39.0

Other 2.17 22 2.0

Education3

Less than high school 2.96 30 10.3

High school graduate 20.81 211 28.4

Some college but no degree 23.27 236 18.0

Associate degree (2-year) 12.62 128 9.8

Bachelor’s degree (4-year) 25.64 260 21.3

Master’s degree 10.16 103 9.0

Doctoral degree 1.58 16 1.8

Professional degree 2.96 30 1.3

Occupation

Unemployed 18.74 190 3.54

Student 3.25 33 6.05

Employed 48.03 487 61.04

Retired 29.98 304 16.51

Geography6

Urban 31.36 318 26.8

Suburban 35.40 359 51.8

Rural 24.56 249 21.4

Unknown 8.68 88

Household income7

Below $49,999 40.24 408 37.1

$50,000 - $99,999 32.84 333 28.8

$100,000 - $149,999 15.09 153 15.5

Above $150,000 9.07 92 18.6

Prefer not to answer 2.76 28

Adults per household8

1 21.99 223 28.2

2 59.27 601 34.8

3 10.95 111 15.1

4 5.52 56 12.7

More than 4 2.27 23 9.3

(Continues)
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8 NAUMOV AND KEITHProduction and Operations Management

TA B L E 1 (Continued)

Variable %, Sample Count %, U.S.

Children per household9

0 65.09 660 59.3

1 14.00 142 16.9

2 14.40 146 15.4

3 3.94 40

4 1.48 15 3+

More than 4 1.09 11 8.4

Cars per household10

0 6.90 70 8.6

1 42.60 432 32.4

2 36.98 375 36.9

3 9.67 98

4 2.47 25 3+

More than 4 1.38 14 22.1

Used ride-hailing services*,11

Yes 31.56 320 39.0

No 68.44 694 61.0

Numbers might not add up to 100% due to rounding.
*Requested to match the U.S. population.
Sources: 1(U.S. Census Bureau, 2019b), 2(Gallup, 2019), 3(U.S. Census Bureau,
2020a), 4(U.S. Bureau of Labor Statistics, 2020), 5 (U.S. Census Bureau, 2018b), 6(U.S.
Department of Housing and Urban Development, 2020), 7(U.S. Census Bureau, 2019c),
8(U.S. Census Bureau, 2020b), 9(Statista, 2020), 10(U.S. Census Bureau, 2019a),
11(Jiang, 2019)

their level of satisfaction with these services (Table 2). Con-
sistent with the ride-hailing mode shares observed today, we
see fewer people who request pooled rides on a regular basis.
Respondents’ satisfaction with pooled rides is observed to
be lower than for individual rides (the share of respondents
who were extremely satisfied was 8% lower, and the share of
respondents who were neither satisfied nor dissatisfied was
10% higher for pooling; 𝜒2 = 458.17, df = 4).

Examining respondents’ qualitative responses for expla-
nations of why satisfaction with pooled rides, we see two
key explanations: that pooled rides are slower (“Some pooled
rides go WAY out of the way and end up taking longer
than they should”), and that pooled rides are less convenient
(“I really am not thrilled, you never know whom you will ride
with”).

4.2 Survey structure

Each respondent was administered a survey comprising
three parts, implemented using Qualtrics’ survey software,
and Conjoint.ly, an online conjoint analysis platform (Con-
joint.ly, 2021). In the first part of the survey, administered in
Qualtrics, all respondents were asked basic questions about
demographics and vehicle usage, including their age, gender,

TA B L E 2 Experience with Ride-hailing Services

Variable Percentage Count

Frequency of individual rides (N = 320)

Daily 18.44 59

Once a week 23.44 75

Once a month 36.56 117

Once a year 20.31 65

Never 1.25 4

Satisfaction with individual rides (N = 316)

Extremely satisfied 53.48 169

Moderately satisfied 39.87 126

Neither satisfied nor dissatisfied 5.38 17

Moderately dissatisfied 1.27 4

Extremely dissatisfied 0.00 0

Frequency of pooled rides (N = 320)

Daily 18.44 59

Once a week 15.31 49

Once a month 14.06 45

Once a year 17.19 55

Never 35.0 112

Satisfaction with pooled rides (N = 208)

Extremely satisfied 45.67 95

Moderately satisfied 37.02 77

Neither satisfied nor dissatisfied 15.87 33

Moderately dissatisfied 0.96 2

Extremely dissatisfied 0.48 1

political affiliation, household composition, vehicle owner-
ship, and previous experience with ride-hailing services.

The second part of the survey was a discrete choice
experiment (often referred to as choice-based conjoint),
administered in Conjoint.ly, in which they were asked in eight
scenarios to choose between an individual ride in a private
car, a service that we call MyRider (similar to UberX or
Lyft), and a pooled ride in a shared car, a service that we
call RiderPool (similar to Uber Pool or Lyft Shared), where
the choices varied with respect to the trip price, pickup time,
and travel time. Respondents were randomly assigned to one
of two experimental conditions when completing this task.
One group was choosing between private and pooled rides
assuming they were traveling to the airport to catch a flight,
a nudge toward a time-constrained trip. The other group was
choosing assuming they were traveling to go shopping, a less
time-constrained trip. We intentionally described these con-
ditions using neutral language (avoiding directly referencing
time, duration, or urgency), augmenting the description with
a picture of a plane (more time-constrained) or a picture of
a person carrying shopping bags. We confirmed during the
pilot study that respondents’ answers were affected by this
treatment, deciding to keep it in the main study.
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OPTIMIZING THE ECONOMIC AND ENVIRONMENTAL BENEFITS 9
Production and Operations Management

TA B L E 3 Attributes and Levels in Discrete Choice Experiment

Attribute Units
No. of
Levels Levels

Pickup Time minutes 3 2, 5, 8

Travel Time minutes 12 MyRider RiderPool

10 8–12, 6–14, 4–16

15 12–18, 9–21, 6–24

20 16–24, 12–28, 8–32

Ride Price $/trip 6 MyRider RiderPool

- $3.00

$5.25 $5.25

$7.50 $7.50

$10.00 $10.00

$15.00 $15.00

$20.00 -

The levels used for each ride attribute in this experiment
are shown in Table 3. As is standard when choosing between
these services in real-world apps, the estimated travel time for
an individual ride is shown as a discrete-time (e.g., 15 min),
while the estimated travel time for a pooled ride is shown
as a time range (e.g., 12–18 min), reflecting uncertainty
in how long the pooled ride will take for any individual,
taking the need to also serve the trips of other passenger(s)
in the vehicle into account. Importantly, we allow for the
possibility that pooled rides could be slower (e.g., taking a
longer route to accommodate another passenger) or faster
(e.g., if high-occupancy vehicle lanes allow pooled rides to
move through cities more rapidly). Allowing pooled rides
to be faster enables the possibility that pooling can be more
attractive to respondents in our experiment. We systemati-
cally vary the amount of uncertainty in the time estimate so
that the effect of time uncertainty can be identified separately
from the main time effect. We select levels for each attribute
that were representative of the average characteristics of ride-
hailing trips in the United States (Iqbal, 2018; SherpaShare,
2016; Vaccaro, 2018) and fare estimates from leading US
ride-hailing companies (Lyft, 2018; Uber, 2018).

We use a fractional factorial design (Hair et al., 2014, p.
371) where not all possible profiles are used due to unaccept-
able combinations. We chose to have eight choice sets in each
survey to reduce the number of evaluations while retaining
the attention of respondents. One hundred and sixty-eight
blocks of eight choice sets (pairs) were prepared for each
experimental condition that were shown to respondents at
random. The response profiles were created by Conjoint.ly
using principles of optimal design (balance and overlap;
Conjoint.ly, 2021). To avoid “unacceptable” or unbelievable
profiles due to the interattribute correlation (Hair et al.,
2014, p. 372) we eliminated lowest price/individual ride
and highest price/pool ride combinations (Table 3) using
“prohibited pairs.” We exported the design from Conjoint.ly

to JMP and used the design evaluation option to confirm
that the design has achieved a D-efficiency of 75.2. The
“no-choice” option was excluded from the design given that
the choice between individual and pooled ride options is
conditional in our study on having already chosen to use
ride-hailing.

We relied on Conjoint.ly to perform a quality assessment
of the responses in an attempt to eliminate automatic click-
ing, using a proprietary algorithm to analyze response time
and patterns, mouse movement, and other variables that mea-
sure the behavior of respondents to perform attention checks
(Abbey & Meloy, 2017). We also introduced a 5 s threshold
on each question so that respondents could not answer too
quickly.

Upon successful completion of the discrete choice block,
respondents finished the third part of the survey in Qualtrics.
Respondents disqualified by Conjoint.ly were thanked for
their participation, and their responses were excluded from
our analysis. Qualified respondents were asked to complete a
post-survey questionnaire, including, for those who indicated
in the first part of the survey that they had used ride-hailing
services previously, questions about the frequency of their use
of individual and pooled ride-hailing services, and their sat-
isfaction with each of these services. The three parts of the
survey were then merged, and additional quality checks were
performed, including ensuring that the respondent’s country
of residence was the United States and that the overall sample
was representative of the US population.

5 RESULTS

We estimate the utility coefficients in Equation (1) from our
stated preference data (Table 4) using the mlogit package in
R (Croissant, 2020).

Table 4 shows results for the estimation of 𝛽 coefficients in
Equation (1) including covariates Pickup Time, Price, Travel
Time Mean, and Travel Time (TT) Uncertainty, and alterna-
tive specific coefficients 𝛾 in Equation (1) for the RiderPool
option for the other individual specific covariates (with the
“reference” alternative being MyRider for which coefficients
of respective covariates are set to 0). Beginning with our most
aggregated Model 1, we see first that pooling has a negative
and statistically significant intercept, meaning that, all else
being equal, pooling has an inherent disutility for consumers.
This reflects that many people would prefer not to share the
cabin of the vehicle with other passengers and that the need
to take a circuitous route to accommodate other passengers
is a time-consuming inconvenience. This result is consistent
with prior findings that freedom of driving alone, and unwill-
ingness to carpool with people outside their own family, are
the most important factors that influence commuters’ choice
not to carpool (Hwang & Giuliano, 1990).

The coefficients of the estimated logit model are marginal
utilities, which do not have a direct interpretation. However,
we can calculate the marginal rate of substitution as the ratio
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10 NAUMOV AND KEITHProduction and Operations Management

TA B L E 4 Multinomial logit (MNL) results

Utility coefficients

(1) (2) (3) (4)

MNL MNL MNL MIXL

Intercept (RiderPool) −0.607*** (0.060) −0.559*** (0.129) −0.487*** (0.132) −0.513*** (0.148)

Pickup Time (min) −0.058*** (0.007) −0.062*** (0.008) −0.062*** (0.008) −0.065*** (0.010)

Price (dollars) −0.168*** (0.005) −0.172*** (0.005) −0.172*** (0.005) −0.216*** (0.019)

Travel Time Mean (min) −0.040*** (0.005) −0.043*** (0.005) −0.043*** (0.005) −0.045*** (0.007)

TT Uncertainty (min) −0.015*** (0.004) −0.015*** (0.005) −0.015*** (0.005) −0.018*** (0.005)

Age (yr) (RiderPool) −0.002 (0.002) −0.002 (0.002) −0.003 (0.002)

Male (RiderPool) 0.056 (0.061) 0.048 (0.061) 0.058 (0.066)

Republican (RiderPool) −0.089 (0.073) −0.090 (0.073) −0.092 (0.079)

Independent (RiderPool) 0.046 (0.069) 0.052 (0.069) 0.054 (0.075)

Low Income (RiderPool) 0.296*** (0.060) 0.306*** (0.060) 0.330*** (0.072)

Suburban (RiderPool) 0.024 (0.065) 0.033 (0.066) 0.032 (0.072)

Rural (RiderPool) 0.010 (0.075) 0.019 (0.076) 0.019 (0.081)

Cars per Person (RiderPool) −0.165** (0.067) −0.163** (0.067) −0.180** (0.074)

Time Pressure (RiderPool) −0.169*** (0.055) −0.189*** (0.062)

SD of Intercept (RiderPool) −0.258 (2.321)

Observations 8112 6848 6848 6848

Log Likelihood −4742.000 −3950.737 −3945.973 −3906.655

Abbreviation: TT, travel time.
*p < 0.1; **p < 0.05; ***p < 0.01.

of estimated coefficients (Croissant, 2020). The marginal
rate of substitution measures how much one attribute can
be reduced in exchange for an increase in another attribute,
without changing utility. For example, the marginal rate of
substitution of pickup time t in terms of ride price p is

−
dp
dt

|dU=0 =
𝛽t

𝛽p
= r, (3)

which means that consumers are willing to pay r dollars to
reduce their pickup time by 1 min.

Based on the relative magnitude of our pooling intercept
and price coefficients, we can value the inconvenience of tak-
ing a pooled ride, all else being equal, at (−0.607/−0.168) =
$3.61 per ride in our experiment. As expected, we see that
the coefficients of the key ride-hailing service attributes are
all negative and highly statistically significant. The negative
price coefficient explains why a significant number of ride-
sharing users would be willing to choose cheaper pooled rides
even though pooling has other inconveniences. The magni-
tude of the pickup time coefficient is greater (an implied value
of time (−0.058/−0.168) = $0.345 per min or $20.71 per h)
than the magnitude of the travel time coefficient (an implied
value of time of (−0.040/−0.168)= $0.238 per min or $14.29
per h), suggesting that time spent waiting to be picked up
is relatively more important than time spent in the vehicle,
reflecting that the uncertainty of waiting can be particularly
frustrating (Maister, 1985).

In Model 2, we include several pooling-demographics
variables to test how our sample’s preference for pooling vari-
ables varies with respondent demographics. Most of these
are not statistically significant, with the exception of the
dummy variable we include for low-income respondents
(below $50,000 per household per year). The coefficient of
our dummy for low-income respondents is strongly positive,
suggesting that people with low incomes are more likely to
choose pooling, which is likely because they are more willing
to tolerate the inconvenience of a pooled ride to save money.
The offset for the inconvenience of pooling is (0.296/−0.172)
= −$1.72, meaning that people with low incomes value the
inconvenience of pooling to be much less than people with
higher incomes. We also include a variable for car ownership,
finding that respondents who own more cars in the house-
hold per person are less likely to choose pooling, conditional
on having already chosen to use ride-hailing. We speculate
that this finding may be explained by car owners being more
socialized to having their own private space in their vehicle,
compared with public transit users, making them more likely
to choose an individual rather than pooled ride.

In Model 3, we add a time pressure variable that captures
the experimental condition in which we nudged half our sam-
ple into thinking they were taking a trip to the airport, a
time-constrained trip. Here, we see that, as expected, people
who are in a rush are less likely to choose pooling, which we
attribute to the stress involved in taking a trip that both takes
longer and has more time uncertainty.
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TA B L E 5 Comparing MNL models by prior ride-hailing experience

Utility coefficients

(1) (2) (3)

All Experience No Experience

Intercept (RiderPool) −0.607*** (0.060) −0.544*** (0.104) −0.639*** (0.074)

Pickup Time (min) −0.058*** (0.007) −0.049*** (0.013) −0.062*** (0.009)

Price (dollars) −0.168*** (0.005) −0.136*** (0.008) −0.185*** (0.006)

Travel Time Mean (min) −0.040*** (0.005) −0.027*** (0.008) −0.048*** (0.006)

TT Uncertainty (min) −0.015*** (0.004) −0.013* (0.008) −0.016*** (0.005)

Observations 8112 2560 5552

Log Likelihood −4742.000 −1575.412 −3149.880

Abbreviation: TT, travel time.
*p < 0.1; **p < 0.05; ***p < 0.01.

In Model 4, we estimate a mixed logit model, allowing
us to account for heterogeneity in respondents that may bias
their repeated choices (i.e., the possibility that some respon-
dents are just inherently more likely than others to choose a
pooled ride, all else being equal). The mixed logit assumes
that the intercept and alternative specific covariates xni (e.g.,
pickup time, travel time, ride price, etc.) have individual
specific coefficients 𝛽n with normal distribution for all alter-
natives, such that utility from alternative i for individual n
becomes:

Uni = 𝛼ni + 𝛽nxni + 𝛾izn + 𝜀ni. (4)

We assume uniform distributions for the intercept and zero-
bounded triangular distributions for the coefficients of Price,
Pickup Time, Mean Travel Time, and Travel Time Uncer-
tainty. The use of truncated distributions is justified because
these parameters can only take negative values (meaning
that more time-consuming and more expensive trips are
less favorable). In addition, the use of unbounded distri-
butions (such as log-normal, e.g., for price) would lead to
distorted estimations of mean values because of its heavy
left tail, which is why the triangular distribution is preferred
(Croissant, 2020).

Here, the significance of all coefficients is consistent with
Model 3. The inconvenience of pooling is estimated as
(−0.513/−0.216) = $2.38 per trip. The magnitude of the
pickup time coefficient is again greater (with an implied value
of time of (−0.065/−0.216) = $18.06 per h) than the mag-
nitude of the travel time coefficient (what has an implied
value of time of (−0.045/−0.216) = $12.50 per h. We find
that the uncertainty in the travel time of pooled rides is
also influential, with each minute of uncertainty in time esti-
mate equivalent to (−0.045/−0.018) = 2.5 min of additional
travel time. The offset for the inconvenience of pooling in
this model is (0.330/−0.216) = −$1.53 for the low-income
segment.

We now compare the results of the most parsimonious
model, Model 1 in Table 4, with the same model esti-
mated for subsamples split by prior ride-hailing experience

(Table 5). Here, we see that the coefficients are direction-
ally consistent across all three models. However, whereas
the full population inconvenience of pooling is valued at
$3.61, prior users value it at $4.00 (−0.544/−0.136) and
prior non-users at $3.45 (−0.639/−0.185). In other words,
people who have used ride-hailing services are even less
likely to choose pooling than prospective customers. This
suggests that the results and the analysis we report in Section
6 serve as an upper bound on the desire of consumers to
choose pooling versus an individual ride, emphasizing the
need to keep pooling relatively attractive through the use of
pricing.

6 IMPLICATIONS FOR RIDE-HAILING
REVENUE AND TRAFFIC

To understand the financial and environmental implications
of these consumer preferences on the performance of the ride-
hailing system, we consider how consumers would respond
to a future in which the cost of driving per vehicle-mile
falls significantly over time due to the introduction of AVs
as projected by Fulton et al. (2017). We use a model of
consumer choice in which commuters choose between an
individual ride, a pooled ride, and an outside option with con-
stant utility (e.g., driving by privately owned vehicle or using
public transit). Our focus is on using the estimated parame-
ters from Section 5 to construct an optimal pricing policy for
a ride-hailing service that ideally benefits both companies and
society.

In this analysis, we use revenue as a metric of ride-hailing
service financial performance and the market share of pooled
rides as a measure of societal benefit. While focusing on rev-
enue might appear myopic because it ignores the costs of
achieving these revenues, we believe it to be a quite real-
istic portrayal of the ride-hailing market today, where firms
are competing aggressively to “get big fast” (Sterman et al.,
2007), backed by large amounts of venture capital. Our focus
on revenue maximization is further driven by the fact that
revenue is the most important evaluation criterion for young
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12 NAUMOV AND KEITHProduction and Operations Management

firms and industries, where increasing the customer base is
the main driver of investment decisions and market valua-
tions. We use the market share of pooled rides as a proxy
for societal benefits as pooling increases vehicle utilization
and reduces negative externalities of driving such as air pol-
lution and traffic congestion (Fulton et al., 2017; Y. Wang
et al., 2021). We analyze what the optimal pricing policy is
for ride-hailing services when seeking to maximize the com-
posite utility comprising both revenue and share of pooled
rides, in equal proportion. Because our focus is on under-
standing how the strategy of ride-hailing providers can be
adjusted to support consumer choice that benefits both com-
panies and society, we consider the entire market as our unit
of analysis, not a single firm (the optimal behavior of individ-
ual firms within this segment being beyond the scope of the
paper). Next, we consider the environmental consequences of
this pricing are by looking at the total number of VMT in the
city. Last, we perform a sensitivity analysis by varying key
variables representing market and consumer preferences to
define boundary conditions for our results. Note in the expla-
nation of the model below that while most of the variables
are changing over time, we leave out the time subscript t for
clarity of exposition.

6.1 Commuter choice model

We denote the set of commuting modes offered by a ride-
hailing operator (individual and pooled) as M = {i, p}, and
we use the most parsimonious choice model from our empir-
ical estimation of consumer preferences (Model 1 in Table 4)
to estimate the utility of a ride j as composed of base travel
utility u0 and four main attributes: ride price pj, pickup time
tj, travel time 𝜏j, and travel time uncertainty 𝛿j, also including
the intercept 𝛼j.

uj = u0 + 𝛼j + 𝛽ppj + 𝛽ttj + 𝛽𝜏𝜏j + 𝛽𝛿𝛿j, ∀j ∈ M. (5)

As is common in discrete choice models, we assume the
utility of the outside option is equal to 0, giving the following
equation for the individual choice probability of the ride type
j:

Pj =
euj

1 +
∑

k∈Meuk
, ∀j ∈ M. (6)

The market share of the total population choosing the
ride type j is then the expectation of individual choice
probabilities at the population level:

𝜎j = 𝔼
[
Pj
]
, ∀j ∈ M. (7)

We model personal travel demand in units of passenger
miles traveled (PMT) as the reference level of PMT, d0,

modified by the elasticity of demand for driving as a function
of ride price for travel mode j:

dj = d0

(
pj

p0
j

)𝜀d

. (8)

Demand for ride-hailing trips today has been estimated
as being relatively inelastic to prices, with the elasticity of
the driving demand to ride price 𝜀d estimated to be between
−0.2 and −0.6 based on point estimates from the current
US ride-hailing market (Cohen et al., 2016; T. Wang &
Chen, 2014). As ride-hailing services become more popu-
lar (e.g., if prices fall), the market will become saturated, so
it is reasonable to assume that the elasticity of demand will
be lower than today since every further reduction in price
will bring lower demand response. In the analysis shown
below, we assume the price elasticity of PMT demand 𝜀d to
be −0.2, reflecting a conservative scenario, noting that we
have repeated the analysis shown below for other levels of
demand elasticity, finding the results to be qualitatively the
same.

The contribution of pooled rides to the total fleet VMT
depends not only on the length of the trip but also on the aver-
age occupancy of pooled vehicles and the additional miles
driven to match passengers taking similar trips. We assume
that an average pooled trip is shared by 𝜔 = 2.1 passengers
(Rayle et al., 2016), where 𝜔 is bounded by 1 at the lower
limit and is adding VMT overhead for pickup and dropoff of
each passenger after the first, d𝜔 so that VMT multiplier for
a pooled ride is:

𝜆𝜔 = 1 + (𝜔 − 1) d𝜔. (9)

Each passenger of a pooled trip is only “using” a fraction
of the total miles driven by the vehicle since the ride is shared
among multiple passengers:

f𝜔 =
1
𝜔
𝜆𝜔. (10)

The price of a pooled ride per mile per passenger is calcu-
lated from the cost of the ride per mile cVMT , markup 𝜇, and
pooled ride dispatching overhead 𝜂, reflecting the additional
effort required to construct a pooled trip, such as match-
ing passengers taking similar trips and building an optimal
route:

pm
p = cVMTf𝜔

(
1 + 𝜇

) (
1 + 𝜂

)
, (11)

and the price per mile per passenger of an individual ride is
simply:

pm
i = cVMT

(
1 + 𝜇

)
. (12)
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OPTIMIZING THE ECONOMIC AND ENVIRONMENTAL BENEFITS 13
Production and Operations Management

We calculate the price of trips for each ride type pj based
on the price of the ride per mile pm

j and the trip length l.

pj = lpm
j . (13)

We simulate changes in the cost of driving over time as
a result of improvements in new automotive technologies
(e.g., AVs) due to research and development (R&D) invest-
ment and learning-by-doing (Argote & Epple, 1990; Argote
et al., 1990; Arrow, 1962). Cost reductions are represented
using a standard power-law learning curve cumulative in
experience E, which is assumed to increase linearly over
time:

cVMT = c0
VMT

(
E

E0

)log2(1−𝓁)

, (14)

where c0
VMT is the initial cost per mile, E0 is initial experi-

ence, and 𝓁 is the strength of the learning curve. Because
we explore the optimal pricing strategy given that the cost
of driving will go down, we do not model mechanisms for
this price decrease endogenously rather assuming that the
prices will follow the learning curve as the experience E
exogenously accumulates over time.

The travel time of a pooled ride is calculated from the travel
time of an individual ride adjusted for additional miles driven
to pick up and drop off passengers and pickup/drop off time
per additional passenger:

𝜏p = 𝜏i𝜆𝜔 + (𝜔 − 1) 𝜏0. (15)

Given a commuting population n within the city’s catch-
ment area, the revenue of a ride-hailing operator is then given
by:

r = n
∑
j∈M

𝜎jdjp
m
j . (16)

The cost of the ride-hailing operator is the product of the
number of miles traveled by vehicles in the ride-hailing fleet
(in VMT) and the cost of travel per vehicle mile.

c = cVMTdVMT. (17)

The contribution of pooled rides to total VMT depends not
only on the length of the trip, but the occupancy of the vehicle
and the additional miles driven to match passengers taking
similar trips. The number of miles traveled by vehicles in the
ride-hailing fleet is then given by:

dVMT = n
(
𝜎pdp𝛿𝜔 + 𝜎idi

)
. (18)

The profit 𝜋 of the ride-hailing operator is then:

𝜋 = r − c. (19)

We calibrate the model to represent a typical urban envi-
ronment where the majority of the ride-hailing trips are taking
place today and where empirical estimates of the market share
of pooled rides today vary from 15% to 45% and even 70%
at peak times of all daily VMT (e.g., City of Chicago, 2019;
Schaller, 2019; SFCTA, 2017). In our model, we assume that
initially on average, 35% of all the trips are pooled, reflecting
the numbers reported above, as well as taking into account
the increasing popularity of pooling in urban areas as a result
of aggressive price reductions by ride-hailing companies. We
also assume the net margin 𝜇 of the ride-hailing platform
to be 5%, based on the data from the Uber balance sheet
(Bensinger & Winkler, 2018) and the average net margin of
the transportation sector in the US economy (Damodaran,
2020) and the pooled-ride dispatching overhead 𝜂 = 0.05.
The model parameters are summarized in Table 6, including
references where available. For the parameters where prior
data are not available, we have used best estimates based
on data from prior studies and our estimations in Section
5. Since this is a prospective study, actual values may dif-
fer. We perform a sensitivity analysis of the key variables in
Section 6.3 to explore the robustness of our results to these
assumptions.

6.2 Ride-hailing system performance

To analyze this model, we explore how the ride-hailing
platform should optimally price individual and pooled
rides as the cost of driving falls over time. We simulate
travel cost reductions using a power-law learning curve
as improvements in automotive technologies such as AVs
accumulate with learning-by-doing and R&D investment
(Equation 14). The accumulation of the experience E is
modeled as an exogenous parameter, with the initial expe-
rience, change over time, and the learning curve strength
calibrated to provide the expected price decrease from $1.80
to $0.55 in 10 years, based on previous estimates (Burns
et al., 2012; Fulton et al., 2017). With our parameterization
(Table 6), the cost of driving begins at $1.80 per vehicle
mile at time zero and stays constant until year 1, and then
falls to $0.55 per vehicle mile in year 10 of the simulation,
following the learning curve in Equation (14). This leads to
a reduction in the prices of both ride-hailing option in pro-
portion to travel costs as outlined in Equations (11) and (12)
(Figure 2).

We begin by introducing the baseline scenario in which
we simulate consumer choice of individual and pooled
rides over time using the default parameters from Table 6
(Figure 3).

In this baseline scenario, we see that the falling cost of
driving leads to a substantial increase in the individual ride
market share in year 10 (from 16.9% to 35.2%) and a much
more moderate increase in the pooled ride market share (from
9.1% to 13.5%). This is because lower trip prices make
ride-hailing more attractive but reduce the financial incen-
tive to choose pooled rides over individual rides. While the
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14 NAUMOV AND KEITHProduction and Operations Management

TA B L E 6 Key model parameters

Variable Description Value Reference

u0 Base travel utility 1

𝛼p Intercept of the utility of a pooled ride −0.607 Section 5

𝛼i Intercept of the utility of an individual ride 0 Section 5

𝛽p Coefficient for the ride price −0.168 Section 5

𝛽t Coefficient for the pickup time −0.058 Section 5

𝛽𝜏 Coefficient for the travel time −0.040 Section 5

𝛽𝛿 Coefficient for the travel time uncertainty −0.015 Section 5

tp Pickup time for a pooled ride, min 5

ti Pickup time for an individual ride, min 5

𝜏i Travel time for an individual ride, min 15

𝛿p Travel time uncertainty for a pooled ride, min 9

𝛿i Travel time uncertainty for an individual ride, min 0

𝜏0 Additional pickup/drop off time per passenger, min 3

𝜀d Price elasticity of passenger miles traveled (PMT) demand −0.2 (Cohen et al., 2016; T. Wang & Chen, 2014)

n Commuting population in the catchment area, people 100,000

d0 Reference PMT demand, miles/person/year 7000

𝓁 Strength of the price learning curve 0.3

E0 Initial experience, vehicles 100,000

dE0∕dt Accumulation of experience, vehicles/year 100,000

𝜔 Average occupancy of a pooled ride, people/car 2.1 (Rayle et al., 2016)

d𝜔 Pickup and drop-off VMT overhead per passenger 0.35

𝜇 Net margin 0.05 (Bensinger & Winkler, 2018; Damodaran,
2020)

𝜂 Pool dispatching overhead 0.05

c0
VMT Initial cost of ride per mile, cents/mile 180 (Burns et al., 2012; Fulton et al., 2017)

l Average trip length, miles 5

F I G U R E 2 Ride-hailing costs and trip prices per vehicle mile [Color figure can be viewed at wileyonlinelibrary.com]

ride-hailing market increases its total combined market share
by year 10 from 26.0% up to 48.7%, the total revenue falls
25.5% because even with increased market share, the firms
cannot compensate for the substantial reduction in prices that
follow costs.

6.2.1 Maximization of platform revenue

Next, we consider the optimal pricing strategies that maxi-
mize revenues of the ride-hailing platform, assuming that the
price of pooled rides will follow the trajectory of travel costs
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OPTIMIZING THE ECONOMIC AND ENVIRONMENTAL BENEFITS 15
Production and Operations Management

F I G U R E 3 System performance (baseline) [Color figure can be viewed at wileyonlinelibrary.com]

as described above (Figure 2). This assumption allows us to
reduce the number of degrees of freedom of the model and
focus on the analysis of the difference between pooled and
individual rides as the main determinant of the pricing strat-
egy. Most importantly, assuming that pool prices are going
to fall along with the decreasing costs allows us to realisti-
cally model one of the key parts of the social contract that
exists between ride-hailing operators and urban policymakers
who want to reduce traffic congestion and provide convenient
transportation options for low-income communities. Pooled
ride-hailing services serve the same number of passenger
miles with fewer vehicle miles, effectively taking cars off
the roads and reducing congestion, and provide an oppor-
tunity to share travel costs among many riders, offering
price-sensitive customers a better alternative to existing
transportation modes. Thus, increasing the share of pooled
rides becomes an essential part of the social license to operate
in cities. Our analysis shows that the acceptance of pooled
rides hinges on their low prices (see discussion in Section
5), so passing to pooled riders all savings resulting from
reduced travel costs is necessary. We also perform an addi-
tional robustness check of our assumption by performing a
multi-objective optimization that simultaneously maximizes
both pooled ride market share and revenue where we allow
both individual and pooled ride prices to vary. The results
confirm that at optimality, pooled ride prices should follow
falling travel costs (see the Supporting Information for more
details).

To ensure that our optimization yields a unique global
optimum, we need to consider whether revenue and profit
are concave in our setting. The concavity of profit under
multinomial choice for a monopolistic firm has been proven
previously (H. Li & Huh, 2011; Song, Xue, & Shen 2021).
However, revenue and profit are different functions in our
case since travel demand, which is an input to revenue and
profit, is also dependent on price. We establish the concav-
ity of both revenue and profit in our model in Proposition 1
(see the Supporting Information). Next, we proceed to find
unique optimum pricing policies. While no closed-form solu-
tion exists, we use numeric methods to compute these optima.

In the analysis that follows, we use a dynamic optimization
to maximize the revenue of the ride-hailing platform at each
point in time as costs go down. We optimize at 41 discrete
points (quarterly intervals) over our simulated time horizon
of 10 years, determining at each point the optimal price for
an individual ride and interpolating between points for the
purpose of visualization. At each point, the price per mile of
a pooled ride is determined from Equation (11), and we mod-
ify Equation (12) to find the vector of optimal prices per mile
of an individual ride as a function of the vector of travel costs
as follows:

pm
i = 𝜙cVMT(1 + 𝜇), 𝜙 ≥ 1. (20)

where 𝜙 is the vector of multipliers over 41 time points
used as independent parameters during optimization. We
restrict 𝜙 to be greater than unity to limit our search to
those pricing strategies that are more profitable than current
prices.

While revenue-maximization might initially appear
myopic, ignoring the costs of achieving these revenues, we
believe it to be a quite realistic portrayal of the ride-hailing
market today, where firms are competing aggressively to “get
big fast” (Sterman et al., 2007), backed by large amounts
of venture capital. Our focus on revenue maximization is
further driven by the fact that revenue is the most important
evaluation criterion for young firms and industries, where
increasing the customer base is the main driver of investing
decisions and market valuations. We believe there is merit
in framing our analysis in this way since revenue generates
opportunities, and focusing on profit requires careful consid-
eration of not only direct costs but also expenses related to
business development. The results of this optimization are
shown in Figure 4.

Our results show that the current practice of ride-hailing
companies to subsidize rides in order to capture a larger mar-
ket share can be improved from a revenue perspective through
the optimal policy that, while slowing down the market share
growth, maximizes revenue if the travel demand is inelastic
(see Proposition 1 in the Supporting Information). Here, we
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16 NAUMOV AND KEITHProduction and Operations Management

F I G U R E 4 Financial performance (maximization of revenue) [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 Vehicle miles traveled (VMT) and roadway utilization [Color figure can be viewed at wileyonlinelibrary.com]

see that it is optimal for revenue maximization to keep cur-
rent prices for both individual and pooled rides and reduce
them proportionally to falling travel costs for the first year
after the cost decline starts after year 1 (𝜙|t≤2 = 1). After
time 2 years, our optimal solution suggests that the price
for an individual ride should remain higher than it would be
using the fixed margin and falling costs (𝜙|t>2 > 1) (dashed
line in Figure 4a). Our solution ensures that revenues in
year 10 are now 22.7% higher (dashed line in Figure 4b).
We have also considered the scenario where the platform
operator prices individual and pooled rides so as to maxi-
mize total profits (not shown), finding qualitatively similar
results.

6.2.2 Sustainability implications (VMT and
roadway utilization)

We next analyze the impact of the optimal revenue-
maximizing pricing strategy on the total number of VMT
and the average fleet impact on roads as defined by the ratio
of VMT to PMT (dVMT∕d), which shows how many vehicle
miles are required to transport one passenger mile on average

in the fleet, with a lower number indicating more efficient
road usage (Figure 5).

Here, we see that the revenue-maximizing scenario leads
to a reduction in ride-hailing VMT relative to the baseline
scenario, even though VMT still increases over time as the
cost of driving falls. Considering the net impact of ride-
hailing on roads, we see that the average fleet road impact
is lower than the baseline in revenue-maximizing scenario
(Figure 5). The reason for the higher road utilization is not
only a lower PMT demand (27% lower than the baseline in
the revenue-maximizing scenario) but also a higher market
share of pooled rides (16.2% vs. 13.5% in the base case) and
an increased share of pooled rides among all ride-hailing trips
(Figure 6). The higher share of pooled rides and reduced PMT
demand makes the revenue-maximizing scenario more sus-
tainable from the environmental and social perspective, as the
total VMT across ride-hailing vehicles is 32% lower than in
the baseline scenario (Figure 5).

To be clear, our results reflect the environmental impact
of the policy for the ride-hailing sector only, not making
any assumptions about the environmental impact of the out-
side option. Since the pooling market share is greater, but
the overall market share of ride-hailing is smaller than in

 19375956, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.13905 by M
assachusetts Institute O

f T
echnology, W

iley O
nline L

ibrary on [14/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



OPTIMIZING THE ECONOMIC AND ENVIRONMENTAL BENEFITS 17
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F I G U R E 6 Market share and pooling % of the ride-hailing market [Color figure can be viewed at wileyonlinelibrary.com]

the baseline, the net environmental impact of transportation
depends on two factors: where new consumers who decide
to pool come from, and where consumers who stop using
individual rides go. If new consumers are switching away
from public transit and start pooling, and if former individ-
ual ride-hailing customers switch to privately owned car trips
and drive more as a result, the net environmental impact of
the policy might be reversed. However, if new consumers are
switching to pooling from private cars and individual rides,
and former individual rude-hailing customers switch to public
transportation, the environmental impact might be amplified.

6.2.3 Comparing multi-objective and
revenue-maximizing optimization results

As mentioned at the beginning of Section 6.2.1, we also
performed an additional analysis where we simultaneously
maximize the market share of pooled rides and also total rev-
enue (combined in a single firm utility function) to represent
two main objectives of ride-hailing operators—maintaining
financial viability and fulfilling social license to operate in
cities by helping to reduce congestion and providing afford-
able transportation options for low-income areas (see the
Supporting Information for more details). We find similar
qualitative results, with a few notable differences. The multi-
objective optimization confirms our key result that pooled
ride prices should follow the falling cost trajectory, while
individual ride prices need to be increased at optimality. At
the same time, the new analysis suggests that unlike in the
revenue-maximizing scenario, the market share of pooled
rides can become larger than that of individual rides, high-
lighting the possibility for an increasing role of pooling in
the future of transportation without compromising the finan-
cial performance of ride-hailing companies. We also find that
when travel cost reduction occurs more slowly, and in the case
of a higher elasticity of travel demand, the multi-objective
optimization can lead to a marginally lower revenue, com-
pared to the baseline. However, we also show the existence
of the set of solutions 𝒮 outperforming the baseline on both
dimensions with different utility weights under the base-

line market conditions. Our analyses confirm that under a
wide range of parameters, it is possible to simultaneously
improve revenue and increase pooled rides market share,
making urban transportation sustainable and affordable.

6.3 Conditions required for co-benefits

Our analysis has shown that revenue-maximizing pricing can
also achieve substantial environmental benefits for the ride-
hailing sector, reducing negative externalities of driving on a
per-passenger basis. However, this result might be contingent
on the specific parameterization of the model (Table 6) or the
results of the estimation of consumer preferences (Section 5).
Next, we explore the boundary conditions to understand how
robust this “win–win” result is under different market and
consumer preferences.

6.3.1 Speed of cost reduction

In the paper, we assume that the cost of driving exoge-
nously declines over time due to the availability of new
AV technologies. The speed of this decline, however, is
highly uncertain and depends on factors such as techno-
logical advances, R&D spending, and consumer acceptance,
represented collectively by the learning curve strength 𝓁

(Equation 14). Figure 7 shows runs with the baseline param-
eterization (𝓁 = 0.3, solid lines), and when the technological
improvements are “sluggish”—50% slower (𝓁 = 0.15, dotted
lines) and “optimistic”—50% faster (𝓁 = 0.45, dashed lines).
The left panel shows the actual cost trajectory, while the right
panel reports a marginal improvement in the share of pooled
rides as a fraction of all ride-hailing trips that the revenue-
maximizing pricing policy can achieve in comparison to the
non-optimized baseline run from Figure 3.

Under all scenarios, we see a possibility for the opti-
mal pricing policy to both increase revenue and reduce
road impacts relative to the baseline non-optimized pricing
(Figure 8) by increasing the share of pooled rides (Figure 7).
However, the largest opportunities for improvement are
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18 NAUMOV AND KEITHProduction and Operations Management

F I G U R E 7 Speed of cost reduction–impact on travel cost and pooling share [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 8 Speed of cost reduction–impact on financial performance and roads [Color figure can be viewed at wileyonlinelibrary.com]

presented when the cost drops faster (optimistic scenario).
This illustrates why maintaining an increasing price dif-
ference between individual and pooled rides is especially
important if the cost of rides drops substantially, an outcome
expected by many in the ride-hailing industry.

6.3.2 Elasticity of travel demand

An essential parameter that controls personal travel demand is
the price elasticity of PMT 𝜀d (Equation 8). The more elastic
the travel demand, the more people will respond to variations
in ride prices, a parameter that reflects consumer prefer-
ences and market conditions, which can vary over time. In
Figure 9, we show the baseline parameterization (𝜀d = −0.2,
solid lines) and explore scenarios when the price elasticity of
travel demand is lower (𝜀d = −0.1, dotted lines) and higher
(𝜀d = −0.6, dashed lines), using values that were previously
estimated in the literature (e.g., Cohen et al., 2016; T. Wang
& Chen, 2014).

As in Section 6.3.1, we see that in all scenarios, the opti-
mal pricing policy can increase the share of pooled rides,
providing opportunities to increase revenue and reduce road
impacts. With relatively more elastic demand, the optimal

pricing policy suggests that prices for individual and pooled
rides should decrease proportionally to costs for much longer.
The reason for this is the potential to generate more travel
demand (because of higher elasticity) and therefore higher
revenue if ride prices are reduced. As demand becomes less
elastic, optimal pricing policy provides opportunities to gen-
erate increasingly higher revenue and reduce road impact
by controlling individual ride prices (Figure 10). We also
see a saturation effect of optimal pricing as travel demand
becomes less elastic, highlighting the non-linear effect of
demand elasticity.

6.3.3 Consumer utility attributes

We next turn to exploring the consumer attributes we have
estimated in Section 5. While the estimation results are highly
statistically significant, they are stated preferences, and pref-
erences that may evolve over time as consumers gain more
experience with ride-hailing and the market matures. First,
we consider the sensitivity of consumers to ride prices. In
Figure 11, we vary the price coefficient of the consumer
utility 𝛽p in Equation (5) from the baseline (𝛽p = −0.168,
solid lines) to more price-sensitive consumers (𝛽p = −0.336,
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F I G U R E 9 Travel demand elasticity–impact on travel demand and pooling share [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 1 0 Travel demand elasticity–impact on financial performance and roads [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 1 1 Sensitivity to ride price—financial performance and road impacts [Color figure can be viewed at wileyonlinelibrary.com]

dotted lines) and to less sensitive consumers (𝛽p = −0.084,
dashed lines).

When consumers are more price-sensitive, there is little
room to improve revenue, and the opportunity to reduce
road impact is also limited. When consumers are less
price-sensitive, revenues can increase substantially, with the
opportunity to substantially reduce road impact. This again
speaks to the importance of estimating consumer preferences

as they determine the degree of alignment of policy results
between financial performance and environmental impact.

Next, in Figure 12, we explore the effect of changes in
the perceived inconvenience of pooling 𝛼p in Equation (5)
from the baseline (𝛼p = −0.607, solid lines) to consumers
who dislike pooling more (𝛼p = −1.821, dotted lines) and
to consumers who dislike pooling less (𝛼p = −0.202, dashed
lines).
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F I G U R E 1 2 Sensitivity to the inconvenience of pooling—financial performance and road impacts [Color figure can be viewed at
wileyonlinelibrary.com]

Here, we see that the marginal effect of the inconvenience
of pooling on the revenue-maximizing pricing policy is the
opposite for revenue versus road impacts. The more con-
sumers dislike pooling, the more revenue improvement can
be generated by the optimal policy, but the less potential there
is to reduce the road impact of the ride-hailing fleet and vice
versa. This is due to the fact that an increased inconvenience
of pooling results in a lower share of pooled rides, which is
the main driver of the reduced road impact.

Comparing these consumer utility attributes, we see that a
3x change in the perceived inconvenience of pooling has a
lesser impact on revenue and road impact than a 2x change in
the price coefficient. Overall, the individual parameters sen-
sitivity analyses above show that the results of the optimal
policy are robust in a variety of settings, with the opportu-
nity to improve revenue and reduce road impacts by keeping
individual rides relatively more expensive.

6.3.4 Correlated market and consumer
preferences

While so far, we have varied the market parameters and con-
sumer utility attributes individually, in reality, they could be
correlated, reflecting local market features. We now consider
two different markets: one “mature,” with established travel
demand and more affluent consumers, who are less inclined
to use pooling, and the other “developing” with growing
travel demand and less affluent consumers, who are more
receptive to the idea of pooled rides and are more sensitive
to price.

For the mature market, we use values from the individ-
ual sensitivity analyses above and set the elasticity of travel
demand 𝜀d = −0.1 (less elastic), price coefficient of con-
sumer utility 𝛽p = −0.084 (less sensitive), and perceived
inconvenience of pooling 𝛼p = −1.821 (dislike more). For
the developing market scenario, we assume the elasticity
of travel demand 𝜀d = −0.6 (more elastic), price coeffi-
cient of consumer utility 𝛽p = −0.336 (more sensitive), and
perceived inconvenience of pooling 𝛼p = −0.202 (dislike
less).

Figure 13 shows the simulation results. For the developing
market scenario (dotted lines), the revenue-maximizing pric-
ing policy is to reduce prices for both individual and pooled
rides proportionally to costs. In other words, there is no
advantage in increasing individual prices as seen in the base-
line (solid lines). This is because in the price-sensitive market
with relatively elastic travel demand, reducing ride prices for
both types of rides generates more travel demand and there-
fore higher revenue. The consequence of this is the fact that
we do not have any opportunity to use pricing to reduce road
impact (right panel). For the mature market with inelastic
travel demand and a low attractiveness of pooling (dashed
lines), however, holding individual ride prices at a relatively
higher level, compared to pooled rides allows operators to
realize the full potential of the optimal pricing strategy by
generating more revenue (left panel), which further allows
to reduce road impact by making pooling relatively more
popular (Figure 14).

While we do not model changes in consumer preferences
over time explicitly, the two scenarios above can be con-
sidered as a temporal evolution of ride-hailing in the same
market, where the cost of the rides goes down due to tech-
nological advances, while ride-hailing consumers mature and
change their preferences. Our results suggest that initially, it
makes sense to allow ride prices to drop to be able to capture
an increasing market share and travel demand, responding
to price-sensitive consumers who have not yet experienced
pooling personally and who are therefore willing to use it
more. However, as the market matures, the travel demand
stabilizes and the preferences of consumers might reflect
the diminishing popularity of pooling due to its inherent
inconvenience relative to individual rides, and it becomes
optimal to keep individual prices at a high level to sustain
pooling popularity and reduce the environmental impact of
ride-hailing.

7 DISCUSSION

Pooling is gaining increasing attention (e.g., Clewlow &
Mishra, 2017; Fulton et al., 2017; Henao & Marshall, 2019b;
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F I G U R E 1 3 Correlated market and consumer preferences—financial performance and road impacts [Color figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 1 4 Correlated market and consumer preferences. Pooling
% of ride-hailing market relative difference [Color figure can be viewed at
wileyonlinelibrary.com]

Ke, Yang, & Zheng, 2020; Schaller, 2018; Shaheen & Cohen,
2019) as a potential countermeasure to urban transportation
externalities including air pollution, greenhouse emissions,
and traffic congestions, promising to serve the same number
of passenger miles with fewer vehicle miles. While consumer
use of pooling is modest today, the growth of on-demand
mobility platforms such as Uber and Lyft has renewed interest
in pooling because these platforms effectively automate the
task of rider-matching. Understanding what motivates con-
sumers to choose pooling, how those incentives may change
over time, and how pricing can be used to maximize the pri-
vate and social benefits of ride-hailing are critical if pooling
is to play a significant role in the transition to sustainable
mobility.

Our analysis quantifies the factors that affect consumers’
choice of pooled rides and the ways in which pricing may be
used to ensure that pooling remains attractive to consumers
even if the cost of driving falls. Today, pooled rides take
at least as long as individual rides and are perceived to be
inconvenient, but they are cheaper. Our estimation of con-
sumer preferences explains that it is these cost savings that
are incentivizing pooling today, including low-income seg-
ments of the population for whom pooling is increasingly
competitive with conventional public transit. It could, there-

fore, be problematic for both ride-hailing platforms and cities
if the cost of driving fell in the future, as some people expect,
because the financial incentive to pool will diminish—why
would a rider choose pooling when it is inconvenient and
when an individual ride is only marginally more expensive?

Pricing, then, provides a critical managerial lever that
can influence consumers’ choices between individual ride-
hailing trips, pooled rides, and other transportation modes.
Our analysis shows that the opportunity exists for a ride-
hailing platform to price their services in a way that both
maximizes revenues and leads to a new reduction in road
impacts, resulting in a win–win for firms and cities. Criti-
cally, this requires the platform operator to price their services
in a way that might slow down the market share growth,
instead of focusing on faster market share acquisition through
subsidizing rides, a practice that is widespread today. Doing
so, however, could be critical for ride-hailing platforms to
secure and maintain the permits they require to operate in
cities, particularly when concern is growing about the impacts
of ride-hailing on traffic congestion. The results are robust
under a wide range of consumer preferences and market
conditions, recognizing that the optimal pricing trajectories
of individual and pooled rides and realized financial and
environmental gains vary. We show that pricing strategies
should be continuously adjusted as the ride-hailing market
and consumer preferences evolve, necessitating proper coor-
dination between ride-hailing services and urban planners to
maximize financial gains and improve the sustainability and
accessibility of urban transportation.

Our results generalize to other industries and firms pro-
vided two conditions are satisfied. The first condition is
that the revenue of the firm is the product of the number of
adopters (determined by utility) and the rate of usage post-
purchase, where usage is relatively inelastic with respect to
prices. The second condition is the availability of a “greener”
service or product option in a firm’s portfolio that is slightly
inferior to the traditional option from consumers’ perspec-
tive, but which has significant potential to reduce negative
externalities. Under these conditions, increasing the price of
the traditional product or service relative to the “greener”
option can maximize the firm’s revenue and environmental
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sustainability at the same time. One such example is the
implementation of a gasoline tax to accelerate the transition
to electric vehicles. By making fossil fuels more expensive,
the government can incentivize consumers to purchase
electric cars, which have a lower environmental impact
(zero tailpipe emissions and lower displaced emissions if
renewable electricity is used).

Our study inevitably has limitations that place boundary
conditions on how our findings can be applied. First, while
we deliberately focus on consumer choice between individ-
ual and pooled rides, it is increasingly clear that pooling
also interacts with public transit systems and other local
transportation modes (e.g., micro-mobility), with potentially
wide-reaching implications. Ride-hailing can have nega-
tive environmental consequences even with high levels of
pooling if consumers are switching to ride-hailing from
lower-carbon transportation modes. This competition could
be further exacerbated if the decline in public transit ridership
reduces service quality that makes public transit even less
attractive.

Second, although we analyze in detail the role of price in
moderating the choice between individual and pooled rides
from the perspective of consumers, we do not consider the
response of drivers to those same price signals (to the extent
that human drivers continue to provide ride-hailing services).
Whereas, higher prices reduce consumer demand for a given
service, the effect of those same higher prices might be to
attract more drivers and put downward pressure on prices,
all else being equal. Thus, while our model considers the
long-run implications of structural changes in the ride-hailing
market, it does not fully capture the short-term dynamics that
might exist between market sides.

Third, while our study is unique in that it builds on
empirical estimation of consumer preferences for pooling,
we recognize that this was done in a nascent market where
most of our respondents were not personally familiar with
pooled ride-hailing rides. This context is likely to remain
relevant in many cities for the foreseeable future. However,
the introduction of AVs, if successful, may materially change
consumer preferences for pooling, particularly if new vehicle
form factors and self-driving features provide a superior and
individualized rider experience.

Fourth, our unit of analysis is the entire ride-hailing mar-
ket, which allows us to abstract away from competitive forces
and the optimal behavior of individual firms within this seg-
ment. While many ride-hailing markets are dominated by
a single firm, making monopolistic assumptions plausible,
there is strong evidence of at least a duopoly either with
two ride-hailing operators or with one ride-hailing operator
and a similar service (e.g., taxi) in many large cities, where
the ride-hailing service has the strongest potential to reduce
traffic congestion and carbon footprint. Introducing competi-
tive dynamics might create additional pressure for companies
to reevaluate their priorities and engage in different pricing
strategies aimed at gaining higher market share. In addition,
the competitive behavior between two ride-hailing compa-
nies might reveal opportunities for policymakers to regulate

the market more effectively, aligning financial and societal
goals.

Finally, several other sources of heterogeneity in pooling
use exist that deserve to be investigated, including spatial
determinants such as trip length and whether the trip is
being paid for by the individual rider or by their employer.
Also, pricing strategies and consumer use of pooling have
implications for ride-hailing fleet management and capac-
ity planning, particularly taking surge pricing and roadway
traffic congestion into account. While a surge in pricing
should make pooling more attractive, traffic congestion that
increases travel times could make pooling less attractive, sug-
gesting that interesting spatial and temporal challenges could
exist. Considering such feedbacks in a dynamic model of
ride-hailing services with our consumer utility attributes and
real-world patterns of travel demand could yield additional
insights about ride-hailing platform management strategies.
While we consider the ride-hailing market in aggregate,
future research should investigate the effect of competition
among individual firms on optimal pricing strategies for both
pooled and individual rides.

Pooling offers enormous potential as a countermeasure to
the increasing gridlock in cities around the world, offering
lower travel costs for consumers, the more efficient utilization
of energy and infrastructure resources, and the reduction of
environmental externalities. Growth in the use of ride-hailing
has reinvigorated the possibility that the benefits of pooling
may be realized at a large scale. Our analysis highlights that
pooling can be influential in the future of mobility, but only if
the alignment of urban mobility policies and operational and
design decisions exists so that ride-hailing platforms price
their services in a way that makes ride-hailing attractive for
customers now and into the future.
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