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Abstract

Many different systems for mass expulsion (thruster) control of spacecraft attitude have
been proposed in the literature. However, there is a lack of any sort of comparative analysis
of the relative strengths and weaknesses of these different systems. This comparative
analysis is the core of this thesis.

Three different approaches to the control task are possible -- the phase plane approach, in
which most of the system complexity is in the phase plane switching lines, the conv-oiler
approach, in which a simple deadband is used for a phase plane, and the variable m.ce
width approach, in which no phase plane is used and thruster pulse widths vary according to
the current state. A search through the literature was performed, and several representativs
system designs were chosen in each category. These designs were incorporated into a
detailed computer simulation of the Magellan spacecraft which was developed at Martin
Marietta Denver Aerospace. Using both a high external disturbance and a low disturbance
case, the performance of the various designs was observed and compared.

As system designs were tried and adjusted, some simple design considerations, such as the
"approach parabola," the "steady state fuel bump,” and the elimination of two-sided
deadbands were found to greatly facilitate the optimization of parameter values for a
particular system. These considerations were found nowhere in the literature, but would be
of great help to an atitude control system designer. An example of a real problem
encountered with the Magellan spacecraft is given (Chapter 8) to show the utility of these
concepts.

Designs utilizing the phase plane approach were found to be easier to design and optimize
because of their simple and intuitive geometric nature. Furthermore, they are easy to tailor
with specialized switching lines, thus causing exceptional performance in the low
disturbance case and reasonably good performance in the high disturbance case. On the
other hand, controller designs were not nearly as easy and intuitive, but pseudo-rate and
integral controller terms resulted in excellent performance for high disturbances. Finally, it
was difficult to generalize much about the variable pulse width designs. The only obvious
generalization is that, because of unavoidable system nonlinearities, they tend to be very
jittery in steady state, and thus they cause a high rate of steady state fuel consumption.
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Chapter 1

Introduction

Many modem spacecraft have very tight pointing requirements over at least 2 part of
their missions. For example, the Magellan spacecraft, which is to be launched to Venus in
1989, must be designed to maintain its attitude to within about one-twentieth of a degree.
Most spacecraft take advantage of the high accuracy obtainable from reaction wheels or
control moment gyros to meet these strict requirements. However, these devices generally
have very limited torquing capabilities. They function well when the total spacecraft
momentum is not increasing rapidly, but the presence of large external disturbances would
quickly saturate them. Their limited torques also mean that they are very slow to correct
large attitude errors. Finally, these devices operate by exchanging momentum with the
spacecraft; when they themselves have built up too much momentum, another device must
be used to desaturate them. Thus, these devices alone can not control spacecraft attitude.
On-off thrusters are almost universally used to maintain control in the presence of large
disturbances, to correct large attitude errors, and to occasionally desaturate reaction wheels
or control moment gyros. The system used to determine the behavior of the thrusters is

thus one of the most important elements of a spacecraft.

Figures 1-1 and 1-2 depict a generic thruster attitude control system. The physical
configuration of the thrusters is shown in Figure 1-1. The thrusters are mounted in
opposing pairs such that they deliver torques about three mutually perpendicular axes.
Depending on which thruster of a pair is fired, either a positive or a negative torque can be

delivered about each axis.! Figure 1-2 shows a block diagram of the system used to control

1Although schemes involving gimballed thrusters have been proposed, they will not be discussed in this
thesis. :
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Figure 1-1: Thruster Configuration on the Magellan
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spacecraft attitude about each individual axis. The error signal is fed into a controller,
which processes the attituds error and generates an approximate rate error. The controller
commonly includes proportional, integral, derivative, pseudo-rate, and path guidance terms,
as well as low pass filters to smooth its output signals (see Chapter 3). The outputs from
the controller are fed into the phase plane logic. Phase planes can vary from a simple
attitude deadband (Figure 1-3a) to a "rate ledge" arrangement (Figure 1-3b) to even more
complicated schemes (Figure 1-3c). The phase plane region in which the current state falls
determines how the thrusters will be commanded to fire. The phase plane in Figure 1-3a,
for example, commands the thrusters to deliver negative torque if the angle output by the
controller exceeds a certain deadband value, and positive torque if the angle is less than a
certain value. The thrusters follow the commands generated by the phase plane logic, and
the vehicle rotates accordingly. Rate-integrating gyros, which function much as their name

implies, measure the current angle of the spacecraft and provide feedback.
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The design of such a system is very challenging. The bang-bang control provided by
the thrusters, various nonlinearities in the system, and time lags in the thrusters make
analysis extremely difficult. Still, many authors have proposed solutions to this problem.
Some of these solutions are quite original; for example, Quam [18] suggests a control
algorithm involving switching lines in a plane plotting the spacecraft rigid-body energy vs.
the energy of the first flexible mode, while Liu er al. [12] use the steepest descent method
to derive an optimal open loop control law. However, most of the control system designs
proposed in the literature seem to follow one of three basic approaches. The first approach
is to put all the system complexity into the phase plane, while using as simple a controller
as possible. Some authors suggest the use of simple deadbands of one sort or another [9].
Others apply optimal control theory to the task, obtaining various more complicated
solutions {7, 20, 6, 25, 26]. Some even propose phase planes in which switching lines are
not stationary, but move as functions of time or of spacecraft state [5, 15]. The second
approach is to put all the complexity in the controller, using as simple a phase plane as
possible. Proportional-derivative control is commonly used [2, 13, 14], but pseudo-rate
[2, 16, 3] and pulse-width-pulse-frequency [3, 1, 28, 27] control are also widespread. The
third approach uses no phase plane at all. Instead, in the variable pulse width approach, a
controller outputs a time instead of an angle. The thrusters are commanded to fire for this
amount of time. Clark [4] proposes one such scheme, while another is derivable from

optimal control theory (see Chapter 3).

Most of the control schemes described above rely on some drastic simplifying
assumptions. The most universal of these is the assumption that thrusters are mounted such
that they provide torques about the principal axes of the spacecraft. Thus, torques about
one axis have no effect on the other axes, so each axis can be controlled independently.
Unfortunately, on a real spacecraft, there is a very good reason not to align thrusters with

principal axes. Figure 1-4a shows a set of thrusters that are aligned in this way. As the
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figure shows, a failure in any single thruster makes control about one of the principal axes
impossible. A single point failure can thus cause a complete loss of attitude control. It is
much safer to position thrusters at a 45 degree angle from the principal axes, as shown in
Figure 1-4b. In the event of the failure of a single thruster, this configuration allows some
control torque to be provided about all the principal axes. Yet, because of this thruster
configuration, coupling between axes can realistically be expected. Other assumptions
often used include the neglecting of time delays. Time delays are usually not negligible.
These assumptions are necessary to reduce the complexity of the problem to a point where
a design is possible, yet an analyst must wonder -- how well can a system designed with

these simplifications control a real vehicle?

To cope with this uncertainty, some designers end up creating very complicated
systems. The controller bleck of the Magellan spacecraft is shown in detail in Figure 1-5
[8]. The Magellan phase plane is shown in Figure 1-3c. As is evident from these figures,
both the controller and the phase plane are very complex. Although techniques exist for
analyzing the Magellan controller and the Magellan phase plane independently (see Chapter
3), their interaction is far too complicated for any pencil-and-paper analysis. The
combination of the two control schemes does result in good system performance, but
system parameters are very difficult to choose. The 4 controller parameters and 7 phase
plane parameters are, in practice, picked by trial and error, using computer simulations. As
one might expect, a large number of very expensive simulation runs are needed to properly
choose these parameters. Similar system designs, analyzable without so much reliance

upon the computer, would be much less expensive.

What is needed, then, is a simple, easily analyzable design for a thruster attitude
control system that works effectively on a real spacecraft. The purpose of this study is to
examine several different simple designs to see how well they perform on a real system.

Each system considered will be designed analytically, tested, and tuned until performance
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appears io be optimized. By comparing the performance of the various systeims, one can
determine which is more easily analyzable, which performs better in various respects, and
the tradeoffs inherent in the design of each of them. And a description of the optimization
process might prove to be beneficial to someone who actually has to design cne of these

systems.

How can these control system designs be tested? The cost of building several
different spacecraft and implementing a different attitude control system on each would be
prohibitively high. However, the attitude and articulation control group on the Magellan
project, working at Martin Marietta Denver Aerospace, have prepared a detailed computer
simulation of their craft (see Chapter 2 and Appendix D). This simulation has been
developed over a period of several months to mimic the actual design of the vehicle as
closely as possible. This provides a unique opportunity to test designs for attitude control

systems in as realistic an environment as is practical.

First, the models implemented in the simulator will be examined. The models of the
rigid-body vehicle [10], the rate-integrating gyros [10], the thrusters [10], propellant
consuinption [8], disturbance torques [29, 30], vehicle mass properties [29], and propeliant
slosh [22, 23] will all be explained in detail in Chapter 2. Next, an overview of the
literature will be presented, and likely control schemes will be chosen from it (Chapter 3).
In Chapter 4, two important test cases will be discussed. In the first, termed “normal
attitude control," the system will be required to respond to a large attitude and rate error (2
degrees and 1 deg/sec, respectively) about each axis (to maximize inter-axis coupling) in
the absence of any disturbance torques. In the second case, the Magellan’s insertion into
Venus orbit (VOI) will be simulated. No initial rate or attitude errors will be assumed, but
during VOI disturbance torques can become as high as 80% of the control torque. Chapter
4 will also develop performance criteria for each of these test cases, to facilitate the

comparison of control system designs. Each design’s parameters will be determined
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analytically, and the simulator will be used to test them. Then, parameters will be tuned
until optimal performance is obtained (Chapters 5-7). The tuning process should give
insights into the effectiveness of each system and the tradeoffs inherent in each design
approach. Finaliy, an example of a case in which the findings of this thesis had great
practical importance will be presented (Chapter 8), and conclusions, recommendations, and

a final comparison of the various attitude control systems will be given (Chapter 9).
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Chapter 2

Spacecraft Models

In order to test thruster attitude control systems in a realistic environment, an accurate
computer simulation of an actual spacecraft is needed. This study is indebted to the attitude
and articulation control system (AACS) group on the Magellan project, which has
developed such a simulation. A diagram of the Magellan spacecraft is shown in Figure 2-1.
Before discussing control system designs, it is important to understand the pertinent

Magellan models that are implemented in the simulator2.

SUN SENSOR—\

s SOLAR PANEL

SOLAR
PANEL

STAR SCANKER

STAR 48 SRM

FUEL TANK

VOYAGER BUS i

Figure 2-1: The Magellan Spacecraft

2Except for propellant slosh, all the models discussed in this chapter were developed and implemented by
AACS analysts Lyle Cloud, Gerald Francis, Nabil El Gabalawi, Charles Gay, Whittak Huang, Steven
Johnson, Thomas Kelecy, Narotham Reddy, and Charles Stockdale. I developed the slosh model myself.
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2.1 Normal Attitude Control Models

The following models are adequate to simulate the effects of thruster control on the
behavior of the spacecraft in the absence of any external disturbances. They are

implemented with a sampling frequency of 7.5 Hz.

2.1.1 Rigid Body Vehirle Model [10]

Although Magellan has two flexible solar arrays, the dynamic complications
introduced by these arrays are usually ignored. The effects of flexibility on attitude control
system performance are nct expected to be very large. Thus, a rigid body vehicle model is

used for this thesis.
For rotaticn about principal axes, spacecraft motion is governed by the equations:
1,= Lo+ (3- I)0,0; 2.1)
Ty= Loyt (13- 3)z0,
3= I30g+ (- 1))y 0,
where 1 = applied torque, ® = angular velocity, I = inertia, and the subscripts 1, 2, and 3
refer to the body x, y, and z axes respectively. These equations are implemented in the

simulation. The inertia values used to test normal attitude control are shown in Table 2-I.

Inertia values used in the high disturbance case will be discussed later in this chapter.
Table 2-I: Inertia Values for Normal Attitude Control

body axis (j) Iii (kg—m2)
X 1050
Y 2000
YA 1600

The thrusters do not control about principal axes. As shown in Figure 2-2, a set of
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control axes are defined. The x and y control axes are rotated 45 degrees from the principal
axes, while the z control axis corresponds to the z body axis. The thrusters can only deliver

torques about the control axes. These torques can be resolved into body coordinates by the

equations:
"w=g(71c"72c) (2.2)
V2
Top= -7(': + 126)
T35= T3¢ -

where the C subscript indicates torque about the control axes and B indicates body axes.
Torques, angular positions, and angular rates can be transformed back and forth from

control to body coordinates by similar equations, ie.

Op g(%c =0,0) (2.3)
¢2g='-\;_§(¢1c+¢2c)

035= 93¢

mw=g(mlc—w2c)

©,p= g(mlﬁmx)

©;5= W3¢

2.1.2 Gyro and Error Generation Models [10]

A set of rate-integrating gyros measures the angle accumulation about each of the
body axes. This can be processed to give the angular position about each axis. The gyro
model is shown in Figure 2-3. The angular rate about an axis is effectively shaped by a

second order transfer function, integrated, and quantized. The integration gives the
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incremental angle through which the spacecraft has rotated since the previous sampling
instant. The incremental angle can then be added to the known spacecraft position art the
end of the last sampling interval to get the current spacecraft position. Parameters for this

model are given in Table 2-I.

- § e
- s R + WRG_ | 1 el |
P alsp A 1 3 T l
| . -
PHIED
Key Variables )
W - actual s/c body rate vector it = era —ourae e |
p,q - 2nd order transfer function coefficients UMD S PIER mPatET e
AISD - gyro scale factor '
RGB - gyro rate bias
WRG - measured gyro rate
INCPHI - incremental gyro angle ; ]
PHIBD - total gyro angle Fulsdr= rHLaol
PHIDP - previous total gyro angle :

$INCPHI

Figure 2-3: Rate-Integrating Gyro Model
Table 2-II: Gyro Model Parameters

parameter | value

p 5.17E-04
q 3.2E-02
AISD 1.0
RGB 0.0

quantization| 7.75E-07 rad

The Magellan spacecraft has no way of directly measuring angular rates. The

Magellan controller generates rates by simply dividing the incremental angles generated in
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the gyros by the sampling time interval. The Galileo spacecraft uses a similar scheme.
Although this can generate a noisy signal, with filtering it can provide a good estimate of

angular velocities.

2.1.3 Thruster Models [10]

The Magellan spacecraft uses three different types of thrusters -- 0.2 1bf thrusters (for
normal attitude control), 5 Ibf thrusters (for z-axis control during the high disturbances of
Venus orbital insertion (VOI)), and 100 Ibf thrusters (for x and y-axis VOI control). The
behavior of these thrusters is not ideal -- time delays and variations in propeliant tank

pressure can have a strong effect on performance.

Modeled thruster profiles are shown in Figure 2-4. Time delays T;, T, T3, and T,
are defined in the figure. Note that the thrusters do not instantaneously step from zero

output to maximum thrust, but rather ramp up to this thrust level in finite time.

The maximum thrust level is not the nominal 0.2, 5, or 100 lbsf. The thruster force
magnitude is a function of inlet pressure, which, in tumn, is a function of the mass of the
propellant in the tank. An experimentally derived plot of inlet pressure vs. expended
propellant mass (assuming that, at the beginning of the mission, 133 kg of fuel is present) is
shown in Figure 2-5 and the data is tabulated in Table 2-II. A fourth-order polynomial
curve fit to the data results in the equation:

P = 577.7445 - 2.7432m + (7.6054x102)m? (24)
- (6.9018x106)m3-(4.0716x10-%)m*
where P = inlet pressure (psia) and m = propellant mass (lbm). Thrust level is a function of
inlet pressure, and is given by the equation:
Thrust = QP2+ SP + Y; (2.5)

where i = 1 for the 0.2 lbf thrusters
i = 2 for tha 5 lbf thrusters
i = 3 for the 100 1bf thrusters

and Q;, S;, and P, are coefficients given in Table 2-IV.



-32-

"— —“‘1 -

A
"OFF COMMAND
"ON" cown \
T——- T1 —-l T4 !

TIME DELAY DEFINITIONS

- T1 |
CIOFFN |

nO\N,u |
T3

"OFfF" COMMAND SENT PRIOR TO FULL "ON"'

L ‘T3 |
E’orr“ " "ON" -]
t— T1 —a-'

"ON'" COMMAND SENT PRIOR TO FULL "OFF"

Figure 2-4: Modeled Thruster Thrust Prcfiles

Values of important thruster model parameters for both normal attitude control and

VOI are given in Table 2-V.

2.1.4 Propellant Consumption Medel [10]

The propellant consumed by one thruster over a sampling interval of duration t is
determined by the equation:
tF
Fuel Consumed=J‘ I—dt (2.6)
0%sp
where F = the thrust magnitude and Isp= the specific impulse of the thruster. Isp values are
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Figure 2-5: Tank Pressure vs. Propellant Mass

given in Table 2-VI. The total fuel consumed is simply the sum of the fuel consumed by

each individual thruster.

2.2 VOI Models

The models described above are adequate for simulations of normal attitude control.
However, additional models are needed for Venus orbital insertion (VOI). During VOI, the
solid rocket motor (SRM) accelerates the spacecraft. Within 80 seconds, this acceleration
can reach 7g; a typical acceleration profile is shown in Figure 2-6. Side forces, resulting
from a misalignment of the SRM, can cause large disturbance torques. These disturbances
must be modeled. In addition, the consumpticn of large quantities of SRM fuel causes
great changes in spacecraft mass. The varying mass properties must be modeled over the
80 seconds of VOI. Finally, sloshing of liquid propellant can affect spacecraft behavior,
and thus must also be modeled.
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Table 2-III: Tank Pressure and Propeliant Mass

FROF T ANE-. INLET
MASS FRESS PRESS
kg psia psia

69.99 239.8% 224,08
72.71 232.56 Z17.37
75.43 225.359 210,99
78.16 218.96 204,92
80. 88 212.64 199.13
8T.60 206.61 193,60
86.32 200,86 188, 5.
g89.04 195. 36 18L.27
91.76 190.11 1746.48
94. 406 185.08 17..89
97.21 180.27 169.42
99.92 175. 66 165.18
102. 6% 171,24 161.10
10S.37 167.00 137.19
108,09 162.93 153.43
110.81 159.02 149.82
113.54 155.27 146. 34
116.26 151.65 142,99
118.98 148.17 129.77
121.70 144.82 136.47
124,42 141.60 135.68
127.14 138.49 130.80
129.87 135.49 128.02
132.59 132.59 125,33
133.27 131.88 124,67

Table 2-IV: Coefficients for Equation (2.5)

COEFFICIENT 0.2 1b S.0 1b 100.0 1b
THRUSTER THRUSTER ENGINE
| o L

gL 0.000
aa () -1.25E-S
QR (3) 2.361912E~4
SL(1) 6.14667E-4
SL (2) 2.373E-2
SL(3) 3.56658lE-1
YI(1) 2.3333E-3
YI(2) 3.000E-1
YI(3) 12.22264

Because of the high disturbances, the sampling rate during VOI must be faster than
the normal 7.5 Hz. A 30 Hz sampling frequency is currently planned.
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Table 2-V: Thruster Model Parameters

0.2 1b 5.0 1b 100.0 1b
variable thruster thruster engine
T1 .015 .011 .022
T2 .038 .041 .029
T3 .023 .052 .017
T4 .050 .061 .061
propellant for normal attitude control = 60.0 ka

propellant at start of VOI = 85.0 kg

(a) Time Parameters and Propellant Masses

0.2 1b LTC (inches)

Thruster XC YC C
NO.
1 76.5 -1.5 -8.S
2 76.95 1.5 -8.5
Q 80.2 7.0 10.0C
3 1.5 76.5 ~-8.3
4 -1.95 76.5 -8.S5
10 7.0 80.2 16.0
S -76.5 1.5 -8.5
) -76.% -1.3 -8.9
11 -80.2 -7.0 10.0
7 -1.5 =-76.5 -8.35
8 1.5 -76.5 -8.9
12 -7.0 -80.2 10.0

(b) Thruster Moment Arms

Table 2-VI: Specific Impulses of Magellan Thrusters

thruster Isp (N-sec/kg)

0.2 1b 1961
5.0 1b 2314
100.0 1b 2270




-36-

0.60

0
N

ACCEL «102
0.40

]
8 / i
o .
|
!
8 , ' i
= + .
0.00 0.20 0.4C .82 g.el 1.0C

H ol:Z

Figure 2-6: Magellan Acceleration During VOI

2.2.1 Disturbance Models [29, 30]

During VOI, the SRM burns fuel and accelerates the spacecraft. SRM thrust during
VOI is shown in Table 2-VII and plotted in Figure 2-7 (the 3-¢ high thrust indicated in the
figure is used in this study as a worst case). Between the data points shown in the table, the

simulator interpolates in a linear fashion.

There are four important sources of disturbances during VOI. First, misalignment of
the SRM is a problem. Second, even if no misalignment exists, normal operation of the
SRM generates heavy side forces. Swirl torques also disturb the spacecraft. Finally, jet
damping makes a small contribution to the disturbances.

Misalignment torques occur when the SRM thrust vector does not pass through the
spacecraft center of mass. Figure 2-8 shows SRM misalignment. The SRM can be
translationally misaligned a distance L, (modeled as being entirely in the y-body axis) and
angularly misplaced an angle 8, (in the y-z plane). SRM thrust is given by the equations:
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Table 2-VII: SRM Thrust During VOI

TIME SRM THRUST
(seconds) § (pounds)
3 SIGMA NOMINAL Z SIGMA
HIGH Low
= - " ORI NP S
~-10.60 0.00 0.00

0.00 0.00 Q.00

0.10 15000.00 13800.00 12500.00
0.70 14500. 00

0.80 13400.00

0.99 12000.00
5.10 S200.00

$.50 14000.00

6.10 12700, 00
7.30 14700.00

7.90 13500.00

8.70 12000, 00
2.00 15100.00

13.00 13900.00

14,40 12600,.00
15.80 14500.00

17.10 13306.00

18. 90 12100, 90
20.20 155G0. 00
21.90 14209, G0

24,20 12900. 00
27.60 15500, 00

28.2 151G60.00

30.00 143200, 00

30.60 13900.C0

12900.00
12600.0C

IZ.20
zz.8¢
435.10
45.80
$1.80
&60.8680
66.00
&7.70
73.00
7%.50
78.30
g80.00
80. 460
81.30
§5.00
86.80
87.50
GF0O.00
?4.00
5. 00
SE.LO0

17300,.00
164GC0., 00 -
1480GC., OO
18300.00
16900. 00
17100.00
15300. G0
15700.00
16400,.00
1500.00
0.00
14200, 00
15100.00
1400.00
0.00
0.00 0.00
13706, 00

Q. Q0 0, G0

1300, G0
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Fsrmi=0 (2.7
Fsrmo= IFspmisin(dy,)

Fsrma= IFspmicos(8p,)
where [Fgpp! is the thrust taken from Table 2-VII and Fggy, 5 3 are the components in the

X, y, and z body axes, respectively. The misalignment torque lever arm is:
R 0 (2.8)

mslgnl =

Rm:

2= VL 2+2, 2tan*(3)

R z

mslgn3 =T

where z;;, = the distance from the SRM exit plane to the spacecraft center of mass along the

z-axis. Finally, misalignment torques are calculated by the equation:
Tmisalignment™ Rmsign® FSRM (2.9)
Parameter values are listed in Table 2-IX. Misalignment torques calculated from these

values are plotted as a function of time in Figure 2-9.

The magnitude of the SRM side force has been empirically determined to be as
shown in Table 2-VIII and Figure 2-10 (values indicated in the figure as 3-c high values are
used in this thesis) [21]. This force acts at a distance z,4, from the pre-VOI center of mass,
as shown in Figure 2-11. The side force initially pushes in the +y-body direction, but it

rotates about the z-axis at a rate of 1.8 deg/sec. The side force components can be shown to

be:
Feide1= -IFsigebin(org) (2.10)
Fyigeo= [Fggelcos(o)cos(dy,)
Fgige3= -IF g gelcos(arg)sin(d ;)

where IF 4! is as shown in Figure 2-10 and o is the angle between the y-axis and the side

force vector. Side force lever arm components are given by the equations:
Rin=0 (2.11)

Rsp= Rinslgn2



Figure 2-8: SRM Misalignment
Rip= -(Zemt Zsige)
where z . is the z-axis distance from the pre-VOI center of mass to the current center of

mass. Side force disturbances are plotted against time in Figure 2-12.

Swirl torques are caused by exit gases swirling around in the SRM nozzle. This is

modeled as a constant torque, T, about the z-axis.

Jet damping torques are caused by gases flowing out of the rocket nozzle. Thomson
and Reiter [19] derive the jet darping moment to be:
Tjg= T X m(®x 1) (2.12)

where r = the jet damping moment arm, m = the rate of mass expulsion from the SRM (=

Fsrm/Isp-srm): and @ = the spacecraft angular rate vector. Jet damping acts 2t the exit of



-41-

8
-
O /
o~N
o ___\ir/
M’
o N
N‘.
O
>
=2
o
(79}
—
[=]
(-3
Y
8 i
“6.00 0.20 9.40 Z.€0 £.80 1.90

T «w0¢
Figure 2-9: Misalignment Torques vs. Time in VOI
Table 2-VIII: SRM Side Force Magnitude During VOI

TIME SRM SIDE FORCE
(seconds) (pounds)
3 SIGMA NOMINAL
m ]
-10.00 ... 0.900 0.00
0.00 0.00 0.00
0.10 ' 58. 00 14.00
7.80 53.00 16.00
15.70 40.00 15.00
2Z.90 S0.00 17.50
31.20 51.00 20.00
S51.00 56.00 22.00
S54.80 56.00 25.00
62.60 64.50 26.00
70.50 6Z.00 26.50
78.30 77.00 30.50
80.00 7.70 3.10
80. &0 Q.00 0.00
100,00 Q.00 0.00

the SRM nozzle, so r = Ryygop,. Jet damping torques are plotted against time in Figure 2-13.

Notice that they are small compared to other disturbance terms.
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Figure 2-10: Side Force Magnitude vs. Tine in VOI

Disturbance model parameters are given in Table 2-IX. The total disturbance torques

about each axis are plotted in Figure 2-14.

2.2.2 Variable Mass Properties Mcdel [29, 30]

As the SRM fires, it bumns a significant amount of fuel. SRM fuel consumnption is

given by the equation:

Fuel Consumed =I;Z:R:;dt (2.13)
where Isp-SRM is the SRM specific impulse. During VOI, almost 2000 kg of solid
propellant is burned. Thus, spacecraft inertias about all three axes change appreciably and
the spacecraft center of mass moves in the positive z-direction. Thruster lever arms change

as a result of this. The Magellan masses, inertias, center of gravity locations, and thrister
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locations used to simulate VOI are listed in Tables 2-X and 2-XI. Between the data points

listed, the simulator interpolates in a linear fashion.

2.2.3 Propellant Slosh [22, 23]

A one-axis model of a spacecraft with sloshing propellant is shown in Figure 2-15.
The sloshing fuel is modeled as a swinging pendulum. Important model parameters are

defined in the figure.

If E is defined to be the effective torque on the spacecraft, the effect of propellant

slosh can be summarized by the equations:
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Table 2-IX: Disturbance Model Parameters

parameter |lsim
Lm 0.159 in.
S 0.01 deg.
face 77.30 in.
side 60.30 in.
Isp-SRM 292.84 1b-sec/1bm
Tewir] 7.36 Nm
(@)
N _| O AN
N, -f} =211, N, T
=M ey 4o N 2.14
—F[(fl -fz) 1+ g(f]—fz) 2]+t . )
where
2
A=§+ma
ma
2, 42
‘B=¥Hg+1huz-+d nﬂ}
ma
G
f]z‘:X
. GU+md?)
=% —

€ is the slosh damping coefficient, and N; and N, are dummy variables (see Appendix A.1).

These state space equations are implemented in the simulator.
If it is assumed that torques about the x-body axis cause no slosh in the y-axis and
vice-versa, the model can be implemented independently for these two axes. Any effects

slosh might have on torques about the z-axis are ignored.
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Table 2-X: Variable Magellan Mass Properties During VOI

-49-

hd

MISSION PHASE ZCHM MASS INERTIA (slug—ft#«2)
inches slugs IXXT IYYT 1227
END OF LIFE S1.69 68.50 743.55 | 1420.20 | 1133.67
BEGIN MAPPING 50.85 70.47 744.51 | 1432.16 | 1133.67
PRIOR TO OTM S50. 61 71.11 758.66 | 1435.31 | 11335.67
FOST VOI 40.28 81.74 | 1208.77 |, 1904.92 | 1139.97
3S5.19 91.60 | 1627.82 |‘2323.97 | 1180.60
32.14 98.40 | 1732.32 | 2428.47 | 1195.64
29.3S5 105.30 | 1873.42 | 2569.57 | 1217.74
26.87 112,10 ] 1983.12 | 2679.27 | 1225.14
22.52 125.80 | 2135.12 | 2831.27 | 1262.04
18.81 1839.50 | 2248.12 | 2944.27 | 1284.14
15.54 153.20 | 2383.32 | 3079.47 | 1298.94
12.63 166.60 | 2466.92 | 3163.07 | 1328.44
.77 180.70 | 2565.12 | 3261.27 | 1343.14
7-17 194.40 | 2659.62 | 33SS5.77 } 1361.64
4.78 208.10 | 2717.42 | 3413.57 | 1380.04
3.69 214.90 | 2757.82 | 3447.97 | 138B7.44
PRE VOI. 2.94 222.15 | 2751.92 | 3448.08 | 1389.34
PRIOR TO TCM 3.50 226.69 1 2775.97 | 3472.12 | 1789. 34
ARRAYS DEFLOYED 0. 00 24.89 | 3233.70 ] I925.84 | 1625.90

Most of the variables used in this model have already been defined. They are all
quite straightforward except for the fuel inertia, I, and the pendulum length, a. The fuel
inertia is an effective inertia derived by a complicated finite-element model of fuel slosh
implemented in a Martin Marietta computer program named HYDRO. Several fuel inertia

data points were generated, and fuel inertia vs. propellant mass was fit with the empirical

equation:
m
I= 3501 —4(m

(m in kilograms, I; in kgm?) This equation is plotted in Figure 2-163. The parameter a, or

-0.5)%)-2.45 sm(;‘—;”g) (2.15)

the distance from the center of the propellant tank to the center of gravity of the fuel, is
more complicated. However, it can be shown (Appendix A.2) that a is given by the

equation:

3TheHYDROmodelcouldnotbeusedinmeMagellnnsimulaxorbecmseitisfartoocomplicatedandtime
consuming. The slosh natuml frequencies that it predicts, however, agree with those predicted by the
peadulum model to within about 2.5%!
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Table 2-XI: VOI Thruster Locations

REM 3.0 1b | LTO (inches)
NO. Thruster XC YC ZC
NO.
1 13 78.9 9.5 10.0
2 14 .5 78.5 10.0
3 15 -78.5 -9.5 10.0
4 16 -9.5 -78.5 10.0
(a) 5.0 ib Thrusters
REM 100.0 1b LTO (inches)
NO. Engine XC YC ZC
NO.
1 17 81.5 -2.5 -10.6
1 18 B81.S 2.5 -10.6
2 19 2.9 81.5 -10.6
2 20 -2.5 B81.5S -10.¢&
> 21 -81.5 2.5 -10.6
3 22 -81.95 -2.9 -10.6
4 23 -2.5 -81.S -10.6
4 25 2.5 -21.S -10.6

(b) 100.0 1b Thrusters

a=2Rcos (-g;‘+240°) (2.16)
where R = the radius of the tank, F = the volume fraction of the tank filled with propellant,
and:

(2-2F)?
P

Equations (2.14) predict a double pole at a frequency f, and a double zero at

cos ()=~ (2.17)

frequency £; (see Appendix A.1 for details). The frequency f, is very close to the dominant
frequency of the Magellan attitude control system (about 2 Hz), so some resonance
problems might be expected. However, the zero frequency f, is very close to f; (usually
within 0.05 rad/sec). Thus, the zeros rnask most of the negative effects that the poles might

otherwise cause. In practice, slosh is usually observed to have only a very small effect.
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Figure 2-15: One-Axis Propellant Slosh Model
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Figure 2-16: Fuel Inertia vs. Fraction of Tank Filled
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Chapter 3

The Choice of Attitude Control System Designs

Before comparing the performances of various designs for thruster attitude control
systems, one must obviously choose which system designs to compare. A literature search
uncovered three main design philosophies. The first, which will be referred to as the "phase
plane approach,” uses a very simple cortroller and puts all of its complexity in the phase
plane (see Figure 1-2). Indeed, it is possible to use no controller at all and simply feed
attitude and rate errors directly into the phase plane block. Second, the "controller
approach” puts all the complexity in the controller and uses a very simple phase plane,
usually just a deadband. Finally, the "variable pulse width approach" avoids the use of a
phase plane altogether. In this approach, the controller output determines the length of the
thruster on-pulse. Any of these approaches is simpler than the Magellan system, in which
both the controller and the phase plane are complex. Since one goal of this study is to

simplify attitude control schemes, only the simpler approaches will be looked at here.

There are a plethora of different phase plane designs and controller designs in the
literature, and many variable pulse width designs are possible. In this chapter, those which

seem most promising for the comparative study will be chosen.

3.1 Phase Plane Designs

If attention is restricted to those phase plane designs that might perform well on a
Magellan-type spacecraft, many of those designs currently found in the literature can be
eliminated. Some, for example, require information from sensors that Magellan does not
possess [18]. The schemes that look promising all depend upon the calculation of

minimum time-fuel optirnal switching curves in the phase plane.
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Ogata [17] computes the minimum time switching curves. He assumes a control
system as in Figure 3-1, where a switching element capable of delivering a torque of 1
controls a simple inertia. If an attitude hold is commanded, the input to this system is

q’desi:ed: 0. Thus,

=43
0=21 3.1)
or
. do_ 1
a0 t 7 32
which can be integrated to obtain:
0=+ 2}+c (3.3)

This equation describes two families of parabolas in the phase plane. The only two of these
parabolas that intersect the origin, though, occur when C = 0 {see Figure 3-2). A trajectory
starting on one of these parabolas travels along the parabola. Thus, the only way to reach
the origin is to follow either path AO or path BO. The delivered torque *1 must therefore
be chosen such that it tends to force the system toward AO or BO. The resulting phase
plane, with a sample trajectory, is shown in Figure 3-3. The switching lines can be shown

to generate time optimal trajectories for the system depicted in Figure 3-1.

¢

des “ Time-optimal  |v=Y[1
switching element T >

Figure 3-1: Generic Phase Plane Design

Notice, however, that in the regions between the parabola and the ¢-axis, the
spacecraft’s velocity already tends to push it toward the parabola, without the need for any
control torques (see Figure 3-4). If the phase plane is modified such that the thrusters do
not fire in these regions, fuel consumption will be reduced. This may, however, occur at

the expense of an increased response time.



Figure 3-2: Equation (3.3) Curves Intersecting the Origin

Figure 3-3: Minimum Time Phase Plane Switching Curves

On the Magellan (MGN), the thrusters can be set to fire for on-times less than a full
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\

Figure 3-4: In the Shaded Regions, No Control is Needed

sampling interval. Thus, close to the origin, the MGN phase plane adds “short pulse”
regions [8], as shown in Figure 3-5. In the normal attitude control case, region 3 indicates a
thruster pulse duration cqual to an entire sampling interval (133 msec), region 2 indicates a
33 msec pulse, and region 1 indicates an 11 msec pulse. During VOI, region 3 indicates
that a pair of thrusters should fire for a full sampling interval (33 msec), region 2 indicates
one thruster firing for a full interval, and region 1 indicates a 22 msec pulse for a single
thruster. The sign of each region indicates the sign of the torque that is to be delivered. In

region 0, the thrusters do not fire at all.

The Magellan phase plane has several other useful features. If the current state is
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o e

Figure 3-5: The Magellan Phase Plane
very far from the origin, it is desirable for it to zero out quickly regardless of the fuel cost;
thus, ledge A4 limits the extent of region 0. And, although a trajectory between the
parabola and the ¢-axis tends toward the parabola without any thruster firings, it may do so
more slowly than would be ideal. If this recovery rate is too slow, rate ledge R1 causes the

thrusters to fire and accelerate the spacecraft in the proper direction.

This phase plane seems well worth consideration. In many cases, it has been shown
to be adequate in controlling the spacecraft all by itself, without the help of any controller.

Its complexity allows a great deal of fine-tuning of system response.

Many sources [11, 25, 20, 7] consider the more complicated problem of minimizing a

weighted time-fuel index. If the index to be minimized is:



J=J'f'"°’(7k+lul)dt (3.4)

0
where A is a weighting factor and u = 1.0 x (sign of thruster torque), and if the terminal
constraint ¢(tg,.)) = O is adopted, where ¢ is the spacecraft artitude, then the optimal

switching curves can be shown to be as in Figure 3-6 (see Appendix B).

o A

Figure 3-6: Minimum Time-Fuel Phase Plane Switching Lines

Although this phase plane is optimal in theory, Floyd [6] notes some problems with a
similar phase plane derived by Wallace Vander Velde [20]. First, the full-on regions close
to the origin cause intensive limit-cycling activity that wastes a lot of fuel. Second, and
more important, the phase plane is derived in continuous time; however, any computer-

controlled system is necessarily in discrete time. The control algorithm tums out to be
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incredibly sensitive to changes in the sampling time. Floyd [7] presents a discrete time
algorithm that results in spacecraft trajectories similar to those that should ideally arise
from the Figure 3-6 phase plane. Without going into any detail, Floyd's phase plane is
depicted in Figure 3-7.

4.

db

+T

Figure 3-7: Floyd’s [7] Phase Plane

Many other sources recommend similar “slanted deadbands" [9, 13, 14]. By avoiding
full-on regions near the origin, limit cycle performance is improved. Also, the system is
less sensitive to sampling time than the minimum time-fuel algorithm. However, a "slanted
deadband” is equivalent to simple proportional-derivative feedback with a deadband (see
Figure 3-8). Both the "slanted deadband" and PD control result in negative thruster firings
when ¢ + A¢ > 945 and positive firings when ¢ + Ad < -¢4p- Consideration of the "slanted

deadband” will thus be postponed until controller approaches are discussed, because in a
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controller design, system perforrnance can be enhanced with integral, pseudo-rate, and
other terms. These terms can not be added if the slanted deadband is considered to be a

phase plane approach.

White, Colbumn, and Boland [25, 26] resolve the limit cycle problem in a different
way. The constraint that §(tg,.;) = 0 is not very realistic, they note. Thrusters are usually
intended to get ¢ to within a certain deadzone, where a more precise control system can
take over. Translating the minimum time-fuel curves to allow for this deadband, they
obtain the phase plane depicted in Figure 3-9. They go on to show that this phase plane can
be very closely approximated by the Rate-Ledge Controller (RLC) shown in Figure 3-10
(see Appendix B). These authors derive an algorithm which, given a deadband ¢ value and
a value for the weighting factor A, generates an approximately equivalent RLC (Appendix

B, once again).

The RLC has been shown to perform well in hundreds of computer simulations of
Skylab. its proven performance and its approximation of optimal control laws make it a

good candidate for consideration.

Unlike the MGN phase plane, the RLC has no short pulse regions. If such regions
were added, performance might be improved. Thus, the RLC with short-pulse regions, as

depicted in Figure 3-11, should also be considered.

In sum, three phase plane approaches to the design of thruster attitude control
systems seem worthy of attention. First, the MGN phase plane, a modification of the
minimum-time solution to the control problem, will be considered. Second, the RLC, an
approximation to a minimum time-fuel solution, also seems promising. In fact, it seems
more promising than the minimum time-fuel solution itself, since the latter is formulated in
continuous time and does not translate well into discrete time. Third, the RLC with

additional short pulse regions appears to be a good design to analyze.
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Figure 3-8: Equality of PD Control and "Slanted Deadband"



Figure 3-9: Time-Fuel Curves Translated for Deadband
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Figure 3-10: The Rate-Ledge Controller
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Figure 3-11: The RLC with Short Pulse Regicus

3.2 Controlier Designs

A "controller approach” design uses a complicated controller block with as sirnple a
phase plane as possible. The simplest possible phase plane is an attitude deadband,
depicted in Figure 3-12. Note that with this simple deadband, only one phase plane input is
needed. Firing regions are independent of position along the phase plane ordinate. A

controller design, then, needs only output one signal.

In the literature, the two major approaches to controller design are pulse-width-pulse-
frequency (PWPF)* (see Figure 3-13a) and pseudo-rate (PSR) (see Figure 3-13c) control
[16, 1, 28, 27]. Bittner, Fischer, and Surauer [3], however, noticzd that with some block
diagram algebra, these two controllers can be shown to be equivalent (Figure 3-13). Thus,

only one of the two needs to be considered. Pseudo-rate control will be chosen.

4Although its name makes it sound like a variable pulse width approach, most discrete time pulse-width-
pulse-frequency schemes cause pulse widths that are inieger multples of the sampling interval. Thus, PWPF
is actually a controller approach.
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db db

Figure 3-12: The Simplest Phase Plane: A Deadband

Pseudo-rate control is intended to reduce control loop delays. A controller that uses
regular feedback must wait for various system time delays before it can respond to a
thruster command. By feeding back directly from the phase plane output and not waiting
for these time delays, the pseudo-rate term can act immediately to reduce the error signal,

thus anticipating the effects of a thruster firing. The PSR transfer function,

kb
is approximately equal to:
H(s)=D +Es (3.6)

Thus, PSR control is roughly equivalent to proportional-derivative control. The parameter

b in transfer function (3.5) is varied as follows:

b
b

bl when the thrusters are commanded on
b2 when the thrusters are commanded off.

I
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b; can be chosen to allow rapid response to a thruster pulse. After the pulse, the pseudo-
rate term should slowly decay as the control system has a chance to catch up to the effects
of the pulse. b, can be set to allow this slow discharge. 1/b; is usually referred to as the

“charging time constant," while 1/b, is the "discharging time constant."

The attitude control system on the Jet Propulsion Laboratory’s Galileo spacecraft,
which will be launched to Jupiter in the early 1990’s, uses a pseudo-rate term. In addition
to this term and a low-pass filter, the Galileo utilizes ordinary PID control [2]. The
complete Galileo controller is shown in Figure 3-145, This design, which combines almost
all of the control terms found in the literature, is definitely worthy of investigation. In fact,

since it does include all these terms, it is really the only controller needing consideration.

Modem approaches to controller design, such as eigenstructure placement or sliding
surface control, all seem very difficult, if not impossible, to apply to this problem. A
closed-loop scheme based on optimal control theory would be similarly difficult to design.
An open-loop optimal scheme will become useful when variable pulse width approaches

are considered.

3.3 Variable Pulse Width Designs

Finally, a variable pulse width design eliminates the phase plane altogether. A
variable pulse width design varies thruster pulse lengths continuously (or, more practically,
in small but discrete steps). Unlike a phase plane, which determines which thrusters should
fire, a variable pulse width design must determine which thrusters should fire and for how
long.

Not much work seems to have been done in this area. In fact, only one control

SActually, the Galileo controller also includes a "path guidance" term which will not be considered here.
For a description of this term and an explanation of why it is not to be considered, see section 3.4.
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algorithm based on this approach was found. Clark, Dumas, and Fosth [4] suggest a very
simple and intuitive scheme. This scheme utilizes an ordinary controller, such as, perhaps,
the Galilec controller. Thruster pulse width is determined proportional to the controller
output signal, as depicted in Figure 3-15. When the signal is below the minimum reliable
pulse width deliverable by the thrusters, the thrusters are simply commanded not to fire.

The maximum possible pulse width is one sampling interval.

\

pulse-width

b - - =

—>
controller output

Figure 3-15: Clark Pulse-Width vs Controller Output

Far from the phase plane® origin, controller output is large enough that no difference
is distinguishable between the response of an ordinary controller approach and that of the
Clark scheme. In both cases, the thrusters usually fire for full sampling intervals. Near the
origin, however, this variable pulse width scheme has the potential to greatly enhance
performance. The Clark, Dumas, and Fosth design is intended to improve steady state
performance, but probably will have little effect on transient response. Still, it is well worth

consideration.

A design that affects performance of transient, as well as steady state, response can

be derived from optimal control theory. Using some convenient time-fuel performance

6While the phase plane is not needed in the construction of a variable pulse width design, it will be useful to
refer to it in this discussion anyway.
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index and assuming the simple case of continuously varying control torques, an open-loop
optimal control law can be devised. This cortrol law is a function of system parameters
and the 1nitial conditions ¢ and &)0. At the beginning of each sampling interval, the current
state can be taken as the initial condition, thus introducing a sort of feedback into the open-
loop control. The optimal torque profile is found and integrated over the next sampling
interval. Then the thrusters can be commanded to fire for a period of time that realizes the

same _‘ tdt as the optimal control.

The optimal control problem can be formulated as:

Given- ¢=:;- (T assumed continuous) (3.7)

with terminal constraints- i‘p(tﬁw) = ¢(zﬁm =0

minimize the index- J= [ 7 (k 2+1%)ds
This particular performance indexowas chosen because it facilitates solution of the problem.
Also, if T can only take on the constant values -T, 0, or +t and k is carefully scaled, this
index is equivalent to the index:

7= [ e Oty (3.8)
which was us‘;d in the derivation of many phase plane designs. The solution to this

problem can be shown to be (Appendix C):

T=—%(Vl—vz(t—l:ﬁml)) 3.9

where

v,=—21kw

4 00— 2V g

Vv
2 . 2

 inal
=2 bl —Vo 21+ 61 14,)
1

Integrating from 0 to the end of one sampling interval:

tﬁnal
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' 1
sample - - - 2_ |
Jo tdr= _ZI(V’t ple Vz(?_'mmpu L D) (3.10)

Now, if an on-off torquing capability is imposed, in the form:
[ et vdr=T [ P gy (3.11)
0 0
where I is the constant torque capacity of the thrusters, it can be shown that the thruster

pulse width should be:

1
rpul.re == ZIT (V ltsample - V2 (5 tsamplrz - tsampletﬁnal )) (3 1 2)

where the sign of toulse indicates the sign of the commanded thruster torque.
Equation (3.12) is the variable pulse width control law. Only one detail of it needs

clarification. The parameter tg .. is calculated with a square root term, namely:

’ipoz]+6kw1 ¥

and it must be assured that the value under the square root is non-negative. This is actually
quite easy to do. As Figure 3-16 shows, thruster control phase planes are symmetric when
rotated 180 degrees about the origin. A point rotated in this way results in similar firings,
with opposite sign, to a point at its original location. Thus, if &)0212 + 6klo, < 0, it is valid
to rotate 180 degrees by setting ¢’ =- ¢ and ¢’ = ¢. Now, &)'0212 + 6kl¢’y > 0. If the sign
of the calculated Loulse is flipped, the resulting thruster commands will be correct. In
practice, this should be done whenever ¢y < 0, since this is an easier and more restrictive

test than ?¢0212 + 6k1¢0 <0.

In sum, there are two variable pulse width designs that will be considered. The
Clark, Dumas, and Fosth scheme is intended to improve the steady state performance of a
controller. The "suboptimal pseudo-open-loop” scheme affects both steady state and

transients.
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3.4 Modifications to the Three Basic Approaches

Many thruster attitude control systems employ some interesting modifications to
enhance performance. These modifications do not fit into the phase plane, controller, or
variable pulse width categories, and thus will not be considered in this thesis. They do,
however, deserve to be mentioned. These modifications are not capable of controlling a
spacecraft by themselves, but they can be used to improve the performance of many of the

control system designs discussed in this chapter.

One modification to an attitude control system that helps performance is known as
attitude limiting. If the attitude error becomes too large, an integral term in a controller can
grow large as well. The control system reacts to this by very rapidly reducing the atutude
error, but it can take a long time for the integral term to reduce itself accordingly. This
artificially high term can damage system performance and even cause instability, unless an
attitude limit is set. If the attitude error is greater than this limit, the control system is
misled into believing that the error is equal to the Limit, thus preventing excessive build-up
of the integral term. The dangers of instability usually associated with integral control are
greatly reduced. Attitude limiting has been found to improve the perforrnance of the

Magellan control system.

Two related modifications that are intended to help compensate for system time lags
are known as attitude quantization and inhibition. When phase plane or variable pulse
width designs command short pulses, the gyros may require some time to catch up to the
current attitude. If the attitude error is sampled before the gyros have caught up, the
thrusters may fire again, despite the fact that the attiude may actually be well within the
no-firing deadband. The inhibiter scheme [4] simply inhibits firing of the thrusters for a
certain number of sampling intervals after a short pulse. Attitude quantization requires a

comparison of the currently detected attitude error with the error detected at the time the
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short puise was commanded. If the difference between these two values is less than a
specified constant, the gyros are assumed not to have caught up yet, and thruster firing is

inhibited. Attitude quantization has been found useful on the Magellan spacecraft.

Finally, the Galileo controller utilizes a path guidance term [2]. Any attitude control
system discussed so far tries to reduce attitude errors to zero. However, during the SRM
burn, SRM misalignments and side forces actually make the zero error condition less than
ideal. As Figure 3-17 indicates, the spacecraft should ideally be rotated a small angle so
that the net SRM thrust vector cxactly coincides with the desired flight path. Using
estimates of spacecraft disturbances, the path guidance term approximates this angle and
causes the control system to control to this angle instead of to a zero attitude. The reason
path guidance will not be considered in this thesis is that, for simplicity, all design criteria
will be with respect to a zero attitude. Path guidance will only hurt the attainment of a zero
attitude. Since the path guidance angle is typically very small, neglecting it should cause

no significant problems.
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Figure 3-17: Side Forces Make 0 Attitude Undesirable
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Chapter 4

Criteria for Design Evaluation

Now that attitude control systems have been chosen, a set of criteria by which these

designs can be evaluated must be devised.

4.1 Normal Attitude Control

In the normal attitude control case, there are no disturbance torques. Starting with ¢,
= 2 degrees and ¢ = 1 deg/sec on each control axis, it will be observed how well each

control system reduces these errors to zero. The following criteria are desirable:

Transient Response: short settling time
low fuel consumption
small rate excursions
small attitude excursions

Steady State: low fuel consumption
small limit cycle rate amplitude
small limit cycle attitude amplitude

Overall: ease of assigning parameter values

In order to compare the performances of different control systems, it would be nice to be
able to assign each system a number from 1 to 10 indicating how well it meets these
criteria. The following formulae were developed to allow the assignment of a "score” to

cach system in this manner.

4.1.1 Transient Response Scoring

4.1.1.1 Settling Time

The settling time score is calculated by the equation:

score=m"u : rfmexlo 4.1
observed time
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Since settling times less than 60 seconds were never observed, this value was used as the
"minimum time."
4.1.1.2 Fuel Consumption

From equation (2.6), it is known that:

Fuel Consumed= t-F—dt 4.2)
olw
or
i
Fuel Consumed= 710l 4 4.3)
O'ISP

assuming T = Ic'ﬁ and r = the thruster moment arm. If ip(tﬁnal) = 0, the total fuel consumption
is:

g,
Fuel Consumed =7 (4.4)

p
This was calculated for all three control axes and the results were added. This sum
represents the minimum possible fuel consumption, and equals 0.028 kg. The fuel

consumption score, then, is simply:

minimum fuel

obszrved fuel x10 @.5)
The "observed fuel” is the fuel consumed from t = 0 to t = (the longest settling time among

score=

the three axes). Some axes may settle before this time, causing a quantity of steady state
fuel to be included in this value. However, steady state fuel consumption is usually much

lower than consumption in transient response. Thus, this is still a very good approximation.

4.1.1.3 Rate Excursions
By requiring low rate excursions, it is meant that it is undesirable for the rate error
about any axis to get much worse than its initial condition. The rate excursion score is

calculated by:

S 2_h 2
score=¢m Omaeo x 10 (4.6)

bmm—az - .¢02
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where Opq; o is the maximum allowable rate error and ¢, o is the maximum observed
rate error.  On Magellan, rate errors greater than 8 deg/sec cause the gyros to saturate.

Thus, this value will be used for § 5, ,-
4.1.1.4 Attitude Excursions
Similar to the rate excursion score, the attitude excursion score is given by the

formula:

Omora ~ Pmazo
score= 75X 10 4.7
. max-a -¢0
where ¢pnay_q is the maximum allowable attitude error and ¢, is the maximum observed

attitude error. The value ¢, 4 = 20 degrees was used for this thesis.

4.1.2 Steady State Scoring

In steady state, comparisons of control system performance are slightly more
difficult. Both of the phase plane trajectories shown in Figure 4-1 are possible. Yet the
trajectory in Figure 4-1b will be observed to have a higher maximum limit cycle rate, since
the limit cycle is not centered on the origin. Also, the 4-1b trajectory has a lower frequency
than the 4-1a trajectory, and thus will be observed to use less fuel in a given period of time.
To allow fair comparisons, these trajectories must somehow be normalized.

For simplicity, assume the simple deadband phase plane shown in Figure 4-1. A
trajectory of the 4-1b type will be normalized into the evenly-spaced 4-1a trajectory. The
convention that both ¢, and &, are positive is adopted (where these variables are defined in
the figure), the frequency is approximately given by the expression:

1_Ba s (4.8)

where f is the limit cycle frequency in radians per second. Rearranging this equation and

converting f into cycles per second:
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Figure 4-1: Possible Limit Cycle Trajectories
X
fH=—2— (4.9)
4nd,, (0, +9,)
For the simple limit cycle in Figure 4-1, there are two thruster firings per cycle. Thus:
- X
ﬁrmgs= 172 (4.10)

2n¢db (¢ 1 + ¢2)

The number of thruster firings should be proportional to fuel consumption. If Fy= the
steady state fuel consumed per second,

i—-n}-‘“ (4.11)
2n,, (6, +9,)

where c is a2 constant. This can be rewritten as:
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219, (9, +6,)F,,

—c (4.12)

In the normalized case, rates are evenly distributed on either side of the ¢-axis. Thus,
the normalized rate, ibN, is equal to the average of &’1 and ¢2 By an analysis similar to the
above, it can be shown that:

= 0+,
8no Fy
where Fy = the normalized fuel consumption. Sectting equations (4.12) and (4.13) equal

(4.13)

and solving for Fy;:

@, +6,)?
F,=———F, (4.14)
N 40,0,
The normalized rate, &)N, is given by:
. O+0
b= 12 2 (4.15)

With real trajectories in phase planes more complicated than a simple deadband,
equations (4.14) and (4.15) do not really apply. Disturbances, occasional double firings on
one side of the deadband, and other factors affect the trajectories. Thus, these equations can
only give approximations of normaiized fuel and rates. These approximations will be used,

bat it must be kept in mind that they are very inexact.

Equation (4.15) can be implemented for each axis, but equation (4.14) can not. The
simulator is designed to output only the total fuel consumed, and not the fuel consumed by
the thruster firings about each individual axis. It was decided not to modify the simulator to
output the individual fuel consumptions. Since equation (4.14) is only an approximation

anyway, it is much easier (and probably about as accurate) to calculate the scaling factor:



@,+9,7
49,9
for each axis, average the three values, and use this as the multiplier of Fg; in equation
(4.14). This multiplier was usually found to lie between 1.0 and 1.1. Thus, normalized fuel

consumption was seldom more than 10% greater than observed fuel consumption.

4.1.2.1 Fuel Consumption

The steady state fuel consumption score is given by the formula:
minimal fuel X

normalized fuel

The "minimal fuel consumption" was arbitrarily chosen to be the rate of fuel use that would

score= 10 (4.16)

resuit in 1 kg of fuel being used for every 4 days spent in steady state, or aboui 2.9x106
kg/sec.

4.1.2.2 Limit Cycle Rate Amplitude

The limit cycle rate score is given by the equation:
.2
score=(1-——=)x10 (4.17)
L

where ¢y is the normalized limit cycle rate and ¢,__, is the allowable limit cycle rate. The

pointing requirements for the Magellan suggest that iplc_a should be set to 0.1 deg/sec.

4.1.2.3 Limit Cycle Attitude Amplitude

The score is:
= o 10 4.18
score—(l-¢ )X (4.18)

(2
where ¢y and &, _, are defined similarly to the limit cycle rates. ¢, shall be set to 0.1

degrees.



-81-

4.1.3 Ease of Assigning Parameter Values

This score is completely subjective, but will include such factors as the number of
variable parameters and how well initial analyses and intuitions about each system help to

choose parameter values that work.

While the scoring system outlined above will be useful in comparing attitude control
designs, designing to optimize each of these criteria would be a formidable task. Instead,
some more modest<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>