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Astrophysical flows are often subject to both rotation and large-scale background mag-
netic fields. Individually, each is known to two-dimensionalize the flow in the perpen-
dicular plane. In realistic settings, both of these effects are simultaneously present
and, importantly, need not be aligned. In this work, we numerically investigate three-
dimensional forced magnetohydrodynamic (MHD) turbulence subject to the competing
effects of global rotation and a perpendicular background magnetic field. We focus on
the case of a strong background field and find that increasing the rotation rate from zero
produces significant changes in the structure of the turbulent flow. Starting with a two-
dimensional inverse energy cascade at zero rotation, the flow first transitions to a forward
cascade of kinetic energy, then to a shear-layer dominated regime, and finally to a second
shear-layer regime where the kinetic energy flux is strongly suppressed and the energy
transfer is mediated by the induced magnetic field. We show that the first two transitions
occur at distinct values of the Rossby number, and the third occurs at a distinct value of
the Lehnert number. The three-dimensional results are confirmed using an asymptotic
two-dimensional, three-component model, which allows us to extend our results to the
planetary-relevant case of an arbitrary angle between the rotation vector and guide field.
More generally, our results demonstrate that, when considering the simultaneous limits
of strong rotation and a strong guide field, the order in which those limits are taken
matters in the misaligned case.

1. Introduction

Turbulence in geophysical and astrophysical settings contains additional physical ingre-
dients that break the isotropy of the flow, a traditional assumption in classical turbulence
theory, thereby adding complexity to the system at hand (Frisch 1995; Davidson 2013;
Alexakis & Biferale 2018). This includes, but is not limited to, rotating, electrically con-
ducting, stratified, and large aspect ratio systems. Asymptotic regimes are sought out to
simplify the system, thus allowing previous ideas and techniques of idealized turbulence to
be used. This is done by studying the limiting equations as a control parameter (rotation,
aspect ratio, etc.) is taken to zero or infinity. For example, one particular success is the
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quasigeostrophic approximation, which predicts horizontal motion in the presence of
stratification and rapid rotation (Charney 1971; Vallis 2017). More generally, in rapidly
rotating systems without stratification and with periodic boundary conditions, the flow
becomes two-dimensional (2D), invariant along the rotation axis (Smith & Waleffe 1999;
Mininni & Pouquet 2010; Gallet 2015; Buzzicotti et al. 2018). A similar simplification
occurs in plasmas in the presence of a strong uniform backgroundmagnetic ‘guiding’ field,
reducing the dynamics to 2D magnetohydrodynamics (MHD) (Montgomery & Turner
1981; Nazarenko 2007; Bigot & Galtier 2011; Alexakis 2011; Sujovolsky & Mininni 2016),
and further to 2D hydrodynamics (HD) if the magnetic field is not forced (Alexakis 2011;
Sujovolsky & Mininni 2016). Both of these limits produce 2D HD turbulence, which is
characterized by the presence of an inverse cascade of energy, in which energy goes
from the forcing scale towards larger scales (Kraichnan 1967; Boffetta & Ecke 2012;
Alexakis & Biferale 2018). This is in contrast to the forward energy cascades found in
3D HD and MHD turbulence in the absence of a guiding field, where energy cascades
to smaller scales. The asymptotic regimes allow one to use energy cascade arguments to
help understand turbulent geophysical and astrophysical phenomena. For example, the
inverse cascade in the quasigeostrophic system is thought to contribute to the formation
of jets in rapidly rotating planetary atmospheres (Rhines 1975; Held & Larichev 1996;
Cho & Polvani 1996a,b; Arbic & Flierl 2004; Tobias et al. 2007; Gallet & Ferrari 2021).
An analogous cascade mechanism is thought to be responsible for the formation of
poloidal jets in tokamak plasmas in the presence of a strong background toroidal guiding
magnetic field (Diamond et al. 2005).

In many geophysical and astrophysical contexts, however, it is expected that a fluid
is subject to some combination of rotation, magnetic field, and stratification (Cho 2008;
Davidson 2013; Vallis 2017). Asymptotic analysis of these combined cases is more difficult,
where often the order in which the limits are taken matters, and knowing which regime
is observed in nature (and how the energy cascades behave) is a challenge (Aurnou et al.

2015). Furthermore, real physical systems are not subject to infinite rotation rates or
infinite background magnetic field strengths and reality often lies at intermediate values.
There is currently no existing theory for the cascade direction of such intermediate
parameters, and it is only more recently through state-of-the-art simulations (Smith et al.

1996; Smith & Waleffe 1999; Celani et al. 2010; Pouquet & Marino 2013; Deusebio et al.

2014; Marino et al. 2015) and lab experiments (Xia et al. 2011; Campagne et al. 2014;
Baker et al. 2018) that we are able to carefully investigate their turbulent dynamics.
These studies looking into the cascade of conserved quantities in geophysical and as-
trophysical flows have revealed the presence of bidirectional cascades† at intermediate
parameter values, in which a fraction of the conserved quantity input by the forcing
goes to large scales whereas the rest goes to small scales (Alexakis & Biferale 2018;
Pouquet et al. 2019). Most of these systems seem to form bidirectional cascades at
particular critical values of the control parameters. Numerical simulations are crucial
in revealing the behavior of turbulent systems in configurations and parameter values
that are out of reach of asymptotic methods.

Here we investigate the turbulent dynamics of an incompressible electrically-conducting
MHD fluid subject to rotation and a misaligned uniform background magnetic field using
a series of direct numerical simulations. Such a configuration is expected to represent the
turbulent dynamics in the atmospheric interiors of gas giant planets in the transition

† Not to be confused with dual cascade scenarios, where the system has two conserved
quadratic quantities which cascade in different directions, such as in 2D HD turbulence with the
forward cascade of enstrophy and inverse cascade of energy.
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region between the outer, neutral atmosphere and the deep, ionized one (e.g., Liu et al.

(2008); Dietrich & Jones (2018); Benavides & Flierl (2020)). There, the dynamics are
characterized by rapid rotation and the presence of a strong background field generated
by the dynamo in the deep interior region below. A simplified case of a dipole magnetic
field present in the transition layer would suggest that the alignment between rotation
and the background field would vary with latitude. The latest Juno measurements by
Moore et al. (2018) show, however, that the background field around the transition
region is quite ‘patchy’, but we still expect the misalignment with rotation to be a
generic feature. In these regions the electrical conductivity is expected to be quite low
(Liu et al. 2008; French et al. 2012; Dietrich & Jones 2018). For the sake of generality,
in the following we investigate a model with rather large conductivity, before discussing
how most of the results carry over to the low-conducting case in Section 5. To some
extent, the ultimate effect of the background magnetic field is the same, resulting in
anisotropic flows, and eventually the two-dimensionalization of the flow perpendicular
to the field (Sommeria & Moreau 1982; Vorobev et al. 2005; Thess & Zikanov 2007;
Favier et al. 2010; Gallet & Doering 2015; Baker et al. 2018). While our interests are
at the fundamental level, with application to gas giant planets in mind, the effects of
a background field and (possibly misaligned) rotation also need to be considered in the
formation and dynamics of ionized protoplanetary disks in the presence of the host star’s
magnetosphere (Fromang 2005; Armitage 2011; Joos et al. 2012; Simon et al. 2013, 2018).
Both of the astrophysical settings mentioned so far are geometrically confined, so we will
not explore large domain size effects in this work (see discussion in Section 4).
More generally, given the prevalence of astrophysical systems which are both ionized

and undergoing rotation, we expect our results to be general enough to apply in other
contexts. Our idealized system has simplified forcing and boundary conditions compared
to realistic astrophysical settings. However, its role is to uncover the dynamics of the small
scales, which can eventually guide parametrizations of sub-grid scale fluxes in large-scale
models of astrophysical objects.
In particular, we are interested in understanding what happens when there are two,

two-dimensionalizing effects which act in different directions. What is the fate of the
inverse cascade and how ‘fragile’ is it to the variation in the secondary control parameter?
Focusing on the case of a strong background field, we find that increasing the rotation
rate from zero produces significant changes in the structure of the turbulent flow.
Starting from a two-dimensional inverse cascade scenario at zero rotation, we find four
distinct dynamical regimes as we increase rotation: for weak rotation rates we observe
a bidirectional cascade of kinetic energy, with energy flux to large scales decreasing as
rotation is increased, and negligible induced magnetic energy. For rotation rates past
some critical point, the flow transitions to a purely forward cascade of kinetic energy.
Further increasing the rotation rate results in a shear-layer dominated regime, where
nonlinearities at large scales are suppressed. Finally, at the largest rotation rates we
investigated, we found a second shear-layer regime where the induced magnetic energy
is no longer negligible, the kinetic energy flux is strongly suppressed, and the energy
transfer is purely mediated by nonlinear terms which include the induced magnetic field.
Using a two-dimensional, three-component asymptotic model of our system, we also show
that the first three regimes are separated by sharp transitions, hinting at the existence
of a bifurcation in the behavior of the turbulent flow. One is found to be similar to
other previously-found transitions from a bidirectional cascade to a forward one, while
the other shows subcritical behavior including a discontinuity in the order parameter
and hysteresis. The transition to the magnetically active regime is beyond the scope
of the reduced model, but we show that it also sharpens towards a critical value as
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the background magnetic field strength increases. We find more generally that, when
considering the limit of strong rotation and strong magnetic field, the order in which
those limits are taken matters.
In section 2 we introduce the system we will study: rotating MHD in the presence of

a background magnetic field, referred to as BΩ-MHD (Menu et al. 2019). In section 3
we discuss results from three-dimensional simulations in which the background magnetic
field is strong and as we vary the rotation rate in a perpendicular direction. In section
4 we introduce a two-dimensional, three-component (2D3C) asymptotic model (similar
to that derived in Montgomery & Turner (1981)) representing the strong background
magnetic field limit and including rotation, and discuss results from the simulations of
that reduced system. Discussion and implications of our results are presented in section
5, where we extend our results to an arbitrary angle between rotation and background
magnetic field, before discussing the low conductivity limit, relevant to planetary settings.

2. Rotating MHD in the presence of a background magnetic field

The equations for rotating magnetohydrodynamics in the presence of a uniform back-
ground magnetic field are (Shebalin 2006; Galtier 2014):

∂v

∂t
+ (v · ∇)v = −∇p∗ − 2Ω × v + (∇× b)× (B0 + b) +Dv + f , (2.1)

∂b

∂t
+ (v · ∇)b = (B0 · ∇)v + (b · ∇)v +Db, (2.2)

∇ · v = 0, ∇ · b = 0, (2.3)

where v = (vx, vy, vz) is the velocity field and b is the induced magnetic field, making
up the two dynamical variables in this system. The two control parameters are Ω, the
global rotation vector (with magnitude Ω), and B0, the uniform background field (with
magnitude B0). Other definitions include the total pressure modified by rotation p∗,
which is normalized by the constant density ρ0, and the dissipation terms, Dv and Db,
which could be regular viscosity and magnetic diffusion, respectively, but might also
include other forms of dissipation such as drag or hypodiffusion. The exact form of these
terms will be described in Section 3, when the simulations are introduced. Magnetic fields
are in Alfvén units, being normalized by

√
ρ0µ0, where µ0 is the magnetic permeability.

Finally, f is a body force, which will be used to inject energy into the velocity field.
The inviscid and perfectly conducting system conserves the total energy,

E =
1

2

∫ (
v2 + b2

)
d3x. (2.4)

However, when Ω and B0 are collinear, this system also conserves what’s known as the
parallel-helicity (Shebalin 2006) or hybrid-helicity (Galtier 2014; Menu et al. 2019). The
collinear system has received considerable attention – favored over the misaligned case
in part due to its extra conserved quantity and the potential relevance of its cascade for
dynamo action(Shebalin 2006; Menu et al. 2019). It also possesses simplified linear wave
solutions which have been used to develop a weak wave turbulence theory (Galtier 2014;
Bell & Nazarenko 2019). Here we will not be considering the collinear case, and so only
the total energy will be conserved in our study of BΩ-MHD in section 3. Although waves
are certainly present in our system, our work concerns the strongly turbulent dynamics of
energy cascades (present partly in the zero frequency modes of the system). See Appendix
A for the dispersion relation of waves in the misaligned case.
Most studies, with rotation and background magnetic field aligned or not, have focused
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on how rotation and a moderate background field affect the decay of kinetic and magnetic
energies in unforced simulations (Lehnert 1955; Favier et al. 2012; Bell & Nazarenko
2019; Baklouti et al. 2019). Menu et al. (2019) investigated the sensitivity of the cascade
of hybrid helicity for various rotation and guide field alignments in forced-dissipative
simulations. We consider the effects of rotation and a misaligned background magnetic
field on the two-dimensionalization of the flow and the energy cascade, including the
limits of strong rotation and strong background magnetic field.
In our study, the rotation and background magnetic field vectors are perpendicular to

each other, namely, we have chosenΩ = Ωẑ andB0 = B0x̂, the extension to an arbitrary
angle between Ω and B0 being discussed in Section 5. The turbulence is maintained at
a statistically steady state by a forcing which inputs energy at a mean rate I at a length-
scale 1/kf (see details in section 3). As a result, there is an emergent velocity scale U
defined to be U3 ≡ Ik−1

f , that we compare to the background field as a measure of its
strength, the inverse Alfvén Mach number:

M−1 ≡ B0

U
. (2.5)

This dimensionless number can also be thought of as a measure of how the third term
on the right hand side of equation (2.1) (the Lorentz force) and the first term on the
right hand side of equation (2.2) compare to the advection terms in each respective equa-
tion, which would determine whether or not the background field affects the dominant
dynamics. When M−1 ≫ 1 the Lorentz force acts to constrain the velocity and induced
magnetic fields so that they don’t vary along the x-direction and most of the energy
lies in the kx = 0 modes, resulting in 2D MHD (Montgomery & Turner 1981; Nazarenko
2007; Bigot & Galtier 2011; Alexakis 2011; Sujovolsky & Mininni 2016). It is important
to note that while the dynamics depend on y, z, and t, all vector components can be
non-zero in periodic domains. This is called two-dimensional, three-component (2D3C)
dynamics(Biferale et al. 2017). If the induced magnetic field isn’t directly forced (as is
the case in our study), this results in 2D3C HD and an inverse cascade of horizontal
kinetic energy (Alexakis 2011; Sujovolsky & Mininni 2016). All of our simulations lie in
the regime of strong background magnetic field, M−1 ≫ 1, making the rotation rate the
main control parameter in our study. Does this asymptotic regime survive in the presence
of rotation?
The relative strength of rotation is measured by the inverse Rossby number:

Ro−1 ≡ 2Ω

kfU
. (2.6)

This number measures the relative importance of the second term on the right hand
side of equation (2.1) (the Coriolis force) to the advection term, which would determine
whether or not the rotation affects the dynamics. Unlike the background magnetic field,
the Coriolis force only directly affects the velocity field. For non-stratified rapidly rotating
hydrodynamics in the absence of any magnetic field, Ro−1 ≫ 1, the strong Coriolis
force acts to constrain the flow such that it doesn’t vary along the z-direction and
most of the energy lies in the kz = 0 modes (Smith & Waleffe 1999; Mininni & Pouquet
2010; Gallet 2015; Vallis 2017; Buzzicotti et al. 2018), which results in 2D3C HD where
the dynamics depend only on x, y, and t. If the fluid is ionized and initialized with
a non-zero seed magnetic field, rapid rotation doesn’t necessarily result in 2D3C HD
because there is no direct constraint on the induced magnetic field. Instead, if the
transverse velocity component does not vanish, rapidly rotating dynamos are formed with
z-dependent induced magnetic fields (Otani 1993; Smith & Tobias 2004; Aurnou et al.
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2015; Seshasayanan & Alexakis 2016b; Seshasayanan et al. 2017; Tobias 2021). However,
since our base state is the x-independent 2D3C HD regime found when M−1 ≫ 1, rapid
rotation is expected to act to constrain the flow and prevent it from varying in the z-
direction. Note that, in this configuration, rotation is in the plane of the 2D dynamics, not
out of the plane as is often the case when it itself is the cause of the bidimensionalization.
Since rotation is now in the plane of the two-dimensional velocities, the Coriolis force is
expected to deflect horizontal velocities out of the plane, as will be discussed in section
4 when we introduce a reduced model for this system following Montgomery & Turner
(1981).
Our goal in this study is to investigate the effects that in-plane rotation has on the

two-dimensional flow caused by a strong background magnetic field. In the next section
we will describe results from direct numerical simulations of the BΩ-MHD system for
various rotation rates, paying particular attention to the resulting energy cascade and
morphology of the flow field.

3. Strong background field limit: 3D BΩ-MHD simulations

Equations (2.1)–(2.3) were solved numerically in a triply-periodic domain of side
length 2πL using the Geophysical High-Order Suite for Turbulence (GHOST) code
(Mininni et al. 2011). The dissipation terms,Dv andDb, each consist of a ‘hyperviscosity’
and a large-scale dissipation term called ‘hypoviscosity’. The hyperviscosity replaces the
regular viscous and magnetic diffusion terms with a Laplacian of a higher order, in our
case ∇2 → −∇4. This higher order allows for the possibility of forcing at smaller length-
scales while still properly resolving the smallest scales at moderate resolutions. As long
as the order of the Laplacian is not very large, hyperviscosity has been shown to have no
significant effect on the turbulent properties of 3D turbulence, and we expect the same
to be the case for our work (Agrawal et al. 2020). The hypoviscosity, which would appear
as ν−∇−2v on the right hand side of equation (2.1) and as η−∇−2b on the right hand
side of equation (2.2), acts as a large-scale dissipation term. The resulting expressions
for Dv and Db are,

Dv = −ν∇4v + ν−∇−2v,

Db = −η∇4b+ η−∇−2b,

where ν is the kinematic ‘hyper’-viscosity, η = (µ0σ)
−1 is the magnetic ‘hyper’-diffusivity,

σ is the electrical conductivity, ν− is the ‘hypo’-viscosity, and η− is the magnetic ‘hypo’-
diffusivity. Should an inverse cascade of a conserved quantity occur, this term ensures
that no condensate forms, which would otherwise affect the cascades and inertial ranges
(Chertkov et al. 2007; Xia et al. 2008; Gallet & Young 2013; Seshasayanan & Alexakis
2018; Alexakis & Biferale 2018; van Kan & Alexakis 2019). This is done by choosing
the coefficients ν− and η− such that the kinetic and magnetic energy at the largest
scales is smaller than that of the next largest scales. The modified GHOST code which
includes these alternative dissipative terms can be found in a public Github repository
(Benavides 2019). It is a standard parallel pseudo-spectral code with a fourth-order
Runge–Kutta scheme for time integration and a two-thirds dealiasing rule. The numerical
model is nondimensionalized by L and the forcing amplitude f0, so that the wavenumbers
k correspond to mode numbers of the domain and the forcing amplitude is one. The three-
dimensional forcing f is isotropic and constant in time, comprising of a summation of
cosines with wavenumbers between 8 < |k| < 10, making kf = 9, and random phases.
The forcing wavenumber range is chosen in an attempt to properly resolve both an
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inverse cascade and a forward cascade. I ≡ 〈f ·v〉 is the space- and time-averaged energy
injection rate, where 〈·〉 represents a space- and time-average.We do not force the induced
magnetic field.
All runs, unless otherwise stated, are in the large background field regime withM−1 ≈

84. We find this value to be large enough to produce the expected two-dimensionalization
in the absence of rotation (Figure 1(a)). Larger background magnetic field values result in
significant restrictions in the time-step which would limit our ability to perform the same
parameter sweep. The Reynolds and magnetic Reynolds numbers, defined, respectively,
as Re ≡ U/k3fν and Rem ≡ U/k3fη when considering hyperviscous and hyperdiffusive
terms as we do, measure the relative strength of the advection terms compared to the
hyperviscous and magnetic hyperdiffusion terms. For the simulations we performed, the
Reynolds and magnetic Reynolds numbers were large (approximately 300) and equal to
each other, i.e. the magnetic Prandtl number is set to one. We performed 14 runs at
M−1 ≈ 84 but at different values of Ro−1, ranging from Ro−1 = 0 to Ro−1 = 27. All
averages and snapshots were taken in statistically steady states. See Table 1 for details
of the simulations and a description of how we measured the nondimensional numbers.
In this study, we are partly concerned with the behavior of the energy cascade as

rotation is varied. We expect the presence of a bidirectional cascade, where a fraction of
the energy input by the forcing goes to large scales and the rest goes to small scales. As
such, we define a measure for the fraction of energy that goes to large scales in the form
of kinetic energy, ε−, and that which goes to small scales in the form of kinetic energy ε
and magnetic energy εb. Since the large-scale magnetic energy dissipation is practically
zero for every simulation performed, we ignore it from our analysis, as it plays no role.
These measures are based on the dissipation rates from each of the three dissipation
terms, and are defined in the following way:

ε− ≡ ν−〈
∣∣∇−1v

∣∣2〉/I, ε ≡ ν〈
∣∣∇2v

∣∣2〉/I, εb ≡ η〈
∣∣∇2b

∣∣2〉/I. (3.1)

Energy balance at steady state tells us that ε−+ε+εb = 1. In the limit of large Reynolds
number and large forcing wavenumber, none of the energy injected is dissipated at the
forcing scale and proper inertial ranges are formed. In this case, the dissipation rate at
large scales represents the fraction of energy cascading to large scales, and similarly for
the dissipation rate at small scales. Our runs do not reach these idealized limits. The lack
of scale separation between the forcing and large-scale dissipation will manifest itself in
two related ways in this paper: (i) the large scale dissipation rate will remain nonzero
despite zero average inverse cascade, because some energy that is being injected at kf will
be dissipated by the large-scale dissipation mechanism (ε− 6 0.1 for the 3D runs), and
(ii) when layers form in Regime III, both the 3D runs and 2D3C runs show an increase
in large-scale dissipation rate, not because of the presence of an inverse cascade, but
because the layers form coherent structures near the forcing scale, their energy grows
and hence a stronger large-scale dissipation rate is achieved. These jumps in ε− denote
the presence of shear layers, as discussed in Section 4. To complement these estimates
for energy cascades, we will look at the normalized spectral energy flux:

ΠKE(k) ≡
〈
v<k · (v · ∇v)

〉
/I, (3.2)

ΠME(k) ≡ −
〈
v<k · ((B0 + b) · ∇b)

〉
/I +

〈
b<k · (v · ∇b− (B0 + b) · ∇v)

〉
/I, (3.3)

where v<k stands for a filtering of the velocity v in Fourier space so that only the
wavenumbers with modulus smaller than k are kept. The flux Π(k) expresses the rate
at which energy is flowing out of scales larger than 2π/k due to nonlinear interactions,
normalized by the energy injection rate. Therefore, if energy is going from large to small
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Figure 1. Snapshots of the field-aligned vorticity ω = x̂ · (∇× v), representing, from top left
to bottom right, Regimes I (a), II (b), III (c), and IV (d), as rotation rate is increased. The
red colors represent positive vorticity whereas the blue represents negative vorticity. Regime
I is characterized by a bidirectional cascade, Regime II a purely forward cascade, Regime III
the formation of strong shear layers (seen here in the middle of the domain), and Regime IV
magnetically active shear layers. Regimes I–III have a negligible induced magnetic energy, unlike
Regime IV whose magnetic energy dominates the dynamics (Figure 2).

scales, the energy flux will be positive, and vice versa. Finally, to quantify the amount
and type of energy at each scale, we will also look at the energy spectra:

EKE(k) ≡
1

2

∑

|k|=k

|v̂|2(k), EME(k) ≡
1

2

∑

|k|=k

|b̂|2(k), (3.4)

where v̂ denotes the Fourier transform of v.
Beginning from quasi-two-dimensional turbulence on the y-z plane at zero rotation, we

find four distinct regimes as we increased rotation (Figure 1). Although not so apparent
in the 3D simulations, these regimes are separated by seemingly sharp transitions, whose
boundaries are determined in section 4.
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Figure 2. Dissipation rates normalized by the energy injection rate as a function of rotation
rate measured by the inverse Rossby number Ro−1. The blue solid line shows the Ohmic
dissipation rate due to the magnetic diffusion term, εb, the green dashed line shows the viscous
dissipation rate, ε, and the red dash-dotted line shows the large-scale dissipation rate due to the
hypoviscosity, ε−. Each regime is labeled at the top, and the vertical dashed lines represent
boundaries between regimes, chosen based on the two-dimensional runs in section 4. Stars
represent runs whose snapshots are shown in Figure 1.

Regime I (Figure 1(a)), defined for runs with Ro−1 < 0.6, is characterized by the
presence of a bidirectional cascade. This can be seen in Figure 2 as a non-zero large-scale
dissipation rate as well as in Figure 3(e), where the spectral energy transfers show that
about half of the energy injected by the forcing goes to large scales (negative Π(k))
and the other half goes to small scales (positive Π(k)). The fraction of energy that
goes to larger scales decreases with increasing rotation (Figure 2). At zero rotation we
don’t have a purely inverse cascade (ε− ≈ 1) due to a combination of finite background
magnetic field strength and, as we will see in section 4, the fact that we’re forcing the
out-of-plane velocity which acts as a passive scalar in the two-dimensionalized dynamics,
thus contributing to a forward energy flux (Campagne et al. 2014; Biferale et al. 2017).
Therefore, at zero rotation rate, the system is undergoing two independent cascades: an
inverse energy cascade of horizontal kinetic energy and a forward cascade of the out-of-
plane kinetic energy. If we were to force only the horizontal velocity components in the
kx = 0 wavenumber plane, we would expect to see ε− ≈ 1 at zero rotation. Figure 3(a)
shows the kinetic and magnetic energy spectra, which demonstrates that the magnetic
energy is orders of magnitude smaller than the kinetic energy (particularly at large scales)
and that the largest scales have the most energy, providing further confirmation of the
presence of an inverse cascade. The spike of magnetic energy at the forcing scale is due
to the excitation of Alfvén waves from the isotropic forcing. The eddy length scales
seen in Figure 1(a) are set by a combination of the energy injection and the large-scale
hypoviscosity coefficient.
Regime II (Figure 1(b)), defined for runs with 0.6 < Ro−1 < 2.1, is characterized by a

purely forward cascade of energy (Figures 2 and 3(f )). This may come as a surprise, given
that the dynamics are two-dimensional. The reason for this seemingly-contradictory state
is that, while two-dimensional, all three velocity components are active in the dynamics
and, furthermore, are coupled together with rotation. This results in a set of reduced
two-dimensional, three-component (2D3C) equations which no longer conserve enstrophy,
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Figure 3. The time-averaged energy spectra (top row) and spectral energy flux (bottom row)
for each Regime found in our simulations. The blue dashed line shows the magnetic components,
either EME or ΠME , the orange dash-dotted line shows the kinetic components, EKE or ΠKE ,
and the solid black line shows their sum. The grey box represents the forcing range. These are
from the same simulations shown in Figure 1 and which are starred in Figure 2.

making a forward cascade of energy possible. The rotating 2D3C system will be discussed
and explored numerically in section 4.
Regime III (Figure 1(c)), defined for runs with 2.1 < Ro−1 < 7.5, is characterized by

the formation of strong shear-layers along the y-direction, consisting of uniform velocity
in the x-z plane. The shear layers form when the rotational constraint on the dynamics
at large scales becomes sufficiently large, requiring that ∂zv ≈ 0 at those scales. The
combination of ∂z = ∂x = 0 and incompressibility implies that vy = 0 (since we’re
in a periodic domain), and thus that the last remaining component of the nonlinear
advection term vy∂y = 0 and nonlinearities are suppressed at large scales. Because of
the suppressed nonlinearity at large scales, these shear layers form coherent structures
that are fed directly by the forcing but that do not transfer that energy away, causing a
build up of energy (not shown). The energy in the layers builds until a combination of
the large-scale dissipation (Figure 2) and the nonlinear term (Figure 3(g)) are able to
remove energy from those scales. Regimes I–III have negligible induced magnetic energy,
as is observed in simulations of MHD with a strong background field (Alexakis 2011;
Sujovolsky & Mininni 2016), and so the induced magnetic field plays an insignificant
role in the dynamics. The magnetic fluctuations are also much smaller than B0 – less
than 0.5% of B0 in Regimes I-III.
This changes, however, in Regime IV (Figure 1(d)), defined for runs with Ro−1 > 7.5,

where we have found the activation and growth of the induced magnetic field, which
dominates both the energy as well as the nonlinear energy transfers (Figure 2). The
nonlinear advection term in the momentum equation is suppressed for practically all
scales (Figure 3(h)), leading to laminar-like shear-layer structures (Figure 1(d)) and a
turbulent magnetic field which is responsible for the nonlinear transfers of energy across
scales, via the Lorentz force and the magnetic induction equation. The shear layer spacing
in Figure 1(d) is set by the forcing scale. In this regime, significant induced magnetic field
fluctuations occur both parallel and perpendicular to the background magnetic field, with
a magnitude of about 3% of B0.
We expect the boundaries between Regimes I–III to be independent of M−1, as they

are part of the asymptotic 2D3C HD, whose sole parameter is the rotation rate. We
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System B0 M−1 Ω kf Forcing type ν ν− Resolution Count

(2.1)–(2.3) 13.3 84 [0 − 16.6] 8-10 Constant Amplitude 6.6e-7 0.06 2563 14
(2.1)–(2.3) 6.6 44 [0 − 7.3] 8-10 Constant Amplitude 6.6e-7 0.06 2563 11
(2.1)–(2.3) 3.3 23 [0 − 7.3] 8-10 Constant Amplitude 6.6e-7 0.06 2563 5
(4.1)–(4.2) ∞ ∞ [0 − 20] 12 Random 4e-7 1.0 5122 23

Table 1. A summary of the runs performed for this work. All runs have hyper- and
hypo-viscosity of the same order (section 3). For runs with a magnetic field, µ = ν and µ− = ν−.
The simulations used Alfvénic units so that B0/

√
ρ0µ0 → B0 and the other ρ0 was absorbed

into the pressure. The values are non-dimensionalized by L and the forcing amplitude f0 (or
I0 for random forcing), so that kf is the forcing mode number and the forcing amplitude (for
constant amplitude forcing) or energy injection rate (for the random forcing) are both 1 in these
units. The typical velocity, U , was calculated after-the-fact for each run using U3 ≡ Ik−1

f , where

I ≡ 〈f · v〉 is the time- and space-averaged energy injection rate. The count is the number of
runs in that set.

confirm this in the next section, which deals specifically with this asymptotic set of
equations, by showing that the regime transitions happen for the same values of Ro−1.
The transition from Regime III to IV is of a different nature and represents a breakdown
of the hydrodynamic behavior found for lower rotation rates. This transition is found to
be M−1-dependent, and will be discussed briefly in section 5.

4. Comparison to rotating two-dimensional, three-component model

Regimes I–III can be better understood by considering the asymptotic limit of equa-
tions (2.1) – (2.3) when taking M−1 → ∞ and keeping Ro−1 ∼ O(1) and the domain
size fixed. The choice of keeping the domain size fixed is based on the fact that we
are motivated mostly by astrophysical settings in confined geometries, in the presence
of a strong background magnetic field. We acknowledge, however, that in many other
astrophysical settings, such as the extended atmosphere of stars or the interstellar
medium, a confined geometry may not be the best representative system to study. In
such systems, a more appropriate limit might include taking the domain size to infinity
at the same time as the M−1, so as to prevent the exact two-dimensionalization of the
flow (Thess & Zikanov 2007; Gallet & Doering 2015). The limiting equations in this case
would resemble more the Reduced MHD system, derived for tokamaks but used also
to study some astrophysical systems, in which the flow is highly anisotropic, yet still
three-dimensional (Strauss 1976; Oughton et al. 2017).
Our limiting procedure, with fixed domain size, is similar to that done in

Montgomery & Turner (1981), with the exception that we include the Coriolis term,
and so we only briefly discuss it here. Assuming a background magnetic field in the
x direction and a rotation axis along the z direction, the process results in a set of
three dynamical equations and one nonlinear constraint for the three variables: ψ(y, z, t)
the streamfunction for the in-plane velocities, vx(y, z, t) the out-of-plane velocity, and
A(y, z, t) the potential for the in-plane magnetic field. This novel constraint, which
results from the presence of the Coriolis term, states that either δA/δvx = 0 or
vy = ∂zψ = 0, where the former is the functional derivative of A with respect to vx.
Our three-dimensional simulations from section 3 seem to be consistent with these
constraints, where, in Regimes I–III for Ro−1 < 7.5, we have A ≈ 0 but vy 6= 0 and,
in Regime IV for Ro−1 > 7.5, we have A 6= 0 but vy = ∂zψ ≈ 0. For the purposes
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of studying the reduced dynamics of Regimes I–III, we assume A = 0, knowing that
it would not capture the transition to Regime IV. The resulting equations form the
two-dimensional, three-component (2D3C) system with in-plane rotation:

∂vx
∂t

+ [vx, ψ] = 2Ω
∂ψ

∂z
+ ν∇2

⊥vx + fx, (4.1)

∂ω

∂t
+ [ω, ψ] = 2Ω

∂vx
∂z

+ ν∇2
⊥ω + fω, (4.2)

where [F,G] ≡ ∂yF∂zG− ∂yG∂zF = 0, ∇⊥ = (0, ∂y, ∂z), ω = x̂ · (∇× v) = −∇2
⊥ψ is the

out-of-plane vorticity (of the in-plane velocities), ⊥ implies the directions perpendicular
to the background magnetic field, and fω = x̂ · (∇⊥ × f⊥). One could equivalently
arrive at (4.1) and (4.2) by taking rotating 3D HD and requiring that the velocity field
doesn’t depend on x. If considering an arbitrary angle between the background field and
rotation, only the perpendicular projection of the rotation vector on the background field
enters the model. For example, supposing without loss of generality that B0 = B0x̂ and
Ω = Ω(sin(θ)ẑ + cos(θ)x̂), then the Coriolis terms on the right-hand-side of (4.1) and
(4.2) will be multiplied by sin(θ). This asymptotic model is in the same spirit as some of
the magnetized quasigeostrophic models used in astrophysical applications (Aurnou et al.

2015; Maffei et al. 2019), but it is important to note that here we have taken M−1 → ∞
while keeping Ro−1 ∼ O(1), whereas the magnetized quasigeostrophic models take the
rapidly rotating limit first. As is discussed in section 5, these limits are not expected to
be the same.
The Coriolis force now couples the two equations together, making what would other-

wise be a passive tracer into an active one. In fact, for non-zero rotation, it can be shown
that the 2D3C rotating system conserves kinetic energy and helicity:

KE =
1

2

∫
v2x + |∇ψ|2 d2x, (4.3)

H =

∫
vxω d2x. (4.4)

These are the same conserved quantities as in 3D HD, but we emphasize that the
dynamics are two-dimensional and are occurring on the y-z plane. This is in contrast
to the case of zero rotation, where the system conserves (separately) the in-plane
kinetic energy

∫
|∇ψ|2 d2x and the out-of-plane kinetic energy

∫
v2x d2x, as well as

the enstrophy,
∫
ω2 d2x. The conservation of enstrophy can be shown to prevent the

existence of a forward cascade of in-plane kinetic energy (Fjortoft 1953; Kraichnan 1967;
Alexakis & Biferale 2018). Without the restriction of enstrophy conservation, though,
the kinetic energy may go downscale in a forward cascade, even if one doesn’t force the
out-of-plane component.
We solve equations (4.1) and (4.2), with modified hyper- and hypo-viscosities as in the

3D simulations, numerically in a doubly-periodic domain of side length 2πL using the 2D
predecessor of GHOST. The code can be found in a public Github repository (Benavides
2020). Unlike the 3D runs, whose forcing function had a constant amplitude in time,
the 2D3C runs have random (white-in-time) forcing. At each time step, a wavenumber

kr of magnitude kf is chosen at random, and f̂ω(k) (Fourier transform of fω) is set to

zero everywhere except for at kr, where it had a magnitude kf
√
2I0/∆t (Chan et al.

2012). This has the effect of setting the energy injection rate for the in-plane flow to be
I = 〈ψfω〉 = I0 on average, with I0 being an input parameter of the simulation. The
same forcing is applied for fx, but with an amplitude of

√
2I0/∆t instead, giving the

same results. Therefore, half of the energy is injected into the in-plane flow and the other
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Figure 4. Snapshots of the out-of-plane vorticity, ω = x̂ · (∇ × v) = −∇2

⊥ψ, for the 2D3C
rotating simulations, representing, from left to right, Regimes I (a), II (b), and III (c), as rotation
is increased. We see striking similarities to Figure 1, confirming that the asymptotic 2D3C model
captures the different regimes found in the 3D simulations of section 3.

half in the out-of-plane velocity. We nondimensionalize all dynamical variables as before,
using L and now the energy injection rate parameter I0. For all of the runs reported
kf = 12. See Table 1 for details on the runs.
The goal of these simulations is to reproduce the parameter sweep performed in section

3, but with the added advantage of working with a two-dimensional code, thus allowing
a larger quantity of runs, higher resolutions (larger Reynolds numbers, around 600), and
longer time integration. We have performed 23 runs, with Ro−1 ranging from 0 to about
5, at four times the horizontal resolution. Our results confirm the presence of Regimes I–
III, going from a bidirectional cascade to a forward cascade to a shear-layer configuration
(Figure 4).
At zero rotation we see a bidirectional cascade with half of the injected energy going

to large scales and half going to small scales (Figure 5), similar to what was found in the
3D runs (Figure 2). For the 2D3C rotating system this is the case because of the choice
of forcing, which injects half of the energy to the in-plane flow and the other half to
the out-of-plane velocity. Since the two flows are completely decoupled at zero rotation,
they each follow the standard behavior observed in 2D and passive tracer turbulence,
that is, an inverse and forward cascade of energy, respectively. As we increase rotation,
the Coriolis force couples the two fields, enstrophy is no longer conserved, and the in-
plane velocities no longer cascade all the injected energy to large scales, resulting in
a bidirectional cascade with decreasing inverse energy flux. There is an approximately
linear approach to zero inverse energy flux, and at Ro−1 ≈ 0.6 there is a transition to
a purely forward cascade. With a larger number of simulations, Regimes I and II are
much more clearly separated, and their transition appears to be sharp (Figure 5). This
transition is qualitatively similar to other bidirectional to forward cascade transitions seen
in other studies and could hint at a universal mechanism responsible for this transition
(Seshasayanan et al. 2014; Seshasayanan & Alexakis 2016a; Benavides & Alexakis 2017;
van Kan & Alexakis 2020).
Upon further increase of the rotation, the forward cascade regime (Regime II) transi-

tions to a shear layer configuration (Figure 4(c)), entering Regime III. This corresponds
to the case when the Coriolis force dominates at large scales, making the dominant
balance in equations (4.1) and (4.2) ∂zψ ≈ ∂zvx ≈ 0, hence the layers. There are a
few differences in the morphology of the shear layers seen for these runs, compared to
Regime III in the 3D simulations (Figure 1(c)). Here they take up the whole domain
and also appear to equilibrate at scales larger than the forcing, through a series of
mergers (not shown). Neither of these characteristics are seen in the shear layers of the
3D simulations. We believe this is due to a few factors, including the longer integration
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Figure 5. Dissipation rates normalized by the energy injection rate as a function of rotation
rate measured by the inverse Rossby number Ro−1. The green dashed line shows the viscous
dissipation rate, ε, the red dash-dotted line shows the large-scale dissipation rate due to the
hypoviscosity, ε−, and the purple dash-dotted line shows the same but for hysteresis runs
initialized with layers. Each regime is labeled at the top, and the vertical dashed lines represent
boundaries between regimes. These denoted boundaries are placed at the same value of Ro−1

as those seen in Figure 2. Triangles represent runs whose snapshots are shown in Figure 4.

times and the change in forcing. A surprising feature of this transition, revealed by the
better-resolved parameter sweep, is that it is discontinuous (Figure 5) †. Discontinuities
are a characteristic of subcritical bifurcations, which should also display hysteresis. By
initializing in the layered regime, we confirmed the presence of hysteresis as we reduced
the rotation rate (Figure 5 inset).
Despite differences in the forcing, Reynolds numbers, and values of M−1, the regime

transitions seem to occur for the same values of Ro−1, suggesting that the rotating
2D3C system successfully describes the dynamics observed in the 3D simulations from
section 3 and that Regimes I–III are robust properties of the system. The two-dimensional
asymptotic system has allowed us to perform a more detailed parameter sweep of this
parameter space, and has revealed sharp transitions and nontrivial behavior near those
transitions which we did not anticipate from the 3D simulations.

5. Discussion & Conclusions

We have investigated the turbulent dynamics of rotating magnetohydrodynamics in the
presence of a strong uniform background magnetic field perpendicular to the rotation
axis. Our investigations have revealed surprising behavior, confirmed both by three-
dimensional and a two-dimensional three-component asymptotic model, as rotation rate

† An increase in large-scale dissipation marks this transition not because an inverse cascade
forms (a weakness of this measure), but because of a lack of separation of scales. The layers form
at or near the forcing scale and remain there as coherent structures, fed directly by the forcing,
resulting in a build up of energy at those scales. This, in turn, results in a larger dissipation
rate from the large-scale dissipation. If we were to perform runs at a larger kf , this effect would
disappear. The discontinuous transition is also observed in the kinetic energy, which is not
shown.
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is increased. We observed the weakening of the inverse cascade, a transition to a purely
forward cascade for relatively weak rotation, and eventually a shear-layer regime at
larger rotation rates. These results were obtained in a specific situation: orthogonal
rotation and guide field at unit magnetic Prandtl number. However, the derivation of
the asymptotic 2D3C model allows us to generalise Regimes I-III to the more realistic
situation of an arbitrary angle between rotation and guide field at low magnetic Reynolds
number. First, for an arbitrary angle θ between rotation vector and guide field, the
reduced model is given by equations (4.1) and (4.2) where 2Ω is replaced by 2Ω sin(θ),
the consequence being that the results in Figure 5 carry over with Ro−1 replaced by
Ro−1 sin(θ) in the x-axis. Second, the 2D3C model illustrates the asymptotic limit
in which the guide field is so strong that it prevents any x-dependence. The same
phenomenon arises for the low magnetic Reynolds numbers that characterize transitions
regions in planetary interiors, see Gallet & Doering (2015) for a rigorous proof in an
idealized setting. The consequence is that we expect the very same reduced 2D3C model
to hold at low magnetic Reynolds number, starting either from the full MHD equations or
from their low-magnetic-Reynolds-number quasi-static approximation. We thus conclude
that Regimes I-III carry over to the planetary relevant situation of an arbitrary angle
between rotation and guide field, together with a low magnetic Reynolds number (by
contrast, the magnetically active Regime IV will be affected by changes in magnetic
Prandtl number).
We should also stress the fact that our study focuses on finite-size domains: motivated

by transitional layers in planetary interiors, we have restricted attention to a numerical
domain that is finite both along the direction of the rotation vector and the local direction
of the large-scale magnetic field. By contrast, an idealized turbulent cloud allowed to
develop arbitrarily large structures would never achieve exact two-dimensionalization
(Davidson 2013; van Kan & Alexakis 2020, 2021), and it’s possible that in those cases
the Reduced MHD description might be more relevant (Strauss 1976; Oughton et al.

2017).
The strong sensitivity of the inverse cascade to in-plane rotation could have significant

implications for the morphology of astrophysical flows, which often have both rotation
and a background magnetic field. Even for relatively weak rotation (Ro−1 ∼ 1) the inverse
cascade is entirely suppressed. Seeing as an inverse cascade is considered to be necessary
for the formation of jets on gas giant planets, this phenomenon could be a tentative
alternative explanation for the weakening of the jets in the depths of their atmospheres,
as seen by the Juno mission on Jupiter (Kaspi et al. 2018). In the outer electrically-
neutral regions the jets can form because of the rapid rotation. These rotation-aligned
jets may penetrate deep into the interior until they reach the low Rem ionized regions
of the atmosphere whose turbulent dynamics suppress the jets via Ohmic dissipation
(Liu et al. 2008). Our work reveals another potential alternative, where a misalignment
of the rotation and background field cause the localized turbulent dynamics to cascade
energy forward instead of inversely, thereby taking away the dynamical origin of the
jets. Apart from the astrophysical implications, the rotating 2D3C model might be of
interest to those studying phase transitions in turbulence (Alexakis & Biferale 2018) –
particularly those interested in the transition from a forward to a bidirectional cascade,
since, as far as we are aware, this model is the only two-dimensional hydrodynamical one
with this behavior.
At the largest rotation rotates, our 3D simulations showed a sudden activation of the

induced magnetic field, signaling the breakdown of the purely hydrodynamic asymptotic
model. The velocity field remained 2D3C, but the dynamics differed significantly from the
hydrodynamic shear-layer regime and were dominated by an induced three-dimensional
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Figure 6. Normalized Ohmic dissipation, εb, versus (Ro/M)−1. The Ohmic dissipation
represents a measure of how active the induced magnetic field is in the dynamics. We see
that, for three values of M−1, the induced magnetic field begins to dominate the dynamics once
(Ro/M)−1 > 0.1, in other words when Ro−1 > 0.1M−1. (Ro/M)−1 is also referred to as the
Lehnert number (Lehnert 1955). Stars represent runs whose snapshots are shown in Figure 1.

magnetic field. Although the 2D3C model breaks down, given the three-dimensionality
of the magnetic field, it’s possible this transition could be studied with the Reduced
MHD system (Strauss 1976; Oughton et al. 2017). A series of simulations at lower M−1

values (Table 1) reveal that the transition happens when M ∼ Ro, which represents
roughly the point at which the inertial wave frequency begins to dominate over the
Alfvén wave frequency (Figure 6, Appendix A). Interestingly, this transition sharpens
towards a critical value as the background magnetic field strength increases. Therefore,
when considering the limit of strong rotation and strong background magnetic field, the
order in which those limits are taken matters. If Ro−1 < 0.1M−1, then one would expect
a hydrodynamical regime, whereas if Ro−1 > 0.1M−1 a magnetically-dominated regime
is expected.
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Appendix A. Wave Dispersion Relation

In the inviscid, perfectly-conducting, and force-free case, the linearized BΩ-MHD
system admits wave solutions. Taking v of the form v = v̂ exp i(k · x− ωt) and plugging
this into the linearized versions of equations (2.1)-(2.3), after some algebra we end up
with:

ω2 (k × v̂) = 2iω (k ·Ω) v̂ + (k ·B0)
2
k × v̂. (A 1)

Next we introduce the helical orthonormal basis for v̂, v̂(k) = v+k ĥ
+

k + v−k ĥ
−
k , where

k × ĥΛ
k = −iΛ|k|ĥΛ

k and Λ = ±1 indicates the sign of the helicity of ĥΛ
k (Herring 1974;

Alexakis 2017). Introducing these basis and dotting equation (A 1) with ĥΛ
k we arrive at

the dispersion relation. We normalize the frequency with the eddy turnover frequency,
kfU , and the wavevector k with kf , resulting in our final expression for the dispersion
relation:

ω̃
(
k̃;Λ

)
= −1

2

k̃ · x̂Ω
‖

Λk̃Ro
± 1

2

√√√√
(
k̃ · x̂Ω

‖

k̃Ro

)2

+ 4

(
k̃ · x̂B0

‖

M

)2

, (A 2)

where k̃ ≡ (k̃2x + k̃2y + k̃2z)
1/2, k̃i ≡ ki/kf , and ω̃ ≡ ω/(kfU). In the specific case of our

study, where B0 = B0x̂ and Ω = Ωẑ, this simplifies to:

ω̃
(
k̃;Λ

)
= −1

2

k̃z

Λk̃Ro
± 1

2

√√√√
(

k̃z

k̃Ro

)2

+ 4

(
k̃x
M

)2

. (A 3)

See Figure 7 for a visualization of this dispersion relation, which depends on k̃x, k̃z, and
k̃.

https://doi.org/10.6084/m9.figshare.16888135.v1
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