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Enhancing the Dexterity of a Robot Hand
Using Controlled Slip

by
David L. Brock

Submitted io the Department of Mechanical Engineering on
Mey 1, 1987 in partial fulfillment of the requirements for the De-
sree of Master of Science in Mechanical Engineering

Abstract. There are many tasks that humaus perform effortlessly, that are
currently impossible for a robot. Many of these tasks inveolve the control of
slipping and twisting of an object within a grasp. Therefore an analysis of
controlled slipping of a grasped object within a robot hand was performed.
Some of the results of the analysis were simulated and then implemented on
the Salisbury Robot Hand.

The goal was to determine all possible ways an object may slip in a
grasp and how these slipping motions may be achieved. To determine all
the possible slipping motions, the types of contacts which exist between the
manipulator and the object were first enumerated. Then for each set of con-
tacts and contact types, a constraint state was defined. Each constraint, state
allows a unique set of infinitesimal object motions. This set of infinitesimal
motions was then expanded to include finite motions, by considering surface
geometry. By regulating the grasping force, as well as, the external forces on
the object, a particular constraint state can be achieved. Thercfore, a simple
parametrization of the grasping force of a three fingered hand was presented
along with a discussion of the controllable external forces which m. y act on
a object and how these may be used to manipulate an object within the
hand. By integrating these separate pieces of the analysis together, it was
possible to analyze controlled slipping in a hand and implement controlled
slip manipulation on a robot.

Thesis Supervisor: Dr. Kenneth Salisbury
Research Scientist
Laboratory of Artificial Intelligence
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Chapter 1

Introduction

1.1 Introduction

When we manipulate objects, our fingers are not always fixed to the surface.
Many times we allow the objects we hold to slide or rotate at our fingertips,
consciously controlling the motion of the object rather than the motion of
our fingers. This controlled slipping technique of manipulation is not just one
of the ways we can move objects, but rather a dominant form of dexterous
human manipulation. For example, try putting a lid on a jar, but start with
the lid top down on a table. Without thinking, we pick up the lid, spin it
around between our two fingers, using the edge of the jar or ancther finger,
and screw it on the top. Or consider the use of a pencil erasei. When we
make a mistake we stop writing, flip the pencil over, push the pencil through
our fingers, and erase. In both these examples and in many others, we allow
objects to slide and rotate at our fingertips. Through this controlled slipping
technique we can control the location and orientation of an object within our
grasp.

In robotic manipulation, emphasis has been placed on producing stable
grasps. The object is then moved by controlling the motion of the manipula-
tor, assuming the object is rigidly fixed to the robot. If the object slips in the
grasp, control is lost, and there are no easy forms of recovery. In addition,
there are many operations which become difficult or impossible without some
form of controlled slip manipulation. In this thesis, I will analyze controlled
slip manipulation in a robot hand, and from this analysis predict slipping
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motion of an object within a grasp. Using these predicted slipping motions,
the robot hand will affect the necessary changes in the grasp to allow the
object to slip in a controlled manner.

1.2 Overview

In order for a multifingered robot hand to perform dexterous operations
on the environment, it must be able to acquire objects into a grasp, con-
trol the motion of the object relative to the environment and contrcl the
object within the grasp. Object aquisition is an active area of robotic re-
search. Given a particular manipulator and an object, how can the robot
grasp the object? There are numerous considerations, such as the location,
size, weight, orientation, surface properties, and specific functions of the ob-
ject, as well as, configuration, workspace, strength, and surface properties
of the manipulator. An algorithin recently developed [Nguyuan], computes
the grasp locations on an object and finger stiffnesses in the robot necessary
to produce force closure grasps. The objects are modeled as polyhedrons
with a certain mass and surface friction. Areas on the polyheral surfaces are
then found on which the fingertips of a multifingered hand may be placed
to yield force closure grasps. The number of fingers, the surface properties
of the fingertips, the stiffness of the joints, and the workspace of the hand
are all taken into account when computing grasp locations. Some research in
object acquistion has also been done by [Lozano-Perez]. Not only were the
current constraints on the object considered, but also constraints imposed on
the object by the environment, as the object is moved through its planned
trajectory. The constraints both present and future are mapped onto the
object surface before the object is grasped. In this way, for example, a robot
gripper would not grab the end of the peg which later must be inserted into
a hole. There are, however, still many areas of object acquistion not yet
explored. Objects with special surfaces, such as handles or loops, non-rigid
objects, like paper or foam, objects that must be moved before grasping, such
as a coin on a flat vable, are all common examples acquisition which are not
yet possible for a robot.

The control of object motion through the coordinated control of individ-
ual manipulators is also a current area of robot research. An algorithm has
recently been written [Chiu] which coordinates individual fingers to yield a
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specific translations and rotations of a grasp relative to an arbitary refer-
ence frame. The object is assumed to remain fixed relative to the grasp;
therefore, specific motions of the grasp yield specific motions of the object.
From practical experience, this method has worked quite well. In order to
actually control the motion of the object, however, it would be necessary to
sense the position and orientation of the object, since the object may have
been removed, slipped, or fallen from the grasp, unknown to the robot. Real
time hand-eye coordination, however, is beyond the reach of current systems
because of the computational complexity. High level coordinated control of
multifingered robot hands, is a relatively new area of research. Recent mul-
tifingered robot hand research, therefore, has been primarily concerned with
mechanical design, actuation, transmission, and sensing.

Control of an object relative to a grasp is also a new area of research.
This problem has be approached by [Tournassoud], in terms of regrasping.
The object is initially grasped, then set down, released, and then regrasped.
In this way the object can be reoriented relative to the grasped. The object,
however, is not manipulated within the grasp. Controlled slip manipulation,
however, could enhance the dexterity of a manipulator, by allowing the robot
greater freedom to move the object within the grasp.

1.3 Outline

This thesis is basically an analysis of the small finite permissible motions
an object may undergo in a particular grasp and how these motions may
be achieved. The first chapter is the introduction. In chapter 2, the types
of contacts between a fingertip and an object are enumerated. For each
set of contacts and contact types, we define a constraint state and for each
constraint state, a map of the possible object motions is produced. Deter-
mining the constraint on small finite motion, requires knowing not only is
the location and orientation of contacts, but also the surface geometry in the
neighborhood of the contact. Chapter 3 deals with strategies available to ma-
nipulate an object relative to a grasp. These include the use of gravity, body
forces, controlled accelerations, free fingers, and other objects to move ob jects
within the grasp. For a multifingered hand there are many ways to squeeze a
grasped object. For two or three fingered grasps, there is corresponding one
space or three space of possible grasp selutions. Chapter 4 presents a sim-



CHAPTER 1. INTRODUCTION 4

ple intuitive parameterization of this grasp force space. For a three fingered
hand, the three space may be represented simply by a grasp force focus and a
grasp force magnitude. In order to determine the type of contact 'hat exists
at each fingertip, the forces and moments transmitted through the interface
must be found. In chapter 5, the set of forces and mioments that exist at
the contacts will be found in terms of the contact frame, that is, a coodinate
frame set in the object and defined in terms of the contact point and outward
pointing normal. Chapter 6 outlines a simple relationship between the forces
and moments at the contact and the contact type. Two examples are given
in chapter 7 illustrating the analyses of the previous chapters, along with an
demonstration of how controlled slipping could be used to reorient an object
within a grasp. Chapter 8 describes how these analyses were simulated and
how some controlled slip manipulations were achieved on the Salisbury robot
hand. In chapter 9, extensions of the present theories are outlined, which
yield more practical and efficient techniques for controlled slip manipulation.



Chapter 2

Constraint

2.1 Introduction

The purpose of this chapter is to determine the different ways an object can
move in a grasp. First, the screw system representation will be described.
This representation allows a complete and homogeneous treatment of both
forces and moments as well as translation and angular displacements. Sec-
ond, the types of contacts which may occur between two objects will be
enumerated. For each contact type, a particular set of forces and moments
can be exerted through the interface. These forces and mements limit the
possible motions of one object relative to another. Third, the set of infinites-
imal motions possible for an object subject to a single constraint will be
determined using the concept of virtual work. Fourth, the set of infinitesi-
mal motions will be extended to include the set of small finite motions by
considering the surface geometry in the neighborhood of the contact point.
Fifth, a constraint state will be defined as an ordered list contact types on
the object. Finally, for each constraint state, the set of permissible motions
for a grasped object will be found as the intersection the permissible motions
of all the individual contacts.

2.2 Screws, wrenches, and twists

Many of the analyses in this thesis will employ a screw system representa-
tion for forces and moments, and for infinitesimal displacements. Although
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standard force and displacement vectors could be used, screw systems allow
a homogeneous treatment of both forces and moments, and translational and
angular displacements.

A set of forces and moments acting upon a body can be collectively called
a wrench. A wrench may be described as a force along a unique line, the
screw axis, and a moment about that line. Similarly, a twist can represent
the infinitesimal motion of an object, an infinitesimal translation along a line
and an infinitesimal rotation about that line.

2.2.1 Screws

The outline of screw systems presented here is more adequately described in
[Hunt] and completely developed in [Ball]. Both the wrench and the twist
are specific representations of a screw. A screw is defined by a line in three
space, a.screw axis, and an associated pitch about that line. A screw may

also be described by a six element vector, s = [81, 82, 33, 4, 35, S¢], where
81,82,...,9¢ are the screw coordinates. The coordinates of the screw axis
are

L = S]

M =5,

N = S3

P = S4 - pSl (21)

Q = Ss-pS;

R = Ss - p5'3.
The coordinates L, M,...,R are known as the Pliicker line coordinates of

the axis, where L,M, and N are proportional to the direction cosines of the
screw axis, and F,Q, and R are proprotional to the moment of the line about
the origin of the reference frame. The pitch of the screw is

_ 5154+ S2S5 + S3Ss
T 824852482

(2.2)

and the magnitude of the screw is

m=\/S? + 52 + S? (2.3)
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unless the pitch happens to be infinite, in which case the magnitude of the

screw is
m =/53% + 5% + SZ. (2.4)

2.2.2 ‘Wrenches

The wrench is one interpretation of the screw and, therefore, may be defined
in the similar way. That is, the wrench may be idenified, in terrns of screw
coordinates, by a six element vector w = [w;, w,, w3, w4, ws, we), where wy ,w,,
and wj are the forces along the x,y, and z axes of an reference frame, and
wy,ws, and we are the moments about the axes of the reference frame. By
replacing S; with w; in equation 2.1, the line coordinates of the wrench may
be found,

L = w

M = Wa

N = W3

P = wye — pun (25)
Q = ws—puw;

R = ws— pws

The pitch of the wrench is given by equation 2.2

_ W ws + waws + wawe
wi + wj + w}

(2.6)

and is the ratio of the torque about the screw axis to force along it. The
magnitude of the wrench from equations 2.3 or 2.4 is,

m = \Jw} + w} + wl (2.7)
or if the pitch is infinite, the maguitude is
m= \/‘;03 + w? + wi. (2.8)

2.2.3 Twists

As with the wrench, the twist can also be described in terms of a six element
vector t = [ty, 42, t3, L4, t5, tg), Where 2,5, and t3 are the rotations about the
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z, ¥, and z axes of a reference frame and t4,¢5, and tg are the displacements
along the z,y, and 2 axes. Again, replacing S; with #;, the line coordinates
of the twist are

L = tl
M =t
N = t3
Q@ = t—pt
R = ts - pt3,
The pitch of the twist is
_ tita+ tats + tate (2.10)

i+ +8

and is the ratio of the rotation about the twist axis to the translational along
the axis. The magnitude is defined by

m =/t + 2 + 13 (2.11)

or in the case where the pitch is infinite, the magnitude is
m = \/t2 + 1 + £2. (2.12)

2.2.4 'Transforming screw definitions

Although a wrench and a twist are independent of the reference frames used
to define them, it is useful to be able to transform their representations
irom one frame to another. In general, a screw s’ can be represented in
screw coordinates, 8’ = [s], s}, 3, 84, 8§, s;], where the elements of s’ are
defined relative to a specific reference frame. Let the elements of the screw
s’ be defined relative to a specific coordinate frame O’ X'Y’Z’. Suppose this
reference frame is, in turn, defined with respect to another reference frame
OXY Z, figure 2.1. That is, let | = [I;,{,,1,], m = [m;,m,,m,], and n =
[nz,ny, n:], be the unit direction vectors of the z’, y’, and 2’ axes and let
x = [z,y, 2] be the origin of the O'X'Y’Z’ frame all defined with respect
to the OXY Z frame. Suppose we now wish to define the screw s’ in screw
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coordinates relative to the OXY Z frame. Let s be the representation of the
screw in the OXY Z frame, then s is

s =Ts¢ (2.13)
where T is a linear transformation matrix given by

[ [ I, m; n, } ]

I, m, n, 0

T = l: m, n. (2.14)
l.y—1l,z my—myz n,y—nyz l. m; n,

[ lpz—l,x mez—m,x ngz —n,z ] [ l, m, n, }

| Lz =1Ly mz—m.y n,z—ngy l, m, n,

Conversely, a screw s defined in the O XY Z frame may also be represented
in O'X'Y'Z'. That is,
=T (2.15)
where T-1 equals
( L. 1, 1
m; my, m, 0
n: n, n,
Ly—1,z l.z -1,z Iz —l.y I 1, 1
M.y —Myz MzZ —M,T M,T —myy m; my, m,

NY —NyZ NZ—N,T NyT—ngy n, n, n,

(2.16)
Since the twist is a specific representation of a screw, it too can be defined
in screw coordinates relative to different reference frames. Suppose a twist
t' is defined relative to a frame O'X'Y’Z’. Again, suppose this frame is, in
turn, defined with respect to another frame OXY Z. The representation t of
the twist t’ in the frame OXY Z is given by

t="Tt' (2.17)
where T is given in equation 2.14 and conversely,

t' =Tt (2.18)
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S, s

one frame to another, Suppose a screw s’ is defined in Screw coordinates relatjve
to a reference frame O'X'Y'Z’, where o'x'y'z is, in turn, defined relative to
another frame O x YZ. Then the Screw can also be fepresented in the O XYy 2
frame by a simple linear transformation s = Ty’

where T-1 jq given in equation 2.16. Similarly for the wrench, given in screw
coordinates relative to O'X'Y'Z, its tepresentation in O XY Z i given by

w = Tw’ (2.19)

where T s given in equation 2.14. Conversely, the wrench defined in the
OXYZ frame may also be represented in the O'X'y"' 2" by

w =Ty (2.20)

where T~1 g given ip equation 2.16,

2.3 Cdntact types
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general, nine different types of contacts. These contact types are illustrated
in figure 2.2, [Salisbury]. For each of these contact types, a particular set
of wrenches may be exerted through the interface. The set of all possible
wrenches that may be transmitted through a contact is known as a wrench
system. A set of unit basis wrenches can be specified which span the entire
wrench system. The nature of the contact problem, however, is inherently
non-linear, since objects can both make and break contact with cne another.
Therefore, to describe the wrench system, it is necessary to define a set of
unidirectional unit basis wrenches. Any wrenches in the wrench system may
then be represented as a positive linear combination of any of these unidi-
rectional basis wrenches. Figure 2.2 lists, along with each contact type, the
set of unidirectional unit basis wrenches whese positive linear combinations
span the wrench system of all the possible wrenches which can be transmitted
thrcugh the contact.

For the analyses in this thesis, only contacts made between the fingertips
of the manipulator and an object will be considered, although the techniques
developed here can encompass other types of contacts as well. By considering
only fingertip contacts, however, the set of possible contact types is reduced
from nine to four. These are: a soft finger contact, a point contact with
friction, a point contact without friction, and no contact. For convenience
let these contact types will be represented by the following numbers

’

Soft finger contact

Point contact with friction
Point contact without friction
No contact

N
o

2.4 Infinitesimal motion

Virtual work is the work done by a wrench exerted against an arbitary twist.
By examining the sign of the virtual work, we can determine the set of in-
finitesimal motions which are possible for an object constrained by a contact.
Fisrt a contact is characterized by a particular contact type. Then the con-
tact is replaced with its associated set of unidirectional unit basis wrenches,
which are listed in the figures 2.2 and 2.3. Then for each basis wrench in
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Plane contact with friction

A

Line contact with friction

A

Soft finger contact

<>

Unit Basis Wrenches

w = {1,0,0.0,0,0]
w=(0,1,0,0,0,0|

w =(0,0,0.1.0,0]
w =(0,0,0,0,1,0]
w = (0,0,0,0,0, 1]

w = (0,0,0,1,0,0]

w = (0,0,0,0,0, 1)

w = (1,0,0,0,0.0)
w = [0,1,0,0,0,0)

w = {0,0,0,0.0, 1]

w = (1,0,0,9,0,0

0,1,0,0
w=(0,0,0,1,0,
0,0,0,1,0]

Plase contact without friction

Figure 2.2: There are, in general, nine different ¢
tacts. Each contact type can allow only certajn wren
the interface. Since the contact problem ijs inhere
rectional basis wrenches js defined to describe sp

combinations of the unidirectional basjs wrenches,

particular contact can be spanned.

w = [~1,0.0,0,0,0)
w = (0, -1,0.0.0,0]
w = (0,0,-1.0.0.0
w = (0,0,0,-1.0,0|
w = (0,0,0,0,-1.0)
w =[0,0,0,0,0, -1

w = (-1,0,0,0.0,0]
w =0,-1,0,0,0,0]
w={0,0,~1,0,0,
W= (0.0.0.—[.0.

0
0}

w= [0.0.0.0.0.-!]

w = (-1,0,0,0,0,0)
w=s {0.-1.0.0.0'°|
w=as [o-ol-l'oio‘ol

w =(0,0.0,0,0, -1]

w=(~1,0,0,0,0,0)
w = (0,-1,0,0,0,0)
w ={0,0,~1,0,0,0
w=(0,0,0,-1.0,0)
w = (0,0,0,0, -1, 0]

12

ype of three dimensional con-
ches to be transmitted through
atly non-linear a set of unidj-
ace of wrenches which can be
type. By taking positive linear
the entire wrench system for a
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Z
Y Unit Basis Wrenches
1o — w = (1,0,0,0,0,0) w=(-1,0,0,0,0,0]
wa [0.1.0.0.0.0] wm [0.-1.0.0.0.0]
. wa [0,0.—1.0.0.0'

Point contact with friction

w = [0,0,1,0,0,0]
® w =0,0,0,1,0,0] w = (0,0,0,1,0,q]

Line contact withoye friction

Point contact withoye friction

<

No contact

Figure 2.3: Contact types (Cont’t)

13
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the set, the virtual work is calculated. If the virtual work done by a twist
against every unit basis wrench in the set is greater than or equal to zero,
then the twist is allowed. Conversely, twists which produce negative virtual
work for even a single basis wrench are disallowed.

A complete derivation of virtual work is presented in [Ball] and the deriva-
tions in this section are outlined in [Ohwnvoriole]. A robot manipulator A
exerts a wrench of magnitude a and pitch p, along a screw A on a body B,
as shown in figure 2.4. The body then undergoes a twist of amplitude A and
pitch ps along a screw B. Define a coordinate system O XY Z with the x-axis
aligned with the twist axis, the z-axis the common perpendicular between
the twist and wrench axes, and the y-axis perpendicular to both the x and z
axes, as shown in figure 2.5. The wrench can then be decomposed into forces
and moments on the cartesian coordinate system

F, =acos#
F, = asinf

F.=0

M; = a(p, cos — dsin8) (2.21)
M, = a(p, sinb + d cos )

M,=0,

where d is the length of the mutual perpendicular between the wrench and
the twist axes. The virtual work done by the wrench against the twist is

W = af cos[(pa + ps) cos§ — dsin 8] (2.22)
The virtual coefficient between screws A and B is defined to be
w = cos[(pa + pg) cos @ — dsin ). (2.23)

The virtual coefficient is independent of both the amplitude of the twist and
the intensity of the wrench. Let (2y, t;, t3, t4, ts, te) and (wy, wy, w3, wy, ws, we)
be the screw coordinates of a unit twist and a unit wrench. The virtual
coefficient is then

w = wnily + wyts + wate + wet; + wsls + wet;. (224)

We will use the unit twist and unit twist from now on when evaulating
the virtual coefficient. The reason for this will be apparent later when we
consider the value of the virtual coefficient.
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Manipulator

w(a, Pa)

15
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2.4.1 Reciprocal screws

Two screws are said to be reciprocal screws if the virtual work between a
twist and a wrench associated with the two screws is zero. No work will be
done by a unit twist t against a unit wrench w if the virtual coefficient is
equal to zero. That is,

w = w,t., + 'll)2t5 + lD3t6 + w4t1 + w;tg + thl =0. (225)

2.4.2 Repelling screws

Two screws are said to be repelling if the virtual work between the screws of
a twist and a wrench is positive. Therefore two unit screws of a unit twist
and a unit wrench will repelling if the virtual coefficient if positive. That is,

w = w1t4 + ‘w2t5 + 'lD3t6 + 'U)4t1 + w5t2 + w6t1 > 0. (226)

Work is defined to be positive if the body moves in the same direction as the
wrench.

2.4.3 Contrary screws

Two screws are contrary if the virtual work between the screws of a twist and
a wrench is negative. Again two unit screws are also contrary if the virtual
coefficient if negative,

w = wity + wats + wats + wet; + wsty + wety; < 0. (227)

2.4.4 Permissible twist

A permissible twist is an infinitesimal motion that the constrained objert is
allowed to undergo. Assume an object is constrained by a single contact, as
shown in figure 2.6. Also assume that the contact can be characterized by
a particular contact type. The constraint imposed by the contact can then
be represented by its associated set of unidirectional unit bases wrenches as
was described earlier.

For convenience, let this set of bases wrenches be defined in terms of
a contact frame. The contact frame is a coordinate frame whose origin is
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the point of contact between the object and the manipulator. The z-axis
is the surface normal at the contact point, and the x and y axes lie in the
tangent plane. In general, the choice of the x and y axes of the contact
frame is arbitary; however, a convention for resolving the ambiguity is given
in appendix A. This convention, though useful for the implementation, is
unimportant in the current discussion. Figure 2.6 then shows the contact
frame O, X, Y., Z., defined relative to a reference frame OXY Z.

Let {wcj} be the set of unidirectional unit bases wrenches which replace

the contact type defined in terms of the contact frame. Their representation
in the refereace frame OXY Z is given by

wj = TiWcj (2.28)
where T} is the transformation matrix given in equation 2.14 by
F l:l: me N ]
I, my n, 0
T; = l: m, n, (2.29)
Ly—l,z my—myz n,y— nyz l; m; n.
l;z—l,z my—m,xz n.z—n,z l, my n,
lz—ly my—my n,z—n.y [, m, n, | | ;

where 1 = (I, 1,.], m = [m;,m,,m,], and n = [n_, n,,n,] are the direction
vectors of the x,y, and z axes and z, y, and 2 is the origin of the :** contact
frame defined with respect to the reference frame O XY Z.

The set of twists which are reciprocal or repelling to a single unit basis
wrench wj is

T = {t : wi;ts + wa;ts + wa te + wa;ty + ws;t2 + we,t3 > 0} (2.30)

The set of twist reciprocal or repelling to all the unit basis wrenches in wj is
the intersection of all the sets T

Tiny =({T1, T2y - .} (2.31)

The set T;,; represents the set of twists which are either reciprocal or
repelling to every unidirecitional unit basis wrench of a single contact. The
set Tins describes only infinitesimal motions which the object is allowed to
undergo while constrained by a single contact. In order to determine the
possible motions of an object allowed by a contact, however, finite motions
must be considered.
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Ze,

Wi, wcl

X

Figure 2.6: The motion of an object is constrained by a single contact. The
contact can be characterized by a contact type which can then be represented by
a set of unidirectional unit basis wrenches {wj}. The set of all twist which are
reciprocal or repelling to every basis wrench, describes the infinitesimal motions
the object is allowed tc undergo.

2.5 Finite motions

The set of twists T}, given in equation 2.31 describe the infinitesimal motions
an object is allowed to undergo given the constraint imposed by a single
contact. In order to be useful in determining all the possible ways an actual
object can move within a grasp, the definition of permissible motion must be
extended to include finite motion. Given an arbitary unit twist t defined in
screw coordinates t = ¢, ¢y, t5, 2, ts, te] relative to some reference frame, let

t=m| (2.32)

|t |

represent a finite motion, where mt,,mt,, and mt,, are finite rotations and
miq,mts, and mtg, are finite translation along the z, y, and z axes of the
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Figure 2.7: Surface geometry in the neighborhood of the contact must be cop-
sidered to determine the  wpijete set of small finite permissible twist

dimensional objects constrained by two point contacts without friction, as
shown in figure 2.7. The location and the orientation of the contacts are
identical and, therefore, the set of infinitesimal permissible twists for each
object is the same, The finite constraint imposed on the objects, however, is

all directions. The second object, the rectangle, can only move horizontally,
and the last object, the circle, can both translate or rotate between the
contacts. The difference in constraint comes not from the contact, types, but
from the curvature of the object surfaces. In order to determine the complete
set of permissible finjte motions, the surface geometry in the neighborhood
of the contact must be considered.

Therefore, we want to determine the motions which do not violate the
geometric constraints imposed by the surface of the object. To solve thjs
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problem, assume an object undergoes a hypothetical finite motion describe
by a twist mt, in equation 2.32, then determine whether this particular
motion causes the contact point to penetrate the surface of the object, thus
violating the geometric constrants. Let the surface of the object be describe
by a function f,urface(T,y) relative to the contact frame O, X.,,Y.,, Z,.
First, determine the motion of the contact point relative to this contact
frame as the object undergoes the finite motion describe by mt. Second, map
the trajectory of the contact point onto the surface of the object. Finally,
compare the trajectory of the contact point with its projection onto the object
surface to determine whether this particular motion violates the geometric
constraints.

When comparing the motion of the surface of the object relative to the
contact points, it is unimportant whether we define the motion as a twist
mt that the object undergoes relative to fixed set of contact points or as a
twist —mt that the contact points undergo relative to a fixed object. For
convenience, we will assume the object remains fixed relative to the OXY Z
frame and the contact points move with a twist —mt. The trajectory of the
contact point is given by

xt=Tixj+d (2.33)
where T is a matrix
hticim hitzcim — tasm  titacim + t28m
Te = | taticim + tas,m  tat2cim t2t3cim — 11Sm (2.34)

taticim — t28m  tat2cim + tiSm  talacim

where ¢im = (1 — cos(m)), ¢m = cos(m), and s,, = sin(m). T multiplied by
X; yields the displacement due to a rotation, while

mt.
d=| mts (2.35)
mte

is a displacement duc to translation. Equation 2.33 describes the displace-
ment of the contact point relative to the OXY Z frame, but we want to
know the displacment of the contact point relative to the contact frame
O, XY, Z;. Therefore, let x¢raj be the trajectory the contact point relative
to the contact frame. Then X¢raj is given by

Xeraj = Tp X (2.36)
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where Ty, is a rotation matrix relating points in the contact frame O,,, X.,, Y., Z,
to points in the reference frame OXY Z

Tri =

lt mz n::
I, m, n, ] (2.37)
l. m; n,

Equation 2.36 describes a locus of points relative to the contact frame.
These points represent the trajectory of the contact point would undergo if
the object were displaced by a twist mt. For a given twist, the trajectory of
the contact point is a function of only one variable, the magnitude m

ztra; ft(m)
Yeraj ] [ fy(m) ] (2.38)
f:(m)

By projecting the trajectory of contact onto the surface of the object, it
is possible to determine whether or not the particular twist t describes a
permissible finite motion. Figure 2.8 shows the motion of the contact point
and its projection onto the surface. The surface of the object is described by
the equation

Xiraj =

ztrc;

Zsurface = faur]ace(za y)' (239)
and the projection of the contact trajectory onto the surface of the object,
is given by

Xproj = | Yproj | = | fy(m) (2.40)
Zproj fnur!ace[fr(m)a fv(m)]

For a motion to be permissible, the contact trajectory must not penetrate
the surface. Simply
Ztraj 2 Zproj- (2.41)
Therefore, the set of finite motions the object may undergo and which is
permitted by the surface geometry is
Ttin = {t : z¢ra(t) 2 Zproj(t)}- (2.42)

Finally, the set of all finite motions of an object subject to a single con-
straint is the intersection of the finite and infinitesimal permissible motions

T = Tyin () Tiny (2.43)
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contact tra jectory

surface tra jectory
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2.5.1 Value of virtual coefficient

The definitions in the previous section provide mathematical constraints
which work well for abstract models. An infinitesimal variation in the di-
rection of the unit twist, however, will change its definition from reciprocal
to repelling or contrary. In reality, small changes in constraint should not
lead to drastic changes on the object. This problem occurs because a twist is
defined to be reciprocal only when the virtual coefficient is exactly zero. In
order to compensate for inaccuracies in contact measurement and to allow
more generality in object motion, it would be helpful to define a range of
values , —w, to w,, for which a twist is defined to be reciprocal. That is, a
reciprocal unit twist satisfies

— Wy S W = w,t.. + wyls + ‘w:;te + W4t1 + wsiy + wgty S Wy (244)

This, however, also changes the definition of the repelling and contrary twist.
A repelling unit twist will now be defined as

w = w1t4 + ‘UJ2t5 + w;te + w4t1 + wsis + wet, > Wy (245)
and a contrary unit twist
w = wyty + wals + wale + wyt) + wsty + wety) < —w, (246)

For example, consider the case of two fingers grasping a rectangle in two
dimensions, as shown in figure 2.9. If tactile sensors are used to resolve the
contact point and surface normal, there is to be expected some small error
in the reading, figure 2.9. It is obvious that the block can slide between the
fingertips in either direction if the grasp is loosened sufficiently. The strict
definition of the reciprocal twist, however, indicates only one or the other
direction is possible, depending upon error in the sensed surface normal. By
expanding the definition of the reciprocal twist, in equation 2.5, we can again
obtain the correct result, that the rectangle can move in either horizontal
direction. Now that the definition of the reciprocal twist, equation 2.23, has
been expanded, the geometric constraints will become more important when
determining possible motion.
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2.6 Multiple contacts

If there are m contacts between the manipulator and the object and n dif-
ferent types of contacts, there will be n™ possible combinations of contacts.
Each combination of contacts yield a different set of constraints on the object
of the object. An object may be said to be in a particular constraint state de-
fined by the number and the types of contacts. That is, for m contacts and n
contact types there are n™ possible constraint states. For exarnple, if a three
fingered hand grasped an object at the fingertips there are be three contacts,
one for each fingertip and, since there are only fingertip contacts, there are
four contact types. With three contacts and only four possible contact types
there are 4% possible combinations, that is 64 constraint states. For grasps
made with a human hand at the fingertips, there are now five contacts, and
therefore 4% or 2048 possible constraint states. A constraint state can be
denoted by an ordered list consisting of m elements, one element for each
contact. The values of the elements are the contact types. Suppose the three
fingered hand has its fingers numbered one, two, and three, and now assume
the hand grasps an object at the fingertips. If the first and second fingers
behave as soft finger contacts, while the third finger slips on the surface, the
constraint state will be [1,1,3]. Similarly, if a human hand grasped a cup,
for example, and the thumb, index finger, middle finger, make soft finger
contacts on the object, the ring finger slips on the surface, and the small
finger is removed. the constraint state would be represented by [1,1,1, 3, 4).
More generally, the constraint state is denoted by

C = [61, C2yeeey c,,.] (247)

where ¢; is the contact type for the i** contact.
For each constraint state there is a corresponding set of permissible mo-
tions allowed for the grasped object.

2.7 Permissible Motion

From the previous analysis, the set of permissible motions for an object
constrained by a single contact was given by T, equation 2.43. Now assume
the object is constrainted by multiple contacts and let the set of permitted
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motions for each contact be given by Tj,), where c¢; represents the contact
type for the i** contact.

If there are m constraints on the object, the set of permissible twists for
a grasped object is by the intersection of all the Tj,,

T[c,cz...cm] = n{T[clh ‘T[czla ey T'[cm]}- (248)

The goal of this chapter was to describe all the possible ways an object may
move within a praticular grasp. Equation 2.48 describes, in terms of twists,
the set of all permissible finite motions that an object may undergo in a given

grasp.



Chapter 3

Strategies for manipulation

3.1 Introduction

In this chapter, we will examine different external forces that can act on an
object and how they can be used to move the object around in a grasp. An
object may be influenced by a number of other forces besides the grasping
fingers of a robot. Gravity, acceleration, electro-magnetic forces, other ob-
jects, or free fingers can all exert forces on the object. Although these forces
differ, they can all be collected into a single ezternal wrench acting on the
object. The object will then tend to undergo a twist repelling to this exter-
nal wrench. The set of twists repelling to the external wrench can be called
the preferred twists, since they describe the possible motions the object can
undergo. The actual motion, however, will depend on the constraints on the
object. That is, in order for object to actually move, the set of preferred
twists must intersect the set of permissible twists, discussed in chapter 2.
The the direction the object will move wili then lie in this intersection.

We will begin by examining a general strategy for using the external
wrench to meve an object in a grasp. Then we will examine different external
wrenches including gravity, controlled accelerations, and forces produced by
the robot and the environment. For each of these external wrenches, different
controlled slip manipulation strategies will be investigated.

27
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3.2 General strategy

Assume a grasped object is subject to an external wrench we. The object
will then tend to undergo a twist repelling to this external wrench. The set
of repelling twist, or preferred twists, is given by

T, = {tlwe, ts + we, ts + we te + we, by + Weytz + W ts > 0}. (3.1)

In order for the object to actually move, however, the set of preferred twist
must intersect the set of permissible twists. That is,

T = T, Tiey....om] (3.2)

where T, ......] is the set of all possible motions the object may undergo while
in the [¢;,. .., cm] constraint state.

The set of twists described in equation 3.2 is of particular interest, since
this set will describe the way the object will actually move. If T = @, then
the object is completely constrained and will not move at all. If T contains
a single twist t, then the object will move in a direction described by this
twists. This case is especially important in controlled slip manipulation, since
the geometry constraints and the external wrench together specify a unique
motion of an object within the grasp. However, if T contains more than a
single element, the resulting motion cannot be determined from the geometric
analysis alone. Dynamics, external forces, internal grasping forces, and local
surface friction properties must all be taken into account to determine the
exact object motion. Although this type motion is difficult to control even
for humans, it should not be ignored in robotic manipulation, since it may be
useful in predicting motion to recover from inadvertant slipping, or for more
complex dexterous motions. In fact, geometrically unconstrainted motion
was analyzed by [Mason], in which he predicted the motion of an object
sliding in a plane while subject to a specific velocity at a single point.

The objective of controlled slip manipulation is to control the motion of
an object relative to the grasp. There are some motions which are easy to
accomplish through controlled slip manipulaton. These are motions which
are both allowed by the constraints on the object and bound by the geometry
contacts. In other words, if the intersection of the permissible and preferred
twists, equation 3.2, is a small bounded subset of the t-.ist space for a par-
ticular, these twists will describe motions which can be easily implemented
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by a robot. Therefore, when planning controlled slip motions, consideration
should be given to these constrained twists as well as the twists which are
particularly desirable. In any case, at some point, a desired twist is selected
tq. This twist describes a motion that the object should undergo within the
grasp of the robot. In order to facilitate this desired motion, the external
wrench on the object should be optimized so that it will move the object
through the desired twist. The optimal external wrench is one in the virtual
work of the wrench against the desired twist is a maximum. These external
wrenches are

{we|maz{w(we, tq)}}. (3.3)

In the following secitons, we will examine different ways to exert an ex-
ternal wrench on a grasped object and how these external wrenches may be
used to control the slipping motion of an object within a grasp.

3.3 Specific strategies
3.3.1 Gravity

People use gravit;- to their advantage when manipulating objects. We repo-
sition objects in our hands by allowing then to drop, slide, or rotate between
our fingers. Consider, for example, when a glass of water is raised from the
table. We can allow the glass to rotate between our fingertips so that the
glass remains vertical. Relative to our hand, gravity has been used to rotate
the glass and in this way maintain the vertical orientation. Gravity can also
be used by a robot manipulator to reposition objects within a grasp. The
force imposed by gravity can be modeled as a single force at the centroid
of the object. If this force is described as a wrench and object motion as a
twist, the set of repelling twists will describe the all ways the object will tend
to move. Hand orientations can then be determined to optimize the use of
gravity to move the object through a desired twist.

Suppose we wish to use gravity to move an object within a grasp. First,
we specify a desired twist, tq , that is, a twist, relative to the grasp, through
which we want the object to move. Then, by reorienting the object, the
external wrench w, relative to the grasp, can be varied. The virtual work
created by the external wrench against the desired twist changes as a function
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of the object orientation. It is then possible to determine a set of object ori-
entations for which the virtual work is . maximum and at these orientations
gravity will be optimally used to move the object.

To illustrate how gravity might be used, suppose a desired twist tq is
specified in screw coordinates relative to an object frame O,X,Y,Z,. The
object frame is a coordinate system whose origin is the centroid of the object
and whose axes are fixed within the object. Now let the object frame be
defined in terms of the hand frame frame O X,Y,Z),, where the 2z axis of
the hand frame is parallel to gravity, figure 3.1 and the  and y axes are
defined for a specific hand. The hand coordinate system for the Salisbury
robot hand is descirbed in appendix A. In this example, suppose the axes of
the object frame are initially aligned with the axes of the hand frame. The
wrench cause by gravity acting on the object defined relative to the object
frame is

- - -

wy 0 ]
Wa 0
_|way}| _| —mg
=1 |=10 (3.4)
Ws 0
Lwe] LO ]

where g is the gravitational acceleration and the m is the mass of the object.
However, if the object frame is rotated, the value of the exterral wrench
defined with respect to the object frame changes. The Salisbury robot hand
has the ablity to rotate the object through arbitary angles about the axes of
the hand frame. Therefore, assume the object frame is rotated by an angle 0
about the z axis and then by an angle ¢ about the y axis of the hand frame.
Now the external wrench in terms of the object frame will be

[w; | [ —mgcosfsing ]
Wo —mgsiné
we=| |- —mg cos 8 cos ¢ (3.5)
Wy 0
Ws 0
| We L 0 )

Only two rotations are used in equation 3.5, since rotations about the z-axis
of the reference frame produce no change in the wrench.
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Figure 3.1: The wrist can be used to orientate the object in a grasp so that
gravity can be used to move the object

w = —mg(cos §sin ¢t,, + sin Otes + cos 0 cos Pte,), (3.6)

- =1 te
é = sin 7'!'.““5%4-:!. (3.7)
cos~! %e )
cos(8) ‘c."“:g""e.

Subsituting the values for g and ¢ into equation 3.6 yield either positive or
negative values for the virtual work. Values of 8 and ¢ for which the virtual
work is positive, produce the maximum value of virtual work.

Therefore, by using the wrist to rotate the hand about the angles given in

'
]
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However, it may be difficult, since the external force cannot be controlled;
all the control must come from the wrist and the fingertips. The manipulator
must also responed quickly to the motion of the object, since once it begins to
slide it will continue to slide. Other methods, such as, controlled accelerations
and point forces from both non-grasping fingers and external objects, can be
used as a more controlled means of producing an external wrench on an
object.

3.3.2 Controlled accelerations

It is possible to accelerate hand to create a force on an object. For example,
we loosen our grasp and flip an object in our hands, we have used an ac-
celeration to create a force on the object to produce a desired motion. Tlie
strategy involved is to create an external wrench on the object while a the
same time adjusting the grasp so that the object is in a constraint state which
will allow it to slip.

Using the definitions in the previous section, we will find the direction
the hand should be accelerated to move the object through a desired twist.
Again, assume a desired motior. is specified by a twist tq defined in screw
coordinates relative to the object frame. To maximize the virtual work, the
direciton of the acceleration, in terms of the object frame, should be in the
same direction as the twist. Simply,

~ - - -

ag t4,
ag td,
a,,, 1 td3
a= = — 3.8
a: | T Ttal | ta (35)
a, ta,
L a - L tdo o

Although, the use of controlled accelerations is one way to move an object
within the grasp, by far the most common and effective way to reorient an
object within a grasp is the use of free finger, that is, fingers not directly
involved with the grasp, and other objects.
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3.3.3 Free fingers

Fingers not involved with the actual grasp can be used to move the object..
This is very common in human manipulation. We can reorient a pen , for
example, by holding it between two of our fingers and spinning it with a
third. A multifingered manipulator can also use free fingers to manipulate
objects. While some of the fingers constraint the object, the others have
the freedom to reorient it within the grasp. This may also be an arguement
for multifingered hands, since the additional fingers allow greater flexiblity
in producing constraints on an object as well as allowing the free fingers to
manipulate the grasped object.

The strategy is to constrain the object with some fingers while allowing
other fingers access to the surface of the object so that they may extert
controlled forces on it. Suppose the suface of the object can be represented
by a set of points S and for each of the i free fingers there is a subset of S of
accessible surface points, S; C S.

Figure 3.2 shows an object located with respect to a reference frame
OXY Z. For each point x € S;, a specific set of forces can be exerted through
the contact. Asume the forces lie within the friction cone at the contact. That

is, the set of wrenches which can be exerted in terms of the contact frame
O, X.Y., 2., are
{wilyw? +wZ < py/wg} (3.9)
where p is the coefficient of friction. The set of wrenches defined relative to
the reference frame is
{we = Tjw;} (3.10)

The wrenches in equation 3.7 are a combination of both the accessible surface
points which the free finger can reach and the forces which it can exert
through each contact point. Suppose a twist is defined tq defined relat. '¢ to
the reference frame O XY Z. The values for the virtual work of the twist tg
against the wrenches in 3.7 is

W= {w W = We, 4, + we,tyq, + Weylyy + we, g, + We tg, + w,,td,} (3.11)

The combination of wrenches and accessible surface points which maximizes
the virtual work can be expressed as a set of pairs

{(w, %)[(w,x) € max{W}} (3.12)
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We

free finger analysis. Only the accessible surface points S; are different, since



Chapter 4

Grasping force

4.1 Introduction

There are many ways for a multifingered hand to squeeze an object. People
can grasp objects to secure them in their hand or, by carefully controlling
the internal forces, allow objects to slide through their fingers. A robot ma-
nipulator can also use the internal grasping force to create both stable grasps
or unstable grasps. Robots car grasp an object securely or by regulating the
grasping force control the constraint state on an object to produce a desired
slipping motion.

The variety of ways a hand can squeeze an object depends on the number
and type of contacts which exist between the hand and the object. The goal
of this chapter then is to determine the space of possible grasping forces on
an object and to develp a simple intuitive parameterization of the squeezing
force space for two and three fingered grasps.

35
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4.2 Grasp force analysis

Assume the manipulator exerts a wrench on the object

p- -

we, = (41)

defined in screw coordinates relative to the contact frame O,, X..Y,.Z... Sup-
pose that the contact frame can be defined in terms of a common reference
frame OXY Z, as shown in figure 4.1. The wrench in terms of the reference
frame is

wi = Tiwg, (4.2)
where T ie the transformation matrix discussed in chapter 2. The sum of
the wrenches from n contacts between the robot and the object is

W= iwi (4.3)

Assume the object is not subject to any external wrench and is not ac-
celerating. The sum of the wrenches in equation 4.3 is then zero.

w=0 (4.4)

One additional constraint will be assumed. It is assume that only forces
through a point contact contribute to the internal grasping force. The mo-
ments at the contact point will be assumed to be zero. So that the wrench,
in terms of the contact frame, is given by wg; = [wy,, wp,, 1,,,0,0,0]. With
these assumptions, it is now possible to determine the wrench at each contact
relative to the contact frame, as a funtion of the internal grasping force.

4.3 Two contacts

Assume the robot touches an object at only two points. Therefore the sum
of these wrenches, equation 4.4, is



CHAPTER 4. GRASPING F ORCE 37

isw=3n Wi and if the object is neither subject to external wrenches nor
accelerating, this wrench w is zero,
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There are six unknowns in equation 4.5. These are the elements of the
wrenches, w1 = [wg,, Wy, ,wy3,,0,0,0] and wy = [wg1,, Wy2,, Wa,, 0,0, 0).
However, equation 4.5 yields only five linear independent equations. There-
fore, there is a single infinity of solutions for which equation 4.5 is true.

The one space of solutions can be thought of as an arbitrary squeezing
force, given simply by a grasp force magnitude mgy. Once the grasp force
magnitude is specified, the values of the wrenches Wg, and wg, can be
found. Let the grasp force magnitude m, be given by

mg =) \/wgl.' +wiy, +wly, (4.6)
1=1

Given a value for m, the values for the wrenches at the contacts can be found.
The screw coordinates of the wrench due to internal grasping force can
be found more easily by considering the wrenches in terms of an axis, a
pitch, and a magnitude. Assume the two contact forces are described by
wrenches w; and wy, defined by wrenches axes A; and A3z, zero pitches,
and magnitudes m; and m, respectively. Since the object is neither subject
to an external wrench nor accelerating, both the wrench axes must intersect
the contact points and have opposite directions, figure 4.3. The wrench axes

are given by,

f' (Il -_— 32)
gyl - yzg
A = = #1— 2 .
FMEFA= ] - ) il - =) (1)
21(21 = 23) — z1(21 — 2;)
| —n(z1 — z2) + (1 — y2) |

where d is the distance between the contact points

d= /(21— 222 + (11 — 12)? + (21 — 22)? (4.8)

Notice the direction of the axes in equation 4.7 are opposite, yet the value
of one of them may be either positive or negative. This analysis does not
detemine the sign in equation 4.7, since this will depend on the physical
system. For example, if two fingers grasp a block, the wrench axes would be
directed into the block, but if the fingers grasp inside a ring, the wrench axes
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would be directed outward. Therefore the direction of the wrench axes will
be determined by the direction of the contact normal. The direction of the
axis which yields a negative value of the dot product between the contact
normal and the wrench axis will be the correct direction. The magnitudes of
the wrenches, however, are independent of the physical situation, but depend
on the grasp force magnitude.

The sum of the individual magnitudes is given in equation 4.6

mg = my + my (4.9)

The magnitudes of the wrenches, however, must be equal, since if one ex-
ceeds the other, there will be a net wrench on the body contradicting the
equilibrium assumption. That is,

m; =mg (4.10)
Then by equation 4.9 and 4.10
m; = my = my/2 (4.11)

The wrenches w; and w2 are now uniquely defined. The wrench axes are
given in equation 4.7, the magnitudes in equation 4.11, and the pitch of both
wrenches is zero.

It is useful, in the later analysis, to express the wrenches in terms of a
reference frame and the contact frame. The wrenches w; defined in terms of
screw coordinates relative to the reference frame are

[ (21 — z2)
(v1 — y2)
W1 = —Wg2 = ﬁ (21 . 22) (4.12)

2d | —z(y1 —y2) + vi(z1 — z2)
zi(z1 — 22) — z1(21 — 22)
L —i(z1 — 22) + 71 (1 — Y2) |
The screw coordinates of the wrenches in terms of the contact frame is a
linear transformation of the elements in equation 4.12. That is,

Wg, = T;lws (4.14)

where Ti'l are the inverse of the linear transformation matrix discussed in
chapter 2.
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X X ®

Figure 4.2: 1If there are only two fingertip contacts on an object and we assume
the fingertips can only exert forces through the contact, the direction of the force
vectors must lie on the common axis intersecting the two contact points. If the
contact forces are described in terms of wrenches, the axes of wrenches intersect
the two contact points, the magnitudes are identical, and the pitches are both zero.
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4.4 Three contacts

For a three fingered hands, such as the Salisbury or Okada {Okada] robots,
three fingertip contacts are possible. Assume then, that the robot touches the
object at three points. Again assume, that for the squeeze force, the robot
can only exert forces through the contacts. Therefore, the wrench at each
contact defined in terms of the contact frame is Wg, = [wg1;, we2,, wy3,, 0,0, 0]
The wrench, in screw coordinates, defined in terms of a reference frame is

wi = Tiwg, (4.15)

where T is the linear transformation matrix described in chapter 2. There-
fore, the sum of the wrenches, from equation 4.4, is

There are nine unknowns in equation 4.16. These are the elements of the
wrenches, w1 = [wg,,wp,, wg3,,0,0,0], wo = [wg,,wgs,,w,s,,0,0,0], and
Wz = [wg,, Wya,,wg3,,0,0,0]. Equation 4.16 yields six independent equa-
tions; however, this still leaves three indeterminant variables. This three
space of possible solutions can be represented fairly simply. The wrench axes
of each of the three wrenches will, in general, intersect at a point, grasp force
focus. This grasp force focus must lie on the grasp plane. The grasp plane is
defined to be the plane containing the three contact points. In general, the
grasp plane will be well defined. However, if the contact points lie along a
single line, the plane collapses to a line and the grasp focus lies somewhere
along the line. If the grasp plane exists, however, the grasp force focus, de-
fined by a point z, y, on the grasp plane, may lie anywhere on the plane. As
long as there is no external wrench on the object and the object is not accel-
erating, the wrenches will intersect at this point, except for one exception.
The wrench axes may all be parallel and still be in equilibrium. In this case,
the grasp force focus parameterization can still be used if we also consider
points at infinity on the grasp plane.

There is a third variable, the grasp force magnitude m,. The grasp force
magnitude is a scaling force by which individual wrench values are multiplied.
Together the grasp force focus and the grasp force magnitude span the entire
three space of internal grasp solutions. By choosing a grasp force focus Ty Yy
along with a grasp force magnitude m,, we can uniquely define the internal
squeezing force created by a three fingered grasp.
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To find the wrenches resulting from this parameterization of the grasp
force space, we will first find the wrenches defined in terms of the grasp frame
then map the results into either a reference frame or contact frame. Let wi
represent the wrench defined relative to the grasp frame and let x{ = [z, 3/, 0]
represent a contact point in the grasp frame. The wrench axes A} of each
of the wrenches will be the direction vectors from the contact points Xj to
the grasp force focus xg or from the grasp force focus to the contact points.
That is, the wrench axes are given by,

_ z,— ! -
) Yo B‘ v
4
S 4.
A; :hldil 0 ( 17)
0
L _?/.{(1'9 - I:) + 3:'(3/9 - 3/:) i

where |di| = \/(z, — =1)? + (3, — ¥!)2.

The sign used in equation 4.17 will be consistant for each of the 7 contacts.
The value of the sign depends on geometry. Again if the fingers were grasping
a sphere and the grasp force focus was selected in the center of the sphere,
the sign of Aj would be positive. Conversely, if the fingers were grasping a
torus from the inside the sign of A would be negative. In general, the sign
depends on the direction of the normal to the contact. The sign should be
chosen so that the dot product of the wrench axis against the contact normal
at most of the contacts is positive.

Let the magnitude of each of the wrenches be given by m;. Now let the
grasp force magnitude equal the sum of the individual wrench magnitudes.
That is,

myg=m; +ma+mj (418)

Since the wrench axes are given by A}, in equation 4.17, and the magni-
tudes are given by m;, the first two elements of the wrench in screw coordi-
nates relative to the grasp frame is

w), = mi(z, — })/|d (4.19)

wy, = my(y, — ¥i)/|dil (4.20)
(4.21)
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By the equalibrium arguement equation 4.4, the sum of the elements in
equation 4.16 of all three wrenches must sum to zero. Together with equation
4.18 this will, in general, yield three linearly independent equations and three
unknowns

(zg = 21)/ld1] (29— z3)/|d2| (zg —23)/1d3| | [ ma 0
(¥ — !ii)/ldll (45 — z&)/ldzl (v — ﬁé)/ldal my {=1| 0

Solve for the magnitudes m;

m; (zg~)/|d| (zg ~5)/|da| (x4 —24)/|ds] 17" [ ©
ma [ = | (= v)/lal (v —3)/ldal (9, —vi)/lds| { | ©
1 1 1 m,
(4.23)
The matrix in equations 4,22 and 4.23 will be invertable except when the all
three contact points lie on a single line and the grasp force focus is a point
not on the line. In this case, the grasp force focus must be selected on the
line and the magnitude will be proprotional to the distance from the contact
points to the focus. That is,

m3

m; = mg|d;| (4.24)

In any case equation 4.21" defines the wrench axes_equations 4.21 or 4.22

AV A T Kedddd

defines the wrench magnitudes, and pitch are all zero. The wrench resulting
from the internal force at each contact is now defined by a grasp force focus
rg and y, and a grasp force magnitude m,.

The wrenches are now defined, however, screw coordinates defined relative
to the grasp frame are

[ T, — T
Y9 — y;
m; zg — 2|
wi=+— N 4.25
PEEET | sl - ) + itz - 2) (42
zi(zy — ) — zi(z, — T)
L —vi(zg — z) + zi(y, — i) |

and in terms of the contact frames

wg, = Tjw] (4.26)



CHAPTER 4. GRASPING FORCE 44

where T is the linear transformation relating the wrench defined in the
contact frame to the grasp frame.

Ve

/
4.5 Four or more fingered grasps
For four fingered hand like the MIT/Utah hand, [Jacobsen], there are twelve

unknowns and still only six equations, yielding a six space of internal grasping
force solutions. For the human hand, for manipulators with six or more
fingers, or for grasps involve more than five contacts, the dimension of the
internal force space grows very large. The dimension of the solution space
for internal grasp force is

Dim{G} =3(N —2) + U (4.27)

where G is the space of internal grasp solutions, N is the number of contacts,
and U is the number of freedoms of the grasped object.
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Figure 4.3: There is a three space of solutions for the internal grasping force for
a three fingered hand. The axes of the force vectors from the individual contacts
must intersect at a point, the grasp force focus Xg = [Z4,Y,,0] in the grasp plane.
The grasp force magnitude m, scales the individual fingertip forces. Together,
the grasp force centroid and the grasp foorce magnitude span the three space of
internal grasp solutions.



Chapter 5

Contact wrenches

5.1 Introduction

In order to determine the different ways an object may move in a grasp, the
constraint state of the object must be known. The constraint state of the ob-
ject can be found knowing the location, orientaton, and the types of contacts
that exist between the object and the manipulator. A tactile sensor might
supply contact location a1d orientation information, but a sensor which de-
termines the contact type does not exist. In order to find the contact type at
the fingertips of the robot, the contect wrench, that is the set of forces and
moments which exist at the contact point and defined in terms of the contact
frame, must first be determined. Then a relationship must be found between
the contact wrench to the contact type. The purpose of this chapter is to
determine the contact wrench. The purpose of the next chapter will be to
determine a simple relationship between the contact wrench and the contact
type. In this way we can find the constraint state of the object as a function
of the grasping force and the external forces.

5.2 Stiffness

Assume a hemispherical compliant fingertip touches a flat plate, as shown in
figure 5.2. To begin the analysis, assume the interface between the fingertip
and the object can be modeled as a soft finger contact. That is, both forces
norrnal and tangent to the surface as well as moments about the surface nor-

46



CHAPTER 5. CONTACT WRENCHES 47

mal can be transmitted through the contact point. A system of translational
and rotational springs attached to the contact point will be used to model
the fingertip, as shown in figure 5.2. The stiffnesses of the i*" fingertip can
be represented as a matrix relating the twist to the wrench

’- kCl 0 0 ]
0 0 k‘Cg 0
_ 0 0 kCa
ke, = ke, 0 0 (5.1)
0 kC5 0 0
L 0 0 ke ]

For a soft finger contact, the elements kcs and kcs are zero. That is,
the fingertips cannot generate moments about any axis which lies in the
contact plane. However, for generality kcq and kcs are included, since linear
and planar contacts can exert moments about axes in the contact plane and
these contact types may be used in future analyses.

The stiffness given in equation 5.1 is defined in terms of the contact
frame O, X, Y., Z.,. In order to relate this stiffness to the object, the fingertip
stiffness must be defined relative to a common reference frame OXY Z. That
is,

k; = TikciTi-l (5.2)

where T is a transformation matrix of the i** contact discussed chapter 2
equation 2.14. The matrix T relates the screw defined in the contact frame
to its definition in the reference frame.
The stiffness of the entire object will be the sum of all the individual
stiffness matrices n
K= Z k;.

=1
Assume the object is displaced by a twist t, the wrench on the object is
given by

(5.3)

w =Kt (5.4)

Assuming the object is not accelerating, the wrench given in equation 5.4
must equal the external wrench on the object, we, which was discussed in
chapter 3.

W= W, (5.5)
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Figure 5.1: The contact between the manipulator and an ob ject is generalized
as a hemispherical compliant solid touching a nondeformable flat plate.

The twist the object undergoes can now be determined as a function of the
external wrench on the object, by taking the inverse of K in equatioa 5.4.

t = K_IWG (5.6)

The twist in equation 5.6 is defined in screw coordinates relative to the
OXY Z reference frame. The twist defined relative to the contact frame can
be found by multiplying by the inverse of the transform matrix T;

ti = TiK 'we (5.7)
and the wrench at the contact, in terms of the contact frame, is
Wi = kciTiK_IWe (5-8)

The wrench in equation 5.8 must be added to the wrench due to the grasping
force which was discussed in chapter 4.
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z.,

T kt fte, Yﬂ
kt g

ke, kyee,

kﬂc. kt!‘c.

F lg.ure 5.2:  The fingertip is modeled as a set of translational and rotational
springs connected. to the contact point. The stiffnesses are defined in terms of the
contact frame. Since a soft finger contact is assumed, there is a stiffness in the

normal and tangent directions of the cont
act plane, as well as i ;
about the contact normal. ’ » @ torsional stiffness

Equation 5.9 describes the wrench at the contact point defined relative to
the contact frame as a function of the stiffness of the contacts, the forces on
the body, and the force the grasp. Using this result and the results in the
next chapter, it will be possible to determine the contact type as a function '
of the forces on the object and the squeezing force. Once the contact types
are found, the constraint state of the object will be known.



Chapter 6

Contact wrench /contact type
relation

6.1 Introduction

point contact with friction, a point contact without friction, and no contact,.
Assuming coulumb friction, if the tangent force is less than the coefficient
of static friction times the normal force, the contact will not slide and thys

30
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behave like a point contact with friction. If the tangent force exceeds the
coefficient of friciton times the normal force, the contact will slide, behaving
itke a point contact without friction. Finally, if the normal force does not
exist, there is obviously no contact.

Given a wrench at the contact point defined by

[ wy ]
Wy

w= 8 (6.1)
0

L We

where w, force in the tangent direction, w; is the force normal to the surface,
and ws is the moment at the point of contact (which for fingertip contacts is
zero) and given the possible contact types,

1 = Point contact with-frictiom ————
//T:Piﬁt—zontact without friction (6.2)

3 = No contact
the relationship between the contact wrench and the contact types will be

lwn| < Jpws| = 1
[wr]| 2 |pws] = 2
wy >0 = 3

For the three dimensional case, an exact relation between the contact type
and the contact wrench is quite difficult; however, a simple relationship can
still be useful.

6.3 Three dimension.s

Determining when and where a three dimensinal compliant contact breaks or
twists in response to an applied wrench is currently at the forefront of finite
element analysis. Exact solutions are, in general, unknown. The force dis-
tribution over the contact region between two hemi-ellipsoidal objects under
an axially applied load can, however, be found through use of a linearization
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contact wrench.

Hertz assumed two bodies i
disks, each Possessing a minimy
more, he assumned that these dis
under a uniform axially applied |

The pressure distribution is given by

P(z,y) = Po\/l —z?/a? — y2/p3 ' (6.3)
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The total load, therefore, is equal to the volume of the semi-

_ 2nabP,
—1 -—3—

Solving for P,
3F

P=—_

27ab
where a and 4 are given by Timosheko (Lipson]

3FA
4(A + B)

b nol SFA
BT EY:)

A=(1-u)/E +(1-u2)/E,

a=mg

where

where 0.15

(6.6)

(6.7)

(6.8)
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#1142 Poisson’s ratio

E\E; Modulii of elasticity

A+B i(k+4+ %+ )

B-4 %\/(ﬁ,--ir)+(n‘:-ﬁ‘;)’+2(i.--:ir)'(n‘:-n';)cos(w>

¥ The angle between the planes contacting the curvatures ] /Ry and 1/R,

R\ R} R; By, Mimimum and maximum radij of curvature of the ellisoid
disks at the point of contact

m,n Constants depending on 5 — A/B+ A

In the case of the contact between a hemispherical fingertip and a flat
rigid plate, equations 6.6 and 6.7 become

a=b=3FR,A/3

and the maximum Pressure is given by

;/ P
P, =0.578 -R?T (6.10)

2gain the definition of A ;s
A=(1-u})/E +(1 - 2)/E,

If the flat plate is assumed t
approximated as

(6.11)
o be rigid (i.e. E2 > Ey) then A cap be

A =(1-u})/E, (6.12)
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The materical on the fingertip of the Salisbury robot hand is a polyure-
athane with an elastic modulus of approximately 40,000 Psi. and a poisson’s
ratio of about 0.45. The radius of the fingertip is approximately 0.5 in,
therefore

A = 20x10%
P, = 1247.9\‘/17&:;’
a = 0.020VFin

The pressure distributicn given in equation 6.3 can now be given in polar
coordinates, since the pressure region in this cage s given by the area of
circle. That is,

M=y A rdf (6.14)
Substitute the values into equation 6.14
r=a ré=2x 3 F\/m 2
M=uf [ T gmge " drdd (6.13)
and evaluating the above equation yields
_ W3aF
=3 (6.16)

Substituting the valye for a
M= 3uF J3IFR(1 - u?)
KD 4E,

M is proportional to the four-thirds power of the normal force, while the
constant of Proportionality is a function of constant properties of the fingertip
material and the surface, That is,

M=y, 3 (6.18)

(6.17)
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_ 3u SRU = 4D
Hm =35 4E, (6.19)

If the specific values for the Salisbury robot fingertips are substituted
along with a value of p = 1.0 for the coefficient of static friction, the maxi-
mum twisting moment will be

1.83 x 1073F4/3, (6.20)

where

Now ignore the moment and assume a force is exerted tangent to the
contact surface. This is simply the case of coulomb friction. That is the
maximum tangent force will be

t= ﬂF (6.21)

In order to further simplify this analysis, assume the maximum moment
which can be exterted about the contact normal is a linear function of the
normal force. That is,

M = pnF (6.22)

where p.m is given in equation 6.19.
The purpose of this analysis is to determine the contact type as a function
of the contact wrench. Given the contact wrench in the screw coordinates
- wy ]
wr
| Ws
W= e (6.23)
ws
{ Ws
w, and ws will automatically be zero, since we are only considering fingertip

contacts for now. Now the relationship between the contact wrench and the
contact type, given the linearizing assumptions discussed above, will be

Vwl +wd < |usws| and \Jw < lsmwal =
Vul+w} < |ugws| and \Juw§ 2 Bmws| =
Vi +wi 2 lpgws| =
w320 : =

(6.24)

W N -~

where
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M

o~

Figure 6.3: When the force tangent to the contact exceeds 4 times the normal
force, assume the contact is sliding on the surface. If the tangent force is iess than
psF, and the moment about the contact normal exceeds um times the normal
force, assume the fingertip is twisting relative to the contact surface at the contact
point. Finally, if both the tangent force and moment are less than usF and gy, F
repectively, assume the contact is rigidly fixed to the surface.

F F

1 Soft finger contact
2 Point contact with friction
3 Point contact without friction

4 No contact

and g == 1.83% 1073 in and 4 = 1.0 are the approximations for the Salisbury
robot hand grasping an aluminum can. With the relation given in equation
6.24 and the analysis of the previous chapter, it will now be possible to
determine the constraint state of a grasped object as a function of the external
forces on the object and the squeezing force of the hand.



Chapter 7
Controlled Slipping

7.1 Introduction

might be implemented 0n an actual robot system. The next chapter describes
how these ideas were applied to the multifingered Salisbury robot hand.

7.2 Two dimensiona] example
Two fingers grasp a rectangle on opposing sides, as shown in figure 7.1. In

this particular example, the fingers grasp the block at the center of its top
and bottom sides, The block has a height of 4 cm and a length of 7 cm and g
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example, we are assuming the block only moves in the zy plane and that gravity
exerts a force on the block in the negative y direction.

7.2.1 Constraint
Contact types

Objects constrainted to movein a plane, in general, have five different contact
types. These are: a line contact with friction, line contact without, friction,
point contact with friction, point contact without friciton, and no contact.
Since only fingertip contacts are considered here, this Jist of contact types re-
duces to three: a point contact with friction, a point contact without friciton,
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Figure 7.2: There are
frame, the hand frame,
dimensionals 4x7 cm an

five coordinate frames s
the object frame,
d a mass of 0.2 kg

hown in this example, the reference
and the contact frames. The block has

1 Point contact with friction
2 Point contact without friction
3 No contact

These numbers will be combined together in a Jist to represent the constraijnt
state of the object in a grasp.,
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Constraint states

the list and the finger on the bottom be second. For example, if the fingertip
on the top of the block were beginning to slip, but the finger on the bottom
remained fixed, the constraint state of the grasped rectangle would be [2, 1].

Permissible motions

can be represented by a set of twists. For consistancy, the twist wil] still be
represented by the six element vector t = (¢, ¢,, ¢,, ty, ts, tg); however, for the
two dimensional case, the elements t1, &3, and t4 are zero, Then the elements
t4 and t5 are the translations in the and y directions and t3 is the rotation

with respect to some referen-e frame O X YZ. Let the reference frame, in
this case, be defined as the initial position of the object frame, That is, the
origin of the reference frame is the point exactly between the two contacts,
the z axis is parallel to the z axis of the hand frame and the y and z axes
are perpendicular to the z,

In the two dimensional case, sets of twists may e répresented graphically.
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about the normal to the ¢4 ¢4 plane).
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t3

Figure 7.6: In general the unit twists will not lie on a plane. In this case, the
set of twist will be tepresented by sections of a sphere.

permissible motion js represented by either single vectors, shaded disks and
sections of spherec,

7.2.2 External wrench

A wrench in two dimensions May be represented by the six element vector
W = [wl,wg,wa, Wy, ws, wg), where W3, wy, and wy are zero, Then the ele-
ments w; and w, represent force in the z and y directions respectively and
We represents the moment about the normai to the plane.
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’ 21 ’ 22 2

for the rectanglur block including local surface
geometry
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the OXY Z feference frame is
)

0
-m

0

0 (7.1)

0

0

L 0]

and with respect to the object frame, it js

" —-mgsinf ]
—~mg cos§

Suppose we can reorient the block in the zy plane to any angle 4, figure
7.9. Effectively, through the use of gravity, we have means of changing the
wrench on the rectangle with réspect to the object frame, Let the block
have a mass of 0.2039 kg. From the above equation, the external wrench, in
newtons, becomes
" —2siné ]
—2cos ¥

0 (7.3)

0
0
0

7.2.3 Grasping force
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Figure 7.9: The rectangle can be reoriented in a gravitational field to any orien-
tation 8

relative to the contact frames at each of the fingers, this internal wrench will
be, for each finger,

[0 ]
—F/2
wy = 3 (7.4)
0
0 |
and
0
~F/2
wp=| O (7.5)
0
0 |
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7.2.4 Contact wrenches

knorrnal = 5N/Cm
k!angent = QN/Cm

Knormal

klangml

Figure 7.10: Fingertip contacts between a manipulator and ap object in two
dimensions can be replaced by a set of two springs: a s§pring normal to the contact
with a stiffness of knormas and a SPring tangent to the surface ktangene.

Since we are ignoring the stiffness of the finger mechanism, the wrench
at the i contact defined with respect to the contact frame js
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wp = kciTi-lK-lwe + wig; (7.7)

where

1. k. is 6 x 6 element stiffness matrix representing the the stiffness at the
contact point in terms of the contact frame,

[0 0 0 _ktangent 0 0 ]

0 0 0 0 —knormat O

0 0 0 0 0 —00

kc‘ T ]l=-0c 0 O 0 0 0
0 -~-o00 O 0 0 0

L0 0 0 0 0 0 |

Note the values of the stiffress are negative, since we are interested in
the force on the object as a result of the displacement of the fingertips.
Replaced lc,=1 and ka with the numerical values

0 0.0 -2 0 0 ]
0 0 0 0 -5 0

0 0 0 0 0 -oo

key=ke =1 _ & 0 0 0 0 o0
0 -0 0 0 0 0

L0 0 0 0 0 0

2. T} is a transformation matrix for the i contact defined in chapter 5.
For two dimensions, this is

[ l; m. 0 ]
I, m, 0 0

0 0 1

Ti= 0 0 y . m; 0
0 0 -z lyb, m, 0
L~y mz—-—m;y O 0 0 1] ]




and the inverse

|l

Iz

ms

0
0 0
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m, 01|
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0
0
1

It

m; = [m;, m,); and n; = [n.,n,); are the tangent and normal vectors;
and, z; and y; is the location of the :** contact. Therefore,

and

T2

. The inverses are

and

T3!

I

|

|

0 01
0 00
-1 00

|

0

] :

-1
0
0

-1
0
0

0

0

-1 0

0

¢ O
-1 0
0

1

1

|

]
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3. K is the total stiffness of the grasped object

K=k

=1

72

where k; is the stiffness resulting from the i** contact at the origin of

the object frame.

where T; and T} are given above and and

-

ki =

ki =

Then K = k; + k2

and the inverse, K- is

K- =

K| = Tike, T
0 0 2 -2 0 0
0 0 0 0 -5 O
—00 0 0 0 0 -o0
-200 0 0 0 0 -o0
0 -0 0 0 O 0
0 0o -2 2 0 0
0 0 2 -2 0 0
0 0 0 0 -5 0
-0 0 0 0 0 -
—2c0 0 0 0 0 oo
0 -o0 0 0 O 0
0 0o -2 2 0 0
0 0 0 -4 O 0
0 0 0o 0 -10 O
0 0 0 0 0 200
4900 0 0 O 0 0
0 200 0 O 0 0
0 0 -4 0 0 0
0 0 000 07
0 0 00O0 O
0 0 00O -_‘—4
- fz 0 000 O
0 -_-175 000 O
L 0 ¢ 000 O |
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4. we is the external wrench

( —2sin8 ]
—2cos @
0
We = 0
0
| 0
5. wg; is the internal wrench
[ 0
—F/2
0
0
0 |

Subsituting in the values for this particular example, the contact wrenches

are
—sinf
—cosf — F[2

0 (7.8)

0
0
0

and
sin @

cosf — F/2

w2 = (7.9)

0
0
L0 ]

Plots of the contact wrenches as a function of the squeeze force, F', and the
orientation @ are given in figure 7.11.
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Finger 1

Tangent force Normal force

Finger 2

Tangent force

Figure 7.11: The normal force and the tangent force at each contact, relative to

the contact frame, as a function of the squeezing force F and the orientation of
the block 6.
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7.2.5 Contact wrench / Contact type relation

The relation between the contact wrench and the contact type for two di-
mensions is given in chapter 6 as,

[wi] < Jpw,| = (point contact with friction)
[wi] 2 |pw,| = 2 (point contact without frictinn)
w3 >0 = 3 (no contact)
Instead of using the absolute values, it the above relations, it would be

Si = (—)2 (7.10)

So that, if S; is less than one, the contact behaves as a point contact with
friction. If S, is greater than or equal to one, the contact behaves as a point
contact without friction. That is,

Si21 = 1 (Point contact with friction)
Si<l = 9 (Point contact without friction)
w, 21 = 3 (no contact)

slipping criteria will tend toward zero as the grasping force is increased to
infinity, independent of the orientation of the object. Whenever the rectangle
is held in a horizonta] position, the slipping criteria S1 and S; are both zero,
since this orientation relies on mechaical rather than frictional constraints.

at 3r/4 and 5x/4. Intuitively, this is because the block's weight is supported
more by the finger on the bottom, unweighting the top finger. Since the
tangent force on both fingers is the same, the ratio S;, of the top finger,
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is a maximum. The rectangle is stj]] constrainted, since the geometry of
the surface does not allow rotation. [f the surfaces were convex, however,
the object might drop out. In the next section regions of constraint will be

motion. By searching the graphs of permissible motion in figure 7.8, there
are four constraint states which allow this motiop: (22], [23], (32], and [33].
However, one of them, constraint state [22] allows the desired motion and
no other. So that, in this case, the direction of motion is controlled by the
geometric constraints on the object.

In general, it is easier to accomplish a desired slipping motion when the
direction of motion is determined solely by the geometric constraints on the
body. Although it may be possible to control the motion of an object within
a grasp allowing a large number of motions, it is more difficult, since the
subsequent motion of the object js determined by the friction at the surface
and the initial forces applied to the object. Therefore, in general, whep a
desired motion js specified, the maximally constrained state which still allows
the desired twist will be used when attempting controlled slip motions. Ip
this example, constraint state [22] is maximally constrained with resprect to
the other three constraint state allowing the desired motion.

In this case, both fingers behave as point contacts without friction. To
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Figure 7.12: This is a plot of the slipping criteria for the fingers on the block.
The plot for finger contact on the top of the block is on the top of the page and
the plot for the finger on the bottom is on the bottom of the page. When the
curve is a miminum, the ratio of the tangent and normal force at the contact is a
minimum, In other words, there is a greater dependence on structural constraint
rather than frictionaj constraint at miminums of the S; plots.
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achieve this contrajnt state, it js neécessary to move from the present point
on contraint state map in region [11] to region (22]. This can be done by
moving along a Path from the injtja) point to any point in [22], as shown in
figure 7.13. The block is permitted to move between the fingers; however,
in order to determine whether the block will actually move, the set of per-
missible twist must be intersected with the set of perferred twists. In this
Case, the intersection yields a single vector, along which the rectangle will
slide. Therefore, once the block as enters the (22] constraint region, it will

continue to slide unti] either the orientation js changed or the grasping force

Consider another example. Suppose two fingers grasp adjacent sides of a
Square, rather thap opposing sides, as shown in figure 7.14. Applying simj-
lar assumptions, as in the Previous case, the graphs of permissible twist are

tion in this region is bounded as shown i figure 7.15, but jts exact direction
is unpredictable, Constraint regions [12] and (21] yield sets of permissible
twists which contain only a single element; however, these sets of permissible
twists do not intersect the set of perferred twists when the object is moved
into these constraint regions.

Using the constraint state map, along wit}, inaps of the permissibje twists,
it is possible to analyze and actuate controlled slip motion for grasped ob-
jects. In the next section, a more general three dimensinal case will be
analyzed.

soda can, as shown i figure 7.17. The robot has two fingers on the top of
the can and a third on the bottom, equally spaced between the top two. The
8rasp is somewhat off center from the centroid of the can.
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Figure 7.18 shows the coordinate frames which will be used the analysis.
There are six coordinate frames: the hand frame O, XY, Z,, the ot ject frame
0,X,Y,Z,, the grasp frame OyX,Y,Z,, and three contact frames O;X;Y;Z;.
Descriptions of these coordinate frames are given in appendix A. The centroid
of the can is given by a point in the hand frame x¢g = [~0.8,2.7, —3.0] cm.
The can has a diameter of 2.5 in (6.4 cm) and length of 5.0 in (12.2 cm).
Assuming the can is full, it will contain approximately 386ml. of liquid and
thus have a mass of 0.386kg. In this example, assume the hand holds the
can at a 45° angle in a gravitational field. Therefore, the external wrench on
the can, in terms of the hand frame, is
[0

0.273
-0.273
We= | (082 N (7.11)

-0.218
| —0.218 |

By changing the o-ientation of the can or the squeezing for on it, we can
effectively control the constraint state. Suppose we change only consider the
grasping force [z4,y,,m,], as defined in chapter 4. The constraint state of
the can will then be a three dimensional space, a function of Zg, Yg, and
mg. Figure 7.19 represents the three dimensional constraint state map by
showing two “slices” of constant grasp force magnitude of mg = 0.7N and
mg = 2.0N. The shaded regions represent constraint regions in which the
can is fully constrained and will not move. Initially suppose the grasp force
focus is given by z; = 0.0cm y, = —1.2cm and the grasp force magnitude is
mg = 0.7TN. This may be represented as a point A within the (2,2,2] region
of the m, = 0.7N slice of the constraint state map. This region represents
a fully constrained region of the map, that is, the will not move. However,
if we want to spin the can between two fingers, a constraint state [3,2,2] or
[4,2,2] would be required. Notice a [3,2,2] region exist adjacent to the [2,2,2]
constraint region the can is now in. Therefore, by simply moving the grasping
force focus from its current location in the map to any point in the [3,2,2]
region, the can will rotate between the fingers as desired.

As in the two dimensional case, we first choose an arbitary desired slip-
ping motion. Second, we determined the constraint states which allowed
that motion and from these, the maximally constrained state was selected.
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Third, a constraint state map was produced which related the constraint
states to the controllable variables, such as grasping force and orientation.
Finally, by adjusting the controllable variables, the constraint on the object
was changed from the initial constraint state to the maximally constrained
state which allows the desired motion. In the next chapter, we will implement
this procedure on an actual robot.
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(22]. Once in constraint state [22], the rectangle is not fully constrained, but is
allowed to move along a permissjhle twist. In other words, the block slides out
between the fingertips,
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Figure 7.16: This is a map of the constraint states as a function of the grasping
force and the orientation for the square held by fingertips on ad jacent slides. Notice
that simply increasing the grasp force does not guarantee a stable grasp. A stable
grasp is only possible in the shaded [11] region. Any other region in the constraint
state map will result in an unpredictable slipping motion.



CHAPTER 7. CONTROLLED SLIPPING 85

Figure 7.17: Three fingers grasp a full can of soda. The grasp is somewhat off
center and the can is fu]] of soda. In addition, the hand is tilted 45°, 80 there
is a force on the cap pulling it out and away from the grasp. By controlling the
Squeezing force on the can, we can either hold jt securely in the gTrasp or reorient

it through controlled slip.
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Figure 7.18: There are six coordinate frames used in this example: the hand

frame, the object frame, the grasp frame, and the contact frames. The hand is
rotated 45° is a gravity field.



CHAPTER 7. CONTROLLED SLIPPING 87
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Figure 7.19: The constraint state map shown here is a function of the grasping
force, that is, a grasp force focus z, y, and a grasp force magnitude m,. and my.
The three dimensional constraint states are represented by “slices” of constant
grasp magnitude. In this case, two slices at my = 0.7N and m, = 2.0N were
choosen to illustrate the constraint regions in the map. The current grasp force
focus is shown as a point A in the [2,2,2), a fv'iy constrained region, within the
my = 0.7N slice of the map. Suppose we wart the can to spin between two of
the fingers. The maximally constrained state which allows this motion is [3,2,2].
Therefore by moving from the present point in the map to any point in the [3,2,2]
region, the desired motion can be accomplished.
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Implementation

8.1 Introduction

The purpose of controlled slip manipulation is to eubance the dexterity of
a multifingered robot manipulator, that is, to give a robot hand a larger
repertiore of manipulation strategies for reorienting and relocating objects
within a grasp. A number of functions were written to automatically analyze

8.2 Description of Hardware

The Salisbury Robot hand js shown in‘figure 8.2. The hand has three fingers
and three joints in each finger, allowing a total of nine degrees of mechanical
freedom. Each of the fingers is controlled by fcur steel tendons ruoning to
torque motors in the forearm, There are rotary encoders on the motors and
tendon tension sensors in the fingers. Together, these sensors feedback of
finger position and force, allowing the computer to control nct only finger
Position, but stiffness as well,

88
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Figure 8.1: The Salisbury Robot Hand has three fingers and three joints in
each finger, yielding a total of nine degrees of mechnical freedom. The hand has
encoders on the motors to measure tendon length and finger position, as well as,
tendon tension sensors to measure tendon force. The VAX can control not only
fingertip trajectories, but finger stiffness, as well.

The general control structure js shown in figure 8.2 Two modified Puma
robot controllers accomplish the lower level servo control, while higher level
fingertip and joint trajectories are directed from the VAX 11/750. At a still
higher level, the Symbolics 3600 controls the coordinated hand functions and
slip functions, as well as, tie analyses outlined in this thesis.

8.3 Description of software

A program, GRASP, was written to analyze the constraints of an object
grasped by the three fingered robot hand. The Program was designed to

squeeze force. The functions can be selected from a main menu, and the
results of the analyses are displayed on a large graphics window. A hardcopy
of the computer screen is shown in figure 8.3. The screen is divided into
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Symbolics 3600
VAX 11/75
micros

it <25

encoders motors

fingertip tension
scnsors sensors
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three basic sections. The large pane to the left is a graphics screen showing
the hand, finger, object, and contact locations. The smaller screen on the
top right is LISP Listener, which accepts and interperates LISP commands.
Finally, on the bottom right, a small message monitor screen prints messages
which are sent and recejv from the VAX. The foating menu allows the

controlled slip analyses will be described in more detail.

8.3.1 GRASP functions
Standard Graphics Options:

CREATE GRASP SCREEN. Creates the three paneled display screen
CLEARSCREEN. Clears the graphics screen

DRAW COORDINATE SYSTEM. Draws the six coordinate systems on the
graphics screen. These are the hand frame, object frame, grasp frame,
and the three contact frames, These different coordinate systems are
fully described in appendix A.

CHANGE GRAPHICS VARIABLES. Allows the user to change the scaling
and the graphics screen origin.

Basic Actuation functions:

GG HOME. Reinits the VAX and OOLAH trajectorys and goes to the home
position

REINIT vAX TRAJECTORY. Reinitializes the trajectory list on the VAX

REINIT OOLAH TRAJECTORY. Reinitializes the trajectory list on the
LISP machine

BASIC MOVES. Allows the users to specify coordinated finger motion. The
options allow the user to translate or rotate the grasp frame in any
desired cartesian direction.

MOVE FINGER. Moves a selected finger by a specified displacement



CHAPTER 8. IMPLEMENTATION 92
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(graep-neny)

Crea reen
x
Oraw coordinate system

Change graohics varables

Renit system
Reimt OOLAH trazectory
Reimit VAX trrgectory
Go heine
BASIC MOVES
Move finger

ADVANCED HAND ACTUATION OPTIONS:
JKS move memu
Move to contact points
Pick grasp force center
Controlled slip
DEMONSTRATIONS

QUIT

SLIP ANALYSIS OPTIONS:
Change global vasisbles
Permissible-twist
Determing constraint state
Map constrasint space

[nessace processon

Figure 8.3: The GRASP prcgram was written as an interactive interface between
the user and the Salisbury Robot Hand system. The program allows the user to
select a number of functions, including: automatic slip analysis function, functions
to relocate and reorient the grasp, a function which changes the grasp force on the

object
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Controlled slip analyses:

CHANGE GLOBAL VARIABLES. Allows any of the global variables to be
changed.

PERMISSIBLE TWIST. Specify a desired twist and this function will return
the maximally constrainted state of the object that allows that twist.
This is accomplished simply by looking at each contact individually
and determining which contact type will allow the specified twist. The
contact types are investigated in decreasing order of constraint. That
is, a soft finger contact, a point contact with friction, a point contact
without friction, and no contact were considered sequentially. When a
particular contact type allows the specified motion, this contact type is
stored. The contact types are then compiled into a list, thus yielding
the constraint state which allows the desired motion. This constraint
state is also maximal, since any state of greater constraint would not
allow the twist to occur at one or more of the contacts.

DETERMINE CONSTRAINT STATE. This option allows the user to spec-
ify the grasping force, [z,,yy,my], and returns the constraint state of
the object for a specific orientation and a given grasp. The program
uses the stiffness model described in chapter 5 together with the contact
type/contact wrench relation given in chapter 6.

MAP CONSTRAINT SPACE. The user specifies the magnitude of the grasp-
ing force, m,, and the program produces a map of the constraint states,
by varying the grasp force focus, [z,4,y,]. The program plots the re-
gions of different constraint and prints the value of the constraint state
in each region. For example, figure 8.4 shows a slice of the constraint
state map for m, = 7.0N for the same situtaion described in chapter
7. Notice also the coordinate systems of the hand, the grasp frame,
and contact frames are drawn in the display, since the grasp force focus
corresponds to an actual point in space. From this point the user can
select the grasping force [z, y,, my] by using the option PICK GRASP
FORCE CENTER.

Advanced Hand Actuation Options:
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MOVE TO CONTACT POINTS. Moves the fingertips to specified contact
points on the object. This function takes into account the radius of the
fingertip when grasping an object

PICK GRASP FORCE CENTER. The user specifies a grasp force magni-
tude m,. Then the program draws the grasp frame coordinate system
on the screen, along with the hand, and contact coordinate systems.
The user may then move to any point in the graphics screen and select
a grasp force focus, [z4,y,], on the grasp plane. The robot will then
displace the fingers by an amount and a direction proportional to the
specified grasp force, [z, y5,™,]. Given the compliance of the fingers,
the resulting force will be proprotional to the desired internal grasping
force at each of the fingers.

DEMONSTRATIONS. Three demonstation routines were written to illus-
trated how controlled slipping techniques might be used on an acutal
rcbot hand. The three routines show respectively how gravity, free fin-
gers, or other objects may be used to reorient and reposition an object
within a grasp.

The first demonstration is the three dimensional example of chapter
7. The robot hand holds a full can of liquid, as shown in figure 8.5.
The mass, location, orientation, and surface properties of the can are
the same as those given in chapter 7. A two dimensional constraint
state map shown as a function of the grasp force focus for constant
grasp force magnitude is shown in figure 8.6. Initially, a grasp force,
(24, yg,mg] = [0.0cm., —1.2cm.,0.7N] is selected so that the can is in
the [2,2,2], a fully constrained region of the constraint state map. The
magnitude of the grasp force remains the same, but the focus is moved
out of the [2,2,2] region into the adjacent {3,2,2] region. The result,
shown in figure 8.7, is that the can spins between the two fingers,
under the influence of gravity, into a new orientation. The grasp force
focus is then moved back into the {2,2,2] region and the grasp is again
secured. The can, however, has rotated 90°.

In the second demonstration, the robot hand again holds a can in the
same position and orientation, though this time it is empty. One of
the fingers is then removed from the top of the can. The situation,
therefore, is essentially a two fingered grasp or a three fingered grasp
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with the first finger in a type 4 contact. In any case, the magnitude
of the squeezing force between the two grasping fingers can be con-
trolled. In this case, the magnitude of the squeezing force is relaxed,
so that when the free finger exterts a force on the front of the can, the
constraint moves into the [2,4,2] constraint region and spins between
the two fingers. The finger continues to spin the can, until it has been
rotated 180° into a new orientation, figure 8.8. The free finger is then
replaced on the can, securing the grasp. The can has been completely
reoriented on the grasp.

In the third routine, the hand grasps a box and pushes it against a
table, so that the box slides through the fingers. The box is then
lifted from the table and the free finger spins it 180°. The hand again
grasp the box and again forces it against the table, repeating the same
procedure over again. the box is again force against the table to push
it through fingers. This action is then repeated over and over. The
results of which are shown in the figure 8.9.

Although these demonstration routines worked automaticaliy, they were
not autonomous. The robot had no way of knowing the location of the
object in the hand. The robot would have performed the same routines
had the object not. been there, since there is no feedback on object po-
sition.

In addition, constraint state were choosen so that the resulting motions
of the object were controlled by the geometry of the contacts. Using
the present analysis, it would be possible to map the entire space of
permissible twists for every constraint, state to find motions which were
constraint by the geometry. Then select a constrained motion along
with its associated constraint state and find the set of controllable
variables, that is, grasp force, orientation, stiffness, etc., which produce
this desired constraint state. Finally, the robot could affect the neces-
sary changes in the grasp to the produce the necessary constraint state
to allow this desired motion. This procedure, however, would require
searching through a large number of large spaces. A more practical
solution may be to have a set of rules which determines, for a partic-
ular grasp, a set of slipping motions which can be easily implemented,
that is, a set permissible twists whose direction is constrained by the

geometry of the contacts. This idea along with other simplifications
will be considered in the next chapter.
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414 144
Figure 8.4: Constraint state map produ::ed by the computer. The plot varies
the grasp force focus Zy Yy for a constan

t value of grasp force magnitude my, in
this case m, = 2.0N¥. The map show here is for the identica] situation outlined in
chapter 7.
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Figure 8.5: The Salisbury robot hand holds a full can of soda. This is exactly the
example given in chapter 7. The can is held at a 45° angle, so that gravity pulls
to pull the can out of the grasp. By adjustin the squeezing force on the can, the
robot can either secure the can in the grasp or change the orientation by allowing
it to slip.
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Figure 8.6: This is a map showing the cnatra.int state regions ay a function
of the grasping force focus Z, y, for constant grasp force magnitude mg = 0.7N.
The current position in the map is shown as a point in the grasp plane. The
current constrairt state is (2,2,2), a fully constrained region in the map. However,
by moving from this point to any point in the adjacent (3,2,2] region, the can will
be allowed to spin between the fingers
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Figure 8.7: The Salisbury robot hand grasps a soda can. The magnitude of the
grasping force is 0.7 N and the grasp force focus zg = 0.0cm y;, = —0.8cm. so that
the can is secure in constraint region [2,2,2]. However, by moving the grasp force
focus to z, = 0.8cm Y9 = —0.8cm, the can is free to spin between two fingers.
The grasp force focus is then moved back into its original position and the grasp
is again secured.
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Figure 8.8: A can is initially held securly in the robot hand. The grasp force
focus shifts from its present location to a point on the line intersecting fingers one
and three. The constraint state is [1,4,1]. Finger two is free from the grasp. This
finger exerts a force on the front of the can, thus changing the constraint state
to [2,4,2]. The can spins between the two grasping fingers. The finger continues
to spin the can until it has rotated 180°. Finger two is returned to its origin
position, the grasp force focus is centered, and the can is again secured by in a
new orientation.
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Figure 8.9: Slipping motions can be linked to form a sequence of motions to
reorient a part within the hand. In this case as box is held in the hand. The hand
initially pushs the box against the table, forcing the box through the grasp. The
hand then lifts the box, the grasping force magnitude is reduced and grasp force
focus is shifted, allowing one of the fingers to be free. The free finger then spins
the box. The hand again forces the box against the table forcing it through the
grasp, and the entire process is repeated.



Chapter 9

Extensions and further
research

9.1 Introduction

motions was found to be a function of the constraint state of the object,
that is, the number, location, orientation, and the type of each contact,.
The constraint state was then found to be a function of a number of
controllable variables, such as the grasp force, orientation, stiffness of
the fingers. However, this analysis is only a beginning. There are many
other important issues yet to be addressed. This chapter will cutline
some extensions to the general problem of controlled slip manipulation.
It is hoped that these extensions will allow this type of manipulation
to be more useful and predictable, so that controlled slip manipulation
may be applied practically in dexterous robot hands,
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9.2 Determining pPermissible motion

some sets of constraints which yield a very limited range of permissi-
ble motions, so that the motion of the object can be determined as a
function of the geometric constraints alone. With the current algoritm,
a desired twist is specified and the constraint state which allows this
twist is determined. The conditions which allow this constraint state
are then found by searching the constraint state map for values of the
controllable variables, such as grasp force magnitude, grasp force focus,
orientation, etc., which yield the desired constraint state. What would
be more useful in terms of controlied slip manipulation, would be to
determine, prehaps, using a set of heuristics, a small set of permissible
motions, which may be easily achieved through slipping motion. To
accomplish this, using the current analysis, would require searching a
six dimensional space to determine the extent to which the permissible
twist is bounded. This may in fact not be too difficult, but a set of

robot can accomplish. This approach is being investigated and looks
promising for practical implementation on a robot hand.

9.3 Determining constraint state

In tandem with the problem of determining set of slipping motions
which can be easily implemented in a particular grasp, is the problem
of determining the desired constraint state. With the present analy-
sis, a constraint state map is generated as a function of controllable
variables on the object. To find a desire constraint state, the entire
map is generated or the space is searched until the values of grasp force
are found which produce the desired constraint state. Again, a set of
heuristic rules may allow the robot to quickly find a particular con-
straint state within a large space, so that the slipping manipulation



may be achieved quickly. This set of rules may be quite simple, since
there are some constraint states which are independent of some of the
controllable variables. For example, there are particular grasp focii in
the grasp plane which always yield a Particular constraint state.

9.4 Global motion

for a small set of desired twists, their magnitudes can be found and
with this information controlled slip trajectories may be planned and
implemented on a robot hand.

9.5 Sensory feedback

The discussion so far deals with slipping motion based on a model of
the robot, object, and environment. The robot has no feedback on ac-
tual object position or contact force. In order to performed controlled
slip manipulations accurately, the robot must know the position of the
object relative to the 8rasp, as well as, the location, orientation, and

which determines the location of a contact on the surface, as well as,
the normal and tangent force at the interface. Appendix C describes
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this sensor and issues involved in its design. A sensor like this is im-
portant in contolled slip manipulation, because it can determine the
location of the contacts and, using a model of the fingertips, determine
the contact type, However, this type of sensor may be used directly to
determine contact type. Since slipping usually coincide- with high fre-
quency vibrational noise, slipping may be determined by looking at the
high frequency components of the force signal. Given a high frequency
force signal, together with the mean tangent and normal force readings,
it may be possible to determine whether the slipping was translational
or rotational. That is, given a high frequency vibration which suggests
slip, then

Iwc./ﬂwc', = 1 = Ca
lwc,/pwc,l <l =

where C; is a point contact with friction, the object is rotating about
the contact point, and Cs is a point contact without friction, the object
is translating at the contact,

Determining the location of the object in the grasp is somewhat more
difficult. For some class of objects and for some set of contacts, the
tactile data alone may be enough to uniquely determine the position
of the object. However, tactile sensing alone would not, for example,
resolve the location of a cylinder held vertically on its sides by the fin-
gertips of a hand. The contacts and contact forces in this situation are
independent of the vertical position of the cylinder. Some other means
than tactile sensing would be necessary to determine position. Vision
would be a possible solution, except that resolving object location at
the speeds necessary for controlling slipping motion is an currently an
impossible task for a vision system. However, vision would seem to be
the eventual solution, since in order to manipulate objects intelligently,
a robot would have to know not only the position of objects within the
grasp, but also the position of objects in the environment, since they
may interact with the motion of the grasped object. A robot could
both avoid external objects and use them to exert controlled forces on
the object within the grasp.
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9.6 Integrating manipulation techniques

The purpose of a robot s to interact with the envorinment, to sense its
nature and to affect changes. To this end, higher lever plans are needed
to determine global actious, as well as, lower level strategies which
integrate manipulation techniques, including controlled slip. Methods
must be developed to select manipulation strategies to accomplish the
lower level goals as set by the higher level plans. For example, to invert
a cylinder within a grasp, a robot may put the object down, reposition
the hand, and regrasp the object, effectively inverting the can in the
grasp. Or, it may, using control slip, spin the cylinder between two
of its fingers, and thereby accomplishing the same feat. [n spinning
the cylinder, the robot could use gravity, acceleration, other objects, or
other fingers to reposition the object. To achieve the desired goal state,
the robot may have to perform a number of slipping manipulations in
a row. This suggests some sort of lower level slip planning based on
analysis or experience.

9.7 Conclusion

This thesis presents a basic analysis of controlled slip manipulation and
suggests some methods of implementing slip manipulation on robot
hands. Given a particular grasp, the set of small finite motions the
object can undergo within the grasp was determined. The set of per-
missible motions withi: a grasp was found to depend on the constraint
state, determine the location and the types of contacts that exist be-
tween the robot and the object. The constraint state in turn depends
a number of controllable variables, such as grasping force, orientation,
finger stiffness, and other variables. By controlling the constraint state
and external forces which act on the grasped object, specific slipping
motions can be achieved. However, before this type of magipulation
can be integrated in an actual robot system, more research must be
done to determine more efficient ways to analyze grasps and actuate
motions. This thesis does, however, demonstrate that manipulating
objects by allowing them to slip and twist at the fingertips is possible
for robots as well as humans.
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Appendix A

Coordinate frames

A.1 Introduction

Objects, fingers, fingertips, and contact points can all described relative
to different coordinate frames. There are a number of coordinate frames
used in this thesis and any point in space may be describe with respect
to any or all the coordinate frames. There are a total of nineteen
reference frames. These are:

OoXYz Artbitary reference frame
OwXp Y1 2, Hand frame

0]‘, Xf.-j Y,.-,'Z]“' Finger fra.ma

0. XY, Z, Fingertip frames
O.X.Y.Z. Contact frames
0,X,Y,2, Grasp frame

0,X,Y,Z, Object frame

Descriptions of the individual reference frames are given in the following
sections.
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2

Figure A.1: Hand frame

A.2 Hand frame

The origin of the hand frame is centered between the joints of the first
and second fingers of the Salisbury hand. The x-axis is directed out
from the origin, through the center of the first Joint of the second finger,
as shown in figure A.1. The z-axis is vertical, normal to the plane of
motion of the first phalange of the first finger. The y-axis is normal to
both the x and Yy axes, directed away from the wrist, lying in the plane
of the motion of the first Phalange of the first finger.

A.3 Finger frames

The coordinate frames for the finger phalanges are defined the same way
each finger. These coordinate frames are designated O, X1iY132y,;,
where i represents the it finger and ; the jt phalange. The finger
frames are shown in figure A.2. The origin of the coordinate frames for
the phalanges are all at the center of the joints and the y-axes of every
frame is aligned with the central axis of the phalange. The x and 2
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Figure A.2: Finger frames

112

axes, however, are defined differently. For the first phalange, the z-axis
is the axis of joint rotatjon and the x-axis is normal to the y and z axes
in the direction of the x-axis of the hand frame, For tke second and
third finger phalange frames, the x-axis is the axis of joint rotation and
the z-axis is vertical, parallel to the z-axis of the hand frame when the

joints are in the zero position.

The length of the Phalanges the fingers of the Salisbury roboi
all the same. Figure A.3 shows a schematic of the hand illustr
length of the phalanges and the Placement of the fingers

A.4 Fingertip frame

hand are
ating the

The fingertip frames 0 XY, Z,; are defined the same way for each
fingertip, see figure A.4. The origin of the fingertip frame is the center
of the spherical portion of the fingertip. The z-axis is the central axis of
the fingertip. The x-axis is parallel to the x-axis of the dista] phalange

coordinate frame.,
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Figure A.3: Phalange length and finger placement
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Figure A.4: Fingertip frame
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Figure A.5: Contact frame

A.5 Contact frames

The contact frames are defined in terms of the object the hand is grasp-
ing. The origin of the contact frame is the contact point between the
hand and the object. The z-axis is the surface normal at the contact
point. The x and Y axes lie in the tangent plane of the surface. For
convenience, the x-axis is defined to be parallel to the x-axis of the
hand frame or to lie parallel to the plane described by the x and y axes

is defined in the same way as the contact frames. That i3, the x-axis is
either parallel to the x-axis of the hand frame or parallel to the plane
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Z

Figure A.6: Grasp frame

desribed by the x and Yy axes, figure A.6.

A.7 Object frame

The object frame may be described arbitarily. The origin of the ob-
ject frame, however, is the centroid of the object. The axes of the
object may be in any direction, in a way that will be useful for object
description.
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Stress state in a fingertip

B.1 Introduction

A recent entry into the field of robotics has been the development
of robot hands. These hands typically have at three or more fingers
with three or more joints in each finger. The fingertips are usually
covered with some kind of compliant material. The Salisbury robot
hand had hemispherical polyureathane fingertips, similar to that found
on rollerskate wheels. Although must work has be done investigating
grasping and manipulation of objects, little has been done in analyzing
the complex mechanical interaction between the finger and the grasped
object. As a first attempt in addressing this problem, I will examine
the stress thoughout the body of the fingertip in contact with a float
object.

B.2 Problem definition

The robot fingertip is shown schematically in figure B.1, touching &
flat surface. The problem will be to find the stress thoughout the
body of the fingertip. The fingertip is assumed to a hemisphere made
of a homogeneous elastic material, The material on the real robot is a
polyureathane with an elastic modulus of approximately 40,000 psi and

116
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Figure B.1: Robot finger in contact with a flat surface

a Poisson’s ratio of about 0.45. For simplicity in the analysis, however,
particularly in the finjte element procedure, the poisson’s ratio will be
assumed to be zero. Since the elastic modulus is small, as it is for
most elastomers, a nonlinear analysis would seem necessary; however,

large enough to warrent a complex nonlinear analysis.

B.3 Analytic solution

The analytic solution to the stresses throughout a body in contact will
another body has not been worked out. The analytic solution for the
stresses on the surface of a body, however, has be developed by Hertz.
He assumed the two bodies were solid elliptic disks, each possessing
radiss of R and R’ Furthermore, these disks were in contact along a
common axis under an applied load F, figure B.2. Hertz deduced that
the pressure distribution between the two bodies can be described by
a semi-ellipsiod of pressure constructed over the surface fo the contact,
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Figure B.2: Two general bodjes in contact

as shown in figure B.3

The pressure distribution is given by

P(:l.‘,y) = Po\/l _:2/a2 —yz/b2

(B.1)
The total load, therefore, is equal to the volume of the semi-ellisoid,
F = 2abk, (B.2)
Solving for P
) ° P, = 3£ (B.3)
°” 2rab '
where a and b are given by Timosheko [Lipson]
3FA
=mdf 22 :
=M™ AT (B-4)

J 3Fa
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z

Figure B.3: Pressure distribution in the area of the contact
where
A=(1-u)/E+(1 - y3)/E, (B.6)
where 0.15

#4143 Poisson’s ratio

E\ E; Modulii of elasticity
A+B (g +d+ 4+ )

B-A %\/(ﬂ.——ﬁ,r)+(ﬁ;-t)'“(ﬂ.--ﬁ)’(ﬂ;—ﬁ;)cw@w

¥ The angle between the planes contacting the curvatures 1/R,; and
1/R,
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R, Ry Ry Ry Mimimum and maximum radij of curvature of the el-
lisoid disks at the point of contact

m,n Constants depending on B - A/B+ A

In the case of the contact between a hefxﬁspherical fingertip and a flat
rigid plate, equations B.4 and B.5 become

a=b=3FR,A/4 (B.7)

and the maximum pressure is given by

P
P, = 0.578\7 T (B.8)

again the definition of A is
A=(1=p)/Ey+ (1 - ud)/E, (B.9)

If the flat plate is assumed to be rigid (i.e. £; » E,) then A can be
approximated as

A=(1-ud)/E, (B.10)
For this problem,

F = 1b

Ey = 40,000psi

0.5in
s = 0.0

o
i

and therefore

A = 20x10-°
P, = 1247.9¥Flb/in?
a = 0.020¥Fin
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Figure B.4: Stress gradients within a sphere due to contact with a rigid plate

Although Hertz only solved for the stress in the are of the contact, H.R.

Thomas and V.A. Hoersch computed the stress within the body along
the loaded axis.

e = ayy = LBV (1 4 iy (afa) ot (fa) = 1) +

2

Q
2(a? + 22)

. (B.11)
Ops = —2a(1/1:1A+ 1/Ra) (021 z=) (B.12)

Also, because of symmetry, o..,0yy, and o,, are the principle stresses,
and therefore,

Ty =Ty =0 (B.13)

A plot of the stress gradients due to the contact between a flat rigid
plate and a spherical fingertip on the loaded axis is shown in figure B.3
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Figure B.5: Initial finite element mesh

B.4 Finite element solution

Eight node elements are also used, since they more accurately model
the curvature of the sphere. The contact, however, is more difficult to
model. A contact element could be used, in which more of the element
is subjected to & force as the element deflects. However, since the radius
of contact area is small, 0.019 in, compared to the elements which are
0.050 in on a side, a close approximation is a single concetrated load
located at the center of the contact area. A test of this assumption
and the other approximations will be whether the stresses calculated
by the finite element solution match those of the analytic.

To test the validity of the mesh, the stresses between identical nodes op
adjacent elements are compared. Figure B.4 shows the finite element
mesh. The vertical line drawn on the figure was the line on which
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stresses were calculated. F igure B.4, B.4, and B.4 shows the stress on
the line calculated at nodes on adjacent elements. The two curves in

figure B.4 shows the stress in the y direction, o,,. At z=0.075 in the
stress calculated at the same node vary from -20 psi in element 12 to
-100 psi in element 2. On the other hand, for values of z greater than
0.35 in, the variation of stress between elements is negliable, as can be
seen in figure B.4. It is also interesting to noe that the stress jumps
for o, occur between elements in adjacent columns, while for Os, they
occur between elements in the same column. For Tys, the stress jumps

between adjacent columns and adjacent rows.

It is clear from this analysis, that for an accurate prediction of stress in
the body, this mesh is too coarse. Variations in stresses calculated at
the same nodes were greater that 100%, for radial distances of less that
0.25 in from the contact region. Figure B.4 shows a three dimensional
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Figure B.11: Stress profile on hemispherical body

plot of stress with the y and z coordinates plotted in the plane and
the stress o,, plotted on the vertical axis. Here it is easy to see the
inconsistencies in the stress between elements Therefore, for an accurate
calculation of the stress within the body of the fingertip, a new more
refined mesh must be constructed.

B.4.1 Refined mesh

To solve the problem of nodal stress inconsistencies, a new refined mesh
is constructed. Figure B.4.1 shows the region in which the mesh need

As before, to test the validity of this new mesh, I compared the stress
along a single line, as shown in figure B.4.1. The stress calculated at the
nodal points between adjacent elements, in this mesh shown almost no
inconsistencies for values of z greater than 0.02 in, as shown in figures
B.4.1 and B.4.1. This is almost an order of magnitude improvement
over the previous case. Figure B.4.1 shows the same three dimensional
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Figure B.12: Region of mesh refinement

stress profile. Again, the y and z coordinates are plotted in the plane,
and the oy, is plotted on the vertical axis. As before, the plot shows
stress jumps at small radial distances from the origin of contact. How-
ever, if these few values of sterss are ignored, the resultant stress field
is continuous alond the line. Another test for the accuracy of the finite
element calculations is to compare the results with an analytic solution.

B.5 Finite element vs. analytic

To compare the finite element solution against the analytic solution,
only the stresses on the z axis can be considered. Figure B.5, B.5,
and B.5 show the stresses oy, 9z, and oy, respectively as calculatd by
the finite element solution and the analytic solution. The figures show
an excellent correlation between the analytic and the finite element
solution, particularly for values of z greater than 0.04 in. Ignoring
these stress calculations near the origin, a accurate representation of
the stress within the entire body of the fingertip can be obtained.
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Figure B.14: Exanded view of the new refined region
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Figure B.17: Consistency in calculated nodal stress: o,

Figure B.18: Larger values of stress at smali rad:al distance from the contact



APPENDIX B. STRESS STATE IN A FINGERTIP 131

KK 1000 V0K

72.00

sd.00

16.00

16.080

Figure B.19:

Tyy

LT KR O T T IR

-108.

Figure B.20:

atl

0.0 0.0 0. M —anaintic ¢ 40 0.

zeanis
Adina.ve.Amalytic

Agreement between the finite element and analytic solutions:

N e
L £

L 1 1 L 4 1
a.08 e.16 0.24 9.5 6. 0.68

s~anis
Adina.ve.Analytic
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Figure B.21: Agreement between the finite element and analytic solutions:
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B.6 Solution

As a result of the consistency in calculated stress between the ele-
ment and because of the agreement between the analytic and the finite
element solution, the modified mesh is assumed to be sufficient for cal-
culated stresses throughout the body of the hemispherical fingertip.
Figures B.7, B.7, and B.7 show the stress profiles through the body of
the hemisphere. From the analysis, these stresses can be taken as an
accurate representation of the true stress in the fingertip.

B.7 Conclusion

In this analysis, a finite element method was developed to accurately
predict the stresses in the body of a hemispherical fingertip in contact
with a flat object (for relatively small forces). This information can
be usedful, for example, in determining the placement of subcutaneous
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force and tactile sensors.
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Figure B.22: Stress profile in the fingertip: Ow
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Appendix C

Fingertip sensor

C.1 Introduct ion

gages on steel flexures, which measure the forces and moments at the
center of the shell. From these force readings, it is possible to determine
the direction of the force vector acting on the shell of the fingertip.
Using the moment readings, the location of the force vector can be
determined. The intersection of the force vector with the outer surface

one of the points is immediately eliminated. This leaves a single point,
the contact point, through which the force s acting. Since the sensors
resolves the components of the force, it can determine the magnitude
and direction of the force through the point contact as well.

137
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C.2  Theory

The theories presented in this section were developed by [Salisbury].
Suppose a force F = e fy fe] s acting through a point x, = [z, ye, 2]
on a convex surface S. The convex surface S is defined as a set of points
S = C - C where C is an open set in.R3, such that for every pair of
points py and p; in € and any point on the line connecting p; and p,
is also in C, mpy + (1 ~ m)p; € C.

§=C—-C,Copen in R?
Vp;,p266'=>mp1+(1—m)pg€é

Let OXY Z be some reference frame so that every point in S can be
defined relative to OXY Z. The wrench in terms of screw coordinates
defined relative to OXY Z due to the force F acting through the point

Xc 18
[ wy | [ fz
wa fy
— [ W3 | _ fs
W= wy [T _chy"l"ycfz (Cl)
Ws zef: — T f:
Wg | L —~Yef: +-'Bcfy 4

Now we wish to describe the wrench w in terms of the wrench axis, the
pitch, and the magitude. The direction of the wrench axis A is

w,
da = | w, (C.2)
W3
and the point on the wrench axis nearest the reference frame is
Zo 1 | W2Wes — waws
Ko = Yo | = —| waw— wyw, (C.3)
2, W Ws — weawy

where m is the magnitude of the wrench and also the magnitude of the
force

m= \/wl2 + wi + w (C.4)
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Any point along the wrench axis can be described by
X =Xo+Ad, (C.5)

Intersect the points in equation C.5 with the surface S will yield either
one ore two points since S is convex That is,

{x}S = {x1,x2} (C.6)

{(x}(1$ = {x} (C.7)

If the set only containg a single point then the contact point is that
element, x, = X1. However, if the set {x} contains more than one
element, the contact Point can still be determined. Given x; € {x}, if
X1+ Ad € C for any positive value A, then X1 = X¢. The other point
in the set corresponds to 3 pulling force on the surface of the sensor.

Therefore it is Possible to determine the point of contact x, from the
wrench w. If it were possible to measure the wrench w, then the
location of the contact on the surface of S, the magnifude of the contact

C.3 Design

The schematic diagram of the fingertip sensor is shown in figure C.1.
The fingertip has a hemispherical top and a cylindrical skirt which bolt
onto a loadcell. The loadcell s in the form of a maltese cross and

is design to resolve alj SIX components of the wrench, that is, forces

in turn, proportional to the forces and moments. The next section
describes some critical issues in the design of the loadcell,
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Hemispherical covor——\

Strain-gages

Figure C.1:

The fingertip sensor can determine
and the direction of a force applied through a point

gages mounted on small steel flexure are used
forces and moments on the fingertip shell.

the magnitude, the location,
contact on its surface. Small
to resolve the
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C.4 Design of loadcell

C.4.1 Introduction

The loadcell for the force and tactile sensing fingertip must be abie to
resolve all six components of forces and moments applied to it. There-
fore in order to properly design the loadcell, it is first necessary to de-
termine the possible forces and moments under which it will be subject,
and then find the state of stress in each of its members. The fingertip
may be subject to an infinjte variety of forces. However, insteand of
examining all the possible forces, we will consider only a small set of

The analysis of stress states js only part of the design procedure. The
design must also take into account the manufacture, assembly, and
gaging procedures, in order to minimize cost and maximize efficiency.
From this analysis, a design and dimensions of the loadcell will be
selected.

C.4.2 Fingertip sensor dimensions

Figure C.3 illustrates and lists the symbolic values for the dimensions
of the fingertip and the loadcell. These values will be used through-
out the analysis when calculating stress, strain, and deformation. The
constrained values are

R = 0.406in

H = 0.813in

L[ = 0.070in

Ly, =0.100in

H, = 0.633in

and the values yet to be determined are
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CASE 2 CASE S

CAsz 6

<
(H D (D

CASE 3

Figure C.2: Forces and moments are generated at the center of the sensor as a
function of the externally applied load. The set of external loads which produce
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X

1
‘
[]

Figure C.3: The dimensions for the loadcell and the fingertip illustrated above
will be used through the analysis on the fingertip. From the analysis, optimal
vaiues for the dimensions listed will be found to maximize fingertip performance
and durability.

C.4.3 Mechanical properties

The loadcell is to be machined from 17-4PH stainless steel. This par-
ticular type of steel was chosen because its coefficient of thermal expan-
sion matches that of the semiconductor strain gages. A similar value of
thermal expansion is desired since both the gages and sensor are heated
during the bonding process and cooled, the same contraction rates will
not introduct an offset strains in the gages.

The mechanical properties of the 17-4PH stainless steel are:
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E = 28.5 x 10%Ib/in’
G =10.6 x 10°lb/in?
oy = 80,000 — 100, 000lb/in?

€y = 0y/E = 3157 u strain

The mechanical properties of the silicon strain gages are:

Maximum strain = 3000 4 strain

C.4.4 General cantilever beam problem

The analysis of the cantjlever beam will be used throughout the anal-
ysis of the loadcell, so the general problem is stated here along with
the standard equations of load, shear force, bending moment, and de-
formation.

A cantilever beam is shown in figure C.4. It is subject to a force F and
a moment M at its end point. The deflection of the end point is given
by § and the angle from the horizontal at the end point is denoted by
d.

Bending moment

The load, the shear force, and the bending moment along the beam are
given by

Load:
q(z) = (-FL - M)(z)_2+ F(z)_, + M(z—L) ;- F(z - L)., (C.B8)

Shear force:
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v(z) = (FL + M)(z).y — F(z)° - M(z—-L)_ + F(z ~ L)° (C.9)
Bending moment:

My(z) = (~FL - M)(z)° + P(zy1 4 Mz - 1)~ F(z - 1y* (C.10)

Deformation

The displacement of the end of the beam is given by
_FL® + ML?
- 3ET T 2ET

where I is the area moment of inertia given by

5 (C.11)

h3w

! 12

and the angle ¢ is
Fr3 + ML
2EI * EJ

(C.12)

Stress and strain

In general, the stress due to a bending moment M, is

of the rectangular cantilever beam, the point of Zero stress coincides
with the center of the beam. Therefore, the maximum stress dye to
bending is located on outer surface of the beam, That is, when y=h/2
the stress is

o= —R (C.l4)
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C.4.5 Case
Assumptions

Assume a force is applied to the fingertip on the top of the hemisphere,
figure C.5. The force is applied vertically along the major axis of the
sensor. By symmetry, fingertip shell will be displaced vertically, no
horizontal motion or rotation will occur. Also by symmetry, the forces
will by applied equally to each leg of the cross.

Analysis

A single leg of the cross is shown in figure C.§. By of symmetry, each
leg of the cross receives an equal force, F/4, and undergoes an equal
displacement §, and angle ¢ = 0. That is, given

_ L ML,

¢ 2E] Er =0 (C.15)
where 3
= Wil
I = 5 (C.16)
then the moment will be
M= _% (C.17)
Therefore the loading is
9z) = —FLi/8(z)_; + F/4(z)_, (C.18)
v(z) = FL/8(z)_, - F/4(z)° (C.19)

Mi(z) = —FL,/8(z)° + F/a(z)* (C.20)
: (C.21)

The maximum bending moment occurs at z = 0and M, = —FL/8.
Therefore, the maximum stress in the beam under this particular load-

ing is FL
3
Omar = 4_-101’1,2 (C22)
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C.4.6 Case 2
Assumptions

A horizontal force is applied to the fingertip, in line with the loadcell,
as shown in figure C.7. The force is evenly distributed on either side
of the loadcell, as a result no rotation occurs. Since, by symmetry,
both sides of the loadcell will behave the same way, one half of the
loadcell will be analysised and js depicted in figure C.8. [t s assumed
the compressive displacements are negligible, therefore, both the legs
parallel to the applied force and the phalanges are assumed to be rigid.
In addition, a cantilever beam model is assumed for both the legs and
the phalanges.

Analysis

The two phalanges and the leg of the cross on each side of the load-
cell are displaced by the same amount 4, figure C.8. The ends of the
phalanges and the legs do not rotate, therefore ¢ = (0 and by equation
C.12

M= —-F.L;/2 (C.23)

Substitute into equation C.11, the displacement is

_ FL;
- 12E;1;

F = (E'L"_a")s (C.25)

Since the force F is evenly distributed on each side of the loadcell, the
sum of the force on the each flexure is F/2, that is

F/2 = Fo+ F + F, (C.26)
Substitute C.24 into .26 yields

I3 I} I3

(C.24)

and the force

F/2 = [ (C.27)
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Solve for § ) FL;"L:
 2E(wPhiL3 + 2wih,L7)

The force and the moment on the leg of the cross is

F ( wf‘h,Lg ) F
| =

wPhi L3 + 203k, [3 ) 2
_ wih L3 FL,
L= wihiL3 + 203k, L7 ) T3

and the force and moment on the phalanges are

P w3h,L? F
P wih, L} + 2wPh L3

2
M= wih, L} FL,
T T \wih I T 2wk L3) I

Finally, the maximum stress on the leg of the cross is

_ 3w1L:L,F
- 2(w,3h,[,g + 2wlh,L})

g

and the maximum stress on the phalange is

o= 3w LLF
P 2wk, LT + 2R L)

C.4.7 Case 3

Assumptions

148

(C.28)

(C.29)

(C.30)
(C.31)

(C.32)

(C.33)

(C.34)

(C.35)
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orientation and position will therefore be limiting force in the design
of the loadcell. It is assumed the loace]l undergoes a rotation and
deformation as illustrated in figure C.10. The phalanges parallel to the

As in the previous case, the legs perpenticuiar to the external force
undergo a displacement, however, since the major stress components
are on the legs parallel to the external force, these displacements are
assumed to be negligible,

Analysis

A free body diagram of the cross is shown in figure C.11. The de-
formation from the force F is assumed small in comparison with that
from the moment F H,. The two legs perpenticular to the applied force
undergo a rotational twist subject to a moment M; and the two legs
parallel to the applied force bend under a moment {; and a force £.
By equilibrium,

FHI =2F1L1—2M1 —2M2 (C37)

A diagram of a single leg undergoing bending is shown in figure C.]12.
By geometric compatiblity, the displacement equals the length of the
beam times the angle, that is, assuming angles are small.

§=Lig (C.38)

Substitute into the equations for displacement and angle and solve for
tke moment M, yields
My, =-RI, (C.39)

and the angle ¢
_ 18R L}

¢ - E’w,hj’

(C.40)
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Figure C.13 shows a diagram of 2 beam under the torsional load, and
the equation for angular rotation as a function of moment is
_ =ML,
- CthllD?

for wy < 4, and ¢, = 0.170 approx. Equate equations C.40 and C.4]
and solve for the moment M,

_ 18L:Csz,2
M,; = (T’l?_) F (C.42)

(C.41)

Now substitute equations C.39 and C.42 into C.37

2
FHy = 2R L, - A-FL,) - 2 (ﬁg,ﬂ) l (C.43)
{
and solve for the force F
Fi=pF b} — (C.44)

Figure C.11 shows a single leg of the cross under the applied loads. By
equilibrium the sum of the moments at the root of the leg are zero.

- AL+ M+ M = (C.45)

M =251, (C.46)
and is also the maximum bending moment under which the beam is
subject. Substituting equation C.44 into the above C.46 yields.

M. - FHIL
mazs = oL 18Lic3Gu?
1+ BT

Therefore the maximum stress is

3FH\L,

(C.48)
wih} [Ll + '—gw—‘-“‘cfw?}

and using equation C.39

(C.47)

Omazr =
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C.4.8 Case 4

The fingertip may also be subject to a tangent force ag shown in figure
C.14. This case, however, is identical to case 3, except for the length
of the moment arm. In this case it is R + A4 — H, instead of H, and
the maximum stress is therefore
Tmaz = 3F(R+H‘H‘)f‘ (C.49)
wih? [Ll + ‘:—LQL';[‘GW

C.4.9 Cases
Assumptions

Figure C.14 shows a force applied to the fingertip, tangent to the sur-
face. It is assumed this force is on the same plane as the loadcell,
therefore stress are only induced on the sides of the flexures. In this
case, the stress due to the force and the stress from the induced mo-
ment superimpose, so that each case must be considered in order to
find the maximum stress on the members. First we will determine the

as a result of an applied moment M. It is assumed all the phalanges
are rigid and that the entire outer structure of the loadcell undergoes
a rotation ¢.

Analysis

A single leg of the cross is shown in figure C.11. It s subject to a force £,
and a moment AM; applied at its endpoint. By geometric compatiblity
the displacement

§=¢L, (C.50)

and using equation C.11, the moment can be found in terms of the
force
M,; = F.L, (C.51)
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By symmetry, each leg of cross is under the identical loading as shown
in figure C.15. The sum of the moments must be zero, therefore,

FR = 4F; L, + 4F.L, (C.52)

and

F= fTR (C.53)

and FR

M; = e (C.54)

A free body diagram of a single leg is shown in figure C.11, sum the
moments at the base of the cantilever

FR

M= -=2 (C.55)

which is the maximum bending moment on the beam. Substitute into
the equation for the stress, gives,

3FR

g = m (C56)

Now we must also consider the stress from the tangent force

3wngL‘F

N eIz Y 2w,h,L3) (C.57)

The sum, therefore, will be the maximum stress on the beam

3R 3w1L$Ll

o= [2h,w,’ + 2(wPhi L3 + 2w,h,L§’)J F (C58)

C.4.10 Case 6

Suppose the fingertip is subject to tangent force on the outer radius of
the hemisphere. As in the Previous case, we must again consider the
superposition of two stresses, since the stress due to the induce moment
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and the vertical force superimpose on one of the legs of the cross. From
the analysis in the first case the stress was

3FL
Omaz = 4-wl_h,2 (C.59)

and from case 2, substitute R for H; yjelds
3F(R+ H - Hy)L,

Tmar = 9L,caCu? (CGO)
'I.U[hlz [L‘ + Th"_l.
The maximum stress in this case is therefore
]
3L 3RL
Omazr = m + 9’[;[:]6“’2 F (CGI)
U wih? [Ll + -

C.4.11 Maximum stress

The maximum stresses under the different loading modes of all six case
are listed below

— J3FL
a'ma: - 4!0"!,

{
—_ sw’LJ LPF
Tmaz = 3= SR Ly +2ui L))

o — SFH L
mazr = 9Lyc3Gwd
oot s 2257
f
Imazr =

3F(R+H-Hy)L
[ U’
w*:’l‘«’r"%?-*l (C.62)

[ 3R 3upL3L,
Tmaz ! ¥ TR | F

3L' + 3‘:5 qaw’ F
wh} LH-%‘,—‘-

]
i
_e:J
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Figure C.5: Force applied on the to

P of the hemisphere along the axis of the
sensor
F/"
1 J §= Fl.’
w s Seug h:_
e $-0
. Me-Fly/g

Figure C.6: Leg of the loadcell under a symmetrically applied vertical load
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\

(4

Figure C.7: A horizontal force is

applied to the outside of the sensor in line with
the inner loadcell

- F/2

- ——
-
-—
-—

‘ \ = Rl‘lo

Figure C.8: The members under

since the force is applied symmetric
and not rotate.

compressive stress are assumed to be rigid and
ally to the loadcell it is assumed to move rigidly
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Figure C.9: Horizontal force applied to the lowest portion of the fingertip shell
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~1

Figure C.11: The legs parallel to the applied force are subject to both a force

and a moment at their end points, while the legs perpendicular to the force are
only subject to a pure torsional moment.

Figure C.12: The legs parallel to the applied force undergo a rotation at the end

point of ¢ and a displacement of #L;, under an applied force Fy and a moment
M,.
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Figure C.13: The leg perpendicular to the applied external force twists to an
angle ¢ subject to an applied moment M,.

Figure C.14: A horizontal fo

rce applied tanget to the surface of the fingertip in
the same plane as the loadcell
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Appendix D

Slip analysis software

D.1 Introduction

The software was not included just to add bulk to this master’s thesis.
In fact, the construction of the LISP functions along with the documen-
tation are similar to the development of the chapters ia the thesis. The
high level functions are listed at the beginning of every section, while
the lower level supporting function are listed in a separate section, one
for each high level function.

D.2 GRASP

160
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FILE: CONSTRAINT.LISP

This file contains functions which analysis the relationship between a grasped objec
and grasping articulators. The file is divided into six major sections:

; 1. General functions and variables

This section contains functions and variables used by all the other
sections in the file. Many of the variables will come from the sensing
on the hand. For example *contact-pointsx, from the fingertip and
joint sensors. Other variables must be specified, but may in the
in the future be sensed as well. For instance, »cg* the center of
gravity of the object, and *contact-surfaces* the local surface shape
in the area of the contact.

1.1 Define general global variables
1.2 Set initial values of the general global variables

1.3 General utility functions

1.3.1 Generzl math functions

1.3.2 General matrix manipulation functions

1.3.2.1 Major manipulation functions

. ADD-ARRAY-LIST
. MULTIPLY-ARRAY-LIST -
ROW-REDUCED-ECHELON-MATRIX
TRANSFORM-DIRECTION-GLOBAL-FRAME
TRANSFORM-DIRECTION-FRAME-GLOBAL
. TRANSFORM-POINTS-GLOBAL-FRAME
. TRANSFORM-POINTS-FRAME-GLOBAL
TRANSFORM-FRAMES-GLOBAL-FRAME
TRANISFORM-FRAMES-FRAME-GLOBAL
GENERATE-FRAME
. GENERATE-FRAME-POINTS
uxiliary functions
ADD-ARRAY-LIST
MULTIPLY-ARRAY-LIST
ROW-REDUCED-ECHELON-MATRIX
TRANSFORM-DIRECTION-GLOBAL-FRAME
. TRANSFORM-DIRECTION-FRAME-GLOBAL
TRANSFORM-POINTS-GLOBAL-FRAME
. TRANSFORM-POINTS-FRAME-GLOBAL
TRANSFORM-FRAMES-GLOBAL -FRAME
TRANSFORM-FRAMES -FRAME -GLOBAL
GENERATE-FRAME
. GENERATE-FRAME-POINTS
. General

| o QA0 o

1.3.2.2

H R TR RO QO DR T

. 1.3.3 General matrix output functions
: 1.3.3.1 Major matrix output functions
; a. PRINT-ARRAY-LIST
; 1.3.3.2 Auxiliary functions
; a. PRINT-ARRAY-LIST
; ’ b. General
; 1.4 Graphics functions
4.1 Define graphics variables
4.2 Detind functions to set graphics variables
.4.3 Set graphics functions
.4.4 Graphics functions
1.4.4.1 Screen creation and initialization functions

a. MAKE-GRASP-SCREEN
h KTIT! -CRASP-QrREEMN

G
1
: 1
1
1



Q. UnbEAlE-URADP-SUREED

e. CLEARSCREEHN
1.4.4.2 Drawing functions
DRAW-2D-GRASP-%IlIDQW
DRAW-3D-GRASP-¥IlIDOW
SPHERE-3D-GRASP-WINDOW
DRAW-COORDINATE-SYSTEM
DRAW-COORDINATES
- f. DRAW-3D-LIST
1.4.5 Auxiliary graphics functions

® QA0 o w

Sensed and global variables

This section defines and initializes sensed and global variables used in
the other sections. The only variables which are truely sensed externally are:

*contact-pointsx* a list of contact-points in the hand space
*contact-normalsx a list of normals at the contact points in hand
space.

The force and tactile sensing fingertip need to be working for these variables
to be read. Until then these variables will have to be constructed. So there
are a number of functions and variables which are used to construct the variable

*contact-points* and *contact-normalsx*. These functions and variables are
temporary and are used only for simulation. When the sensors are connected
these variables and functions will have to be removed.

Temporary variables used to construct *contact-poimtss

*contact-points-object-spacex a list of contact points in the
object space
*contact-normals-object-spacex a list of contact normals in the
object space
*Cg* the center of gravity of the object
*major-axis* the normal indicating the direction of
major axis of an axisymmetric object

Constraint functions

This section contain functions which analysis the constraint created by
the contacts on the grasped object. An infinitesimal analysis involving
virtual work and a finite motion analysis involving the shape of contact
surface are both included in determine the overall constraint imposed by

the contacts
3.1 Define constraint variables

3.2 Set constraint variables
-3.2.1 Functions for setting constraint variables

3.3 Constraint analysis functions
3.3.1 Major analytic functions
a. COUSTRUNT-VIRTUAL-WORK-LIST
b. DETERMINE-CONTACT-TYPES
3.3.1 Auxiliary functions

Body wrench

In this section the wrench on the object resulting from forces excluding
contact forces from the robot is calculated. Body wrenches may result from
gravity, accelerations, electromagnetic forces, and contacts other than
fingertips. The only body wrenches calculated in the present program are
those resulting from gravity.



4.2 Set body wrench variables

4.3 Body wrench functions
4.3.1 Major body wrench functions
a. ORIENTATION
4.3.2 Auxiliary functions
a. ORIENTATION

Contact wrenches

The wrenches in the contact space for each contact are calculated assuming
a certain stiffness at the fingertips, a body wrench (section 3), and an offset
wrench (section 6).

5.1 Define contact wrench variables

5.2 Set contact wrench variables
5.2.1 Functions to set contact wrench variables

5.3 Contact wrench functions
5.3.1 Major contact wrench functions
a. CONSTUCT-CONTACT-WRENCH
5.3.2 Auxiliary functions
a. CONSTUCT-CONTACT-WRENCH

Contact types —

In this section the type of contact is determined given certain frictional
criteria and the wrench in the contact space. The different types of contacts
are

(1) Soft finger contact

(2) Point contact with friction
(3) Point contact without friction
(4) lo contact

6.1 Define contact type variables
6.2 Set contact type variables

6.3 Contact type functions
6.3.1 Major contact type functions
a. CONTACT-TYPE
6.3.2 Auxiliary functions
a. CONTACT-TYPE

. Offget wrench

The internal grasping force exerted by the contacts on an object are not
determined by external forces and may be varied arbitarily on an object.
The space of possible solutions to the grasping force problem varies with
the number of contacts:

llumber of contacts Dimension of solution space

0
1
3
6
3

DO W N -

*(n-2) n>=3

For a two fingered grasp, the dimension of the solution space on the
internal grasping forces is one. That is, in general, the squeeze force

between the two fingers may be varied.
For three fingers there is a three dimensional space of solutions.



€aci'L u un au object, and at least one force 1s not parallel to the others,
and the object is not accelerating, then the three
forces intersect at a point in space. Furthermore, these intersection points
lie on the plane formed by the three contacts points. The three dimensional
solution space of grasping forces is then a point (X,Y) lying on the grasping
force plane, and F the grasping force magnitude.

For more than three fingers, the solution space grows by 3*(n-2), where n

is the number of contacts.
7.1 CONSTRUCT-OFFSET-WRENCH
7.2 OFFSET-WRENCH-THREE-CONTACTS

. Controlled slip

This is an experimental section formed of functions whizh use the functions
of the previously descibed sections. The number of controllable variables to
execute dexterous control of an object within a grasp of a three fingered hand
is enormous:

Controllable variables Dimension of space
Grasping force 3
Orientation 3
Stiffness 9
(more here) »

8.1 Detfine controlled slip variables
8.2 Set controclled slip variables
8.3 Controlled slip variables

8.3.1 PERMISSIBLE TWIST

accepts: twist

assumes: orientation
grasping force center

returns: maximally constrained state which allows the

allows the specified twist

orientation
grasping force magnitude

8.3.2 DETERMINE-CONSTRAINT-STATE accepts: grasping force center
grasp force magnitude

assumeg: orientation
returns: constraint state

8.3.3 MAP-CONSTRAINT-SPACE
accepts: force-magnitude
agsumes: orientation
stiffness
returns: two-dimensional map of constrain states
as a function of (x,y) the grasping force
center

. Hand actuation functions

This section contains functions to perform actual motions of the hand.

9.1 Define actuations variables

9.2 Define functions to set actuation functions



9.3 Set actuation variables

; 9.4 Grasp functions
9.4.1 MOVE-TO-CONTACT-POINTS assumes: +#contact-framess
: returns: moves fingers to points defined in -
ntact-frames*
; 9.4.2 GRASP accepts: grasping force center
grasp force magnitude
assumes: stiffness
returns: motion of the fingers

9.5 Grasp auxiliary functions
: 9.5.1 MOVE-TO-CONTACT-POINTS auxiliary functions
: 9.5.2 GRASP auxiliary funcitons
10. Menu

Standard motion options:

Screen graphics options:

CLEARSCREEN :clears "grasp-window" pane of "grasp-screen
; screen
; DRAW COORDINATE SYSTEM :draws the tkree dimensional coordinate syst
: for the hand, object, and contacts

MAP CONSTRAINT SPACE :plots the constraint states on the two

; dimensional grasp surface for a specified
; grasp force magnitude -

Controlled slip options:

RESET GLOBAL VARIABLES :shows the current values of the global
variables and allows the user to change th
DETERMINE CONSTRAINT STATE:accepts the grasping force center and the
grasping force magnitude
assumes the stiffness and orientation
and returns the constraint state
PERMISSIBLE TWIST raccepts a twist
assumes an orientation
and returns the maximally constrained stat
which allows that twist
Hand actuations options:

MOVE TO CONTACT POINTS :moves fingers to the pcints cooresspondin
those in *contact-frames*

PICK GRASP FORCE CENTER :plots the contacts on the two dimensional
grasp surface and allows the user to choc
a particular force magnitude and use the
stick to pick a force center and actuates
hand accordingly

Advanced hand actuation options
CONTROLLED SLIP :allows the user to enter an object motio
and the hand tries to actuate it.

11. Demos

This section contains demo programs which are based on the analyses of t
the previous section.
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1. General functions and variables

M ;**tlﬁ*t*t********************************#***i‘***t***********************t*****i***k*#*4

; 1.1 Define variables

: 1.2 Set default variable values section

; 1.2.1 Functions to set default variable values
: 1.2.2 Set default variable values

: 1.3 General utility functions

—

3.1 General math functions
; 1.3.1.1 SQR
(defun sqr (x)
(cond ((not (numberp x)) 0)

(t (* x x))))

1.3.2 General matrix manipulation functions
; 1.3.2.1 ADD-ARRAY-LIST
(defun add-array-list (array-list)
(cond ((null array-list) nil)
((atom array-list) array-list)
(t (add-two-arrays (add-array-list (car array-list))
(add-array-list (cdr array-list))))))

; 1.3.2.1.A ADD-ARRAY-LIST Auxiliary
(defun add-two-arrays (array-1 array-2)
(cond ((and (not array-1) (not array-2)) nil)
((not array-1) array-2)
((not array-2) array-1)
((vectorp array-1)
(let* ((elements (array-dimension array-1i 0))
(sum-array (make-array elements)))
(do ((i 0 (+ i 1)))
((= i elements) sum-array)
(setf (aref sum-array i) (+ (aref array-1 i) (aref array-2 i))))))
(t (let* ((rows (array-dimension array-1 0))
(columns (array-dimension array-2 1))
(sum-array (make-array (list rows columns))))
(do (( i 0 (+ i 1)))
((= i rows) sum-array)
(do ((j O (+ j 1))
((= j columns) nil)
(setf (aref sum-array i j) (+ (aref array-1 i j) (aref array-2 i j)))))))

; 1.3.2.2 MULTIPLY-ARRAY-LIST
(defun multiply-array-list (array-list)
(cond ((null array-list) nil)
((atom array-list) array-list)
(t (multiply-two-arrays (multiply-array-list (car array-list))
(multiply-array-list (cdr array-list))))))

; 1.3.2.2.A MULTIPLY-ARRAY-LIST Auxiliary
(defun multiply-two-vectors (array-1 array-2)
(let* ((elements-1 (array-dimension array-1 0))
(elements-2 (array-dimension array-2 0))
(product-array (initialize-array elements-1 elements-2)))
(cond ((not (= elements-1 elements-2)) nil)
(t
(do ((j O (+ j 1)))
((= j elements-1) product-array)
(do ((k 0 (+ k 1)))
((= k elements-1) nil)
(set? (aref product-array j k)
(* (aref array-1 j) (aret array-2 k)))))))))



(aefun wultiply-ariay-vector (array vector)
let* ((rows-1 (array-dimension array 0))
(elements (array-dimension vector 0))
(product-array (initialize-vector elements)))
(do ((j O (+ j 1)))
((= j rows-1) product-array)
(do ((k O (+ k 1)))
((= k elements) nil)

(setf (aref product-array j)

(+ (aref product-array j) :
(*+ (aref array j k) (aref vector k))))))))

(defun multiply-two-arrays (array-1 array-2)
(cond ((and (not array-1) (not array-2)) nil)
((not array-1) array-2)
((not array-2) array-1)
((and (not (arrayp array-1)) (not (arrayp agray-2))) (* array-1i array-2))
((not (arrayp array-1)) (multiply-constant-array array-1i array-2))
((not {arrayp array-2)) (multiply-constant-array array-2 array-1))
((vecitorp array-1)
(cond ((not (= (array-rank array-2) 1)) nil)
(t (multiply-two-vectors array-1 array-2))))
((not (equalp (array-dimension array-1 1)
(array-dimension array-2 0))) nil)

((vectorp array-2) (multiply-array-vector array-1 array-2))
(t (let* ((rows-1 (array-dimension array-1 0))

(rows-2 (array-dimension array-2 0))

(columns-2 (array-dimension array-2 1))

(product-array (initialize-array rows-1 columns-2)))

(do (( i 0 (+1i 1)))
((= i columns-2) product-array)
(do ((j 0 (+ j 1)))
((= j rows-1) nil)p
(do ((k 0 (+ k 1)))
((= k rows-2) nil)
(setf (aref product-array j i)
(+ (aref product-array j i)
(* (aref array-1 j k) (aref array-2 k i)))J)))}))))

(defun multiply-constant-array (constant array)
(cond ((vectorp array)
(let* ((elements (array-dimension array 0))
(product-array (make-array elements)))
(do ((i 0 (+ i 1)))
((= i elements) product-array)
(setf (aref product-array i) (x constant (aref array i»NN)
(t
(let* ((rows (array-dimension array 0))
(columns (array-dimension array 1))
(product-array (make-array (list rows columns))))
(do ((i 0 (+ i 1)))
((= i rows) product-array)
(do ((j O (+j 1))
((= j columns) nil)
(setf (aref product-array i j) (* constant (aref array i PN

s

1.3.2.3 ROV-REDUCED-ECHELQN

(defun row-reduced-echelon (array)
(let ((rows (array-dimension array 0))
(columns (array-dimension array 1)))
(row-reduced-echelon-aux (diagonalize array) ( - rows 1) O rows columns)))

1.3.2.3.A ROW-REDUCED-ECHELOll Auxiliary

idefun zero-array (rows columns)
(cond ((or (< rows 0) (< columns 0)) nil)



((= rows 0) (zero-vector columns))
((= columns O) (zero-vector rows))
(t ;
(let ((array (make-array (list rows columns))))
(do ((i 0 (+ i 1))
((= i rows) array )
(do ((j O (+ j 1)))
((= j columns))
(setf (aref array i j) 0)))))))

(defun zero-vector (elements)
(cond ((<= elements 0) nil)
(t
(let ((vector (make-array elements)))
(do ((1 0 (+ i 1)))
((= i elements) vector)
(setf (aref vector i) 0))))))

(defun row-reduced-echelon-aux (array current-row current-column rows columns)
(cond ((= current-row 0) array)
((zero-row array current-column current-row)
(row-reduced-echelon-aux array (- current-row 1) O rows columns))
({= current-column columns)
(row-reduced-echelon-aux array (- current-row 1) O rows columns))
((< (sqr (aref array current-row current-column)) 0.00001)
(row-reduced-echelon-aux array current-row (+ 1 current-column) rows columns))
(t (row-reduced-echelon-aux
(row-reduced-echelon-aux-1 array current-row current-row current-column rowse
(- current-row 1)
0 rows columns))))

(defun row-reduced-echelon-aux-1 (array inc-row current-row current-column rows)

(cond ((= inc-row 0) array)
(t
(row-reduced-echelon-aux-1
(add-x-times-ri-row-to-r2-row array current-row current-column (- inc-row 1))

(- inc-row 1) current-row current-column rows))))

(defun diagonalize (array)
(let ((rows (array-dimension array 0))
(columns (array-dimension array 1)))
(diagonalize-array-aux array 0 O rows columns)))

(defun zero-column (array current-column current-row)
(let ((rows (array-dimension array 0))
(sum 0))
(do ((i current-row (+ i 1)))
((= i rows) (< (sqr sum) 0.00001))
(setq sum (+ sum (abs (aref array i current-column)))))))

(defun zero-row (array current-column current-rcw)
(let ((columns (array-dimension array 1))
(sum 0))
(do ((i current-column (+ i 1)))
((= i columns) (< (sqr sum) 0.00001))
(setq sum (+ sum (abs (aref array current-row i)))))))

(defun diagonalize-array-aux (array current-column current-row rows columns)
(cond ((= current-column (min rows columns)) array)
((zero-column array current-column current-row)
(diagonalize-array-aux array (+ 1 current-column) current-row rows columns))

(t
(diagonalize-array-aux
(initialize-column-aux
(divide-r-row-bv-element-rc arrav enrrent-row enrrent-cnlunmn)



(+ 1 current-row)
rows
columns))))

(defun initialize-column-aux (array initial-column initial-row current-row rows)
(cond ((= current-row rows) array)
(t
(initialize-column-aux
(add-x-times-ri-row-to-r2-row array
initial-row initial-column current-row)
initial-column
initial-row
(+ 1 current-row)
rows))))

(defun divide-r-row-by-element-rc (array r c)
(let ((columns (array-dimension array 1))
(first-element (aref array r c))
(new-array (initialize array)))
(cond ((< (sqr first-element) 0.00001)
(divide-r-row-by-element-rc (interchange-last-row-and-row-r array r) r c))
(t
(do ((1 c (+ 1 1)))
((= i columns) new-array)
(setf (aref new-array r i) (/ (aref array r i) first-element)))))))

(defun add-x-times-ri-row-to-r2-row (array ri ci r2)
(cond ((< (sqr (aref array r1 c1)) 0.00001) array)
(t
(let ((columns (array-dimension array 1))
(new-array (initialize array))
(constant (* -1 (aref array r2 c1))))
(do ((i c1 (+ i 1)))
((= i columns) new-array)
(setf (aref new-array r2 i) (+ (# constant (aref array ril i))
(aref array r2 i))))))))

(defun interchange-last-row-and-row-r (array r)
(let {(last-row (- (array-dimension array 0) 1))
(columns (array-dimension array 1))
(new-array (initialize array)))
(do ((i 0 (+ i 1)))

((= i columns) new-array)

(setf (aref new-array r i) (aref array last-row i))

(setf (aref new-array last-row i) (aref array r i)))))

(defun transpose-contact-frame (contact-frame)
(let* ((t-contact-frame (initialize contact-frame)))
(do ((i 0 (+ i 1)))
((= i 3) t-contact-frame)
(do ((j O (+ j 1)))
((= j 3))
(setf (aref t-contact-frame i j) (aref contact-frame j 1))))))

; 1.3.2.4 TRANSFORM-DIRECTION-GLOBAL-FRAME
(defun transform-direction-global-frame (frames objects)
(cond ((and (listp objects) (listp frames))
(transform-direction-global-frame-lists frames objects))
((listp objects)
(transform-direction-global-frame-list frames objects))
(t
(transform-direction-object-global-frame frames objects))))



(defun transform-direction-array-frame-global (frame array)
(let= ((rows (array-dimension array 0))
(columns (array-dimenston array 1))
(new-array (make-array (list rews columns))))
(do ((1 0 (+ i 3)))
((= i rows) new-array)
(do ((j O (+ j 1)))

((= j columns))

(do ((k 0 (+ k 1)))

((= k 3))
(setf (aref new-array (+ i k) j)
(+ (* (aref array i j) (aret frame k 0))

(= (aref array (+ i 1) j) (aref frame k 1))
(* (aref array (+ i 2) j) (aref frame k 1)))))))))

(defun transform-direction-vector-frame-global (frame vector)
(let* ((elements (z-vay-dimension vector 0))
(new-vector (make-array elements)))
(do ((1 0 (+ i 3)))
((= i elements) new-vector)
(do ((k 0 (+ k 1)))

((= k 3))
(setf (aref new-vector (+ i k))
(+ (x (aref vector i) (aref frame k 0))

(= (aref vector (+ i 1)) (aref frame k 1))
(* (aref vector (+ i 2)) (aref frame k 2))))))))

1.3.2.6 TRANSFORM-POINTS-GLOBAL-FRAME
(defun transform-points-global-frame (frames objects)
(cond ((and (listp objects) (listp frames))

(transform-points-global-frame-lists frames objects))

((listp objects)
(transform-points-global-frame-list frames objects))

(t
(transform-points-object-global-frame frames objects))))

1.3.2.6.A TRAIISFORMP-POINTS-FRAME-GLOBAL Auxilia
(detun transform-points-global-frame-lists (frames objects)
(cond ((null frames) nil)
(t (cons (transform-points-object-global-frame (car frames) (car objects))
(transform-points-global-frame-lists (cdr frames) (cdr objects))))))

(defun transform-points-global-frame-list (frame objects)
(cond ((null objects) nil)
(t (cons (transform-points-object-global-frame frame (car objects))
(transform-points-global-frame-list frame (cdr objects))))))

(defun transform-points-object-global-frame (frame object)
(cond ((vectorp object) (transform-points-vector-global-frame frame object))
((arrayp object) (transform-points-array-global-frame frame object))
(t nil)))

(defun transform-points-array-global-frame (frame array)
(let* ((rows (array-dimension array 0))
(columns (array-dimension array 1))
(new-array (make-array (list rows columns))))
(do ((1i 0 (+ i 3)))

((= i rows) new-array)

(do ((j 0 (+ j 1)))

((= j columns))

(do ((k 0 (+ k 1)))

((= k 3))
(setf (aref new-array (+ i k) j)
(+ (= (- (aref array i j) (aref frame O 3)) (aret frame 0 k))

(« (- (aref array (+ i 1) j) (aref frame 1 3)) (aref frame 1 k))



\Uuiln Li@uSiluirn puULILS VeclOor-gluval-frame (Irame vector)
(let* ((elements (array-dimension vector 0))
(new-vector (make-array elements)))
(do ((i 0 (+ i 3)))
((= i elements) new-vector)
(do ((k O (+ k 1)))

((= k 3))
(setf (aref new-vector (+ i k))
(+ (< (- (aref vector i) (aref frame O 3)) (aref frame O k))

(* (- (aref vector (+ i 1)) (aref frame 1 3)) {(aref frame 1 k))
(« (- (aref vector (+ i 2)) (aref frame 2 3)) (aref frame 2 k))))))))

1.3.2.7 TRANSFORM-POINTS-FRAME-GLOBAL
(defun transform-points-frame-global (frames objects)
(cond ((and (listp objects) (listp frames))

(transform-points-frame-global-lists frames objects))

((listp objects)

(transform-points-frame-global-list frames objects))
(t

(transform-points-object-frame-global frames objects))))

; 1.3.2.7.A TRANSFORM-POINTS-FRAME-GLOBAL Auxilia:
(defun transform-points-frame-global-lists (frames objects)
(cond ((null frames) nil)
(t (cons (transform-points-object-frame-global (car frames) (car objects))
(transform-points-frame-global-lists (cdr frames) (cdr objects))))))
(defun transform-points-frame-global-list (frame objects)
(cond ((null objects) nil)
(t (cons (transform-points-object-frame-global frame (car objects))
(transform-points-frame-global-list frame (cdr objects))))))

(defun transform-points-object-frame-global (frame object)
(cond ((vectorp object) (transform-points-vector-frame-global frame object))
((arrayp object) (transform-points-array-frame-global frame object))
(t nil)))

(defun transform-points-array-frame-global (frame array)
(let* ((rows (array-dimension array 0))
(columns (array-dimension array 1))
(new-array (make-array (list rows columns))))
(do ((i 0 (+ i 3)))
((= i rows) new-array)
(do {(j O (+ j 1)))

((= j columns))

(do ((k O (+ k 1)))

((= k 3))
(setf (aref new-array (+ i k) j)
(+ (x (aret array i j) (aref frame k 0))

(x (aret array (+ i 1) j) (aref frame k 1))
(= (aref array (+ i 2) j) (aref frame k 2))
(aref frame k 3))))))))

(defun transform-points-vector-frame-globzl (frame vector)
(let* ((elements (array-dimension vector 0))
(new-vector (make-array elements)))
(do ((i O (+ i 3)))
((= i elements) new-vector)
(do ((k 0 (+ k 1)))

((= k 3))
(set?f (aref new-vector (+ i k))
(+ (v (aref vector i) (aret frame k 0))

(« (aret vector (+ i 1)) (aref frame k 1))
(+ (aret vector (+ i 2)) (aref frame k 2))



; 1 3.2.8 TRANSFORM-FRAMES-GLOBAL-FRAME
(defun transform-frames-global-ﬂrame (frames object-frames)
(cond ((and (listp object-frames) (listp frames))
(transform-frames-global-frame-lists frames object-frames))

((listp object-frames)

(transform-frames-global-frame-list frames object-frames))

(t

(transform-frame-global-frame frames object-frames))))

: 1.3.2.8.A TRANISFORM-FRAMES-GLOBAL-FRAME Auxiliary
(defun transform-frames-global-frame-lists (frames object-frames)
(cond ((null frames) nil)
(t (cons (transform-frames-global-frame (car frames) (car object-frames))
(transform-frames-global-frame-lists (cdr frames) (cdr object-frames))))))

(defun transform-irames-global-frame-list (frame object-frames)
(cond ((null object-frames) nil) .
(t (cons (transform-frame-global-frame frame (car object-frames))
(transform-frames-global-frame-list frame (cdr object-frames))))))

(defun transform-frame-global-frame (frame object-frame)
(let* ((new-object-frame (make-array ‘(3 4))))
(do ((i 0 (+ i 1)))
((= 1 3))
(do ((j O (+ j 1)))
(=3 3))
(setf (aref new-object-frame j i)
(+ (* (aref object-frame O i) (aref frame O i))
(x (aref object-frame 1 i) (aref frame 1 j))
(« (aref object-frame 2 i) (aref frame 2 j))))))
(do ((i 0 (+ i 1)))
((= i 3) new-object-frame)
(setf (aref new-object-frame i 3)
(+ (+ (- (aref object-frame O 3) (aref frame O 3)) (aref frame O 1))
(- (- (aref object-frame 1 3) (aref frame 1 3)) (ar~f frame 1 1))
(+ (- (aref object-frame 2 3) (aref frame 2 3)) (aref frame 2 1)))))))

; 1.3.2.9 TRANSFORM-FRAMES-FRAME-GLOBAL
(defun transform-frames-frame-global (frames object-frames)
(cond ((and (listp object-frames) (listp frames))
(transform-frames-frame-global-lists frames cbject-frames))
((listp object-frames)
(transform-frames-frame-global-list frames object-frames))
(t
(transform-frame-frame-global frames object-frames))))

; 1.3.2.9.A TRANSFORM-FRAMES-FRAME-GLOBAL Auxiliary
(defun transform-frames-frame-global-lists (frames object-frames)
(cond ((null frames) nil)
(t (cons (transform-frame-frame-global (car frames) (car cbject-frames))
(transform-frames-frame-global-lists (cdr frames) (cdr object-frames))))))

(defun transform-frames-frame-global-list (frame object-frames)
(cond ((null object-frames) nil)
(t (cons (transform-frame-frame-global frame (car cbject-frames))
(transform-frames-frame-global-list frame (cdr object-frames))))))

(defun transform-frame-frame-global (frame object-frame)
(let* ((new-object-frame (make-array (3 4))))
(do ((i 0 (+ i 1)))
(=1 3))
(do ((j 0 (+ j 1)))
((=j 3))

(setf (aref new-object-frame j i)



(defun generate-frame (points vectors)
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(« (aret object-frame 2 i) (aref frame j 2))))))
(do ((i 0 (+ 1 1)))
((= i 3) new-object-frame)

(setf (aref new-object-frame i 3)

(+ (* (aref object-frame O 3) (aref frame i 0))
(* (aret object-frame 1 3) (aref frame i 1))
(* (aref object-frame 2 3) (aref frame i 2))

(aref frame i 3))))))

1.3.2.10 GEIERATE-FRAME

(cond ({null points) nil)

((atom points) (generate-frame-aux points vectors))

(t (cons (generate-frame (car points) (car vectors))
(generate-frame (cdr points) (cdr vectors))))))

(defun generatc-frame-aux (point vector);

1.3.2.10 GENERATE-FRAME Auxiliary

(let* ((frame (make-array '(3 4)))
(length (sqrt (+ (sqr (aref vector 0))

(sqr (aref vector 1))
(sqr (aref vector 2)))))

(nx (; (aret vector 0) length))
(ny (/ (aref vector 1) length))
(nz (/ (aret vector 2) length))

(1x) (ly) (1z) (mx) (my) (mz))

(cond ((= nx 0) (setq lx 1) (setq ly O) (setq 1z 0))

((= ny 0) (setq 1lx 0) (setq ly -1) (setq 1z 0))

(t (setq 1lx
(setq ly
(setq 1z

(setq
(setq
(setq
(sett
(setf
(sett
(setf
(sett
(setf
(setf
(sett
(setf
(sett
(sett
(setf

mx (-
my (-
mz (-
(aret
(aret
(aref
(aret
(aret
(aref
(aref
(aret
(aret
(aret
(aret
(aret

frame))

(* ny
(* nz
(* nx
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame

(sqrt (/ (sqr (/ ny nx)) (+ 1 (sqr (/ ny nx))))))
(/ (*» -1 nx 1x) ny))
0)))

1z) (* nz ly)))

1x) (x nx 1z)))

1ly) (= ny 1x)))

0 0) 1x)

0 1) mx)

0 2) nx)

0 3) (aref point 0))
1 0) 1ly)

1 1) my)

1 2) ny)

1 3) (aref point 1))
2 0) 1z)

2 1) mz)

2 2) nz)

2 3) (aref point 2))

1.3.2.11 GENUERATE-FRAME-POINTS

(defun generate-frame-points (pointa-1 points-2)
(cond ((null points-1) nil)
((atom points-1) (generate-frame-points-aux points-1 points-2))
(t (cons (generate-frame-points (car points-1) (car points-2))
(generate-frame-points (cdr points-1) (cdr points-2))))))

1.3.2.11 GEUERATE-FRAME-POINTS Auxiliary

(defun generate-frame-points-aux (point-1 point-2)
(let~ ((length (sqrt (+ (sqr (- (aref point-2 0) (aref point-1 0)))

(sqr (- (aref point-2 1) (aref point-1 1)))
(sqr (- (aref point-2 2) (aref point-1 2))))))

(nx (/ (- (aret point-2 0) (aref point-1 0)) length))
(ny (/ (- (aref point-2 1) (aref point-1 1)) length))
(nz (/ (- (aret point-2 2) (aref point-1 2)) length))
(normal (make-array '(3))))
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(setf (aref normal 2) nz)
(generate-frame-aux point-1 normal)))

: .3.3 General-functions

.3.3.1

1 3
: 1 3.1 COUNT-ATOMS
(defun count-atoms (list)
(cond ((null list) 0)

((atom list) 1)

((+ (count-atoms (car list))

(count-atoms (cdr list))))))

: 1.3.3.2 INITIALIZE-VECTOR
(defun initialize-vector (elements)
(let ((vector (make-array elements)))
(do ((i 0 (+ i 1)))
((= i elements) vector)
(setf (aref vector i) 0))))

; 1.3.3.3 INITIALIZE-ARRAY
(defun initialize-array (rows columns)
(let ((array (make-array (list rows columns))))
(do ((1 0 (+ 1 1)))
((= i rows) array)
(do ((j O (+ j 1)))
({= j columns) nil)
(setf (aref array i j) 0)))))

; 1.3.3.4 INITIALIZE
(defun initialize (array)
(let> ((rows (array-dimension array 0))
(columns (array-dimension array 1))
(new-array (make-array (list rows columns))))
(do ((i 0 (+ i 1)))
((= i rows) new-array )
(do ((j 0 (+ j 1)))
((= j columns))
(setf (aref new-array i j) (aref array i j))))))

; 1.3.3.5 TRANISPOSE
(defun transpose (array)
(let+ ({rows (array-dimension array 0))
(columns (array-dimension array 1))
(new-array (make-array (list columns rows))))
(do ((1 0 (+ 1 1)))
((= i rows) new-array)
(de ((j 0 (+ j 1)))
((= j columns))
(setf (aref new-array j i) (aref array i j))))))

; 1.3.3.6 GET-ARRAY-COLUMN
(defun get-array-column (array column)
(let= ((rows (array-dimension array 0))
(vector (make-array rows)))
(do ((i 0 (+ 1 1)))
((= i rows) vector)
(setf (aref vector i) (aref array i column)))))

1.3.3.7 ABS-ARRAY

(defun abs-array (array-list)
(cond ((null array-list) nil)
((atom array-list) (abs-one-array array-list))
(t (cons (abs-array (car array-list))
(abs-array (cdr array-list))))))
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(t (let* ((rows (array-dimension array 0))
(columns (array-dimension array 1))
(new-array (make-array (list rows columns))))
(do ((i 0 (+ i 1)))
((= i rows) new-array)
(do ((j 0 (+ j 1)))
((= j columns))
(setf (aref new-array i j) (abs (aref array i j)))))))))

(defun abs-one-vector (vector)
(let* ((elements (array-dimension vector 0))
(new-vector (make-array elements)))
(do ((i O (+ i 1)))
((= i elements) new-vector)
(setf (aref new-vector i) (abs (aref vector i))))))

1.3.3.7. A ABS-ARRAY Auxiliary
1.3.4 General matrix output functions
; 1.3.4.1 PRINT-ARRAY
(defun print-array (array-list)
(cond ((listp array-list) (print-array-list array-list))
(t (print-one-array array-list))))

; 1.3.4.1.A PRINT-ARRAY Auxiliary
(defun print-array-list (array-list)
(cond ((null array-list) nil)
(t (print-array (car array-list))
(print-array-list (cdr array-list)))))

(defun print-one-array (array)
(cond ((vectorp array) (print-vector array))
(t (print-2d-array array))))

(defun print-2d-array (2d-array)
(write-char #\newline)
(write-char #\newline)
(let ((rows (array-dimension 2d-array 0))
(columns (array-dimension 2d-array 1)))
(do ((i 0 (+ i 1)))
((= i rows) nil)
(do ((j 0 (+ j 1)))
((= j columns) nil)
(prinl (aref 2d-array i j))
(write-char #\space ))
(write-char #\newline))))

(defun print-vector (vector)

(write-char #\newline)

(write-char #\newline)

(let ((elements (array-dimension vector 0)))

(do ((i O (+ i 1)))

((= i elements) nil)
(printl (aref vector i))
(write-char #\space ))))

1.4 Graphics functions

1.4.1 Define graphics variables

(defvar grasp-screen)
(defvar grasp-window)
(defvar view-frame)
(defvar scale-2d)
(defvar x-origin-2d)



(defvar scale-3d)
(defvar x-origin-3d)
(defvar y-origin-3d)
(detvar angle-x)
(defvar angle-z)

1.4.2 Set default variable values section
1.4.2.1 Define functions to set graphics variables

(defun construct-view-frame (angle-x angle-z)
(letx ((ct (cos angle-x))
(st (sin angle-x))
(cp (cos angle-z))
(sp (sin angle-z))
(view-frame (zero-array 3 4)))
(setf (aref view-frame O 0) cp)
(setf (aref view-frame 0 1) (* -1 ct sp))
(setf (aref view-frame 0 2) (* -1 st sp))
(setf (aref view-frame 1 0) sp)
(setf (aref view-frame 1 1) (* ct cp))
(setf (aref view-frame 1 2) (+ st cp))

NN~ =~ 000

(setf (aref view-frame 2 0) O)
(setf (aref view-frame 1) (% -1 st))
(setf (aref view-frame 2) ct)

view-frame))

1.4.2.2 Set graphics variables -

(setq scale-2d 100)
(setq x-origin-2d 300)
(setq y-origin-2d 300)

(setq scale-3d 200)
(setq x-origin-3d 300)
(setq y-origin-3d 500)
(setq angle-x 0.400)
(setq angle-z 0.400)

(setq view-frame (construct-view-frame angle-x angle-z))

1.4.3 Graphics functions
1.4.3.1 Screen definition and initialization functi
: 1.4.3.1.1 MAKE-GRASP-SCREEN
(defun make-grasp-screen (&optional (proc-msg t))
(if (create-grasp-screen)
(progn (send grasp-screen :activate)
(send grasp-screen :expose)
(send grasp-screen :send-pane 'top-pane :select))
(progn (send grasp-screen :select)
(send grasp-screen :send-pane 'top-pane :select)))

(if proc-msg (start-monitor-msg)))

: 1.4.3.1.2 KILL-GRASP-SCREEN
(defun kill-grasp-screen ()
(it (variable-boundp grasp-screen)

(progn (if (variable-boundp pc) (send pc :kill) )
(send (send grasp-screen :send-pane ‘bottom-pane :process) :reset)
(send grasp-screen :kill)
(variable-makunbound grasp-screen)
T)
nil))

this function resets the bottom pane lisp listener and starts a the message monitor
use (monitor-msg pc tg 'verbose) if you want verbose message processing. ..
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(defun force-kbd-input-string (window string)
(loop for i from O below (string-length string)

do (send window :force-kbd-input (char-int (char string 1)))))

; 1.4.3.1.4 START-MONITOR-MSG
(defun start-monitor-msg ()
(if (variable-boundp pc)

(progn (send (send grasp-screen :send-pane 'bottom-pane :process) reset)
(send grasp-screen :send-pane 'bottom-pane ':clear-screen)
(force-kbd-input-string (send grasp-screen :get-pane 'bottom-pane)

"(monitor-msg pc tg)")
)
(send grasp-screen :send-pane 'bottom-pane :line-out
#.(ZL:STRING "Parallel connection doesn’t exist. Can't start message processor")))
T)

; 1.4.3.1.5-CREATE-GRASP-SCREEN
(defun create-grasp-screen ()
(setq grasp-screen (tv:make-window
‘tv:.bordered-constraint-frame
' :panes
‘((top-pane si:common-lisp-listener
:label #.(zl:string "MAIN LISP LISTENER")
:more-p nil)
(bottom-pane si:common-lisp-listener
:label #.(zl:string "MESSAGE PROCESSOR")
:more-p nil)
(grasp-window tv:window
:label #.(zl:string "GRASP WINDQW")
ractivate-p t))
‘:configurations
‘((main-contig
(:layout
(main-config :row grasp-window right-side)
(right-side :column top-pane bottom-pane))
(:sizes
(right-side (top-pane :even) (bottom-pane :even))
(main-config (right-side 0.3) :then (grasp-window :even))))))

. 1.4.3.2 CLEARSCREE!
(defun clearscreen ()
(send grasp-screen :send-pane 'grasp-window ':refresh))

1.4.3.3 Draw functions
; 1.4.3.3.1 DRAW-2D-GRASP-WIlIDOYW
(defun draw-2d-grasp-window (starting-point ending-point)
(let ((x-start) (y-start)
(x-end) (y-end)
(window-height))
(setq window-height (send grasp-screen :send-pane 'grasp-window ':height))
(setq x-start (round (+ x-origin-2d (+ scale-2d (aref starting-point 0)))))
(setq y-start (round (+ window-height
(* -1 (+ y-origin-2d (+ scale-2d (aref starting-point 1)))))))
(setq x-end (round (+ x-origin-2d (* scale-2d (aref ending-point 0)))))
(setq y-end (round (+ window-height (+ -1 (+ y-origin-2d (+ scale-2d (aref ending-poin
))))))

(send grasp-screen :send-pane 'grasp-window ':draw-line x-start y-start x-end y-end)))

; 1.4.3.3.2 DRAW-3D-GRASP-WIlIDOW
(defun draw-3d-grasp-window (starting-point ending-point)
(let ((start (zero-vector 3))
(end (zero-vector 3))
(x-start nil)
(y-start nil)
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(window-height nil))

(setq window-height (send grasp-screen :send-pane ‘grasp-window ' height))

(setq start (transform-points-global-frame view-frame starting-point))

(setq end (transform-points-global-frame view-frame ending-point))

(setq x-start (round (+ x-origin-3d (= scale-3d (aref start 0)))))

(setq y-start (round (+ window-height (x -1 (+ y-origin-3d (» scale-3d (aref start 2))

(setq x-end (round (+ x-origin-3d (* scale-3d (aref end 0)))))
(setq y-end (round (- window-height (+ y-origin-3d (s scale-3d (aref end 2))))))
(send grasp-screen :send-pane ‘grasp-window °':draw-line x-start y-start x-end y-end)))

1.4.3.3.3 SPHERE-3D-GRASP-WINDOW

idefun sphere-3d-grasp-window (sphete-center radius)

(let ((center (zero-vector 3))
(x-center)
(y-center)
(integer-radius)
(window-height nil))

(setq window-height (send grasp-screen :send-pane ’'grasp-window " height))

(setq center (transform-points-global-frame view-frame sphere-center))

(setq x-center (round (+ x-origin-3d (* scale-3d (aref center 0))}))

(setq y-center (round (- window-height (+ y-origin-3d (+ scale-3d (aref center 2))))))

(setq integer-radius (round (* scale-3d radius)))

(send grasp-screen :send-pane ‘grasp-window ':draw-filled-in-circle x-center y-center

ger-radius tv:alu-ior)))

1.4.3.3.4 DRAW-COORDINATES -

(defun draw-coordinates (frames length)

(cond ((listp frames) (draw-coordinate-list frames length))

(t (draw-coordinate frames length))))

(defun draw-coordinate-list (frames length)
(cond ((null frames) nil)
(t (draw-coordinate (car frames) length)

1.4.3.3.4.A DRAW-COORDINATES Auxiliary

(draw-coordinate-list (cdr frames) length))))

(defun draw-coordinate (frame length)
(let* ((o-frame (make-array '(3) :initial-contents (list 0 0 0)))

(x-frame (make-array ‘(3) :initial-contents (list length 0 0)))
(y-frame (make-array °(3) :initial-contents (list O length 0)))
(z-trame (make-array '(3) :ini..al-contents (list O O length)))
(origin-3d (transform-points-irame-global frame o-frame))

(x (transform-points-frame-global frame x-frame))

(y (transform-points-frame-global frame y-frame))

(z (transform-points-frame-global frame z-frame)))

(draw-3d-grasp-window origin-3d x)

(draw-3d-grasp-window origin-3d y)

(draw-3d-grasp-window origin-3d z))
(draw-coordinate-labels frame length))

(defun draw-coordinate-labels (frame length)

(let* ((x-point-1 (make-array '(3) :initial-contents

(list (* length 1.1) O (* length -0.05))))

(x-point-2 (make-array '(3) :initial-contents
' (list (* length 1.17) O (* length 0.05))))

(x-point-3 (make-array ‘(3) :initial-contents

(list (- lemgth 1.1) O (= length 0.05))))
(x-point-4 (make-array '(3) :initial-contents

(list (« length 1.17) 0 (: length -0.05))))
(y-point-1 (make-array ‘(3) :initial-contents

(list O (* length 1.1) (= length 0.05))))
(y-point-2 (make-array ‘(3) :initial-contents

(list 0 (= length 1.135) 0)))



(y-point-4 (make-array '(3) ‘initial-contents
(list O (« length 1.135) (- length -0.05))))
(z-point-1 (make-array '(3) :initial-contents
(list (+ length -0.035) O (~ length 1.15))))
(z-point-2 (make-array '(3) :initial-contents
(list (= length 0.035) O (+ length 1.15))))
(z-point-3 (make-array '(3) :initial-contents
(list (= length -0.035) 0 (= length 1.1))))
(z-point-4 (make-array '(3) -initial-contents
(1ist (* length 0.035) O (* length 1.1)))))
(setq x-point-1 (transform-points-frame-global frame x-point-1))
(setq x-point-2 (transform-points-frame-global frame x-point-2))
(setq x-point-3 (transform-points-frame-global frame x-point-3))
(setq x-point-4 (transform-po:.nts-frame-global frame x-point-4))
(setq y-point-1 (transform-points-frame-global frame y-point-1))
(setq y-point-2 (transform-points-frame-global frame y-point-2))
(setq y-point-3 (transform-points-frame-global frame y-point-3))
(setq y-point-4 (transform-points-frame-g.nbal frame y-point-4))
(setq z-point-1 (transform-points-frame-global frame z-point-1))
(setq z-point-2 (transform-points-frame-global frame z-point-2))
(setq z-point-3 (transform-points-frame-global frame z-point-3))
(setq z-point-4 (transform-points-frame-global frame z-point-4))
(draw-3d-grasp-window x-point-1 x-point-2)
(draw-3d-grasp-window x-point-3 x-point-4)
(draw-3d-grasp-window y-point-1 y-point-2)
(draw-3d-grasp-window y-point-2 y-point-3)
(draw-3d-grasp-window y-point-2 y-point-4) -
(draw-3d-grasp-window z-point-1 z-point-2)
(draw-3d-grasp-window z-point-2 z-point-3)
(draw-3d-grasp-window z-point-3 z-point-4)))

: 1.4.3.3.5 DRAW-3D-LIST
(defun draw-3d-list (list-center list)
(let ((center (zero-vector 3))
(x-center)
(y-center)
(window-height)
(element)
(n-elements)
(start))
(setq window-height (send grasp-screzen :send-pane '‘grasp-vindow ' :height))
(setq center (transform-points-global-trame view-frame list-center))
(setq x-center (round (+ x-origin-3d (+ scale-3d (aret center 0)))))
(setq y-center (round (- window-height (+ y-origin-3d (+ scale-3d (aref center 2))))).
(setq n-elements (count-atoms list))
(do ((i 0 (+ i 1)))
((= i n-elements))
(setq start (round (- x-center (: 10 (/ n-elements 2)))))
(setq element (car list))
(draw-character (+ (* 10 i) start) y-center element)
(setq list (cdr list)))))

; 1.4.3.3.6 DRAW-CONTACTS-GRASP-SPACE
(defun draw-contacts-grasp-space ()
(setq view-frame (construct-view-frame 0.4 0.4))
(let* ((contact-frames-grasp-space
(transform-frames-global-frame #grasp-framex scontact-frames*))
(grasp-frame-grasp-space (make-array '(3 4) :initial-contents '((1 0 0 0)
(01 00)
(001 0)))
(draw-coordinates (first contact-frames-grasp-space) 0.5)
(draw-coordinates (second contact-frames-grasp-space) 0.5)
(draw-coordinates (third contact-frames-grasp-space) 0.5)
(draw-coordinates grasp-frame-grasp-space 1.0)))



: 1.4 3.3 7 DRAY-CHARACTER
(defun draw-character (x y char)
(cond ({(numberp char) (send grasp-screen :send-pane ’grasp-window
':draw-string (+ 48 char) x y))
(t (send grasp-screen :send-pane ‘grasp-window ':draw-string char x y))))
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2. Sensed and global variables

2.0 Temporary variables used to construct global
sensed variables for simulation
; 2.0.1 Definé temporary variables
(defvar =original-contact-points-object-spacex)
(defvar xoriginal-contact-normals-object-spacex)
(defvar xoriginal-object-framex)
(defvar *contact-points-object-spacex*)
(defvar *contact-normals-object-spacex)
(defvar *object-frame=)

(defvar *hand-framex)
(defvar *grasp-framex)
; 2.0.2 Set default temporary variabies
; 2.0.2.1 Functions to set default values
(defun set-original-values ()
(setq *original-contact-points-object-spacex*
(list (make-array '(3) :initial-contents ‘(0 1.3 -0.8))
(make-array '(3) :initial-contents ‘(0 1.3 0.8))
(make-array '(3) :initial-contents ‘(0 -1.3 0))))
(setq =original-contact-normals-object-spacex*
(list (make-array '(3) :initial-contents '(0 1 0))
(make-array ‘(3) :initial-contents '(0 1 0))
(make-array ‘(3) :initial-contents ‘(0 -1 0)))))

(set-o.iginal-values)
; 2.0.2.2 Set temporary variables
(setq »hand-framex (make-array '(3 4) :initial-contents '((1 0 0 0)
(0100)
(0010))))
(setq *original-object-frame* (make-array ‘(3 4) :initial-contents '((0 0 1 -0.8)
(1002.7)
(010 -3.00)))
(setq *contact-points-object-spacex xoriginal-contact-points-object-space*)
(setq *contact-normals-object-space* roriginal-contact-normals-object-space*)
(setq *object-frame* *original-object-framex)

; 2.1 Define sensed global variables
(defvar =contact-pointsx)
(defvar *contact-normalsx)
(defvar *contact-framesx)
; 2.2 Set defualt initial global variables
; 2.2.1 Functions to set initial global variables
(defun generate-grasp-frame ()
(let* ((x1 (aref (first ‘contact-framesx=) 0 3))

(y1 (aref (first ‘contact-frames:) i 3))

(z1 (aref (first -contact-frames*) 2 3))

(x2 (aref (second :contact-framesz) O 3))

(y2 (aret (second ‘contact-frames+) 1 3))
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(centroid (make-array '(3)))

(normal (make-array '(3))))
(setf (aref centroid 0) (/ (+ x1 x2 x3) 3))
(setf (aref centroid 1) (/ (+ y1 y2 y3) 3))
(setf (aref centroid 2) (/ (+ z1 z2 z3) 3))
(setf (aref normal 0) (- (* (- y3 y1) (- 22 21)) (% (- z3 z1) (- y2 y1))))
(sett (aref normal 1) (- (* (- z3 z1) (- x2 x1)) (% (- x3 x1) (- 22 z1))))
(sett (aref normal 2) (- (% (- x3 x1) (- y2 y1)) (= (- y3 y1) (- x2 x1))))
(generate-frame centroid normal)))

(defun normalize-contact-normals (contact-normals)
(cond ({(null contact-normals) nil)
(t (cons (normalize-contact-normal (car contact-normals))
(normalize-contact-normals (cdr contact-normals))))))

(defun normalize-contact-normal (contact-normal)
(let ((magnitude (sqrt (+ (sqr (aref contact-normal 0))
(sqr (aref contact-normal 1))
(sqr (aref contact-normal 2))))))
(setf (aref contact-normal 0) (/ (aref contact-normal 0) magnitude))
(setf (aref contact-normal 1) (/ (aref contact-normal 1) magnitude))
(setf (aref contact-normal 2) (/ (aref contact-normal 2) magnitude))
contact-normal))

(defun normalize-object-frame (object-frame)

(let ((magnitude (zero-vector 3))) -
(do ((i 0 (+ 1 1)))
((= i 3))

(setf (aref magnitude i) (sqrt (+ (sqr (aref object-frame 0 i))
(sqr (aref object-frame 1 i))
(sqr (aref object-frame 2 i)))))
(do ((j 0 (+ j 1)))
((=j 3))
(setf (aref object-frame j i) (/ (aref object-frame j 1) (aref magnitude i))))))
object-frame)

: 2.2.2 Set global-variables
(defun initialize-global-variables ()
(setq “contact-normals-object-spacex*
(normalize-contact-normals *contact-normals-object-space+))
(setq *object-frame= (normalize-object-frame *object-framex))
(setq #contact-points* (transform-points-frame-global *object-framex
#contact-points-object-space-))
(setq *contact-normalsx (transform-direction-frame-global ~“object-framex
“contact-normals-object-space-))
(setq #contact-frames* (generate-frame *contact-pointa*x *contact-normalsx))
(setq *grasp-frame* (generate-grasp-frame)))

(initialize-global-variables)

3.1 Define constraint variables

(defvar :basis-wrenchesx)
(defvar -basis-wrench+)
(defvar =virtual-workx)
(defvar -contact-types=)
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(defun construct-basis-wrench (contact-frames)
(cond ((null contact-frames) nil)
(t (cons (transform-basis-wrench *basis-wrenchx (car contact-frames))
(construct-basis-wrench (cdr contact-frames))))))

(defun transform-basis-wrench (basis-wrench contact-frame)
(let* ((transformed-basis-wrench
(transform-direction-frame-global contact-frame basis-wrench))
(x (aref contact-frame O 3))
(y (aref contact-frame 1 3))
(z (aref contact-frame 2 3)))
(do ((i O (+ 1 1)))
((= i 11) transformed-basis-wrench)
(setf (aref transformed-basis-wrench 3 i)
(+ (* (aref transformed-basis-wrench 1 i) z -1)
(* (aref transformed-basis-wrench 2 i) y)
(aref transformed-basis-wrench 3 i)))
(setf (aref transformed-basis-wrench 4 i)
(+ (+ (aref transformed-basis-wrench 2 i) x -1)
(* (aref transformed-basis-wrench 0 i) z)
(aref transformed-basis-wrench 4 i)))
(setf (aref trancformed-basis-wrench 5 i)
(+ (* (aref transformed-basis-wrench 0 i) y -1)
(* (aref transformed-basis-wrench 1 i) x)
(aref transformed-basis-wrench 5 i))))))

3.2.1.2 Set constraint variables

(setq *contact-types* (list (make-array '(12) :initial-contents
(11101111000 1,
(make-array '(12) :initial-contents
‘(11100011000 0))
(make-array '(12) :initial-contents
‘(00100000000 0))
(make-array '(12) :initial-contents
00000000000 0))))

(setq *basis-wrenchx (make-array '(6 12) :initial-contents '((1 0 000G -1 00 0 O 0)

(01 00000-10000)
(00100000 -1000)
(000100000 -100)
(0000100000 -10)
(00000100000 -1))))

(setq *basis-wrenches* (construct-basis-wrench *contact-framesx))

3.3 Constraint functions
: 3.3.1 COlIUSTRUCT-VIRTUAL-WORK-LIST
(defun construct-virtual-work-list (basis-wrenches twist)
(cond ((null basis-wrenches) nil)
(t (cons (construct-virtual-work (car basis-wrenches) twist)
(construct-virtual-work-list (cdr basis-wrenches) twist)))))

; 3.3.1.A COUSTRUCT-VIRTUAL-WORK-LIST Auxiliary

(defun construct-virtual-work (basis-wrench twist)
(let ((virtual-work-vector (make-array '(12))))
(do ((i 0 (+ 1 1i)))
((= i 12) virtual-work-vector)
(setf (aref virtual-work-vector i)
(virtual-work (get-array-column basis-wrench i) twist)))))



(+ (= (aref wrench 0) (aref twist 3))
(= (aref wrench 1) (aref twist 4))
(» (aret wrench 2) (aref twist 5))
(* (aref wrench 3) (aref twist 0))
(* (aref wrench 4) (aref twist 1))
(+ (aref wrench 5) (aref twist 2))))

3.3.2 DETERMIIE-CONTACT-TYPES

(defun determine-contact-types (virtual-work-pattern-list)

(cond ((null virtual-work-pattern-list) nil)
(t (cons (determine-contact-type (car virtual-work-pattern-list) *contact-types*)

(determine-contact-types (cdr virtual-work-pattern-list))))))

3.3.2.A DETERMINE-CONITACT-TYPES Auxiliary

(defun determine-contact-type (virtual-work-pattern.contact-types)
(cond ((null contact-types) nil) |
(t (cons (test-slip virtual-work-pattern (car contact-types))
(determine-contact-type virtual-work-pattern (cdr contact-types))))))

(defun test-slip (virtual-work-pattern contact-type-pattern)
(let ((total 0))
(do ((1 0 (+ 1 1)))
((= i 12) (= total 0))
(setq total (+ total (* (aref virtual-work-pattern i)
(aref contact-type-pattern i)))))))

(defun construct-virtual-work-pattern-list (virtual-work-list)
(cond ((null virtual-work-list) nil)
(t (cons (construct-virtual-work-pattern (car virtual-work-list))
(construct-virtual-work-pattern-list (cdr virtual-work-list))))))

(defun construct-virtual-work-pattern (virtual-work)
(let ((virtual-work-pattern-vector (make-array '(12))))
(do ((i O (+ 1 1)))
((= i 12) virtual-work-pattern-vector)
(cond ((>= (aref virtual-work i) O) (setf (aref virtual-work-pattern-vector i) 0))
(t (setf (aref virctual-work-pattern-vector i) 1))))))

(defun constraint-state (twist twist-ref)
(constraint-state-aux (constraint twist twist-ref)))

(defun constraint-state-aux (states)
(cond ((null states) nil)
(t (cons (constraint-state-aux-1 (car states))
(constraint-state-aux (cdr states));)))

(defun constraint-state-aux-1 (state)
(cond ((car state) 1)
((+ 1 (constraint-state-aux-1 (cdr state))))))

(defun constraint(twist twist-ref)
(let ((twist-origin (twist-org twist twist-ref)))
(determine-contact-types
(construct-virtual-wovk-pattern-list
(construct-virtual-work-list #basis-wrenches: twist-origin)))))

(defun twist-org (twist twist-ref)
(let ((twist-org (make-array '(6)))
(rx (+ -1 (aref twist-ref 0)))
(ry (* -1 (aref twist-ref 1)))
(rz (* -1 (aref twist-ref 2))))
(setf (aref twist-org O) (aref twist 0))



(Sell \arei vewaew~- “-pg ., (=--

(setf (aref twist-org 2) (aref twist ﬁﬁi
(setf (aref twist-org 3) (+ (aref twist 2)

(« (aref twist 1)
(= (aref twist 2)

(set? (aref twist-org 4) (+ (aref twist 4)

(x (aref twist 2)
(x (aref twist 0)

(setf (aref twist-org 5) (+ (aref twist 5)

(= (aref twist 0)
(« (aref twist 1)

twist-org))

(setf
(setf
(setf
(setf
(sett
(setf
(sett
(sett
(sett
(sett
(set?
(sett
(setf
(setf
(sett
(setq

(defvar :body-wrenchx)
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rz)

-

ry -1)))

rx)

rz -1)))

ry)

rx -1)))

3.4 Geometric Constraint
; 3.4.1 DRAW-CONTACT-TRAJECTORY
(defun draw-contact-trajectory (contact-point twist twist-ref twist-magnitude steps)

(let ((new-contact-point (zero-vector 3)))

(do ((i 1 (+ 1 1)))
((= 1 steps))
(setq new-contact-point
(determine-contact-point contact-point twist twist-retf
(/ (= i twist-magnitude) steps)))

(draw-3d-grasp-window contact-point new-contact-point)
(setq contact-point new-contact-point)})))

; 3.4.1.A DRAW-CONTACT-TRAJECTORY Auxiliary
(defun determine-contact-point (contact-point twist twist-ref twist-magnitude)
(let= ((rotation-matrix (zero-array 3 3))

(twist-radius (zero-vector 3))
(translation (zero-vector 3))
(new-contact-point (zero-vector 3))

(t1 (aref twist 0))

(t2 (aref twist 1))

(t3 (aref twist 2))

(t4 (aref twist 3))

(t5 (aref twist 4))

(t6 (aref twist 5))
(cn (cos twist-magnitude))

(sn (sin twist-magnitude)))

(aref rotation-matrix O 0) (+ (= t1 ti
(aref rotation-matrix 0 1) (- (x t2 ti
(aref rotation-matrix 0 2) (+ (% t3 ti
(aref rotation-matrix 1 0) (+ (* t1 t2
(aref rotation-matrix 1 1) (+ (* t2 t2
(aref rotation-matrix 1 2) (- (x t3 t2
(aref rotation-matrix 2 0) (- (= t1 t3
(aref rotation-matrix 2 1) (+ (¥ t2 t3
(aref rotation-matrix 2 2) (+ (* t3 t3

NN - = =000

(-1
(-1
(-1
(-1
(-1
(-1
(-1
(-1
(-1

cn))
cn))
cn))
cn))
cn))
cn))
cn))
cn))
cn))

cn))
(* t3 sn)))
(* t2 sn)))
(* t3 sn)))
cn))
(* t1 sn)))
(= t2 8n)))
(* t1 sn)))
cn))

(aref twist-radius 0) (- (aref contact-point O) (aref twist-ref 0)))
(aref twist-radius 1) (- (aref contact-point 1) (aref twist-ref 1)))
(aref twist-radius 2) (- (aref contact-point 2) (aref twist-ref 2)))

(aref translation 0) (* twist-magnitude
(aref translation 1) (* twist-magnitude
(aref translation 2) (* twist-magnitude

new-contact-point (add-array-list (list
(multiply-array-list (list rotation-matrix twist-radius))

twist-ref translation)))))

t4d))
t5))
t8))
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4.1 Define body wrench variables



I : b ' )
(defvar ~gravitational-acceleration-)
: 4.2 Set body wrench variables section
: 4.2.1 Auxiliary body wrench functions
(defun construct-body-wrench ()
(let ((body-wrench (zero-vector 6))
(weight (* *object-mass* xgravitational-acceleration=)))
(setf (aref body-wrench 2) weight)
(setf (are! body-wrench 3) (= (aref =object-framex 1 3) weight))
(settf (aref body-wrench 4) (+ -1 (aref <object-framex O 3) weight))
body-wrench))

; 4.2.2 Set body wrench variatles
(setq *object-mass= Q)
(setq =gravitational-acceleration* 32.2)
(setq *body-wrenchs (construct-body-wrench))
; 4.3 Body wrench functions
; 4.3.1 ORIENTATION
(defun orientation (twist-cg)
(let= ((t3 (aref twist-cg 3))
(t4 (aref twist-cg 4))
(t5 (aref twist-cg 5))
(twist-magnitude (sqrt (abs (+ (* t3 t3) (* t4 td) (= t5 t5)))))
(theta (asin (/ t3 twist-magnitude)))
(phi (asin (/ (* -1 td) twist-magnitude))))
(list theta phi)))

: 4.3.2 TWIST-CG
(defun twist-cg (twist twist-ref cg)
(let ((twist-cg (make-array '(6)))
(rx (- (aref cg 0) (aref twist-ref 0)))
(ry (- (aref cg 1) (aref twist-ref 1)))
(rz (- (aref cg 2) (aref twist-ref 2))))
(setf (aref twist-cg O) (aref twist 0))
(setf (aref twist-cg 1) (aref twist 1))
(setf (aref twist-cg 2) (aref twist 2))
(setf (aref twist-cg 3) (+ (aref twist 2)
(+ (aref twist 1) rz)
(* (aref twist 2) ry -1)))
(set? (aref twist-cg 4) (+ (aref twist 4)
(* (aref twist 2) rx)
(x (aref twist 0) rz -1)))
(setf (aref twist-cg 5) (+ (aref twist 5)
(* (aref twist 0) ry)
(* (aref twist 1) rx -1)))
twist-cg))

§. Contact ¥renches

" ;***************K**********t******-‘!‘*q‘t'e"***************4:'<***K*h*ik%*%************k:- vos
: 5.1 Define contact wrench variables

(defvar #fingertip-stiffnessx)

(defvar *finger-stiffnessx)

(defvar =contact-stiffness~)
(defvar *contact-stiffness-contact-frame:)
(defvar ~contact-stiffness-hand-frame>)

(defvar *grasp-stifinessx)
(defvar =grasp-compliance-)

.;**************t*******t**#**********$****$*****#*********##**?*******k****ﬁ**kﬁ**ni-i““-



tdefvar ~contact-4rench-contact-frame=)

5.2 Set contact uwrench variables section
: 5.2.1 Functions to get contact wrench variables
(defun construct-contact-wrench-variables ()

(setq *contact-stiffness* (construct-contact-stiffness ~fingertip-stiffness+ ‘
*finger-stiffnessx —
~contact-frames+))

(setq *contact-stiffness-contact-framex (construct-contact-stiffness-contact-frame

*contact-stiffnessx*
=contact-framesx))

(setq *contact-stiffness-hand-framex (construct-contact-stiffness-hand-frame

*contact-stiffness=+
«contact-frames»))

(setq *grasp-stiffnessx (add-array-list *contact-stiffness-hand-framex)) -

(setq =grasp-compliancex (math:invert-matrix ~“grasp-stiffness+))

(setq »contact-wrench* (construct-contact-wrenches ‘contact-stiffness-contact-frame-

~offset-wrench~))

(setq *contact-wrench-contact-framex
(construct-contact-wrenches-contact-frame #contact-wrench» ~contact-frames-)))

; . 5.2.1.1 Contact stiffness
(defun construct-contact-stiffness (fingertip-stiffness finger-stiffness contact-frames)
(cond ((null contact-frames) nil)
(t (cons (construct-one-contact-stiffness (car fingertip-stiffness)
(car finger-stiffness)
(car contact-frames))
(construct-contact-stiffness (cdr fingertip-stiffness)
(cdr finger-stiffness)
(cdr contact-frames))))))

(defun construct-one-contact-stiffness (fingertip-stiffness finger-stiffness contact-frame.
(cond ((null finger-stiffness) (abs-array (transform-direction-frame-global
contact-frame fingertip-stiffness)))
(t (add-stiffness finger-stiffness
(abs-array (transform-direction-frame-global
contact-frame fingertip-stiffness))))))

(defun add-stiffness (stiffness-1 stiffness-2)
(let« ((stiffness-dimension (array-dimension stiffness-1 0))
(new-stiffness (zero-vector stiffness-dimension))) —_
(do ((i O (+ i 1)))
((= i stiffness-dimension) new-stiffness)
(setf (aref new-stiffness i) (/ (+ (aref stiffness-1 i) (aref stiffness-2 i))
(+ (aref stiffness-1 i) (aref stiffness-2 i)))))))

; 5.2.1.2 Contact stiffness contact frame —
(defun construct-contact-stiffness-contacc-frame (contact-stiffness contact-frames)
(cond ((null contact-frames) nil)
(t (cons (construct-one-contact-stiffness-contact-frame (car contact-stiffness)
(car contact-frames))
(construct-contact-stiffness-contact-frame (cdr contact-stiffness)
(cdr contact-frames))))))

(defun construct-one-contact-stiffness-contact-frame (contact-stiffness contact-frame)
(let ((rx (aref contact-frame O 3))
(ry (aref contact-frame 1 3))
(rz (aref contact-frame 2 3))
(kx (aref contact-stiffness 0))
(ky (aref contact-stiffness 1))
(kz (aref contact-stiffness 2))
(ktx (aref contact-stiffness 3))
(kty (aref contact-stiffness 4))



(contact-stiffness-contact-frame (zero-array

(setf
(setf
(setf
(sett
(sett
(sett
(sett
(sett
(sett
(setf
(setf
(sett

(aref
(aret
(aref
(aref
(aret
(aret
(aret
(aret
(aref
(aref
(aret
(aref

contact-stiffness-contact-frame
contact-stiffnegs-contact-frame
contact-stiffness-contact-fr-ame
contact-stiffness-contact-frame
contact-stiffness-contact-frame
contact-stiffness-contact-frame
contact-stiffness-contact-frame
contact-stiffness-contact-frame
contact-stiffness-contact-frame
contact-stiffness-contact-frame
contact-stiffness-contact-frame
contact-stiffness-contact-frame

contact-stiffness-contact-frame))

NEWNDNNN—- - =000

1) (-
2) (-
3) kx)

0) (= -1
2) (= ky

4) ky)

0) (- kz

1) (~
5) kz)

“x rz))

-1 kx ry))

ky rz))
rx))

ry))
-1 kz rx))

0) ktx)
1) kty)
2) ktz)

: 5.2.1.3 Contact stiffness hand frame
(defun construct-contact-stiffness-hand-frame (contact-stiffness contact-frames)
(cond ((null contact-frames) nil)

(t (cons (construct-one-contact-stiffness- hand frame (car contact-stiffness)

(car contact-frames))

(cons“ruct-contact-stiffness-hand-frame (cdr contact-stiffness)

(cdr contact-frames))))))

(defun construct-one-contact-stiffness-hand-frame (contact-stiffness contact-frame)

(let ((rx

(aref

contact-frame 0 3))

contact-frame 1 3))
contact-frame 2 3))
contact-stiffness 0))
(ky (aref contact-stiffness 1))
(kz (aref contact-stiffness 2))
(ktx (aref contact-stiffness 3))
(kty (aref contact-stiffness 4))
(ktz (aref contact-stiffness 5))

(aref
(aref
(aret

(ry
(rz
(kx

(contact-stiffness-hand-frame (zero-array

(setf
(setf
(setf
(setf
(sett
(setf
(setf
(sett
(sett
(setf
(sett
(sett
(sett
(sett
(sett
(sett
(setf
(setf
(sett
(sett
(setf
(setf
(sett
(setf

(aret
(aref
(aret
(aret
(aret
(aret
(aret
(aref
(aref
(aref
(aref
(aret
(aref
(aret
(aret
(aret
(aret
(aret
(aret
(aret
(aret
(aref
(aret
(aref

contact-stiffness-hand-{frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stifiness-hand-frame
contact-atiffness-hand-frame
contact-stiftness-hand-frame
contact-stiffness-Land-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame

contact-stiffners-hand-frame))
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2
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1.

8 6)))
1) (¢ kx rz))
2) (¢ -1 kx ry))
3) kx)
0) (+ -1 ky rz))
2) (* ky rx))
4) ky)
0) (x kz ry))
1) (x -1 kz rx))
5) kz)
0) (+ (* ky rz rz) (« kz ry ry) ktx))
1) (* -1 kz rx ry))
2) (x -1 ky rx rz))
4) (* -1 ky rz))
5) (# kz ry))
0) (+ -1 kz rx ry))
1) (¢ (*x kx rz rz) (* kz rx rx) kty))
2) (¢ -1 kx ry rz))
3) (* kx rz))
5) (+ -1 kz rx))
0) (* -1 ky rx rz))
1) (« -1 kx ry rz))
2) (+ (* kx ry ry) (= ky rx rx) ktz))
3) (+ -1 kx ry))
4) (* ky rx))

.3 Grasp stiffness

4 Grasp compliance

5.2.1.5 Contact wrench
(defun construct-contact-wrenches (contact-stiffness-contact-frame offset-wrench)
(cond ((null contact-stiffness-contact-frame) nil)
(t (cons (construct-contact-wrench (car contact-stiffness-contact-frame)



. C e
(construct-contact-wrenches (cdr contact-stiffness-contact-frane)
(cdr offset-wrench))))))

(defun construct-contact-wrench (contact-stiffness-contact-frame offset-wrench)
(add-array-list (list (multiply-array-list
(list
(multiply-array-list
(list contact-stiffness-contact-frame -grasp- compliance-))
*body-wrench=))
offset-wrench)))

6.2.1.5 Contact wrench contact frame
(defun construct-contact-wrenches-contact-frame (contact-wrenches contact-frames)

(cond ((null contact-wrenches) nil)
(t (cons (transform-direction-global-frame (car contact-frames)
(car contact-wrenches))
(construct-contact-wrenches-contact-frame (cdr contact-wrenches)
(cdr contact-frames))))))

; 5.2.2 Set contact wrench variables

(setq +fingertip-stiffness* (list (make-array '(6) :initial-contents '(10 10 25 0 O 6)
(make-array ‘(6) :initial-contents ‘(10 10 25 O 0 6))
(make-array ‘'(6) :initial-ccntents '(10 10 25 0 O 6)

(setq *finger-stiffnessx (list nil nil nil))

(construct-contact-wrench-variables)
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; 6.1 Define contact type variables
(defvar #fric-coeff+)
(defvar =mom-coeffx)

; 5.2 Set contact type variables secticn
(setq *fric-coeff* 0.6)
(setq *mom-coeffx 0.1)

6.3 Contact type functions

; 6.3.1 CONTACT-TYPE
(defun contact-type (contact-wrenches)
(cond ((null contact-wrenches) nil)
(t (cons (contact-type-aux (car contact-wrenches))

(contact-type (cdr contact-wrenches))))))

6.3.1.A Auxiliary contact type functions

(defun contact-type-aux (contact-wrench)
(let* ((normal-force (aref contact-wrench 2))
(tangent-force (sqrt (+ (« (aref contact-wrench 0) (aref contact-wrench 0))
(+ (aref contact-wrench 1) (aref contact-wrench 1)))))
(moment (abs (aref contact-wrench 5)))
(max-tangent-force (= *fric-coeff+ (abs normal-force)))
(max-moment (* *mom-coeff> (abs normal-force))))
(cond ((>= ncrmal-force 0) 4)
((>= tangent-force max-tangent-force) 3)
((>= moment max-moment) 2)

(t 1))))

7. Offset wrench



: 7.1 Define offset wrench variables
(defvar *offset-wrenchx)

(defvar *offset-wrench-contact-frame=)

(defvar *scale-forcex)

: 7.2 Set offset wrench defaults

(setq =offset-wrenchx (list (zero-vector 6)(zero-vector 6)(zero-vector 6)))

(setq =offset-wrench-contact-frame+« (zero-vector 6)) -
(setq *scale-forcex 1.0)

7.3 Offset wrench functions
; 7.3.1 CONSTRUCT-OFFSET-WREINCHES
(defun construct-offset-wrenches (force-center force-magnitude) s
(setq *offset-wrenchs (offset-wrench-three-contacts force-center force-magnitude))
(setq *offset-wrench-contact-framex .
(transform-direction-global-frame +“contact-frames* =offset-wrench-)))

' 7.3.1,A OFFSET-WRENCH-THREE-CONTACTS

. There are two solutions for the forces. One solution in which most of the force vectors a
. directed into the force-centroid and other in which two or more force vectors are
. directed away from the centroid.
(defun offset-wrench-three-contacts (force-center force-magnitude)
(let* ((force-array (zero-array 3 3))
(reduced-force-array (make-array ‘(3 3)))
(offsetl (zero-vector 8))
(offset2 (zero-vector 6))
(offset3 (zero-vector 6))
(length-1) (length-2) (length-3)
(force-1) (force-2) (force-3)
(x (aref force-center 0))
(y (aret force-center 1))
(z (aref force-center 2))

(a) (b))

(setq length-1 (sqrt (+ (sqr (- x (aref (first *contact-frames+) O 3)))

(sqr (- y (aref (first =contact-framesx) 1 3)))

(sqr (- z (aref (first =contact-framesx) 2 3))))))
(setq length-2 (sqrt (+ (sqr (- x (aref (second *contact-framesx) O 3)))

(sqr (- y (aref (second =contact-framesx) 1 3)))

(sqr (- z (aref (second *contact-framesx) 2 3))))))
(setq length-3 (sqrt (+ (sqr (- x (aref (third :contact-frames*) 0 3)))

(sqr (- y (aret (third *contact-frames*) 1 3)))

(sqr (- z (aref (third <contact-frames+) 2 3))))))
(set? (aref force-array O 0) (/ (- x (aref (first *contact-irames*) O 3)) length-1))
(set? (aref force-array O 1) (/ (- x (aref (second *contact-frames*) O 3)) length-2))
(sett (aref force-array 0 2) (/ (- x (aref (third *contact-frames*) O 3)) length-3))
(setf (aref force-array 1 0) (/ (- y (aret (first *contact-frames*) 1 3)) length-1))
(setf (aref force-array 1 1) (/ (- y (aref (second <contact-frames*) 1 3)) length-2))
(setf (aref force-array 1 2) (/ (- y (aref (third *contact-frames+) 1 3)) length-3))
(set? (aref force-array 2 0) (/ (- z (aref (first *contact-frames*) 2 3)) length-1))
(setf (aref force-array 2 1) (/ (- z (aref (second *contact-frames+) 2 3)) length-2))
(setf (aref force-array 2 2) (/ (- z (aref (third *contact-frames*) 2 3)) length-3))

(if (< force-magnitude 0) (setq force-array (multiply-array-list (list -1 force-arra;))
(setq reduced-force-array (row-reduced-echelon torce-array))

(setq a (aref reduced-force-array 0 2))

(setq b (aref reduced-force-array 1 2))

(setq force-3 (sqrt (/ (sqr force-magnitude) (+ (sqr a) (sqr b) 1))))

(setq force-2 (v -1 b force-3))

(setq force-1 (+ -1 a force-3))

(setf (aref offsetl 0) (» ‘scale-forcex force-1 (aref force-array O 0)))



(setf (aref offsetl 1) (- -scale-force- force-i (aref force-array

1.0)))
(set? (aref offsetl 2) (« -scale-force- force-! (aref force-array 2 0)))
(setf (aref offset2 Q) (+« -scale-force~ force-2 (aref force-array 0 1)))
(setf (aref offset2 1) (* =scale-forcex force-2 (aref force-array 1 1)))
(setf (aref offset2 2) (* -scale-forses force-2 (aref force-array 2 1)))
(setf (aref offset3 0) (* <scale-forcex force-3 (aref force-array 0 2)))
(setf (aref offset3 1) (* “scale-forcex force-3 (aref force-array 1 2)))
(setf (aref offset3 2) (* =scale-forcex force-3 (aref force-array 2 2)))

(list offsetl offset2 offset3d)))

; 8.1 DETERMINE-CONSTRAINT-STATE
(defun determine-constraint-state (force-center force-magnitude)
(let ((grasp-vector-list)
(constraint-state)
(label-point
(transform-points-global-frame *grasp-frame* force-center)))
(construct-offset-wrenches force-center force-magnitude)
(setq grasp-vector-list (construct-grasp-points force-center force-magnitude))
(construct-contact-wrench-variables)
(setq constraint-state (contact-type *contact-wrench-contact-framex))
(draw-coordinate-systenm) -
(sphere-3d-grasp-window (first grasp-vector-list) 0.01)
(sphere-3d-grasp-window (second grasp-vector-list) 0.01)
(sphere-3d-grasp-window (third grasp-vector-list) 0.01)
(sphere-3d-grasp-window force-center 0.02)
(setf (aref label-point 1) (+ (aref label-point 1) 0.025))
(setq label-point (transform-points-frame-global *grasp-irame* label-point))
(draw-3d-list label-point constraint-state)))

8.2 MAP-CONSTRAINT-SPACE

(defun map-constraint-state
(x-start x-end x-inc y-start y-end y-inc force-magnitude)
(let ((force-center-grasp-frame (zero-vector 3))
(force-center-hand-frame (zero-vector 3))
(label-point)
(constraint-state))
(do ((x x-start (+ x x-inc)))
((>= x x-end))
(do ((y y-start (+ y y-ine)))
((>= y y-end))
(setf (aref force-center-grasp-frame 0) x)
(set? (aref force-center-grasp-frame 1) y)
(setq label-point force-center-grasp-frame)
(setq force-center-hand-frame
(transform-points-frame-global *grasp-frame* force-center-grasp-frame))
(construct-offset-wrenches force-center-hand-frame force-magnitude)
(construct-contact-wrench-variables)
(setq constraint-state (contact-type *contact-wrench-contact-framex))
(sphere-3d-grasp-window force-center-hand-frame 0.02)
(setf (aref label-point 1) (+ (aref label-point 1) 0.025))
(setq label-point (transform-points-frame-global ~grasp-framex label-point))
(draw-3d-list label-point constraint-state)))))
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(let< ((point-grasp-frame (make-array °"(3) -1nitial-contents ‘(0 0 0)))
(point-hand-frame (mare-array *(3) :initial-contents "(0 0 0)))
(constraint-state))
(do ((i -1 (+ i 0.2))) ) e
(=1 1))
(do ((j -1 (+ j 0.2)))
(O=j 1))
(setf (aref point-grasp-frame 0) i)
(set? (aref point-grasp-irame 1) j)
(setq point-hand-frame (transform-points-frame-global #grasp-frame* point-grasp-fram
(setq constraint-state (determine-constraint-state point-hand-frame force-magnitude)
(sphere-3d-grasp-window point-hand-franme 0.01)
(setf (aref point-grasp-frame 1) (+ j 0.01))
(setq point-hand-frame (transform-points-frame-global xgrasp-frame= point-grasp-fram
(draw-3d-1ist point-hand-frame constraint-state)))))
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9. Hand actuation routines
- ‘/4’)‘AA’A‘f44/744\A-KVJ!XX‘!KA""‘»“K—(*N“VN‘"7’4—~Y// PP PPEPERTIIEE IR T FESEE RS S Eg
9.1 Define actuation constants and variables
(defvar default-trajectory-gen* (if (boundp ’tg) tg))
(defvar *default-parallel-conn* (if (boundp ‘pc) pc))
(defvar *fingertip-radiusx)
(defvar *test-point=) -
(defvar *scale-forcex)
; 9.3 Set actuation variables
(setq =fingertip-radius* 0.408) i
(setq *test-point* (make-array '(3) :initial-contents (0.0 2.5 0.0)))
(setq *scale-force= 1.0)
(setq <offset-wrench+ (list (zero-vector 8) (zero-vector 8) (zero-vector 8)))
9.4 Grasp functions
; 9.4.1 MOVE-TO-CONTACT-PQINTS
(defun move-to-contact-points ()
(let+« ((fingertip-vector (construct-fingertip-vector
(determine-fingertip-centers »contact-points* *contact-frames )
(dur 0.4))
(if (send tg :move-fingers-to fingertip-vector :duration dur)
(send tg :send-traj pc)))) "

9.4.2 MOVE-TO-GRASP-CENTER

(defun move-to-grasp-center (force-center force-magnitude)

(let* ((force-center-hand-frame (transform-points-frame-global *grasp-frame* force-center
(magnitude (+ *scale-force* force-magnitude)) -
(grasp-vector-list (construct-grasp-points force-center-hand-frame magnitude))
(fingertip-center-list

(determine-fingertip-centers grasp-vector-list «contact-frames<))

(fingertip-vector (construct-fingertip-vector fingertip-center-1list))

(dur 0.4))
(construct-offset-wrenches force-center force-magnitude)
(clearscreen) -
(draw-coordinate-system)
(sphere-3d-grasp-window (first grasp-vector-list) 0.01)
(sphere-3d-grasp-window (second grasp-vector-list) 0.01)
(sphere-3d-grasp-window (third grasp-vector-list) 0.01)
(sphere-3d-grasp-window force-center-hand-frame 0.02)
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(send ﬁz 'send-tf;? pc)i))

9.5 Auxiliary functions

9.6.1 MOVE-TO-COUTACT-POIIITS auxiliary functions

(defun determine-fingertip-centers (contact-points contact-frames)
(cond ((null contact-frames) nil) .
(t (cons (determine-fingertip-center (car contact-points) (car contact-frames))
(determine-fingertip-centers (cdr contact-points) (cdr contact-frames))))). i

(defun determine-fingertip-center (contact-point contact-frame)
(let* ((fingertip-center (zero-vector 3))})
(setf (aref fingertip-center 0) .
(+ (v (aref contact-frame O 2) *fingertip-radius=) (aref contact-point 0)))
(setf (aref fingertip-center 1)
(+ (= (aref contact-frame i1 2) *fingertip-radiusx) (aref contact-point 1)))
(setf (aref fingertip-center 2)
(+ (* (aref contact-frame 2 2) *fingertip-radiusx) (aref contact-point 2)))
fingertip-center))

(defun construct-fingertip-vector (fingertip-centers)
(let* ((n-fingertips (count-atoms fingertip-centers))
(fingertip-vector (zero-vector (* 3 n-fingertips))))
(do ((i O (+ i 1)))
((= i n-fingertips) fingertip-vector)
(do ((j 0 (+ j 1)))

((=j 3))

(setf (aref fingertip-vector (+ (* i 3) j)) (+ 2.54 (aref (car fingertip-centers) )

(setq fingertip-centers (cdr fingertip-centers)))))

9.5.2 MOVE-TO-GRASP-CENITER auxiliary functions

(defun construct-grasp-points (force-center force-magnitude)
(let* ((grasp-points (list (zero-vector 3) (zero-vector 3) (zero-vector 3)))
(offset-points (offset-wrench-three-contacts force-center force-magnitude)))
(sett (aref (first grasp-points) 0) (+ (aref (first =contact-framesx) O 3) (aref (first

fset-points) 0)))
(setf (aref (first grasp-points) 1) (+ (aref (Zirst *contact-framesx) 1 3) (aref (first

fset-points) 1)))
(sett (aref (first grasp-points) 2) (+ (aref (first *contact-frames*) 2 3) (aref (first

fset-points) 2)))

(setf (aref (second grasp-points) 0) (+ (aref (second *contact-frames=) O 3) (aref (sec

offset-points) 0)))
(set? (aref (second grasp-points) 1) (+ (aref (second =contact-frames*) 1 3) (aref (sec

offset-points) 1)))
(setf (aref (second grasp-points) 2) (+ (aref (second *contact-framesx) 2 3) (aref (sec

offset-points) 2)))

(setf (aref (third grasp-points) 0) (+ (aref (third *=contact-framesx) 0 3) (aref (thirc

fset-points) 0)))
(setf (aref (third grasp-points) 1) (+ (aref (third *contact-frames*) 1 3) (aref (thirc

fset-points) 1)))
(setf (aref (third grasp-pointe) 2) (+ (aref (third ~contact-frames=) 2 3) (aref (thirc

fset-points) 2)))
grasp-points))

;.All the move functions will return either llIIL or an integer. IIIL is returned if the
,.trajectory is not feasible. IIIL is also returned when there’'s transmission
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9.7 Move load functions
i.e. generates a trajectory but does not send 1t

: 9.7.1 Advanced load moves

‘defun move-to-contact-points-load ()
(let* ((fingertip-vector (construct-fingertip-vector

(determine-fingertip-centers *contact-points* *contact-frames .
(dur 0.4))

(send tg :move-fingers-to fingertip-vector 'duration dur)))

(defun move-to-grasp-center-load (force-center force-magnitude)
(let> ({force-center-hand-frame (transform-points-frame-global <grasp-framex force-cente .
(magnitude (* ~scale-forcex force-magnitude))
(grasp-vector-list (construct-grasp-points. force-center-hand-frame magnitude))
(fingertip-center-list
(determine-fingertip-centers grasp-vector-list =xcontact-frames-~))

(fingertip-vector (construct-fingertip-vector fingertip-center-iist))
(dur 0.8))

(print-array-list grasp-vector-list)
(setq :offset-wrench* (list (multiply-array-list
(list *scale-forcex
(add-array-list (list (first grasp-vector-list)
(multiply-array-list
(list -1 (first =contact-points*)))))

(multiply-array-list
(list *scale-forcex
(add-array-list (list (second grasp-vector-list)
(multiply-array-list
(list -1 (second *contact-points=))))

(multiply-array-list

(list *scale-forcex

(add-array-list (list (third grasp-vector-list)
(multiply-array-list
(list -1 (third =contact-points+)))))

e

(clearscreen)

(draw-coordinate-system) L
(sphere-3d-grasp-window (first grasp-vector-list) 0.01)
(sphere-3d-grasp-window (second grasp-vector-list) 0.01) 7

(sphere-3d-grasp-window (third grasp-vector-list) 0.01)
(splere-3d-grasp-window force-center-hand-frame 0.02)
(send tg :move-fingers-to fingertip-vector :duration dur)))

; 9.7.2 Bagic load moves

(defun move-up-load (&optional (dist 1.0) &key number-of-segs duration
(traj-gen “default-trajectory-gen+))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs-per-move)))
(dur (if duration duration (send traj-gen :default-duration))))
(setf (aref work-transl-vect 0) 0.0
(aref work-transl-vect 1) 0.0
(aref work-transl-vect 2) dist)
(if (send traj-gen :generate-traj (liet (list nil nil work-transl-vect))
:number-of-segs nsegs
:duration dur)
(progn (setf (aref xobject-frame 2 3) (+ (aref <object-framex 2 3) (/ dist 2 54))
(initialize-global-variables)))))

(defun move-down-load (&optional (dist 1.0) &key number-of-segs duration
(traj-gen ‘default-trajectory-gen-))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs-per-nove)))
(dur (it duration duration (send traj-gen :default-duration))))
(setf (aref work-transl-vect 0) 0.0

.
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(if (send traj-gen .generate-traj (list (1list nil N1l #orz-transl-vect))
‘number-qQf-segs nsegs
‘duration dur)
(progn (setf (aref -object-frame= 2 3) (- (aref “object-frame~ 2 3) (/ dist 2.54)))
(initialize-global-variables)))))

(defun move-left-load (koptional (dist 1.0) &key number-of-segs duration
(traj-gen “default-trajectory-gen=))
(let ((nsegs (it number-of-segs number-of-segs (send traj-gen :default-segs-per-move)))
(dur (if duration duration (send traj-gen :default-duration))))
(setf (aref work-transl-vect 0) (- dist)
(aref work-transl-vect 1) 0.0
(aref work-transl-vect 2) 0.0)
(if (send traj-gen ‘generate-traj (list (list nil nil work-transl-vect))
‘number-of-segs nsegs
‘duration dur) .
(progn (setf (aref <object-frame* O 3) (-.(aref “object-frame= 0 3) (/ dist 2.54)))
(initialize-global-variables)))))

(defun move-right-load (¥optional (dist 1.0) &key number-of-segs duration
(traj-gen =default-trajectory-gen=))
(let ((nsegs (it number-of-segs number-of-segs (send traj-gen :default-segs-per-move)))
(dur (if duration duration (send traj-gen :default-duration))))
(setf (aref work-transl-vect 0) dist
(aref work-transl-vect 1) 0.0
(aref work-transl-vect 2) 0.0)
(if (send traj-gen :generate-traj (list (list nil nil work-transl-vect)) -
‘nunber-of-segs nsegs
:duration dur)
(progn (setf (aref =object-framex 0 3) (+ (aref *object-frame= 0 3) (/ dist 2.54)))
(initialize-global-variables)))))

(defun move-in-load (%4optional (dist 1.0) &key number-of-segs duration
(traj-gen *default-trajectory-gen=))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs-per-move)))
(dur {if duration duration (send traj-gen :default-duration))))
(setf (aref work-transl-vect O) 0.0
(aref work-transl-vect 1) (- dist)
(aret work-transl-vect 2) 0.0)
(1f (send traj-gen ‘generate-traj (list (list nil nil work-transl-vect))
‘number-of-segs nsegs
:duration dur)
(progn (setf (aref «object-frame* 1 3) (- (aref *object-frame« 1 3) (/ dist 2.54)))
(initialize-global-variables)))))

(defun move-out-load (koptional (dist 1.0) &key number-of-segs duration
(traj-gen =default-trajectory-gen~))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs-per-move)))
(dur (if duration duration (send traj-gen :default-duration))))
(seti (aref work-transl-vect 0) 0.0
(aref work-tranel-vect 1) dist
(aref work-transl-vect 2) 0.0)
(if (send traj-gen :generate-traj (list (list nil nil work-transl-vect))
‘number-of-segs nsegs
:duration dur)
(progn (setf (aref »object-frames 1 3) (+ (aref *object-frame» 1 3) (/ dist 2.54)))
(initialize-global-variables)))))

(defun rocate-x-load (koptional (ang i0.0) kkey number-of-segs
duration
(traj-gen »default-trajectory-gen-))
..convert angles from degrees to radians
(setq ang (« ang 0.01745329))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs-per-move)))



(temp-frame (maxe-array ‘(3 1) -1nitial-contents "((1 0 0 0)
(01 00)
. (0010)))))
(setf (aref temp-frame O 3) (aref =<grasp-frame* 0 3))
(setf (aret temp-frame 1 3) (aref “grasp-frame* 1 3))
(setf (aref temp-frame 2 3) (aref “grasp-frame* 2 3))
(setq *object-frame= (transform-frames-global-frame temp-frame <object-frame+))
(setf (aref temp-frame O 1) (cos ang))
(setf (aref temp-frame O 2) (= -1 (sin ang)))
(setf (aref temp-frame 1 1) (sin ang))
(setf (aref temp-frame 1 2) (cos ang))
(setq *object-frame* (transform-frames-frame-global temp-frame <object-framex))
(draw-coordinates ~object-frame< 0.5)
(if (send traj-gen :generate-traj (list (list 'xhat ang nil))
‘number-of-segs nsegs :duration dur)
(progn (setq *object-frame~ (transform-frames-frame-global temp-frame -<object-frame
(initialize-global-variables)))}))

(defun rotate-y-load (&optional (ang 10.0) &key number-of-segs
duration
(traj-gen ~default-trajectory-gen*))
(setq ang (* ang 0.01745329))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs-per-move)))
(dur (if duration duration (send traj-gen :default-duration));
(temp-frame (zero-array 3 4)))
(setf (aref temp-frame 1 1) 1)
(setf (aref temp-frame O O) (cos ang))
(setf (aref temp-frame O 2) (* -1 (sin ang))) -
(setf (aref temp-frame 2 0) (sin ang))
(setf (aref temp-frame 2 2) (cos ang))
(setf (aref temp-frame O 3) (- (aref *grasp-framex O 3) (aref *object-frame* O 3)))
(setf (aref temp-frame 1 3) (- (aref =grasp-framex 1 3) (aref *object-framex 1 3)))
(setf (aref temp-frame 2 3) (- (aref sgrasp-framex 2 3) (aref *object-framex 2 3)))
(if (send traj-gen :generate-traj (list (list ‘yhat ang nil))
‘number-of-segs nsegs :duration dur)
(progn (setq *object-frame* (transform-frames-frame-global temp-frame -object-frame
(initialize-global-variables)))))

(defun rotate-z-load (&optional (ang 10.0) &key number-of-segs
duration
(traj-gen *default-trajectory-genx))
(setq ang (* ang 0.01745329))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs-per-move)))
(dur (if duration duration (send traj-gen :default-duration)))
(temp-frame (zero-array 3 4)))
(setf (aref temp-frame 2 2) 1)
(sett (aref temp-frame O O) (cos ang))
(setf (aref temp-frame O 1) (> -1 (sin ang)))
(setf (aref temp-frame 1 0) (sin ang))
(setf (aref temp-frame 1 1) (cos ang))
(setf (aref temp-frame O 3) (- (aref *grasp-framex O 3) (aref object-framex 0 3)))
(setf (aref temp-frame 1 3) (- (aref xgrasp-frame= 1 3) (aref -object-framex 1 3)))
(sett (aref temp-frame 2 3) (- (aref =grasp-framex 2 3) (aref #object-frame: 2 3)))
(if (send traj-gen :generate-traj (list (list ‘zhat ang nil))
:number-of-segs nsegs :duration dur)
(progn (setq *object-frame* (transform-frames-frame-global temp-frame -object-fram
(initialize-global-variables)))))

(defun move-finger-load (finger-number displacement-vector)
(let ((traj-gen =default-trajectory-gen:)
(dur 0.3)
(displacement (zero-vector 9)))
(setf (aref displacement (+ (+ 3 (- finger-number 1)) 0)) (aref displacement-vector 0)
(setf (aref displacement (+ (= 3 (- tinger-number 1)) 1)) (aref displacement-vector 1)
(setf (aref displacement (+ (= 3 (- finger-number 1)) 2)) (aref displacement-vector 2)



(defun go-hand ()
(send tg :send-traj pc))

9.8 Basic moves

(defun up (&optional (distance 2.0))
(it (move-up-load distance)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun down (&optional (distance 2.0))
(if (move-down-load distance)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun right (&optional (distance 2.0))
(if (move-right-load distance)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun left (&optional (distance 2.0))
(if (move-left-load distance)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun in (&optional (distance 2.0))
(if (move-in-load distance)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun out (&optional (distance 2.0))
(it (move-out-load distance)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun rot+x (&optional (angle 10.0))
(if (rotate-x-load angle)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun rot+y (&optional (angle 10.0))
(it (rotate-y-load angle)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun rot+z (&optioaal (angle 10.0))
(if (rotate-z-load angle)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun rot-x (&optional (angle -10.0))
(if (rotate-x-load angle)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun rot-y (&optional (angle -10.0))
(if (rotate-y-load angle)
(progn (clearscreen)
(draw-coordinate-systenm)
(go-hand))))
(defun rot-z (&optional (angle -10.0))
(if (rotate-z-load angle)
(progn (clearscreen)
(draw-coordinate-system)
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10. Menu
- ;ii*ﬂ*!'#*t***"“*‘“‘ﬁl*t*tki**th*#******#**ﬂ'"'-i.""k****!**é‘*itkiixi‘t!**uikik-'«k*qun“v-'- v
10.1 Define menu variables
(defvar menu)
(defvar moves-menu)
(defvar dem-menu)

10.2 Define menu

(setq menu (tv:make-window ’'tv:momentary-menu

:label '(:string #.(zl:string "Grasp Menu: "))
' .geometry (list 2)
*‘borders 3 :
‘.item-list *(("STAIDARD GRAPHICS OPTIOIS: " :no-select)
("STANDARD MOTIOH OPTIOHS: " :no-select)
("Create grasp screen " :funcall make-grasp-screen)
("Reinit system " :funcall reinit)

("Clear screen" :funcall clearscreen)

("Reinit OOLAH trajectory " :funcall init-oolah)

("Draw coordinate system " :funcall draw-coordinate-system)
("Reinit VAX trajectory " :funcall init-vax)

("Change graphics variables" :funcall change-graphics-variables-menu)
("Go home " :funcall go-home-and-init) -
("" :no-select)

("BASIC MOVES " :funcall basic-moves-menu)

("" :no-select)

("Move finger " :funcall move-finger-menu)

("" :no-select)

("" :no-select)

("SLIP ANALYSIS OPTIONS: " :no-select)
("ADVANCED HAUD ACTUATION OPTIONS: " :no-select)
("Change global variables " :funcall change-global-variables-menu)

("JKS move menu " :funcall move-menu)

("Permissible-twist " :funcall permissible-twist-menu)

("Move to contact points" :funcall move-to-contact-points)
("Determine constraint state " :funcall determine-constraint-state-nme
("Pick grasp force center " :funcall grasp-force-center-menu)
("Map constraint space " :funcall map-constraint-state-menu)
("Controlled slip " :funcall controlled-slip-menu)

("" :no-select)

("DEMONSTRATIONS" :funcall demo-menu)

("" :no-select)

("" :no-select)

("" :no-select)

("QUIT" :eval 999))))

10.3 Standard graphics options

10.3.1 MAKE-GRASP-SCREEl
10.3.2 CLEARSCREEN
10.3.3 DRAW-COORDPINATE-SYSTEM

(defun draw-coordinate-system ()
(setq view-frame (construct-view-frame angle-x angle-z))
(draw-coordinates *hand-framex 1)
(draw-coordinates *object-frame* 0.75)
(draw-coordinates *grasp-frame* 0.5)
(draw-coordinates *contact-frames* 0.2))

10.3.4 CHAIIGE-GRAPHICS-VARIABLES-MEIIU



(defun change-graphics-variables-menu ()
(let ((zl-user:scale-3d scale-3d) [

(zl-user:x-origin-3d x-origin-3d)
(zl-user:y-origin-3d y-origin-3d)
(z1-user:angle-x angle-x)
(z1-user:angle-z angle-z))

(z1-user:choose-user-options zl-user:graphics-variables-menu)

(setq scale-3d zl-user:scale-3d)

(setq x-origin-3d zl-user:x-origin-3d)

(setq y-origin-3d zl-user:y-origin-3d)

(setq angle-x zl-user:angle-x)

(setq angle-z zl-user:angle-z)))

10.4 Standard motion options —
10.4.0 REINIT
; 10.4.1 IIIIT-00LAH
(defun init-oolah ()
(send tg :init))
; 10.4.2 INIT-VAX
(defun init-vax ()
(send tg :init-traj pc))
. 10.4.3 GO-HOME-AND-INIT
(defun go-home-and-init () -
(set-original-values)
(setq *object-frame* xoriginal-object-framex)
(setq *contact-points-object-space* *original-contact-points-object-spacex)
(setq *contact-normals-object-space* *original-contact-normals-object-spacex)
(initialize-global-variables)
(init-oolah)
(init-vax)
(go-home)
(init-vax)
(go-home)
(clearscreen)
(draw-coordinate-system))

10.4.4 BASIC-MOVES

(defun basic-moves-menu ()
(do ((1 0 (+ i 1)))
((equalp (send moves-menu ‘:choose) 999) ‘Done)))

(setq moves-menu (tv:make-window 'tv:momentary-menu

*:label °'(:string #.(zl:string "Basic moves menu: "))
' .geometry (list 3)
' :borders 2

‘:item-list '(("OUT" :funcall out)

("UP" :funcall up)

("" :no-select)
("LEFT" :funcall left)
("QUIT" :eval 999)
("RIGHT" :funcall right)
("" :no-select)
("DOWH" :funcall down)
. ("IN" :funcall in)

("" :no-select)

("" :no-select)

("" :no-select)
("ROT-X " :no-select)
("ROT-Y " :no-select)
("ROT-Z " :no-select)
(" + " :funcall rot+x)

(" + " :funcall rot+y)
(n ([N FAYERT [ RIS |
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(" - v funcall rot-z))))

10.4.5 MOVE-FINGER-MENU h

(defun move-finger-menu ()

(let ((displacement (make-array '(3))))
(z1-user:choose-user-options zl-user:finger-menu)
(setf (aref displacement 0) zl-user:x-displacement)
(setf (aref displacement 1) zl-user:y-displacement)
(setf (aref displacement 2) zl-user:z-displacement)

(move-finger-load zl-user:finger-number displacement) -
(go-hand)))

n

10.5 SLIP-ANALYSIS

; 10.5.1 CHAHGE-GLOBAL-VARIABLES-MENU
(defvar variables-menu)

(defun change-global-variables-menu ()
(do {(i 0 (+ i 1)))

((equalp (send variables-menu ':choose) 999) ‘Done)))

(setq variables-menu (tv:make-window ‘tv:momentary-menu

":label '(:string #.(zl:string "Variables moves menu: ")
':geometry (list 1)
' :borders 2

":item-list '(("Object variables" :funcall object-variable-menu)
("Contact variables" :funcall contact-variable-menu) -
("Body wrench" :funcall body-wrench-menu)
("Finger variables" :no-select)
("" :no-select)
("QUIT" :eval 999))))

(defun object-variable-menu ()
(let ((zl-user:=object-frames *object-framex))
(z1-user:object-variable-menu)
(setq *object-frame= zl-user:=object-frame*)
(initialize-global-variables)))

(defun contact-variable-menu ()

(let ((zl-user:*contact-points-object-space* *contact-points-object-space«)
(zl-user:*contact-normals-object-space* *contact-normals-object-spacex))
(z1-user:contact-variable-menu)
(setq *contact-points-object-spacex zl-user:*contact-points-object-space*)
(setq *contact-normals-object-space zl-user:*contact-norma‘s-object-space*)
(initialize-global-variables)))

(defun body-wrench-menu()

(setq zl-user:*body-wrenchs *body-wrenchx)
(z1-user:body-wrench-menu)

(setq *body-wrenchs zl-user:*body-wrench+*))

10.5.2 PERMISSIBLE-TWIST-MENU

(defun permissible-twist-menu ()
(let ((twist (make-array °'(6)))) -
(z1-user:permissible-twist-menu)
(setq twist zl-user:~twistx)
(permissible-twist twist)))

10.5.3 DETERMINE-CONSTRAINT-STATE-MENU

(defun determine-constraint-state-menu 0O



N . . . .
(draw-coorainate-system) .
(let ((magnitude O)
(force-center (zero-vector 3))
(force-center-hand-frame {zero-vector 3)))
(z1-user:choose-user-options zl-user:constraint-state-menu)
(setq magnitude zl-user:magnitude)
(setq force-center (get-mouse-coordinates-grasp-frame))
(setq force-center-hand-frame (transform-points-frame-global *grasp-framex force-center)
(determine-constraint-state force-center-hand-frame magnitude)))

10.5.4 MAP-CONSTRAINT-STATE-MENU

(defun map-constrzint-state-menu () -

(draw-coordinate-system)

(zl-user:choose-user-options zl-user: map-state-menu)

(let ((x-inc (/ (- zl-user:x-end zl-user:x-start) Zl-user:x-steps))

(y-inc (/ (- zl-user:y-end zl-user:y-start) zl-user:y-steps)))
(map-constraint-state zl-user:x-start zl-user:x-ené X-inc

zl-user:y-start zl-user:y-end y-inc —
zl-user:magnitude)))

6 ADVANCED-HAND-ACTUATION-OPTIONS
6.1 JKS MOVE-ME!U

.6.2 MOVE-TD-CONTACT-POINTS

6.3 GRASP-FORCE-CENTER-MENU

(defun grasp-force-center-menu ()
(let ((magnitude 0)

(force-center (zero-vector 3)))
(z1-user:choose-user-options zl-user:constraint-state-menu)
(setq magnitude zl-user:magnitude)

(setq force-center (get-mouse-coordinates-grasp-frame))
(move-to-grasp-center force-center magnitude)))

; 10.6.3.1 GRASP-FORCE-CENTER-MENU Auxiliary functio
(defun get-mouse-coordinates-grasp-frame ()
(let ((mouse-coordinates-view-frame (get-mouse-coordinates-view-frame)))
(transform-normals-view-grasp-frame mouse-coordinates-view-frame)))

(defun get-mouse-coordinates-view-frame ()
(let ((mouse-coordinates (get-mouse-coordinates))
(mc-view-frame (zero-vector 3)) '
(window-height (send grasp-screen :send-pane 'grasp-window *:height)))
(setf (aref mc-view-frame 0) (/ (- (first mouse-coordinates) x-origin-3d) scale-3d))
(setf (aref nc-view-frame 2) (/ (- window-height (+ (second mouse-coordinates) y-origi
))
scale-3d))
mc-view-frame))

(defun get-mouse-coordinates ()
(let ((mouse-coordinates (cdr (multiple-value-list (tv:with-mouse-and-buttons-grabbed
(tv:wait-for-mouse-button-down)))))

mouse-coordinates))

(defun transform-normals-view-grasp-frame (point-view-frame)
(let* ((grasp-to-view-frame (construct-grasp-to-view-frame))
(a1l (aref grasp-to-view-frame O 0))
(a12 (aref grasp-to-view-frame O 1))
(a31 (aref grasp-to-view-frame 2 0})

(a32 (aref grasp-to-view-frame 2 1))
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(determinant (- (- all a32) (- a12 a31)))
(xv (aref point-view-frame 0))
(zv (aref point-view-frame 2))
(point-grasp-frame (zero-vector 3)))
(setf (aref point-grasp-frame 0) (/ (+ (x a32 (- xv a14))
(= -1 ai2 (- zv a34))) determinant))
(setf (aretf point-grasp-frame 1) (/ (+ (x -1 a3l (- xv al4))
(+ all (- zv a34))) determinant))

point-grasp-frame))

(defun construct-grasp-to-view-frame ()
(let ((grasp-to-view-frame (zero-array 3 4)))
(do ((i O (+ i 1)))
((= i 3))
(do ((j O (+ j 1))
((=j 3))
(do ((k 0 (+ k 1)))
((= k 3)) :
(setf (aref grasp-to-view-frame i j) (+ (= (aref =grasp-framex k j)
(aref view-frame k i))
(aref grasp-to-view-frame i j))))))
(do ((i 0 (+ i 1)))
((= 1 3))
(do ((j O (+ j 1)))
(=3 3))
(sett (aref grasp-to-view-frame i 3) (+ (x (aref view-frame j i)
(- (aref *grasp-framex j 3) -
(aref view-frame j 3)))
(aret grasp-to-view-frame i 3)))))

(setf (aref grasp-to-view-frame O 2) 0)
(setf (aref grasp-to-view-frame 1 0) 0)
(setf (aref grasp-to-view-frame 1 1) 0)
(setf (aref grasp-to-view-frame 1 2) 0)
(setf (aref grasp-to-view-frame 1 3) 0)
(setf (aref grasp-to-view-frame 2 2) 0)

grasp-to-view-frame))
; 10.6.4 DEMO-MENU

(defun demo-menu ()
(do ((1 0 (+1i 1))
((equalp (send dem-menu ':choose) 999) ‘'Done)))

; 10.7 GRASP-MENU

(defun grasp-menu ()
(do ((i 0 (+ i 1)))
((equalp (send menu ':choose) 999) 'Done)))
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11. Demos

. 11.1 DEMO-MENU
(defvar dem-menu)

(setq dem-menu (tv:make-window 'tv:momentary-menu

":label ‘(:string #.(zl:string "Advanced dexterity demonstrations: "))
':geometry (list 1)
' :borders 2

‘:item-list '(("Can demo" :funcall dlb-can-demo)
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("Can spin demo" :funcall can-spin)
("Box demo" .funcall box-spin)
("QUIT" :eval 999))))

11.2 Demonstration programs

11.2.0 DLB-CAN-DEMO

(defun dlb-can-demo ()
(print "You have 3 seconds to place the can")

(go-home-and-init)

(sleep 3)
(grab 4.2)
(sleep 2)

(move-in-load 5 :duration 0.8)

(move-out-load

3 :duration 0.8)

(move-left-load 5 :duration 0.8)
(move-right-load 10 :duration 0.8)
(move-left-load 5 :duration 0.6)

(move-up-load 4 :duration 0.6)
(move-down-load 6 :duration 1.0)
(move-up-load 2 :duration 0.6)

(rotate-x-load
(rotate-x-load

(rotate-y-load
(rotate-y-load
(rotate-y-load

{rotate-z-load
(rotate-z-load
(rotate-z-load
(go-hand)
(sleep 15)

10 :duration 0.8)
-10 :duration 0.8)

30 :duration 0.8)
-60 :duration 1.6)
30 :duration 0.8)

40 :duration 0.8)
-80 :duration 1.6)
40 :duration 0.8)

(print "Finished absolute moves")
(set-cube-frame)

(move-left-load 5 :duration 0.6)
(move-right-load 10 :duration 0.8)
(move-left-load 5 :duration 0.6)
(move-up-load 4 :duration 0.6)
(move-down-load 6 :duration 1.0)
(move-up-load 2 :duration 0.6)

(rotate-x-load
(rotate-x-load
(rotate-x-load
(rotate-y-load
(rotate-y-load
(rotate-y-load
(rotate-z-load
(rotate-z-load
(rotate-z-load

(sleep 15)
(go-hand)

20 :duration 0.8)
-40 :duration 0.8)
20 :duration 0.8)
40 :duration 0.8)
-80 :duration 1.8)
40 :duration 0.8)
40 :duration 0.8)
-80 :duration 1.6)
40 :duration 0.8)

(move-up-load 2 :duration 0.6)
(move-left-load 2 :duration 0.6)
(move-down-load 4 :duration 1.2)
(move-right-load 4 :duration 1.2)
(move-up-load 4 :duration 1.2)



(move-down-load 2 :duration 0.6)
(sleep 6)

(go-hand)

(send tg :back-to-basic))

11.2.1 TWIRL-CAN

(dafun can-twirl ()

(print "You have 3 seconds to place the can")

(go-home)

(sleep 3)

(setq ~object-frame* (make-array ‘(3 4) :initial-contents "((1 00 0)
(00 -15.5)
(010 -2.7))))

(setq *contact-points-object-spacex*

(1ist (make-array '(3) :initial-contents '(-0.8 1.3 2.5))
(make-array °'(3) :initial-contents ‘(0.8 1.3 2.5))
(make-array '(3) :initial-contents '(0--1.3 2.5))))

(initialize-global-variables)
(move-to-contact-points)
(sleep 1)

(let* ((force-magnitude 1.0)

(force-center (zero-vector 3)))
(move-to-grasp-center-load force-center force-magnitude)
(move-right-load 4 :duration 0.6)

(move-left-load 8 :duration 1.0)

(move-right-load 4 :duration 0.6)

(move-down-load 2 :duration 0.6)

(move-up-load 4 :duration 1.0)

(move-down-load 2 :duration 0.6)
(move-to-grasp-center-load force-center force-magnitude)

(setq force-magnitude 0.2)

(setf (aref force-center 0) 0.9)

(sett (aref force-center 1) 0)
(move-to-grasp-center-load force-center force-magnitude)

(setq force-magnitude 1.2)

(setf (aref force-center 0) 0)
(move-to-grasp-center-load force-center force-magnitude)
(move-right-load 4 :duration 0.6)

(move-left-load 8 :duration 1.0)

(move-right-load 4 :duration 0.6)

(move-down-load 2 :duration 0.6)

(move-up-load 4 :duration 0.8)

(move-down-load 2 :duration 1.0)
(move-to-grasp-center-load force-center force-magnitude)
(go-hand)))

11.2.2 CAN-CRAWL

: 11.2.2 CAlI-SPIN
(defun can-spin ()
(print "You have 2 seconds to place the can")
(go-home) :
(sleep 2)
(setq ~object-frame* (make-array ‘(3 4) :initial-contents '((1 000)
(00 -15.5)
(010 -2.5))))
(setq »contact-points-object-spacex
(1ist (make-array '(3) :initial-contents '(-0.8 1.3 2.5))
(make-array '(3) :initial-contents '(0.8 1.3 2.5))
(make-array '(3) :initial-contents '(0 -1.3 2.5))))
(initialize-global-variables)
(move-to-contact-points)



(let*= ((force-magnitude 0.3)
(force-center (zero-vector 3))
(displacement (zero-vector 3)))
(move-to-grasp-center-load force-center force-magnitude)

(setq force-magnitude 0.4)
(setf (aref force-center 0) -0.6)
(move-to-grasp-center-load force-center force-magnitude)

(setf (aref displacement 0) 0)
‘get? (aref displacement 1) 1)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 2)
(setf (aref displacement 2) -2)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) -4)
(setf (aref displacement 2) -1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 1)
(setf (aref displacement 1) 1)
(setf (aref displacement 2) 2)
(muve-finger-load 2 displacement)

(setf (aref displacement 0) -1)
(setf (aref displacement 1) 3)
(setf (aref displacement 2) -2)
(move-finger-load 2 displacement)

(setf (aref displacement 0) -0.5)
(setf (aref displacement 1) -4.5)
(setf (aret displacement 2) -1)

(move-finger-load 2 displacement)

(setf (aref displacement 0) 0.5)
(setf (aref displacement 1) 1.5)
(setf (aref displacement 2) 3)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 3)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) -1)
(setf (aref displacement 1) 1.5)
(setf (aref displacement 2) -0.5)
(move-finger-load 2 displacemert)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) -5)
(setf (aref displacement 2) -1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 1)
(set? (aref displacement 1) 1)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) O)




(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) O)
(setf (aref displacement 1) 0.5)
(setf (aref displacement 2) -2)
(move-finger-load 2 displacement)

(setf (aref displacement 0) O)
(setf (aref displacement 1) -2.5)
(setf (aref displacement 2) 0)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 0)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setq force-magnitude 0.5)
(setf (aref force-center 0) -0.6)
(move-to-grasp-center-load force-center force-magnitude)

(setq force-magnitude 0.5)
(setf (aref force-center 0) 0)
(move-to-grasp-center-load force-center force-magnitude)

(go-hand)))
11.2.3 BOX-SPIN

(defun box-spin ()

n

(print "You have 3 seconds to place the box")

(go-home)

(sleep 3)

(setq *object-frame* (make-array ‘(3 4) :initial-contents '((1 00 0)
(00 -15.5)

(010 -2.7)))
(setq *contact-points-object-space*

(1ist (make-array '(3) :initial-contents '(-0.8 0.77 2.0))
(make-array '(3) :initial-contents '(0.8 0.77 2.0))
(make-array ‘(3) :initial-contents ‘(0.8 -0.77 3.0))))

(initialize-global-variables)
(move-to-contact-points-load)
(move-down-load 1)
(move-in-load 1)
(move-left-load 4)

(go-hand)

(let* ((force-magnitude 0.2)
(force-center (zero-vector 3))
(displacement (zero-vector 3)))

(initialize-global-variables)

(move-to-grasp-center-load torce-center force-magnitude)
(do ((i 0 (+ i 1)))
((= i 4))
(setq force-magnitude 0.2)
(setf (aref force-center 0) 0)
(move-to-grasp-center-load force-center force-magnitude)

(move-right-load 8)
(setq force-magnitude 0.4)
(move-to-grasp-center-load force-center force-magnitude)

(move-left-load 8)



(setq force-magnitude 0.3)
(setf (aref force-center 0) 0.6)
(move-to-grasp-center-load force-center force-magnitude)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 0.5)
(setf (aref displacement 2) 0.5)
(move-finger-load 1 displacement)

(setf (aref displacement 0) 0)

(setf (aret displacement 1) 0.5)
(setf (aref displacement 2) 0.5)
(move-finger-load 1 displacement)

(setq force-magnitude 0.1)
(setf (aret force-center 0) 0.7)
(move-to-grasp-center-load force-center force-magnitude)

(setf (aref displacement 0) O;
(setf (aret displacement 1) 0.5)
(setf (aref displacement 2) 0.5)
(move-finger-load 1 displacement)

(setf (aref displacement 0) 0)
(sett (aref displacement 1) 0.5)
(setf (aref displacement 2) 0.5)
(move-finger-load 1 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) -2.7)
(setf (aref displacement 2) 0)
(move-finger-load 1 displacement)

(setf (aref displacement 0) O)
(setf (aref displacement 1) 0)
(setf (aref displacement 2) -1)
(move-finger-load 1 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 2)
(setf (aref displacement 2) -1)
(move-finger-load 1 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) O)
(setf (aref displacement 2) 2)
(move-finger-load 1 displacement)

(setf (aref displacement 0) 2)
(setf (aref displacement 1) O)
(setf (aref displacement 2) 0)
(move-finger-load 1 displacement)

(setq force-magnitude 0.1)
(setf (aref force-center 0) 0.7)
(move-to-grasp-center-load force-center force-magnitude))

(go-hand)))

(defun back-rub()
(print "You have 2 seconds tc place the back")

(go-home)
(sleep 2)




(00 -155%5)
(010 -2.5))))
(setq *contact-points-object-spacex
(list (make-array '(3) :initial-contents '(-C.8 1.3 2.5))

(make-array °'(3) :initial-contents (0.8 1.3 2.5))

(make-array °'(3) :initial-contents '(0 -1.3 2.5))))
(initialize-global-variables)
(move-to-contact-points)
(go-hand)?

(sleep 2)
(let* ((force-magnitude 0.3)
(force-center (zero-vector 3))
(displacement (zero-vector 3)))
(move-to-grasp-center-load force-center force-magnitude)

(setq force-magnitude 0.4)
(setf (aref force-center 0) -0.8)
(move-to-grasp-center-load force-center force-magnitude)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 1)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacenment)

(sett (aref displacement 0) 0)
(setf (aref displacement 1) 2)
(setf (aref displacement 2) -2)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) -4)
(setf (aref displacement 2) -1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 1)
(setf (aref displacement 1) 1)

(set! (aref displacement 2) 2)
(move-finger-load 2 displacement)

(setf (aref displacement 0) -1)
(set? (aref displacement 1) 3)
(setf (aref displacement 2) -2)
(move-finger-load 2 displacement)

(setf (aref displacement 0) -0.5)
(set? (aref displacement 1) -4.5)
(setf (aref displacement 2) -1)

(move-finger-load 2 displacement)

(setf (aref displacement 0) 0.5)
(setf (aref displacement 1) 1.5)
(setf (aref displacement 2) 3)
(move-finger-load 2 displacement)

(setf (aref displacement 0) O)
(setf (aref displacement 1) 3)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) -1)
(setf (aref displacement 1) 1.5)
(setf (aref displacement 2) -0.5)
(move-finger-load 2 displacement)




(setf (aref displacement 0) 0)
(setf (aref displacement 1) -5)
(setf (aref displacement 2) -1)
(move-finger-load 2 displacement)

(setf (aref displacement O) 1)
(setf (aref displacement 1) 1)
(set? (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(set? (aref displacement 1) 2)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement O) O)
(setf (aref displacement 1) 0.5)
(setf (aref displacement 2) -2)
(move-finger-load 2 displacement)

(setf (aref displacement 0) O)
(setf (aref displacement 1) -2.5)
(setf (aref displacement 2) O)
(move-finger-load 2 displacement)

(setf (aref displacement 0) O)
(setf (aref displacement 1) 0)
(setf (aref displacement 2) 1)
(mcve-finger-load 2 displacement)

(setq force-magnitude 0.5)
(setf (aref force-center 0) -0.6)
(move-to-grasp-center-load force-center force-magnitude)

(setq force-magnitude 0.5)
(setf (aref force-center 0) 0)
(move-to-grasp-center-load force-center force-magnitude)

(go-hand)))

(defun pic ()

(sleep 10)

(let ((displacement (make-array '(3))))
(netf (aref displacement 0) 0.0)
(setf (aref displacexent 1) 0.0)
(setf (aref displacement 2) -2.5)
(nove-finger-losd zl-user:finger-number displacement)
(go-hand)
(netf (aref displacement 0) 0.0)
(set? (aref displacement 1) 0.0)
(set? (aref displacement 2) 2.5 )
(move-finger-load zl-user:finger-number displacement)
(go-hand)))




