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ABSTRACT

SHEAR RESISTANCE OF DISCONTINUITIES IN ROCK

JEFFREY WILLIAM NELSON

Submitted to the Department of Civil Engineering on May 12, 1977
in partial fulfillment of the requirements

for the degree of Master of Science

This thesis is concerned with the development of an analytical model
for the shear resistance of an individual rock discontinuity. Two basic
mechanisms of resistance, the sliding mechanism and the shearing mechanism,
have been identified, studied individually, and combined to describe dis-
continuity shear resistance.

The sliding mechanism represents sliding on horizontal and inclined
surfaces of a discontinuity. Friction, as an important part of the sliding
mechanism, has been studied through theory and experimental observations,
revealing that friction in rocks is not clearly understood. Experimental
observations of friction in minerals indicates that surfaceconditionsof
cleanliness, roughness, and moisture play an important role in controlling
sliding resistance.

The shearing mechanism represents shearing through asperities on a
discontinuity. Different methods for theoretically calculating single
asperity shear resistance have been presented and compared. The base
shear method, a simple and commonly used method which assumes a failure
surface parallel to the plane of the discontinuity, has been shown to
significantly overestimate asperity shear resistance in some cases.

The two mechanisms of sliding and shearing have been combined in an
analytical relationship describing the shear resistance of a discontinuity.
Evaluation of the parameters affecting this relationship has indicated
that shear resistance is strongly dependent on the displacement of the
discontinuity during shear. A shear simulation process has been proposed
to account for this displacement dependence. A geometric representation
of a discontinuity is sheared in increments of displacement, with the
direction of displacement determined by establishing the direction of
minimum resistance through an iterative procedure.
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NOTATION

A

A

A
a

a
C

a
3S

Total area of a discontinuity

Area of a discontinuity where sliding occurs

Area of a discontinuity where shearing of asperities occurs

Contact area ratio ( = (A + A)/A )

Shear area ratio ( = A_/A )

Cohesion of the intact material

Inclination of an asperity face, measured from the plane
of a discontinuity

Dilation angle

N

N_

N
bone

Total normal force acting on a discontinuity

Normal force acting on the sliding area (A) of a discontinuity

Normal force acting on the shearing area (A) of a discontinuity

Component of q which acts in a direction perpendicular to the

plane of a discontinuity

As a subscript, denotes the value of a quantity at peak discontinuity
shear resistance

Uniform stress applied to an asperity face

S
c

x

3

rv

hp

-

Ul

Sr

Total shear resistance of a discontinuity

Shear resistance due to sliding on a discontinuity

Shear resistance due to shearing of asperities on a discontinuity

Component of q which acts in a direction parallel to the plane
of a discontinuity

Displacement of a discontinuity in a direction parallel to the

plane of a discontinuity

Displacement of a discontinuity in a direction perpendicular to

the plane of the discontinuity
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Dilation rate, rate of change of v with respect to u ( =aY )
Au

Inclination of q from the normal of the asperity face on which
q acts

Coefficient of friction, the ratio of friction force to normal
force

Normal stress acting on a discontinuity ( = N/A )

J

J "

 VY

Unconfined compressive strength of the intact material

Tensile strength of the intact material

Transition stress, 0 for which 1 = Ty

Specific shear resistance of a discontinuity ( = S/A )

Specific shear resistance of the intact material

b.
|

b,

Angle of internal friction of the intact material

Friction angle for sliding on flat, smooth surfaces

Horizontal tip displacement of an asperity at failure



CHAPTER 1

INTRODUCTION

In the majority of engineering problems involving rock masses, rec-

ognition of the discontinuous nature of the rock mass is of utmost impor-

tance to the understanding of the rock mass behavior. The behavior of the

mass is governed by the behavior of the discontinuities as well as the

behavior of the intact rock. In general, the discontinuities have prop-

erties of strength and deformability which are quite different from those

of the intact rock, and in many cases, the discontinuities will completely

dominate the engineering considerations of the rock mass.

Although the importance of discontinuities in controlling rock mass

behavior 1s well recognized, analytical description of discontinuity be-

havior is inadequate in many respects, and thus considerable research in

this area is necessary. The purpose of this thesis is to develop an

analytic description of the shear resistance of an individual discontinuity

in rock.

The method of approach to this problem is to: ‘identify the impor-

tant mechanisms responsible for shear resistance, study these mechanisms

and develop analytical descriptions of them individually, and combine

these mechanisms to form an analytical description of a discontinuity as

a whole.
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The structure of the thesis reflects the method of approach described

above. In Chapter 2, two basic mechanisms of shear resistance in rock

discontinuities are identified, the sliding mechanism and the shearing

mechanism, and the important factors which influence these mechanisms are

discussed. In addition, the basic terminology which is used to quanti-

tatively describe shear behavior is defined. Chapter 3 reviews existing

analytical models for rock discontinuities by other researchers. Chapters

2 and 3 provide the background for the remainder of the thesis. In

Chapters 4 and 5, the two basic mechanisms of shear resistance, sliding and

shearing, are examined in detail individually. Analytical descriptions

of each of these mechanisms are then combined in Chapter 6, where a pro-

cedure for modelling the behavior of a single discontinuity is formulated.
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CHAPTER 2

MECHANISMS IN THE SHEARING PROCESS

As a starting point in this study of the shear resistance of rock

discontinuities, it is useful to identify the mechanisms involved in the

shearing process. By examining these mechanisms, the shear behavior of

discontinuities will be better understood. This chapter attempts to ident-

ify the important mechanisms, as well as the various factors which influence

these mechanisms.

In addition to identifying factors and mechanisms, this chapter de-

fines the basic terminology used to describe shear behavior and explains

the emphasis of the approach used in this study.

2.1 DEFINITION OF TERMS

As a basis for following discussions of the mechanical behavior of

discontinuities, it is necessary to define the terminology used to describe

the shearing process. The direct shear test will be used here as an exam-

ple to illustrate these terms, although in their general sense the terms

apply to any shearing of discontinuities.

A schematic representation of a direct shear test is shown in Fig.

2-la. The normal force (N) is normal to the plane of the discontinuity,

and shear force (S) is coplanar with the discontinuity plane. If the area

of the discontinuity surface is defined as A, then the normal stress (o)
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Figure 2-1. Schematic of direct shear test, with typical plots
of shear stress vs. shear dispalcement and normal
displacement vs. shear displacement.
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and shear stress ( T ) on the discontinuity plane are given by 3 and 3 &gt;

respectively.

The usual procedure in a direct shear test is to apply a constant N.

and measure S while the top block is displaced over the bottom block.

Displacements of the top block which take place during shear can be meas-

ured in a direction normal to the discontinuity plane and parallel to the

discontinuity plane. These are defined as the normal displacement (v) and

the shear displacement (u), respectively.

An example of a plot of T vs. u from a direct shear test is shown

in Fig. 2-1b. As u increases, T increases to a "peak" value ( Ts ), and

then decreases to a relatively constant "residual" value ( T. ). It should

be noted that "residual does not necessarily imply a constant value with

increasing displacement, but only the value attained after some arbitrarily

large displacement. Not all shear tests will exhibit a "peak" value of

shear resistance. Some tests will show a T - u curve which increases

monotonically to a final value.

Figure 2-1lc illustrates a plot of v vs. u during a direct shear test.

Positive normal displacement (upward) of the top block is termed dilation,

while negative normal displacement (downward) is termed contraction. The

slope of the v = u curve at any particular point is defined as the dilation

rate (v). The dilation angle (iF ), illustrated in Fig. 2-1lc, is given by

1% = arctan v = arctan | 2Au

The values of v and i * at peak shear resistance L ) are denoted by v

and i *

A series of direct shear tests performed at different normal stresses
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can be used to determine the dependence of shear strength on normal stress.

These results are plotted on a Mohr diagram, as shown in Fig. 2-2, to de-

fine the strength envelope for that particular type of discontinuity. It

is possible to obtain envelopes for both peak and residual strengths.

The peak strength envelopes are generally curved, particularly in the lower

normal stress range. The residual envelopes tend to be much flatter, being

approximately linear in many cases. The nature of these envelopes will

be treated further in later sections of this thesis.

2.2 BASIC MECHANISMS

In order to understand the shearing process and what causes different

behavior in different discontinuities, it is useful to study the mechanisms

involved. This section identifies those mechanisms which appear to be

important in the shearing of rock discontinuities.

Patton (1966) was one of the first to systematically study the differ-

ent shear mechanisms in rock discontinuities. Through laboratory tests

on discontinuities cast from a model material, he identified two different

mechanisms of shear resistance. The discontinuities that he tested had

regularly shaped asperities, or "teeth", on their surfaces, as illustrated

in Fig. 2-3a. By performing direct shear tests on these model discontin-

aities, Patton found that the mechanism of peak shear resistance was de-

pendent on the level of normal stress acting on the discontinuity.

At low normal stresses (Test 1 in Fig. 2-3), peak resistance was

mobilized while the upper block was sliding upward on the teeth of the lower

block, as illustrated in Fig. 2-3b. The shear force-shear displacement

curve for this test is shown in Fig. 2-3d. The initial, steep portion of
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the curve represents "elastic" distortion prior to sliding. The following

flat portion represents the displacement due to sliding of the top block

upward, where the discontinuity is dilating. Eventually the teeth are

sheared through or overridden, the discontinuity no longer dilates, and

the resistance drops towards a residual value.

At high normdl stresses (Test 2 in Fig. 2-3), there is no sliding up

the inclined teeth. Peak resistance is mobilized by shearing through the

teeth at their base, as illustrated in Fig. 2-3c. The shear force-shear

displacement curve for this test is shown in Fig. 2-3e. 1It shows a steep

initial "elastic" portion, but there is no flat portion corresponding to

sliding during dilation. At peak resistance, there is virtually no dila-

tion, and once the peak is reached the resistance drops quickly towards

a residual value.

The values of peak resistance (5) for the two tests described above

can be plotted on a Mohr diagram, as in Fig. 2-3f. Patton found that the

failure envelope defined by a number of tests on identical discontinuities

at different normal stresses could be represented by two straight lines as

shown. This is the well-known bilinear envelope representing the two mech-

anisms of shear resistance described above. For low N, the mechanism of

peak resistance is sliding up the inclined teeth. It can be shown that

the relation between shear force (S) and normal force (N) for sliding up

inclined surfaces can be represented by the following equation:

§=Ntan (1+9¢ )

where i is the inclination of the sliding surface and ¢, is the friction

(2.1)

angle for sliding on a flat, smooth surface. (As used here, a "flat, smooth"

surface is one which is macroscopically smooth, but microscopically
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irregular (unpolished). The scale of smoothness at which ¢, is measured

is important, and this topic will be discussed in Chapter 4.) Patton

found that eq. 2.1 fit his data well for tests where sliding was the mech-

anism of peak shear resistance.

For high values of N, the mechanism of peak resistance is shearing

through the base of the teeth. The form of the failure envelope for this

mechanism is controlled by the shear strength of the teeth. Patton found

that in his tests this portion of the failure envelope could be approxi-

mated by a linear function of N, with a slope angle (¢ ) that was approxi-

mately equal to the residual friction angle ( ¢_) as well as the sliding

friction angle ( ?, ). This is expressed by

S=C +N tan ¢
x

where Cy is the intercept of the envelope on the S-axis.

In summary, the initial portion of the bilinear failure envelope is

controlled by the angle i and the friction angle d) . The second portion

of the envelope is controlled in a more complex way by the strength of the

teeth as determined by their size and the specific shear strength of the

intact material.

The bilinear envelope described above was obtained from tests where

the asperities (teeth) were uniform in size and inclination. The two mech-

anisms of shear resistance occurred separately at different levels of nor-

mal stress. In real rock discontinuities, asperities have many different

sizes and shapes, with the result that the two mechanisms of shear resis-

tance occur simultaneously on different asperities. This causes the

failure envelope to be curved rather than bilinear for actual discontinui-

ti Se&amp;
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In the above discussion, two different mechanisms of shear resistance

have been identified. The first mechanism was sliding accompanied by di-

lation. The second mechanism was shearing, without dilation in this case,

although it is possible to have dilation associated with shearing as well

(see Chapter 6). Dilation can be an important component of both the slid-

ing and the shearing mechanism, In that it increases the shear resistance

in both cases. The two mechanisms described above are considered to be

‘he two major mechanisms involved in the shearing of rock discontinuities.

In this thesis, they will be known as the sliding mechanism and the shearing

mechanism. These two mechanisms will be examined in detail in Chapters 4

and 5. It will be seen that the distinction between sliding and shearing

is a somewhat arbitrary one, in that a sliding mechanism on one scale can

be considered a combination of sliding and shearing on a smaller scale.

However, it is still useful to make the distinction between the two mech-

anisms as outlined above.

2.3 FACTORS INFLUENCING BEHAVIOR

As well as identifying the mechanisms involved in the shearing pro-

cess, it is important to identify the physical factors which influence

these mechanisms. This section presents a brief discussion of five impor-

rant factors: character of the rock through which the discontinuity passes,

surface geometry of the discontinuity, filler material, water, and the -

state of applied stress.

The character of the rock through which the discontinuity passes,

called the "wall rock", influences shear behavior in several direct and

indirect ways. Wall rock type, as described by its texture and mineralogy,



12

influences behavior in two direct ways. One effect is related to the sliding

mechanism, because sliding properties are dependent on rock type. This

effect is examined in Chapter 4. Another effect of rock type involves the

shearing mechanism, because the strength of surface irregularities is in-

fluenced by rock type.

There are also a number of indirect effects of the wall rock type.

One effect concerns the change in character of the rock with weathering.

Different rock types have different rates of weathering and different

weathering products. Another effect of rock type is the influence it has

on the surface geometry of the discontinuity during the creation of the

discontinuity. The size and shape of surface irregularities are influenced

by the texture of the intact rock and by cracks and other flaws in the in-

tact rock. A final effect of rock type is the influence it has on the type

and amount of gouge produced during shearing of discontinuity. This gouge

can have a significant influence on the shear behavior.

The surface geometry of the discontinuity has an important effect

on shear behavior on several different scales. It is convenient to divide

the scale of surface irregularities into three groups: roughness, on a

microscopic scale; asperities, on an intermediate scale; and undulations,

on a large scale. Irregularities play an important role in both the sliding

and the shearing mechanism on all scales. Surface geometry is particularly

important in determining dilation and shear strength of asperities. The

effect of surface geometry, as it relates to shearing and sliding, is ex-

amined in Chapters 4 and 5.

The type and amount of filler material can greatly influence discon-

tinuity behavior. As used here, filler material represents weathering
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products, gouge, or foreign material transported into the discontinuity.

If the filler material thickness is greater than the height of surface

irregularities, the characteristics of the filler can completely dominate

the behavior of the discontinuity. If the filler thickness is less than

that height, then the filler material and the irregularities will interact

in some way. In either case, the presence of filler can have an important

effect. However, effects of filler material will not be examined in this

thesis.

The presence of water in the discontinuity influences behavior in

both direct and indirect ways. A direct effect is through cleft water

pressure which influences the effective stresses in the discontinuity.

Other direct effects include the alteration of sliding properties and

strength properties of the rock by encouraging the process of weathering.

Water can also cause swelling of the filler material or the wall rock it-

self. The effects of water will only be examined on a limited basis, in

so far as they influence the sliding properties (Chapter 4).

The state of applied stress is a factor which is related to all of

the preceding factors. The relative importance of these factors, in gen-

eral, will be related to the magnitude of stresses acting on the discontinuity.

The influence of stress on the mechanism of shear failure was illustrated

in the preceding section describing Patton's work. The exact nature of

the dependence of the preceding factors on the applied stresses is of

major interest. Its treatment is a part of the remaining portions of this

thesis
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2.4 MODEL DEVELOPMENT

The material in the preceding sections of this chapter was presented

to provide a background for the study of the shear behavior of rock discon-

tinuities. In following chapters, the mechanisms will be examined more

closely in an attempt to formulate a model which can describe and predict

the shear resistance of discontinuities. Before continuing, a few general

comments will be made concerning model development.

Any model which is useful must properly represent the process that

is to be modelled, leading to certain requirements:

1 The model should account for the important

factors which influence the shear behavior

of discontinuities, and it must do so in a

way which is consistent with observations

of actual discontinuities.

The physical description of the discontinuity,

which will be the necessary input to the

model, must be practically obtainable.

That is, input parameters must be measurable

in a practical way.

2

These two requirements will be kept in mind in the course of the following

model development.

There is more than one type of approach which could be used to develop

a model which satisfies the above requirements, as will now be discussed.

In the development thus far in this chapter, emphasis has been placed

on what might be called a "mechanistic" approach. In this approach, the

overall shearing process is separated into different mechanisms, each of

which can be described in an analytical way. These mechanisms can then be

combined to form a model for the overall process.
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Another somewhat different approach might be called a "phenomenological

or "empirical" approach. This approach involves the selection of some

analytic model which relates certain measurable parameters to quantities

of interest in the shearing process. The model has to predict shear be-

havior in a way which agrees with observations, but it may have no concept-

ual or physical similarity with the actual process being modelled.

From a practical standpoint, the relative merit of each approach de-

pends on the usefulness of the resulting model and the success it has in

each individual situation. However, it is believed that the mechanistic

approach is one which will provide a better physical understanding of the

process being modelled, and probably one which will find a more general

application. Therefore, the mechanistic approach is the approach employed

in this thesis.
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CHAPTER 3

REVIEW OF EXISTING DISCONTINUITY MODELS

At present there are few models available which attempt to describe

the shear strength of rock discontinuities. This chapter reviews three of

these models, examining their usefulness and pointing out the limitations

of each.

First, the laboratory work of Patton is recalled, and its application

to actual rock discontinuities is discussed. Then, models developed by

Ladanyi and Archambault (1970) and Barton (1971, 1973) are presented.

These latter two models are good examples of the two different approaches

discussed in Section 2.4. Ladanyi and Archambault use a mechanistic

approach, while Barton uses an empirical (phenomenological) approach.

3.1 PATTON

The laboratory work of Patton (1966) has been described in Section

2.2. For model discontinuities with several identical asperities, the

failure envelope was bilinear. The initial linear portion was described

ME 1

5 =N tan (1+¢) J (3.1)

This equation can be applied to actual rock discontinuities if,

over a certain range of normal stress, a sliding mechanism operates and

no shearing of asperities occurs. This is likely to be true if a discon-

tinuity has asperities with a uniform inclination (i), or asperities with

different but very low inclinations such that none of the asperities are
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likely to shear. If it can be established that only a sliding mechanism

occurs over the normal stress range that is of ‘interest, then eq. 3.1 can

be used to predict the failure envelope, and only the parameters i and A

are required. Estimates of i can be made from measurements of the surface

geometry of the discontinuity. ¢, can be measured in sliding tests on

samples of the wall rock. (As defined in Section 2.2, d) is the friction

angle for sliding on flat, smooth surfaces. The scale at which a surface

is considered "flat" and "smooth" must be specified, because a surface

will always be irregular on a very small scale. In this thesis, a flat

smooth surface is a surface which is smooth on a macroscopic scale, but

irregular on a microscopic scale (unpolished). This matter will be dis-

cussed further in Chapter 4.)

3.2 LADANYI AND ARCHAMBAULT MODEL

Ladanyi and Archambault (1970) developed an equation to describe

the shear strength of rock discontinuities using an energy approach,

where they account for shearing and sliding taking place simultaneously

over the surface of the discontinuity. Their approach is patterned after

that taken by Rowe et al. (1964), where energy components in a direct

shear test on granular material were analysed.

Ladanyi and Archambault divide the total shear resistance (S) of a

rock discontinuity into four components:

S., = component due to external work done in dilation

N

5, = component due to internal work done in dilation

= SV tan ¢,

Sq = component due to internal friction under
volume change

= N tan 6

no

(3.2)

(3.3)

‘-bald
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whe

S, = component due to shearing through surface
irregularities
A T,

= total normal force

= dilation rate (defined in Section 2.1)

S = total shear force

be = statistical average of the friction angle when
sliding occurs along the irregularities of different
orientations

total discontinuity area

T; = specific shear strength of the intact material

3.5
«

N

v

Two of these parameters need to be discussed, Pe and T.

Ge : Rowe (1962) investigated bg for granular material and found that

Pe oe 9, for dense packings. From this information, Ladanyi and Archam-

ault conclude that $e o o for tightly interlocked rock surfaces as

well. However, because of the rigid nature of the sliding rock surfaces,

sliding will only occur along irregularities of a single orientation, and

be should equal do, in all cases.

rs Ladanyi and Archambault chose to use Fairhurst's parabolic criterion

(Fairhurst, 1964) for the strength of the intact material:
1 1

T.=0 (+1) - 1 l1+no 2¢c | en (3.6)
\ n g.

ag
where n= c¢ , the ratio of unconfined compressive strength to tensile

-0

strength. :

Referring back to the four shear components, the first three compon-

ents (5:5 Sys §3) arise from sliding on certain portions of the discontin-

uity while the fourth component (8,) arises from shearing of irregularities

on other portions of the discontinuity. If the shearing area is designated

Al , and sliding is assumed to act over the remainder of the area (A - A)

then the following can be written:

S=(S +5,+8,) (1 -a)+ 3
nh

a
m

(3.7)
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where a_ = A_/A, the shear area ratio.

If N and S are assumed to act uniformly over A, then egs. 3.2 - 3.5

can be substituted into eq. 3.7 with the following result:

-
 Ss _o(@ + tan ¢ Y(1l-a)+a T,
 = pssi—

1 -(1- a.) v tan op

ro

3, 83)

Equation 3.8 requires a number of parameters which must be determined

to predict Tye The parameters 2, and T, can be measured through laboratory

tests on samples of the intact material. As previously discussed, be can

be assumed equal to bo, . The parameters Vv and a_ are much more difficult

to determine. Ladanyi and Archambault suggest the following two empirical

expressions for these parameters vs 8gp) at peak shear resistance.

=f hag Fenn (3.9)

L

sp mo (1-2
T

(2.10)

where K and IL. are empirically determined constants, i is the inclination

of surfaces on which sliding occurs as 0 approaches zero, and Or is the

transition pressure, or the normal stress for which the shear strength of

the discontinuity equals that of the intact rock.

Ladanyi and Archambault indicate that, based on available experimen-

tal data, K = 4 and L = 1.5. However, they acknowledge that the numerical

values of these coefficients, as well as the entire form of the equations

for v and ag (eqs. 3.9 and 3.10), are based on a limited amount of data

and may not be applicable to all discontinuities.

Figure 3.la illustrates the variation of v and a with 0 as indicated

by eqs. 3.9 and 3.10 with K = 4 and L = 1.5. Using these relationships

for v and ag » Fig. 3.1b illustrates the general form of eq. 3.8 on a plot
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Figure 3-1 Discontinuity shear equation of Ladanyi and
Archambault (1970), with suggested empirical
relationships for shear area ratio (a) and
dilation rate (Vv). S
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of T vs. 0 , as well as the form of the intact strength envelope as given

by eq. 3.6.

Ladanyi and Archambault performed a series of direct shear tests on

simulated discontinuities, using rectangular concrete prisms to simulate

asperities, and found good agreement between the observed failure envelope

and the failure envelope predicted by eq. 3.8.

Equation 3.8 represents a mechanistic model which accounts for shear-

ing and sliding mechanisms occurring simultaneously over different portions

of the discontinuity. In the development of eq. 3.8, a fully interlocking

discontinuity is assumed, i.e., all portions of the discontinuity are

either shearing or sliding. Ladanyi and Archambault present a modification

to eq. 3.8 to account for partial interlocking, but this will not be dis-

cussed here. Another assumption made is that both S and N are distributed

uniformly over the total area. This, of course, is an approximation, but

one which is diffcult to improve upon because the high degree of static

indeterminancy in the distribution of stresses over the discontinuity. A

final assumption that is of interest concerns the shearing component, S,-

This component is assumed to be equal to the shearing area times the

specific shear strength of the intact material, and is assumed to act

parallel to S. This is a simplification with respect to both magnitude

and direction. This topic will be discussed further in Chapters 5 and 6.

There is another point connected with this last comment concerning

the shearing component that deserves mention. Ladanyi and Archambault

assume that the dilation component (Ss, = N v), acts over only the sliding

portion of the discontinuity (see eq. 3.7). If the discontinuity is dilat-

ing during shear, then the entire discontinuity is dilating because of the
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rigid nature of the intact rock. Therefore, Sq acts over the entire area

and the following equation would appear to be correct, rather than eq. 3.7:

$= (5. +8, +5,) (1 -a)+ (5, +5) a

It seems that the reason Ladanyi and Archambault did not include Sq with

S, is that they assumed a horizontal shearing action (s, parallel to S),

so that that portion of N which acts on the shearing areas is not being

dilated against. This does not seem correct, because in reality, the

entire N will be dilated against as the entire discontinuity dilates.

The most serious limitation to the practical use of eq. 3.8 is the

determination of v and a_, as mentioned on p. 19. It is not known whether

the empirical relationships given by eqs. 3.9 and 3.10 are generally

applicable to rock discontinuities. The measurement of v in shear tests

is an increasingly common procedure, so that Vv data is available to compare

with equation 3.9. However, the direct measurement of a_ is a very diffi-

cult task and seldom done, so there is very little information on a_ at

present,

In general, the variation of Vv and a_ with ¢ is expected to depend

on such factors as ¢, 3 Ty , and the surface geometry of the discontinuity.

For example, low 9 , high T, , and slightly inclined asperities will

tend to favor sliding with dilation (Vv) rather than shearing (ay). High

op» low Ty and steeply inclined asperities will tend to favor shearing
u

(a) rather than dilation (¥). Therefore, even if the form of eqs. 3.9

and 3.10 were found to apply to all discontinuities, the constants K and L

are likely to be different for different discontinuities. The problem of

predicting Vv and a_ will be further discussed in Chapter 6
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3.3 BARTON MODEL

Barton (1971) empolyed an empirical approach in the development of

an equation to describe the shear strength of rock discontinuities. He

performed a series of direct shear tests on discontinuities in a model

material. The discontinuities were created by tensile splitting of the

material, resulting in rough, irregular surfaces. Analyzing the data from

these tests, Barton observed that the following relationships could be

approximated:

and

sretan| =] = 2 i-o

10 logo
J -

2 Jo (3.11)

(3.12)
A?

where t = peak shear resistance
0 = normal stress, held constant during each test

B= dilation angle at peak shear resistance
0_= unconfined compressive strength of the intact material

Equations 3.11 and 3.12 can be combined to give:

1 = 0 tan 20 logio % + 30°
 oO

(Lo 13)«*

This equation describes a relationship between To 0 , and Og. which

approximately fits Barton's model discontinuity test data. The discontin-

uities, although irregular, all had the same order of roughness and approx-

imately the same , (2300).

Barton (1973) hypothesized that eq. 3.13 could be modified for dis-

continuities with different roughness and different Py » and proposed a

more general relationship:
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pt Tere

t=O can JRC logio JCS + 6, | (3.14)

JRC = joint roughness coefficient

JCS = joint wall compressive strength

b = friction angle for sliding on flat smooth surfaces

JRC accounts for discontinuities with different surface roughness.

Barton suggests that JRC varies from 0 for smooth planar discontinuities

to 20 for rough undulating discontinuities. At present there is no method

for determining JRC from measurements of the surface geometry. JRC can

be back-figured from one or more direct shear tests on discontinuities and

an average value can then be used for similar discontinuities. This method

presumes that JCS and ¢ are well established, and that themodel is valid.
u

Barton (1976a) proposes an alternate method for determining JRC from "tilt

tests'. These are simulated direct shear tests at very low normal loads,

where the normal and shear forces are supplied through gravity by tilting

the discontinuity until sliding occurs. The angle of tilt can be used to

back-figure a value of JRC for that test. This value of JRC is then assumed

to be valid for higher stress ranges, and used in eq. 3.14. This method

is still in development, and it is not yet clear whether JRC obtained in

this way is valid for higher stress ranges. (By higher stress ranges, it

is meant only those higher stress ranges for which eq. 3.14 applies.

Barton (1976b) has proposed a different empirical relation from eq. 3.14

for very high normal stresses, which will not be discussed here.)

JCS is a measure of the strength of the surface irregularities.

Barton suggests that JCS will vary from S. for unweathered discontinuities

to approximately 0, , for weathered discontinuities, and that it can be

estimated from Schmidt hammer tests on the wall rock.
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Finally, 9, can be determined from sliding tests on samples of

the wall rock.

Figure 3-2 illustrates the general form of eq. 3.14 on a shear stress-

normal stress diagram for various combinations of JRC and JCS, ( ?, = 30° ).

Figure 3-2 also contains a qualitative description of joint roughness

corresponding to JRC = 5,10,and 20.

In order to evaluate the general applicability of eq. 3.14, Barton

(1973) reviewed published data from shear tests on a number of different

types of rock. This review involved a comparison of experimental failure

envelopes with failure envelopes predicted by eq. 3.14. Barton found that

eq. 3.14 accounts for surface roughness, strength of the wall rock, effects

of weathering, sliding properties of the wall rock, and the dependence of

the failure envelope curvature on normal stress, all in a way which at

least qualitatively agrees with observed discontinuity behavior. With

appropiate selection of JRC and JCS values, the failure envelope given by

eq. 3.14 was found to agree quantitatively quite closely in many cases.

However, further investigation of the applicability of eq. 3.14 to other

discontinuities needs to be done before any assessment of its general

validity can be made.

An important consideration in the usefulness of eq. 3.14 lies in the

ability to obtain values for JRC, JCS, and for particular discontin-

gities. While direct measurements of JCS and Ss may be relatively easy

to obtain, there is no method for directly determining JRC. JRC must be

back-figured from direct shear tests, or possibly from tilt tests. The

accurate determination of JRC is quite important, as the failure envelopes

illustrated in Fig. 3-2 are sensitive to JRC, particularly for higher JCS.
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It is felt that further development, in the area of establishing the

general applicability of eq. 3.14 and also establishing a reliable method

for determining JRC, is needed before eq. 3.14 can be a useful method for

predicting rock discontinuity strength.

3.4 SUMMARY

The models of Patton (1966) and Landanyi and Archambault (1970) use

a mechanistic approach to the problem of describing rock discontinuity

shear strength. Patton's model is too simplified to accurately represent

the failure envelope of most rock discontinuities. Ladanyi and Archambault's

model has a much more general application, but difficulties in predicting

dilation rate (v) and shear area ratio (a) seriously limit its practical

use. In spite of these limitations, the concepts developed by Patton and

Ladanyi and Archambault are fundamentally sound, and are used as a basis

for a part of the research reported in this thesis.

The model of Barton (1971, 1973) uses an empirical approach. In

spite of the fact that this model may prove to be a useful method of pre-

dicting discontinuity shear strength, it provides little insight into the

mechanisms involved in the shearing process, and therefore is not considered

further in this thesis.
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CHAPTER 4

THE SLIDING MECHANISM

Two mechanisms have been identified in Chapter 2 as being the major

mechanisms involved in the shearing of rock discontinuities. These are

the sliding mechanism and the shearing mechanism. The sliding mechanism

is the mechanism by which shear resistance is developed when flat smooth

surfaces are forced to slide over each other. The sliding mechanism can

be divided into two submechanisms: a friction submechanism and a dilation

submechanism.

The dilation submechanism results from sliding in a direction which

is not parallel to the plane of the discontinuity. It is accounted for

by the angle i in Patton's equation for sliding (eq. 3.1), and by the com-

ponent Sq in Ladanyi and Archambault's model (eq. 3.2). The dilation sub-

mechanism is directly and simply related to the dilation rate (v), (or

*
dilation angle, i ), and will be discussed in more detail in Chapter 6.

This chapter examines the friction submechanism. The physical pro-

cesses responsible for friction are studied in general, and how they apply

to rocks in particular. The phenomenon of stick-slip is also investigated,

in order to understand the role that friction plays in it, and since it

helps in turn to understand friction. Finally, experimental measurements

of the sliding friction angle for minerals are reviewed.

The purpose of this study of the friction submechanism is to gain a

better understanding of friction in rocks, to determine which mechanisms

are important in friction, and which factors have an important influence
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on these mechanisms.

4.1 FRICTION

Friction is the resistance to motion which exists when a solid object

is moved tangentially with respect to the surface of another which it

touches, or when an attempt is made to produce such motion (Rabinowicz,

1965). Its importance in almost all physical processes is well recognized,

but the mechanism of friction itself is not well understood, as will be

shown in this chapter.

Experimental observation of friction has led to the proposal of two

"laws" under which friction is often assumed to operate. These two laws

are generally credited to Amontons, as published in 1699, although Leonardo

da Vinci actually noted them two centuries earlier. (For a historical

review of the subject, see Bowden and Tabor, 1964, p. 502.) The two laws

 my -ER;

Friction force (F) is directly proportional to

normal force (N); i.e., F =u N, where u is the

coefficient of friction. ( UH = tan ¢.) .

Friction force is independent of the apparent area

of contact on the sliding surface. (Apparent area

of contact is the gross or macroscopic area of

contact, not the microscopic or actual area of

contact, to be discussed further below.)

These two laws are obviously related. The first law implies that F

is only dependent on HM and N, and thus is independent of contact area.

While there are exceptions to both of these laws, they provide a set of

rules under which engineers generally consider frictiom.

Attempts to explain these laws in terms of physical mechanisms have

led to a theory of friction known as the adhesion theory of friction.
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This theory will now be explained.

Adhesion Theory of Friction

All surfaces, even those which appear to be very smooth, are irreg-

ular on a microscopic scale. When two surfaces are placed in contact,

only tips of opposing surface irregularities (asperities) touch each other.

Initially, the number of contacts, as well as the actual contact area, is

very small. The contact stresses are very high, so that ductile plastic

yielding of the asperities occurs. The effect of asperity yielding is to

increase the actual contact area and to decrease the contact stress until

yielding stops (see Fig. 4-1). If yielding is controlled only by normal

stresses on the asperity, then the final actual contact area (A) is given

L-
57

A
A

h
= N

n

(’oak)

where N is the normal force between the surfaces and p is the indentation

or penetration hardness of the material. (The actual contact area due to

ductile plastic yielding can be influenced by factors other than N and p.

The contact area can be dependent on the shear stress across the contact,

although this effect is usually neglected. Bowden and Tabor (1964, p. 74)

discuss this effect. The contact area can also be time dependent, due to

creep or time-dependent breakdown of surface films. This effect will be

discussed further in Section 4.2.)

Adhesive bonds form across these areas of contact, creating "adhesion

junctions" which resist any applied force tending to cause sliding. If

these adhesion junctions are assumed to have a constant specific shear

strength (8), then the friction force provided by these junctions is
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Figure 4-1 Actual contact area between surfaces.
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given by

F =sA
 Cc

(/ 7)

Equations 4.1 and 4.2 combine to give

i _F_°% _s
N PA P

Because s and p have been assumed to be constants for a given material, u

will also be a constant for a given material (up to the limit of full con-

tact between surfaces, where A, = A in Fig. 4-1.)

This simple theory readily explains the direct proportionality be-

tween F and N, as well as the non-dependence of F on the apparent area of

contact. It is this theory, the adhesion theory of friction, which is

widely accepted as the basic mechanism of friction in most materials.

Components of Friction Force

Rabinowicz (1965) states that friction force can be derived from

four possible components. One of these is the adhesion component, due to

adhesive forces between surfaces as just described in the adhesion theory

of friction. There are three other possible components: the roughness

component, the plowing component, and the electrical component. These other

components will now be discussed.

The roughness component arises when contacting surfaces are irregular

enough that one surface must be lifted over the irregularities on the

roughness scale of the other surface for sliding to occur. This requires

an additional force, beyond the adhesion component. If the scale of the

surface irregularities is small relative to the sliding displacement, then

the roughness component will have both positive and negative contributions
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which will tend to cancel each other out as sliding progresses.

The plowing component contributes to the friction force when asperities

on one surface "plow " into the material of the opposing surface. The

force required for deformation by plowing must be supplied by the friction

force. The plowing component differs from the adhesion component in that

there is gross permanent deformation of the material due to plowing, whereas

the deformation associated with adhesion only involves the tips of small

asperities, being permanent but much smaller in scale. The plowing component

can be important for rough surfaces where asperities interlock rather than

simply contact at their tips.

The electrical component arises when there is electrical attraction

and/or repulsion across the two sliding surfaces. This component is very

small in most cases.

Separation of the friction force into components is analogous to the

separation of rock discontinuity shear resistance into mechanisms and sub-

mechanisms. The adhesion component and the roughness component together

correspond to the sliding mechanism, where adhesion is analogous to the

friction submechanism and roughness is analogous to the dilation submechan-

ism. The plowing component corresponds to the shearing mechanism. If the

scale is chosen small enough, the "sliding'" mechanism can in turn be sub-

divided into both shearing and sliding. The definition of shearing and

sliding in any particular case is thus a question of the scale considered.

Friction in Rocks and Minerals

The adhesion theory of friction, which accounts for an adhesion com-

ponent but not for the other three components, is generally recognized as

being valid for metals, because metals are ductile and the other three
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components are usually negligible. However, there is some dispute as to

whether it can be correctly applied to friction in rocks and minerals.

Rocks and minerals are characterized as brittle materials, thus the notion

of ductile plastic flow at the contact points may not apply to them. The

contact stresses required to produce ductile plastic deformation in quartz,

for example, are on the order of 1,500,000 psi (Brace, 1963). In copper,

they are only 1,400 psi. There is also some question as to whether ductile

plastic flow observed in quartz is actually ductility or perhaps micro-

fracturing on a scale too small to be seen (Brace, 1963). At any rate, it is

unclear whether or not all the contact points behave in a ductile manner.

If they do not, then the contact area (A) is no longer proportional to the

normal force (N), and the adhesion theory of friction no longer strictly

applies.

In addition to the possibility that contact area is not directly pro-

portional to normal load, there is a question as to whether the friction

force is due to adhesion bonds. Bromwell (1966) states that frictional

resistance of brittle materials is probably due to adhesive forces acting

at the contact points, just as in metals. He notes that the cleaning of

surfaces in various brittle materials produced a marked increase in the

coefficient of friction. (The cleaning was accomplished by placing the

material under high vacuum.) This increase in friction is presumably

caused by an increase in adhesion junction strength due to cleaner surfaces.

Byerlee (1967b) has proposed that brittle fracture, rather than duc-

tile plastic flow, is the dominant mechanism of friction in most rocks.

He developed a theory of friction based on brittle fracture. The theory

applies to very smooth surfaces of brittle material, where only the tips of
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microscopic irregularities touch each other (no interlocking), just as in

the adhesion theory of friction. Instead of ductile deformation however,

the asperities crush at their tips. Sliding then occurs when these asperi-

ties fail by brittle fracture, as tangential forces are applied to their

crushed tips. By determining the normal and shear forces at the tips of

the asperity at failure, a coefficient of friction was theoretically cal-

culated to range from 0.10 to 0.15, the magnitude depending primarily on

asperity shape. Friction tests were performed on samples of granite, cal-

cite, and other minerals which appeared to verify his theory. For very

smooth surfaces on these materials, yu ranged from 0.10 to 0.15. For surfaces

with greater roughness, u increased with roughness. The implications of

this theory for natural surfaces, which are much rougher than those for

which Byerlee found his theory applicable, is not clear. However, Byerlee

contends that brittle fracture is the controlling mechanism of friction in

brittle materials, even in the case of interlocking asperities, and that the

adhesion theory of friction therefore does not apply to most rocks.

Friction experiments by other researchers on very smooth surfaces of

brittle material do not support Byerlee's theory. In Section 4.3, it will

be seen that very smooth, clean surfaces of quartz produce very high co-

efficients of friction, sometimes greater than 1.0.

I[t is apparent from the preceding discussion of friction that the mech-

anisms involved in the sliding of rocks and minerals are not entirely clear.

Further investigation of this subject will now be made through the study of

the stick-slip phenomenon, which is the subject of Section 4.2. By studying

the results of these investigations and attempting to describe the mechanism

of stick-slip, a better understanding of friction may be obtained.
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4.2 THE STICK-SLIP.KPHENONMENON

"Stick-slip" is a term which refers to the "jerky" motion of alter-

nately sticking and slipping of two surfaces as they are forced to slide

over each other. This type of motion has been observed in laboratory fric-

tion experiments on a variety of materials, including metals and rocks.

The observation of stick-slip in rocks has given rise to the theory that

stick-slip occurring in the earth's crust along faults is a mechanism of

earthquakes (for example, see Brace and Byerlee, 1966). This theory has

prompted numerous investigations of the frictional sliding behavior of

rocks in an effort to describe the conditions under which stick-slip occurs.

This section reports the results of those investigations, as well as dis-

cussing the mechanics of stick-slip, to gain insight into friction in rocks.

The Mechanics of Stick-Slip

Stick-slip is the result of mechanical instability between a force

tending to cause sliding and the friction force which is resisting sliding.

To illustrate the stick-slip process, a friction experiment is shown sche-

matically in Fig. 4-2. A block of weight W rests on a rigid flat surface.

The normal force (N) on the plane of sliding is equal to W. A tangential

force (T) can be applied through the spring between points A and B. The

friction force (F) which resists sliding is given by F = yu N.

When point B is moved to the right at a constant velocity (v), the

block remains stationary until T is sufficient to overcome F. At this

point. sliding occurs.

If uy does not change as sliding begins, then the block will slide

with a constant velocity equal to v. T is equal to F, and "stable" sliding
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Figure 4-2 Schematic of friction experiment.
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takes place.

If yp decreases as sliding begins, F will decrease, and it is pos-—

sible that the difference between F and T will cause the block to acceler-

ate to velocity greater than v, or "slip'. This will only happen if F

decreases with sliding more rapidly than T. As the block slips, T decreases

as the spring contracts until eventually it is less than F, and a "stick"

occurs. Then T increases until it is sufficient ot overcome F again, and

rhe entire stick-slip cycle is repeated.

It is the interaction of the forces F and T and the way that they

vary during sliding which determines whether or not stick-slip occurs.

Changes which occur in F depend on the frictional characteristics of the

sliding material. Changes which occur in T depend on the stiffness of the

spring and the relative displacements of points A and B as sliding takes

place

Effects of Stiffness on Stick-Slip

If T can be controlled so that it always decreases at the same rate

as F with sliding, then stick-slip can be prevented. In the friction ex-

periment, T can be controlled through the stiffness of the spring. Increas-

ing the spring stiffness will increase the rate at which T decreases during

sliding, possibly eliminating stick-slip.

Rabinowicz (1965) investigated stick-slip of steel on steel, using

various spring stiffnesses, and found that it was possible to eliminate

stick-slip using a spring stiffness of 170 kg/cm (950 1b/in).

Byerlee and Brace (1968) investigated the effect of loading machine

stiffness in triaxial tests on ground surfaces of granite. With stiffness

as high as 2 X 10° kg/cm (11 X 10° 1b/in), they were unable to eliminate
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stick-slip. In fact, they were unable to observe any influence of machine

stiffness on stick-slip behavior, contrary to what is expected. Apparently

the machine stiffness required to eliminate stick-slip in those tests was

much higher than the stiffnesses used, indicating that the drop in friction

force as sliding began was extremely abrupt.

The preceding discussion of stick-slip presumed a spring stiffness

or loading machine stiffness acting in a friction experiment. Loading

systems in nature also have a certain stiffness associated with them, so

the above comments apply to natural situations as well as to friction ex-

periments, although it is difficult to estimate the stiffness of rock

masses as they might apply to a particular sliding situation.

Effect of Frictional Characteristics on Stick-S1lip

The classic explanation of stick-slip is that there are two types

of friction, static friction and kinetic sliding friction. It is assumed

that the coefficient of static friction ( Mg ) is greater than the coeffi-

cient of kinetic friction ( My ). Any force tending to cause sliding is

resisted by static friction until sliding begins, at which point the fric-

tion force falls to the lower kinetic value, causing slip.

While this simple idea of Ug &gt; My can account for the occurrence

of stick-slip, the process by which this takes place must still be explained.

This process must be compatible with any friction mechanism which is assumed

to apply to the material. Indeed. any proposed mechanism must be related

to the friction mechanism, accounting for changes in friction force which

take place as sliding is initiated.

Rabinowicz (1965) makes a distinction between two types of stick-

3lip processes, time-controlled and displacement-controlled. Possible
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friction mechanisms for each type will be discussed here.

It is possible to account for stick-slip if friction is time-dependent.

If the coefficient of friction is a function of the time of contact between

surfaces, increasing with increasing time of contact, then the friction

force will be smaller when sliding than when not sliding. This would ex-

plain how the friction force can drop suddenly when sliding begins, as the

contact time is much less during slip than during stick.

Bowden and Tabor (1964) suggest possible explanations for a

time dependence of friction which are based on the adhesion theory of

friction. These explanations require that the size of the adhesion junc-

tions is dependent on time, rather than only on normal force and penetra-

tion hardness as described in Section 4.1. One explanation is that creep

occurs at the adhesion junctions, resulting in an increase in actual con-

tact area with time. Another possibility is that there is a time factor

in the breakdown of surface films, also resulting in an increase in contact

area with time. A final explanation is that diffusion across the inter-

faces of the junctions leads to a strengthening of the junctions with time.

Rabinowicz (1965) presents the data of Dokos (1946) to show that

steel exhibits time-dependent friction properties. The coefficient of

friction for steel was observed to be proportional to the logarithmn of

stationary contact time.

Dietrich (1972) investigated time—dependency of friction in rocks

in a series of direct shear tests. Sandstone, quartzite, graywacke, and

granite were tested at normal pressures of 20 - 850 bars (300 - 12,300 psi).

For clean, rough surfaces (ground with #80 abrasive ), no dependence of

on contact time was observed. However, if an accumulation of gouge from
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previous sliding was present, then Ug showed a distinct time dependency

for all the rocks tested. This time dependency of Ho s which clearly

required the presence of gouge, gave rise to stick-slip behavior. In these

tests, time dependent friction apparently played an important role in

causing stick-slip.

Another approach to the friction mechanism responsible for stick-slip

assumes that pu is a function of displacement. Two different models, one

based on adhesional friction and the other based on a brittle fracture

mechanism, are presented here.

In the adhesion theory of friction, friction force originates from

adhesion junctions, and initially (before sliding) the size of the adhesion

junctions is assumed to be dependent on the normal force and the penetration

hardness of the material. As sliding takes place, some junctions are broken

while others are being formed, and the size of the junctions may be depend-

ent on other factors such as the size of the asperities and the shear stress

across the junctions. If the size of these junctions varies in some way

with displacement, then the friction force will also vary, and in this way

stick-slip could develop.

Byerlee (1970) proposed a similar model of the friction force varying

with displacement based on a brittle fracture mechanism. In this model,

the friction force is the result of interlocking asperities on the sliding

surface. When the asperities fail, the friction force decreases, and slip

occurs. Sliding continues until enough frictional reisitance due to the

interlock of new asperities is generated. Then stick occurs and the whole

process 1s repeated.

The two displacement controlled models for stick-slip, as described
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above, are similar. - They both rely on the interaction of asperities which

produces a friction force that varies with displacement. The difference

is the mode of asperity failure, ductile plastic flow in one case and brit-

+1le fracture in another. Either model can account for stick-slip behavior.

Observations from Stick-Slip Experiments

In order to gain a better understanding of the stick-slip mechanism

in rocks, the results of stick-slip studies reported in the literature will

be discussed. Friction experiments have been performed on a variety of

rocks, under a wide range of testing conditions. Experimental apparatus,

loading procedure, stress conditions, temperature, rock type, and sliding

surface preparation vary from experiment to experiment. This makes it

difficult to make direct comparisons of experimental data. The effects of

four major parameters are described here. These are: rock type, pressure,

temperature, and surface conditions.

Rock Type

Brace (1972) reviewed the literature concerning stick-slip observations

and concluded that weak minerals in rocks cause stable sliding rather than

stick-slip. These weak minerals include calcite, dolomite, and such platy

silicates as talc or serpentine.

Byerlee and Brace (1968) performed triaxial friction experiments on

ground surfaces of two types of dunite, one which contained 37 serpentine

while the other contained none. At 3 kbar (44,000 psi) confining pressure.

rhe dunite without serpentine exhibited stick-slip and the other dunite

did not. Apparently only a small amount of a weak mineral, serpentine,

was able to cause stable sliding.
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Stesky et al. (1974) tested a variety of rocks, including granite,

gabbro, quartzite, dunite, peridotite, and anorthosite, in the same manner

as Byerlee and Brace (1968). Only the peridotite showed stable sliding

at room temperature. All the other rock types slid by stick-slip. This

was attributed to a small amount ( &lt;1%) of serpentine in the peridotite.

Pressure

The effect of pressure, as used here, refers to the normal pressure

on thé sliding plane, as determined by the applied normal pressure in a

direct shear test, or the confining pressure and axial stress in a triaxial

test.

Byerlee and Brace (1968) reviewed a number of triaxial tests and

reported that stick-slip was absent in all of the rocks below a confining

pressure of 0.8 kbar (12,000 psi), for pressures ranging to 6 kbar (87,000

psi). The effect of increasing the confining pressure from 0.8 kbar to 6

kbar was to cause severe stick-slip behavior in a number of rock types.

Scholz, Molnar, and Johnson (1972) performed direct shear tests on

granite with normal pressures up to 1 kbar (15,000 psi). For normal pres-

sures less than 15 bars (220 psi), sliding was stable. Above 15 bars,

stick-slip was predominant.

Drennon and Handy (1972) performed direct shear tests on limestone

with normal pressures ranging from 0.75 - 20.0 kg/on (10 - 280 psi).

They also observed a transition from stable sliding to stick-slip with an

increase in normal pressure. The transition pressure was quite variable,

decreasing with increasing temperature of the specimen during the test.
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Surface Conditions

Two factors relating to surface conditions have been observed to in-

fluence frictional behavior and stick-slip: surface roughness and the

presence of gouge.

Hoskins, Jaeger, and Rosengren (1968) tested five different rock

types (granite, gabbro, trachyte, sandstone, marble) with two degrees of

surface finish (rough ground, polished) in direct shear tests with normal

stresses ranging from 125 to 750 psi. For the rough surfaces, stable slid-

ing occurred at all normal pressures. For the same rocks with polished

surfaces, stick-slip was observed. There was also a marked decrease in the

coefficient of friction associated with the change from rough to polished

surfaces.

Dietrich (1972) also investigated the effect of surface roughness in

direct shear tests on sandstone, quartzite, graywacke, and granite. Whereas

clean rough surfaces showed stable sliding, highly polished surfaces showed

stick-slip. In these tests, the coefficient of friction was found to be

greater for polished surfaces than for rough surfaces. As noted previously,

the effect of gouge production in these tests was to make the coefficient

of static friction dependent on the time of contact between surfaces.

The presence of gouge was necessary to produce stick-slip with rough sur-

faces. but not for smooth surfaces.

Scholz, Molnar, and Johnson (1972) reported that in their direct

shear tests the accumulation of gouge tended to reduce the stress drop

(drop in friction force) during slip. Drennon and Handy (1972) also found
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that gouge reduced the stress drop in their direct shear tests. These two

observations seem to conflict with those of Dietrich, as they imply that

gouge formation favors stable sliding rather than stick-slip.

Temperature

Stesky et al. (1974) performed an extensive study of the effect of

temperature on stick-slip, through triaxial tests on a number of rock types.

In all of the rock types which showed stick-slip at room temperature (gran-

ite, gabbro, quartzite, anorthosite, dunite), an increase in temperature

caused a transition to stable sliding. The transition temperature varied

from 100° - 600°C. , depending on rock type, for a confining pressure of 3

kbar (44,000 psi).

Drennon and Handy (1972) found a different effect of temperature in

direct shear tests on limestone. As the temperature of the tests was in-

creased from 25° to 100°¢., a transition from stable sliding to stick-slip

occurred. The range of normal pressure was 0.75 - 20.0 xp fen’ (10 - 280

psi)

Thus, the above two investigations showed the opposite effect of

temperature, but the temperature range, pressure range, and rock type were

different in each case, and therefore cannot be directly compared.

Summary of Effects

In any particular case of frictional sliding, the four parameters

described above will interact to determine whether sliding is stable or by

stick-slip. However, it is possible to make certain generalizations about

the influence of each of these factors separately.

Rock type plays an important role in sliding behavior. Certain weak
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minerals, when present in rocks, will cause stable sliding rather than

stick-slip. The effect of pressure on frictional sliding is clear. Higher

pressures promote stick-slip rather than stable sliding. Surface roughness

seems to play an important role, with very smooth surfaces being favorable

to stick-slip. The influence of gouge on the sliding surface is not clearly

defined. In some instances, it has been observed to promote stick-slip, in

others, it promoted stable sliding. In general, temperature increase has

the effect of eliminating stick-slip behavior, although an exception to

this has been observed.

Concluding Remarks on Friction Mechanisms in Stick-Slip

Considering the two types of stick-slip processes mentioned previously,

time-controlled and displacement-controlled, it can be concluded that time-

controlled stick-slip is not always important. Although Dietrich (1972)

observed a time dependence of friction in a variety of rocks, it was only

under conditions where there was an accumulation of gouge. Those conditions

did not apply to a majority of experiments where stick-slip was observed.

While time-controlled stick-slip may play an important role in certain

situations, it appears that a model of displacement controlled stick-slip

would generally be more applicable. The displacement~controlled model can

involve adhesional friction or friction based on brittle fracture, but at

this point it is not clear which best fits the observations.

Few of the investigators of the stick-slip phenomenon address the

problem of describing the friction mechanism responsible for stick-slip.

This is probably due to the fact that it is diffcult to come to any conclu-
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sion based on observations to date.

Drennon and Handy (1972), from their studies of stick-slip in direct

shear tests on limestone, stated that adhesion seemed to be the friction

mechanism controlling stick-slip. It was observed that high temperature

and high normal loads caused an increase in the coefficient of friction,

which was in some way responsible for stick-slip. They postulated that a

film of adsorbed water on the surface of the limestone caused stable sliding

by decreasing the area available for adhesion. High temperature would

drive off this adsorbed water, and high normal pressures would cause the

film to be penetrated. Both have the same effect of creating a larger ad-

hesional friction force which is responsible for stick-slip.

Byerlee (1967a) discussed the mechanism involved in his tests of

frictional sliding of granite. He concluded that brittle fracture, rather

than ductile plastic deformation, is the controlling mechanism. This was,

in part, based on observations of the type of wear particles produced during

sliding, which were angular in shape and showed no evidence of plastic flow.

Summary

Theory and observations of the role of friction in stick-slip were

reviewed in this section. Two different mechanisms, adhesion associated

with ductile plastic flow and brittle fracture, have been identified as

possible mechanisms controlling friction. The study of friction experiments

conducted to investigate stick-slip has revealed that it is not clear which

mechanisms are responsible for friction in rocks. It has been shown that

there are certain factors (such as rock type and pressure) which have a

well-defined influence on frictional behavior, while other factors (such as
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surface conditions and temperature) influence behavior in a way which is

not well understood. In addition, the effects of these factors are diffi-

cult to relate to the mechanisms of friction.

Clearly, there is no single theory or mechanism which can be used to

explain friction in rocks. Apparently the friction process is a highly

complex one, and further investigation of this subject needs to be done

before the physical mechanisms involved can be well defined.

MEASUREMENTS OF FRICTION OF MINERALS

This section contains the results of a survey of data from sliding

experiments on minerals which have been reported in the literature. The

5.3

experiments reported were performed on a variety of minerals, under a

variety of conditions. The aim of these experiments was to determine values

of ¢ for particular minerals. (As used in this section, d is the
u H

friction angle determined from the sliding tests, with no requirements re-

garding surface roughness, although all of the minerals tested were macro-

gcopically smooth.) The results of the reported experiments, along with a

description of the testing conditions, will be presented and discussed,

and conclusions concerning P, for each mineral will be made.

One. of the purposes of this survey is to provide a basis for estimat-

ing Po values for rocks. It is thought that if values of 5, can be

established for the rock-forming minerals, then it might be possible to

predict ?, for rocks of known mineral content. Although a method for

making this prediction has not been developed. the first step is to invest-

igate ¢, for individual minerals.

Another purpose of this survey is to study the friction mechanism in
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minerals, to see which factors influence 9, and what effect these factors

have.

Examination of data from mineral sliding experiments reveals that,

for any particular mineral, a wide range in values of 2 has been measured.

Experiments have been performed with a variety of experimental set-ups,

and thus under a variety of test conditions. Test conditions, equipment-

related and otherwise, were observed to play an important role in the slid-

ing behavior of the minerals in these tests. In particular, mineral surface

conditions greatly influenced behavior. These surface conditions include

roughness, cleanliness, and the presence of moisture.

Data has been gathered from mineral sliding experiments for individual

minerals, with particular reference to surface roughness, surface cleaning

prior to test, surface moisture conditions, and the type of sliding test

employed. This information is presented in Tables 4~1 and 4-2. (A11 of

the data presented are from single mineral sliding tests; e.g., quartz

sliding against quartz, calcite sliding against calcite, etc.) Discussion

of the information in Tables 4-1 and 4-2 is divided into three mineral groups:

quartz, other massive structured minerals, and layer-lattice minerals.

- §

Quartz is the mineral which has been tested most extensively for slid-

ing behavior. Table 4-1 shows a wide range of values of %, which have

been obtained by various investigators. As an example of the two extremes,

a value of 8, = 38° was measured by Hardy and Doubleday (1922), while a

value of ¢, = 6° was measured by Tschebotarioff and Welch (1948). Both

of these tests were performed on dry surfaces, with at least one of the
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surfaces polished, although the type of test and surface cleaning were

different in, each case. This kind of sensitivity to surface conditions,

although to a lesser degree, is reflected in most of the data for quartz.

It is difficult to determine the exact causes of discrepancies between

values of ¢, measured by different investigators, because of the differ-

ence in testing techniques. Causes of variability in on can more readily

be distinguished within the tests performed by one particular investigator.

For example, Horn and Deere (1962) varied the surface moisture conditions

while holding other testing conditions constant. The results show an in-

crease in ¢, from 6 for oven-dry quartz to 27 for saturated quartz.

Bromwell (1966) and Dickey (1966) are the only investigators who

studied the effects of all three surface conditions, namely roughness,

cleanliness, and moisture. Their findings are best illustrated by the data

of Dickey (1966), as presented in Figure 4-3. For very smooth surfaces,

cleanliness is an important factor. Very smooth surfaces which are unclean

show a much lower 9 than clean ones. The presence of water has no effect

on very smooth, clean surfaces. However, if very smooth surfaces are un-

clean, then water causes an increase in 2, from the dry condition. For

very rough surfaces, neither the degree of cleanliness nor the presence

of water have a significant effect on ¢ . A value of d, = 25 is in-
{

dicated for all very rough surfaces. (The roughness corresponding to the

"very rough" condition in Fig. 4-3 was obtained by grinding the quartz

specimen with No. 120 grit on a diamond wheel. The values of "average

roughness" indicated in Fig. 4-3 represent the average deviation of the

surface roughness profile from a straight line.)

Other investigators (Tscheborarioff and Welch, 1948; Horn and Deere,
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1962) tested rough quartz surfaces, but it appears that the surfaces they

tested were not as rough as the "very rough" surfaces of Dickey (1966).

While no measurements of the roughness of natural quartz are available, it

seems reasonable to conclude that it is probably ‘very rough" and therefore

¢ = 23% for naturally occurring quartz.

Jther Massive Structured Minerals

Data on massive structured minerals, other than quartz, are quite

scarce. A few sliding tests have been performed on feldspar and calcite

(see Table 4-1), with a wide range of values reported. Feldspar shows

9, = 6% 37° and calcite shows 4, = 6% 34 0 apparently being sensitive

to surface conditions in the same way as quartz. In the tests reported by

Horn and Deere (1962) and Tscheborarioff and Welch (1948), both calcite and

feldspar show a higher value of in tests on saturated surfaces than

in tests on dry surfaces. This is the same effect observed by these invest-

igators with quartz.

There has not been sufficient investigation of the influence of all

surface conditions on the sliding behavior of either feldspar or calcite,

and therefore no conclusions can be made concerning the exact effect of

these conditions on ¢,

Layer-Lattice Minerals
Data on layer-lattice minerals are also quite scarce. Minerals which

have been investigated include chlorite, biotite, muscovite, phlogopite,

gteatite, talc, serpentine, and pyrophyllite (see Table 4-2).

In the experiments performed, the effect of surface moisture was the

only surface condition effect that was studied. For all of the layer-lattice
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minerals, a higher value of ¢, was measured in dry tests than in saturated

tests. This is the opposite of what was observed in tests on massive—-

structured minerals.

In general, the magnitude and range of 9, for the layer-lattice

minerals is less than that observed for massive-structured minerals. All

of the values for ¢, lie between § and 28 © except for serpentine, which

showed a maximum of 37 °

There is insufficient data on the layer-lattice minerals to fully

define the effect of surface conditions on their sliding behavior.

Conclusions

From this survey of mineral sliding tests, it is apparent that 2,

measured for a given mineral is dependent on the surface conditions under

which the mineral is tested. In particular, roughness, cleanliness, and

moisture are three important factors.

There has been a thorough investigation of the effects of all three

of these surface conditions for only one mineral, quartz. It was observed

that for very rough surfaces in quartz, corresponding to those believed to

‘ o i

occur in nature, %, = 25, independent of the cleanliness of the surface

and the presence of moisture.

For other minerals, the effects of all surface conditions have not

been determined. Only a wide range of P, for these minerals can be es-

tablished at present. Further research in this area needs to be done before

more definite conclusions can be drawn.
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4.4 SUMMARY

This chapter has examined various aspects of the friction submechan-

ism, which is a part of the sliding mechanism. Investigation of friction

through study of current theory has revealed that the mechanisms respons-—

ible for friction in rocks cannot be clearly determined. Information from

stick-slip experiments has provided insight into possible mechanisms and

important factors influencing stick-slip, but it has not given a clear

picture of the friction process. Information from sliding experiments on

minerals has pointed out the importance of a number of factors (especially

surface conditions) on the values of ?, measured, indicating that Py

for a given mineral can vary considerably under different sliding conditions.
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CHAPTER 5

THE SHEARING MECHANISM

The shearing mechanism was defined in Chapter 2 as being the mechan-

ism of shear resistance when intact material composing asperities on the

surface of the discontinuity is sheared through. This chapter examines

different methods for determining the shear resistance of a single asperity.

In the following three sections, three different methods with different

degrees of complexity are presented. The three methods are then compared,

and the implications of the results of the analyses are discussed with re-

gard to rock discontinuity shear.

5.1 ASPERITY DESCRIPTION

The shear resistance of a single asperity will depend on many factors,

including size and shape of the asperity, distribution of applied stresses

on the asperity, and the strength of the asperity material. Certain simp-

lifications are made with respect to the above-mentioned factors for the

analyses presented in this chapter, and these simplifications will now

be described.

The size and shape of asperities on the surface of a discontinuity

are controlled by such factors as the texture and mineralogy of the intact

rock and the process by which the discontinuity was created. Asperities

may be highly irregular in both size and shape. However, it is necessary
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to confine the analyses presented herein to a certain idealized shape.

This shape is a symetric wedge, whose cross-section is shown in Fig. 5-1la.

A plane strain condition is assumed, so that the wedge is infinitely long

in the direction perpendicular to the plane of the figure. The shape of

the asperity is completely defined by the inclination (i) of its faces.

(The size of the asperity, as defined by its face length in Fig. 5-la,

will be discussed in Section 5.5.)

The assumed applied stress conditions on the asperity are illustrated

in Fig. 5-1b. A uniform applied stress (q) acts over a certain distance

(B) on the left face of the asperity, with a certain inclination (a) from

the normal to the asperity face. The right face of the asperity is not

stressed.

This loading condition is based on consideration of how an asperity

on the surface of a discontinuity might be sheared. Figure 5-2 shows a

discontinuity with a single asperity in a direct shear test. Under appli-

cation of normal force (N) only, the two mating surfaces are in full con-

tact (Fig. 5-2a). As the shear force (S) is applied, there will be elastic

deformation and possibly a small amount of sliding, with the result that

there will probably be no contact between the two surfaces at the right

face of the asperity (Fig. 5-2b). If N is large enough to prohibit dila-

tion by sliding on the asperity surface, the asperity will be sheared (Fig.

5-2¢). (The exact nature of this shear failure will be treated in the

following sections of this chapter.) Therefore, the assumption made here

is that, at failure, the asperity is only loaded on one face. An addition-

al assumption made is that the applied loading causing failure of the as-

perity is a uniform stress on the asperity face. A simplifying assumption
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is made because the actual distribution of applied stresses is not known.

Referring again to Fig. 5-1, a normal direction and a shear direction

will now be defined with respect to the asperity. The normal direction

is the direction parallel to the centerline of the asperity. The shear

direction is perpendicular to the normal direction (and is parallel to

the base of the asperity in Fig. 5-la). The uniform applied stress (q)

has a resultant force (Q) which has a component (N) in the normal direction

and a component (S) in the shear direction, as illustrated in Fig. 5-2b.

Q=q8B

N=Qecos(i+a)

S=Qsin(i+a)

(Note that forces such as N, S and Q used in this chapter are in units of

force per unit length perpendicular to the plane of the figures.) The

normal component (n) and the shear component (s) of the uniform applied

stress (q) are given by

0

=

N
n

3
r

=qcos( i+ a)

=q sin( i + a)

(:.1)

(5-2)

From which

s =n tan( 1 + a) (5.3)

Ihe material composing the asperity is assumed to be weightless and

CO follow the Coulomb failure criterion, which is given by

=c, + O tan ¢
i

(2.4)

where c i is the cohesion and ¢ 5 is the angle of internal friction of the

intact material.
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The following three sections present different methods of calculating

asperity shear resistance, based on the above-described asperity shape,

loading conditions, and material properties. In each section, a method

for determining q as a function of @&amp; , i, Css and ¢ i will be developed.

From this value of q and the associated value of 0 , the quantities n and

s can be calculated from eqs. 5.1 and 5.2. These values of n and s will

then be used in Section 5.5 to compare the three methods to each other.

5.2 BASE SHEAR

The simplest method of calculating asperity shear resistance is to

assume a planar failure surface through the asperity which is parallel

to the shear direction. (As defined in Section 5.1, the shear direction

is the direction perpendicular to the centerline of the asperity.) This

type of failure surface is illustrated in Fig. 5-3a, and is referred to as

base shear. As drawn in the figure, the failure plane begins at the lower

boundary of the applied stress (q). Actually, every plane which is parallel

to and above the one drawn is a failure plane as well, but the selection

of any failure plane among these does not affect the results of the

analysis.

In order to calculate the maximum allowable q that the asperity can

resist, a limiting equilibrium approach is used. The tip of the asperity,

bounded by the assumed failure plane, is shown in Fig. 5-3b. Q is the

resultant force of the applied stress q (Q = qB), and 0(x) and T(x)

represent the distribution of normal and shear stresses along the failure

plane.

From equilibrium in the y - direction,
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2

| g(x) dx
0

(Forces such as Q, N and S, have units of force per unit length.)

(5.5)

From equilibrium in the x - direction,

Qsin(i+a)=
L

T(x) dx
0

(5.6)

It is assumed that full shearing resistance is mobilized along the entire

failure plane, such that

T(x) = cy + o(x) tan

fquations 5.6 and 5.7 combine to give
L

Q sin( i +a) = [1 cy + o(x) tan ¢.} dx
2

2 + tan ¢; i o(x) dx

‘5.

Using eq. 5.5,

Q sin( 1 +a) = cL + tan ¢; Q cos( i+ a) (5.8)

Noting that 2 = 2B cos i and that Q = qB, eq. 5.8 can be simplified and

rearranged to give

 &gt;|
2 cos 1 Cy

sin(i + ao) - cos(i + a) tan os

5. 3)

Combining eq. 5.9 with egs. 5.1 and 5.3 produces

s =2cos ic, +n tan d. (5.10)

From eq. 5.10, it is seen that s is a unique function of i, Css Ty and $y

In physical terms, the shear resistance of the asperity depends thus only

on the normal stress acting on the asperity, the inclination of the

asperity, and the strength of the asperity material. With the base

shear method, shear resistance (s) can be expressed in eq. 5.10 without

explicitly involving a. In the following two methods to be

presented, an analytic relationship between s and n
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cannot be developed without explicitly involving o. This will be apparent

when the other two methods are presented in the following two sections.

The simplicity of the base shear method, as indicated by eq. 5.10,

is the direct result of choosing a planar failure surface which is parallel

to the shear direction. The shear component of the applied stress does

not generate any frictional resistance on the failure plane, only the

normal component does. This results in a simple dependence of s on n.

The assumption of a Coulomb failure criterion also plays an important

role in the simplicity of this method (as well as the other methods). Be-

cause the dependence of shear stress on normal stress is linear, the

distribution of normal stresses on the failure plane need not be known,

only the resultant normal force on the failure plane.

The base shear method described above is the same method used by

Ladanyi and Archambault (1970) for describing the component due to asperity

shear in the development of their shear equation (see Section 3.2). They

assumed that the component of resistance due to shearing of asperities (5,)

was given by

~
"

£5 (3.5)

That is, the shear resistance is equal to the shear area of the asperities

multiplied by the specific shear strength of the intact material.

(However, Ladanyi and Archambault use a different relationship for T, than

that used in this section.)

5.3 PLANE SHEAR

The base shear method assumes a planar failure surface which is

parallel to the shear direction. Another approach to the problem is to
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again assume a planar failure surface, but one which is not required to be

parallel to the asperity base. In this method, the plane shear method,

the failure surface is allowed to take any inclination which results in a

minimum value of q at failure. The plane shear method always results in a

value of q which is equal to or less than that obtained by the base shear

method, and the base shear method becomes thus a special case of the plane

shear method.

Figure 5-4 illustrates the failure surface for the plane shear method.

The inclination of this surface is defined by the angle 6 . From Fig. 5-4

and equilibrium in the y - direction:

From

Qcos(a +06) =

equilibrium in the x - direction:

Q sin(a +0) =

f
I,

g(x) dx

T(x) dx

(: §!© 3)

(5.11)

The resistance along the failure plane is assumed to be fully mobilized,

so that eq. 5.7, 5.10, and 5.11 can be combined in the same way as for the

base shear method to produce:

Q sin( 6 +a) = c.f 4 tan  Qo 0 cos( 0 i J 4 (5.72)

From Fig. 5-4Db,

2 sin Y B ___ sinYy

sin(180 - vy = 6) sin(y +0)

L
(5.73)

where Y = 180°~ 2i, because of asperity symetry

Noting that Q = q B and using eq. 5.13, eq. 5.12 can be put into the

following form:

1
snYY00t

sin( 0+ Y) sin( 6+ a) - cos( 6+ a) tan 4

C

(2.14)
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It is convenient to now define a new quantity N_» where

SO chat

\ q
~

N = sin Y
Cc sin( 6+) sin( 0+a) - cos(0+0) tan 0.

i

(Z.15)

To determine the value of 6 for which q is a minimum, eq. 5.15 can be

minimized with respect to 6 , for which

8 =90+ (¢,-v -0 )/2

0 = 4(¢,+ 24 - o

by noting that y = 180-2i. Equation 5.16 can now be substituted into

(5.16)

aq. 5.15 with the following result:

(5.17)

N =—sin2i — —

« sin %( a+2i- $.) sin %( o+2i+ $,;) - cos %(O0+2it+ ¢.) tan $i i

Thus, N, can be calculated from given values of i, ©, and ? (From Fig.

5-4, © cannot be negative. Therefore, eq. 5.17 is only valid for combina-

tions of oa, i, and ¢ for which © is positive in eq. 5.16.) Since

 qd =N, c,;, eqs. 5.1 and 5.2 can be written in the form

n=N c¢, cos(i+0)
C 1

(2.18)

 Ss N, Cc; gsin( 1 +0 ) (5.19)

It is not possible to express s directly in terms of i, cys D and ¢
1

 in the plane shear method as was done in the base shear method. However,
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for any given combination of i, QO, co and 5 n and s can be calculated

using eqs. 5.17 - 5.19.

From eq. 5.16, it is apparent that when ¢; is greater than i, the

distance A in Fig. 5-4a is larger than the distance B, which has practical

significance in situations where the distance A required by this method is

greater than the length of the asperity face. (Asperity face length is

illustrated in Fig. 5-1a.) The ratio of : , defined as R, will be used

as an indicator of the applicability of the plane shear method when

available asperity face length is considered. From Fig. 5-4

hal

a —

B
16 ~ sin( 180°-7Y - 6)x

w

Combining this equation with eq. 5.16, and simplifying,

n sin} ( ¢, + 21-0)

5 sink (- ¢, + 2i +a)
R

’-

\ “ 20)

Thus, R is greater than 1 if ¢. &gt; a. The importance of R in the

interpretation and comparison of the plane shear method will be discussed

in Section 5.5.

The plane shear method is somewhat more complex than the base shear

method, but it results in a value of shear resistance which is more

"eorrect" because it does not restrict the inclination of the failure

plane. However, both the base shear method and the plane shear method

are inexact, in that they do not agree with a more rigorous analysis using

plasticity theory. Plasticity theory predicts a curvi-linear failure
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surface which yields a lower value of shear resistance than both the base

and the plane shear method. The method of analysis which employs plasticity

theory is presented in the next section.

5.4 ZONE SHEAR

A third method of determining asperity shear resistance, herein refer-

red to as the zone shear method, does not assume a planar failure surface,

but instead assumes zones of shear failure by employing a more rigorous

approach based on plasticity theory. When the load q is applied to the

asperity (see Fig. 5-5), three different zones develop. All of the points

in these zones are in a state of limiting equilibrium, or "failure". The

problem consists of determining the maximum allowable states of stress in

these zones from which the maximum allowable value of q is determined.

This is the same approach used by Prandtl (1920) in his solution to the

indentation problem in a frictional, weightless material, which was later

applied to the bearing capacity of footings by Terzaghi (1925). The problem

{llustrated in Fig. 5-5 is analogous to a bearing capacity problem at the top

of a slope, with an inclined loading. Sokolovskii (1965) and Brinch Hansen

(1960) treat a number of problems similar to this, using plasticity theory

in a frictional material, but do not present a solution to this problem.

Meyerhof (1951,53) outlines a method of solving the problem of inclined

loading at the top of a slope, however, the published results of his analy-

sis are not in a form which can be directly applied to the asperity shear

problem. Therefore, the solution will be developed in this section.

The approach used here is one where failure zones (i.e., zones where

all points are in a state of limiting equilibrium) are " pieced" together
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to form a failure mechanism which satisfies static equilibrium throughout

the region of the solution, and also conforms to external boundary condi-

tions. A truly rigorous solution would also account for the kinematics

of the problem, which require that the velocity conditions are consistent

throughout the region of the solution. That has not been done here. How-

ever, Hill (1950) developed an "oaxact" solution to Prandtl's indentation

problem which considered both statics and kinematics, and found that his

solution yielded the same value for ultimate load as did Prandtl's solution.

Therefore, it is believed that the solution presented here for an asperity

is "exact", in spite of the fact that kinematics are not considered.

(Note that this solution is exact only for a weightless material. For an

asperity composed of rock, the effects of weight are neglible.)

The solution is developed in the following way. Referring to Fig.

5-5, there are three different zones of failure developed in the asperity,

labelled zones I, II, and III.

7one I, immediately below the loaded area on the asperity, is a re-

gion of uniform stress. All points in this zone have the same stress

state, the Mohr's circle for which is drawn in Fig. 5-6. There are two

sets of straight slip lines in zone I, as shown in Fig. 5-5b.

zone III, on the unloaded side of the asperity, is also a region of

uniform stress. The Mohr's circle for this zome is also drawn in Fig. 5-6.

This zone also has two sets of straight slip lines, as shown in Fig. 5-5b.

7one II is a region of non-uniform stress. It is known as the

radial shear zone, or the transition zone (providing a transition of the

stress state in zone I to that in zone III). All points along any single

radial line (a line passing through point 0 in Fig. 5-5b) have the same
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stress state, but the stress state is continuously changing in any non-

radial direction. The Mohr's circles for points in zone II, if drawn,

sould be a series of circles lying inbetween the circles for zone I and

zone III in Fig. 5-6. The slip lines in zone II, shown in Fig. 5-5b, are

a set of radial lines and a set of logarithmic spirals.

Figure 5-5b indicates the stresses acting on the boundaries of the

three zones. By determining O . and T for the limiting condition, the

maximum allowable q can be determined.

J = gqcosa

L = gq sinO

and
- = J tan O 5 | z1)

From Mohr's circle for zone I (see Fig. 5-6):

and 0

 2
cos(180°+ ¢ i 2V ) cos ;

(5,&lt;2)

=0 + T tan $ ; F T tan(180° + ¢ 29) (5.23)

where § is the angle formed by planes OA and OB in zone I in Figure 5-5.

0 and T lie on the failure envelope, and are therefore related by
 Zl

r =c¢. +0 tan ¢,
i 2 1Zz

(5.24)

r and T are the shear stresses acting on the radial boundaries of
2 3

zone II, and can be shown (Prandtl, 1920) to be related by

= T , exp(20 tan ¢ 3)

where © is the angle formed by zone II, between planes OB and oC.

{Z.25)

From Fig. 5-b5a,

IY

V +0 + (90- ¢ 1/2 + 2i = 180°

9 =135"-2i - ¢Y + ./2 (5.2¢ Fy
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From Mohr's circle for zone III (see Fig. 5-6):

and

2
— = 0 + T tan¢

cos ¢ 3 ’ :

y c. to tan ¢

(3.27)

(5.28)

Equations 5.27 and 5.28 can be combined to give:

=c;(1+sin ¢ ,) 1% =,~9)

Equations 5.22, 5.25, and 5,28 can now be combined to give:

cos(180° + ¢ 1” 2y ) c, (1 + sin ¢ .) exp(26 tan ¢ i)
ll (5.30)

cos ©

where 0 is given by eq. 5.26. In order to solve for T, , the quantities

Coo ¢ 5 i, and ¥ must be known. While cso ¢ 5° and i (as well as o )

are a part of the problem definition, J must be calculated from the quan-

tities @ , i and ¢ 5 This can be done by combining eqs. 5.21, 5.22, 5.23,

5.24, 5.25, and 5.29 to give:

(3.31)

. (1-sin $,)
axp (26 tan $,) [sin(20-0,) + sin 6, + cos(2y-¢,) cot a) ~ Teindb5,=0

where again 0 is given by eq. 5-26. The solution of eq. 5.31, for given

values of oo , i and ¢ 1° will give a value of { which can then be used

in eq. 5.30 to calculate T .

From T , q can be calculated:

J
4.

3.0 Ol
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. =0s(130 + ¢ 17 2W c;(1 + sin 9) exp(26 tan ¢ 5)
sino cos ¢ .

MT

Vr‘ee€

N.

|

cos (180° + $4 -2¢9) (1 + sin¢ ;) exp(26 tan ¢ 4)

sino cos ¢

rE—— (5 72)

Equations 5.18 and 5.19 can be used to calculate n and s, as with the

plane shear method, but using the N, just developed for this method.

The zone shear method is not applicable for all combinations of i, «

and ¢ i With some combinations, the value of J obtained from eq. 5.31

will indicate that ¥ +(90'-¢ )/2 + 2i &gt;180" , or that

8 +(90° -$,)/2 + 21 &gt; 180° , both of which represent a physically impossible

configuration (see Fig. 5-5). In effect, the asperity apex angle (yy) is

not large enough to accomodate the shear zones required for this method.

An "overlap" of zones occurs, causing Y and/or 6 to be negative. There-

fore, any solution using the zone shear method where { or 0 are nega-

tive .is physically impossible, and thus not admissible.

As with the plane shear method, the distance from the tip of the as-

perity to the point of emergence of the failure surface on the unloaded

face of the asperity can be calculated. From Fig. 5-5

3 A - 0D.

BAR

From zone 1

, P)
- in(90°+ ¢ 4® )sin(90 - ¢ :

wo (3 33)
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From the logarithmic spiral

from

OC = OB exp( 6 tan ¢ 1/

zone C11

mm _ oC

3in (90° + ¢ 4) sin %(90°- ,)

(7.24)

“7 35) A a

Equations 5.33 - 5.35 can be combined to give

Q
— cos( ¢.- PY)
2. = —————F——  exp( 0 tan ¢ 3)

OA sin %(90"-¢ i)
(~ 36)£

The importance of R will be discussed in the next section.

5.5 COMPARISON OF METHODS

In the preceding sections, three different methods for determining

the shear resistance of an idealized asperity were presented. Each of

these three methods makes a different assumption concerning the failure

mechanism in the asperity, and each gives a different result. These three

methods will now be compared. Differences will be pointed out, and the

implications of these differences for asperity shear on rock discontinuities

will be discussed.

The basis of comparison for the three methods is the relationship

between n and s (as defined in Section 5.1) for an asperity of given in-

clination (i) and angle of internal friction ( ¢.). Methods of calculating

s and n for given values of i, Css and ¢ ; were presented in the three

preceding sections. Since n and s are linear functions of Cs» it is

convienient to normalize n and s by dividing them by Ce The methods can
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then be compared through plots of s/c VS. n/c, for various combinations

of i and ¢ i Figure 5-7 presents a plot of s/c; vs. n/c, for i = 15°

and ¢ PE 30° . Three curves are presented, labelled plane shear, base

shear, and zone shear. The base shear curve was obtained directly from

eq. 5.10. The plane shear curve was obtained by calculating N. for various

values of a (given 1 and ¢ i) using eq. 5.17. Then eqs. 5.18 and 5.19

were used to calculate n/c, and s/c yielding different points on the

curve. The zone shear curve was obtained by calculating N, for various

values of o (given i and ¢ { using eq. 5.32. Then eqs. 5.33 and 5.34

were used to calculate n/c, and s/c, in the same way as for the plane

shear method.

The curves in Fig. 5-7 indicate that, for each method, s/c. is a

unique function of i, ¢ i and n/c, . Each point on the curves also has a

value of o associated with it. By noting that

2 = tan( 1 + a)

it is seen that the angle formed by the n/c, axis and a line from the

origin to the point in question is equal to 0 + i. The angles i and ©

are shown on Fig. 5-7. In this way, the angle O associated with each

point of the curves is apparent.

The base shear method yields the highest values of s/c, for any n/c,

The zone shear method yields the lowest values, while the plane shear

method yields intermediate values. The base shear method is an upper limit

solution to the problem, while the zone shear method is exact (within the

assumptions specified in Section 5-1). The zone shear method does not

apply to all combinations of i, O , and ¢ T due to limitations of geome-

cry on the development of shear zones, as mentioned in Section 5.4. For
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this reason, the zone shear method only applies to limited range of n/c;

for — i . s ©example, see Fig. 5-9. This limited range depends on i and ¢ ; as

well as n/c, and therefore the range is different for other figures which

Follow. (The plane shear method is also not valid for all combinations of

oa , 1iand ¢ 1° as pointed out in Section 5.3, and therefore is also not

defined for all values of n/c, in some of the figures which follow.)

Plots of s/c, VS. n/c, have been prepared for all combinations of

i = 15°, 30°, 45°and ¢ 1° 20°, 30°, 40°. These are presented in Figs.

5-7 through 5-15. In all of the plots, the three curves lie close together

for low values of n/c, but they diverge considerably as n/c, increases.

For given values of ¢ 1° the divergence of the curves increases with

increasing i. For given values of i, the divergence of the curves increases

with decreasing ¢ 1° In more physical terms, the difference between the

three different shear methods is greater for steep asperities and low

internal friction angles than it is for low-angle asperities and high in-

ternal friction angles.

An important difference in the three methods occurs at high values

of n/c. For both the zone and plane shear methods, there is a "maximum

allowable" value of n/c, i.e., n/c, has a finite value for s/c = QO.

(It is not shown on all figures due to the scale chosen.) This means

that under normal stress alone, the asperity can fail, as in a crushing

action or a bearing capacity type failure. In contrast, the base shear

method indicates steadily increasing shear resistance with increasing

normal stress.

Some restriction in the region of the s/c vs. n/c, plots can be

made by considering possible values of oo in the problem, where [6A
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represents the inclination from the normal of the applied load q which

causes asperity failure. The applied stress q will be applied to any given

asperity by asperities on the opposite wall of the discontinuity. The

forces transmitted by asperity-to-asperity contact will be limited by the

frictional characteristics of the material. This means that o cannot be

greater than o) for the material, because sliding occurs if o &gt; ?,

Therefore, if a line with inclination i is drawn on an s/c, vs. n/c, plot

through the origin, the only applicable region of the plot is bounded by

the lines with inclination i + % and 1 - ) , as shown schematically

in Fig. 5-16. This restriction can be significant for low values of 9, (20°)

but high values of ¢ - (45°) do little to restrict the area of the plot.

Evaluation of Shear Mechanisms for an IndividualAsperity

The three methods presented indicate two major limits to the shear

resistance of a single asperity. The base shear method yields an upper

limit, while the zone shear method yields a lower limit. The zone shear

method is considered "exact", i.e. the method which gives the correct an-

swer, within the assumptions set forth for all of the methods. However,

there is an important limitation to the zone shear method which, in some

cases, makes it incorrect to use. This limitation will now be discussed.

In the analyses made thus far, no consideration of the size of as-

perities has been made by specifying base length or height. In some sit-

uations the failure mechanism assumed by the zone and plane shear method

ig incompatible with asperity geometry, as illustrated in Fig. 5-17a.

In this situation, the failure surface assumed by the plane and zone shear

methods terminates within the intact material below the surface of the
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discontinuity, while the failure surface for the base shear method does

not. For an asperity loaded along its entire face, as shown in Fig. 5-17a,

this incompatibility of failure mechanism with asperity geometry will

arise whenever R (= A ) is greater than 1. If the asperity is not loaded

along its entire face, then R can be greater than 1, the exact value de-

pending on the ratio of loaded length to face length.

In cases where identical asperities on opposing surfaces of discon-

tinuities bear against each other, failure surfaces could develop in both

asperities, as illustrated in Fig. 5-17b. In this case, a failure mechan-

ism with R &lt; 2 would be compatible with asperity geometry.

In any case, the applicability of the zone and plane shear methods

must be evaluated with consideration of the associated value of R, to

determine if the failure mechanism is compatible with asperity geometry.

In Figs. 5-7 through 5-15, the points on the zone and plane shear curves

where R = 1 and R = 2 have been indicated. (Note that, by definition, R = x

for the entire base shear curves.) For both the zone and plane shear

curves, R changes continuously along the curves, increasing with increasing

n/c,- In all of the plots, R &gt; 1 for n/c; &gt; 5, so that the greater portion

of the curves shown represent points for which R &gt; 1. This has important

implications. For example, if the zone shear method is applied to an as-

perity which is loaded along its entire face, and the method indicates

that R &gt; 1, the actual failure surface will be different from that assumed

in the analysis. This will result in an underprediction of the actual

asperity shear resistance. An analysis which accounts for the actual

asperity geometry in this case would provide a value of shear resistance

which would lie somewhere inbetween the zone shear method and the base
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shear method.

In summary, the base shear method provides an upper limit to asperity

shear resistance which is always compatible with asperity geometry (for

symetric asperities). The zone shear method provides a lower limit to

asperity shear resistance which yields the exact value in some cases and a

value which is too low in other cases. To determine whether the zone shear

method is exact or too low, a comparison of the distance A required and the

distance A available must be made.

It should be noted that there is physical evidence to support the

type of shearing mechanism used in the zone shear method. Curved failure

surfaces on both sides of the discontinuity, as suggested in Fig. 5-17b,

have been observed on slicken-sided (previously sheared) discontinuities

in rock. In addition, Archambault (1972, pp. 66,82) shows photographs of

direct shear tests on model discontinuities with interlocking, identical

asperities which show failure surfaces quite similar to those shown in

Fig. 5-17b.

Further understanding of individual asperity shear related to dis-

continuity shear may be obtained by considering the behavior of discontin-

uities at very high normal stresses. It has been established by a number

of researchers that the failure envelope of a discontinuity in rock ap-

proaches and possibly joins the failure envelope for the intact rock at a

very high normal stress, defined as the transition stress ( a, ). This

means that as © approaches Or » individual asperity shear analysis

will no longer be valid for predicting shear resistance.
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5.6 CONCLUSIONS AND DISCUSSION

The base shear method and zone shear method have been shown to repre-

sent upper and lower limits, respectively, of asperity shear resistance.

The region of the plots of s/c, vs. n/c, in which all methods describing

asperity shear resistance are physically possible is defined by -Pu° a &lt;+¢p

as illustrated in Fig. 5-16, with certain exceptions as described below.

A

Actual asperity shear resistance will be correctly given by the zone shear

method, because it is an exact solution to the problem, except in cases

where two important limitations affect the method. One limitation is that

the zone shear method is only defined over limited ranges of n/c, due to

asperity geometry which prevents development of the required shear zones.

The other limitation is caused by insufficient asperity face length (as

determined through the quantity R) which makes the assumed failure surface

incompatible with actual asperity geometry. These two limitations further

restrict the region of the s/c, vs. n/c, plots for which the zone shear

method yields the correct result. Outside of this region, the zone shear

method will yield a value of asperity shear resistance which is too low,

as the value of actual asperity shear resistance will tend towards the

base shear value because the base shear method does not suffer from these

limitations.

The practical effect of using either the base shear method or the

zone shear method in any particular case will depend on whether the zone

shear method is physically possible (i.e., not affected by the above two

limitations). If zone shear is possible, then the zone shear method is

correct, and the base shear method will overpredict asperity shear resis-

tance. If zone shear is not possible, then use of the zone shear method
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will underpredict asperity shear resistance.

The fact that the base shear method will yield a value of asperity

shear resistance which is too large has important implications for theoret-

ical considerations of discontinuity shear resistance. An overprediction

of discontinuity shear resistance will result when the base shear method

ig used to predict asperity shear resistance, as in cases where asperity

shear resistance is obtained by multiplying shear area by specific shear

strength. For example, Ladanyi and Archambault (1970) use this method to

evaluate the shearing component 5, in the development of their shear equa-

tion.

An overprediction of asperity shear resistance can also have an in-

direct effect on predicted discontinuity shear resistance because of dila-

tion. An overprediction of asperity shear strength will cause an over-—

prediction of the discontinuity dilation in cases where there is some slid-

ing on asperities before shearing of asperities occurs. The asperities

will actually be sheared "sooner" because their resistance is less than

expected. This would be important if the normal stress on the discontinuity

is dependent on normal displacement (dilation), in confined situations such

as discontinuities around underground openings. In this case, the pre-

dicted normal stress at peak resistance would be greater than the actual

normal stress at peak resistance, and a further overprediction of shear

resistance would result.

A final comment on the implications of the results contained in

this chapter is concerned with the dependence of asperity shear resistance

on normal stress. From Figs. 5-7 through 5-15, it is apparent that shear

resistance has a linear dependence on normal stress for the base shear
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method, and a non-linear dependence on normal stress for the zone shear

method. If the actual dependence of shear resistance on normal stress is

non-linear, then the distribution of normal stresses on a discontinuity

becomes increasingly important. Simplifications with respect to the

distribution of normal stresses (e.g., assuming a uniform normal stress)

when analyzing the results of direct shear tests or field observations

may lead to erroneous conclusions regarding asperity shear resistance.
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CHAPTER 6

MODELLING THE SHEARING OF DISCONTINUITIES

In the preceding two chapters, the two basic mechanisms of shear

resistance in rock discontinuities were examined: the sliding mechanism

and the shearing mechanism. In general, these two mechanisms take place

simultaneously on different portions of a discontinuity to provide shear

resistance. This chapter considers how the simultaneous occurrence of

both shearing and sliding can be modelled for an irregular discontinuity.

6.1 DEVELOPMENT OF A DISCONTINUITY SHEAR EQUATION

This section presents the development of an analytical model which

describes the shear resistance of rock discontinuities. As will be shown,

the shear resistance can be described in a consistent manner only if it is

related to the shear displacement. Analytic relationships describing the

resistance due to the sliding mechanism and due to the shearing mechanism

have been developed in previous chapters and will be recalled shortly.

They will be briefly discussed separately, and then combined to obtain a

relationship which accounts for both sliding and shearing.

Shear resistance due to sliding on inclined surfaces was discussed

in Section 2.2, and can be expressed by

4

.

x

= N tan(i + 6. )

Jhere

~

ay = ghear resistance due to sliding
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N. = normal force which generates sliding
resistance

dilation angle, the angle representing
deviation of sliding direction from
shear direction

friction angle for sliding on a flat
surface

Equation 6.1 is equivalent to eq. 2.1 except that the notation has been

*

changed. (s_ replaces S, N. replaces N, and i replaces i.) This re-

lationship accounts for resistance due to friction as well as dilation.

Shear resistance due to the shearing of asperities was discussed in

Chapter 5, where different relationships representing different failure

mechanisms were presented. When an assumption of base shear is made,

shear resistance can be expressed by

whe. a WR

S =c¢,A +N tand
' 1 Ta S

Sg = ghear resistance due to shearing of
asperities

Ng = normal force acting on the asperities
being sheared

A = shear area

["6.2

Cy = cohesion of the intact material

oq = angle of internal friction of the
intact material

Equation 6.2 is the same as eq. 5.12, except that Al replaces 2 , N_

replaces Q cos(i + a ), and S, replaces Q sin(i + oo ). (While the in-

accuracies of the base shear assumption have been pointed out in Chapter

5. it is used here for simplicity in the formulation of the general shear

equation which follows.)

Equation 6.2 was developed from consideration of statics, and does

not account for possible dilation which may occur during shear. An
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additional component of Sg is required when dilation against the normal

force (N) is considered. This component is equal to the force required

to do the work against Ng during dilation, as shown in Fig. 6-1, and is
#

equal to N_ tan i . (This component is equal to the component Sq of

Ladanyi and Archambault (1970), see Section 3.2.) The component can be

added directly to eq. 6.2, resulting in
*

S =c, A +N tan ¢, +N tan i
= is Ss i s

YY S|
*

=c; A_+ N_(tan ¢, + tan 1) 6.3"

Thus, eqs. 6.1 and 6.3 account for resistance due to sliding and

shearing, respectively, and both include the effects of dilation. Now

the two equations can be combined to account for each of them occuring

over different portions of the discontinuity at the same time.

The total shear resistance on a discontinuity (S) is the sum of

sliding resistance (s.) and shearing resistance (5) i.e.,

S =
’

» -y S ( 4)

Using eqs. 6.1 and 6.3 with eq. 6.4

* “

S = N_ tan(¢, + 1 ) +c, A + N_(tan ¢ ;+tan i J (c » 3)

* *

(Both quantities of S. and Sg depend on i , and i is identical for both

S_ and Sg for a rigid discontinuity.)

The total normal force acting on the discontinuity (N) is the sum

of the normal force acting on sliding portions (N.) and the normal force

acting on shearing portions (ND), i.e.,

N = N +N
s

"ALE )
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Figure 6-1 Derivation of shear force component due to dilation
against normal force.
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It is now necessary to make an assumption concerning the relative propor-

tion of N_ and N_ to N. The actual distribution of normal force over the

discontinuity is probably quite irregular in many cases. This distribution

will depend on the surface geometry of both walls of the discontinuity, as

well as the deformability of the intact material. To attempt to determine

this distribution in a theoretical way would be very difficult and would

not remove the uncertainities in the problem. In addition, there is no

experimental information on this subject. Therefore, a simplifying

assumption is made with respect to this distribution, where N_ and N_ are

aportioned to N according to the areas on which they act:

fm, A
N 6. 7)

-
wn

whe 2

AgHow eee
S A +A

= S

a, = grea of the discontinuity where
sliding takes place

A
o

= area of the discontinuity where

shearing of asperities takes place

"6 «x2)

(Note that these conditions will be satisfied if the distribution of

normal force is uniform over A, a3 A.)

In some cases, Al + A = A, such as the case of a tightly interlock-

ing discontinuity. More generally however, Al + A # A. In other words,

some areas of the discontinuity are neither sliding nor shearing, i.e.,

not in contact.
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It is convenient to define the contact area ratio (a) as

3

0 + A_
td (- q -

. 0 7

In addition, the shear area ratio (a) is defined as

~ (6.20)

so that eqs. 6.7 and 6.8 can be written in the following form:

[1-2]| a,
N

N =—=N
 Ss a

1

(6.11)

(6.12)

Equation 6.5 can be combined with eqs. 6.11 and 6.12 to give

a k
S ®

- 1 -— jtan(¢ +i) +c,
8. Mo XL

“4

4

2

®

o (tan ¢; + tan i)

(6.13)

where 0 = N/A. Equation 6.13 represents a relationship describing the

shear resistance (Tt ) which accounts for sliding and shearing taking place

at the same time on different portions of a discontinuity, properly

accounting for the effects of dilation. The equation requires a number

*

of parameters: , , Cys ¢ss i, a_, and a. The parameters ¢, &gt; Cs»

and $y are relatively straightforward to evaluate. They are properties

of the intact material and can be evaluated from sliding tests and strength

*

tests on the intact material. The parameters i , a and a, are much more
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difficult to evaluate, and they will now be discussed in detail.

%

The parameters i and a_ are closely related to each other, as will

be illustrated in Fig. 6-2. Figure 6-2a represents a portion of a discon-

tinuity which is initially fully interlocked. (However, the comments

which follow could be applied to a partially interlocked discontinuity

as well.) If the discontinuity is "sheared" or ‘displaced through a certain

horizontal increment ( Au) and no shearing through of asperities occurs

(ag = 0), then sliding takes place on the most steeply inclined asperities,

as in Fig. 6-2b. Thus, when a_ = 0, = i , where i is the inclination

of the steepest asperities. For the case where there is only one steepest

asperity on the discontinuity, sliding will take place on that steepest

asperity alone only if there is no rotation of one of the discontinuity

walls. If there is rotation, it is possible for sliding to take place

on the steepest asperity and another less steep asperity.

For this case of no shearing, iF is only dependent on the surface

geometry of the discontinuity and the displacement of the discontinuity.

(As displacement increases, asperities are overridden, the discontinuity

contracts, and new asperities are contacted and slid upon.)

In the more general case, some of the asperities shear through.

Figure 6-2c illustrates the case of i" a i , where i&lt; 1 , for which

a # 0. The two asperities with inclination 1 are sheared in this case,

while sliding takes place on the asperity with inclination i, . Figure

6-2d illustrates the case of ir = i, , Where i &lt; i . All asperities

with inclinations greater than i, are sheared through, and sliding takes

place on the asperity with inclination i, . Therefore, it is apparent

that the number of asperities sheared (and thus a.) is dependent on the
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#® ®
direction of displacement as given by i . As i decreases, a increases,

x &amp;
and as i increases, a_ decreases.

Sx ° ’ ° »

Clearly, a depends on i ¢ On a discontinuity where there are many

contacting asperities with different inclinations, any particular direction

of displacement will cause sliding or shearing on the various asperities.

The total shear resistance of the discontinuity in that direction is the

sum of the resistances provided by its asperities for displacement in

that direction. Of all the possible directions of displacement, sliding

actually takes place only in the direction of least resistance, and that

* *
is 1 . For this value of i , there is an associated value of a.

From the above discussion, it is apparent that all of the parameters

which influence the resistance due to sliding or shearing also influence

the dilation angle i"), and in turn, the shear area ratio (a). These

parameters include O, $ A Cy» and ¢ i The effect of 0 was clearly

shown by Patton (1966), as discussed in Section 2.2, where low 0 favors

sliding and high O favors shearing. The effects of the other parameters

are not as clearly defined. However, in general, it is expected that high

values of i and ¢, and low values of cy and ¢ i will favor shearing,

while low values of i and ?, and high values of Cc; and ¢ i will favor

gliding. Because these parameters affect the relative amounts of sliding

and shearing which takes place, they will also affect i and a_.

Use of eq. 6.13 requires the evaluation of its parameters at the

particular "moment" that a value of T is desired. Because T varies with

shear displacement (see Fig. 2-2, for example), that "moment" corresponds

ro a value of displacement. If it is desired to predict T at its peak

value, ( Ts then the required parameters must be evaluated at the
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displacement corresponding to T " Peak shear resistance for some dis-

continuities may occur at virtually no displacement, such as for tightly

interlocked discontinuities. In general, however, some displacement of

the discontinuity is likely to take place before peak resistance is reached.

This means that there will be some sliding and/or shearing prior to peak

resistance. This is likely to be true for discontinuities which are ini-

tially only partly interlocked, such as the discontinuity illustrated in

Fig. 6-3. For this discontinuity, peak resistance does not occur immediately

(Fig. 6-3a), but after some displacement takes place (Fig. 6-3b).

If Ty occurs after a certain amount of displacement, then the para-

meters required in eq. 6.13 must be evaluated at that displacement. Since

*

i and a change with displacement, their evaluation is a difficult task.
%

As a discontinuity undergoes displacement, i and a_ are continuously

changing as asperities make and break contact, and as the surface geometry

of the discontinuity changes due to asperity shearing. Figure 6-3 provides

an example of how i* and Ag change as the discontinuity is displaced.

Evaluation of the parameters it and a_ clearly requires that the

displacements of the discontinuity during shear be considered. Proper

modelling of the different mechanisms of shear resistance requires con-

sideration of the relationship between resistance and displacement. Resis-

tance can be expressed through the parameters i and a» which in turn are

dependent on a number of other parameters describing the discontinuity.

*

Therefore, i and a must be related to displacement.
*

Just as i and a_ are a function of displacement, the contact area

ratio (a) also depends on displacement. Initially, a, depends on the

surface geometry of the two walls of the discontinuity, the normal stress
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acting on the discontinuity, and the deformability of the intact material.

As the discontinuity undergoes displacement, a, will change as asperities

are slid upon and sheared through. From Fig. 6-2, it is readily seen that

when the discontinuity is displaced from its initial position (Fig. 6-2a)

to any of the other positions (Fig. 6-2b,c,d), the contact area (and there-

fore a.) decreases.
%

From the above discussion, it is apparent that i , as and a, depend

on a number of factors which describe the physical properties of the dis-

continuity, as well as being closely interdependent. At the present time,

however, there is no method available to predict these parameters for a

particular discontinuity. In addition, there is little experimental infor-

mation on this subject:
*

Ladanyi and Archambault (1970) measured i and a_ on model discontin-

nities and proposed empirical relationships for each which described their

dependence on normal stress ( 0), (see Section 3.2). Barton (1971) measured

#i" in model tests and presented an empirical relationship which described

its dependence on normal stress ( 0) relative to the unconfined compressive

strength ( 0.) of the intact material, (see Section 3.3). These relation-

ships were developed from very limited tests, and they may or may not

apply to discontinuities in general.

In summary, a general relationship (eq. 6.13) was developed to de-

termine discontinuity shear resistance ( T) which is dependent on a number

*

of parameters. Some of these parameters (i , as a.) are very difficult

ro evaluate, because they are dependent on a number of physical factors

describing the discontinuity and also on the displacement of the discontin-

ality as it is sheared. The shearing process of a discontinuity is a
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highly complex one, due primarily to irregular geometry involving

a combination of shearing and sliding mechanisms. The following section

formulates a possible solution using a numerical modeling technique,

whereby the shearing process of an irregular discontinuity is simulated.

6.2 . SIMULATION OF DISCONTINUITY SHEAR

In the preceding section, the influence of displacement on shear

resistance was pointed out. The direction of displacement (as given by

*
1") and how this direction changes during displacement must be determined

in order to predict shear resistance.

The direction of sliding, at any particular displacement position,

is the direction of minimum shear resistance, as was discussed in the pre-

vious section. The shear resistance of the discontinuity in this direction,

as well as any other direction, is the sum of resistances provided by

individual asperities on the discontinuity. Individual asperity resistance

can be due to the sliding mechanism or the shearing mechanism, depending

on the displacement direction and the asperity geometry, as illustrated

in Fig. 6-4. Figure 6-4a shows two asperities which contact one another

%

across a discontinuity. If the dilation angle (i ) is greater than the

asperity inclination (i), as in Fig. 6-4b, then the upper asperity will

lift off the lower asperity, and there is no resistance by that particular

*
asperity. If i = i, as in Fig. 6-4c, the two asperities will slide over

*

cach other, and there is sliding resistance. If i &lt;i, as in Fig. 6-4d,

one or both of the asperities will be sheared through. On a discontinuity

where there are many contacting asperities with different inclinations,

any particular direction of displacement will cause a combination of
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lifting, sliding, and shearing on different asperities. The total shear

resistance of the discontinuity in that direction is the sum of the resis-

tances provided by its asperities for displacement in that direction. Of

all the possible directions of displacement, there is only one direction

in which sliding actually takes place, the direction of least resistance.

By determining the actual direction of displacement and how it changes

during displacement, a complete description of the shearing of a discontin-

uity can be achieved.

The Simulation Process

A procedure will now be described whereby the shearing of a discon-

tinuity is simulated to account for the displacement—-dependence of shear

resistance. Starting from a description of the physical properties of the

discontinuity (geometry, material properties, loading conditions), the

discontinuity is "sheared" in an incremental process. For each increment

in the process, the displacement direction and the associated value of

shear resistance are evaluated. The method by which the displacement

direction is determined is an iterative one. Shear resistance is evaluated

in different directions until the direction of least resistance is deter-

mined. This direction is then the actual displacement direction for the

increment. The discontinuity is displaced through the increment, and the

surface geometry of the discontinuity is altered to account for any as-

perity shear in the increment. The process is then repeated in the same

way for the next increment.

The procedure just described can be divided into three major steps,

as illustrated in Fig. 6-5. The three steps are: 1. discontinuity
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STEP 1 - DISCONTINUITY DESCRIPTION

Geometric description: The surface geometry
of both walls of the discontinuity is speci-
fied, as well as the initial relative posi-
tioning of the walls.

Material description: The sliding and intact
strength properties of the intact material

are specified.( e.g., 9p cis $0)
Loading conditions: The normal stress act-
ing on the discontinuity and how it might
vary during displacement is specified.

I

STEP 2 - DETERMINATION OF INCREMENTAL DISPLACEMENT DIRECTION

The shear resistance due to displacement in
different directions is determined by evalu-
ating sliding and shearing resistance on in-
dividual asperities for a given displacement
increment. The direction of the actual dis-
placement increment is the direction of
least shear resistance.

STEP 3 - DISPLACEMENT OF DISCONTINUITY THROUGH INCREMENT

Given the correct displacement direction,
the discontinuity walls are displaced
relative to each other through the incre-
ment. The surface geometry of the dis-
continuity walls is modified to account
for asperity shear during the increment.

ry

figure 6-5 Steps in the shear simulation process.
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description, 2. determination of incremental displacement direction, and

3. displacement of discontinuity through increment. These steps follow

each other in order, after which steps 2 and 3 are repeated in a cycle

so that the discontinuity is "sheared" through as many increments as de-

sired.

Procedures for performing the above-described steps will now be

presented

Step 1 - Discontinuity Description

To describe the surface geometry of the discontinuity, a two-dimen-

sional representation of the two walls of the discontinuity is proposed.

The geometry of each wall is represented by a "profile". For convenience,

these profiles are discretized such that they consist of straight line

segments which join at specified locations called "nodes". This is illus-

trated in Fig. 6-6a. The nodes are located at coordinates which are mult-

iples of certain horizontal and vertical increments. The profiles are

defined by specifying the vertical coordinate of the profile at every

horizontal node coordinate, with straight lines assumed between adjacent

nodes. A discontinuity will have an "upper" profile and a "lower" profile

defined in this way.

The reason for choosing this type of discretized geometric descrip-

tion 1s to simplify manipulation of the profiles during the simulation

process. This will be apparent as the process is further described. This

type of approach can closely approximate any profile if the node spacing

is chosen small enough. One difficulty which does arise, however, is due

to the fact that rotation of the profiles is very difficult to model with
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this type of approach. While incremental horizontal and vertical dis-

placements of the nodes on the profile can be accounted for, rotation of

the entire profile cannot be accurately described by a discretized system

of nodes.

The material composing the walls (profiles) of the discontinuity

are considered rigid, with sliding properties given by ? and intact

strength properties given by cy and ,- The exact manner in which these

parameters are used is described subsequently under step 2.

The relative positions of the upper and lower profiles must be spec-

ified prior to shearing. This can be dome by simply placing the two pro-

files in contact with one another. However, in some cases, this will re-

sult in very little contact area between the profiles. For example, the

two profiles in Fig. 6-6a are in contact with one another, but there is no

contact area between them. Under the application of normal force to the

discontinuity, there is likely to be crushing of the contacting asperity

due to the high localized stresses at the asperity tip. The asperity will

crush until the contact area across the discontinuity has increased suffi-

ciently to reduce the contact stresses to an acceptable level.

This type of crushing action to cause an increase in the contact

area can be modelled in the following way. It will be assumed that there

is some minimum contact area (A) across the discontinuity at all times,

and that this minimum contact area is directly proportional to the normal

force (N) on the discontinuity. A quantity defined as the asperity crush-

ing strength ( Oy) will be used to determine Al through the following

relationship:

A
CS
os
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If the actual contact area (A) between the two profiles is less

than As then crushing of the contacting asperities will occur until A&gt; A

An illustration of this process is presented in Fig. 6-6. At the point of

contact between the profiles in Fig. 6-6a, one of the profiles is "crushed"

or "reduced" by one vertical node increment. In this case, it is obvious

that the upper profile should be "crushed", as shown in Fig. 6-6b. In

general, the decision as to which profile is crushed can be made by eval-

uating the slopes of the asperity faces on each side of the contact node

for each profile. In this way, a quantitative assessment of the ''steepness'

of the contacting asperities can be made. The "steepest' asperity is the

one which should be crushed.

Once all of the contacting nodes along the discontinuity have been

crushed by one vertical node increment, the entire upper profile is de-

creased by one vertical node increment to bring the profiles in contact

with each other, as illustrated in Fig. 6-6c. This will result in an

increase in actual contact area (A)- If A, is still less than As then

the crushing procedure must be repeated until A&gt; A. The discontinuity

will then be "ready" for the next step in the simulation process.

Step 2 - Determination of Incremental Shear Direction

As stated previously, the incremental shear direction is determined

by evaluating the resistance due to displacement in different directions,

and choosing the direction of minimum resistance. A procedure for deter-

mining the resistance to displacement for a given direction will now be

described-

Figure 6-7a shows a portion of a discontinuity at the initial position
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of an increment, with a given displacement direction given by i

(Possible directions of displacement must be limited to certain

discrete directions, in order that the upper profile always passes through

%
nodal locations. In other words, the dilation angle (i ) is restricted

to angles whose tangents are multiples of the ratio of one vertical node

increment to one horizontal node increment, as illustrated in Fig. 6-7d.

This limitation will not be serious as long as the vertical nodal incre-

ments are small enough relative to the horizontal nodal increments.)

In Fig. 6-7b, the upper profile has been displaced through the in-

*
crement in the direction given by i . Over this displacement, it is

apparent that sliding takes place at one location, while shearing takes

place at another. As previously discussed and illustrated in Fig. 6-4,

in general, contacting asperities will either lift, slide or shear during

a displacement increment. Only sliding and shearing provide resistance to

displacement, so a method by which these resistances can be evaluated must

be formulated.

To account for sliding resistance on an asperity, eq. 6.1 as devel-

sped in Section 6.1 can be used.

*
§ =N_ tan(i + ¢ )

L

A. 1)

* *

To evaluate S_» it is necessary to know N_, i , and 2 . i dis specified

for the increment, and A is a material property, so that only N_ needs

to be determined. This will be discussed later in this section.

To account for resistance due to asperity shear, eq. 6.3 as developed

in Section 6.1 can be used.

Q
®

~ A + N_(tan ¢ . + tan i) 6.3
-
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3 N

To evaluate Ss it is necessary to know Cys ¢ i? i, Ng» and A. N_ and
*

Al are the only parameters which need to be determined, as i , Cys and ¢ 5

are already known.

Equation 6.3 assumes a failure plane which is parallel to the shear

direction, i.e., horizontal. Alternatively, a planar failure surface

could be assumed to be parallel to the direction of displacement. These

two types of failure planes are illustrated in Fig. 6-8a. An analysis of

%*
the case where the failure plane is inclined at an angle equal to i is

presented in Fig. 6-9, resulting in the following relationship for resis-

tance due to asperity shear:

IY

a :

Na % — — +N tan (i + 0)
cos i =- sini tan ¢

— A
a

(6.14)

The same parameters required in eq. 6.3 are also required in eq. 6.14,

except that A is different for each equation (see Figs. 6-8c and 6-8b).

As discussed in Chapter 5, the assumed mechanism of failure (the

form and position of the failure surface) can have an important effect on

the calculated value of asperity shear resistance. To obtain an accurate

value of asperity shear resistance for each asperity being sheared on a

discontinuity during an increment, it would be necessary to examine each

one individually to determine the appropriate failure mechanism. For

the proposed sumulation process, involving many asperities, this would be

practically impossible. A simplified method must be adopted, such as ome

of the methods just described above. Both of these methods are recognized

as being approximate, and it is not known which of them will yield the

more correct answer. However, from consideration of the "after shear"
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geometry of the sheared asperities, a failure plane inclined at an angle

*
i" appears to produce a more reasonable result.” Figures 6-8b and 6-8c

indicate how the lower asperity in Fig. 6-8 would appear after shear

according to the two different failure plane assumptions. (The procedure

for establishing after—shear geometry is discussed in step 3 , which follows

below.) If the failure plane is horizontal, as in Fig. 6-8b, the asperities

separate from one another during the increment. If the failure plane is

%*
inclined at i , as in Fig. 6~8c, then there is a contact point between the

asperities at the end of the increment. From a geometric standpoint, it

*

appears more reasonable to assume an inclined failure plane at an angle i .

This assumption will be used for this simulation process.

In addition to specifying the inclination of the failure plane, its

exact location must be known in order to determine Ag An inclined failure

plane has been drawn in Fig. 6-7b (shown as a dashed line) through the

asperity on the upper profile, although it could have been drawn as well

through the lower asperity, or through both asperities. Figure 6-10 shows

an enlarged view of the two shearing asperities from Fig. 6-7, showing

possible failure planes. The failure planes must be inclined at an angle

*
i , and must also pass through possible nodal locations. (This last re-

quirement that the failure plane passes through nodes is necessary because

the failure plane eventually becomes part of a profile.) Among all of the

possible failure planes, the actual failure plane chosen is the one which

has the least area (or length in this two-dimensional profile). From

Fig. 6-10, the failure plane with minimum length is the uppermost, and

it has been drawn in Fig. 6-7b. This procedure provides a value of Ag

to use in eq. 6.14. If there is more than one failure plane of minimum
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size, then it seems that any arbitrary procedure for choosing among them

would be acceptable.

Use of eqs. 6.1 and 6.14 requires that the normal force on each

sliding and shearing asperity be known. As discussed in Section 6.1, the

actual distribution of normal force over an irregular discontinuity depends

on a number of factors and is difficult to evaluate. For reasons of simp-

lification, a uniform distribution of normal force over the contact area

of the discontinuity is assumed for the shear simulation process. This

means that the normal force acting on an asperity is directly proportional

to the contact area on the asperity.

A (asperity)
, . Cc

V(asperity) = ——m

A (discontinuity)
N

However, since the contact area changes during a displacement increment,

the quantities A (asperity) and A_ (discontinuity) must be average values

for the increment.

From the above considerations, the resistance due to sliding (5)

or shearing (s.) can be calculated for individual asperities on a dis-—

continuity. Before these individual resistances can be combined to deter-

mine discontinuity resistance, the way in which S. and Sg might change

during the displacement increment must be considered.

Figure 6-11 illustrates in a conceptual way how S_ and S

expected to change with displacement.

are

Sliding resistance (5) is constant during displacement provided
w

that N_ i , and 2, are constant. The two submechanisms of the sliding

mechanism, friction and dilation, provide resistance which is constant
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with displacement, as shown in Fig. 6-11.

Resistance due to asperity shearing has a quite different form. As

the asperity is displaced, the resistance will increase from zero to a

maximum value of Sg For a brittle material, the asperity will break when

S = S.» and the resistance will drop. The average value of S which a

shearing asperity provides over a certain displacement "a" will depend on

the magnitude of "a'" relative to the displacement required to cause as-

perity failure (X), as well as depending on the position of the increment

'a"'relative to the position of the increment X. From Fig. 6-11, it is

apparent that the average value of S due to asperity shear is different

for a = a,, a =a,, and a = a,- In contrast, the average value of resis-

tance due to sliding is always equal to Ss independent of a.

It is therefore quite important to consider the deformation character-

istics of shearing asperities on a discontinuity in order to properly

model their resistance for a displacement increment. This is true in

spite of the fact that the material has been modelled as a rigid material

thus far. The deformation that an asperity undergoes prior to failure is

expected to be dependent on a number of factors: asperity size and shape,

deformability of the intact material, and the direction and magnitude of

the applied stresses causing failure. In order to estimate how the

quantity ¥ might vary due to changes in these parameters, a deformation

analysis of different sizes and shapes of asperities was performed. A

description of the analysis and the results are given in Appendix A. For

asperities composed of the same material, it is concluded that X can be

sxpected to vary as much as an order of magnitude, depending on the level

of normal stress and the size and shape of the asperity. However, it is
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noted that y increases with increasing asperity size and decreases with

jecreasing asperity inclination. Measurements of size and inclination of

asperities on actual discontinuities indicate that as size increases, in-

clination decreases. Therefore, these two effects have the opposite effect

on ¥, and tend to cancel each other. (see Appendix A for more details)

Although y is probably different for different asperities, it is

suggested that an average value of y could be estimated for all the as-

perities on the discontinuity. If this average value of YX is used as the

displacement increment (i.e., a = X), then the average value of resistance

due to asperity shear for the increment will be equal to L Se

A summary of the overall procedure which has been outlined in Step 2

ls as follows: Equations 6.1 and 6.14 can be used to evaluate individual

asperity resistance for a given displacement direction and increment. N_

and N, are evaluated from the contact area of the asperity. A is evaluated

from the length of the failure plane through the sheared asperity. Indi-

vidual asperity resistances from sliding and shearing are then added to

sroduce the total shear resistance for the discontinuity in the given

direction. The entire procedure is then repeated for different displace-

ment directions until the direction of minimum resistance is determined.

Step 3 - Displacement of Discontinuity Through Increment

Once the displacement direction has been established in Step 2, the

apper profile is displaced through the increment. The shear resistance

of the discontinuity for that increment is the resistance determined in

Step 2.

he upper and lower profile must now be changed to account for
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asperity shear which has taken place. This is done by taking the failure

planes as the new profile in that asperity. Figure 6-7c illustrates how

the failure plane (dashed line in Fig. 6~7b) now becomes part of the upper

profile. The sheared portion of the asperity is simply eliminated. In

effect, this procedure simplifies the process by ignoring the influence

of sheared material (gouge) on the behavior of the discontinuity.

From Fig. 6-7c, it is apparent that the failure surface, which now

represents part of the upper profile, does not have both endpoints on

nodes. The left endpoint is halfway between nodes, and therefore cannot

be described with the present system of nodes. 'It is necessary to re-—

1

define this portion of the asperity, as shown bythe dotted line in Fig.

6-7c, s0 that a straight line between adjacent nodes is obtained. This

is a necessary approximation to satisfy the discrete nature of the profile

description.

In general, the contact area between profiles will decrease over

a displacement increment. Comparison of Fig. 6-7a with 6-7c shows how

contact area is decreases through both sliding and shearing. It is possible

that the contact area may decrease below the minimum allowable value of

As as discussed in Step 1. In this event, the crushing procedure (also

discussed in Step 1) must be implemented to increase the contact area.

The discontinuity is now ready to be displaced through another in-

crement, and the process returns to Step 2. Steps 2 and 3 (and possibly

Step 1) are repeated until the discontinuity has been sheared through

the desired number of increments.
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6.3 DISCUSSION OF THE SHEAR SIMULATION PROCESS

Section 6.2 presented a procedure for simulating the shearing of an

irregular discontinuity. Using this procedure, the complete shear resis-

tance-displacement behavior of a discontinuity can be modelled. The im-

portant steps in the procedure have been described in some detail, but

the development at this point is still conceptual and further work must

be done before the simulation process can be actually implemented. It is

intended that the simulation be performed numerically with a computer.

The simulation process employs a number of approximations and simp-

lifications in its present form, and some of these deserve further theor-

atical consideration. Probably the most important of these is the method

of evaluating the resistance of a shearing asperity during an increment.

The deformability of the asperities and how this influences incremental

shear resistance (and therefore the incremental discontinuity resistance)

should be examined further. Another important aspect of asperity shear is

the failure mechanism assumption. Chapter 5 pointed out some of the

inaccuracies involved in various failure mechanism assumptions, which

indicates a need for attempting to evaluate the influence of asperity

failure mechanism on the simulation process.

Successful implementation of the simulation process will provide

a valuable tool with which to study the shear behavior of discontinuities

in rock. The process would lend itself readily to a parametric study of

the influence of various factors on discontinuity shear resistance—-dis-

placement behavior. For example, the influence of different distributions

of asperity sizes and shapes for a given discontinuity could be investi-

gated without difficulty. This type of information is important for

probabilistic considerations of discontinuity behavior.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

This thesis has employed a mechanistic approach to analytically

describe the shear resistance of rock discontinuities. Two basic shearing

nechanisms have been identified: the sliding mechanism and the shearing

mechanism.

The sliding mechanism represents sliding on horizontal and inclined

surfaces of the discontinuity. Friction, as an important part of the

sliding mechanism, has been studied in detail. Investigation of friction

theory and observations of rock friction from stick-slip experiments have

revealed that friction in rocks is not clearly understood. Experimental

observations of friction in minerals indicate that test conditions have

an important influence on sliding behavior. In particular, surface con-

ditions of cleanliness, roughness, and moisture play an important role

in controlling sliding resistance.

The shearing mechanism represents shearing through asperities on

the discontinuity. Different methods for theoretically calculating

single asperity shear resistance have been presented and compared. The

base shear method, a simple and commonly used method which assumes a

failure surface parallel to the plane of the discontinuity, has been

shown to significantly overestimate asperity shear resistance in some

casee.,
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The two mechanisms of sliding and shearing have been combined in an

analytical relationship describing the shear resistance of a discontinuity.

The parameters affecting this relationship are difficult to evaluate,

since they are strongly dependent on the displacement of the discontinuity

during shear. Therefore, in order to properly model the dependence of

shear resistance on displacement, a shear simulation process has been pro-

posed, in which a geometric representation of the discontinuity is sheared

in increments of displacement. The direction of displacement for each

increment is the direction resulting in the least resistance, and is

determined in an iterative procedure. The major steps in the shear sim-

ulation process have been formulated in this thesis, and it promises to

be a useful tool in the study of shear behavior of rock discontinuities.

Further development on a detailed level is required before the process can

be implemented.
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APPENDIX A

ASPERITY DEFORMATION ANALYSIS

This appendix presents the method and results of an analysis to

determine the magnitude of displacements which an asperity on the surface

of a discontinuity undergoes prior to shear failure. These deformations

are approximated by computing the elastic deformations of an idealized

asperity under the application of stresses which would cause failure

according to an assumed failure mechanism.

Figure A-la illustrates the idealized asperity shape and loading

conditions assumed in the analysis. A symetric asperity on the surface

of a discontinuity is loaded by uniform normal and shear stresses equal

to those which cause shear failure of the asperity. The horizontal dis-

placement of the asperity tip (yx) is a measure of the deformation of the

asperity, and is the quantity which is calculated in the following analysis.

The asperity material is modelled as being a linearly elastic, brittle

material under the applied stresses, so that the shear resistance-deform-

ation curve 1s linear as shown in Figure A-1b. This is an approximation

to actual asperity deformation, where the curve is expected to be non-

linear due to inelastic, non-linear material behavior.

The horizontal displacement Xx is a function of the size and shape

of the asperity (as given by i and B), the elastic material constants

(E,v ), and the applied stresses (n,s). The deformations of an asperity
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were modelled by the finite element method. The finite element program

ADINA (Bathe, 1976) was used for the analysis. The grid used to represent

an asperity is presented in Fig. A-2a. The asperity is divided into

twelve elements, with each element having seven or eight nodes, depending

on its location. A linear, elastic material model was used, with elastic

constants E and v .

Asperity deformations for all combinations of B, E, n, and s were

obtained by analysing and then combining two different loading cases for

each asperity inclination (i), as will be shown below. In one loading case,

unit normal loading (n = 1) was applied, as in Fig. A-2b. In the other

loading case, unit shear loading was applied (s = 1), as in Fig. A-2c.

In both cases, values of E = 1.0, v = 0.3, and B = 1.0 were used. (The

exact value of V has little influence on the displacements of the asperity.)

These two loading cases yield values of horizontal tip displacement which

are designated I and Is where I is the influence value (= displacement

under unit loading) for normal loading and I is the influence value for

shear loading.

Values of x for different values of B, E, and n (or s) can be ob-

tained directly, due to elastic proportionality. That is,

4

 J
ho!

and A
-y

B== 1
! S

The principle of superposition enables a combination of normal and shear

loading to be expressed by
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In this way, the elastic horizontal tip displacement of an asperity (YX)

can be calculated directly from the two influence values obtained for a

given asperity inclination. Influence values were computed by the finite

element method for four different asperity inclinations: i = 15°, 30°, 45°

60°, and are listed in the following table:

— - rr
1 = 15

0.02 1 -0.15 | -0.49 | -1.47

BE 0.35 | oe | 1.80 | 4.81

30°

The relationship between n and s at failure of the asperity can be

determined with one of the methods of calculating asperity shear resistance

described in Chapter 5. Here the base shear assumption is used, where

the failure surface is a horizontal plane through the base of the asperity,

as shown in Fig. A-la. Section 5.2 presented the analysis for this method,

the following relationship between n and s at failure was developed:

s =2cos ic +n tan d (5.10)

lhis equation can be substituted into eq. A.l to yield

ry 2| n 1_+ (2 cos « + n tan 9) I
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For convenience, a quantity Uy is defined as

so that

n
+ (2 i+ 5(2 cos i c. tan 9.) I,

o i
—

U

(A.3)

(=.4)

From eq. A.4, it is seen that the horizontal displacement of the

asperity tip at failure (x) is directly proportional to the size of the

asperity (B), the cohesion of the intact material (ec) and the quantity

U, and is inversely proportional to the elastic modulus (E). The quantity

U, as indicated by eq. A.3, is a function of the asperity inclination (i),

the ratio of normal stress to cohesion ( = ), and the angle of internal
i

friction ( $;)- Figure A-3 illustrates the variation of U with2. for

different values of i, with bs = 30°.

The results of the above analysis can now be applied to the asperities

of a given discontinuity. If the intact material of the discontinuity is

homogenous, then E, Cy» and $4 are identical constants for all of the

asperities. Therefore, differences in X for different asperities will be

due to differences in B and U, with U depending on i and 3.
ir

From eq. A.l and Fig. A-3, it can be seen that y increases with in-

creasing B and increasing i. Measurement of asperity size (B) and incli-

nation (i) of asperities on actual rock discontinuities (Rengers, 1970)

indicate that as B increases, i decreases. In other words, asperities
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with large B are likely to have small i, and asperities with smaller B

are likely to have larger i. These two factors thus have a cancelling

effect on each other, and values of X for different asperities will tend

to be more similar because of this.

From Fig. A-3, it can also be seen that U (and therefore YX) increases

as n/c, increases. The effect is different for different values of i,

being more pronounced for the larger values of i.

In summary, on a given discontinuity the variation in horizontal tip

displacement (¥) of asperities at failure depends on asperity sdze (B),

asperity inclination (i), and normal stress (n). While it is difficult to

make definite quantitative conclusions, possible variations in B, i, and

n on a discontinuity suggest that X may vary as much as an order of mag-

nitude for different asperities on a discontinuity


