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Abstract

As VLSI brings the prospect of gencral purpose parallel computer architectures closer to reality, people
are interested in developing software systems which exploit that concurrency. To define and experiment
with these software systems, concurrent programming languages are needed; in particular, to be able o
express and use the full power of concurrent processing, we need languages which are capable of
expressing diverse kinds of concurrent processes, including processes with cooperating, competing, and
resource-limited sub- or co- processes. Language design can proceed in many different dircctions; |
present the design and implemeniation a core actor language which will scrve as a basis for further
development of concurrent languages.
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Chapter One

Introduction

As VLSI brings the prospect of general purpose parallel computer architectures closer to reality,
there is a growing interest in building concurrent software systems which can take advantage of that
parallelism. This is especially true in fields such as artificial intelligence, where the additional power
provided by concurrency is seen as one key needed to open up new ideas and possibilities for rescarch
and experimentation. The new power is not just the power of more speed; the additional power of
concurrent software systems comes from the ability to construct organizations of evolving concurrent
processes, raiher than being limited to building a sequential process operating over an organization of
evolving objects. To open up the possibilities of concurrency for experimertation, languages arc needed
which can express diverse kinds of concuent processes. Current designs for concurrent languages are
restricted by limitations which make them less than ideal for this kind of research.

The language Acore is being designed and developed to to help meet this need and facilitate future
research. The namg ‘Acore’ is derived from the idea that it is an actor cure language. It is an actor
language in that it is based on the actor model of computation, a model of concurrent ccmputation which
is well suited to expressing diverse concurrent processes It is a core language in that it is m¢ unt to be a
base for future development of concurrent languages. Design of concurrent languages is an area of active
research; Acore serves as a base from which aspects of language design can be developed in mary
directions.

1.1 Contributions of this Thesis

The contributions of the research presented in this thesis can be briefly listed as follows:

1. A set of major goals for programming languages which are suitable for experimenting with
concurrent systems has been collected. Among these are the ability to easily express
simple cooperative and competitive relations between concurrent processes, the ability to
control procescing by subprocesses, and the ability to abstract useful cliches both
procedurally and syntactically.

2. Since these goals are unsatisfied by other concurrent languages, I have designed the lan-
guage Acore to serve as a foundation for exploring techniques for using concurrent
processes and ways of expressing these techniques. In this design I show

a. how the replacement behavior model of state change of the actor model of com-
putation can be extended to a higher level language through implicit use of the
insensitive Lehavior. This permits immutable environments, so subexpressions may
be evaluated concurrently and concurrent algorithms may be expressed concisely
without sacrificing the ability to express state changes.

b. how the sponsor model for controlling processing can be incorporated into a con-
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current programming language.

c. how the features of function applying and message passing programming languages
can be combined into one uniform language, using a common mechanism for be-
havioral abstraction as well as for invocation.

d. how competitive concurrency may also be expressed in an expression oriented way
(using the race expression).

3.1 show how Acore behaviors can be compiled into behaviors of primitive actors using
concurrent continuations. I have developed a language, called Pract, for describing these
primitive behaviors.

4.1 have developed a compiler which performs the transformation from Acore to Pract, and
explain the strategies used by the compiler for researchers in osther communities who are
interested in developing similar languages.

5.1 have developed the Apiary Emulator for running compiled Pract programs, and Traveler,
the Apiary Observatory for analyzing and debugging concurrent actor programs.

1.2 Organization of this Thesis

This thesis is divided into four parts. Part One is an introduction to the ideas of actors and the
Acore language. Part Two takes a top down view on the design of Acore, first describing the highest
level goals before proceeding with the details of Acore itself. Pari Three takes a bottom up view on the
implementation of Acore, first explaining the strategies for implementing Acore behaviors in terms of
much more primitive behaviors, then describing how the Acore compiler translates Acore into the
primitive actor language Pract. Part Four compares Acore with widely known concurrent languages,
pointing out the shortcomings which motivated the design of Acore.

There are also several important appendices. Appendix A summarizes the design and implemen-
tauon of the Apiary emulator for running compiled Acore programs. Appendix B describes the design
and implementation of Tr.veler, an observatory for observing and debugging Acore programs. These are
included since their deveiopment has influenced the design of Acore, and they help give a more complete
picture of some of the Acore programming environment.

Full explanations of Acore’s semantics and grammar are not presented in the body of this thesis; I
refer readers who are interested in more fully understanding the language to the Acore Reference Manual
included in Appendix C. Similarly, readers who are interested in a better und.rstanding of Pract are
referred to the Pract Reference Manual included in Appendix D.

12



Chapter Two

Actors and Acore

The actor model of computation is based on the idea that concurrent computation can be modeled
as a system of communicating objects called actors ( [Hewiut 771, [Agha 86], [Clinger 811). It is well
suited for modeling distributed processes in several aspects.

s Actors respond to their messages using only their local state, which models the physical
separation of objects in a distributed process.

e Actors communicate with the asynchronous, buffered protocol of the mail system abstrac-
tion, which models the delay and arrival order nondeterrainism of communication in dis-
tributed processes.

* Actors may create new actors, allowing dynamic allocation and process creation to fit the
task at hand.

e Actors have indefinite lifetimes and global extent, permitting arbitrary sharing between
concurrent processes.

¢ Actors may change their behavior, so history sensitive objects may be modeled and shared
between concurrent processes.
These properties also make it well suited as a model for the concurrency of a concurrent programming
language. In this chapter I will introduce the central concepts of the actor model of computation through
examples which introduce Acore.

2.1 An Actor

An actor is an object which may receive messages and send more messages in response, such as
the simple bank account described in figure 2-1. A script defines the behavior of an actor;
simple-bank-account is a script which defines the behavior of the actor my-account. An actor may
have acquaintances, other actors which the actor knows as part of its local state, such as the bank
account’s balance. In Acore, a message consists of a Feyword and zero or more parameters. The
keyword selects one of the handlers of the script; for example, a message with the :balance keyword
sent to an actor with the simple bank account behavior will invoke the :balance handler.

Each handler must specify a replacement behavior, the behavior the actor will have in processing
the next message it receives. For some handlers, the next behavior will always be identical to the current
behavior; these are called unserialized handlers. For example, the :balance handler is unserialized. An
actor whose behavior consists entirely of unserialized handlers is an unserialized actor; since it never
changes state, its messages needn’t be processed in any serial order. For other handlers, specifying the
replacement behavior may just call for specifying new acquaintances. The ready command specifies
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(DefName simple-bank-account ; definition of a bank account behavior
(script (balance)
((:balance () :unserialized)
balance)
((:deposit (amount))
(ready (balance (:+ balance amount)))
self)
((:withdrawal (amount))
(/et ((new-balance (:- balance amount)))
(if (:< new-balance 0)
(then (ready)
(complaint :overdraft))
(else (ready (balance new-balance))

self)))))
; definition of a bank account
(DefName my-account (:create simple-bank-account 0))

Figure 2-1:A simple bank account written in Acore.

that, with the specified changes to zero or more acquaintances, the actor is ready to receive the next
message. For example, the ready command in the :deposit handler specifies that balance bound to the
new balance for the next message, and with that change the actor is ready to process its next message.

The other commands within the handler follow a syntax similar to that of Lisp: /et binds iden-
tifiers to intermediate values, if makes decisions between alternate paths, and the final expression deter-
mines the value to be retumed. However, commands and expressions in Acore are performed
concurrently by default, unless there is an ordering constraint (e.g. the identifiers of a /et must be bound
before the body is performed). It is not the purpose of this thesis to give a tutorial in Acore program-
ming, so [ won't spend much time explaining Acore syntax and semantics. If readers are confused by an
example or wish to learn more about Acore constructs, I refer them to the Acore Reference Manual
reproduced in Appendix C.

Now that we have an example of an actor in mind, let’s look at the capabilities of actors more
systematically.

2.2 Capabilities of Actors

As formalized by Gul Agha in [Agha 86], an actor consists of a mailing address which uniquely
identifies the actor, and a behavior which specifies what the actor will do upon receiving its next
message. Upon accepting a message an actor may concurrently:

» make simple decisions,

14



e create new actors,
¢ send new communications, and

o specify a replacement behavior

Simple Decisions: Simple decisions are decisions which can be made using only the information
in the message and in the local state of the actor, such as whether one reference to another actor (a
mailing address) is identical to another reference. In the bank account 2xample, whether to perform the
withdrawal or to complain is based on whether the reference retumed from the expression testing for a
negative balance is identical to a reference to (the actor representing) false.

Creating Actors: Creating an actor requires specifying its initial behavior; often the actor's new
behavior will be parameterized with its initial acquaintances. For example, my-account is created with
the simple-bank-account behavior an an initial balance of 0.

Sending Communications: Sending a message requires specifying the contents of the message and
the mail address of the recipient, which is sometimes known as the targer. The simple bank account
sends requests to compute intermediate values; for example, (:< new-balance 0) is a request
new-balance with keyword :< and parameter 0. It also sends a reply with the final value, e.g. balance
cr self, 1o the customer of the requestL

Specifying a Replacement Behavior: The replacement behavior specifies how the aclor will
respond to the next message received. Note that the replacement behavior must always be specified, or
the actor wouldn’t be able to process its next message. While the actor is waiting for its next behavior o
be specified, it takes on the insensitive behavior, so any messages which happen arrive cannot be
processed and must be buffered or queued.

Specifying a replacement behavior is how actors model change of state, such as the change in
balance of the bank account. An actor may also more completely change its behavior, as in the simple
locker presented in figure 2-2. This simple locker altemates between the empty locker and full locker
behaviors. (The key script is just used to create a unique value — no messages are sent 10 key actors.)
Being able to change state is the crucial feature of the actor model which provides actors with the
capability to model extensible systems that can be adapted for changes without shuuing down and
rebuilding.

Every operation an actor makes uses only the local information the actor has at hand: information
stored in its local state (including constants of its behavior) and information which is part of the incom-
ing message. These operations may be sequenced due to data dependencies — for example, an actor
may need to make a decision and create a n2w actor before it can send a message 1o the new actor — but
otherwise the operations are concurrent. Identifiers in Acore are referentially transparent (they have a
single value since bindings are immutable), and may easily be shared betwcen concurrent operations;
we'll come back to this point later. Specifying the replacement behavior is the only method of changing

15



(DefName Empty-Locker
(script ()
((:store (valuables))
(let ((my-key (:create key)))
(:replace full-locker self my-key valuables)
my-key))
((:retrieve (key))
(ready)
(complaint :wrong-locker))))

(DefName Key (script ()))

(DefName Full-Locker
(script (my-key valuables)
((:store (new-valuables customer))
(ready)
(complaint :full-locker))
((:retrieve (customer-key))
(i (eq? customer-key my-key)
(then (:replace empty-locker self)
valuables)
(else (ready)
(complaint :wrong-key))))))

(DefName my-locker (.create empty-locker))

Figure 2-2:A simple locker written in Acore.

stale in an actor; there are no assignment commands.

Since actors may concurrently send many messages (o distantly distributed actors, the communica-
tion model is important to keep ir mind.

2.3 Communication

Communication between actors is performed using the mail system abstraction. Like mail sysicms
in the real world, messages are sent asynchronously, and are buffered for the recipient. Messages may be
delayed in transit, leading to an arrival order nondeterminism between concurrently sent messages, but
since the mail system provides a guarantee of delivery, the delay may not be infinite.

Asynchronous communication means that an actor sending a message just gives the message (o the
mail system and goes on to other things. In particular, unlike synchronous communications, the actor
does not wait for an acknowledgment that the recipient has accepted the message. Asynchronous
communication allows actors to make use of the time during which messages are in transit. When

16



synchronous communication is required, an acknowledgment may be rcturned as a scparale
asynchronous message. Thus, we think of sending a request message to the bank account which later
sends a reply message; the two communications are separate. Much of the time, however, some actor is
waiting for the reply, since the value retumned is important for later computation,

Buffered communication means that messages arriving at their recipient are queued until the actor
is rcady to accept them. This buffering is necessary due to the changing behavior of the recipient (thus
the recipient may not be ready to accept the next message) and the asynchronous nature of the com-
munications (the sender doesn't wait for the recipient to be ready). Since the aclions of an actor may be
performed concurrently, there may also be some pipelining between the processing of consccutive mes-
sages. When the actor is busy processing previous message, it caniot process another message until it
computes its replacement behavior. As soon as the replacement behavior is known, the next message in
the mail queue may be processed, even if messages are still being sent concurrently by the previous
behavior.

In any shared communications medium such as a network, messages may be unpredictably delayed
in transit due to traffic congestion. Thus messages which are sent concurrently may arrive in a different
order than they were sent — there is arrival order nondeterminism. The mail system includes arbiters 1o
decide an order for messages arriving at nearly the same time at any point in the communications
network; they are the source of nondeterminism. Despite this nondeterminism and the possibility for
arbitrary delays, the guurantee of delivery of the mail system can be used to prove termination for some

actor programs.

2.4 Implications

Since concurrency in actor programs is engendered simply by sending multiple messages, concur-
rency comes naturally and inexpensively to actor languages, and a fine grain of concurrency results.
Parallel computer architectures can take advantage of this fine grain of concurrency in balancing the
processing load between processors by migrating actors. There may be no relation between the structure
of the processor network and the structure of the program, and even less between the structure of the
network and highly active, communicating parts of the program, so the actors of the program ma)} be
distributed among the processors in ways in which communicating actors may be separated on distant
processors. The asynchrcnous, buffered nature of communications between actors simplifies the
protocol necessary between the processors involved.

Thus, the actor model is suitable as a paradigm for thinking about concurrent, distributed computa-
tions. Since we are interested in experimenting with concurrent processes, we are interested in e
language for expressing those processes, simplifying the task of creating the experiments. However,
there are many issues in designing such a language; we tum next to the issues involved the design of
Acore.

17



Part 11
Design of Acore
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Chapter Three

Design Goals

Many different design goals can effect the design of a new language, but good languages are
designed with a few key ideas in mind, and the other goals follow from these ideas. The highest level
goals in the design of Acore are generality, unification of object oriented and function oriented program-
ming paradigms, forming a base for future development, and mathematical foundation. This chapter
explains the motivation for these key ideas behind the design of Acore; the lower level goals which
follow from them will be described in the following chapter on the design of Acore.

3.1 Generality for Expressing Concurrency

To explore the possibilities created by concurrent computation, we need a language which is
capab'= of easily expressing diverse kinds of concurrent processes, including processes with cooperaling,

1

competitive, and resource limited sub- or co- processes." Our language should be gencral enough o

express these organizations within the paradigms encouraged by the language.

Cooperative processes work together toward a common goal, perhaps through simple division of
labor as in divide and conquer algorithms. For example, a concurrent version of quicksort may use
concurrent sub-processes to sort each half of the partitioned sequence; the partition function itself may
use concurrent processes to partition each half of a sequence. This simple division of labor is a very
common source of concurrency arising primarily due to lack of data dependencies between the concur-
rent processes. Therefore our language should be able to easily express concurrent algorithms as concur-
rency within functions and procedures.

Cooperative processes may also form more complicated organizations, such as in blackboard
systems used in artificial intelligence. One example is a combinatorially implosive algorithm described
in (Komfeld 82), where concurrent processes working toward a goal share partial results through a
cominon database (the ‘‘blackboard’’). The combinatorial implosive aspect of the algorithm comes from
the feature that the partial results entered in the database by one process may help reduce the search
space of another process. Thus our language should be able to express objects with changing state, such
as a database, shared between concurrent processes.

Competitive processes compete with each other to reach a goal. A simple example is a parallel

'The idea of a ‘process’ used here is not restricted to the sequential process which may be familiar from present computer
operating systems, but is closer to the everyday meaning of the word. Thus processes can be composed of concurrent
sub-processes. Similarly, s ‘procedure’ may be a set of steps to follow, but the steps may not have a total sequential onder.
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conditional with several branches, each guarded by a test. If each of the tests may take arbitrary amounts

of time, the fastest way to select one of the branches may be to evaluate all of the tests concurrently, and
take the branch corresponding 1o the first test to return positively. A similar situation occurs when there
are several algorithms for reaching a goal, each of which is fast for some partition of the possible cases.
The fastest way to compute the answer in general may then be to run all the algorithms concurrendy,
returning the first answer produced. Both of these examples involve situations where the timing of
returncd results makes a difference. Qur language must be able to express this kind of competition.

The indeterminacy of the results produced by a program which expresses competitive concurrency
may alarm some people. Our philosophy is that the world is naturally modeled by objects which change
staie and communicate asynchronously. Nondeterminism arises from the combination of mutability and
the arrival order nondeterminism of asynchronous communication. Thus, a general purpose concurrent
programming language should be able to express such models so programs will be able to interact with
such a world, as well as simulate it. In situations where worrying about the complex interactions

possible in a nondeterministic system is an unnecessary hindrance, a deterministic (e.g. functional) subset
of the language may be used.

Processes may also be both cooperating and competing to different degrees. For example, ex-
ploratory processes searching a database may return information which will be processed in the order it is
found and returned. The processes are cooperating in that they are all searching different parts of the

database, but they are also competing in that the order in which answers are rctumed may make a
difference.

Sometimes it is necessary to control the resources used by competitive processes. In the simplest
case, a process which is no longer needed may need to be siifled. For example, when several processes
are competing to find a single answer, once the answer is found the remaining processes are no longer
needed. If letting them continue would consume large amounts of resources, it may be desirable to stifle

them and conserve those resources. Our language should permit at least such gross control over
processes.

Finer control over resources available to concurrent processes is also desirable. Consider a situa-
tion where many competing processes are gathering evidence for or against different alternatives for a
decision. In some instances of this situation it may be desirable to ensure that both sides have equal
access 1o resources (e.g processor time). In other instances there may be a history indicating which
alternatives are the most promising, yield the most information, or converge most quickly, so it may be
desirable to initially focus resources on these processes. Therefore, a general purpose language for
concurrent procedures should have the ability to express this type of resource control over processes.

In summary, one design goal for Acore is to ensure that it is general enough 1o easily express at
least cooperative, competitive, and resource controlled process organizations.
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3.2 Unification of Object Oriented and Function Oriented Programming
Paradigms

The object oriented and function oriented programming paradigms have attracted much auention
and popularity in the pasi decade or so. The object oriented, message passing programming paradigm is
useful for applications which are most easily expressed with a rich set of datatypes and generic opera-
tions on those datatypes. The functional, lambda calculus based programming paradigm is uscful for
applications which are most easily expressed with a rich set of functional abstractions, including higher
order functional closures created at run time.

Both of these paradigms depend on the idea of a garbage collected beap allocation for small
structures of indefinite lifetime: the vbjects in an object oriented language, and the closures (and data
structures) in a function oriented language. Yet these two paradigms form a complementary pair;
current object oriented programming languages don’t allow higher order behavioral abstraction, and
current languages based on the lambda calculus don't facilitate a data driven programming style.

In current object oriented languages such as Smalltalk [Goldberg 83] or Flavors (Weinreb and
Moon 81], object behaviors must be part of a class hierarchy. Methods may only defined at top level: a
higher order behavior method which returns new behavior is not possible. In Smalltalk there are no
anonymous functions; a class and a method name must be specified for every function created. The
behavior of higher ordered functions can be simulated by creating a class for each lambda, explicitly
specifying the free variables of the lambda as instance variables of the class, and supplying the values of
the free variables when the instance is created. Thus the problem is not so much one of expressive power
as one of ease of expression -- people don’t think of using higher order functions in Smallialk because
they are difficult to express.

In current function oriented languages such as the Scheme dizlect of Lisp [Rees et al. 86], a data
directed message passing style of programming may be implemented using closures as objects, but it
does not result in 2 uniform system. Objects which are primitive to the system, such as functions, lists,
and numbers, do not have a message passing interface, while user defined objects do. Therefore the
benefits of the data directed message passing style do not extend to the common primitive objects in the
system, and these have to be handled as special cases in programs which deal with objects in general,
such as procedures for printing objects or sorting collections of objects.

Therefore, a second major design goal of Acore is to unify these two programming paradigms,
producing a language which can express higher order behaviors and which has a message passing
interface to ali cbjects.
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3.3 Forming a Base for Future Development

Concurrent language design with the above goals is a new area of research, and designs for high
level languages with these goals can still develop in many directions. In any one design for a high level
language, many different choices must made about the abstractions provided by the language (and its
library). Some choices will be made in terms of what functions, objects, operations on those objects, elc.,
will be provided by the language system. Other choices will be made about how the system is organized,
what protocols are used, etc. More important decisions will be made conceming what abstraction
mechanisms are provided, especially abstraction building abstractions for describing new behaviors,
describing combinations of behaviors (e.g. through inheritance or delegation), or tor incorporating
description oriented declarative programming.

Ali these choices represent open topics for further research, yet all the languages based on the
above goals may have a common core. Therefore a goal in the design of Acore is not to design a full
blown high level concurrent programming language. Rather than take a big step and make many
arbitrary choices all at once, Acore will be designed as a core language to serve as a foundation for the
development of higher level languages. As such, it will implement only the primitive abstraction
mechanisms: a behavioral abstraction mechanism which abstracts the procedures objects follow, and a
syntactic abstraction mechanism (a macro facility) for abstracting syntax. With these abstracticn
mechanisms, research into many of the choices mentioned above can be made without changing or
re-implementing the core compiler. Also, since the developed languages will be based on a common
core, they will potentially be compatible with one another and can share the implementation of useful
lower level tools, e.g. for editing, debugging, metering, etc.

3.4 Mathematical Foundation

Basing an aspect of a language's design on a good mathematical model is one way of gaining
confidence that that part of the design is consistent and well thought out. Looking at the language from
the viewpoint of the model can help designers, implementors, and users — the designer gains insights
into how important details of the design car. affect ils semantics, the implementor may gain insights into
details not strictly specified by the designer, and the programmer using the language gains insights into
the expressive powers of the language. Deviations from the model may compromise the effectiveness of
the modeling, and should be minimized.

Therefore a goal in the design of a new language is to choose or develop mathematical formalisms
which reflect the other goals of the design. In our case, models which can express behavioral abstraction
and invocation, and models which can describe diverse kinds of concurrent processes are desired.

Toward this end, the aspects of the Acore design conceming functions/procedures and name
scoping have been strongly influenced by the the lambda calculus, largely through the influence of
Scheme [Rees et al. 86). The Actor model of computation is the source of ideas for modeling concurrent
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processes as message passing objects (Hewitt 77] [Agha 86] [Clinger 81). I will assume the reader is
familiar with Lisp-like languages such as Scheme and the idea of message passing objects. We will look
at these issues and many more as we delve into the design of Acore in the next chapter.
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Chapter Four

Issues in the Design of Acore

During the process of taking a set of high level goals and creating a design for a language which
meets those goals, many issues arise about which design decisions must be made. This chapter describes
many of the issues which arose in the design of Acore, and the reasons for the decisions which were
made. Too many decisions were made to cover them all here, so I can only hope o cover the most
important ones.

Since the discussion in this chapter is largely concemed with tha semantic issues in the design of
Acore, a prefatory remark concerning syntax is in order. The syntax of Acore is in a parenthesized style
very similar to Lisp. This style of syntax was chosen for three basic reasons. First, Acore was
envisioned as a very expression oriented language, similar in this respect to Lisp, and full paren-
thesization is desirable to help make clear the complex structure of deeply nested expressions. (Contrast
this approach with one where many intermediate values are assigned to variables.) Second, the simple,
uniform syntax makes the language easy to extend by using macms. Third, using parenthesized syntax
allows implementors (such as myself) to take advantage of existing parsers (readers) and development
tools (e.g. editors) for Lisp.

The first sections of this chapter deal with the basic forms for expression and abstraction used in all
Acore programs. They are followed by sections about the expression of behaviors which do not fit into
the basic applicative order form: behaviors which do not return values, behaviors which use future
concurrency or delayed evaluation, behaviors using competitive concurrency. Competitive concurrency
leads to issues of controlling processes and exception handling. Finally, the chapter closes with discus-
sions of top level naming, and the macro facility for extending Acore syntactically.

4.1 Expressions

The basic idea for the design of Acore is to take the ideas of message passing communication, state
change, and concurrency from the Actor model, and define an interpretation of the expression oriented
syntax of the lambda calculus, Lisp, and Scheme traditions in terms of a set of message passing primitive
actors. Under this interpretation, message passing divides into the categories of request and response.
Applying a function corresponds to sending a request message to an actor representing the procedure;
returning a value corresponds to sending a response message to the waiting customer. (Primitive actors
will be discussed in more detail in Chapter 6.)
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4.1.1 Syntactic Issues: Ask Expressions
The basic unit of expression in Acore is the ask expression, which has the following form:
(<message-selector> <target> <message-parameters...>)

For example:
(:deposit my-account 100)

The message selector evaluates to a keyword symbol which selects which of the target’s message
handlers will be invoked. Keywords are actors like all other objects in the system. We have chosen to
put the message selector first because in our experience writing Acore code we have found that in most
cases the selector is a short constant such as :deposit. The reason for this regularity is that in most
procedures the operations are fairly constant — only the actors involved need to be computed. In
message passing style code, the operation is usually represented b .he message selector. Larger expres-
sions may be involved in computing the target or any of the parameters, so if the target were placed first
as in many object oriented languages, the message selector becomes obscured in the middle of the ask
expression. For example, compare the readability of the code fragments from a version of quicksort in
figure 4-1. In the infix version, the operation tends to become lost between the nested subexpressions.

Infix:

((quicksort :do

(left-lessers :append right-lessers))
:append
(quicksort :do

(left-greaters :append right-greaters)))

Prefix;

(:append
(.do quicksort
(:append left-lessers right-lessers))
(:do quicksort
(:append left-greaters right-greaters)))

Figura 4-1:Infix vs. Prefix message selectors.

One of our major goals in designing Acore is to unify function orierted and object oriented
programming styles. Since invocation corresponds to sending a request message, functions (closures) are
represented by actors as well. We have introduced the convention that functions are actors which have a
handler for the .J0 m.essage. An inconvenience arises when writing and reading code which uses many
functions: most of the message selectors are :do, and become pretty meaningless, while the function
names are names of operations. To alleviate this inconvenience, :d0 keywords are optional and may be
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omitted. Thus, if the message selector is not a keyword constant, the ask expression is interpreted as a
function call by inserting the message selector :do. For example, compare the readability of an extreme
example from a function oriented version of factorial in figure 4-2 with and without :dos.

With the :do selector

(if(:do =n0)
(then 0)
(else (:do * n (:do factorial (:do - n 1)))))

Without the :do selector

(if(= n 0)
(ther 0)
(else (* n (factorial (- n 1)))))

Figure 4-2::d0’ can reduce readability.

This is a compromise — at first glance it appears this approach sacrifices the ability to use an
arbitrary expression for the keyword. We noted that most of the time the keyword is a constant, but there
are still times when you must be able to specify an expression for the keyword. Upon closer examina-
tion, however, a solution to this dilemma appears. Expressions which appear in the message keyword
position of the ask expression are treated as the target of the ask. Since message keywords are objects,
we may give them a behavior. In particular, we can give them the behavior of a function which accepts
:do requests and sends the request which would have been sent had the keyword been a constant. For
example, consider the following code fragment:

(let ((keyword (if positive? (then ":+) (else ':-))))
(keyword value deita))

By our rule for inserting :do this is equivalent to

(let ((keyword (if positive? (then ':+) (else ':-))))
(:do keyword value delta))

Suppose positive? is true, so the keyword is the symbol :+. The :+ symbol is then sent the message:
(:do :+ value delta)
So all :+ has to do is send the :+ message to its first parameter (value) with the rest of the incoming
parameters (delta):
(:+ value delta)
This compromise sacrifices a litte efficiency in this case, since an extra message must be sent, but we
lose no expressive power and it is worth the extra readability in function oriented procedures.

So far we have looked at the issues behind the syntax and semantics of individual ask expressions.
Next we shall examine how to build more complex expressions by composing ask expressions in sevcral
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ways. The value of an expression can be used as parameters to another expression or command, for
making decisions about what other expressions to evaluate, or as part of a race for computing values.

4.1.2 Composing Expressions for Simple Division of Labor

When ask expressions are composed together by nesting and using /et, several issucs arise. One of
our goals for Acore is that the concurrency inherent in algorithms be easy to express; in particular, the
concurrency expressing the simple division of labor between independent expressions should be basic.
Therefore, expressions and commands in Acore are by default concurrent. The nested expressions
forming the parameters of an ask expression do not depend on each other, and are performed concur-
rently. Once all the parameter expressions have been evaluated, the ask expression itself can be per-
formed (initiating a request to the target). Similarly, the expressions giving values for the identifiers in
the arms of a /ot expression are independent of each other, and are evaluated concurrently. Once all the
arm expressions have been evaluated, the commands and expressions forning its body are performed
concurrently.

For example, let’s take a look at our code fragment from quicksort, this time expressed with and
without a /et in figure 4-3.

Concurrent Subexpressions

(-append
(quicksort
(:append left-lessers right-lessers))
(quicksort
(:append left-greaters right-greaters)))

Concurrent Let Arms

(let ((sorted-lessers
(quicksort (:append left-lessers right-lessers)))
(sorted-greaters
(quicksort (:append left-greaters right-greaters))))
(:append sorted-lessers sorted-greaters))

Combination

(et ((lessers (:append left-lessers right-lessers))
(greaters (:append left-greaters right-greaters)))
(:append (quicksort lessers)
(quicksort greaters)))

. Figure 4-3:Equivalence of subexpressions and let arms.
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The first two of these expressions are necessarily equivalent. In both cases, the (recursive) calls 1o
quicksort are independent of each other, and the two quicksort expressions, including their nested sub-
expression, may be evaluated concurrently. When both values of from quicksort have been retuned,
then the final append can be performed.

The third of these expressions is not equivalent to the other two. In the first two cases, each call 1o
qui -ksort may proceed as soon as its parameter has been evaluated. However, in the third case, the calls
to quicksort are held up until both of the preliminary appends have completed.

From this example it is evident that Acore performs applicative order evaluation of expressions by
default. Eager evaluation® using futures would result in even greater concurrency. However, future
concurrency is harder to understand and control, especially in the presence of actors which may change
state. Also, it is occasionally desirable to sequence expressions. With applicative order evaluation, two
sequential expressions can be expressed simply by putting the first in the arm of a /et and the second in
the body; this would be harder to express with eager evaluation. Futures also involve some additional
overhead to represent the future, queue any premature messages, and forward all messages to the actual
value. Therefore eager evaluation is less suitable as a default than simple applicative order evaluation.

To keep the semantics of many concurrent expressions under control, all identifiers in Acore are
referentially transparent. No identifier ever changes value to another actor; instead, state change is
modeled by the change of behavior. This is an important point which I will return in section 4.3.

4.1.3 Composing Expressions for Making Decisions

The primitive decision making capability of actors allows them to compare mail addresses to find
whether or not they are identical. For making arbitrary decisions, this capability is most useful when
c~upled with the globally distributed knowledge about what mail address represents a boolean value, e.g.
false. In other words, if all actors agree on a value for false, decision making may proceed on the basis
of queries between actors which expect a boolean value (e.g. false or not false) to be returned. Once this
convention is established, ask expressions can be used for making decisions using if. For example,
consider again our factorial example:

(if(=n0)
(then 0)
(else (* n (factorial (- n 1)))))

A request to the = function is made, and once the the reply is received, one of two paths may be chosen
based on whether or not the value returned was false.

This method of making decisions was chosen because it is the simplest to understand. No complex
concurrency issues arise because it is sequential: the test must be completed before either of the

2Eager evaluation is where an actor, a future, which represents the value is retumed immediately so the value can be distributed
concurrently with its evaluation. See section 4.6.
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consequences is begun. Other evaluation strategies are possible; for example, a strategy which starts
evaluating the consequences in parallel with the test overlaps the evaluauon of the consequence with the
test and may be faster. However, such an evaluation strategy introduces the problem of swopping
evaluation of the consequence not chosen. Furthermore, in situations where actors change state as a
consequence of the evaluation, the meaning of the choice is not clear. There may be situations where an
overlapping strategy for decision making is desirable, and I encourage people to try out such ideas using
Acore, but these comple.. consequences make such a strategy unsuitable as the primitive decision making
strateyy for Acore.

4.1.4 Composing Expressions Competitively

One of our design goals for Acore is that it he able 10 cleanly express compelitive concurrency.
However, compelitive concurrency is a new capability offered by concurrent languages, and as such it is
not well understood. In particular, we don't yet know what paradigms for competitive concurrency are
most useful. I expect that Acore will be a useful tool for experimenting with competitive concurrency
and leaming what paradigms are useful; perhaps at a later date some of the most common paradigms will
be incorporated into Acore itself. Given these considerations, an expressicn of competitive concurrency
which captures the :ssence of all paradigms is desirable. People can then expeniment with specialized
paradigms by manipulating this form, perhaps using macros and auxiliary actors.

Competitive concurrency is expressed in Acore through the race expression, which has the follow-
ing form:

(race exprl expr2...)
The value of a race expression is a queue of values in the orcier that they are received. For example, un
expression which returns the first answer received from two contestants is the following:

(:tirst (race (.ask contestant1 question)
(:ask contestant2 question)))

I will discuss competitive concurrency in more detail later in this chapter; for now it suffices 10
introduce it as an additional method for composing expressions. Next we take up the issues involved in
encapsulating expressions into a behavior.

4.2 Behavioral Abstraction

A major goal in the design of Acore is to unify the function oriented and object oriented program-
ming paradigms. As a result, the abstraction mechanism of Acore takes features from the abstraction
mechanisms of both paradigms. Like the closure oriented paradigm, behaviors can be created by an
expression at any point, and closed over any environment. Like the object oriented paradigm, abstraction
is divided into two parts, defining a general behavior and creating an instance of it. In addition, as in the
actor model, behaviors may be used for specifying the replacement behavior of an actor.
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4.2.1 Syntactical Issues: Script Expressions

The script of an actor defines its general behavior: what messages it is prepared (o handle, and
what acquaintances it has. A script expression has a form as specified in figure 4-4. For cxample, the
script of a salesperson’s record might be defined as in figure 4-5. (Unserialized means the handler
doesn't change the state of the actor.)

Form of script expressions:

(¢cript (acquaintance names...)
message handlers...)

Form of normal message handlers:

((message-selector (message parameiers...) handler oplions...)
expression-body)

Figure 4-4: Script syntax.

(defname salesperson-record-behavior
(‘et ((department sales-department))
(script (name salary commission)
((:name () :unssrialized)
name)
((:pay (sales) :unserialized)
(:+ salary (:* sales commission)))
((:supervisor () :unserialized)
(:manager departme.t)))))

(defname my-record

(.create salesperson-record-behavior
"Carl Manning” 150 .07))

Figure 4-5:A simple script for a salesperson’s record.

Several issues have arisen concemning the syntax of the script expression. First, why should the
behavior be separated into handlers? Why can't a single lambda expression do? Second, why are the
message parameter lists limited to simple lists? Why don’t we allow more structured matching, as found
in logic languages such as Prolog?

The scrip: expression isn't directly analogous to a lambda expression, since a lambda expression
P y 8 p
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creates a complete closure which may be applied to parameters to produce a result, whereas the script
expression only produces a behavior which may be used to create an actor which then can be sent a
message to produce a result. The script expression separates the specification of the behavior from the
creation of the actor, so that actors with the behavior can be instantiated in places other than where the
behavior is expressed.

The script expression is separated into handlers to simplify the very common case where the
handlers are indeed separate. In this common case, the visual separation of the handlers incrcases
readability, and the parameter lists conveniently destructure the messages automatically instead of forc-
ing the programmer to do so for each message. An otherwise handler, which processes messages not
selected by any other handler, can be used if there is nced to revert back to an all-in-one specification.

Handler selection isn't done by structured marching of messages primarily for efficiency reasons.
Since handlers are selected on the basis of only the message selector keyword, handler selection can be
very fast. Since parameter lists are flat, standard procedure calling techniques for binding values can be
used.

Another reason for discouraging handler selection by structured matching appears if you consider
implementing an actor system on a distributed architecture. Structured matching is often used on a
deeply nested structure, even if the actual pattern is shallow, and programs which use it recurse through
the structure. Therefore, either the entire structure must be transmitted as the message between proces-
sors of the distributed architecture, or there must be a message passing interface to the structure. The
first is unacceptable due to the overly large communication overhead, and the second sacrifices the
primitiveness of structured messages — structured messages can't be primitive if message passing is
required to destructure them. However, a language which does destructure messages this way could be
developed using Acore, and I encourage readers (o try it.

4.2.2 Creation, Replacement, and Initialization

Two issues arise concerning the use of behaviors: How should they be used, i.e. what should be
the value of a script expression and how should it be used, and how should initialization be performed,
i.e. how should the initial acquaintances of an actor being created with or taking on this behavior he
specified?

The first issne conceming use of script expressions is the question of just what a script expression
should return. One possibility (which we’ve tried) is for the expression to retum the raw representation
of the scrigi. Then actors can directly create more actors with this script, and specify replacement
behaviors using this scripr. This mimics the raw handling of behaviors in actor theory, and allows
efficient creation and replacement, but raises two problems of robustness in the implementation. First,
the implementation may be sensitive to the relationship between the script and the actor; exposing the
script either limits the kinds of efficiency tricks implementations can use or can impose implementation
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dependent limitations on how scripts may be used in programs. Second, checking for the correct number
of acquaintances is necessary for the robustness of the system, but to find the number of acquaintances
the script expects requires message passing. Thus, if message passing is required anyway, the script
might as well be encapsulated. Therefore we have turned to a second possibility, encapsulating the script
in a guardian actor, as the default case (though we can retumn (o the first method for optimizing critical
code).

A script expression retums an actor which serves as guardian for the script. This guardian accepts
:oreate messages to create new actors with the script, and :replace messages which specify a new
replacement behavior with the script. (I will discuss change of state in more detail later.) Guardians
encapsulate the script, hiding the implementation details of how scripts are implemented and how they
are related to the actors with the behavior specified by the script. The message handlers for the
guardian’s ‘Create and :become messages require the correct number of acquaintances, so the nezd for
checking this is satisfied.

Another issue concemns initializing an actor with a behavior. There may be need for checking that
the acquaintances are of the right type, or perhaps some acquaintances should be initialized automati-
cally. One possibility is to find a way to incorporate this initialization information into the script
expression. However, initialization can be an arbitrarily complex procedure, so rather than complicate
the relatively simple concept of the script expression, initialization may be specified by encapsulating the
script expression in a custom guardian actor which performs the necessary checking and initialization.
For example, consider the safe account behavior of figure 4-6. It checks that the minimum balance is
adhered to when creating a new account, and initializes it with an interest rate. It also checks to see that
the minimum balance is adhered to when specifying this as the replacement behavior for an account, and
that the interest rate isn’t below standard.

4.2.3 Closure over Identifiers

The values of the free identifiers in a script expression are captured in a lexically scoped manner
famihar to languages such as Scheme. For example, in figure 4-5, the department is captured as a frec
identifier, and will always refer to the sales-department in all actors with this behavior. Lexical scoping
permilts intuitive results from the nesting of script expressions. One consequence is that lambda expres-
sions may implemented as in figure 4-7. The actor returned by a lambda expression is a function, an
actor which accepts a :do message. A macro can easily be written to make this translation.

4.3 Referential Transparency of Identifiers

Acore expressions can be deeply nested, highly concurrent, and abstracted into lexically closed
behaviors. Since they represent concurrent processes, they may be evaluated on distributed processors.
Several problems arise if an identifier were to change value.
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(defname sate-account-behavior
(/et ((minimum-balance 5.00)
(initial-interest 0.05)
(account-script
(script (balance Interest-rate)
((:balance () :unserialized)
balance)
((:interest-rate () :unserialized)
interest-rate)
((:deposit (amount))
(ready (balance (:+ balance amount)))
self)
((-withdrawal (amount))
(let ((new-balance (:- balance amount)))
(if (:< new-balance 0)
(then (ready)
(complaint :overdraft))
(else (ready (balance new-balance))

seif)))))))
(.create . create the guardian for the account script
(script () ; define the guardian’s behavior

((:create (balance) :unsenalized)
(if (:< balance minimum-balance)
(then (complaint :below-minimum-balance))
(else (.create account-script
balance Initial-interest))))
((:replace (actor balance interest) ;unserialized)
(if (or (:< balance minimum-balance)
(:< Interest Initial-interest);
(then (complaint :bad-initialization))
(else (:replace account-script
actor balance interest))))))))

(defname my-account (:create safe-account-behavior 100.00))

Figure 4-6:Safe account behavior with checking and initialization,

First, when there are many concurrent expressions which share use of an identifier, if one expres-

sion is allowed to change the value of the identifier through assignment, the behavior of the other
expressions may be unpredictable unless they synchronize reading the identifier with the assignment.
However, providing synchronization at the level of identifiers greatly complicates the interpretation of

concurrent expressions, and can obscure code.,

Secona, when distributed processes are sharing an identifier, it improves locality of reference if the

binding of the identifier may also be distributed. If identifiers were able to change value, then the

binding must be centrally located, e.g. in an environment.
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The lambda expression:

(lambda (increment)
(lambda (n)
(+ increment n)))

is expressed in raw Acore as:

(:create (script ()
((:do (increment) :unserialized)
(:create (script ()
((:do (n) :unserlalized)
(+ Increment n)))))))

Figure 4-7:Expression of lambda using scripts.

Due to these problems, identifiers in Acore are referentially transparent, i.e. they do not change
value. Therefore Acore is designed to have only referentially transparent identifiers. Identifiers may
have only one value; their bindings are immutable. This imposes some constraints on the design of
Acore. There is no assignment command in Acore; Acore follows the actor model in providing state
change only through change of behavior (see the following section). Iteration must be performed
through recursion.

The benefits of referentially transparent identifiers are threefold. First, concurrent expressions
needn’t worry about the values of identifiers changing out from under them. Second, bindings of
identifiers can be freely distributed to promote parallel processing, copied into the state of the behaviors
which use them. And third, related to the second, closures over identifiers may be implemented in an
entirely local manner. Since bindings never change, each closure may keep its own copy of the binding.

The referential transparency of identifiers can also be helpful in constructing proofs about the
behavior of actors. Together with the encapsulation provided by actors, i.e. the fact that they only
respond to messages and their state cannot be accessed or modified by arbitrary agents from the outside
in any other way, referential transparency of identifiers means invariants in the behavior of actors may be
checked more easily.

Thus, referential transparency of identifiers keeps Acore consistent with the actor model concep-
tion of compuntation through distributed actors processing messages while referring only to their local
states. But if identifiers never change value, how are state changes expressed in Acore? We take up this
topic in the next section.
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4.4 State Change

Behaviors of objects in Acore are patterned after behaviors in the actor model of computation. For
example, in the actor model, the actions of the handler may be performed concurrently; the same is true
in Acore. As we've described it so far, Acore has extended the expressive power of handler bodies by
introducing ask expressions, permitting complex computations to be expressed in the body of handlers.
Thus, it should be no surprise that Acore models change of state as specificatior. of replacement be-
havior, only extended by allowing the replacement behavior to be computed using ask expressions.

The advantage of this approach to modeling change of state is that we can preserve referential
transparency of identifiers. When an actor specifies its replacement behavior, it specifies how the next
message it receives will be handled. {t specifies the script and the bindings of acquaintance names (0 be
used for processing the next message; it does not affect the bindings of names used for processing the
current message. Once the replacement behavior is specified, the next message may be processed in the
context of the new bindings.

This approach to specifying change of state syntactically sugars the common practice of assuming
the insensitive behavior. Until the replacement behavior is computed, the actor assumes the insensitive
behavior, queueing any messages it may receive. Once the replacement behavior is known, then the next
message may be processed.

(DefName simple-bank-account ; definition of a bank account behavior
(script (balance)
((:balance () :unserialized)
balance)
((:deposit (amount))
(ready (balarice (:+ balance amount)))
self)
((:withdrawal (amount))
(fet ((new-balance (:- balance amount)))
(if (:< new-balance 0)
(then (ready)
(complaint :overdraft))
(else (ready (balance new-balance))

self))))))

(DefName my-account (:create simple-bank-account 0))

; definition of a bank account

Figure 4-8:A simple bank account scripL.

For example, consider again our simple bank account, reproduced in figure 4.8, The ‘balance
handler is unserialized, so the account immediately assumes the same behavior as the replacement
behavior. The :deposit and :withdrawal handlers are serialized; the ready commands within them
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specify the binding of balance to be used in processing the next message received by the account. For
convenience (and implementation efficiency), ready commands are used when the replacement behavior
has the same script; only the values of zero or more acquaintances are changed.

(defname stack-node-behavior
(script (value next)
((:element () :unserialized)
value)
((:next () :unserialized)
next)))

(defname stack-behavior
(script (Top)
((:push (new-vaiue))
(ready (Top (:.create stack-node-behavior new-value Top)))
new-value)
((:pop ()
(if (:null? top)
(then (ready)
(error "Empty Stack!"))
(else (ready (Top (:next Top)))
(:element Top))))))

Figure 4-9:The stack behavior in Acore.

Consider now how a stack behavior may be written in Acore: see figure 4-9. Focus on the final
two lines of the stack behavior. The ready command specifies the value of the acquaintance Top for the
next message. The last line makes an :element request to the top node to reply as the value for this
request. Although these two lines are concurrent, there is no confusion conceming the value of Top in
this context since identifiers are referentially transparent. Thus, referentially transparent identifiers
afforded by this model of state change simplifies the dealing with changes of state in concurrent
processes.

In either of these examples, as soon as the ready command has been performed, the actor (the bank
account or the stack) may concurrently start processing its next message, even while it is still finishing up
the previous message. Not only is there concurrency between expressions for handling a single message,
but there may also be concurrency between handling successive messages. Thus, the replacement
behavior model of state change allows pipelining the processing of messages to an actor, easing bot-
tlenecks.

Finally, let’s take another look at the locker behavior in figure 4-10, which we’ve seen previously.
Ready commands are used when an actor keeps its current script. When it changes behavior completely
and takes on a new script, it requests the new script to :replace its old behavior with a new behavior,
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(DefName Empty-Locker
(script ()
((:store (valuables))
(let ((my-key (:create key)))
(:replace full-locker self my-key valuables)
my-key))
((:retrieve (key))
(ready)
(complaint wrong-locker))))

(DefName Key (script ()))

(DefName Full-Locker
(script (my-key valuables)
((:store (new-valuables customer))
(ready)
(complaint :full-locker))
((retrieve (customer-key))
(if (eq? customer-key my-key)
(then (:replace empty-locker self)
valuables)
(else (ready)
(complaint :wrong-key))))))

(DefName mye-locker (.create empty-locker))

Figure 4-10: A simple locker written in Acore.

initialized with the necessary acquaintances. For example, when my locker is an empty locker and
receives a :store request, it requests the full locker script guardian to replace its behavior with the full
locker script parameterized with the valuables and key as acquaintances.

4.5 Commands

Generality is one of the major goals in the design of Acore. The expression oriented context of the
handlers of scripts we've presented so far has been expressive and concise. However, not all behaviors
can be expressed in terms of expressions, where ‘‘expressions’’ are forms which return a value. In
particular, expressions cannot express handlers which do not retum a value. Such handlers occur
whenever an actor needs to queue an incoming message without processing it immediately; one example
of such a handler is in the insensitive behavior of a future (figure 4-11), an actor which buffers all
messages it receives and forwards them to another actor once the actor is known (see next section). The
one alternative in expression context is to make an ask to an actor which does not return a value, but this
just begs the question: now how can we define the behavior of that actor?
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Therefore, although expression oriented handlers will conveniently express most behaviors people
are likely to need, command context is also available in Acore for the rare cases where a value should not
be returned and therefore cannot be expressed by an expression. Command context is as well developed
as expression context: there are handlers with comimand bodies, commands for sending messages, and
commands for specifying replacement behavior. /f and /et take on command bodies when found in
command context. Ask expressions can be used computing the values of the parameters to commands,
so the expressiveness of command bodies is very similar to expression bodies — the only difference is
that command bodies don’t have a value. (See the Acore Reference Manual in Appendix C for details on
the commands available.)

For an cxample of the use of command coutext, refer to figure 4-11. Recall that the insensitive
behavior queues messages until the replacement behavior for the actor is known; it does not return values
for the requests because the messages haven’t been processed by the actor’s sensitive behavior. Thus a
future behavior is very much like an insensitive behavior. In the figure, the bodies of the is-request
handlers are command bodies; forms in these bodies are interpreted as commands and no value is
retumed. Thus, although ask expressions are used in the handler bodies, the values they return are
ignored, and no value is returned for the requests to the future; they will be returned after the message is
forwarded to the value.

(defname future-behavior
(script (Queue)
(is-request (:ready (value))
(:replace forwarding-behavior self value)
(:map queue (clambda (entry) (:forward entry value))))
(is-request (otherwise-selector (&rast parameters) :unserialized)
(:enqueue queus
(:create queue-entry
otherwise-selector parameters
sponsor customer reply-keyword)))))

Figure 4-11:An explicit representation of a future behavior,

Commands may also be found in expression context. We've already seen one command, ready, in
the handlers for the bank account behavior in figure 4-8 and the stack behavior in figure 4-9. Commands
may be used within the expression bodies of handlers and if and /et expressions as long as they aren't the
last form; the last form gives the value of the expression body. The ready commands in figures 4-8 and
4-9 precede the expression denoting the value to be returned by the expression body in which they are
found.

Commands and command context permit specification of a class behaviors which do not fit into a
strictly expression oriented syntax since they return no values. We turn now (o behaviors which return
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values before they are computed, so that computation and distribution of the value may proceed concur-
rently.

4.6 Future Concurrency: Distributing a Value Before it is Computed

By default, ask expressions in Acore are evaluated in an applicative order: first the message
selector, target, and message parameters are concurrently evaluated, then the message is sent to the target
(analogous to applying a function), and finally a value is received afier the target sends back a reply.
This imposes a sequential ordering on the control flow which, as was noted earlicr, keeps the conceptual
model of control flow simple. However, there may be times when breaking this sequentiality can be an
important extra source of concurrency.

The sequentiality of applicative order evaluation can be broken by introducing a level of indirec-
tion separating references to a value from the actual value. Once this is done, then the value may be
distributed concurrently with its computation, or even before its computation, by distributing the indirect
reference. The indirect references are represented by actors called futures; the concurrency arising from
their use is sometimes called future concurrency.

A future is a promise for a value, and a future actor promises to forward any messages it receives
to the value it represents once the value is known. Thus the behavior of future is similar to that of the
insensitive behavior, queuing messages until it knows what to do with them. Once the value is known,
the future forwards all messages it has received so far to the value, and becomes a forwarding actor
which automatically forwards to the value any further messages it receives.

4.6.1 Future and Delay

Since futures are an important source of concurrency and may be used often, Acore provides two
special expressions to facilitate using this type of concurrency: future expressions and delay expres-
sions. Both of these expressions take a single parameter, the expression for computing the value, (e.g.
(future expression) or (delay expression)) and immediately return a future for the value. The difference
is that future begins concurrently evaluating its expression immediately, whereas de/ay begins concur-
rently evaluatng its expression only upon receiving a message. Delay expressions still provide future
concurrency, since as soon as its first message is received, it starts computing the value concurrently with
any distribution which is being performed.

Since delay expressions don’t compute a value until a message is received, they provide delayed
evaluation. Delayed evaluation can be used for programming in a stream oriented style, and make it
possible to represent infinite data structures (see [Abelson and Sussman 85] for a further exposition of
this subject).

Using futures does not always increase the concurrency of a program, and in fact increases the
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overhead to run the program, since the future must be created and any messages it receives must be
queued and forwarded. Consider the two functions in figure 4-12. For clarity, we've introduced
DefFunction and Cond* forms which aren't primitives of Acore but can easily be written as a macros.
DefFunction defines a name to be a function actor, and Cond* is a multi-branch conditional which tests
its branches sequentially.

(DefFunction CopyTree (node)
(if (:null? node)
(then node)
(else (cons (future (copytree (:car node)))
(future (copytree (:cdr node)))))))

(DefFunction RangeProduct (lo hi)

(cond* ((:= lo hi)
lo)
((:=1o (:+ hi 1))
(:* 1o hi))
(else
(let ((average (:tloor (/ (:+ lo hi) 2)})))

(:* (future (rangeproduct lo average))
(future (rangeproduct (:+ 1 average) hi)))))))

Figure 4-12:Use of Futures: RangeProduct vs. CopyTree

Both functions are doubly recursive and *‘futurize’’ the recursive calls. Since cons does not need
to send any messages to its parameters, CopyTree takes advantage of the future concurrency by overlap-
ping copying of the two subtrees with returning a value, which may be further distributed or stored in a
structure. On the other hand, RangeProduct immediately sends one of the futures a :* message, and in
order to do the multiplication both values need to be computed. Neither of the values are distributed
anywhere else, so futurizing is not beneficial in this case.

4.6.2 Other uses for Futures

Sometimes it is necessary to provide indirection for other reasons, for example, to define muiually
recursive definitions. In this case it is necessary to create a future without specifying what its value will
eventually be. This can be expressed in Acore by giving future no parameters, as in (future). Since a
future behaves like an actor with the insensitive behavior, the replacement behavior of a future specified
in this manner can be specified by sending a :replace message to a script. A future normally becomes a
forwarding actor, so the common case is to send such a message to the forwarding script.

For example, a LetRec which allows recursive definitions in its bindings may be implemented as
in figure 4-13. In implementation using futures, first the names are given values as undefined futures,
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This recursive let form defines two circular lists:

(LetRec ((A (cons 1 B))

(B (cons -1 A))

(C (cons 0QC)))
..body...)

and may be implemented (e.g. via macro) using indirection:

(Let ((A (future))
(B (future))
(C (future)))
(:replace forwarding-script A (cons 1 B))
(:replace forwarding-script B (cons -1 A))
(:replace forwarding-script C (cons 0 C))
...body...)

Figure 4-13:Implementation of a Recursive Let using futures.

then the futures become forwarding actors to the actual definitions. Note that the form

(:replace forwarding-script C (cons 0 C))
causes C, a future, to become a forwarding actor to the cons cell returned from (cons 0 C), producing an
actor which behaves like a circular list of zeros.

4.6.3 Forwarding Issues

The rangeproduct example brings up an issue in designing a language with futures and indirect
references such as forwarding actors. How should we think of futures? Does the future become the
value, or is the forwarding actor visible to the programmer? This issue is tightly connected with
implementation strategies for the language.

From a purely message passing point of view, the forwarding actor is equivalent to the value —
sending a message to either one has exactly the same effects and produces the same results. However,
there are two types of situations where the message passing view isn't enough: places where the
reference itself is important,

One place is in the implementation of actors like small integers: since numbers are unserialized,
for efficiency they are represented so they can be recognized by the reference itself. Arithmetic on
numbers is then a matter of examining the reference and computing a new reference, so a number which
receives the :* message can compute the reply by examining the references of itself and the message
parameters, However, this representation scheme breaks down if the parameters may be futures or
forwarding actors.
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We can solve this problem by setting up an appropriate protocol in one of several ways. For binary
operations (e.g. division), one possibility is to make use of the fact that in the script which takes care of
the operation (e.g. the integer script) the recipient of the message can never be a forwarding actor —
otherwise the script wouldn't have been invoked. Therefore, if the parameter turns out not to be of the
expected type (e.g. an integer), then a reversed message may be sent to the parameter. If the reversed
message fails, then there is a runtime type mismatch and an error is signalled.

For example, if we send the message (/ (future 6) (future 2)) the target is <future 6>. The
message may sit in the future’s queue for a (short) while, but eventually it will be forwarded to 6. 6
rececives the :/ message with parameter <future 2>. Upon inspecting the reference to the parameter, 6
finds it is not a number, and so it sends the reversed message to the parameter; (:/-reversed <future 2>
6). Eventually 2 receives the reversed message with parameter 6 and calculates 6/2, replying the value
3.

The other possible protocol is more general but requires more message passing and continuation
creation. Arrange for every actor to respond with itself up receiving a special message, say the :self
message, except for futures and forwarding actors. Then to calculate (:/ (future 6) (future 2)), when 6
receives the :/ message with the parameter <future 2> and finds the parameter is not a number, it sends
(:self <future 2>). Since all futures and forwarding actors do not answer the self message but forward it
on, the value of this expression cannot be a future or a forwarding actor, so if it is not the expected kind
of reference (e.g. a number), then it must be an error.

The second type of situation where message passing equivalence breaks down is where references
to actors are being compared, for example when testing an actor for membership in a set, or simply
testing if a boolean value is false in a conditional. In this case, without futures or forwarding actors no
message passing is necessary, whereas if there is a future or a forwarding actor, then something like the
:self protocol sketched above must be followed. Actors could try testing for identity first before going
through the :self protocol, but note that most comparisons, especially in the membership example, will be
failures, so this will not alleviate the problem much. Therefore it is to the programmer’s advantage to
know when forwarded values are not being used; in this case the much more efficient direct comparison
may be made. '

People who are familiar with forwarding pointers in traditional sequential architectures may
wonder why I am laboring over the indirection problem. In sequential processors (e.g. a Lisp Machine
[Moon 85], [Moon 84]) the forwarding pointer is tagged as such and the hardware follows the indirec-
tion whenever it is encountered. However, there are several differences in a distributed architecture.
First, there is more overhead in following the forwarding — the forwarding actor and the value to which
it forwards may be spread out across the network, and message passing is required to follow the
forwarding. Second, forwarding actors in active use may not be in fast local memory as often, since they
may also be frequently referenced by another processor. Therefore, since the overhead of forwarding is
greater, the advantage of not going through the protocol of following it is greater as well.
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One technique which may help the problem is to tag references to futures and forwarding actors
(not just the actors themselves) and invoke the :self protocol only on these references. However, since
actors may specify arbitrary replacement behaviors, any actor could conceivably hecome a forwarding
actor, especially in long-lived systems which need 0 be paiched. Therefore either many other aclors
would also have o be so tagged, defeating the gain in efficiency, or limit the actors which can become
fully equivalent to other actors to the system defined futures and forwarding actors. The choice in this
case seems to be a philosophical issue — is it belter 1o sick with a clean semantics clearly corresponding
to the actor theory, or is it worth sacrificing the clean semantics for more efficiency?

In light of the facts that such hardware assistance doesn't yet exist (though it could be implemenied
in software) and that Acore is a core language for experimentation with language design, | have taken the
conservative position of sticking to the clean semantics. Therefore, there is a predicale in Acore by
which a reference to a forwarding actor may be distinguished from a reference 1o the value 1o which it
forwards; this predicate reflects the primitive capability of actors to compare references. However, it is
possible fcr some language which is built from Acore w0 choose to hide or at least discourage use of this
predicate.

One final point: an argument may be made that a predicate which compares only references is
necessary o ensure the robustness of some kinds of programs, especially system level code. The :self
protocol depends upon the integrity of the actors, so code which uses it can be broken simply by an actor
which doesn’t return self, or even worse, a future which never receives its value — a possibility now that
we’ve introduced behaviors which needn’t return a value in the previous section. Therefore there will
always be some level which needs this primitive predicate.

In pursuing the goal of being able to express many kinds of concurrent processes, I've introduced
ways of describing behaviors which return no value in the previous section. In this section I've intro-
duced future and delay as the means of expressing future concurrency and, in the case of delay, delayed
evaluation. I've also discussed the issues which arise from the forwarding necessary for future concur-
rency, and concluded that it is better to stick with the theoretical semantics and keep the primitive
predicate for comparing references. Next we proceed into the least charted waters of all, the subject of
expressing competitive concurrency.

4.7 Competitive Concurrency

Generality in being able to express many kinds of concurrent processes is a major goal of Acore.
One class of concurrent processes not addressed by many concurrent languages is those with competitive
concurrency, where the order of results returned from subprocesses may be important.

Competitive concurrency can be used in many forms. A few examples of some obvious forms: a
concurrent or (or and) sxpression which returns true (false) immediately after one of its subexpressions
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returns true (false); a concurrent conditional which selects the branch of the first test to retum wue; a
expression which returns the list of the values of subexpressions in the order that they were received,; eic.
The conditional forms are especially useful in conjunction with a timer for timing out when something
starts taking too much time or no answer is received. There are other useful forms as well, so the
challenge in the design of a core language such as Acore is to find a form which may be used to program
the other forms.

If a good primitive form of competitive concurrency may be expressed in Acore, experimentation
with other forms is possible. For example, a concurrent or, and, or concurrent conditional is not
primitive because it throws away values. Acore instead provides the race expression which evaluates its
subexpressions concurrently and retums a queue of the values retumed. The queue is returned im-
mediately, and values are added to the queue as they are retumed, so they may be read from the queue as
soon as they are received. The queue behaves as a list, all or any tail of which mey be a future
representing the list of values not yet retumed; when the final value is returmed, the list will be terminated
with nil like all lists.

The syntax of the race expression is as follows:
(race exprl expr2...)

Since race is a special form, it is not as general as possible; for example, it is not useful for
concurrently searching a database and queuing all entries found to pass some filter. This type of situation
may be better expressed by introducing an explicit queue and making requests to enqueue answers into it.
However, race is very useful for writing macros, such as for the example in figure 4-14.

This implementation of a parallel cond using race and delay works as follows. Each of the Lests
is evaluated concurrently. If the test retums nil (false), then nil is returned 10 the race; otherwise, the
delayed body corresponding to the branch is returned. First-one finds the first non-nil vaiue in queue
returned from race; this will be the delayed branch of the first test to complete and retumn true. (Note that
this implementation depends on being the delayed branch not being equivalent to nil - - it is testing the
reference to the branch without invoking the delay and causing it to be evaluated.) If no tests retumn true,
then the delayed else-branch is retumed. Finally, a :self message is sent to the delayed branch, causing it
to be evaluated and retumning its value.

Similarly, a parallel or which returns the first non-nil value may be implemented cs in figure 4-15.

I am not proposing that these are the best ways 1o implement these forms. These examples are
meant only to help illustrate the utility of the race expression defining and experimenting with in less
trivial control structures using compeltitive concurrency.

Parallel cond and parallel or point out a possible optimization which can be made in many
instances of competitive concurrency’ once the first successful value is known, the others are no longer
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A parallel COND such as:

(cond (test] bodyl...)
(test2 body2...)

(test3 body3...)
(else else-body...))

may be implemented (via macro) as:

(:self (first-one
(race (if test]
(then (dalay (let () bodyl...)))
(else nil))
(if test2
(then (delay (let () body2...)))
(else nil))
(iftest3
(then (delay (iet () body3...)))
(else nil)))
(delay (let () else-body...))))

where first-one is:

(DefFunction First-One (possibilities default)
(/f (:null possibilities)

(then default)

(else (lat ((possibility (:car possibilities))
(remaining-possibilities (:cdr possibilities)))

(if possibllity
(then possibility)
(else (first-one remaining-possibilities
default)))))))

Figure 4-14:Possible implementation of parallel cond using race and delay.

needed. Therefore it is possible to conserve resources if the the unneeded computations may be stopped.
This brings up the an important aspect of competitive concurrency: the control of resources distributed
between competing processes, especially processor time. This is the subject of the following section.

4.8 Sponsorship
Competitive concurrency can often be tuned though control over the progress of the competing

processes. In this section I discuss the nature of the control needed, and introduce sponsorc as a
mechanism for achieving this control in Acore. Finally, an example illustrates how the metnod is

expressed in Acore.
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A parallel OR such as:
(or testl tesi2 test3)

may be implemenied (via macro) as:

(first-one (race testl test2 test3)
nil)

Figure 4-15:Possible implementation of a parallel or using race.

Competitive concurrency is primarily concemed with improving response time. It is used in
situations where trying several approaches concurrently may produce answers or partial results faster
than running them sequentially. Given such goals, it is important to be able to control the resource use of
the competitive processes, so that useless or unpromising, possibly non-terminating subprocesses don'l
squander large processing resources, slowing down other processes and defeating the goal of improving
response time. The challenge in the design of Acore is to find a general method to control concurrent
processes which will serve as the foundation for experimentation with process management in the
applications written in Acore.

The approach taken in traditional operating systems of giving priorities to processes is not ap-
plicable to actor computations because there are no structures representing processes. The closest thing

to a process is a message, but messages multiply in vast numbers and are short lived, quickly processed
and gone.

Another approach is to associate control with the actors involved. However, this approach divides
the problem along the wrong dimension — many actors may be shared between concurrent processes.

Also, a large number of actors may be involved in any one (sub)process, so it is difficult to organize
control over them all.

The idea of a concurrent process in actor systems is not so much concemed with the actors
involved with the process as it is with the flow of control. Most actor computations can he characierized
as transactions:> a request is made to an actor, which may spawn many subtransactions, may cause some
effects, and may finally return a value. A transaction may be loosely defined as a request and any
processing it causes to produce the response. This definition is loose because transactions inay interact,
and some processing may be shared between several transactions (shared subtasks), or it may necessary

3For lack of a better term, we use the word *‘transaction’’ to loosely mean a request and any processing it causes 1y produce the
response. This is roughly related, but not identical, 1o definitions of transactions used in other areas of compter science, such as
for transaction processing in shared databases.
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for many transactions but not clearly part of any one transaction (overhead).

As a result of this view, the approach taken in the design of Acore is to permit programs to manage
processes in terms of transactions. Transactions consume resources, especially processing resources;
theretore one way to manage processes is (o control the amount of processing they use. In Acore, the
ma: agers are actors called sponsors, and the resource is processing ticks. Ticks are units of processing
time corresponding to transactions; one tick is charged for every transaction. Transactions have subtran-
sactions which are charged for as well, so this aniounts to charging one tick for every request.

Therefore, every transaction must have a sponsor, and this sponsor is carried in the request.
Conceptually, every time the system delivers and processes a request, it charges a tick to the sponsor of
the request. If the sponsor runs out of ticks, it may, depending on the management structure of which it
is a part, request more ticks from a parent sponsor. If no more ticks are available, then the transaction
must be srifled. Stifling invokes the exception handling mechanism of the transaction — exception
handling is very important for cleaning up stifled transactions, and will be discussed in the next section.
At the very least, the exception handling for a transaction should release any insensitive actors which are
awaiting the result of the transaction in order to determine their next behavior; usually the easiest thing o
do is revert back to the previous behavior. The system charges only for the requestis so that an excep-
tional response may be returned even if sponsorship has been depleted.

Sponsorship becomes an important consideration primarily when considering strategies for con-
trolling competitive processes, but it is also important for controlling programs which may get into
infinite computations. Since any code may be invoked from a competinve process, sponsors must be
pervasive. Yet, since sponsorship is not an important part of specifying many procedures and algorithms,
it should have a low or invisible profile in code which does not use it This is achieved in Acore by
controlling the sponsors"ip of ask expressions, the primary means of expressing transactions, implicitly
by cont.xt. The success of the resulting invisibly low mofile is evident from the lack of any sign of
sponsors in the Acore code presented thus far.

The sponsor of any ask expression in the handler of a behavior defaults 1o the sponsor of the
incoming request. Thus, subtransactions are defaultly sponsored by sponsor of the parent transaction.
To specify another sponsor, the with-sponsor form is available:

(with-sponsor sponsor

body...)
The forms wrapped in the with-sponsor form are evaluated with the actor specified as sponsor as their
sponsor (unless, they are wrapped in a nested with-sponsor form, of course). By default, the incoming
sponsor is bound to the identifier SPONSOr in the same way that the target actors is bound to self.

Using with-sponsor, we can optimize a parallel Or by stifling sponsorship once the value has been
determined, as in figure 4-16. Note that arbitrary stifling in this manner is not always safe; if the test
expressions invoke transactions which are not prepared to be stifled, then stifling those transactions may
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(/et ((new-sponsor (make-simple-sponsor-script
Sponsaor ;; parent sponsor
1000))) .. initial number of ticks
(/et ((value (with-sponsor new-sponsor
(or test] ;; parallel or
test2
test3))))
(:stifle new-sponsor)
body using value...))

Figure 4-16:Using a parallel or with stifling.

produce problems. In many cases, however, the parameters to Or are predicates of some sort or another
which do not have side effects and may be safely stifled.

Sponsors are actors like any other, and the power of the sponsorship mechanism comes from being
able to specify the behavior of the sponsors used to manage a transaction. For example, the simple
sponsor created in figure 4-16 might have the behavior shown in figure 4-17.

Sponsors may have more complex behaviors, and may interact with the rest of the program in other
ways. For example, a sponsor may receive progress reports of partial results from the sponsored
transactions to help it. decide how to focus efforts on the most productive techniques. A sponsor for a
shared subtask may have several parent sponsors from which to ask for more resources, corresponding o
the transactions needing the results of the subtask. These examples are just a few ideas to illustrate the
wide possibilities in management structure possible with sponsors of arbitrary behavior.

To sum up: The sponsorship mechanism of Acore provides a way of controlling competitive
concurrent subprocesses. Sponsorship is specified in terms of transactions to tie it to the flow of control
within concurrent processes. Sponsorship is managed through sponsors who control the allocation of
ticks charged for each transaction. An integral part of sponsorship is the stifling of transactions when
sponsorship ceases, but in order to stifle transactions without leaving inconsistencies we need a clean
way of handling exceptions. This is the subject of the next section.

4.9 Complaint Handling

Competitive concurrency introduces the need to stifle subprocesses, which in turn requires good
exception handling to clean up uncompleted transactions. In this section I will discuss the question as to
what model of exception handling Acore should follow, what is provided, and what directions are left
open for further development once experience shows need for stronger capabilities.
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(DefName Simple-Sponsor-Script
(script (parent-sponsar tick-supply stifled?)
((:stifle ()) ;: Request to stop sponsorship
(cond ((:> tick-supply 0)
(:excess-sponsor-ticks parent-sponsor tick-supply)))
(ready (tick-supply 0) (stifled? T))
":stifled)
((:more-sponsor-ticks (max-allowed)) .+ Request from system for ticks
(with-sponsor parent-sponsor
(cond (stifled? (ready)
(complaint :sponsorship-denied))
((:<= max-allowed tick-supply)
(ready (tick-supply (:- tick-supply max-allowed)))
max-allowed)
((:> tick-supply 0)
(ready (tick-supply 0))
tick-supply)
(else
(let-except ((new-supply (:more-sponsor-ticks parent-sponsor 1000)))
(except-when
((:sponsorship-denied (V)
(ready)
(:stifle self)
(complaint :sponsorship-denied)))
(if (:<= max-allowed new-supply)
(then (ready (tick-supply (:- new-supply max-alicwed)))
max-allowed)
(else (ready (tick-supply 0))
new-supply)))))))
((:excess-sponsor-ticks (returned-ticks)) ., System returned ticks
(if stifled?
(then (ready)
(:excess-sponsor-ticks parent-sponsor returned-ticks))
(else (ready (tick-supply (:+ tick-supply returned-ticks)))
"done)))))

(DefFunction Make-Simple-Sponsor (parent-sponsor initial-ticks-desired)
(let-exceopt ((granted-ticks
(:more-sponsor-ticks parent-sponsor initial-ticks-desired)))
(except-when
((:sponsorship-denied ())
(complaint :sponsorship-denied)))
(.create simple-sponsor-behavior
parent-sponsor granted-ticks nil))))

Figure 4-17: A simple sponsor.
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By itself, transaction stifling requires an exception handling mechanism which just deals with
aborting transactions. The primary concern is to provide a way for ensuring that actors which become
insensitive while calculating their replacement behaviors aren’t left insensitive forever just because a
transaction was stifled; they should be reverted back to their previous state so subsequent messages may
be processed. Therefore a model of exception handling which deals with exceptions only as errors is
unacceptable.

Instead, Acore uses a model of exceptions as an alternative form of response. Normal responses
are replies; exceptional responses are complaints. Normal responses provide values to expressions;
complaints invoke the exception handling mechanism. By default, a handler with an expression body
forwards the complaint on as the response to the outer transaction. In this way stifled transactions are
closed off with a complaint, and each exception handler gets a chance to perform any cleanup necessary,
e.g. readying insensitive actors.

Complaint handling must be specific to the location in the program where the complaint occurs.
For example, if an exception occurs while computing the replacement behavior of an insensitive actor,
then the actor needs to be readyed, reverting back to its previous behavior, But once the replacement
behavior has been computed, readying would specily a second replacement behavior, producing an
erroneous situation. Since the replacement behavior may have several parameters which are computed
separately, this situation leads to a form of exception handling probably peculiar to Acore: let-except.
Let-except statements have the following form:

(Let-except (let-bindings ...)
(except-when
((complaint-keyword (complaint-parameters))
handler-body)
...more complaint handlers...)
let-except body...)

Let-except works just as a normal Let does when there are no exceptions — the expressions for
the bindings are concarrently evaluated and the values are bound to the identifiers, and then the body of
the /et-except is evaluated in the environment extended by the bindings. However, if one of the
expressions in the let-bindings produces a complaint, the complaint is routed to one of the handlers and
the value of the let-except is the value rcturned by that handler; the /et-except body is not evaluatew.

For example, consider the bank account record in figure 4-18. Here the reason for the /et-except
syntax becomes more apparent. If an exception occurs in calculating the parameters to the replacement
behavior, e.g. the new-balance and new-interest-to-date, then the ready in the /et-except body
cannot be performed, and the insensitive bank account must be reverted back to its previous behavior.
On the other hand, if these parameters are successfully calculated, then the ready in the /at-excapt body
can be performed, and therefore it is an error to try to specify a second replacement behavior to revert the
insensitive bank account back to its previous behavior.
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(defname bank-account-sctipt
(script (balance interest-to-date)
...(other handlers omitted)...
((:add-interest (interest-amount))
(let-except
((new-balance (:+ interest-amount balance))
(new-interest-to-date
(:+ interest-amount interest-to-date)))
(except-when
((some-exception (&rest parms))
(ready) ., revert to previcus behavior
(complaint* some-exception parms)))
(ready (balance new-balance)
(interest-to-date new-interest-do-date))
(make-interest-receipt self interest-amount
new-interest-to-date)))))

Figure 4-18:Example of Let-Except: adding interest to an account.

Traditional exception handling forms allow programs to wrap exception handling around an ex-
pression or a body of forms; however, to use that form here we would have to either wrap the entire /et or
we would have to wrap the expressions in the bindings. If we wrap the entire let in an exception
handling form, then the exception handler will specify the previous behavior whenever there is an
exception anywhere within the /ef, including the body. Thus the exception handler has no way of
distinguishing whether the exception occurred in the arms or within the body, and can't tcll whether it
should specify a replacement behavior. If we wrap the expressions within the bindings, then the excep-
tion handling must be duplicated for each expression. For these reasons, the /et-except form has been
introduced in Acore.

However, lot-except is not the most convenient form for use in many situations. For example, o
use it in command context the programmer must pull the parameters of the commard out into the arms of
a /et As ] tried to argue in the above paragraph, a form for simply wrapping other forms is often not the
right thing, especially when applied to a /et with several forms in its body. However, such a form can be
useful for wrapping a single command. Complaint handling in Acore is still an area of ongoing research,
so additions and changes are possible as we search for practical and elegant solutions. Some more issues
are outlined below.

Complaints and /et-except provide a way o specify complaint handling for aborted transactions,
but there are other types of exceptions. For some types of exceptions there are often several ways o
proceed, in different contexts, a different method of handling the exception may be appropriate. For
example, in some cases a divide by zero exception inside a panicular mathematical function should be
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treated as an error — no zeros are expected in the input. In other situations, the zero should be treated as
an approximation of an infinitesimal, and an approximation of infinity should be returned as the result of
the division. Another example is dealing with outside peripherals and sensors — in some cases,
exceptional conditions can just be treated as noise in the input, whereas in other cases where the
information is more important a retry may be necessary.

The current exception handling mechanism makes no provision for choosing different ways of
proceeding other than to write different versions of the same code or to indicate which way of proceeding
is desired through an additional parameter. Complaints and complaint handling provide a mechanism for
expressing exception handling in the case where the transaction must be aborted; this will serve as a
starting point for experimenting with stifling transactions. Acore will have to be extended when it
becomes apparent that this limitation is a problem and a clear mechanism for solving it is developed.

4.10 Top Level Naming and Modules

Acore is designed as a language for experimentation, in particular for experimenting with concur-
rent languages based on the actor model of computation. Since it will be used largely for exploring
program design, it should provide a form which promotes incremental tinkering with programs, a form
which permits incremental compiling or interpretation. In this section I discuss the nature of top level
names and the issues behind their design to motivate the forms of Acore which define top level names
and their scope.

4.10.1 DefName

To support incremental development, Acore includes a level of indirection for top level names.
The DefName form, for example:

(DefName my-account (.create account-script ...))
associates with the name my-account a forwarding actor which forwards messages to the actor returned
by the expression. This association is stored in a top level environment called the loader table. Any free
identifiers in the expression, such as account-script in the example, are looked up in the loader table.
The loader table is named such because references are looked up only when actors are loaded into the
system or defined; it could be a bottleneck if it was consulted during run time,

The level of indirection supplied by the forwarding actor provides two capabilities: the ability o
make forward references, and thus allowing mutually recursive definitions, and the ability 1o make
incremental changes without relinking all the programs which use the change. For the purposes of
mutually recursive definitions, it is possible to think of all the top level DefName definitions as making
up one big LetRec like in figure 4-13. However, top level forwarding actors may also be sent a special
message to change their forwarding address, so that developers can experiment with new definitions
without recompiling or linking all the code which uses those definitions. For example, I could change
the definition of my-account above, and recompile the new definition without having to worry about
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relinking all the programs which use my-account. This can especially be a timesaver when the name is
widely used in a program, and is part of what makes Lisp systems a good prototyping environment.

This capability to change forwarding is available only of top-level forwarding actors, not of the
forwarding behaviors which futures take on after their value has been computed. This capability is
intended only for use while developing programs, not by running programs, though certain systems
functions such as interpreters may need to make use of it. Unchangeable definitions can be made by the
defequate form, which I discuss next.

4.10.2 DefEquate

As discussed in section 4.6.3 there are situations where the forwarding actor is not entirely equiv-
alent to the actor to which it forwards. Therefore on occasion it becomes necessary or desirable to define
a top level name without the indirection; for this the DefEquate form is provided, e.g.:

(DefEquate pl 3.141592653589793)
Since no indirection is used between the name and the definition, the advantages of the indirection are
lost. In particular, no forward references may be made to a name defined with defequate, and if the
name is redefined, any code which uses it must be reloaded.

One consequence of this is that any definitions defined with defname may be loaded concurrently,
while definitions defined with defequate must be loaded before any definitions which refer to them,

4.10.3 DefModule

While designing and developing a system of actors, many actors may be defined at top level, but
only some of them should be accessible outside the system. This especially becomes a problem for
guaranteeing small interfaces between modules in developing large systems, but is also a problem for
hiding names in modules generated by macros.

Acore already includes two forms which may be used to encapsulate names in a system into a local
scope: letand script. These can be used in conjunction with defname to define a system of actors with
hidden names inside it. Mutually recursive definitions can be defined using the LetRec of figure 4-13,
so for example a quicksort module could be defined as:

(defname quicksort
(letrec ((quicksort ...)
(partition ...))
quicksort))

However, these forms fall short of addressing the problem of top level names by making it awkward to
define systems with more than one interface, i.e. to express systems which define more than one name at
top level.

To address this probleri, Acore provides the DefModule form for limiting the scope of top level
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names. DefModule has the following syntax:

(DefModule module-name (exported names...)
definitions...)

and is used as follows:

(DefModule quicksort-module (quicksort)
(DefName quicksort ...)
(DefName partition ...))

The module definition consists of the module name, a list of exported names, and the definitions.
The module name is currently ignored; in the future it may be used to organize libraries or locate source
code. The list of exported names are the top level names defined within the module which are visible in
the context outside the module. The advantage of defmodule is that this may be a list, so that several
names may be exported. The names defined in the body of the defmodule are visible only by other
definitions within the body; unless they are exported, they are not visible outside the module. Thus, in
the example above, only quicksort is visible outside the module, while partition is only visible inside the
module.

Top level naming in Acore is designed to permit incremental development and modification of
systems, necessary for promoting fast prototyping of experimental systems. DefModule provides a
facility for encapsulating names intemal to systems so the interface to modules which have been
developed can be restricted. This encapsulation of names also applies to names of syntactic abstractions
introduced with the macro facility, which is described next.

4.11 The Macro Facility

The final important aspect of the design of Acore I will discuss in this chapter is the macro facility.
Acore is designed as a foundation for experimentation with the design a class of concurrent languages, so
it is important to be able make syntactic as well as behavioral abstractions.

The uniform, fully parenthesized syntax of Acore is well suited for defining extensions to the
syntax of the language. Since the parsing of all forms is defined in advance, adding syntactic extensions
to the language which conform to this is very easy; Lisp programmes use this to advantage. However,
the macro expansion facility of Lisp is not entirely suited for experimenting with, extending, and chang-
ing the semantics of a language. In particular, the syntax of special forms is coded into the mac-
roexpander, so it is difficult to specify special processing for syntactic extensions (basically it requircs
redefining the macroexpander). Also, because of this special processing it doesn’t provide a clean
method for redefining special forms, nor does it provide a simple hook for redefining the semantics of
identifier lookup or simple applications. Therefore, another approach is required.

The approach taken in Acore is largely based on the ‘‘expansion passing style’' proposed in
[Dybvig et al. 84], so I won’t gone into great detail here. I will outline this macro mechanisin, point out
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its strengths, and explain the extensions to it made in Acore.

4.11.1 ““Traditional’’ Macros

The basic strategy of traditional (defmacro style) Lisp macros is to recursively walk over a form,
copying it and replacing any macro form, a form which starts with a symbol which has a macro
definition, with its macroexpansion obtained by applying the macro function to the form. If any mac-
roexpansions were made, then once this is done the macroexpander starts over and does it again, until no
more macroexpansions are made, indicating that no macro forms remain. It avoids macro expanding
special syntactic forms such as the parameter list of a lambda by recognizing processing special forms
and processing them specially.

4.11.2 Expansion Passing Style Macros

The basic strategy of expansion passing style macros is to apply a general macroexpansion
function to a form once. The macro expansion function looks at the form and calls the appropriate
expander function for that form, whether it has a macro definition, or is a simple application, or is an
identifier. It does not attempt to expand subforms; that is the job of the expander for that form. It passes
another argument to the expander function, the macroexpansion function to be used to expand the
subforms.

The form specific expander function may process the form any way it wants, but it is responsible
for ensuring that the form that it returns is valid code without any macros which need expansion. In most
cases this requires at least applying the macroexpansion function to the subforms; this is what the default
expander for applications does. Sometimes it is sufficient just to return the form as it stands; this is what
the default expander for identifiers does.

All capabilities of traditional style macros can be expressed using expansion style macros. As the
authors show in their paper [Dybvig et al. 84], defmacro style macros can be defined by defining
expanders which call the passed macroexpansion function on the entire form returned. The idea is that

(defmacro name args

body)

becomes

(defexpander name (form expander)
(expander (apply (lambda args body) form) expander))

though this could be done in a way so the destructuring of form is performed explicitly rather than by
using apply. Also, performing one step of the expansion for debugging can be accomplished simply be
passing a macroexpansion function which does no further expansion, €.g.

(defun expand-once (form)
(initial-expander form (lambda (subform expander) subform)))

The advantages of the expansion passing style arise when defining new forms with special syntax
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and for redefining language forms. Special forms in the language must have expanders defined which
take care of expanding any subforms which need expanding; for example, the expander for lambda
should expand the lambda body but leave the parameter list untouched. Since new expanders also have
complete control over which subexpressions are expanded, defining new special syntax is no problem.
Since the form retumned by an expander is not re-expanded, it is possible to define macros which change
the semantics of language forms by redefining the new form in terms of the old form; with traditional
macroexpansion defining a macro in terms of itself always results in an infinite loop.

Using the ability to redefine the application expander and the identifier expander, it is possible to
radically redefine the semantics. For example, in the paper [Dybvig et al. 84] the authors demonstrate
how to give Lisp a call by name semantics using this technique.

4.11.3 Acore Macros

Acore macros provide the same capabilities as the expansion passing style macros. However, [
have modified the implementation to correct the scoping of macro names according to the syntax of
Acore.

In the traditional implementation of macros as well as the expansion passing style implementation,
macros are stored as global properties of the symbols. However, in Acore, top level names may have
limited scope within modules; therefore a global table is not the best implementation. Instead, Acore
stores macro definitions in a macro environment, and frames are pushed on this environment upon
entering modules. The environment is passed as an additional argument to the expander functions, which
can then use it to look up macros. Macro definitions are just macros which store an expander function in
the environment.

One advantage of expansion passing style perhaps missed by the authors of the paper is that it can
be used to protect locally bound names from erroneous macro expansion. Locally bound names, such as
the parameters to a lambda or the identifiers bound in a /et, should not be subject to macroexpansion
within the scope of their binding. For example, the following code should not change meaning just
because someone later decides to name a macro par:

(lambda (par)
(parxy))

The technique used by the Acore macro facility is to define the macro expander for forms which
bind names (e.g. lambda) in such a way that within the scope of those names (e.g. the body of the
lambda) any forms bzginning with the bound name are treated as normal applications expanded by the
application expander. One way to do this is to locally define the name as a macro whose macro expander
is the application macro expander; this guarantees that it will be treated as an application. Thus, in the
above example, within the body of the lambda, par is defined to be macro with an expander which
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behaves identically to the application expander.4

Two predefined macros serve as the means of defining expanders.

(DefExpander name (macro-environment nexi-expander form) body...)
(DefMacro name (macro-parameters...) body...)

DefExpander is the general form for defining expansion passing style macros. Macro-environmeni is
the environment described above; next-expander is the macroexpansion function for further expansion;
form is the source form to be expanded. DafMacro is a simpler form which can be used for defining
macros in the traditional style; we saw how this can be done using expansion passing macros. Currently
the Acore compiler is written in Lisp, so the macro bodies are Lisp forms for dealing with the source
code in terms of Lisp list structure. Two examples of Acore macros are shown in figure 4-19.

(DefMacro Lambda (parameters &rest body)
‘(:create (script ()
((:do ,parameters :unserialized)
@body))))

(DefExpander With-Futures (env expander form)
;. wraps (future ...) around every ask expression in form
(let ((local-env
(install-expander
":application-expander
(lambda (env expander form)
‘(future ,(map-expander expander env form)))
(push-macro-environment-frame env)))
(body (cdr form)))
(if (cdr body) ,, if muliiple forms in body, wrap (let ()...) around them
‘(let () @(map-expander expander locai-env body))
(expander local-env expander (car body)))))

Figure 4-19:Example expanders: Lambda, With-Futures

The lambda macro defines lambda in terms of Acore primitives; it expands into a form which
creates an instance of an anonymous unserialized function behavior. With-Futures is a macro which
wraps around a body; it redefines the application expander within the context of the body so that all
applications within the body are evaluated eagerly.

Acore macros thus provide a flexible facility for introducing syntactic abstractions into Acore,
including abstractions which change the semantics of the existing language. The ability to change the
semantics of applicadions (ask expressions) is especially interesting, and I'm sure people will try using it

“Actually, since looking up macros is faster than building a new macro frame environment in the current implementation, the
macroexpander only shadows definitions for names which actually do conflict with a macro name.
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with delay and future to experiment with dclayed and eager evaluation strategies.

4.12 Summary

Acore has been designed with several major goals in mind. In this chapter some of the issucs
concerning designing a language with those goals have been raised, and the solutions provided by the
design of Acore have been discussed. Some of those issues and solutions are:

e Procedures using cooperative concurrency in a divide and conquer manner are easily ¢x-
pressed by the expression oriented syntax of Acore.

o Script expressions express behavioral abstraction, combining thc closures of finction
oriented languages with the message passing interface of object oriented ones.

® Referential transparency of identifiers in Acore keeps the semantics of the ex)ression
oriented syntax simple even with concurrent evaluation,

» The actor model of state change through replacement behavior preserves referential trans-
parency of identifiers despite state change since a new set of identfiers is bound for cach
message.

¢ Commands and command context provides the ability to express behaviors which do not
return values.

¢ Futures provide a level of indirection which can be used 10 implement future concurrency,
delayed evaluation, and mutually recursive definitions. However, this level of indirection
doesn’t come for free; forwarding actors are distinguishable from their forwardees in con-
texts where not only are messages sent to references, but references themselves are com-

pared.

e The race expression provides a way of expiessing competitive concumency, retuming a
queue of the values in the order retumed. It is not completely general, but its form is highly
useful for expressing common static competitions through macros. Explicit queues can be
used for more dynamic situations.

* Acore meets the problem of controlling competitive subprocesses by controlling the process-
ing used by transactions through a sponsorship metaphor. Sponsors are actors who may
have arbitrary behaviors, permitting many possible management structures.

o Stifling unneeded transactions brings up the problem of cleanly aborting transactions. Acore
addresses this point by returning con:plaints in place of values for stifled transactions, and
providing the means of providing cleanup processing upon receiving a complaint through
let-except. However, this mechanism will probably need to be extended to provide full
exception handling.

e Acore provides a programming environment for incremental development through indirec-
tion of top level names. It also provides a mechanism for narrowing the visible interface of
modules by controlling the scope of their top level names with defmodule.

¢ Finally, Acore provides a flexible macro facility which allows redefining the semantics of
existing forms, including semantics of application (ask expressions) and identifiers, increas-
ing the opportunities for language experimentation. The macro facility also preserves the
lexical scoping of local names.

With the design of Acore in mind, we can now take a look how it may be implemented and
compiled.
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Part I1II

Compiling Acore
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Chapter Five

Introduction to Implementation

We now tumn to the implementation of Acore, in particular the implementation of its compiler.
This chapter presents a brief overview of the implementation so the reader may sce how the picces fit
together, both in terms of how Acore fits into an implementation and how the parts of the compiler it
together.

Acore is part of the Apiary Project, a system for experimenting with concurrent actor programs.
Acore is supported by two lower levels of the project, as illustratec in figure 5-1.

N\ /
N\ (Ezperiments with concurrent programming 4

G 4

Acore

Pract

Apiary Emulator

N\

7 (Ezperiments with parallel network architectures) \
7/ N\

Figure 5-1:Organization of the Apiary Project

The Apiary is a design for an architecture for running actor programs on a closely coupled network
of processors. The Apiary Emulator, while not critical to an understanding of the Acore compiler, is
described in Appendix A to give interested readers a feel for some of the issues involved in implementing
actor languages. The emulator is designed primarily to allow people to run and experiment with com-
piled Acore programs, so it includes hooks for observing and debugging features. Traveler, the Apiary
observatory, uses these hooks to attack the problems of observing and debugging concurrent actor
programs, and is described in Appendix B.

Pract, a primitive actor language, serves as the language for describing actors at the primitive
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level. This is the level at which actors may be implemented in a computer architecture, and it is the level
at which actors are dealt with theorctically [Agha 86). It serves as the interface between actor languages
such as Acore and the architecture for running actor programs, in this case the Apiary Emulator. It is the
target language for the Acore compiler, so since an understanding of it and the primitive aclors it
describes will help define the task of the Acore compiler, the next chapter is devoted to discussing the
capabilities of actors at this level and how behaviors described in Acore may be expressed using Pract.

The Acore compiler translates scripts written in Acore into sets of scripts wrilten in Pract, or-
ganized to implement the same behavior. The major duty of the compiler is to separate the concurrent
behavior described with ask expressions in an Acore script into a system primitive behaviors devoid of
ask expressions. Since primitive actors process message using only their local siate, another major aspect
of the compiler is to keep track of references during compilation so that the compiler can organize them
to make sure that each primitive actor generated has the references it needs tc perform its part at run
time. After examining the question of what the compiler should produce in the next chapter, we explain
how the compiler performs this transformation in Chapter 7.
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Chapter Six

Compiling to Primitive Actors

The actor model of computation provides a suitable model for implementation on a message
passing parallel computer architecture. Since an actor may process a message using only its the local
state (including its behavior), machines which process messages for primitive actors needn't block
waiting for distant memory accesses. This also allows primitive actors to be easily migraied from
machine to machine to balance processor and memory loading. In this chapter we will outline the
abilities of these primitive actors and see how the variety of behaviors in Acore may be implemented
within the limited behavioral capabilities of primitive actors through organization. This chapter is
concerned with the issues of what the Acore compiler should produce; the following chapter looks into
how it may do so.

6.1 Primitive Actors

As described in Gul Agha’s book [Agha 86], primitive actors have the limited capabilities to make
simple decisions, create new actors, send new messages, and specify a replacement behavior. All the
actions of the actor are a function of its current behavior, its local state, and the incoming message.
Primitive actor behaviors have much in common with behaviors in Acore. Their behaviors are exprassed
in scripts, which are divided into handlers for processing different kinds of messages. The behavior of a
primitive actor is parameterized by the acquaintances stored in its local state.

However, one of the major contributions of Acore over the expression of behaviors directly in
terms of primitive actor behaviors is the introduction of ask expressions. Ask expressions are fundamen-
tally outside the scope of what can be expressed directly as part of a single primitive actor's behavior,
since an ask expression implies sending a request message and waiting for a reply. A primitive actor's
behavior defines its reaction to un incoming message, an event. Yet an ask expression involves two
cvents: the incoming event which starts the subtransaction, causing the actor o evaluate the ask expres-
sion ir. the first place; and later the reception of the reply. Thus ask expressions must involve two
behaviors, one which initiates the request and one which later receives the reply.

To express behaviors at this primitive level, I have designed the primitive actor language Pract.
Since behaviors at the primitive level are similar to behaviors at the Acore level in many respects, the
syntax of the two languages is very similar. Pract is also similar to the languages presented in the Agha's
book, but has been enhanced in several respects, mostly for practical considerations.

To illustrate some of the differences, let's take a look at part of an example we've seen before, the
locker from Chapter 2, but this time written in Pract. See figure 6-1. This is not how the Acore compiler
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would compile the example, for reasons we will see below, but serves o point out differences of Pract.
(You may also find the Pract Reference Manual in Appendix D helpful for more details about Pract.)

(defequate key-behavlor (script (() ())))

(defequate empty-locker-behavlor
{script
(() (full-locker-behavior key-behavior)
(is-request ((:store valuables))
(let ((new-key (create key-behavior)))
(replace self full-locker-behavior new-key valuables)
(reply-to customer (reply-keyword my-key))))
(is-request ((:retrieve key) :unserialized)
(complain-to customer (:wrong-locker reply-keyword))))
full-locker-behavior key-behavior))

(defequate full-locker-behavlior
(script
((my-key valuables) (empty-locker-behavior)
(is-request ((:store new-valuables) :unserialized)
(complain-to customer (:full-locker reply-keyword)))
(is-request ((:retrieve customer-key))
(if (== customer-key my-key)
(then (replace selt empty-locker-behavior)
(reply-to customer (reply-keyword valuables)))
(else (update self)
(complain-to customer (:wrong-key reply-keyword))))))
empty-locker-behavior))

Figure 6-1: A simple locker written in Pract (nonoperational — sce text).

6.1.1 Actor Creation

We've said that actors must have the ability to create new actors, but before now all actors have
been created by sending a :create message to the script guardian. One reason for this was mentioned in
Chapter 4: this guards against erroneously creating actors with the wrong number of acquaintances.
Another reason for this follows from the fact that actors can respond to messages using only their local
state and behavior: an actor is malformed if it is created with a forwarding actor to its script rather than
an actual script. Since several constructs in Acore introduce forwarding actors, e.g. defname and
future, scripts can be handled uniformly like other actors only if the language provides a message
passing interface for creating actors and replacing behaviors with the script. The guardian for the script
provides this interface.

In light of this, the first thing to notice about figure 6-1 is that the Fract create expression is being
used to create actors. Create is the primitive form for creating new actors; it does not require any
message passing. Since there is no communication with the script or any of the actors involved, it cannot
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perform any checking, but simply creates an actor from the parameters, the script and the initial acquain-
tance values.

Since create must use the script and not a forwarding actor to the script, the scripts have been
defined using defequate rather than defname. This points out why this translation of the previous
example is nonoperational — since there is no indirection using defequate, recursive defequate’s can
not work. Thus, another reason for encapsulating scripts in guardians is to permit a level of indirection
so that recursive script definitions are possible.

We conclude from this that although actors at the Pract level must have the primitive capability o
create actors, at the Acore level actor creation should be encapsulated in script guardians for three
reasons: (o abstract creation of actors so that parameter checking may be performed, to keep the
interface to actors uniform despite forwarding actors and futures, and to permit recursive script defini-
tions. Therefore, since actor creation in Acore is encapsulated in a guardian for the script, the guardian
encapsulates a create known to be correct, and actor creation is just another ask expression in Acore
programs. We will explain how ask expressions are implemented soon, but first there are a few more
differences to extract from this example.

6.1.2 Message Passing

Actors have the ability to send messages. In Pract, all message passing is explicitly expressed with
request, reply-to, and complain-to commands. In addition, all the components of the messages are
explicit as well. Thus, as is apparent in figure 6-1, reply-to and complain-to commands must not only
include any values returned, but also the customer, the actor to which the returning values are being sent,
and the reply keyword for selecting a handler. The request command includes not only the target,
selector keyword, and message parameters, but also a sponsor for the transaction, a customer to whom to
send the reply, and a reply keyword with which to send the reply (see example request in figure 6-2).
Similarly, handlers for messages are specified with is-request, is-reply, and is-complaint, which bind
the parts of the message. However, the common parts of these bindings are implicilly bound o self,
sponsor, customer, and reply-keyword. (These bindings may be overridden — see the Pract Refer-
ence Manual included in Appendix D for more details).

The actor model specifies only that actors be able to send messages, not that they have any
intrinsic type. In Pract, however, I have separated normal messages into three basic types: requests,
replies, and complaints. There are several reasons for distinguishing requests from responses. First,
requests have several required parameters which are not part of response messages: the sponsor, the
customer, and the keyword with which to send the reply. Separating the types allows the Pract compiler
to check that these are supplied as necessary for requests. Second, this separation makes things easier for
debuggers, since they may display messages according to their function. For example, requests can be
paired with their corresbonding reply. Third, an implementation may be able to optimizc some of the
cheices about handling these different kinds of messages since the choices are moved to compile time.
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Update and replace are also messages; they are special messages involved in specifving replace-
ment behavior and will be discussed later.

6.1.3 Scripts

In the actor mode!, behaviors are black boxes, perhaps created by parameterizing a behavior
expression with values for acquaintances. In Pract, behaviors have been separated into three com-
ponents: the script; the set of local acquaintances; and the set of constant acquaintances. The script
specifies control flow by means of its handlers. The local acquaintances specify the references which
are private to a particular instance of a behavior. They are separated from the script because behaviors
frequently change only by updating the value of the local instance acquaintances, so by separating them
from the rest of the behavior it is possible t:> optimize this case. The constant acquaintances specify the
references which are constant and shared by all instances of the script. The Pract script expression
differs from the Acore script expression by declaring the names Lf the free identifiers and their values
explicitly; note the declaration of (empty-locker-behavior) in the full-locker script of figure 6-1, and
how its value must be specified at the end of the script expression. (See the Pract manual included in
Appendix D for syntactic details). This is primarily for compilation efficiency: with all identifiers
declared up front, Pract can be implemented as a one pass compiler.

6.1.4 Primitive Expressions

The actor model does not specify which expressions should be primitive, requiring no message
passing. Besides actor creation, the only primitive expression necessary is one which distinguishes
references for primitive decision making. In Pract the identity (==) expression determines whether two
references are identical or not; for example it is used to tell whether the identical key was passed for the
locker in figure 6-1.

An if expression has also been included in Pract, since it greatly simplifies the compilation of
simple ifexpressions in Acore. For example, see figure 6-2. Not only does this solution save duplication
of code, but the transformation required can become very complex with ik arbitrarily nested. 1 also
chose to include the capability to combine boolean values with or, and, and not in Pract.

Arithmetic operators could have been included in Pract, and in fact an efficient implementation
may need to provide in-line operations on integers, but I chose not to include numerical operations in
Pract. Unlike boolean values, users are likely to develop further types of numbers and number-like
objects and they can best share code (e.g. for sorting) if all interactions with numbers are through a
message passing interface,

With this quick overview of the restrictions on primitive actors and the differences between Pract
and Acore this causes, we now tum to questions of how Acore behaviors can be implemented in terms of
these primitive behaviors, starting with the ubiquitous ask expression.
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The Acore expression:

(/et ((y-or-n (it (== x y) ":yes ':no)))
(:print stream y-or-n)
(ready (answer y-or-n))
y-or-n)

The equivalent Pract with If expressions:

(let ((y-or-n (if (== x y) ":yes ":no)))
(request stream (:print y-or-n) sponsor null-customer ;value)
(update (1 y-or-n))
(reply-to customer (reply-keyword y-or-n)))

The equivalent Pract without if expressions:

(if(==xy)

(then (let ((y-or-n ":yes))
(request stream (:print y-or-n) sponsor null-customer :value)
(update (1 y-or-n))
(reply-to customer (reply-keyword y-or-n))))

(then (let ((y-or-n ":no))
(request stream (:print y-or-n) sponsor null-customer :value)
(update (1 y-or-n))
(reply-to customer (reply-keyword y-or-n))))

Figure 6-2:Demonstration of need for Pract if expressions

6.2 Ask Expressions

A common pattern of communication is to make a request to an actor, and later continue process-
ing using the value returned in the reply. This is the transaction expressed by an Acore ask expression.
We look now into how ask expressions can be implemented in terms of the primitive actors of Pract,
choosing the method which applies most generally in the concurrent message passing world of actors.

To use the locker actor we defined above, we would make a request to store something, and then
we would need to wait for the key to be returned before we can open it later (figure 6-3). Similarly, if we
make a request to a function to compute a value, we can’t use the value until it is returned.

For this type of transaction, the request message must contain a customer to whom the reply should
be sent. Note, however, that if the request is recursive or if many requests may be serviced concurrently,
then it won't suffice for the same actor which receives a request to be the customer for its own subtran-
saction. The actor which serves as the customer must hold the information needed to continue process-
ing; however, in a recursive request, there will be several different sets of information, one for each
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locker-user locker

(send request) w :
. (receive request)

(wait) (prdcuaing}

reply (key) (scn-d reply)

(receive reply) <&

(use key)

Figure 6-3:The transaction represented by (:store my-locker my-valuables).

recursive invocation. Therefore we create a continuation actor to store the information and continue
processing once the reply is received. This continuation actor serves as the customer of the request.

For example, consider the factorial behavior of figure 6-4, written in Pract. To simplify the
example, the numeric operations are performed using in-line arithmetic operations. Normally, arithmetic
operations are performed by making requests to the numbers involved and setting up additional continua-
tions to process the values returned.

The inline-factorial actor is created with the factorial-behavior. The factorial-behavior imple-
ments only the first step of the factorial; the rest of computation is performed by the continuation it
creates for each transaction. Sometimes the actor which receives the initial request is known as the
leading actor to distinguish it from the continuations; the leading behavior is similarly distinguished
from the continuation behaviors. For clarity I have listed the leading behavior followed by the continua-
tion behaviors in the order they are used to process a transaction, even though this produces invalid Pract
code (defequates can't be referenced before they are defined). Reversing the order of behavior defini-
tions will fix the problem.

Each recursive invocation of inline-factorial builds a new continuation actor to separately hold the
information for that invocation. The continuation actors form a chain which acts like a stack of contexts.
When the value is returned, each continuation does a multiplication with the value of n for that invoca-
tion and retumns the result to the customer for that invocation, unwinding the stack of continuations
(figure 6-5).

One advantage of the chain of continuations over a normal processor stack is that as messages are
sent to different actors distributed on separate processors, the chain may cross processor boundaries.
Another advantage is that since the chain is composed of actors, parts of the chain may be migrated to
otiver processors as part of balancing the load across processors. A third advantage is that the stack may
fork for concurrent subtransactions; this will become apparent when we consider concurrent transactions,
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(defequate Inline-factorlal-behavior
(script
(() (inline-factorial-continuation-behavior)
(is-request ((:do n) :unserialized)
(if (in-lisp (= n 0))
(then (reply-to customer (reply-keyword 1)))
(else
(et ((continuation
(create inline-factorial-continuation-behavior
n customer reply-keyword)))
(request self (:do (in-lisp (- n 1)))
sponsor continuation :value))))))
inline-factorial-continuation-behavior))

(defequate Inline-factorlal-continuation-behavior
(script
((n customer reply-keyword) ()
(is-reply ((:value n-minus-1-factorial) :unserialized)
(reply-to customer
(reply-keyword
(in-lisp (* n n-minus-1-factorial))))))))

(defname Inline-factorlal (create inline-factorial-behavior))

Figure 6-4:A sequential recursive factorial using continuations and inline arithmetic.

but first we should look at sequential transactions.

6.3 Sequential Ask Expressions

Once we know how to generate continuations for ask expressions, are all our problems solved?
Not really. Although in some situations a new continuation actor could be created for every ask
expression, this proves to be inefficient due to the overhead of allocating and initializing the continua-
tions. In this section we look at a particular situation where the optimization of reusing the continuation
actor can be made, and some of the subtler issues which arise as a result of this optimization.

One way to combine ask expressions is to nest them, or otherwise make one transaction dependent
upon a previous transaction (figure 6-6). For example, in the expression

(:deposit savings-account (:withdrawal checking-account 100))
the deposit is dependent upon the value returned by the withdrawal. For the first ask expression we can
build a continuation as we did in the factorial example above. The second ask expression requires a new
continuation behavior, but it may be practical to use the same continuation actor and just update its
behavior.
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fact
\ request (:do 2) cl :v

\ request (:do 1) ¢? :v

creates \ \ \

\ creates | \ request (:do 0) ¢3 :v
' ‘ creates
| fact
| ! y Kply(:v 1)
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/ 4 A{ly(:v 1)
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‘ /eply(:v 2)

cl=c(3,cus,:v)

reply (:v 6)
cas

Figure 6-5:The factorial transaction: continuations form a stack.

Dependence on a subexpression:

(lambda (amount savings-account checking-account)
(-deposit savings-account (:withdrawal checking-account amount)))

Dependence on a lét binding:

(lambda (square)
(/et ((side-length (:side-length square)))
(:* side-length side-length)))

Dependence on a condition;

(lambda (sum amount)
(if (:< amount 0)
(then (:- sum amount))
(else (:+ sum amount))))

' Figure 6-6:Examples of dependent ask expressions.

For example, see the recursive factorial rewfiften with message passing arithmetic in figure 6-7.



This recursive factorial behavior in Acore:

(defequate tactorial-behavior
(script ()
((:do (n) :self tactorial :unserialized)
(if(:=n0)
(then 1)
(else (:* n (factorial (:- n 1))

May be implemented with the following Pract scripts:

(defequate factorlal-behavior
(script
(() (cont1)
(is-request ((:do n) :self factorial :unserialized)
(/et ((cont (create cont1 n factorial
sponsor customer reply-keyword)))
(request n (:= 0) sponsor cont ‘:v1))})

factorial-continuation-behavior-1))

(defequate tactorlal-continuation-behavlior-1
(script
((n factorial sponsor customer reply-keyword) (cont2)
(is-reply (:v1 vi1)
(ifv1 (then (reply-to customer (reply-keyword 1)))
(else (update self (0 cont2))
(request n (:- 1) sponsor self ":v2)}))))
factorial-continuation-behavior-2))

(defequate faciorlal-continuation-behavior-2
(script
((n factorial sponsor customer reply-keyword) (cont3)
(is-reply (:v2 v2)
(update self (0 cont3) (2 ‘ignore))
(request factorial (:do v2) sponsor self *:v3)))
factorial-continuation-behavior-3))

(defequate factorial-continuation-behavior-3
(script
((n ignore sponsor customer reply-keyword) (cont4)
(is-reply (:v3 v3)
(update self (0 cont4) (1 ‘ignore) (3 ‘ignore))
(request n (:* v3) sponsor selt ":v4)))
factorial-continuation-behavior-4))

(defequate tactorial-continuation-behavior-4
(script
((ignore ignore ignore customer reply-keyword) ()
(is-reply (:va v4)
(reply-to customer (reply-keyword v4))))))

; Continuation is created here

; and updated here

; and here, 'ignore fills unneeded acq slot

. and finally here

Figure 6-7: A sequential recursive factorial using continuations and message passing arithmetic.
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There are several things to notice in this example. First, dnly one continuation actor is created; as
subtransactions are completed and the transaction progresses, the continuation updates its behavior 1
take on each of the continuation behaviors, and specifies itself as the customer for the next transaction
(figure 6-8). The Pract update command specifies the replacement behavior in each case. It is like an
Acore ready command except that acquaintances are referred 1o by posiuon rather than by name, and the
script may also be changed (it is acquaintance 0).

request (:do 3) cus :v

\

fact
\ ~Tfequest (:=0) cl :vl
creates
3
y reply (:v1 nil)

cl=cont1(3 fact,sp,cus,v)
request (:- 1) cl :v2

update cont2 3
reply (:v2 2)
? request (:do 2) cl :v3
fact
update cont3
A
c2

reply (:v1 2)
request (:* 2) cl :v4

\

update cont4 3
reply (:v4 6)

reply (:v4 6)
cus

Figure 6-8:Graphical depiction of factorial transaction.

Second, as the continuation evolves through the behaviors, at different stages in the transaction it
may need to keep track of different sets of values in its acquaintances. However, for efficiency purposes,
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the size of the actor is not changed; instead the unused slots are merely filled with some value 1o be
ignored. Removing a reference (o an actor as soon as it is no longer nceded may help improve sysicm
performance if it allows the actor to be garbage collected earlier.

Third, each subtransaction uses a different reply keyword. One hazard of using the same actor as
the continuation is that there may be an error in a subtransaction which produces two reply messages; il
the continuation had no way of distinguishing them, then the continuation may falscly accept the dupli-
cate reply as the response (o the second subtransaction (figure 6-9).

continuation updates

its state between T \
cransactionsx’ request (...) self :v1

+A/L/1

error detected: Teqeust (...) self :v2
wrong reply keywordw
g —
i without keywords, duplicate
would be indistinguishable

from this reply

duplicate reply

Figure 6-9:Need to catch duplicate reply error.

Fourth, a tail recursion optimization can be made. Notice that the final behavior merely forwards
the result on to the customer. This behavior can be eliminated by performing the last subtransaction with
the outer transaction’s customer and reply keyword (figure 6-10). To make this optimization, the
previous behavior is simply changed to make the last request using the outer transaction's customer and
reply-keyword, and the last behavior is eliminated:

(defequate factorlal-continuation-behavior-3
(script
((n ignore sponsor customer reply-keyword) ()
(is-reply (:v3 v3)
(request n (:* v3) sponsor customer reply-keyword)))))

(Compare with figure 6-7.) For tail recursive functions, this may allow the previous invocation’s
continuation actor to be garbage collected before the following invocation’s continuation actor is created,
so that there is no net increase in space allocated.
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wﬁt (...) cus :val Wt (...) cus :val

. wx (...) el :v1 : W" (...) cus :val
cl mcl (:v1..)
A{y-to cus (:val ...)

cus

reply-to cus (:val ...)

if this continuation merely ...it may be omitted!
forwards every response...
Figure 6-10:Tail Recursion Optimization

6.4 Concurrent Ask Expressions

The recursive factorial example above is basically sequential, since there are no concurrent ask
expressions. We now look at how concurrent joining transactions can be implemented, and discover
another need for reply keywords.

To perform concurrent transactions, two requests must be sent concurrently. If the results of the
two transactions are used independently, then they may have separate continuations. They may be
compiled as two sequcntial processes which start from the same actor, forking but never joining again.
On the other hand, if the results must be used together, then the transactions must return resulls o a
Joining continuation (figure 6-11).

The joining continuation must perform some synchronization, since the replies may return in any
order. Basically, the joining continuation must store all the replies it receives until the last one, keeping
track of which reply is which so that the right values will be bound :5 the right identifiers. When the last
of the values retumns, then the joining continuation may continue.

For example, consider the inline-rangeproduct in figure 6-12. Again, inline arithmetic is used 10
simplify the example and exemplify the concurrent transactions. Rangeproduct is an actor which concur-
rently computes the product of a range of numbers, and can be used to calculate a factorial concurrently.

This example illustrates one method of implementing the synchronization of the joining customer.
The joining customer is created not only with acquaintances to hold the values it has and needs later, but
also with acqaintances to store the values returned by the concurrent transactions (e.g v1 and v2). In
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Incependent concurrent transactions:

(lambda (account amount)

(print (-withdrawal account amount)) A
(print (:deposit account amount))) (fork) "7\ w:%l
\ N :deposit

~
Pty nss

No join, separate continuations

Joining concurrent transactions:

(lambda (a b)
(let (a2 (-* a a)) A

(b2 (:* b b))) (fork) /. .a
(:+ a2 b2))) l *b :
:b2
Y / a2

(yoir) .
J >Ab212
/

Join, share joining continuation

a

Figure 6-11:Concurrent Transactions: forking and joining

each of these slots is stored a unique value which cannot be returned as the value of a transaction; a
newly created actor (unique-value) serves nicely. This value is used to determine whether a valuc has
been returned for each transaction, so one extra slot is needed to store a reference to the urique value
which won’t be overwritten (the continuation’s acquaintance called unique-value).

For each reply the joining customer receives, it first checks to see whether any other transactions
are outstanding. If any of the acquaintance slots reserved for the other returning values still hold the
unique value, then the value for the corresponding transaction hasn't been retumed yet and the joining
customer may not start the next transactior Therefore it stores the reply value received in its cor-
responding acquaintance slot and waits for the next reply. Since the rangeproduct continuation only
expects ‘o receive two values, the check amounts to simply testing whether the other value has been
received yet. In general this method checks the other n—1 returning value slots, where n is the number of
values expected. When the last value is received, then all the other acquaintance slots reserved for
returning values will be filled with values other than the unique value. At this time the continuation may
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This inline-rangeproduct behavior in Acore:

(DefFunction Inline-RangeProdi.t (lo hi)

. #I(f ...) means function f is 10 be performed inline wiout message passing
(cond* (#1(= lo hi)

l0)

(#1(=lo #I(+ hi 1))

#1(* lo hi))

(else

(let ((average #l(floor #1(+ lo hi) 2)))

#1(* (rangeproduct lo average)
(rangeproduct #I(+ 1 average) hi))))))

May be implemented in Pract using the following scripts:
(defequate null-script (script (() ())))

(defequate Inline-rangeproduct-behavior
(script
(() (cont1)
(is-roquest ((:do 1o hi) :unserialized)
(if {in-lisp \= 10 hi))
(then (reply-to customer (reply-keyword 10)))
(else
(if (in-lisp (= l0 (in-lisp (+ hi 1))))
(then (reply-to customer
(reply-keyword (in-lisp (* 10 hi)))))

(else
(/et ((average (in-lisp (floor (in-lisp (+ 10 hi)) 2)))
(cont
(et ((unique-value (create null-script))) ,create unique value
(create cont1 customer reply-keyword ;create continuation with slots

unique-value unique-value unique-value)))) JSor returned values
(request self (:do lo average) sponsor cont ":v1)
(request self (:do (in-lisp (+ average 1)) hi)
sponsor cont ":v2))))))))
inline-rangeproduct-continuation-behavior-1))

(defequate Inline-rangeproduct-continuation-behavior-1
(script
((customer reply-keyword v1 v2 unique-value) ()
(is-reply (:v1 v1)
(if (== v2 unique-value)
(then (update self (3 v1)))
(else (reply-to customer
(reply-keyword (/n-lisp (* v1 v2)))))))
(is-reply (:v2 v2)
(if (== v1 unique-value)
(then (update self (4 v2)))
(else (reply-to customer
(reply-keyword (in-lisp (* v1 v2))))))))))

Figure 6-12:Example of concurrent transactions and a joining customer.
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start processing using the values; for example, the rangeproduct continuation multiplics the two numbers
returned (v1 and v2) and replies with the product to the customer of the request to rangeproduct.

One possible alternative mechanism for keeping track of when all replies have been received is to
keep a count of the replies received. However, this mechanism isn’t as secure as the above mechanism;
if, by some programmer’s error, two replies are received for the same handler, then the joining customer
may proceed even though some values haven't yet been received. Another alternative is 1o keep track of
which replies have been received through some sort of bit vector; if there is a fast way of setting bits and
testing the whole bit vector, then it may be more time efficient. However, if you use a integer as a bit
vector, the compiler must be careful not to overflow the number of bits in the integer when there are
many acquaintances.

The synchronization operation is one place where additional constructs may improve the efficiency
of an implementation. For example, a unique *‘unbound’’ value which cannot be returned in messages
could be provided, so that the overhead of creating a unique actor each time need not be incurred.

6.4.1 Identifying Joining Replies: Reply Keywords
Note the use of reply keywords in the inline-rangeproduct example. For each of the concurrent
transactions, a different reply keyword is used (e.g. :v1, :v2). The joining customer distinguishes each

reply by its reply keyword; each transaction has a separate reply handler which processes the reply from
that transaction.

Since both the customer and the reply keyword identify what should happen to the reply, both must
be supplied with every request. The extra reference to a reply keyword is additional communication
overhead in every request message and additional storage overhead for every continuation which must
remember the reply keyword with the customer, so the question arises whether there is another method of
making sure results from concurrent iransactions may be distinguished which avoids this overhead. In
particular, the reply keywords are unnecessary for transactions which don’t return to a joining continua-
tion, so perhaps requiring them for all transactions may degrade the performance of the system.

The rationale for deciding to require reply keywords for all transactions is twofold: first, concur-
rent transactions are very common, and second, the other known method for identifying transactions
incurs even more overhead. Joining continuations occur whenever an Acore expression has multiple ask
expression paramelters, or where a /et has multiple arms containing ask expressions.

The other known method for identifying transactions is to use ‘‘tagging customers'’. Basically, the
idea is to give each transaction a tagging customer which receives the final reply, and forwards the reply
to the joining customer with the correct tag (figure 6-13).

Which of these solutions is optimal will depend upon the characteristics of the implementation and
the characteristics of the application. The reply keyword method requires a little extra overhead for
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(fork)

(crc\atu)\
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Yoin
(soin) tag(:v2) tag(:vl)
Reply keywords are overhead vl
on every request message ( . ) vl
josn
Tagging customers must be created
and must process an extra message,

adding overhead to every fork and join.
Figure 6-13:Tagging customers

every transaction. The tagging method requires an allocation/deallocation overhead for the tagging
customers, but only when they are needed. It also requires the overhead of handling and initiating an
extra message. In our current emulator, allocation/deallocation and the handling and initiating of an extra
message are relatively expensive compared to the overhead of increasing the size of requests slightly, and
since a large fraction of the customers in programs are joining customers, the reply keyword method has
turned out to be more efficient. As we noted earlier (figure 6-9), the reply keywords also provide some
error detection against a duplicate reply masquerading as the result of a subsequent transaction when the
continuation is reused. Therefore we have chosen to use the reply keyword method in our current
system,

6.4.2 Concurrent Sequences of Ask Expressions

In the inline-rangeproduct example, the two concurrent expressions were simple ask expressions
which required only a continuatiorn: to receive the value. However, this simple solution doesn't cover the
complications of all possible concurrent transactions, so we will now look at the case where the concur-
rent expressions may require separate continuations to perform intermediate processing before the final
values are returned.

Consider the following program fragment from a quicksort program, abstracted into a function:
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(lambda (left-lessers left-greaters
right-lessers right-greaters)
(:append
(quicksort
(:append left-lessers right-lessers))
(quicksort
(:append left-greaters right-greaters))))

The two calls to quicksort are concurrent, but each of them requires that an :append be made first. In
each case, a continuation is required to receive the resuit from the append and make the call to quicksort.

It may be possible for a continuation to do double duty as both the joining continuation and as one
of the concurrent transactions continuations. However, since the transactions are concurrent, the double
duty continuation would have to be prepared to receive the replies from the other transactions at any
time. To simplify the behaviors, I have chosen instead to create continuations for each of the branches;
at the end of each branch, the last transaction replies to the joining continuation just as in the simple case
(figure 6-14).

(fork) @
ASN
\\

~

(cru}es)\ =
~ a e /

— T

(join) 6

Joining continuation Concurrent let arm continuations

Figure 6-14:Pictorial depiction of joining and concurrent continuations.

It may also be possible for a continuation to do multiple duty, serving as the continuation for
several concurrent expressions at once, e.g. serving both of the calls to :append and quicksort.
However, this approach also results in complex behaviors, especially when the concurrent expressions
are complicated, since the common continuation must keep track of the progress of several independent
transactions. Therefore the most general approach is to give each concurrent transaction its own con-
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tinuation; separating the continuations also permits the continuation actors to be distributed on separate
processors.

(defequate quicksort-fragment-behavior
(script
(() (null-script jcont-script cont1 cont2)
(is-request ((.do left-lessers left-greaters
right-lessers right-greaters) :unserialized)
(et ((jcont (/et ((unique-value (create null-script)))
(create jcont-script reply-keyword customer
sponsor unique-value unique-value
iinique-value))))
(request left-lessers (:append right-lessers)
sponsot (create cont1 jcont sponsor) :v1)
(request left-greaters (:append right-greaters)
sponsor (create cont2 jcont sponsor) :v2))))
null-script quicksort-fragment-joining-continuation-behavior
quicksort-fragment-continuation-behavior-1
quicksort-fragment-continuation-behavior-2))
; First concurrent branch continuation
(defequate quicksort-fragment-continuation-behavior-1
(script
((Jcont sponsor) (quicksort)
(is-reply (:v1 v1)
(request quicksort (:do v1) sponsor jcont :v3)))
quicksort))
; Second concurrent branch continuation
(defequate quicksort-fragment-continuation-behavior-2
(script
((jcont sponsor) (quicksort)
(is-reply (:v2 v2)
(request quicksort (:do v2) sponsor jcont :v4)))
quicksort))
, Joining continuation
(defequate quicksort-fragment-joining-continuation-behavior
(script
((reply-keyword customer sponsor v3 v4 unique-value) ()
(/s-reply (:v3 v3)
(if (== v4 unique-value)
(then (update self (4 v3)))
(else (request v3 (.append v4) sponsor customer reply-keyword))))
(/s-reply (:v4 v4)
(if (==v3 unique-value)
(then (update self (5 v4)))
(else (request v3 (.append v4) sponsor customer reply-keyword)))))))

Figure 6-15: A quicksort fragment in Pract illustrating concurrent continuations.

Thus, the code fragment above may be implemented using the Pract behaviors of figure 6-15.
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Note that the concurrent continuations (cont1 and cont2) are only involved with the intermediate stages
of the concurrent expressions. The first request is made by the leading actor which makes the fork, and
the final reply is returned directly to the joining continuation. This technique is also depicted in figure
6-14. Also note that the reply keyword for the final reply to the joining continuation is compiled into the
continuation’s behavior, but the joining continuation itself is created at run time and therefore must be
remembered as an acquaintance to each of the concurrent continuations.

We have now covered the basic techniques needed for expressing ask expressions in Pract. The
basic points can be summarized as follows: when a leading actor receives a request, it may create
continuation actors to wait for the replies from intermediate transactions and continue processing once
the replies are received. Sequential ask expressions may save allocation overhead by reusing the same
continuation, changing its behavior for each transaction, Concurrent ask expressions require a joining
continuation which resynchronizes transactions by waiting until all replies have been received before
continuing. Concurrent continuations for each branch of the fork may be required if the expressions
involve more than one ask expression. Finally, the joining continuation mus. be able to identify the
transactions; we have chosen to supply reply keywords with each request because they are the most
efficient and elegant solution we have found in our current emulator.

6.5 Serialized Handlers

Another common communication pattern occurs when an actor needs to compute values before it
can specify a replacement behavior to process its next message. For example, a bank account actor may
need to compute its new balance before it can specify its new behavior. To accomplish this, the leading
actor takes on the insensitive behavior.

The insensitive behavior simply queues the messages it receives. Once the replacement behavior
has been computed in a continuation, then a message is sent to the leading actor with the insensitive
behavior, specifying what behavior to take on next. The leading actor then takes on the new behavior
and releases the queued messages, ready to accept the next message. This process — of accepting a
message, taking on the insensitive behavior, waiting for a replacement behavior, and then taking on the
new replacement behavior to process the next message — effectively serializes the messages accepted
into a total ordering based on the arrival order.

Since this pattern of behavior is common, it is hidden under the Pract implementation where it can
be optimized. When a Pract actor receives a message and processes it with a handler which has not been
declared unserialized, it automatically takes on the insensitive behavior. To release the actor from its
insensitive state, a replace or update message must be sent to it. A replace message specifics the
complete replacement behavior the insensitive actor should take on next, including both the script and the
ccquaintances. Update is an optimization for the common case where only some of the acquaintances or
script are to be changed; the unchanged acquaintances and script remain as they were before the actor
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took on the insensitive behavior. In previous examples update has been frequently used by continua-

tions to specify their own replacement behaviors.

(defequate account-behavlor
(script
((balance) (deposit-cont withdrawal-cont)
(is-request ((:balance) :unserialized)
(reply-to customer (reply-keyword balance)))
(is-request (.deposit amount)
(et ((cont (create deposit-cont self customer reply-keyword)))
(request balance (:+ amount) sponsor cont :new-balziice)))
(is-request (:withdrawal amount)
(/et ((cont (create withdrawal-cont self amount
sponsor customer reply-keyword)))
(request balance (:- amount) sponsor cont :new-balance))))
account-deposit-cont-behavior-1 account-withdrawal-cont-behavior-1))

(defequate account-deposit-cont-behavior-1
(script
((leading-actor customer reply-keyword) ()
(/s-reply (:new-balance new-balance)
(update leading-actor (1 balance))
(reply-to customer (reply-keyword leading-actor))))))

(defequate account-withdrawal-cont-behavior-1
(script
((leading-actor amount sponsor customer reply-keyword) (cont3)
(/s-reply (:new-balance new-balance)
(update self (0 cont3) (3 new-balance))
(request new-balance (:>= 0) sponsor self :v1)))
account-withdrawal-cont-behavior-2))

(defequate account-withdrawal-cont-behavlor-2
(script
((leading-actor amount new-balance customer reply-keyword) ()
(is-reply (:v1 v1)
(ifvi
(then (update leading-actor (1 new-balance))
(reply-to customer (reply-keyword amount)))
(else (update leading-actor)
(complain-to customer (:overdraft reply-keyword))))))))

Figure 6-16:A Bank Account behavior in Pract.

For example, consider the simple bank account behavior of figure 2-1 (page 14) translated into
Pract in figure 6-16. The :balance handler is unserialized, so the account remains unlocked after the
message is processed. The :deposit and :withdrawal handlers are serialized, so the account actor (the
leading actor) becomes insensitive until the continuation sends an update message to it. Here we find
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another reason why update messages refer to acquaintances by position. Since the update may be sent
from a continuation script which is completely separate from the leading actor’s script, acquaintance
names may be meaningless.

From this example, we can see that Acore commands are easily translated into Pract. When all the
parameters to the command have been evaluated, the continuation may simply issue the equivalent Pract
command. Since update is the equivalent of an Acore ready, a ready command may be translated into
an update and processed like any other command.

All of the continuations so far only have reply handlers; none handle exceptional responses. We
turn now to see how continuations need to be augmented to handle complaints,

6.6 Complaints and Complaint Handling

Complaints are exceptional responses, sent instead of reply messages in exceptional situations. In
order to handle complaints, a continuation must have complaint handlers in addition to its reply handlers.
The primary issue conceming complaints is figuring out what complaint handlers a continuation should
have, but there are also some subtle complications for concurrent transactions.

Complaint handling is specified in Acore through the /et-except statement; the complaint handlers
specify what to do with a complaint generated in one of the arms of the /et-except. If the expression in
any of those arms cannot be evaluated because a complaint was returned rather than a value, the
appropriate exception handler should be invoked — therefore, every continuation receiving a value from
those expressions must have the complaint handlers. Of course, if the complaint handlers have continua-
tion behaviors, they may be shared by the continuations so there isn’t too much duplication of code.
Within a script, /et-except statements may be nested; in this case, a continuation should have all the
complaint handlers which apply to its context and which aren’t shadowed by a closer handler for the
same complaint. These points are easier to see from examples, so let’s look at a few.

All continuations should have some default complaint handling which at the least forwards the
complaint to the customer; otherwise if an unexpected error occurs (aren’t most errors unexpected?) the
transaction will die mysteriously rather than being aborted cleanly. The normal expression context
handler provides this, so actually the Acore script

(script ()

((:do (parameters...))
expression body...))

is equivalent to the following Acore script:
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{(script ()
(is-request (:do (parameters...))
(let-except ((value (let () expression body...)))
(except-when
((some-error (&rest parameters))
(complain-tc* customer
(some-error reply-keyword parameters))))
(reply-to customer (reply-keyword value)))))

Let-except handlers look like message handlers because the pattern forms the pattern for the
complaint handler in continuations. For example, in figure 6-17, the :overflow exception handler in :ie
Acore code is translated into the :overflow complaint handler in the following Pract behaviors. We can
check the example against three of the points we mentioned above.

» The exception handling applies if the expression in an arm cannot be evaluated because of a
complaint, so the complaint handlers are present in both continuations.

¢ The continuation behavior for the exception handler is shared by the continuations which use
it.

¢ The continuations receive values for expressions which are in the context of both the explicit
handler for :overflow and the implicit handler for some-error which covers the body of the

lambda. Since the inner handler doesn’t override the outer one, both are present in the
continuations.

Two other interesting things to note: Even the transaction within the inner :overflow exception
handler has complaint handling from the outer some-error exception handler present in the continuation.
Also, the tail recursion optimization has been applied to this continuation; it can be applied as long as the
both the reply handlers and the complaint handlers merely forward the message received to the customer
with the reply keyword.

Complaint handling is more complicated when concurrent transactions are involved. In a concur-
rent /et-except, a complaint in any of the arms prevents it from proceeding to the body; instead, the
exception handler is invoked and any other values (or complaints) returned from the concurrent trans-
actions are ignored. Because of this synchronization performed by the joining continuation, when there
are continuations for the arms of the /et-except, these concurrent continuations must forward the com-
plaint to the joining continuation (unless they have a more local complaint handler). Again, an example
wili help make things clear.

In figure 6-18, the explicit :overflow exception handler of the Acore code applies to the both the
concurrent expressions and their subexpressions. This expression is implemented in Pract in figure 6-19.
Since the concurrent expressions require continuations, the arm continuations as well as the the joining
continuation need to handle the possibility of a complaint. However, the joining continuation must
perform some synchronization so that no more than one response is returned. If the arm continuations
were to process the complaints, then if several arms complained, several complaints might be returned as
the value of the /et-except. Therefore, the arm continuations don't directly process the complaints they
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The except:on handler in this Acore code:

(lambda (i r v0)
(let-except (v (:+ vO (:* i r))))
(except-when
((:overflow ())
(:+ v0 (:* imax r))))

v))

Produces the complaint handlers in the continuations of this Pract code:

(create (script (() (c1)
(is-request ((:do i r) :unserialized)
(roquesti (:* r) sponsor
(create c1 customer reply-keyword
sponsor v0) :v)))
continuation-1))
(defequate continuation-1
(script
((customer reply-keyword r sponsor v0) (c2 imax ec1)
(is-reply (:v1 v1)
(update self (0 c2))
(request vO0 (:+ v1) sponsor self :v))
(/s-complaint (.overfiow ignore)
(requestimax (:* r)
sponsor (create ec1 customer reply-keyword sponsor v0) :v2))
(is-complaint (some-error &rest parameters)
(complain-to* customer
(some-error reply-keyword parameters))))
continuation-2 exception-continuation-1 imax))
(defequate continuation-2
(script
((customer reply-keyword r sponsor v0) (imax ec1)
(/s-reply (v v)
(reply-to customer (reply-keyword v)))
(is-complaint (:overflow ignore)
(requestimax (:* r)
sponsor (create ¢3 customer reply-keyword sponsor v0) :v2)))
(/s-complaint (some-error &rest parameters)
(complain-to* customer
(some-error reply-keyword parameters))))
imax exception-continuation-1))
(defequate exception-continuation-1
(script
((customer reply-keyword sponsor vO0) ()
(is-reply (:v2 v2)
(request vO (:+ v2) sponsor customer reply-keyword))
(/s-complaint (some-error &rest parameters)
(complain-to* customer _
(some-error reply-keyword parameters))))))

" Figure 6-17:Let-Except specifies complaint handling.
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(lambda (I theta)

(let-excapt ((h (:* | (tan theta)))
(d (/1 (cos theta))))
(except-when
((:overflow ())

0

(:+ hd))

Figure 6-18:L ot-axcept with concurrent arms.

receive, but instead forward them to the joining continuation by making a request o the
complaint-identity actor. The complaint-identity rctums a complaint identical to the request message
that it receives; the primary reason for this indirection is to simplify the transaction structure for debug-

ging.

Once the joining continuation (jcont-script-1) receives the complainy, it first checks 1o see if it has
already received a previous complaint. If so, then it just ignores the complaint. If not, then it updates
itself with :abort to remember that it has receivad a complaint, and may process the complaint, either
returning O for :overflow complaints or just forwarding other complaints.

The perceptive reader may notice that the reply keyword is always returned as the first paramelter
to the complaint. This allows future joining continuations to distinguish complaints from different
transactions and process them differently; this feature is currently unused.

Now that we have seen how complaint handling is incorporated into single, joining, and arm
continuations, we can put aside this complication again. We turn now to SCript expressions 10 se¢ how
the lexical scoping and referential transparency of Acore maps into Pract

6.7 Scripts

There are three relatively simple issues to consider conceming scripts: how we combine a script
and its continuations into one expression, how a guardian for a script is implemented, and how a script
captures the values of its free identifiers, We examine each of these in tumn below.

In the examples so far I have pri:sented Pract behaviors as a series of dafequate’s, since this is th-.
clearest to read. However, Acore ScriDt expressions appear nested inside of other scripts, so the Pract
equvalent of an Acore Script expression must be an expression. The simple answer to this is 1o define
the continuations as a series of nested /@fs, making sure that each continuation is defined before it is used.

For example, the script from figure 6-16 contained several continuations, which can be nested in
ler's as shown below.
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(create (script
(() (c1 c2 €3 cos tan null-script)
(is-request ((:do | theta) :unserialized)
(et ((jcont (/et ((unique-value (create null-script)))
(creats c3 reply-keyword customer
sponsor unique-value
unique-value unique-value))))
(requesttan (:do theta) sponsor
(create c1 jcont sponsor |) :v1)
(request cos (:do theta) sponsor
(create c2 jcont sponsor |) :v2))))
arm-cont-script-1 arm-cont-script-2 jcont-script-1
cos tan null-script))
(defequate arm-cont-script-1
(script ((jeont sponsor I) (complaint-identity)
(is-reply (:v1 v1)
(request! (:* v1) sponsor jcont :h))
(/s-complaint (keyword ignore &rest parameters)
(request* complaint-identity (keyword parameters}
sponsor jcont :h)))
complaint-identity))
(defequate arm-cont-script-1
(script ((jcont sponsor 1) (complaint-identity)
(is-reply (:v2 v2)
(request | (/ v2) sponsor jcont :d))
(/s-complaint (keyword ignore &rest parameters)
(request® complaint-identity (keyword parameters)
sponsor jcont :d)))
complaint-identity))
(defequate Jcont-script-1
(script
((reply-keyword customer sponsor d h unique-value) ()
(/s-reply (:d d)
(if (or (== unique-value ":abort) (== h unique-value))
(then (update self (4 d)))
(else (request h (:+ d) sponsor customer reply-keayword))))
(is-reply (:h h)
(if (or (== unique-value ':abort) (== d unique-value))
(then (update self (5 h)))
(else (request h (:+ d) sponsor customer reply-keyword))))
(/s-complaint (.overflow ignore)
(if (== unique-value ':abort)
(then (update self))
(else (update self (6 ":abort))
(reply-to customer (reply-keyword 0)))))
(/s-complaint (some-error ignore &rest parameters)
(/f (== unique-vaiue ':abort)
(then (updzis self))
(e/se (updace salt (6 *:abort))
(complain-ro* customer
(some-error reply-keyword parameters))))))))

Figure 6-19:Example of figure 6-18 implemented in Pract
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(defequate account-behavlor
(/et ((account-withdrawal-cont-behavior-2 (script ...)))
(et ((account-withdrawal-cont-behavior-1
(script ... account-withdrawal-cont-behavior-2)))
(/et ((account-deposit-cont-behavior-1 (script ...)))
(script ... account-deposit-cont-behavior-1
account-withdrawal-cont-behavior-1)))))

Since no loops may be expressed within an Acore behavior (iteration is expressed with tail recursion), the
dependencies between continuation behaviors must form a directed acyclic graph. Since the graph is
acyclic, there is always a linear ordering in which dependencies are satisfied, so this nesting is always
possible,

The guardian is just an actor which accepts :create and :replace messages concemning the Pract
script:
(defequate account-guardlan
(/et ((account-behavior (/et(...) ...)))
(create
(script
({) (account-behavior)
(/s-request ((:create initial-balance) :unserialized)
(/et ((account (create account-behavior initial-balance)))
(reply-to customer (reply-keyword account))))
(is-request ((:replace actor initial-balance) :unserialized)
(replace actor account-behavior initial-balance)
(reply-to customer (reply-keyword actor))))
account-behavior))))

The guardian encapsulates the raw script, controlling all create’s and replace's using the raw script. No
direct references to the script are available outside the guardian, so there can be no forwarding actor
problems with use of the script. The guardian’s handlers require a specific number of parameters which
correspond to the acquaintances of the script, so it is impossible to create an actor with the wrong number
of acquaintances.

There are a few cases where the guardian may be safely optimized away. For example, if the
script is used directly in a create expression, then as long as the create expression has the right number
of parameters, it is safe to omit the guardian and create the actor directly, saving a transaction and the
allocation of the guardian. Thus,

(:create <expression creating guardian and script>
<correct number of acquaintances...>)

may be optimized as:

(create <expression creating raw script>
<correct number of acquaintances...>)

The third question about scripts concerned how the lexical scoping of Acore scripts is implemented
in Pract. This also has a simple answer: s.nce identifiers are referentially transparent, scripts are simply
created with copies of the bindings of the free identifiers as part of their local state. When scripts are
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nested, any free identifiers of the inner scripts must be found in the enclosing scripts, either as local
identifiers or free identifiers. Free identifiers are declared in Pract scripts, so this propagation of free
identifiers becomes explicit when the nested scripts are translated into Pract. For example, the expres-
sion
(lambda (x)
(lambda (y)
(lambda (z)
(fxy2))
which is expressed in Acore without macros as

(create (script ()
((:do (x) :unserialized)
(-create (script ()
((:do (y) :unserialized)
(:create (script ()
((:do (2) :unserialized)
(fxyz))m))

may be expressed in Pract (optimizing away guardians) as follows:

(create
(script
(0 ®
(is-request ((:do x) :unsenalized)
(reply-to customer
(reply-keyword
(create
(script
(() (f x)
(is-request ((:do y) ‘unserialized)
(reply-to customer
(repiy-keyword
(create
(script
() (fFxy)
(is-request ((:do 2z) :unserialized)
(requestt (:do x y 2)
sponsor customer reply-keyword)))

fxy))

) £x0)

Each script is created with the values of its ee identifiers; unlike other lexically scoped langt ages,
since identifiers are referentially transparent (don 't change value) there is no need to refer to the values of
identifiers indirectly through an environment. Closures are therefore inexpensive to create.

6.8 Special Forms

The rest of this chapter is about the implementation of the special forms in Acore. We will look a
future, delay, race, values, and with-sponsor.



6.8.1 Futures

A future is an actor which behaves as an insensitive actor, queuing all its messages, until a value is
known. Then it becomes a forwarding actor to the value. There are two simple issues concerning

futures: how tn implement the futures themselves, and deciding the behavior of a future whose expres-
sion produces a complaint.

One possible implementation of futures is to take advantage of the insensitive behavior provided
by Pract. Using this implementation, the future expression is almost a macro which expands in Acore as
follows:

(future expression) —

(let ((v6 (create-locked future-script)))

(/let-except ((value expression))
(except-when
((some-error (&rest parameters))

(replace v6 complainer-script
some-error parameters)))
(replace v6 forwarder-script value))
v6)

Parallelism arises from performing the /et-except concurrently with rewming v6. In this implemen-
tation, the behavior represented by future-script doesn’t really matter since the future is created in the
insensitive state and queues all messages until either a forwarder or complainer replacement behavior is
specified. However, it is useful to give the future a script which identifies it as a future for debugging
purposes.

When the expression successfully computes a value, the future becomes a forwarding actor which
forwards all messages i~ the value. However, if expression should retumn an exceptional response (a
complaint), what is the suitable response for the future? There are several possibilities: it could simply
remain insensitive; it could perform the exception processing of the surrounding context, hoping that
would produce a value; or it could become a complainer which responds 1o every message il receives
with a duplicate of the complaint.

We have chosen the last alternative. If we were to take the first altemative, the future becomes a
mysterious black hole, queueing all messages without releasing any clues about what went wrong. The
second alternative may invoke invalid exception processing: Exception handling traps the cases where
an expression produced a complaint instead of a value, but the future expression has already produced a
value — the future — and that value may have already been retumed out of that context. Thus, if the
exception handler is designed to ready some actor if the transaction fails to produce a value, invoking it
when the future receives a complaint will produce an error by trying to ready an actor which isn't
insensitive. Thus, the third allemative seems the most reasonable; it is noisy enough help locate
errors, and it doesn’t produce any more errors by itself. The complainer script mentioned in the above
code gives the future the behavior of complaining for every message it receives.
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A future expression without a value simply produces the insensitive actor; in this case it is the

program’s responsibility to specify the replacement behavior, as in the recursive let example of figure
4-13 (page 41).

6.8.2 Delay Futures

A delay encapsulates a closure for an expression, waiting to evaluate it until it is nceded. When
the delay receives a message, it evaluates the closure, and when the value is received, it forwards the
initial message to the value and becomes a forwarding actor to the value. Delay isn't difficult to
implement in Acore, since closures are easily created. The behavior of a delay when the expression
evaluates to a complaint is the same as for a future, for the same reasons. The only subtle issue
concerning delay is what sponsor is used to evaluate the expression.

The delay behavior could be implemented something like the following Acore code:
(delay expression) —

(create
(script ()
(/s-request (keyword &rest parameters) ;When the first message is received

(/et-except ((value expression)) ,First compute value
(except-when

((some-error (&rest parameters))

(:replace complainer-script self some-error parameters)
(complain-to* customer

(some-error reply-keyword parameters))))
(:replace forwarder-script self value) , then become a forwurding actor

(request” value (keyword parameters) ; and forward first message to value
sponsor customer reply-keyword)))))

Alternatively, to make the closure even more explicit, the delay bahavior could be implemented as
the following:

(delay expression) —

(create delay-script (lambda () expression))
where delay-script describes the following Acore behavior:

(defequate delay-script
(script (closure)
(is-request (keyword &rest parameters) ‘When the first message is received
(/et-except ((value (closure)))
(except-when
((some-error (&rest parameters))
(.replace complainer-script self some-error parameters}
(complain-to* customer
(some-error reply-keyword parameters))))
(‘replace forwarder-script self value) ; then become a forwarding actor

(request* value (keyword parameters) ; and forward first message 1o value
sponsor customer reply-keyword)))))

;ECvaluate closure
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Note that in either case the delay expression differs from the fufure expression in that in the case
of a future, the expression is evaluated under the sponsorship found in the context ‘vhere the future
expression is located, whereas in the case of a delay the expression is evaluated under the sponsorship of
the sponsor of the first incoming request. The rcason is that by the time the delay gets its first message,
the sponsor of the context where 1t was crated may have run out of funds. Also, if the future like
sponsorship arrangement is desired, it is easy to specify using with-sponsor,

(delay (with-sponsor sponsor
expression))

6.8.3 Race

A race expression evaluates its subexpressions concurrently, forming a list of the values returned
in the order they are returned. This queue-like list is formed incrementally, so each value is available
soon after it is retumed. How can we implement this behavior in Prac(?

Since the values are queued in the order they are retumed, they must retum 10 a single joining
customer which puts them into the queue according to their arrival order. Unlike the joining customer of
a parallel /et, however, race does not need to distinguish the values returned; it only needs to count them
SO that the queue can be terminated when all values are retumed. One way 1o implement the undeter-
mined list is as a future; as values are received the list can be incrementally created. Thus this implemen-
tation looks something like figure 6-20,

When a value is returned to the race continuation, the future becomes a cons cell whose car is the
value returned and whose cdr is the future for the rest of the list. If there are no more values, then the
race continuation terminates the list with nil instead. Complaints are handled in a manner similar 10 how
they are handled in futures and delays: a complainer actor takes the place of the value in the list.

6.8.4 Multiple Values

Values is a simple form for returning multiple values from an expression context. Multiple values
may be bound with a let which supplies multiple identifiers; for example:
(fet(((a b) (values b a)))
..)

is a silly way to exchange the values of a and b for the body of the let,

When the values are being returned from a handler, a multiple value reply can be used 10 imple-
ment the multiple values directly. For example, the retumning the multiple values car and odr at the end
of this Acore script:

(defequate cons-script
(script (car cdr)

f'(.:decompose () :unserialized)
(values car cdr))))
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The Acore expression:
(race exprl expr2 ... exprN)

may be implemented as:
(/et ((queue (future)))
(/et ((race-cont (create race-script N queue)))
{exprl expr2 ... exprN})
queue)
where N is the number of subexpressions and {exprl expr2 ... exprN} are evuluated with race-cunt as
their continuation.

Race-script may be implemenied like the following (#] indicates inline operations):
(defequate race-script
(script (n-left next-future)
(is-reply (:value value)
(if #1(<= n-left 1)
(then (replace next-future cons-script value nil))
(else (let ((new-next (future)))
(replace next-future cons-script value new-next)
(ready (n-left #1(- n-teft 1))
(next-future new-next))))))
(is-complaint (some-error ignore &rest args)
(/et ((value (create complainer-script some-error args)))
(if #)(<= n-left 1)
(then (replace next-future cons-script value nil))
(else (let ((new-next (future)))
(replace next-future cons-script value new-next)
(ready (n-left #I(- n-left 1))
(next-future new-next))))))))

Figure 6-20:Implementation of race.

may be implemented as a multiple value reply at the end of this Pract script:

(defequate cons-script
(script
((car cdr) ()

(i.s-requast (:decompose () :unserialized)
(reply-to customer (reply-keyword car cdr))))))

However, when the values are being returned within a handler, as in the silly swapping example, the
simplest way to implement values is as an ask expression to a reply-identity actor which returns the
multiple values.

(reply-identity b a)
(Complaint can be implemented in a similar manner,) The Reply-identity actor can be implemented as
follows:
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(defname reply-identity
(create
(script
(00

(is-request (:do (&rest parameters) :unserialized)
(reply-to* customer (reply-keyword parameters)))))))

Binding multiple values is easy as long as the values are being returned to a continuation; the reply
handler can simply bind multiple parts of the mcssage in the same way that request handlers bind
multiple parameters. This is why the easiest way to implement multiple values within a script is to create
an ask expression. So for example, our silly swapping example can be compiled as:

(request reply-identity (:do b a)
sponsor (create silly-swap-cont-1 ...) v1))...

(defequate sllly-swap-cont-1
(script

((-.) (...)
(is-raply (:v1 a b)
<use swapped aand b> ...)

)
)
One final point about multiple values. In Lisp, multiple values may be returned even if the
program only expects one value; only the first value is used and the rest are ignored. This effect can be
created in Pract by allowing further values in the reply handler, but ignoring them. If this route is taken,

all the reply handlers in our examples, which have looked something like:
(/s-reply (.v2 v2)
...

would instead look like
(is-reply (.v2 v2 &restignore)

€.8.5 Sponsorship

In Acore, sponsorship of the transactions specified by the ask expressions comes implicitly from
the context. By default the subtransactions initiated by a handler aie sponsored by the sponsor of the
incoming transaction which invoked the handler. Sponsorship may be specified by nesting the expres-
sions to be specially sponsored in a with-sponsor form. In contrast, sponsorship in Pract is specificd
explicitly in each request command. It is the responsibility of the implementation which runs Pract
programs to charge sponsor ticks, generating requests (o the sponsor for more ticks when necessary;
since ticks are charged for every message, this mcthod permits the most flexibility for the implemen-
tation to gain efficiency. (See Appendix A for an explanation of how our emulator does it.) Thus,
dealing with sponsorship in translating Acore to Pract is a matter of making sure that each request is
supplied with the correct sponsor.
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The with-sponsor form specifies a sponsor to be used within its body. Since sponsorship is a
matter of context, it is possible to imagine an implementation of this form which operates similarly to a
let, for example, the form:

(with-sponsor sponsor-expression
body...)
would be translated into something like:

(et ((v8 sponsor-expression))
<body using v8 as the sponsor...>)

6.9 Summary

In this chapter we have looked at the how Acore programs can be implemented in terms of
primitive actors. Primitive actors, such as those written in Pract, are suitable for being run by an parallel
architecture since they process messages using only their local state. Thus they do not block waiting for
remote information and they may bu easily migrated between processors for load balancing. The
challcnge, then, was to find ways of implementing the complex control expressed with ask expressions in
Acore by organizing the behaviors of these simple actors.

* We found that the waiting of an ask expression can best be expressed by creating a
continuation to accept the reply and (ntinue the transaction. The continuation separates
context information for recursive or coacurrent transactions. Sequential ask expressions
may share the same continuation if it cnanges behavior between each subtransaction. Con-
current ask expressions require a joining continuation which resynchronizes the concurrent
transactions, waiting for all replies before continuing. Joining continuations are common, so
reply keywords are used in all transactions so that joining continuations can distinguish
replies. Sometimes each of the concurrent branches may require its own continuation.

» Acore permits replacement behaviois to be computed, while primitive actors require that a
replacement behavior be specified for each event. We found Lt to implement Acore
behavior replacement, the leading actor needs to take on the insensitive behavior, queueing
messages until the new behavior is known. Since this behavior is common, Pract behaviors
automatically specify the insensitive behavior, and replace or update messages are sent to
the inscnsitive actor to specify its new behavior.

¢ Complaints are exceptional responses, so complaint handling is performed by the complaint
handlers of customers. An exception handler applies to all the expressions in its scope, so
the complaint handlers are present in all the continuation behaviors which implement the
expressions. Multiple complaint handlers may be necessary when there are multiple excep-
tion handlers or the exception handling is nested. Concurrent transactions complicate this
picture slightly; since the joining customer may only continue once, it aborts as soon as the
first of the concurrent transactions complains. The arm continuations must forward com-
plaints to the joining continuation to perform this synchronization.

¢ We found that because of referential transparency, the lexical scoping and closure of scripts
in Acore is easy to implement in terms of primitive actors — the primitive behaviors may
simply hold a copy of the reference the velues of identifiers. Script expressions may be
implemented by nesting the continuation behaviors in /6f's in a linear ordering. We also saw
how Script guardians may be implemented.

o The special forms future, delay, and race, can be implemented by suitable programming of
primitive actors, and we saw an implementation of each of these, taking advantage of the
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insensitive behaviors provided by Pract. Each of these special forms returns a value before
its subexpressions have been evaluated; we found that creating a complainer in place of the
value seems to be the most reasonable thing to do when an expression returns a complaint
instead of a value.

e The message passing paradigm makes multiple values easy to impleraent; retuming multiple
values is simply another instance of sending a message with several parameters. Thus
multiple valued expressions are implemented with multiple value replies, and bound with
multiple valued reply handlers.

Now that we have a good idea of what compiled Acore programs should look like at the level of
primitive actors, it is time we looked at how a compiler which performs the transformation can be
implemented.
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Chapter Seven

The Acore Compiler

The task of the Acore compiler is to transform an Acore program into an equivalent Pract program.
This is a relatively complex process, so first we will make an overview of the compilation process; then
we will go through an example to get a rough idea how the compilation process works; and finally, once
we have a sketch in mind about how things fit together, we can look at each stage of the compilation
process in detail. Readers should feel free to go into as little or as much depth as they find interesting,
and then skip to the summary at the end of the chapter — the detailed pass contains discussion of some
issues which may be only significant to someone actually trying to understand this implementation or
implement a similar compiler, and may be safely skimmed or skipped entirely.

7.1 Compiler Overview

To connect the world of Acore programs with the level of actors which parallel architectures deal
with, the Acore compiler translates Acore code into primitive actors in Pract. The Acore compiler is
organized approximately in several stages as pictured in figure 7-1. It is currently written in Lisp, and
since Acore uses a fully parenthesized syntax similar to Lisp, it accepts Acore source code in the form of
Lisp list structure returned by a Lisp reader, and emits Pract source code as Lisp list structure as well.

enerate

(Pract) Code

Soarce . with into
Code Expansion| | Lenesting| | Continuations

Acore Macro ﬂ Parsing _i Separate

for each Collect | Jor cach Connect

primitive ezpression: Acore script:
: Identifiers |

for each [ Sep—a.ra-t: ] Travrse
Acore script: into Continuation
LContinuat.ioEj DAG

Figure 7-1:Compiler organization.

Continuations

1. The macroexpansion phase performs source to syurce transformations on the source
program according to the syntactic abstractions specified by the macro environment
Source code is manipulated in the form of list structure; the result is raw Acore code
without any syntactic sugar.

2, The parsing phase of the compiler accomplishes several tasks: It checks the syntax of the
forms being parsed; it uniquely identifies and classifies identifiers according to where they
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are bound; it marks continued expressions and commands which contain ask expressions; it
denests these continued forms to produce equivalent /et forms; and it stores the information
gained from the parse into a parse tree of pnodes.

3. The intermediate icode phase takes care of separating expressions into primitive actor
behaviors connected by commands. It also collects the sets of identifiers re:erenced by the
commands and expressions in each primitive behavior. During this process, it may recur-
sively invoke the icode phase on script expressions.

4. For each script, the traverse DAG phase performs a depth first walk through the directed
acyclic graph (DAG) of primitive behaviors, propagating local identifiers so that each
identifier will be passed from continuation to continuation from the point where it was
bound to the point where it is referenced. To do this, it must find which referenced
identifiers are bound in a continuation and which should be passed from previous continua-
tions. It also orders the continuation scripts so each will be defined before it is referenced.

5. Finally, the Pract generation phase walks the resulting graph, constructing the equivalent
Pract commands and scripts to implement the behavior. For each Acore script, now
transformed into nodes representing the leading and continuation behaviors, the behavior
connecting phase first does a depth first non-redundant walk through the directed acyclic
graph of continuations, ordering the acquaintances in the acquaintance lists and inserting
the commands by which the continuations create or become the following continuations.
Once the continuation nodes are completed, Pract code can be generated from them as well,

This overview may not be entirely clear initially, so it may help "o reread it as the processing at
each of the stages becomes clearer. To sketch in a rough idea of what's going on, we will now go
through an example.

7.2 Example Compilation

For our example, we will compile the function rangeproduct. The source code for rangeproduct
written in Acore is shown in figure 7-2. Two macros have been used which make this example easy to
read: DefFunction abstracts definitions of function actors, and sequential cond* abstracts the syntax of
a series of nested if's. The function floor performs integer division.

7.2.1 Expanding Macros

The first stage of compilation is to expand the macros in this source code. The result of the macro
expansion is shown in figure 7-3. The deffunction macro expands into a form which creates an actor
which behaves as the function described, accepting :do messages with the parameters of the function and
performing the body of the function to compute the reply. The resulting Script expression with an
expression context request handler expands into an is-request with /et-except exception handling. We
can also see the cond macro abstracts a series of nested if's nicely.

7.2.2 Parsing and Denesting

The next phase of the compiler is the parse phase, which produces the parsed structures used by
later stages of the compiler, and parses identifiers uniquely using an environment. While it builds the
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Source:

(DetFunction RangeProduct (lo hi)

(cond* ((:= lo hi)
l0)
((:=1o (:- hi 1))
(:* lo hi))
(else (let ((average (floor (:+ 0 hi) 2)))

(:* (rangeproduct lo average)
(rangeproduct (:+ average 1) hi))))))

Figure 7-2:Source code for Rangeproduct

After Macro Expansion:

(defname rangeproduct
(create
(script ()
(is-request

(:do (lo hi) :unserialized)
(let-except

((v0

(if (:= lo hi)
(then lo)
(else (if (:= lo (:- hi 1))
(then (:* lo hi))
(else
(let ((average (floor (:+ lo hi) 2)))
(:* (rangeproduct lo average)
(rangeproduct (:+ average 1) hi))))))))
(except-when
((some-error (&rest args))
(complain-to* customer
(some-error reply-keyword args))))

(reply-to customer

(reply-keyword v0)))))))

Figure 7-3:RangeProduct after macro expansion

structure, it discovers which expressions are continued, i.e. which expressions either are ask expressions
or contain ask expressions. An important part of this phase is denesting continued subexpressions.
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Denesting takes continued subexpressions nested inside of other expressions and commands and pulls
them out, forming an e¢quivalent /et. For example, denesting the expression:

(:-+(*aa)(:*bb))
produces the equivalent expression:

(let ((v1 (:* a a))
(v2 (= b b))
(:+ v1 v2))

Note that a and b are not continued «¢xpressions and therefore are not denested from the multiplication
expressions.

Most of the parsed structures have the same structural relations as the commands, expressions, and
identifiers of the source code, only more information has been added. While it would be difficult w
show the parsed structure which re;ults from parsing rangeproduct, we can still see the basic effect of
denesting by showing the result o' denesting the source code directly. Figure 74 shows the how the
rangeproduct example would look if denesting were performed directly on the source code.

7.2.3 Separating into Primitive Behaviors

The next ctage is to separate this behavior into primitive actor behaviors, a leading actor behavior
followed by continuation behaviors. The denesting performed by the parse phase transformed the code
into a form suitable for this operation: the denested form makes it possible to traverse thc panse structure
encountering commands in the order they must be performed; each ask expression is separated into a /¢
oinding, making them easy to identify; and therefore the body of each continuation is separated into the
body of a /ef. The result of separating the denested expressions of figure 7-4 is a set of primitive
behaviors connected as shown in figure 7-5.

This graph shows the relations between the primitive behaviors produced to implement the
rangeproduct function. The nodes are the individual primitive behaviors; the Lext to the right of each
node describes the behavior of that node. Nodes are connected by lines representing the continuation
relation, usually involving an ask expression; each line is labeled by the identifier whose value is being
computed for the continuation. The dotted line indicates a relation where an ask expression is not needed
to compute the value; instead, the body of the continuation (reply vO0) is **pulled’’ into continuation
where it is used directly on the value (reply 10). The forks with arcs indicate concurrent transactions due
1o a parallel /e, forks without arcs show alternate paths due (o decisions made by an i,

To transform the pnode structure from a form like that shown in figure 7-4 1o this behavior graph,
the icode phase performs the following steps. Let’s mimic this separation phase to see what it does.

1. We create inode structures to represent the leading script and its handlers. For example, as
we walk down through the code of figure 7-4, we create inode structures for the leading
script and its /s-request handler, represented by the top node of the graph in figure 7-5.

2. We walk the parse structure, keeping track of the current parsed expression or command,
the current inode body in which to insert commands, and the current continuation expecting
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After Denesting:

(defname rangeproduct
(create
(script ()
(is-request
(:do (lo hi) :unserialized)
(let-except
((vO
(let ((v1 (:= 1o hi)))
(if v1
(then lo)
(else (let ((v2 {let ((v3 (:- hi 1)))
(:= 1o v3))
(it v2
(then (:* lo hi))
(else
(let ((average (let ((v4 (:+ o hi)))
(floor v4 2))))
(let ((v5 (rangeproduct lo average))
(v6 (let ((v7 (:+ average 1)))
(rangeproduct v7 hi))))
(* vS Ve
(except-when
((some-error (&rest args))
(complain-to* customer (some-error reply-keyword args))))
(reply-to customer (reply-keyword v0)))))))

Figure 7-4:RangeProduct after denesting (actually done as part of parsing).

the value returned from the expression (expr-pnode, inode-body, cont). Right now, the
current parsed command is the /at-except in the is-request body. The current inode body
is the body of the handler we just created in the top node, and there is no continuation yet.

3. When we encounter the /6f-8xcept, we generate a new continuation. In our example, the
new continuation is represented by the bottom node in the graph. We also give this
continuation a reply handler based on the identifier being bound, in this case vO. The body
of the /et is recursively processed with the new continuation as the current inode body. (I
will ignore complaint handling for this example.)

4. Since they have been denested, commands, such as reply-to, are just inserted into the
current inode body. Thus, when we process the reply-fo in the body of the /et-except, we
just insert the reply-to into the current inode body, which is the new continuation. We can
see the added reply-to command (abbreviated reply v0) in the body of the bottom node of

the graph.

5. We recursively process the expressions in the arms of the /et-except with the same current
inode body as when we entered the /ot (the handler body for the top node), but with the new
continuation created for this /et (the bottom node) as the current continuation, since it
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After Separation into Primitive Behaviors:

is-request (:do lo hi)
request lo (:= hi) :vl

vl

. in-ffeeliy (:v1 v1)

z?:enrg;:e(s{vgil?:)-) lr)ep‘l’)g ‘o)

is-reply (:v3 v3
request lo (-—? v3) :v2

. in-{feslzy (:v2 v2)

then request lo (:* hi) :v0
else request lo (:+ hi) :v4

is-reply (:v4 v4
regues‘. floor )(:do v4 2) :average

is-reply {:average average)
request rangeproduct (.do lo average) :v5
request average (:+ 1) :v7

is-reply s':v"l v7)
request rangeproduct (:do v7 hi) :vé

is-reply (.v6 v6

is-reply {:VS VSJ
request v5 (:¢ v6) :v0

is-reply (:v0 v0)
reply vO

Figure 7-5:RangeProduct’s graph of primitive behaviors

represents the behavior that will expect the values from the arm expressions.

6. The first thing we find in the arm of the /et-except is another /et, so another continuation is
created, this time represented by the second node from the top in the graph. This /et binds
the value of v1, so we give the continuation a reply handler which expects a reply for v1.
To process the arm of this /et we use this new continuatica as the continuation, but we still

keep the same current body, the first node.

7. When we encounter an ask expression, we add a request command to the current inode
body; the customer of the request is the current continuation. Thus the ask expression (=
lo hi) produces the request command in the leading node, and the customer of this request

is represented by the current continuation, which in this case is the second node.
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8. To process the body of this /et, the current inode body is the continuation generated for this
let (the second node). The current continuation is the same as for the entire /ef expression
(the bottom nede), since the value of the /et expression is the value of its body.

9. When we encounter an if, an /f conmand is added to the current inode body, and (wo ncw
inode bodies a.. created for the then and el/se L. anches. Then the then and aelse parse
structures are recursively processed, inseniing new commands into the new fthen and else
inode bodies. In our example, the (/f v1...) is added to the second node, and the expres-
sions in the branches of the denested if are icoded into the branches of the if inode with the
bottom node still as the continuation.

10. In the then branch of the /f, we find a special situation. The expression is just the identifier
lo, while the code to process it is in the continuation. In this case the continuation pulling
optimization allows us to copy the body of the continuation into the current inode body.
Thus we can pull the reply-to command from the body of the hottom continuztion into the
then arm of the /et.

11. Most of the rest of processing follows the same lines as what we've done in previous steps
for processing /et expressions, if expressions, and ask expressions. The only shighily
aifferent step is to process the /et with two arms, binding v5 and v6. This is a parallel /e,
which just forms a joining continuation. Since two transactions must share the joining
continuation, it must be crcated at the fork, and it must receive multiple reply handlers.

I have left out many of the details, but I hope the basic idea of the separation phase is apparent
from this little exercise. I1f we were to create Pract code directly from the results of separating the code
into primitive behaviors, the pr.-duct would be something like the code in figure 7-6 (omitting complaint
handling). Several parts of the behavior are still missing: The behaviors don't declare the local acquain-
tances and constant acquaintances used; the behaviors are not connected with expressions for creating
continuations or by commands updating 1o become the next continuation; and therefore no customer can
be specified for each of the requests. The only requests which have their customer filled in are the
requests in cont5-behavior and cont6-behavior which produce the values for the joining customer; the
identifier (v8) has already been set up to bind the shared joining continuation at the fork al
cont5-behavior. However, the identifier has not yet been bound, and the synchronization necessary at
the joining customer for the parallel /et has not been added.

7.2.4 Optimizing Tail Recursion

Since cont8-behavior merely forwards any response it receives, the tail recursion optimization
can be made, eliminating the need for this behavior. If this optimization is made, cont3-behavior and
cont7-behavior specify that the results of the ask expression are 1o be sent directly to the customer, as in
figure 7-7.

7.2.5 Collecting Identifiers

The first step in taking care of declaring the local and constant acquaintance identfiers is to collect
identifiers referenced within the body of each behavior into a set associated with the behavior tsell.
Recall that the parsing phase uniquely identified all identifiers and classified them according to type.
This information is now used in collecting identifiers. All identifiers which were locally bound in the
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Separated Primitive Behaviors

(defequate rangeproduct-behav'or
(seript (()()
(is-request ((:do lo hi) :unserialized)
(request lo (:= hi) sponsor <??> v1)))))
(defequate cont1-behavior
(script (()()
(is-reply (:v1 v1)
(if v1 (then (let {(vO lo)) (reply-to customer (reply-keyword v0))))
(else (request hi (:- 1) sponsor <??> w3)))))))
(defequate cont2-behavior
(script (()()
(is-reply (:v3 v3)
(request lo (:= v3) sponsor <??> v2)))))
(defequate cont3-behavior
(script (()()
(is-reply (:v2 v2)
(if v2 (then (request lo (:* hi) sponsor <??> v0))
(else (request lo (:+ hi) sponsor <??> :v4)))))))
(defequate cont4-behavior
(script (()()
(is-reply (:v4 v4)
(request floor (:do v4 2) sponsur <??> :average)))))
(defequate cont5-behavior
(script (()()
(is-reply (:average average)
(let (vB <??>))
(request rangeproduct (:do lo average) sponsor v8 v5)
(request average (:+ 1) sponsor <??> :v7))))))
(defequate cont6-behavior
(script (()()
(is-reply (:v7 v7)
(request rangeproduct (:do v7 hi) sponsor v8 :v6)))))
(defequate cont7-behavior
(script (()()
(is-reply (:v5 v5)
(request v5 (:* vB) sponsor <??> :v0))
(is-reply (:v6 v6)
(request v5 (:* vB) sponsor <??> :v0)))))
(defequate contB-behavior
(script (()()
(Is-reply (:v0 v0)
(reply-to customer (reply-keyword v0))))))

Figure 7-6:RangeProduct after simply separating into behaviors

Acore script may need to be stored as local acquaintances of the continuations, so the local identificrs
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(defequate conit3-behavior
(script ((()
(is-reply (:v2 v2)
(if v2 (then (request lo (:* hi) sponsor customer reply-keyword))
(else (request lo (:+ hi) sponsor <??> va)))))))

(defequate cont7-behavior
(script (()()
(is-reply (:v5 v5)
(request v5 (:* v6) sponsor customer reply-keyword))
(is-reply (:v6 v6)
(request v5 (:* v6) sponsor customer reply-keyword)))))

Figure 7-7:Moadifications for tail recursion optimization

referenced by the behavior are collected into a set. Similarly, free identifiers of the Acore script need to
be collected as the sets of constant acquaintances of the continuations. Each primitive behavior also
references the continuation behaviors connected immediately below it in the graph. Although the names
are not visible in our Pract translation into figure 7-6, they are available from the graph of figure 7-5.
These references are also constants, so the names of the continuation behaviors are also collected into the
constant acquaintance set.

This collection is performed at the end of the separation phase. If we were to generate Pract code
after the rangeproduct example was processed through identifier collection, it might look something
like figure 7-8. First let’s look at the constant identifiers. The only free identifiers in the original Acore
script were floor and rangeproduct (which will be bound in the top level environment); all the other
constant identifiers are names of continuation behaviors. Note that as a result of the tail recursion
optimization, now none of the behaviors refer to cont8-behavior. Also, notice that cont6-behavior is
an arm continuation for a parallel let, and the next continuation is a joining continuation. Since the
joining continuation actor is already passed through as v8, it doesn't need to create or update to the
joining continuation, and therefore it doesn’t refer to the joining continuation behavior.

Now let’s look at the local identifiers. The local identifiers are collected in two sets, a set of free
local identifiers and a set of defined local identifiers. The set of defined local identifiers are those
identifiers which are bound by that behavior, either by a message handler or by an interior Pract /ef. The
set of free locals aie any other local identifiers referenced; they must be passed to the behavior as
acquaintances. For simplicity, we have indicated these two sets as the local acquaintance list separated
by a vertical bar: (free | defined).
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Behaviors with Identifiers Collected

(defequate rangeproduct-behavior
(script {( | o hi sponsor) (contt-behavior)
(is-request ((:do lo hi) :unserialized)
(request lo (:= hi) sponsor ?? :v1)))))
(defequate contt-behavior
(script ((sponsor customer reply-keyword Io hi | v1) (cont2-behavior)
(is-reply (:v1 v1)
(if v1 (then (let ((vO lo)) (reply-to customer (reply-keyword v0))))
(else (request hi (:- 1) sponsor ?? :v3)))})))
(defequate cont2-behavior
(script ((lo sponsor | v3) (cont3-behavior)
(is-reply (:v3 v3)
(request 10 (:= v3) sponsor ?? :v2)))))
(defequate cont3-behavior
(script {(lo hi sponsor zustomer reply-keyword | v2) (cont4-behavior)
(is-reply (:v2 v2)
(if v2 (then (request lo (:* hi) sponsor customer reply-keywvord))
(else (request lo (:+ hi) sponsor ?? :v4)))})))
(defequate cont4-behavior
(script ((sponsor | v4) (floor cont5-behavior)
(is-reply (:v4 v4)
(request floor (:do v4 2) sponsor ?? :average)))))
(defequate cont5-behavior
(script ((lo sponsor | average v8)
(rangeproduct cont-7-behavior cont6-behavior)
(is-reply (:average average)
(let ((v8 ??))
(request rangeproduct (:do lo average) sponsor v8 :v5)
\.equest average (:+ 1) sponsor ?? :v7))))))
(defequate cont6-behavior
(script ((hi sponsor v8 | v7) (rangeproduct)
(is-reply (:v7 v7)
(request rangeproduct (:do v7 hi) sponsor v8 :v6)))))
(defequate cont7-behavior
(script ((sponsor customer reply-keyword | v5 v6) ()
(is-reply (:v5 v5)
(request v5 (:* vB) sponsor customer reply-keyword))
(Is-reply (:v6 v6)
(request v5 (:* v6) sponsor customer reply-keyword)))))
(defequate cont8-behavior
(script {(customer reply-keyword | v0) ()
(Is-reply (:v0 v0)
(reply-to customer (reply-keyword v0))))))

Figure 7-8:RangeProduct after collecting each behavior’s identifiers (free-locals | defined-locals)
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( | lo hi sponsor customer reply-keyword)

(sponsor customer reply-keyword lo hi| vl)

(lo sponsor | v3)
Before
Acquaintance
Propagation:

(lo hi sponsor customer reply-keyword | v2)
(sponsor | v4)
(lo sponsor l average v8)

(hi sponsor v8 | v7)

(sponsor customer reply-keyword l v5 v6)
(customer reply-keyword l v0)

( I lo hi sponsor customer reply-keyword)

(rponsor customer reply-keyword lo hi I vl)

(hi customer reply-keyword lo sponsor I v3)
After
Acquaintance
Propagation:

(lo hi sponsor customer reply-keyword I v2)
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i customer reply-keyword lo sponsor | average v
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(hi sponsor v8 | v7)
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(sponsor customer reply-keyword lo hi)
(sponsor customer reply-keyword lo hi)
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Behavior references: (frée locals | bound locals)
Figure 7-9:Propagating and ordering references in behaviors of RangeProduct
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7.2.6 Propagating Acquaintances

This points out one of the problems tackled by the next stage: making sure that ezch behavior
passes the references needed by subsequeat behaviors. For example, cont3-behavior needs hi,
customer, and reply-keyword, but cont2-behavior doesn’t have these as acquaintances and can't pass
them to it. Therefore, the traverce DAG stage starts at the leading behavior and walks a depth first
spanning tree (actually all edges) of the directed acyclic graph of primitive behaviors. When it retreats
backward over each line, it propagates local references back from the leaves towards the root. At each
node it adds the references nesded by following continuations to the set needed by the current behavior,
except for the references which are bound by the current behavior. Thus, every local reference will be
present as an acquaintance in every behavior between the point where it was defined and the last
behaviors where it is used, following any path of behavior transitions through the intermediate behaviors.

To see how this works, let’s suppose for a moment that we were unable to make the optimization
which eliminated cont8-behavior. Then the graph of behavior dependencies with the local acquaintance
lists as we have collected them up to this point can be described by the top graph of figure 7-9. The
traverse DAG pnase walks this graph depth first, propagating identifiers as it retreats from the leaves
towards the root, producing the sets as indicated in the middle graph. This guarantees that each behavior
has the local references needed to create the following behavior. As long as the walk is depth first, every
edge of the DAG need be traversed only once; even though there may be mult'ple paths to a node, once
all the identifiers from the nodes below it have been propagated up to it, there is no reason to explore
those nodes again.

7.2.7 Connecting Behaviors

Now that each primitive behavior has identifiers for all the references it uses and all the references
it needs to pass on to subsequent behaviors, the next step is to go through the behaviors and add the code
to connect the behaviors: creating new continuations where needed, reusing continuations by updating
where possible, filling in the customers for requests with the created or updated continuations. This
phase works its way from the leading behavior, exploring the tree of commands in each handler. As
references continuations are found in reques:s and at forks for parallel lets, new commands are added to
connect the behaviors and the references are filled in.

For each of these connections, the decision must be made whether to reuse the current continuation
with an update or to create a new continuation. Where there are concurrent forks, at most one of the
branches may reuse the current continuation; for alternative forks resulting from a decision, either or both
of the branches may reuse the current continuation. Since reusing a continuation is more efficient, the
basic strategy is to reuse the continuation whenever possible, i.e. whenever it hasn't already be taken by
another concurrent branch.

Connections involving a joining continuation also need to initializc it correctly. In section 6.4 we
saw that our method for implementing joining continuations required some additional acquairtances for
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storing the returned values until the last value is retumed, and one more for storing the unique value.
These acquaintances mut be added to the behavior of the joining continuation, and must be initialized by
the actor creating or becoming the joining continuation. Thus, in the rangeproduct example,
cont7-behavior will require three additional acquaintances (v5, v6, and unique-value), and the code
which is added to cont5-behavior to create or become the joining cont7-behavior needs (o initialize
these acquaintances to the unique value.

7.2.8 Ordering Acquaintances

An optimization can be made to help make the updates efficient. Looking at the acquaintance lists
of the middle graph of figure 7-9, you may notice that the identifiers are not in any particulur order. If
left as they are, update commands connecting the behaviors will need 1o do some extra work just 1o
rearrange the acquaintances of the continuation as it takes on subsequent continuation behaviors. There-
fore, an important part of the behavior connecting phase is to determine the ordering and placement of
the acquaintances of the primitive behaviors.

The acquaintance propagation phase worked from the leaves of the continuation DAG towards the
root (the leading behavior), propagating the identifiers needed by later continuations towards the be-
haviors where they are bound. Now the behavior connecting phase works from the root towards the
leaves, deciding which behavior transitions can bs made through updates, and ordering the acquaintances
of the updated-to behavior to match the positions of the updated-from be.aavior has much as possible. To
avoid shuffling the acquaintance positions when a value is not needed by a subsequent behavior, an
ignored identifier may be inserted to serve as a placeholder. Ignored positions may also be added at the
end of the a:quaintance list to hold places for subsequent behaviors which need additional positions o
hold intermediate values (these need not be explicitly added to the behaviors). Since the update com-
mand does not change the size of the actor, this means some extra positions may need to be included
when the continuation is created.

The result of ordering acquaintances on our simple rangeproduct example is shown in the bottom
graph of figure 7-9. After propagating acquaintances, the sets indicating where identifiers are bound are
no longer needed and have been omitted. Notice that the sixth continuation, which is the arm continua-
tion of the parallel let, will be created, so it needn't follow the acquaintance ordering of the rest of the
continuations. Acquaintances have been added to the joining continuation; v5 and v6 take the place of hi
and lo which are no longer needed. The last continuation has an ignore place holder waere sponsor
used to be. The ignored positions at the end of the acquaintance lists are om:':d; they add no positional
information.

7.2.9 Ordering Behaviors

Before we can generate the Pract code, we necd to make sure that the scripts are defincd in a way
so that every script is defincd before it is referenced by another script. The easiest way to do this and still
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make the whole definition an expression is, as we saw in section 6.7, 1o linearize the graph into a series
of nested Pract let expressions, each defining a single primitive script. To accomplish this linearization, a
total depth first traversal of the continuation graph is made. Every tiine a continuation is encountered, it
is added to the top of a stack; at the end of the process, the duplicates are removed. (This traversal is
actually combined with the acquaintance propagating traversal.)

7.2.10 Generating Pract

Once we've filled in the commands to connect the primitive behaviors, the only thing left to do is
produce the Pract code. For the most pan, generating Pract is straightforward; the behavior separation
phase produced a structure which follows the command structure of Pract behaviors, and later phases
have just filled it out with identifier information and commands to connect the behaviors. The only thing
we've left out is producing the handlers and tests for the joining continuation, but this is just a matter of
filling in a pattem for the handlers with the test and the continuation body.

The completed Pract rangeproduct is shown in figure 7-10; I have left it as a scries of
defequate’s rather than as nested /et’s for readability and to make it easy to compare with the previous
versions. The last continuation is gone since the tail recursion optimizations renuered it unnecessary.
All the updates and creates for connecting the behaviors have been filled in, and the requests have their
customers filled in. The first continuation actor is created with an extra acquaintance position filled with
‘ignore so that there will be enough positions for the joining customer. At the fork for the parallel /et in
cont3-behavior, the current continuation is set up as the joining continuation, and initialized with the
unique value in the positions for storing the values from the concurrent arms. It's done!

Now, with a good idea of what the compilation process is like, we can better understand the
relevance of the details as we look into each of the compilation stages in more depth.

7.3 Macroexpansion Issues

The first step in the compilaidon of Acore is the macroexpansion phase. Acore source code is
manipulated in the form of list structure, so macros transform list structure representing a syntactic
abstraction into list structure expressing the equivalent behavior in Acore. Since Acore uses an expan-
sion passing style macro facility, there is an expander function for every special form in the language.
Most of these are straightforward, but there are some interesting points concerning the expander function
for script expressions and the shielding of locally bound names in /at, handlers, and script.

I described the design of Acore macroexpansion facility in section 4.11.3. There, we discussed the
merits of expansion passing style macros over traditional Lisp macros, and showed how expansion style
macros are both more powerful and more modular. The modularity comes from separating the process-
ing of earh macro and special form into its own expander function. The power comes from giving each
maucro’s expander function complete control over what subforms are expanded and what is returned from
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Completed RangeProduct

(defequate rangeproduct-behavior
(script
(() (cont1-behavior)
(is-request ((:do lo hi) :unserialized)
(request lo (:= hi) sponsor
(create cont1-behavior sponsor customer reply-keyword lo hi ‘ignore)
V)
(defequate conti-behavior
(script ((sponsor customer reply-keyword lo hi) (cont2-behavior)
(is-reply (:v1 v1)
(if v1 (then (let ((vO lo)) (reply-to customer (reply-keyword v0))))
(else (update self (0 cont2-behavior))
(request hi (:- 1) sponsor self :v3)))))))
(defequate cont2-behavior
(script {(sponsor customer reply-keyword lo hi) (cont3-behavior)
(is-reply (:v3 v3)
(update self (0 cont3-behavior))
(request lo (:= v3) sponsor self :v2)))))
(defequate cont3-behavior
(script ((sponsor customer reply-keyword 10 hi) (cont4-behavior)
(Is-reply (:v2 v2)
(it v2 (then (request lo (:* hi) sponsor customer reply-keyword))
(else (update self (0 cont4-behavior))
(request lo (:+ hi) sponsor self «v4)))))))
(defequate cont4-behavior
(script ((sponsor customer reply-keyword lo hi) (floor cont5-behavior)
(is-reply (:v4 v4)
(update self (0 cont5-b2ehavior))
(request floor (:do v4 2) sponsor self :average)))))
(defequate cont5-behavior
(script ((sponsor customer reply-keyword lo hi)
(rangeproduct cont-7-behavior cont6-behavior)
(is-reply (:average average)
(et ((v8 self))
(let ((unique-value (create null-script)))
(spdate self (G cant-7-behavior) (4 unique-value)
(5 unique-value) (6 unique-value)))
(request rangeproduct (:do lo average) sponsor v8 :v5)
(request average (:+ 1) sponsor
(create cont6-behavior v8 sponsor hi) :v7))))))
(defequate cont6-behavior
(script ((hi sponsor v8) (rangeproduct)
(is-reply (:v7 v7)
(request rangeproduct (:do v7 hi) sponsor v8 :v6)))))

(continued on next page)
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(continued from previous page)

(defequate cont7-behavior
(script ((sponsor customer reply-keyword v5 v6 unique-value) ()
(is-reply (:v5 v5)
(if (or (== unique-value ':abort) (== v6 unique-value))
(then (update self (4 v5)))
(else (request v5 (:* v6) sponsor customer reply-keyword))))
(is-reply (:v6 v6)
(if (or (== unique-value ":abort) (== v5 unique-value))
(then (update self (5 v6)))
(else (request v5 (:* v6) sponsor customer reply-keyword)))))))

Figure 7-10:RangeProduct Compiled to Pract

the macroexpansion. This control is achieved by calling the macro’s specialized expander function with
the form to be expanded and a general macroexpansion function with which to process subforms. The
expander function has complete responsibility for returning a fully macroexpanded form, since no further
macroexpansion is done on the form returned. Since this power and modularity is important in a
language designed partially for experimenting with syntactic abstractions for concurrent programming, I
chose to base the Acore macro expansion facility on the expansion passing style.

As a result of choosing the expansion passing style, every type of special form in Acore must have
an expander function which expands the macros inside forms of that type. Most of these are fairly
straight forward, and just apply the general macroexpansion function (passed as a parameter) to the
subexpressions supplied by the programmer. For example, the if expander function expands the test
expression and the expressions in the ther and e/se bodies, and returns an /f with the macroexpanded
subexpressions substituted. Schematically, the if macro expander function takes list structure of the form

(if exprl (then expr2) (else expr3))
and returns list structure of the form

(if expr1® (then expr2*) (else expr3*))
where exprl, expr2, and expr3 are the expressions supplied by the programmer and exprl*, expr2*, and
expr3* are the results of macroexpanding each of them. :

Not all the parts supplied by the programmer should be expanded. For example, the parameter to
quote should never be expanded; in fact the expander for quote just returns the form unchanged.
Symbols which are not evaluated should not be expanded, so the identifier bindings in a /6t or the
parameter lists of message handlers should not be expanded.

The only special form expander which is not as straightforward is performed for the script expres-
sion. Recall that the default message handlers accept request messages and return the value of the
expression in their body. These handlers have the form:
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(script (acquaintances)

((:keyword (parameters...) options...)
expression-body...)
)
The expression body evaluates to the value returned in response (o the request. If a complaint s
generatea instead, it should be forwarded 1o the customer of the request. As we discussed in section 6.6,
thi> behavior is equivalcnt to the behavior produced by the following handler:
(script ()
(is-request (.keyword (parameters...) options...)
(let-axcept ((value (iet () expression body...)))
(except-when
((some-error (&rest parameters))
(complain-to* customer

(some-error reply-keyword parameters)))}
(reply-to customer (reply-keyword value))))
o)

The script expander function takes care of this transformation, simplifying the compiler. This transfor-
mation is the source of the /et-except and complaint handler which appeared in figure 7-3 (page 98) after
we expanded our rangeproduct. The script expander function also takes care of transforming the script
expression into a form which encapsulates the actual script in a guardian, as was described in section 6.7.

The macroexpansion functions supplied for Acore special forms perform one other function which
may not be obvious. As we discussed in section 4.11.3, it is a good idea 10 apply the idea of lexical
scoping to macros names as well as bound identifiers, so that expressions referring to locally bound
identifiers aren’t expanded by mistake. Therefore the macroexpansion functions for the forms which
bind names, i.e. /et (identifiers bound in arms), script (acquaintances), the message handlers is-request,
is-reply, aad is-complaint (message paramelers), and let-except (complaint handler parameters), all
protect the locally bound identificrs. The simplest way to do this is to extend the macro environment
with identifiers bound the ask expression expander, so that if they are found at the head of a form, the
form will be treated as an ask expression.

Speaking of mistakes, sometimes an error may occur in a macro either because of a mistake in the
macro function or because the source code is of the wrong form. Since Acore is designed o be extended
for developing and experimenting with concurrent languages, macro forms should not be second class
when it comes to error reporting. Therefore, the current implementation calches errors occurring in calls
to expander functions and reports them in the same way as compiler errors.

Since the Acore compiler is currently written in Lisp, and the macroexpansion facility is a
preprocessor for the compiler, it is also written in Lisp. This means that although DefExpander and
DefMacro forms are given, the bodies of these forms must be written in Lisp. Thus, the macroexpansion
facility makes a list structure to list structure transformation, the output of which is passed to the parsing
phase.
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7.4 Parsing Issues

The parsing phase takes care of several chores for the compiler:

* Syntax checking.

o Parsing forms into structures onto which type information can be attached.
e Identifying which expressions are continued and contain ask expressions.
¢ Denesting forms with continued subexpressions into equivalent /et forms,
¢ Uniquely identifying and classifying identifiers,

¢ Associating ask expressions with sponsors.

Parsing proceeds by finding the parser for an expression and calling the parser with the expression
and the parsing environment. The parser checks that the expression has the correct form, extends the
environment if necessary, and recursively parses any subexpressions of the form with the extended
environment. A parsed node is then constructed using the parsed subexpressions. If any of the sub-
expressions are continued, a denested node may be created, in which a /et first binds the values of the
continued subexpressions before performing the action. At the leaves of the parse tree are the idenufier
nodes; a separate node identifies each uniquely bound identifier and stores its type in the current context
(e.g. free, acquaintance, local to handler) as well as its name. In this section we'll look at the issues
involved in each of these tasks.

7.4.1 Syntax Checking

Syntax checking is generally straightforward. In order 1o parse a form, it must be recognizable and
its subexpressions must fit the pattern for the form. For example, and if expression requires a test
expression, a then clause, and an e/se clause:

(if test-expression
(then expression-body...)
(else expression-body...))

The only interesting point about syntax checking is the generation of error messages. Thic current
implementation keeps track of contextual information on the environment stack, ¢.g. what definition,
what handler of the definition, and what command inside the handler is currently being compiled, so that
whenever an error message is generated this information can be included. It is conceivable that future
compilers may be further integrated with the editing system so that the source code which gencrated the
syntax error can be automatically located for the programmer, but keeping track of such pointers may
unduly complicate the macro system and macro writing.

7.4.2 Constructing Pnodes

A major purpose of any parsing stage is to transform the input source code into a tree of structures
(pnodes) which may be easily manipulated by later stages of the compiler. To perform this transfor
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mation, the parser must recognize the various types of source forms and destructure them into their
constituent parts for further parsing. Some of this information may depend on context; for example
whether an identifier is a free or local identifier depends on whether it is locally bound in the current
context. To store the information thus gained by this recognition and destructuring process, the parse
stage constructs a tree of nodes with easily identifiable types and easily accessible substructures. Ad-
ditional information may also be added to help later stages of the compilation: for example, more general
classes such as whether a particular node represents a command or an expression. We will sce that other
kinds of useful information is found and stored during the parse in the following sections.

7.4.% Identifying Continued Expressions

One kind of useful information is whether or not an expression cortains any ask expressions,
Expressions which do not contain ask expressions may be wranslated directly into Pract expressions.
Expressions which do contain ask expressions will require generating a continuation — we call these
continued expressions. By definition, ask expressions are continued expressions. Other parsers check o
see if any of their subexpressions are continued, and the pnode created is marked accordingly.

7.4.4 Denesting Continued Subexpressions

The only significant transformation done by the parsing phase is to denest continucd subexpres-
sions. As was shown in our rangeproduct example, this involves pulling the continued subexpression
out from the parameter position of the expression which contains it, binding the value in a /et, and
substituting the bound name in the containing expression. The /et source form is not actually con-
structed; instead, the pnode for the /ot is created directly. In order to perform this step, each parser must
be able to identify whether or not its subexpressions are continued; hence the previous section. It is
possible to denest all subexpressions, but this would simply produce extra /et expressions at the Pract
level, which may or may not reduce the efficiency of the compiled code depending on the sophistication
of the Pract compiler. However, it does produce more nodes to be processed by the Acore compiler, so 1
made the decision to denest only continued expressions.

Denesting applies to all expressions and commands which are evaluated in an applicative order.
This includes almost everything except script, if, and /et. The expressions and commands within the
handlers of a script expression are closed within the script, and thus should not be pulled outside the
script. However, expressions within cominands inside the handlers are denested inside the handlers
during the parse of the script. The test expression for an if may be denested, but the expressions within
the then and else bodies should not be pulled outside the if since they may not be evaluated depending
on the value of the test. For example, an if expression may be denested as in figure 7-11. Subexpressions
are not pulled outside a /et — in the case of the arms, it would serve no purpose, and the body
expressions cannot be pulled outside the environment set up by the arms. While subexpressions in
certain locations are not pulled out of those locations, the subexpressions themselves are denested as
necessary (figure 7-12). As a result of denesting, every ask expression is located in the amm of a /et.

114



WRONG: else expression gets evaluated withowt regard 1o the value of (:= 1 n)>.

(if (>=1n) (then 1) (else (:* n (f (:- 1 n)))))
_.)

(let ((v1 (:>=1n))
(vt n(f -1 m)))
(if v1 (then 1) (else v2)))

RIGHT:
(if :>=1n) (then 1) (else (:* n (t (:- 1 N)))))
(l_e)t (v1{>=1n))
(if v1 (then 1) (else (:* n (f (:- 1 n))))))
Note: Only the if denesting is shown; (:* n (f (:- 1 n))) has not been denested.
Figure 7-11:Denesting of /.

Denesting an else expression in place:
(if(:>=1n) (then 1) (else (:* n (t (:- 1 n)))))
_.)

(let ((v1 (:>=1n)))
(if v1 (then 1) (else (let ((v2 (let ((v3 (:- 1 n)))
(fv3))))
(:* nv2)))))

Denesting a lat expression in place:

(let ((average (floor (:+ hilo) 2)))

(:* (rangeproduct lo average)
(rangeproduct (:+ average 1) hi)))

.._)
(let ((average (let ((v1 (:+ hi lo)})

(floor v1 2))))
(let ((v2 (rangeproduct lo average))

(v3 (let ((v4 (:+ average 1)))
(rangeproduct v4 hi))))
(:* v2v3)))

Figure 7-12:Denesting in place

While writing this chapter I noticed a strong correspondence which may help readers who are

familiar with work on Sch:me compilers better understand this part of compilation into primitive actors.
The denesting operation is very similar to the conversion to continuation passing style performed by the
Rabbit Scheme compiler [Steele 78), also described earlier by Steele (Steele 76). In both cascs, all
expressions requiring continuations — applications in Scheme and ask expressions in Acore — are
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separately bound to variables. In Acore they are bound with /et while in Scheme they are bound with a
lambda, but the two forms are equivalent — in fact many Scheme implementations translate cach et

(let ((varl exprl) (var2 expr2) ...)
<body>)

into the equivalent /ambda form:

((/fambda (varl var2 ...)
<body>)
exprl expr2 ...)

However, there is an important difference. The conversion to continuation passing style performed on
Scheme programs introduces a sequential evaluation order on the arguments to an application, serializing
the subexpressions into a sequence of continuations. Since such expressions are concurrent in Acore, the
denesting operation described here preserves the parallel structure of adjacent subexpressions. Thus, for
example, in figure 7-12, the expressions for v2 and v3 may still be evaluated concurrently,

Aside from concurrency, the two forms are compiled in a similar manner. The applications of
Scheme are compiled into jumps, while ask expressions in Acore are compiled inlo message passes.
There are two types of applications in Scheme: applications which supply a continuation while calling a
function, and applications of continuations; these cormrespond 10 request messages to leading actors and
reply messages to continuation actors. This similarity shouldn't be surprising since the Scheme work
was inspired in part by Car! Hewitt’s early work with Actors, but I had not noticed it earlier.

7.4.5 Parsing Identifiers

The example compilation of rangeproduct showed that a large part of the compiler’s work deals
with collecting and propagating references. Therefor= an important task of the parsing phase is o
identify each symbol according to where it is bound, and classify them according to the type of reference.
After describing how this is done, we'll take a brief look at two subtle issues which must be dealt with 10
parse identifiers correctly.

Parsing identifiers is performed by passing an environment throughout the parsing phase; the
parsers for forms which bind symbols extend the environment with the symbol and its pnode, and the
forms in the scope of that binding are parsed with the extended environment. Thus, parsing an identificr
just involves looking up the identifier in the environment; if it is not found, it must be a new free
identifier, and is added at the outermost level.

Identifiers are classified into three types: local names, acquaintance names, and free names.
Acquaintances are distinguished from identifiers bound locally from the message or in a /et since only
acquaintances may be updated with a ready command; the acquaintance name pnode also stores the
acquaintance’s position so the ready may later be compiled into a Pract update command. Because
identifiers are referentially transparent, free names are constants within a behavior and their values
become part of the script. Therefore free names do not need to be passed between continuations, as we
saw in the rangeproduct example, while references to acquaintances and locally bound identifiers must
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be so propagated.

One small problem occurs if a /et binds a name already locally bound in its surrounding scope.
Since both values may need to be propagated by the same continuations, a name conflict can occur in the
acquaintances of the Pract scripts. To resolve this problem, if this situation occurs, the parser renames
the inner bound identifier to prevent the conflict. Each identifier pnode stores the name of the pnode
which will be produced on output; the renaming is performed by adding a ‘~' (representing ‘‘prime’*) o
the output form of the conflicting symbol (e.g customer becomes customer~). Thus if the conflicting
symbol had also been primed, the new symbol would be double primed; i.c. arbitrary nesting is sup-
ported. Although this technique isn’t completely general since it restricts programmers from using this
method themselves, it does preserve the original name of symbol, which is helpful in debugging.

The other subtle issue in parsing identifiers is dealing with script boundaries. Identifiers which are
free inside a script expression may be local outside the script if the script expression is nested within
another script. Since local names and free names have different types, the same identifier pnode cannot
represent the reference in both contexts. For example, in the expression:

(script ()
((:do (m))
(let ((n2 (:* n 2)))
(:create (script ()
((tn () n)
((zn2 ()) n2)))))

the outer script describes a behavior which returns an actor storing the values of n and n2. Let's
concentrate just on N. In the inner script, N is a free reference. In the context outside the script, however,
n is a locally bound name, and in fact, the inner script is the only reference to n in the continuation which
receives the value of (:* n 2). Therefore, the reference to n made by the inner script must be recorded as
a reference to the local identifier n in the outer script so that the reference will be propagated to the
continuation correctly. To deal with this issue, when the parser is looking up an identifier, if it crosses a
script boundary, the pnode returned by parsing the identifier in the outside environment is stored as a
reference made by the script expression, and a new free name pnode is created and stored at the script
boundary and returned for use within the script expression.

7.4.6 Associating Sponsorship

The final task of the parse phase is to associate a sponsor with every ask expression. Sponsorship
is controlled by context; by default, the sponsor of an incoming request sponsors all the expressions
within the handler receiving that request. However, as you may have noticed in the rangeproduct
example, references to the identifier to which the sponsor is bound must also be propagated. Therefore,
every ask expression must be associated with a sponsor.

To accomplish this, the parsers for request handlers and the with-sponsor form extend the en-
vironment with a special sponsor binding to store the identifier to which the current sponsor is bound.
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Thus, whenever an ask expression is parsed, the sponsor is looked up in the environment and stored in

the ask pnode. Because the compiler may need o generate ask expressions in cenain circumstances, the
sponsor is looked up and stored in pnodes which have expression bodies as well. We'll see what these
circumstances are later.

Now that the parse phase has checked the syntax, identified and denested continued subexpres-
sions, identified and classified identifiers, and associated sponsors with each ask expression, the tree of
pnodes returned is ready to be separated into primitive behaviors by the following phase.

7.5 Separating into Primitive Behaviors

The primary purpose of the separation phase is to divide the actions specified by the parse tree into
the primitive leading and continuation behaviors. As we saw during the rangeproduct example, this is
performed by walking the parse tree, creating the leading behavior inode from script pnodes and con-
tinuation inodes from the bodies of let pnodes, and filling in the bodies of these intermediate nodes with
the appropriate commands. Finally, this phase also collects the identifiers referenced in each of the
behaviors.

The denesting operation of the parse phase is an important preparation which makes this possible.
As a result of denesting, the actions are encountered in the parse tree in the order they are to be
performed by the behaviors, all ask expressions are separated into the arms of a let, and all continuations
are represented by the body of a let. We now look into how the separation phase processes each type of
pnode. For brevity I will use the term inode to represent the intermediate structures output by this phase;
the process of transforming the parsing structures (pnodes) into inodes will be called icoding.

7.5.1 Icoding Scripts and Handlers

When the separation phase encounters a script pnode, a script inode representing the behavior of
the leading actor is created and each of the script’s handlers is processed and added to the script inode.
To process a handler, a handler inode is created. The body of the handler pnode is then processed; the
handler inode forms the current body to which commands will be added. The script and handlcy inodes
will represent the leading behavior once the icoding process is through; this is the start of our behavior
graph.

7.5.2 Icoding Commands

Commands represent no value, so icoding commands represents simply adding commands to the
current handler body. Thus command icoders take only the parameters (pnode current-inode); the
parsed commands are represented by the pnode, and the icoded commands are added to the current inode.
We saw in section 6.6 that expression body handlers are equivalent to a command body handler which
evaluates the expression body with complaint handling and replies with the value; we saw in section 7.3
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that the macro expander for script expressions takes care of this transformation. Thus all handlers of the
script have command bodies, and the commands in these bodies are icoded using this strategy.

7.5.2.1 Simple Commands

Simple commands are the easiest forms to icode. Because of the denesting done by the parse
phase, simple commands for sending messages such as request, reply-to, or ready contain no ask
expressions, so they may be simply inserted into the current command body. Any subexpressions must
be simple expressions which can be compiled by Pract.

icode-command(simple-command current-body-{...})
;. add simple command to current body
., produces: current-body-{simple-command + ...}
(add-command simple-command current-body)

7.5.2.2 If commands

If commands are also straightforward to icode. An if command represents a decision choosing
which of two command bodies to perform. The strategy is just to insert an if inode into the current
command body, and icoding the then and else bodies by inserting commands into the then and else
branches of the if inode. Since the test expression has been denested, the only problem is to icode the
then and else bodies. Two inodes are created for the then and el/se branches, and as each pnode branch
is icoded, commands are inserted into the respective body inode. Once this has completed, the inode
bodies and primitive test expression are combined into an /finode and inserted into the current body.

icode-command(if-command-{test then-commands else-commands)
current-body-{...})
(let ((then-inode (make-then-body-inode))

(else-inode (make-else-budy-inode)))
(icode-commands then-commands then-inode)
(icode-commands else-commands else-inode)

(let ((if-inod9 (make-if-inode rest then-inode else-inode)))
(add-command if-inode current-body)))
., produces:
. current-body-{if-inodef{test
AN then-inode-{ <icoded then-commands...>)
o else-inode-{ <icoded else-commands...>}}

o +..]

7.5.2.3 Let commands

Let commands can be classified into three types: simple /et commands which have zero arms with
continued expressions, single /et commands which have one arm containing a continued expression, and
parallel /et commands which have two or more arms with continued expressions.

Simple /et commands are icoded by creating a /et inode and then icoding the body by inserting
commands into this inode. This is possible since the arms of the /et can be compiled into Pract

119



expressions, so a Pract /et will do. Finally, the /et inode is inserted into the current body.

icode-command(let-command{simple-arms body-commands) current-body-{...})
(let ((let-inode (make-let-inode simple-arms)))
(icode-commands body-commands let-inode)
(add-command let-inode current-body)
.. produces:
., current-body-{let-inode{arms {<icoded body-commands>}) + ...)

The icode generated from single /et commands must create a continuation behavior which expects
the reply from the single ask expression. The pattern for the reply handler is derived from the patiern o
which the results will be bound. Normally this is just a single identifier, but we saw in section 6.8.4 that
this can easily be extended to multiple values. Thus the pattern is derived from the identifier or list of
identifiers by prepending the keyword to be used. Tie keyword may be anonymously generated, but 10
help debugging, I have chosen to give the reply keyword the name of the variable being bound. For
example, in figure 7-6 (page 103) we see that the handler which receives the value for average expects
the keyword :average; the message returning this value will also contain the keyword :average, and
will be displayed by debuggers such as Traveler (appendix B).

The body of the /et represents what to do once the value of the expressions in the arms is known;
thus the body of (the reply handler of) the continuation is generated by icoding the body of the /et. Since
the returned value is bound to the identifiers in the reply handler, these commands will be performed in a
run-time environment extended with identifier and its value. The continued arm is icoded using the
current inode body, the continuation, and the pattern; we will discuss how expressions are icoded later.
The /et itself adds no commands to the current body; what needs to be added to the current body depends
upon the expressions in the arms. The continuation inode is connected to the current inode through the
results of icoding the ask expressions in the arms; we will see how this works when [ describe how ask
expressions are icoded.

We will also see that the icoding the arms may require the results of icoding the body for certain
optimizations, such as *‘pulling”’ the body of the continuation. We saw an example of this in the first
continuation of rangeproduct in section 7.2.3. T will get to this continuation pulling operation later; |
n. stion it here because it affects how the parts of a /et are icoded. In the current implementation, this
con.traint is satisfied by icoding the body of the /et before the arms.

icode-command(let-command(single-continued-arm body-commands) current-body-{...})
(let ((handler-pattern (make-pattern (binding-pattern single-continued-arm))))
(let {(cont-inode (make-continuation-inode handler-pattern))
(icode-commands body-commands cont-inode)
(icode-expression (binding-expression single-continued-arm)
current-body
cont-inode
handler-pattern)))

The icode generated from parallel /et commands is similar to single /et commands except that they
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must set up a fork and build a joining continuation. Instead of a single reply pauemn, the joining
continuation inode keeps track of multiple reply patterns, but otherwise the paitemns and reply keywords
are generated in the same way. The body of the /et represents what the joining continuation should do
once all the replies have been received; therefore the body of the joining continuation is generated by
icoding the body of the /gf. To create the join, multiple handlers will need to be created with the
synchronizing checks we first saw cn page 75 in figure 6-12. However, at the icoding siage only a single
body is generated; it will be combined with the multiple handler patterns and checking only in the last
stage of compilation.

To create the fork, multiple request commands will be generated by the multiple continued arms.
However, the expressions in the arms need to share the joining continuation so that at the end of each
arm they will return a value to the joining continuation, as we saw in on page 78 in figure 6-14. To
accomplish this, a /et inode is created to bind the value of the joining continuation, and the arm
expressions are icoded with this inode as the current body. Thus the requests for the fork produced by
this /et are nested in the body of this /ef, as in cont5-behavior from figure 7-6:

(defequate cont3-behavior
(script (()()
(is-reply (:average average)
(let ((v8 ??)) .. let to bind shared joining customer
(request rangeproduct (:do lo average) sponsor v8 :v5)
(request average (:+ 1) sponsor ?? v7)})))))

For this reason, this /et inode is sometimes called the dispatching inode. Thus the arms are icoded using
the dispatching inode as the current body, the identifier for the joining continuation, and their individual

patterns.
icode-command(let-command|{parallel-continued-arms body-commands) current-body-{...})
(let ((jcont-identifier (new-identifier)))
(let ((dispatching-inode ;; nil now; fill in value while connecting behaviors
(make-let-inode (make-binding jcont-identifier nil))))
(add-command dispatching-inode current-body)
(let ((jcont-inode (make-joining-continuation-inode
(mapcar binding-pattern parallel-continued-arms))))
(icode-commands body-commands jcont-inode)

(mapc (lambda (binding)
(icode-expression (binding-expression binding) ,; pnode
dispatching-inode ;» current-body
jeont-identifier ;s continuation

(make-pattern (binding-pattern binding)))) ;. pattern
parallel-continued-arms))))

7.5.3 Icoding Expressions

Expressions do represent a value, and therefore every expression icoded must have a continuation
which expects the value. Thus, the parameters for icoding expressions are (pnode current-body con-
tinuation pattern). The continuation represents the customer of the final request which produces the
value of the expression. The pattem indicates what reply keyword the continuation expects and therefore
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must be supplied by the request.

7.5.3.1 Ask expressions and the tail recursion optimization

Ask expressions are the bridges between behaviors. They initiate a transaction, the request of
which is sent by one behavior and the reply of which retums to the continuation behavior, Since they’ve
been denested, icoding them is relatively simple: it is just a matter of creating a request inode with the
correct continuation and the reply keyword from the pattern, and adding the inode 1o the current body.
At this point, the only connection between the current inode body and the continuation inode may be
through this request inode.

icode-expression(ask-expressior{:keyword target sponsor parameters}
current-body continuation pattern)
(let ((request-inode (make-request-inode target keyword parameters
sponsor continuation (pattern-keyword pattern})))
(add-command-inode request-inode current-body))

However, we can make an optimization, the tail recursion optimization I have mentioned several
times earlier. If the continuation merely forwards all replies and complaints in the exact same form as
they are received, then we can extract the customer and its reply keyword from the continuation, and
substitute those directly for the customer and reply keyword, just as was shown on page 73 in figure
6-10. (This is one of the optimizations which requires that the body of a /et be icoded before the arms so
that the body of the continuation will be complete when the expressions are icoded.)

7.5.3.2 If ex.pressions

If expressions are icoded in a manner very similar to how if commands were icoded. The only
difference is that the value of the if is the value returned by cither the then body or the els2 body.
Therefore the two bodies mnst be iccJed with the incoming continuation inode and pattem so that at the
end of the body the value will be retumed (o the continuation.

Icode-command(if-expression-{test then-expression-body else-expression-body)
current-body continuation pattern)
(‘et ((then-inode (make-then-body-inode))
(else-inode (make-else-body-inode)))
(icode-expression-body then-expression-body then-inocie continuation paiiern)
(icode-expression-body else-expression-body else-inode continuation pattern)
(let ((if-inode (make-if-inode rest then-inode else-inode)))
(add-command if-inude current-body)))

7.5.3.3 Lot expressions

Let expression are also icoded very similarly to how /et commands were icoded. The only
difference is a /et expression has a value, the value of its body, so the body of thz let is icoded as an
expression body rather than as a command body, and the continuation inode: and pattern are passed along
to the icoding of the body so that the final value may be returned to the continuation. As we saw in the
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rangeproduct example, icoding nested /et expressions creates a chain of continuations. New continua-
tions are added before the current continuation if the nested /et is in the arms, and after the current
continuation if the nested let is in the body.

7.5.3.4 Race expressions

Race expressions are icoded very much like paraltel /et expressions. The only differences are that
a race continuation serves as the joining continuation rather than a joining continuation created from a /et
body, and the parallel subexpressions of the race are all icoded with the same pattern since the race
continuation only has one reply handler — for :value. Otherwise the result looks much like shown on
page 92 in figure 6-20.

7.5.3.5 Simple expressions and the continuation pulling optimization

Occasionally there are situations where a simple (non-continued) expression may need to be
icoded. For example, if an if expression contains a simple expression in its then body but a continued
expression in its @/se body, then the if expression must be continued. However, if it takes the then
branch, there is no ask expression to make the bridge to the next continuation. We saw a situauon like
this in our rangeproduct example, and this situation also exists in the simple recursive factorial: in the
base case a simple value can be returned. but the inductive case a recursive ask needs o be made. There
are three approaches to dealing with this situation:

¢ One strategy is to create a bridge to the continuation by making a request to an identity actor
which simply replies with the value(s) of its message parameter(s) to its customer.

e Another strategy is to simply send a reply message with the value directly to the continua-
tion.

e A third strategy is to eliminate the message passing entirely and perform the body of the
continuation using the value that was to be retuned. This can be done by substituting the
body of the continuation into the current context.

The third strategy, sometimes called continuation pulling, is the most desirable since it eliminates
the communication entirely. However it has a few drawbacks: pulling the continuation body means that
code is duplicated, and it doesn’t duplicate other capabilities which are associated specifically with that
continuation. The code duplication problem is not serious; as we have seen, the primitive behaviors
produced are quite short, and code sharing begins again with the bridge to the following continuation.
However, joining continuations also synchronize concurrent replies and store the returned valucs, as well
as continuing the computation once the replics have been received. This functionality cannot be dupli-
cated by simply duplicating the body of the joining continuation, so this approach cannot be applied
when the continuation is a joining continuation.

The first and second approaches can be applied in this situation; since these approaches do send a
reply to the joining customer, it can perform its synchronization duties and update its state. The current
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compiler uses the first strategy when the customer is a joining customer because it preserves the structure
of the transactions for the debugger. The current debugger (appendix B) records message passing
patterns in terms of transactions: requests and their corresponding reply. Sending a request dircctly to
the customer would produce a reply to which there was no corresponding request. Preserving this pattern
is helpful for the programmer, since it produces a trace where all the transactions associated with a
particular script are displayed at the same calling depth (indentation) (see appendix B for more details
about Traveler). If we use the customer pulling strategy whenever the continuation is not a joining
continuation, then simple expressions can bx: icoded as follows.

icode-expression(simple-expression current-body continuation pattern)
(if (single-continuation? coniinuation)
(then (let ((cont-body (continuation-inode-body continuation)))
(let ((binding (make-binding (pattern-identifier pattern))
simple-expression))
;. Bind the value in a let and perform the continuation body
(let ((let-inode (make-let-inode binding cont-body)))
(add-command let-inode current-body)))))
(else (let ((request-inode
(make-request-inode (lookup 'reply-identity)
:do simple-expression
(body-sponsor current-body)
continuation (pattern-keyword pattern))))
. Create bridge to continuation with request to reply-identity
(add-command request-inode current-body))))

We have seen an example of continuation pulling in our rangeproduct example (figure 7-6, page
103). The first continuation (conti-behavior) may just return the value cf 10, so ihe behavior of
cont8-behavior, which is merely to reply with the value to the customer, has been pulled into the then
arm of the if. The value of lo is first bound to the identifier expected by the body of the continuation, v0,
and a duplicate of the body of the continuation can be found in the body of the /et.

7.5.4 Exception Handling

Exception handling specified with a /et-except indicates what to do if the expression in the arm
cannot be evaluated because of a complaint. Therefore, not only are the exception handlers added to the
continuation which processes the body of the /et-except, but also to continuations generated as a result
of icoding the arm expressions. In this section we look at one method by which the icoding process can
add exception handlers to continuations, and the special characteristics of the this method. As I've
mentioned before, exception handling is still at a primitive stage in Acore, but it may be instructive to see
how one complaint handling mechanism is implemented.

We have seen that a /ot generates a continuation behavior which carries out the body of the let. In
section 6.6 we saw that exception handlers are translated into complaint handlers of the continuations
generated by expressions in the scope of the complaint handler. One way to implement complaint
handling is to add the complaint handlers specified in the /et-except to the continuation created, and
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icode the handlers. Since this continuation is passed to the arm expressions as tiey are icoded, any
further continuations generated can simply copy the complaint handlers from the continuation. If there
are nested /et-except statements, the new complaint handler may be merged with the old ones, omitting
the handlers which are overridden by new versions.

One exception to the merging strategy concems concurrent arm continuations. Recall that in
section 6.6 we concluded that concurrent arm continuations should forward complaints to the joining
continuation rather than processing complaints themselves (unless the arm has an exception handler of its
own). Therefore, in the concurrent arm continuations the default complaint handler should forward
complaints to the joining continuation rather than copying complaint handlers from the joining continua-
tion. Just as values wer “orwarded through reply-identity, this is performed by forwarding complaints
through complaint-identity.

One good characteristic of this method is that even though each continuation behavior has a
complaint handler, if the complaint handler specifies further transactions which require continuations, the
complaint handler continuations are shared between the behaviors. If we were instead to copy the
exception handling into each /et at the source level, these would be duplicated for every /et.

An important characteristic of this method is that only expressions which are necessary for return-
ing a value to the /et-except are covered by its exception handling. Exnressicas whose values are
ignored or are used by commands or expressions not directly involved in computing the result are not
covered by the exception handling. This is usually the best solution, since the exception handler
indicates what to do if the expression is not successfully computed, so the expressions independent of
and concurrent with the computing of the value of the expression should not invoke that exception
handling. For example:

(let-except ((money-order (/et ((money (:withdraw my-account amount)))

(:print money debugging-stream)
(:create money-order :amount money)))

(order-form (:new-order order-forms :item desired-item)))

(except-when

((some-error (&restignore))

"Sorry, | can’'t make the order now -- try again later.™)
(:send-order company order-form money-order))

The :print expression and the :Create expression are evaluated concurrently, and the value of
:create expression is returned to the joining continuation which has the complaint handler. The :print
expression is there just for effect; its value is ignored. Since the value of the :print is ignored, it doesn't
have direct influence on the success of the transaction, and since the requisition may be sent off and the
receipt returned before the :print generates a complaint, the complaint handler shouidn’t be invoked. The
complaint handler only specifies what the /et-except form should return if the body cannot be performed
because an arm wasn’t evaluated successfully. The only problem with this solution is that ¢he :print
statement may appear to be covered by exception handler.
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7.6 Collecting Identifiers

The final step performed during the icode pass is ta collect the sets of identifiers referenced in each
continuation behavior. This is done after each form is icoded, and each inode transfers the sets to s
parent inode. This has been left out of each of the procedures loosely sketched above for brevity.

To collect all the identifiers, the entire inode tree must be traversed  Since simple (non-continued)
command and expression pnodes are inserted into the inode graph direcdy, script expressions hidden
within these furms may be found. If so, they must be processed by the behavior separation phase and the
following identifier propagation phase, since the simple commands and expressions won't be travenied
again until the final Pract generation phase. This explains the recursive call to the icode phase in figure
7-1 (on page 96).

(It may be possible to partially collect the identifiers during the parsing phase and put them in
places where they can be retrieved for identifier collection without traversing all simple commands and
expressions. If this were the case, then script expressions wauld have to be separated into behaviors and
their acquaintanres propagated as soon as they were parsed, since their fre= identifiers need 1o be known
before identifiers are collected in the expression enclosing the script. However, identifiers shouldn't be
collected beyond the simple expressions during the parsing phase since the icode phase inroduces new
code during optimizations, and identifiers from the new code need 1o be collected s well.)

Five sets are collected. The free-externs are the pnodes of the identifiers which parsed as free
identitiers; they will become the free identifiers of each behavior. The compiler-externs are the set of
free identifiers added by the compiler; for example, the compiler generates calls to the reply-identity
actor, so the identifier ‘reply-identity’ needs to be added as a free identifier 10 the behavior and is
collected as a compiler extern. The compiler extems are kept separated from the normal externs because
they are also propagated to the leading script by the next phase. The reason for this is that all free
identifiers inside a script expression must be known before the identifiers referenced by the script
expression can be known for collection outside the script. Most of the free identifiers of the script
expression were collected during the parsing phase; recall the discussion about storing identificrs in the
environment at the script boundary in section 7.4.5. The free identifiers added by the compiler must he
propagated and added to this set, but there is no reason to go through the overhead of propagating all the
free identifiers, so the compiler externs are kept separately.

The third set collected is the set of free local idenlifiers (free-locals). This is the set of identificr
pnodes referenced which were not parsed as free identifiers for the whole script (this is where typing the
identifier pnodes comes in handy), but are not bound in the current primitive behavior. This is the set o
the left of the vertical bar in figures 7-8 and 7-9 (pages 105 and 106).

The fourth set is the set of defined local identifiers (defined-locals). This is the set of identifier
pnodes for those identifiers which are defined within the current primitive behavior, by being bound
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either in a primitive /af, by a message handler, or, in the leading script, by being an acquaintance. This is
the set 1o the right of the vertical bar in figures 7-8 and 7-9.

The fifth and final set collected is the set of continuations referenced. This set is collecled so that
the following phase which traverses the directed acyclic graph of primitive behaviors can do so without
searching through all the commands for the other behaviors referenced. The continuation behaviors will
eventually be referenced as identifiers which must be declared as free identifiers for cach primitive
behavior,

7.7 Walking the DAG

The result of the separating phase is a directed acyclic graph (DAG) of leading and continuation
script inodes, each filled with a tree of commands a.id simpie expressions. As we saw {rom the graphs of
figure 7-9 (page 106), one of the jobs of the next stage is to propagate the local idenufiers so that each
continuation has references to the actors it needs. While walking through the DAG, two other jobs which
need to be done are performed as well: linearly ordering the primitive scripts, and collecting the
compiler externs for the leading script. Each of these jobs is simple by itself and independent of the
others, so they have been combined into one pass.

As we saw in section 6.7 the definition of all the scripts must be an expression. A series of nested
let expressions serves our purpose, but the compiler must find an linear ordering of the scripts by which
each primitive script is defined before it is used. Such an ordering exists because the graph of scripts is
acyclic; there are no loops in Acore behaviors, so there are no cycles of references between the primitive
behaviors. One way to build this ordering, which is used by the current compiler, is to make a depth (irst
traversal of all the paths through the graph, adding each primitive script to the front of a list as it is
encountered advancing. The idea is that each time an edge is crossed, it is coming from a script which
references the continuation behavior reached, and since the continuation behavior reached must be
defined before the script, it is added to the front of the list to guarantee this. You can think of the process
as reordering the list of primitive behaviors, moving the encountered behavior to the front of the list at
cach step. However, since memory is available, we save having to traverse the list scarching for and
deleting the element from the middle of the list each time by just adding a new element to the front of the
list, and after we're done, traversing the list once deleting duplicates. Once the list has been completed
and the duplicates deleted, the list is stored with the leading script inode from which it will be recovered
when it is ume to generate the final Pract code.

In figure 7-9 we saw that the local identifiers referenced by a continuation need to be passed from
the point where they were bound, through the acquaintances of the continuations between, down o the
continuation. To propagate the identifiers from the points where they are referenced back up the DAG 1o
the nodes where they are defined, a depth first traversal is required so that all the references in the
behaviors below a node in the graph are propagated through that node as needed. However, once all the
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references below a node are propagated up to the node, its acquaintance set is the set of all references
which need to be propagated to that node and any nodes below it. Therefore there is no reason 1o explore
the graph below the node again; thus the cost of this propagation is proportional 10 the number of edges
in the DAG (plus a factor depending on the number of a identifiers propagated). The cost of just
traversing the graph for this tree is the same as finding a spanning tree, proportonal (o the number of
edges. Since only a depth first tre-ersal of all the edges of the DAG is necessary for this job, combining
it with the complete traversal of the previous job just requires checking at each node whether the node
has been previously encountered.

One minor point: Note that the DAG of references propagated between behaviors is not the same
as the DAG of message passing bridges between behaviors. While the forks are the same, the joins arc
not the same. Forks occur when either a decision is made or expressions arc cvaluated concurrently; in
order for the fork to occur, multiple messages must be sent and existing references must be passed 1o
multiple continuation behaviors. Joins due to decisions may occur in both graphs; the flow of control
may pass through the decision, split through either arm of an if expression, and join again once the value
of the ifexpression is computed. This effect produces the fork and join in figure 7-9. However, joins due
to a parallel /et do not occur in the reference propagation DAG. The reason is that the joining continua-
tion is created at the fork, not by the concurrent arm continuations, so no references are passed by
acquaintances from the concurrent arms to the joining continuation. Thus, in the graphs of figure 7-9, the
parallel /et arm continuation behavior, represented by the node farthest to the right, is not connected o
the joining continuation behavior below it Instead, the joining continuation behavior is connected (o the
behavior containing the corresponding fork, since the joining continuation must be created beforehand so
that it is known to all concurrent transactions. However, the last continuation behavior at the botiom
may be instantiated by two paths depending on the decision taken in cont3-behavior.

In the previous section we saw why compiler externs are collected; this stage collects the compiler
externs from all the primitive scripts and stores them in the leading script inode. Collecting the compiler
externs only requires visiting each node once and adding any compiler exiems defined there to a set.
This is easily combined with propagating local identifiers, since both check for redundant visits to nodes.

Thus, the traversing DAG phase is simple, but important. It is potentially time consuming on
complex DAG's, but so far it hasn’t been a problem.

7.8 Connecting Behaviors

The result of traversing the behavior DAG is that all references are propagated through the ac-
quaintances of the behaviors from the point where they are bound to the continuations where they are
needed. The next step is to connect the behaviors with the commands for creating or updating continua-
tions. There are five things to be done to accomplish this:

e Deciding whether to create or update.
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¢ Positioning acquaintances in the acquaintance lists.
o For creates, deciding how many additional ignored slots are needed.
e For updates, deciding which acquaintances need updating.

¢ Deciding where to insert the update or create for the next continuation,

7.8.1 Deciding whether to create or update

Each leading script handler and each continuation body is a tree of commands. Each hody may
have multiple commands, and bodies within /et or if commands may also have multiple commands.
Multiple commands from a body of concurrent Acore commands or a parallel /et form concurrent forks;
decision points in i form forks to exclusive paths. At the leaves of this tree are the reques! command
inodes which are connected to the following continuations; we've seen this in al} the primitive behaviors.
The challenge is to go through this tree of commands, knowing which of these requests must create a
new continuation, and which may reuse the current continuation, and add the commands for doing so.

The possible situations can be itemized as follows:

o The current body is in the leading behavior. This is always the initial case in any tree of
behaviors; as we saw in section 6.2, the leading actor should not be used as a continuation.
Therefore, in the leading behavior, all continuations must be created.

¢ The current body is in a continuation behavior, and there is a parallel branch where several
continuations will be needed concurrently. In this case, only one of the branches may mav
reuse the current continuation. Not all the branches may need a continuation, so the method
for choosing which branch is allowed to reuse the current continuation must take this into
account.

¢ The current body is on a branch which isn’t allowed to reuse the current continuation. This
is like the initial case in the leading behavior: all continuations must be created.

¢ The current command is an if and the continuation may be reused. An /f has two bodies
which are mutually exclusive; only one of them will be performed. Therefore, if the if may
reuse the continuation, both of the bodies are permitted to reuse the continuation.

¢ The current body is the dispatching node of a parallel /ot, and the continuation is available to
be reused. In this case both the joining continuation and any concurrent arm continuations
are possible candidates for reusing the current continuation; this is like the case of parailel
commands in the continuation body. One one of the connections may be an update; the rest
must be created.

One possible method of making the decision which satisfies all these situations is 1o make use of
information at each fork indicating which of the subcommands will need continuations. This information
is available in the form of the sets of referenced continuations collected at each inode, which I described
at the end of section 7.6. Thus at each concurrent fork, these sets could be consulted, and one of the
forks which needs a continuation would be passed a flag allowing it o reuse the continuation; the rest
would be passed a flag indicating a continuation must be created.

However, if a flag must be passed around anyway, a simpler method of making the decision is o
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pass a mutable flag around, and the first branch to use the continuation sets the flag, indicating it is no
longer available for the other branches. This eliminates the need for decision making at each concurrent
fork, at the expense of some overhead at each exclusive fork (if) — even though one branch of an if may
set the flag, the other branch may still be able to use it.

Different strategies may be used for deciding which of several concurrent commands may reuse
the current continuation actor. One possibility is to compare the continuations to see which will reuse the
most state, in the hopes this will improve efficiency by reducing the average size of the creawed continua-
tions and the amount of work the update must do. Another is to do some sort of analysis 10 see which is
likely to survive the longest, if this helps the memory management system by kecping the other continua-
tions as short-lived as possible. The current compiler takes a relatively naive approach, in the interests of
keeping compile time down. It uses the following simple ideas: since the value of an expression body is
determined by the last expression in the body, the last expression is most likely to need 1o reuse the most
state, since it needs at least the customer and reply keyword. Since it determines the value of the
expression, it may also be of most interest to the programmer; keeping the most interesting transactions
in one continuation actor allows the programmer to se¢ more from the lifeline of that actor (see appendix
B for more on lifelines). Therefore, the last commands in a body get first crack at reusing the centinua-
tion. The other simple idea is that joining customers are likely to reuse more state than the arm
continuations (for much the same reasons), so the joining customer is made by updating the current
continuation rather than creating a new actor whenever possible.

7.8.2 Positioning Acquaintances

Once the decision is made whether to update or create a continuation, the next step is to find what
positions the next behavior expects its acquaintances. As I discussed in section 7.2.8, the acquaintance
positions can usually be optimized so that updates only add new acquaintances without rearranging
existing ones. The current compiler doesn’t make an extraordinary effort to optimize the acquaintance
positions considering multiple routes through the behavior DAG, but it does make some oplimizations
which can easily be accommodated in one pass. Continuations which are created keep their original
acquaintance positions, which may be whatever resulted from identifier collecting. ‘I'o order the acquain-
tances of a behavior which is updated from a previous continuation behavior, first match the positions of
the acquaintances the two behaviors have in common, then fill in any holes and add to the end any new
acquaintances of the later behavior. If there are fewer acquaintances in the later behavior, then there may
be some ignored positions which may or may not be used by subsequent behaviors.

There are three issues to keep in mind while implementing this algorithm. First, there may be
multiple paths through the DAG to the behavior, so once the ordering has been sct by one connection it
should not be changed. This means that in a behavior connection DAG with many joins, it may be
desirable to do all the updates before the creates in order to take advantage of existing ordering as much
as possible. The current compiler does not make this effort.
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Second, as I discussed in section 7.2.8, later behaviors may need more acquaintances than the first
behavior of a continuation actor, so it may need to be created with some ignored acquaintance positions.
Computing the maximum size needed by any one continuation actor requires knowing the graph of
possible behaviors to which it may be updated. Since the decision as o which connections are updates
and whicl are creates is not made until this stage, this maximum must be computed while traversing the
graph during this stage. This can be accomplished by running this pass in a depth first manner,
propagating the ordering constraints downward from the root and propagating the maximum size needed
back upward toward the root.

Third, the set of acquaintances needed by a behavior is not always just the set of free locals which
it needs, but in the case of a joining continuation also includes the storage for a unique value and the
incoming values. A good example of this was discussed in section 7.2.8.

7.8.3 Building a create expression

Once the decision has been made that the continuation must be created, the positions of the
acquaintances of its first behavior are known, and the maximum size of the behaviors it may update 1o is
known, then it is a simple matter to build the create expression. The identifier for the script is stored in
the continuation inode. The values for the acquaintances will be bound to the same names in the current
environment, either as acquaintances of the current behavior or because they are defined (first bound) in
the current behavior. The end of the create may be padded with ‘ignores.

(create behavior-identifier {acquaintance-names...} {"ignore padding...})

There are two examples of creates in our RangeProduct example in figure 7-10 (page 111), one
in the leading script and one in the fork for the parallel /et (cont5-behavior).

7.8.4 Building an update command

Once the decision has been made to update the current continuation actor with the next behavior,
and the positions of the current continuation behavior and next behavior are known, it is a simple matter
to build the update expression. The script, acquaintance 0, is always updated; the identifier for the new
script can be retrieved from the next continuation inode. To build the rest of the update, the acquain-
tance lists of the two behaviors are compared, padding with ‘ignore where one is shorter than the other.
Any positions which are different must be updated.

(update self (0 behavior-identifier) {(diff-acq-position diff-acq-name)}...)

If the new behavior is a joining continuation, then the acquaintance positions which will be used 10
hold incoming values must be initialized to the unique value used to tell whether or not the incoming
value has been received. The code which creates the unique value must be built as well, so the update is
wrapped in a /et.
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(let ((unique-value (create null-script)))
(updata self (v behavior-identifier) {(diff-acq-position diff-acq-name))...
{(incoming-a ‘q-position unique-value)}...))

Because the compiler takes the care to create the original continuation actor large enough for any
behavior it may take on, there is no need to check whether the behavior is large enough at this point.
Note that a position is updated to 'ignore when the following behavior doesn’t use it. Although this
seems like unnecessary work, it frees up references to actors which are no longer needed, which may
allow them to be garbage collected or may give the memory manager a hint that the previously
referenced actor is no longer needed here and may be migrated somewhere more useful (see appendix A
for a brief discussion of migration).

(One note about the examples: For clarity I have been using self as the identifier to refer to the
current continuation actor in the primitive behaviors. As we can see from the examples, there needs o be
an identifier referring to the current continuation so that it may be reused as the customer in requests as
well as being updated. However, the identifier self is also the default identifier used at the Acore level
for referring to leading actor. Therefore, to avoid this conflict of names, the Acore compiler actually
uses the identifier current-continuation in Pract continuation scripts instead of self.)

7.8.5 Deciding where to insert the update or create

Once the create expression or the update command is built, inserting it is straightforward. You
may recall that the separation (icode) phase left holes for thc continuation, since at that stage is is
unknown how the next continuation will be connected. These holes are represented by <??> in figure
7-6 (page 103). These holes are found in the customer positions of many requests, and in the binding of
the joining customer in the dispatching inode at the fork. If the continuation is created, then the create
expression built is simply inserted into the hole. If the continuation is updated, then the identifier self
bound to the current continuation is inserted into the hole, and the update command built is inserted
close by, either in the same body as the request or, in the case of the joining continuation, in the body of
the /et which binds the identifier used for the joining continuation. This can be seen by comparing figure
7-6 with figure 7-10 (on pages 103 and 111).

7.9 Generating Pract

After the update commands and create expressions are inserted, the Pract code can be generated
fairly straightforwardly. The only code which isn’t a direct translation of its inode structure are the script
lists, single continuation behaviors, and joining continuation behaviors. Rather than repeat a large
example here, the points expressed below can be elucidated by examining the forms of the scripts in
figure 7-10 on page 111 (except for nesting /ess to bind scripts, omitted for clarity).

The script list built in the traverse-DAG stage is stored in the leading script inode. In the final list,
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the leading script must be at the end of the list, since it is added first and no continuation refers 1o it so it
is never added to the front. At the head of the list is one of the continuations at the icaves. Thus the list
is in the same order as the series of nested /efs must be, so a simple recursive algorithm builds the script
list described in section 6.7. Each continuation script is given a name when it is created; this name is
used to refer to the script by code which uses it, so this name is now used for binding the scripts in the
let.

Single continuation inodes are translated directly into Pract script expressions. The acquaintance
list comes from the acquaintance list built and ordered in the DAG-traversing and behavior connecting
stages. The list of external identifiers comes from the set of free identifiers classified by the parse phase
and collected during identifier collection, the set of compiler externs from identifiers in commands added
by the compiler, and the set of names of continuation behaviors referenced by this continuation. A single
continuation has one reply handler, whose pattern is determined by identifier used in the /et, and whose
body is body of commands to be performed by the continuation. Compiaint handlers which were addcd
now become part of the script as well. All the continuation behaviors in figure 7-10 except
cont7-behavior are examples of continuation behaviors expecting a single reply.

Joining continuation inodes are translated into Pract Script expressions in a similar manner. The
only difference is that a reply handler is generated for each arm of the parallel /et, and a test expression to
decide whether to store the value received or proceed with the body of the continuation is generated. The
test expression tests whether all the other incoming values have been bound or whether a transacticn has
been aborted. For example if three values a, b, and ¢ are expected, then the tests may look as follows:

(script
((reply-keyword customer sponsor ¢ b a unique-value) (...)
(is-reply (:c c)

(if (or (== unique-value ":abort) (== b unique-value) (== a unique-value))
(then (update self (4 c)))
(else <do body...>)))

(is-reply (:b b)

(if (or (== unique-value ":abort) (== ¢ unique-value) (== a unique-value))
(then (update self (5 b)))
(else <do body...>)))

(is-reply ((:a a) :self self)

(if (or (== unique-value ":abort) (== ¢ unique-value) (== b unique-value))
(then (update self (6 a)))
(else <do body...>)))

(is-complaint (some-error ignore &rest args)

(if (== unique-value ':abort)
(then (update self))
(else (update self (7 ":abort))

(complain-to* customer
(some-error reply-keyword args))))))
...)

In figure 7-10, cont7-behavior is also an example of a joining continuation behavior.
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7.10 Summary

In this chapter we have taken a look at how an Acore compiler can translate Acore code into
primitive behavior as Pract code. In three passes at increasing levels of detail, we have looksd at the
different stages in the compilation of Acore: macroexpansion, parsing, separating into primitive be-
haviors, prcpagating acquaintarces, connecting behaviors, and finally generating Pract.

This compiler differs from most other compilers for two primary reasons: the source code
describes a concurrent rather than sequential language, and the output code is in terms of primitive Actor
behaviors rather than random access or stack oriented machine. These factors mean the compiler must
deal with trees and directed acyclic graphs of control flow rather than a single thread, and must explicitly
propagate the references needed through this graph rather than depending on an auxiliary run time
environment or stack. Some of the methods may be similar to those used by highly optimizing compilers
to consider rearrangement of code and allocate registers, but here they are used purely to deal with
concurrency in the actor model, which provides a simple, clean basis for thinking about concurrency.
Since this compiler compiles Acore into primitive actor behaviors, it has not been concemed with
optimizations but simply information flow and control flow through concurrer.t systems of actors.

The contribution of this implementation is to show how the actor model can be used to implement
a concurrent language. While the Pract code presented here compiles into actors and Lisp functions
without much trouble for our current emulator (see Appendix A for a few more details), additional work
may need to be done to compile series of behaviors into an efficient form for a message passing parallel
computer,

In the following chapter, I will look into other languages and the models on which they are based
and compare them to Acore and actors.
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Part IV

Comparisons
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Chapter Eight

Comparisons with other Concurrent Languages

We have described the design of Acore and secn how it is based i the Actor model of computa-
tion, both in concept and in implementation. We now have a background for comparing it with the
designs of several major concurrent programming languages. These languages differ in the nature of
concurrent processes which may be easily expressed. I will examine how well each of them meets the
goals described in Chapter 3, especially how well they express simple cooperative and competitive
processes. I will also focus on several aspects of their design which affect their concurrent nature: how
concurrency is expressed, how concurrent processes communicate, and how state change may be shared
between concurrent processes.

How concurrency is expressed. A language may encourage or discourage the use of concurrency
by the ease with which concurrent processes may be expressed, and this affects how people think about
using concurrency. For example, in Chapter 3 we noted that it was desirable to be able o express
cooperative and competitive concurrent processes. If simple forms of cooperative concurrency can be
expressed concisely, then divide and conquer algorithms can be expressed in their concurrent form
without losing any clarity. On the other hand, if competitive concurrency is difficult to express, then
people may not even think of using it in their programs.

How concurrent processes communicate. Processes may communicate both directly through mes-
sages or streams, and indirectly through effects on shared objects. The ease by which concurrent
processes communicate affects how people will organize processes.

How state change may be shared. There are many organizations which are best modeled in a
concurrent environment by systems of objects which change state. Less obviously, objects which change
state are needed for representing changes in the availability of a shared but limited resource over time,
They are also useful for organizing shared information. For example, many concurrent algorithms can
take advantage of dynamic programming to share partial results between concurrent processes; this is
facilitated with a shared database.

In this chapter I will consider four classes of concurrent languages. These classes cover the most
important work in concurrent programming languages which has come to my attention: languages based
on coramunicating sequential processes, languages based on concurrent calls 1o sequential procedures,
functicnal and dataflow languages, and concurrent logic languages.
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8.1 Languages based on Communicating Sequantial Processes

One approach to designing a concurrent language is to take the sequential process model familiar
from multitasking operating systems and and incorporate it in a language with a system for communica-
tion between the processes. This is the approach taken by Hoare's Communicating Sequential Processes
(CSP) [Hoare 78], its commercial offshoot, Occam [Pountain 85), and by Ada [US DoD 83). These
languages can be characterized as follows:

e Expressing Concurrency: Concurrent processes are created in these languages by commands
or declarations which spawn new tasks. For example, in Occam the statements nested within
a PAR represent concurrent tasks; in Ada tasks are specified by a task declaration.

e Communication: Concurrent processes communicate in these languages using commands
for sending and receiving a synchronized assignment through a communication channel.
These commands are like assignment commands in that they bind a variable at the receiving
end. The communication channel specifies the protocol accepted for the communication.
Since communication is synchronized, both the sender and the receiver must be ready before
cominunication takes place; this eliminates the need for hidden buffering.

e Sharing changes in state: Since the primary mechanism for synchronizing processes in
these languages is to rendezvous for communication, the primary mechanism for sharing
state changes is to share access to a process which encapsulates the state. (Ada also allows
shared variables, but rendezvous still serve as synchronization points.)

The primary problem with this approach is that it is verbose. To use a concurrent proc:ss, separate
statements are required to create a new process, 10 communicate with a process, and then to use a value
thus communicated. This is apart from the declaration needed to specify the communication protocol.
The overhead of communicating with a process is alleviated somewhat by the fact that a process inherits
the values of free variables from its defining context, so a new process can easily be initialized with
many parameters; however, any results computed by the process must be returned over a communication
channel.

Another problem is that the command orientation of these languages does not lend itself to describ-
ing the communication structure clearly. For example, division of labor is very common use of concur-
rency. Yet the purpose of the joining process which collects the results may not be apparent without
studying its code, so it may not be obvious whether concurrency is being used in cooperative or competi-
tive ways, or even which of the other processes are producing the results. As a result of this problem and
the verbosity mentioned above, using concurrency for simple division of labor, e.g. for divide and
conquer algorithms, pays a price in lost clarity.’

Control of processing is associated with the processes in these languages. Each process can be
given a static priority; in Ada a process may also be aborted. This approach is a start, but because the
priorities are static, it is missing the flexibility of Acore’s sponsor mechanism to redirect attention based

5CSP and Occam don't allow recursion (although there are bounded work-erounds using replicated processes), so they aren't
particularly suitable for recursive divide and conquer algorithms. But division of labor into parallel subprocesses is still common.
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on the situation at hand.

While not a direct consequence of this approach, these particular languages were designed with
different goals than the goals we developed for Acore, so it isn’t surprising that they fail to meet several
of the goals we outlined in chapter 3. For example, none of these languages are object oriented®, none
have garbage collection, and Ada tasks are the only construct remotely like higher order closures.

More interesting to look at are the differences in the underlying approaches to concurrency. For
example, the model used in CSP and Occam envisions processes as physical objects connected by
communication lines. Thus, processes are statically allocated and statically organized. Since com-
munication lines are point to point, communication between these objects is synchronous and unbuffered.
The Ada model isn’t as static, but it also assumes synchronous communication.

In contrast, the actor mode! which supports Acore assumes the actors are dynamic, active objects.
Since new actors are frequently being created, the population of actors is constantly changing. Uneven
population growth results in migration to equalize the distribution of the actors. Since acquainted actors
may become distandy separated, rather than force actors to wait during communication delays, an
asynchronous communication model based on a mail system is used. We feel this model is a closer
match to the object (and pointer/record) oriented processes performed in largely symbolic computation.

The contrast in these underlying approaches has a few architectural implications. Supporters of the
actor model ervect the fine grain division of computation into actors with local state will facilitate load
balancing hetween processors in a highly parallel computer. In contrast, the larger amounts of state
associated with sequential processes are harder to move around, especially if part of the state is shared
with ather processes. Of course, this is a tradeoff. Processing a message for a primitive actor on an actor
machine is a very small task, so the instructions/message ratio is relatively small. This means that task
switching is high, so current multitasking architectures with large process states and long switching times
may not be suitable for running actor programs. On the other hand, programs of the sequential process
model with greater instructions/message ratios can take better advantage of those architeclures at the
expense of less concurrency and less flexibility.

8.2 Concurrent Calls to Sequential Procedures

One of the primary objections to the communicating sequential process approach is the loss of
clarity due to communication through channels and to verbosity resulting from the command oriented
approach. Therefore, one approach to fix this problem is to introduce concurrency in an expression
oriented manner within an expression oriented language. This is the approach taken by Multilisp
[Halstead 85], a dialect of Lisp for multiprocessors.

SAlthough it seems possible to use Ada tasks as expensive objects.
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o Expressing Concurrency: Concun =nt processes are created in Multilisp through pcall and
future expressions. Expressions witi:Gu. these two forms are evaluated sequentially as in
other dialects of Lisp. A pcall expression is similar to normal function call evaluation in
Acore: new tasks are spawned to concurrently evaluate the parameters to pcall, and after
they have all returned values, the function call is performed. A future expression is similar
to the future expression of Acore: it creates a future object which can be passed as the value
of the future expression and spawns a new (sequential) task to concurrently evaluate the
expression determining its real value. Tasks which attempt to access the future before tie
value has been evaluated are suspended until it has been determined.

e Communication: The primary means of communication between concurrent processes is
through sharing the environment where they were created and by returning a value when
they terminate, either direction to the waiting process which performed a pcall, or to the
future representing the value.

e Sharing changes in state: Multilisp tasks may share state change through side effects on the
shared environment or on shared objects. There is no mechanism forcing the safe perfor-
mance of any mutations, but primitives (semaphores and replace-if-eq) are provided for
building abstractions which can provide atomic mutation.

Simple cooperative concurrency due to division of labor is easily expressed using pcall and future.
The expression oriented syntax is much more concise than the command oriented syntax of the languages
of the previous section. In one simple expression, concurrency is spawned, values are returned, and the
values can be used as parameters to an enclosing expression. The communication pattern is also much
clearer from the nesting of the expressions.

Although no expression oriented syntax for describing concurrent competitive processes is in-
cluded in the original Multilisp language, it shouldn’t be too difficult to add one. For example, a form
similar to the race expression in Acore could easily be introduced, provided it is possible to decouple the
future from the task which computes its value. Thus the value of a future may be partially determined by
the completion order of the tasks. A parallel cond can also be introduced.

However, flexible control of processing may be more difficult to add. Rate of execution may be
controlled to some extent by giving tasks (processes) priorities. However, a mechanism similar to the
sponsor mechanism of Acore may be needed in order to provide the same ability to adjust the priorities
of running processes as circumstances change. Acore sponsors can be arranged in a hierarchy of
sponsors, with subsporsors for subprocesses, permitting control over subprocesses through a parent
sponsor. Similarly, in Multilisp, a hierarchy of sponsors could control the priorities of the tasks and
subtasks in their care. This auxiliary mechanism is easily modeled using actors in Acore; perhaps a
different metaphor can be developed which is more suitable for Multilisp.

The expression oriented syntax for expressing concurrency makes .. very easy to create short-lived
processes which terminate once they have retumned a value. Thus, in Multilisp, processes are not used to
encapsulate state as in CSP style languages, but only to perform some action. Therefore most processes
need communicate only by inheriting an environment at initialization and returning a value upon ter-
mination. Communication between initialization and termination is needed only when processes share
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partial results; this sharing is accomplished through shared environments and dita structures.

Multilisp and Acore are similar on the surface in many respects, modulo the differences pointed
out above, due to their common heritage from the Lisp community. However, there are two underlying
differences which separate the approaches take by the two languages.

The first difference is that Acore encapsulates all state changes inside actors, while Multilisp
depends on the programmer to make sure any changes which can be seen by concurrent processes are
performed atomically. This has two consequences. First, this means programs are less secure in
MultiLisp, since inconsistent changes may result if a concurrent program doesn't mutate shared state
atomically. This kind of bug is very difficult to find since it depends on the relative timing of the tsks
performing the mutation; yet this timing is nondeterministic and may not be repeatable. While it may be
simple to check that this problem doesn't arise while the program is being written, especially if functions
are small and don’t mutate the environment often, there is still the possibility that an crror will be
introduced later when maintaining or trying to optimize the code by adding more concurrency with an
additional future or pcall. The second consequence is that since environments are mutable, they must be
shared between concurrent processes. If the processes are performed in parallel on separate processors,
there is an expense associated with maintaining consistency, either from remotely referencing the en-
vironment or from ensuring the local copy is consistent. In contrast, bindings in Acore are immutable, so
expressions may be evaluated concurrently on separate processors by copying the bindings without
worrying about consistency.

The designers of Multilisp are aware of this problem, but, as far as I know, haven't proposed a
solution. Two possibilities come to mind: One is to take the CSP/Occam approach and disallow
mutations to environments not local to the current process. If this is too restrictive but we would still like
to avoid the overhead of maintaining consistency between concurrent processes, it may be possible o
determine at compile tim: which bindings are needed by a subprocess and are not mutated (most of
them), and duplicate these bindings if the process is migrated.

The second underlying difference is that Mululisp is based on a sequential process model with its
associated stack and environments, while Acore is based on the message passing actor model. In
implementation, this means that Multilisp can take advantage of current processor technology 10 run
coarse grain processes. However, this advantage depends upon the locality of the state needed by the
process. The sequential process is associated with a processor, so it runs best when the state needed by
the process is local to the processor and few remote memory accesses need to be made. But afier load
balancing, large data structures may be distributed across many processors, so processes which traverse
large data structures (e.g. graphs, knowlcdge bases) may find many memory accesses are remote ac-
cesses, and may spend time waiting foi communication delays. The large task state then becomes a
liability, slowing down task swapping time and making it expensive to migrate tasks (o balance the load
better.
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In contrast, the actor model implementation does not associate activation with a process and
processor; instead messages are sent to actors and processed by the processor on which the actor resides.
After load balancing distributes large structures of actors across many processors, meniory accesses are
still local, and interprocessor communicatior. consists primarily of higher level (and hopefully sparser)
requests and replies rather than low level memory requests.’

This second difference represents a tradeoff. The Multilisp approach is optimized for the situation
where a task primarily accesses state local to the task, perhaps generaling new structures. Tasks are
expensive (o migrate, so they are migrated primarily 1o take advaniage of concurrency rather than
locality. However, as multiprocessors become larger and more processors are added, more structure is
distributed across more processors, so the likelihood that the state needed is local to the current processor
drops. Thus, the actor approach is optimized for the situation where the state necded for a process is
distributed across many processors, so to take advantage of locality, control for the process hops around
to processors with messages. It is hoped that with new processor designs which wake advantage of VLSI,
message driven processors can reduce the latency of message response so they can also be competitive
when locality is strong.

8.3 Functional and Dataflow languages

In the previous section we saw that languages based on concurrent calls o sequential procedures
improved the clarity of programs by introducing an expression oriented syntax for expressing concur-
rency. Functional and Dataflow languages such as Id Nouveau {Nikhil et al 86] have taken this to the
extreme, specifying that all independent expressions can be evaluated concurrently. They are based on
the lambda calculus, and have encouraged its use for describing functions by preserving determinacy.

® Expressing Concurrency: Even more than in Acore, concurrency is the default in functional
languages; it is expressed whenever expressions are independent. Since expressions arc
referentially transparent, a variety of evaluation strategies are possible, including normal
order (delayed) evaluation, as well as the applicative order evaluation used in Acore.

e Communication: In functional languages, the only means of communication between con-
current processes through the free variables in expressions and the values the expressions
return. Id Nouveau extends this with /-structures whose slots behave as futures: they may
be written only once, and they queue requests for reads which amive before a value is
written.

o Sharing mutable objects: Representing shared mutable objects is outside the scope of
functional languages. Functional languages strive 10 be determinate by preserving the
Church-Rosser property, so expressions can be reduced (o a unique normal form no matter
what order the reductions are performed. If it were possible for subexpressions to mutate
and read a shared mutable object, then different results could result depending on what order
the subexpressions are reduced. However, there is some research on going to introduce
managers into dataflow languages. Managers would represent shared mutable objects, c.g.

"Some memory requests for Multilisp must, like messages, specify operations to be performed remotely — for example, atomic
test and set operations such as replace-if-eq.
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for managing limited shared resources. One representation of the state of a manager uses a
private stream; processing a message from the input stream and the current from the private
stream state produces a result value and the next elements for the next state in the privale
streari. This model is similar to replacing behaviors in actor model.

Since functional languages are based on the lambda calculus, concurrency due 1o division of labor
for divide and conquer algerithms is casy to express. Subexpressions are concurrent, so recursive calls
within a lambda expression may be performed concurrently.,

Because functional languages and extensions to them such as Id Nouveau are determinate, it is
impossible to express competitive processes which rely on arrival order nondeterminism. Since all
processes must complete, there is no mechanism for explicitly controlling the relative resources allocated
to concurrent processes.® The addition of managers introduces the possibility to make arrival order
significant, so competitive concurrency may then be possible.

Dynamic programming to sharc partial results between processes is one form of sharing state
changes which can be determinate. Since the state changes are all monotonic (adding new information to
the tableau), it is just a matter of arranging for some process to add them. In many situations this process
can be described statically in the algorithm. Altematively, through the use of delayed futures, the first
process which needs a particular value in the tableau may trigger its computation. However, more
general control structures for managing the shared database require being able (o test whether the value
has been (or is being) computed yet, but no method has been found for making such a test without
introducing constructs which destroy the Church-Rosser property. Thus, without managers, changes of
state can be shared only in limited ways.

This approach is close to the actor approach in several ways, but since the underlying goals are
different it isn’t surprising that it fails to meet some of the goals of Acore. The most important difference
is the stress on determinacy in these languages, which contrasts with Acore where indeterminacy is
needed to express competitive concurrency.

In implementation, dataflow architectures and actor architectures have a similar flavor, one which
makes no use of sequential processes. Instead, messages are routed o processors which process them
using only local information. However, there is a small difference in what people think of as the
stereotypical computation for each architecture. In actors, since the stereotypical application is symbolic
processing of some arbitrary sort, the stereotypical situation is performing an ask expression (similar o a
function application). Thus the values from evaluating several subexpressions are received and
synchronized by a joining continuation, which then sends off the request to perform the ask expression.
In some cases this can be optimized so the continuation performs the operation itself, such as creating a
new actor (£.g. a cons cell) with the parameters. In dataflow, the stereotypical situation is evaluating an

$This is not to be confused with the work for optimizing resource use among processes behind the scencs, e.g. with loop control.
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expression involving primitive arithmelic, constructive, or selective operators such as +, cons, car, cic.
In this case, the primitive parameters are conceptually sent to copies of the operators. The processor
performs the synchronization if there are two parameters, and thern the operation is performed on the
parameters. In some cases a function must be applied, so in this case the arguments are synchronized and
collected into a chain, and the function is applied. Thus, dataflow architectures emphasize optimizations
for concurrent evaluation of primitive expressions, whereas actor architectures emphasize controlling
higher level messages and keeping track of the many actors created. Due to the similarities, people
working on dataflow architectures and actor architectures will be able to learn something from cach
others’ experiences.

8.4 Concurrent Logic Languages

Now for a rather different approach. Concurrent logic languages such as Guarded Horn Clauses
(GHC) [Ueda 86] and Concurrent Prolog (CP) [Shapiro 83] grew out of efforts o speed up Prolog by
taking advantage of concurrency between clauses and subgoals. However, in pursuing concurrency, the
languages were modified to the point where they now express a rather different semantics than Prolog.
Programs in concurrent logic languages are not performed by backtracking interpreter; instead, clauses
should be read procedurally. For example, GHC can be characterized as follows:

e Expressing Concurrency: A predicate is defined by several clauses of the form:
H:' G’...-, Gm|B’,..., Bn.
The guard of the clause consists of the clause head H and the guard goals G4, . . ., G, —

m

i.e. everything before the commitment operator ‘|'. The guards for all the clauses of the
predicate are tried concurrently, and the predicate (nondeterministically) commits to the
clause which succeeds first. The clause head H is a pattern which is unified with the
incoming goal. If it matches, then the clause attempts to satisfy the guard goals with the
resulting bindings. Once the predicate has committed to a clause, the other clauses are
stifled and it attempts to satisfy the body goals. Thus concurrency is expressed in concur-
rently matching the clause pattemns, in concurrently trying to satisfy the guard goals concur-
rently, and if it commits, in concurrently trying to satisfy the body goals.

e Communication: As in Prolog, the primary means of communication is through unification
of variables in patterns with terms. Unification provides a write-once mechanism for
synchronization, similar to futures and I-structures. However, unification is not permitted to
instantiate variables for the guard goals, and only permitied to instantiate vaniables for the
body goals once the predicate has committed to that clause. This prevents any backtracking
to undo bindings.

o Shared Mutable Objects: Mutable objects can be represented in concurrent logic languages
through the use of streams [Kahn et al 86]. Successive states of the object are represented as
successive elements of a state stream, and successive messages to the object are represented
as successive elements of an input stream. Communication is performed between objects by
unifying the message with the tail of the stream, thus defining the next message in the
stream. Since several concurrent processes can't unify messages into same tail of the
stream, each message sender must have its own stream to the receiver, and these input
streams must be nondeterministically merged.

From the procedural reading of a predicate’s clauses, we see that simple cooperative concurrency
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is easily expressed as AND-concurrency between the guard goals or the body goals. Thus subexpressions
(subgoals) are concurrent in these languages as well.

Competitive concurrency arises in the form of competitively evaluating the guards of several
clauses but committing only to one of the clauses. This mechanism can be used to build the nondeter-
ministic merge of two streams, so a concurrent competition which produces a stream of values in the
order they were discovered may be expressed. However, stifling these competing processes is the only
control of processing expressed in the language. Since no variables may be instantiated to satisfy guards,
competing processes which may be stifled may not perform any instantiations which can be seen afier the
clause is stifled. This avoids the problems of aborting transactions and reverting state which arise in
Acore when stifling computations, but the cost of this convenience is to throw away any possibility of
keeping the intermediate results which may have been obtained. Thus, matching clauses is most useful
as a clause selection mechanism read procedurally rather than as a mechanism which allows stifling
processes. Competitive concurrency is more generally expressed by communications through nondeter-
ministically merged streams, without any control of processing.

Languages based on concurrent logic languages may be developed which better suit our purposes.
For example, preprocessors such as Vulcan [Kahn et al 86] greatly improve the utility of the language for

object oriented purposes, and show that concurrent logic languages can be as powerful as actor languages
such as Acore.

Many differences between logical objects in Vulcan and actors in Acore are ones which are
primarily relevant to personal preferences in programming languages. For example, the logical style of
Vulcan can be concise for simple programs, especially when destructuring patterns are used. However,
the flat logical style can be less clear than an expression oriented style. For example, programs expressed
as nested expressions in an expression oriented language must be expressed as a flat set of subgoals in
logic oriented languages. The communication between these subgoals is specified by variables, which is
less clear than the nesting of expressions — it may not even be clear which subgoal determines the value
of a variable and which subgoals just read the variable.

The problem of flat structure of logic programs also shows up in the lack of modularity or higher
order behaviors. Modularity is desirable for partitioning large programs so name conflicts aren't a
problem. However, in logic programs, since there is no lexical scoping of namcs, all predicates must
appear at top level. This problem can be fixed by a preprocessor which translates a language with some
encapsulation into the flat logical form by uniquely renaming clauses as they are globalized. Lack of
higher order behaviors seems to be a more difficult problem, but it is possible that it may also be handled
with a suitably designed preprocessor.

Thus, we find that through a series of transformations the concurrent logic model seems to provide
many of the same capabilities as the actor model. However, the actor model is a closer match 1o thc
organization of systems as objects and thus provides a more direct framework for implementation.
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8.5 Summary

Each of the languages we’ve considered in this chapter has some ideas to offer, but none satisfy all
the goals we set out to meet in Chapter 3. Most of these languages — Multilisp, Id Nouveau, and the
concurrent logic languages — are research languages still under development, and may yet develop in
ways bring them closer 1o meeting our goals. For example, task control and competitive concurrency
may be added to Multilisp, managers are under investigation for Id Nouveau, and preprocessors which
allow higher order behaviors to be expressed naturally in concurrent logic languages may appear.
However, none of the languages provided any form of control over processing which is nearly as flexible
as the sponsorship mechanism of Acore. It will be interesting to see if descendants of each of these
languages finds a niche in the future marketplace for concurrent languages.
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Part V

Conclusions
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Chapter Nine

Summary and Future Work

In this thesis we started out with the premise that new programming languages are needed to open
up the full possibilities for experimenting with concurrent processing. We've taken a look at some of the
overall design goals we’d like to see such a language meet. It should have the generality to express
diverse kinds of concurrent processes, easily expressing simple forms of cooperative and competitive
processes as well as control over processes. One of our conclusions was that a first step would be w0
construct a language from which further experimentation in concurrent language design can develop.
Thus it should be built from a small set of powerful abstraction features, combining higher order
abstraction, as found in function oriented languages, with the message passing abstraction, as found in
object oriented languages, and a powerful macro facility, all in a uniform manner. We created a uniform
vision by basing the design on a few central ideas from the actor model of computation and the lambda
calculus. The most important of these ideas are the model of a concurrent process as an organization of
communicating actors; the expression oriented syntax for describing behaviors, with lexical scoping of
identifiers; and the replacement behavior model of state change. The result of working out a design from
all these goals has been the design of Acore.

Since the conception of Acore has been based on the Actor model of computation, behaviors in the
language are easily compiled into behaviors of primitive actors using the idea of continuations. Since
these primitive actors process messages using only their local state, they are well suited to be distributed
across a parallel computer architecture which can take advantage of the concurrency by processing
messages for many actors in parallel. Such architectures can also take advantage of the small amount of
state associated with each actor, which facilitates migrating actors between machines for load balancing.
In the second part of this thesis, we saw how Acore behaviors can be implemented in ierms of behaviors
of primitive actors, and the work involved in the Acore compiler to make this transformation.

With the background of the Acore design and how it can be implemented in terms of primitive
actors, we then looked at several other concurrent programming languages. Each of them met some of
our goals, but since they were designed with different goals in mind, none of them quite fit our needs for
experimenting with concurrent processes. Each of them has made a different set of tradeoffs, in the
underlying conception as well as in the surface syntax, which makes it more suitable for one type of
application than another. We hope that Acore will prove to be a sound foundation for experimenting
with symbolic processing distributed over a massively concurrent computer.

What conclusions can one draw from this work? At the least, I hope the reader comes away from
reading this thesis with the idea that there is some promise in the approach taken here. Before this
promise can come to light however, many more issues which have surfaced during this development
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need to be addressed:

o Stifling and Complaint Handling: The biggest issue revolves around the idea of stifling
computations, and the complaint handling necessary to make sure this doesn't cause
problems which cannot be handled by the system. Stifling is most useful for exploratory
types of processes, such as for aborting branches of a parallel search or to stop the examina-
tion of the consequences of hypotheses no longer nceded. As long as there is no need to
undo any changes made by such exploratory processes — e.g. if no mutations are made, or if
all working structure is thrown away, or all mutations are monotonic additions of infor-
mation — then stifling isn’t a problem. However, there is always the possibility that such a
process may need access to a limited resource or that discoveries made by the process should
result in changes to a shared data base. Either stifling must be disallowed in such cases, or
they must provide complaint handling to revert things back into an accepiable state.
Mechanisms for concisely specifying complaint handling for aborted computations need to
be developed.

e Exception Handling in General: In order deal with problems in interacting with other
systems or even problems between subsystems, programs will need to deal with failures and
exceptions. In these cases, the decisions about how to proceed may depend on context rather
than local information, so mechanisms for dealing with exceptions in a more general fashion
than just aborting are needed. Also, the syntax of exception handling needs to be extended
to apply more easily to expressions inside commands as well.

e Sponsorship: Acore is one of the first languages to provide a mechanism for controlling
concurrent processes dynamically, so cliches for the use of sponsorship haven't yet
developed. As experience grows, we may get a better idea of the common ways in which
sponsorship is used, and perhaps will find new ways of incorporating it into concurrent
languages to make these easy Lo express.

® Modularizing Behavior: Acore is an object oriented language, but unlike most object
oriented languages it doesn’t provide any way of combining or building on modules of
behavior for defining new behaviors. We felt that no existing system is clearly superior, and
there are new problems in adapting such systems to a concurrent environment. Thus, rather
than commit ourselves to any one system, we left it open as an avenue of research which
may be pursued using Acore, much as existing proposals are developed on existing lan-
guages such as Lisp. However, some mechanism needs to be developed soon, since complex
objects and systems of related objects are difficult to understand and maintain without the
modularity such a mechanism provides.

® Hiding Forwarding: Forwarding actors arise often in Acore, and their existence can be
detected in some situations. This is fine, but we need to allow alternative forms of identity
checks which specifically follow forwarding so that forwarding actors can be used invisibly
if desired.

* Typing: Currently there is no default typing mechanism for actors. Acore SCript expressions
do allow some type information to be supplied to the script, but by default this is left empty.

These are all important areas of development within the language. At this time, however, the most
important work yet to be done is to develop a parallel computer system which can run actor programs
efficiently. Only then will these ideas come to fruitition. I hope that this work will help people
interested in parallel architectures better understand the flavor of actor programs.
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Appendix A

The Apiary Emulator

In this thesis I concentrate on how one may express concurrent programs in Acore and how Acore
programs can be compiled into primitive actors. I'm sure this may arouse some reader’s curiosity about
how a parallel computer might run programs of primitive actors, so in this appendix we look into the
ideas behind the tightly networked architecture we call the Apiary and a few of the lessons leamed in
implementing a simple emulator for running actor programs on one processor.

A.1 Apiary Concepts

The Apiary is the name for our project to examine the issues and problems in creating a massively
parallel computer for running actor programs. The name comes from the idea that, much as apiaries are
boxes filled with busy bees, such a computer would be a box filled with busy processors, someltiines
called workers. The architecture of this computer should be scalable, so additional processing power can
be added for larger problems, just as additional memory is added to sequential computer systems today
(figure A-1).

Each worker (processor) has its own memory to hold its queues and any actors which are residing
in its memory. The actors in the system are distributed among many processors; each processor executes
messages received for the actors which reside on the processor, and sends messages (o other actors on
other processors over the network. The tuple consistng of a message together with the target actor to
which it is addressed is called a task. If a worker has many more tasks than its neighbors or is running
low on memory, a load balancing mechanism migrates actors and tasks to less busy or less full workers.
Since actors may be migrated from processor to processor, the mail system must keep track of the
location of each actor so that messages may be forwarded to it. The mail system uses unique identifiers
(UID’s) to identify each actor (figure A-2).

Each worker basically goes through an endless cycle of pulling a message off of its task queue,
delivering the message to its target actor (which is a primitive actor), performing the handler, and putting
any new messages created back on the queue. If messages are received over the network, then they may
be added to the queue; the target of a message is not local to this worker, then the message will be sent
out over the network.

Before this idea can work, many questions will have to be answered and techniques for coping
with the complex management problems developed. Some of the unanswered problems are mentioned
briefly below.
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151



1. Dequeue a task

2. Deliver to actor and run handler

3. Handler may create actors

4. Handler may send new messages

Task queue j

Figure A-3: A worker’s work cycle

Reference tree schemes have been proposed [Halstead 79], but they are intended for low
speed networks where processors do the routing, so other techniques relying on caching are
being investigated.

e Migration. When actors move from processor to processor, the mail system must be able 10
keep track of the move. Messages sent to the old location must be forwarded to the new
location; eventually the mail system should be able adjust so it can send the message directly
to the new location.

e Garbage collection. Not only must the system keep track of where actors are, but it must
also be able to reclaim storage taken by actors which may no longer receive any messages,
i.e. which are not referenced by any other actors or in any tasks. The challenge here is to
find a distributed garbage collection algorithm. The reference tree scheme gives one solu-
tion to this problem, but like all schemes similar to reference counting, it incurs an overhead
in both processor time and memory.

¢ Load balancing. When some processors end up with more work and/or less memory than
other processors, it may be time to balance the load between processors by migrating actors,
Ideally we would like to be able 1o balance the load to take advantage of parallelism by
distributing actors who receive messages concurrently to separate processors, while at the
same time not introducing too many communication delays between actors who frequently
send messages to each other. The challenge here is to find some way of determining which
actors are the hot spots and which actors communicate so thai load balancing isn't a blind
guess. There are some similarities between this problem and page swapping in virtual
memory, but here there is added complication due to multiple processors working on dif-
ferent problems or parts of a problem simultaneously.

® Process Management., Processors must manage processing of transactions within the
resources controlled by the transaction’s sponsors. However, as Arvind and Culler point out
in [Arvind & Culler 86], processors may need to do much more than this in order to run
concurrent programs within resource limits of the machine. The problem is that running
transactions in parallel takes more resources (e.g. memory) than running them sequentially,
since temporary storage for each of the transactions must be allocated simultaneously. If
concurrency is eagerly exploited, the processor may quickly run out of resources, even if it
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would have had much more than enough if it were to run the transactions sequentially.

A.2 The Emulator

The Apiary Zmulator is a facility for running compiled Pract programs on a Lisp machine, al-
though most of ;. is written in Common Lisp to make it easier to port to other machines. At this stage it
has be developed primarily for running and testing programs, so my effort has been put into making it
run at a rate fast enough to test out small applications. It currently emulates only one worker using one
Lisp machine; I hope to extend it to emulate multiple workers on one Lisp machine and/or multiple
workers on multiple Lisp machines communicated over a network (initially Ethemnet). The ideas learned
from these experiences will help us develop an operating system for running actor programs on a parallel

computer.

The following sections outline the representation of actors in the Apiary Emulator and describe
how the emulator runs actor programs, including sponsorship control.

A.3 The Representation of Actors

Primitive actors are represented in the Apiary Emulator as shown in figure A4,

o The mailbox represents the actor locally; all local pointers to the the actor point to the
mailbox. If the actor is not local to this machine (e.g. if it has been migrated to another
worker, or just a reference to the actor was sent to this worker), then the mailbox will not
contain the state, but only the UID of the actor and perhaps a hint about where it can be
found. If the actor is resident on this worker (which is always the case for the current one
worker emulator), then its current state will be present.

e The current state of the actor is a vector containing its current script and current acquain-
tances. This vector is separate from the mailbox because it is not needed if the actor isn't
local, and its length may change as the actor changes behavior.

e The incoming queue holds messages for the actor which arrive when while the actor is
locked (i.e. insensitive) processing a serialized handler. It also serves to indicate when the
actor is insensitive,

¢ The UID is the unique identifier used to communicate references to this actor to other
workers.

» The biography is a place to keep a history of debugging information about the actor. See
Appendix B for more details about Traveler and the transaction recording mechanisms.

The mailbox of an actor corresponds loosely to the mailing address of the actor theory [Agha 86].
It provides a level of indirection for the state of an actor so that it may change its bchavior over time. In
our emulator, we also take advantage of this indirection to allow the actor to move from worker to
worker. Since an actor has at most one mailbox on each worker, it may be migrated from worker to
worker by moving its state vector from the mailbox on one worker to the mailbox on another, and
updating the vacated mailbox with forwarding information. Local pointers to the mailbox do not need (0
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Figure A-4: Representation of actors in the emulator
be changed as the actor is migrated.

Although we have not yet experimented with this approach in a multiple worker setting, it appears
to be the most efficient approach on stock hardware. The cost of this approach is that a litle more
memory is consumed on every worker with a reference to the actor, even if the actor isn't local 10 the
worker. Actor machines may be able to circumvent this overhead by providing direct hardware assisted
translation between UID's and processor nodes or UID's and the local address, so that a compact UID is
a sufficiently efficient reference for both local references and remote references. A global memory
space, as found in a shared memory machine, can provide cheap UID's at the expense of making it
difficult to move an actor; this approach may be sutticient for small multiprocessors, but the inability 1o
move actors easily makes it difficult to perform load balancing and optimize the performance of the
machine,
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A.4 The Representation of Scripts

In the current emulator, scripts are also represented as actors with the same structure (figure A-4).
Scripts must have the acquaintances pictured to hold shared information about all actors with that script.
This information includes the tables of handlers and the vector of free references (constant
acquaintances) needed by the actor. The constants are kept in a vector rather than compiled directly into
the handlers so that when the script is migrated, all the references to other actors from the script can be
located and translated on the new worker, just as the acquaintances of an actor are. Serialized? is a
boolean value which indicates whether any of the handlers of the script are scrialized; if not, actors with
this script will never change state and may be copied on several workers if they become a bottlencck.
Machine-dependent? is another boolean value which, if true, indicates that the actor represents 2n
interface 10 a device or is otherwise machine dependent and should not be migrated. The rest ¢t the
acquaintances contain debugging information; for example, the acquaintance names are used when the
actor is displayed by Traveler.

A.5 The Representation of Handlers

The handlers of a script are represented as Lisp functions. The parametcers to this function are the
elements of the task. Thus, if the task is represented as a list, then to run a handler the emulator could
just apply the function representing the handler to the task. For example, a request task may be
represented in a queue as the following list:

(request target customer reply-keyword sponsor
recording selector message-paramelters. . .)

Target is the actor to whom the message is being delivered. Customer is the actor to whom the reply 1o
this request should be sent, with reply-keyword 1o select the correct reply handler. Sponsor is the sponsor
of this transaction, the actor which should be consulted if ticks have run out, and the default sponsor for
any further transactions started by the handler. Recording is a hook for the debugger to record tasks; sce
Appendix B for more details. Selector is the keyword which selects the message handler; it is included
for otherwise handlers which may need to forward the message. Message-parameters are the actors
which make up the rest of the message.

However, nearly every handler needs o get at the acquaintance (state) vector and the conslants
vector, so the emulator extracts this information from the target and its script ahead of time. Also, the
symbol request serves to identify that this task is a request and this should be handled by a request
nandler; it is not needed within the handler. Thus, the actual parameters to the lisp function implement-
ing a request handler are as follows:

(acq-vector const-vector 1arget customer reply-keyword sponsor
recording selector message-parameers. . . )
Replies and complaints omit the customer, reply-keyword, and sponsor.

Handlers are Lisp functions with these parameters, where the parameters specified in the Pract
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handler are used in place of message-parameters..., and the hidden parameters are given special names
which won't conflict with names provided by the programmer. The body of the handler is the Lisp code
which performs the handler; it returns no useful value.

Most of the constructs in Pract (see the Pract Reference Manual in Appendix D for descriptions),
such as if, lei, or, etc, are implemented directly as their Lisp counterpants.? Since we've designed the
representation of actors so that each actor is represented by at most one mailbox on cach worker, \he ==
(identity) expression can be simply implemented as an eq. Special Pract expressions and commands
such as create and request are implemented as calls to Lisp functions provided by the Apiary Emulator.

A.6 Builtin Actors

Builtin actors are the actors which are represented directly by the implementation, i.e. the actors
which are not represented as we have described above. Although they are not strictly necessary, most
implementations will take advantage of the representations of certain datatypes provided by the
hardware. The Apiary Emulator is no exception: we take advantage of the Lisp machine's representation
for booleans, numbers, symbols, and strings. Since these actors are immutable, they need no mailboxes
and may be copied from machine to machine. Their scripts are known by the workers and derived from
their type. The Lisp machine is a tagged memory architecture machine, so all objects have a type. To
implement builtins on an untagged architecture, some representation which includes type information
will have to be found, just as for other object oriented language such as Lisp or Smalltalk. The simplest
thing to do is what we’ve done: implement it in Lisp and let the Lisp system take care of the types.

A.7 Sending Messages

Now that you know how actors, scripts, and handlers are represented in the emulator (figure A-4),
and the basic cycle performed by a worker (figure A-3), it should be simple to see how to make this run.
To start the worker, just put a task on its queue. Then:

1. The worker dequeues the task, and checks to see if target actor is local, residing in the
memory of this worker.

2.If the target is not local, then look in the mailbox to see where the task should be for-
warded, and send the task over the network to that worker,

3. If the target is local (always the case in a one worker emulator), then check if it is locked
from processing a previous message.

4. If the target is locked, add the message to the target's incoming queue and find another task
to run.

5.If the target is not locked, then extract the acquaintance vector from the mailbox, the script
from the acquaintance vector, and constants vector from the script. Look up the handler in

Well, if irades progn's for the then and else.
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the script’s handler table using the message selector, and apply the handler to task aug-
mented with the two acquaintance vectors. (If it is an update or replace message, update
the state of the actor and run the next message on its incoming queue, if any.)

6. As the handler runs, it makes calls to functions implementing commands like request, and
reply-to. These are for sending more messages; as in figure A-3, these functions can add
the new tasks to the queue. When the handler is done, the worker finds another task to run
from step 1.

This simple loop is the heart of the worker, and it can keep cycling around until there are no more
tasks to do, and then wait for more. Note that on a one worker emulator this loop may not emulate the
nondeterminism of multiple workers if the task queue is operated as a strict FIFO queue. However, we
can introduce nondeterminism to better emulate a parallel implementation by randomly choosing the next
task to perform. All of the tasks on the queue are ready 1o be run, so if any one was delivered to another
processor with no work to do, it could be run immediately. Thus, as long as our method of choosing the
next task doesn’t violate the guarantee of delivery (i.e. no task can be left unrun forever), then this
nondeterminism is sufficient to emulate the nondeterminism of a truly parallel system.

Even in a multiprocessor Apiary, a sophisticated worker may take advantage of this flexibility to
choose tasks for process management purposes. If other workers are idle, the worker may choose (o run
tasks which are likely to increase concurrency. If the system is becoming saturated, the worker may
choose to concentrate on tasks which do not increase concurrency. For example, to increase concur-
rency, concurrent transactions may be performed in breadth first manner, while 1o discourage concur-
rency they may be performed in a largely depth first manner. As long as the guarantee of delivery is not
violated, so other tasks in the queue are eventually run without too much delay, the worker has freedom
to optimize choices for performance.

A.8 Optimizing Allocation

For many conventional processors, the above worker loop has one feature which can make it rather
inefficient: it allocates memory to store every new task. To implement a worker on a conventional
processor it is therefore a good idea to take advantage of the flexibility to choose the next task to reduce
the memory allocation overhead. One way o do this is by direct sending: instead of putting the message
on the queue, the message sending functions (e.g. request, reply-to, etc.) may deliver the next message
sent directly to its target, in effect jumping directly from step 6 io step 2 in our simple worker loop when
a message sending command is encountered. If the worker were to do this all the time, two problems
would result: if it started running an infinite message sending loop, then it would stay in the loop,
violating the guarantee of delivery; it may also eventually run out stack space. Therefore we put a limit
on the number of tasks the worker may perform in this manner before it puts the remainder of the tasks
on the queue and selects a new task from the queue. A convenicnt number is the worst case number of
tasks which may be performed before stack space runs out.

Use of this technique has sped up the Apiary Emulator by roughly 20-30% or more on some
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computations, running at most 50 messages before queueing. Setting the maximum higher has diminish-
ing returns, since a relatively small percentage of tasks have largs activation trees. (An activation tree is
the tree of tasks, where the children of each task are the tasks it activated — the new tasks created as a
result of running it — and the parent of each task is the task which activated it.)

Allocating continuation actors is also a source of overhead. The Acore compiler helps reduce this
by updating rather than creating continuation actors when the current continuation can be recused. A good
implementation should also make allocation and deallocation of continuations as efficient as possible.

At this point, someone who has just read through the comparisons with sequential process lan-
guages (e.g. Multilisp) in Chapter 8 may ask whether this mechanism doesn’t show that scquential
processes are more efficient, and whether the formulation of this structure as a sequential process
wouldn’t be more efficient, since calls might be made directly to functions or handlers rather than
indirectly through the message sending functions.

The first thing to point out in response is that this is an optimization made for running actor
programs on conventional processors. Since these processors are designed to run sequential programs, it
is likely that they will perform faster on familiar ground. Actually, the primary advantage of using this
technique is that it uses the stack to allocate and deallocate storage for the messages, so a non-sequential
strategy which used some other efficient means of allocating and deallocating memory could be just as
fast. This response also applies to the second half of the question: in a message passing architecture, the
message passing functions would likely be replaced by message passing instructions, so the overhead of
the function call is unnecessary.

The second thing to point out is that unlike sequential processes, messages are delivered in a depth
first sequential manner only as far as the target actors are local. The worker doesn’t get bogged down
with remote memory accesses when the target isn't local; it just forwards the message and moves on (o
another. Therefore, in computations where the actors involved are distributed across the network, the
actor approach may be superior for keeping processors busy doing productive work.

A.9 Sponsorship

We left out one point from our worker loop: how sponsorship fits into the picture. The reason for
this is that we can take advantage of the optimization of the previous section to implement sponsorship
reasonably efficiently. The basic idea of sponsorship is that the system must charge the sponsor one tick
for every request. In our basic worker loop, we could make a request 1o the sponsor every time we pulled
a request task off the queue (the request to the sponsor is sponsored by the system sponsor). If the
sponsor returned the tick, we would be able to run the task. However, thic is horribly inefficient, perhaps
at least doubling the number of tasks run by the system.

But with our direct sending optirnization, many tasks are run sequentially, exploring the activation

158



tree depth first. Most of the time subtransactions use the same sponsor. Therefore, the worker can
spread the overhead of making a request to the sponsor over many tasks by making a request for a supply
of ticks when a task is dequeued, and then running many transactions using that supply of ticks. During
this run, a tick is charged from this supply for every request. If the supply of ticks runs out, then any

remaining tasks must be queued. If any ticks are left over at the end, another request is made to return
them to the sponsor.

Of course, if a subtransaction does happen to use a different sponsor, it shouldn't be run using the
original sponsor’s supply of ticks. In this casc, the simplest thing w do is 0 put the request for the
subtransaction on the task queue; when it is dequeued, a supply of ticks will be obtained from its sponsor.

A.10 Conclusion

The Apiary Emulator has proven to be a very useful wol for experimenting with Acore programs
during the design of Acore and later for designing and testing its compiler. In its current state it runs
only as a single worker on a single Lisp machine, but I hope to extend it to multiple worker and multiple
Lisp machines to start getting into some real parallelism and to experiment with many of the issues
discussed at the beginning of this chapter. It currently runs fast enough to experiment with small
programs. The speed at which it runs is largely dependent upon the number of continuations which must
be created; for example running simple programs such as recursive factorial of 100 and rangeproduct of 1
to 100, rangeproduct is twice as slow as recursive factorial.!® Thus, additional work is needed 10
optimize the allocation of continuations if improvements in emulation speed are (o be made.

The lessons to be learned from this experience are probably nothing that isn’t obvious: make
common operations as fast as possible. We have introduced a technique using the stack which may help
allocation for emulators running on conventional processors.

1%For an extremely rough ballpark comparison, recursive factorial of 100 in interpreted Lisp on the Lisp Machine is currenuy
about 5 times faster than in Acore; recursive factorial in compiled lisp is about 3 times faster than interpreied. However, the stack
size must be increased to run these computations in Lisp.
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Appendix B

Traveler: The Apiary Observatory

B.1 Introduction

Observing and debugging concurrent actor programs on a distributed architecture such as the
Apiary poses new problems not found in sequential systems. Since events are only partially ordered, the
chronological order of events no longer comresponds to their causal ordering, so the exerution trace of a
computation must be more structured than a simple stream. Many events may execute concurrently, so a
stepper must give the programmer control over the order in which events are stepped. Because of the
arrival order nondeterminism of the actor model, different actors may have different views on the
ordering of events. We conquer these problems by recording the activation ordering, the transaction
pairing, and the arrival ordering of messages in the Apiary and displaying the resulting structures in
Traveler’s window oriented interface under user control, either after the fact in case of a trace, or while
the structure is incrementally constructed in a stepping session.

Actor programs are concurrent at a fine grain, the level of message passing. Each actor can
process its messages concurrently with other actors using only its local state; thus concurrency is engen-
dered whenever an actor sends more than one other actor a message. The Apiary architecture takes
advantage of this property by migrating actors between the different processors of the architecture to
balance the work load across the processors. Each processor in the Apiary keeps a queue of messages
which need to be processed by the actors resident in it. The conceptual cycle of the worker is to take a
message off the queue, deliver it to an actor which processes the message, and send any new messages o
their target actors. Sending the new messages involves either sending a message over the network to
another processor if the target of the message is resident there, or just enqueueing it locally if the target
actor is local. A debugging system for the Apiary must decl with the fine level of concurrency and the
distributed nature of the machine.

Actor programs are wrilten in the core actor language Acore. Acore syntax is much like that of
Lisp, but expressions and commands in the same context (e.g. a command body or an argument list) may
be performed concurrently. Acore forms are interpreted in a message passing style, so for example

(+12)
sends the actor ‘1° the message ‘:+ 2°, i.e. the message with selector ‘:+’ and a single parameter ‘2°.
Symbols in the keyword package (starting with ‘:') are interpreted as the selector of the message.
Function calls are also interpreted as a short hand for message passing with the assumed selector *:do’,
so for example

(list 1 2) and (.do list 1 2)
mean the same thing: the target actor ‘list’ is sent a *:d0’ message with parameters ‘1 2'.

160



B.2 Observing Transactions

Traditionally, tracing a program involves setting up an output stream (say, the user’s terminal) and
printing a description of an event on the stream as it occurs. This is feasible because the sequential
nature of the program means there is a single total ordering on events, and this ordering corresponds well
to the causal ordering of events. In this ordering, any functions called by a procedure are called onc at a
time in sequence, and all the subroutines callud by the function are completed before moving on o the
next function. Thus each function call is completed before the next begins, and the source of each
subroutine call is apparent. For example, see figure B-1.

Proceduret abc
Function1 a
subroutinel a
<--a'
subroutine2 a’
<--a"
<--a"
Function2 b
subroutine3 b
<-b'
<--b’
Function3 a" b’ c
<--(a" b’ ¢)
<--(a" b’ ¢c)
Figure B-1: Traditional Trace
Since everything is sequential, showing events in chronological order
produces a stream where causality is apparent; there is no question who

called subroutine3 or where the parameter b came from.

However, tracing a concurrent actor program cannot proceed so simply because messages sent 10
different actors may be processed concurrently. If we were 0 naively output the events to a stream as
they happen, then the stream would only reflect the approximate chronological order of the events rather
than the causal order. Since the events do not necessarily have a total ordering, their order may change
from trace to trace. In a distributed architecture, not only will the order of concurrent events he
nondeterministic, but the order in which descriptions of events arrive at the output stream will also be
nondeterministic. Thus we sought a method of recording the causal order of events which could be
implemented in a distributed fashion.

Given an object oriented distributed computing environment, the obvious thing to do was to build
an object oriented distributed recording mechanism. A message and its target comprises a task; each task
execution is a message reception and is considered an event. For every event, a task record is created
which records the target and the contents of the message, the task record of the event which activated it
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(the activating event), and the task records of the events which it activates (the activated events). Thus
the causal or activation ordering of a transaction is recorded in this doubly linked graph of 1ask records.
See figure B-2.

Req(4 :+ 5)| = | Reply(9) \

Req(=lambda= :do) < Req(9 :* -1)| —> | Reply(-9)
Req(4 :- 5)| => | Reply(-1) /

Figure B-2: Graph of task records
This is the graph of task records for the computation performed by the
expression
((lambda () (:* (:+ 4 5) (:- 4 5)))
:Do is the
selector used for function calls.

In order to produce this graph while the program is running, each task in a transaction being
recorded carries an extra parameter which holds information about recording. The Apiary emulator traps
on the presence of information in this parameter and performs some special processing to record the task.
If the parameter is empty, then the emulator does not trap, makes no recording, and runs at full speed.

A reference to the activating task record is passed using the recording parameter of the task. After
a task is dequeued, but just before it is delivered to the target actor, a task record for the task is created.
The passed task record is the activating task record for the new task record. A message is sent (o the
activating task record to link it with the new task record. Finally the message is delivered to the actor
with the new task record in the recording parameter; this will be passed onto any new tasks the actor
creates.!!

Now that the causal ordering of the tasks in a transaction is recorded, the question arises about how
to display it. Since the traditional trace displayed only a single sequence of events and we wanted to
display a partially ordered graph of events, it seemed logical to try to find a graphical way of using the
screen and somehow gain another dimension to the display. A Tree display, which showed the graph as
a tree of event nodes connected by lines representing the causal links, was tried; a simple display looked

"This method does not quite produce the graph shown in figure B-2; in particular, of the tasks forming a join (c.g. the replies
from the sum and difference), only the last 1o amive will be linked as causing the continuation to continue (e.g. siuant the
multiplication). The reason for this is that the replies are sent to a joining continuation actor, but the conlinuation actor just
remembers the values previous to the last without activating any more tasks. Improving on this would require knowing how the
joining continuation actor decided when to continue, an added complication we have been able to do well without so far.
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somewhat like figure B-2 rotated 90° clockwise (except that joins were not displayed; see footnote). An
Actor Lifelines display, which looked something like the event diagrams in ‘Clinger 81] and [Agha
86] rotated 90° counterclockwise, was also tried. These graphs were fine for showing the parallelism and
structure in the computations, but they failed to be useful debugging tools because they obscured too
much information about what the computation was doing and why. With all the nodes and lines, there
wasn't much room to display much information about what actors were receiving messages, or what the
content of the messages was. Another major problem was that these displays did not correspond 1o the
abstractions made by the programmer in the program. The programmer thinks in terms of function and
method calls and the results returned by these; in the event graphs there was little to link the requesting
event with the corresponding reply, and the display wasn’t suited to displaying it. In light of this
experience, a display of the computation in terms of nested transactions, much like a traditional sequen-
tial trace, seems to be the answer.

Thus one goal was to create a display which looked something like a nested trace. For example,
for the computation of figure B-2, it might look something like figure B-3.

Request (<lambda> :Do)

Request (4 :- 5)
Reply (-1)
Request (4 :+ 5)
Reply (9)
Raquest (9 :* -1)
[Tail Recursion,

Reply (-9)

Figure B-3: Design of the Transaction Display
A possible transaction display for the computation
((lambda () (:* (:+ 4 5) (:- 4 5)))).

There are several things to note about this format. The pairing of requests and replies makes it
apparent which response corresponds to each request. The nesting of subtransactions preserves some of
the causal information, but it does not show which of the subtransactions were performed concurrently
and which must have been performed sequentially. However, we have found that the clues for debug-
ging are generally found in the text of the descriptions (what is that actor doing here?, why did thar
function get called?) and in the nesting of transactions (what method was this called from?); causal
relations between transactions within a method are much less important and are casily deduced from the
source code (or they can be annotated on an individual task basis from the Traveler's display).

This display seems to work well, but more information is needed before it can be generated from
the recorded graph of the transaction. The pairing of requests with the corresponding response is crucial
to the display, but the graph does not directly contain information linking pairs of rcquests with
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responses. A first attempt is to just indent a step for each request and outdent for a reply, but this
approach doesn’t work if there are tail recursive replies which close off more than one request.

Each request contains a cusiomer to which the repty for the request should be sent. Gne way to
make the pairing is to start witl the request and search the activated graph for the eply which is sent to
the customer of that request. However, such a search would consurue large computational resources,
especially in a large graph with many requests and replies, so a more efficient approack was needed.
Thus we use transaction customers to put in a bit more effort to store the pairing information while

recording.

The role of a transaction customer is to intercept the reply before it is sent to the real customer,
record the information about the reply in a reply task record, link the reply task record with the request
task record, and forward the reply to the real customer. Therefore, at the time a request task record is
made (just before the request is delivered to the actor), a transaction customer is created with references
to the request task record and the real customer, and substituted for the real customer in the request task.
Thus the transaction customer masquerades as the real customer, and when it receives the reply, performs
its duties and forwards the reply to the real customer.

With the transaction pairing links added by the transaction customers, the recording mechanism for
transactions is complete, and generating a trace display is not difficult. A transaction display for Traveler
is shown in figure B-4.

B> :Hore-Sponsor-1icks APIARY::REQUEST B<<Tc
(#(DfFﬁULf TQP-LEUFL-SFUWSOR—SCRIPT Actor~9543323> :More-Soonsor-Ticks S8
«( :Value 58)

(#<<TopLevelExpr> Actor~9543303> :Do)
(#<RECURSIVE-FACTORIAL Loader-Forwuarder~35667927> :Do 3)
(ﬂzRECURS%UE-FHCTORIRL Actor~35667949> :Do 3)
3 :¢ 2
«(:U6 NIL)
zUpdate)(Script: # <(RECURSIVE-FACTORIAL Cont Script 35668028>))
3 :-1
«(:vq 2)
(H<RECURSIVE-FACTORIAL loader-Forwarder 35667927> :Do0 2)
«(:V5 2)
(3 :x 2)
«[Tail Recursion]
(Update (Script: #<RECURSIVE-FACTORIAL Cont Script 35668054>))
«[Tail Recursion]
«[Tail Recursion]
«[Tai)l Recursion]
«(:Value 6)

N

UuzzzZZZZZZZ A |

Figure B-4: Transaction Snapshot
A snapshot of a Traveler screen showing the recursive factorial
of 3. The transactions in italics have their subtransactions hidden.
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The implementation of the transaction display for Traveler includes the ability Lo sclectively open
and close transactions to expose or hide subtransactions, giving the user control over the level of detail
shown, much like outline processing in some modem word processors. Closed transactions (those whose
subtransactions are hidden) are displayed in italics. Traveler also provides the ability to save a snapshot
of the entire display in an editor buffer, so if the display is still too large to conveniently view on the
screen even when irrelevant transactions are closed, it may be printed out.

The tracing facility provided by Traveler so far has proven to be very useful in localizing problems
in small applications. Even when the program hangs, a trace of an incomplete transaction can be
produced to find the reason for hanging. The ability to selectively open and inspect subtransactions has
proven to be a great help in dealing with the complexity of small and medium small applications, but for
larger applications it has become apparent that a form of selecrive tracing (e.g. displaying only messages
to certain actors) is also needed to cut down even further on excess information.

B.3 Stepping Tasks and Transactions

Stepping in a sequential programming system is traditionally done either by modifying the com-
piled code of the program to be stepped to introduce breakpoints between statements, or by using an
interpreted version of the program so it can be stepped with an interpreter. Both of these pose problems
in a concurrent system where the program may be shared — modifying the program to introduce break-
points or replacing the compiled version with the interpreted version also affects anything else which
calls the program concurrently. Although an interpreted stepper can afford a source code oriented view
of the stepping process, it cannot step compiled code. Yet it may be important to see how a compiled
system actor interacts with other actors, so it would be nice if there was a way to step compiled programs
without modifying them.

Actor programs on the Apiary already have a set of built-in breakpoints: each time a message is
sent, the message may potentially need to be transmitted to another processor. Therefore there is a break
each place a mcessage is sent, and it becomes natural to step by messages. The acceptance of a message
by an actor (the processing of a task) is an event; as the result of processing the message, new messages
may be sent. Since mcssage passing occurs at the level of function and method calls, message events
have proven tc be a small ~nough step size.

In order to step by event without modifying compiled code, we again make use of the recording
parameter of tasks and the trap which checks it. To step a single task, an actor called a collector is placed
in the recording parameter; the idea is that all new tasks created when the stepped task is performed will
be sent to the collector instead of being delivered to their targets. When the recording trap finds a
collector in the recording parameter, it sets a flag in the parameter before running the task. The recording
parameter is passed on to all new tasks created by the actor; just before these tasks are delivered. they
will also trigger the recording trap. This time, since the flag is set, the recording trap sends the ti-k~ 10
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the collector instead of delivering the message to the target actor.

Thus, by using collectors, we can build a stepper which starts with a task, steps it by sending it
with a collector, and then displays the new tasks returned to the collector. When another unstepped task
is stepped, the cycle is repeated.

Concurrency in the program means that many tasks will be available for stepping simultaneously.
If several of these concurrent transactions interact with the same. history sensitive actors, it may be
important to test different orders of execution. To control the order tasks are performed, the user must be
able to select which task to step next from the pool of unstepped tasks.

Stepping concurrent programs also introduces a problem of presentation — how can the pool of
unstepped tasks be displayed so that their relation to the operation of the program isn’t lost? A tradi-
tional stepper displays the stepping process as an incomplete trace in progress. With a little effort we can
take advantage of a dynamic window interface to display stepping concurrent programs as a concurrcat
trace in progress. The display dynamically expands as more activated transactions are filled in between
the outer transactions.

In Traveler the same display is used displaying a trace as displaying the stepping progress, so once
a transaction is completely stepped, the display which results is the same as if the program had simply
been traced. See figure B-5. Since the same display is used, the facilities for opening and closing
transactions are still available to control the display.

(#<TopLevelExprs HActor~12747712> :Do)

(4 :+ 5) :
«[No response for this transaction]
(4 :- 9)

«[No response for this transaction]
+[Nc response for this transaction]

Figure B-5: Snapshot of the Stepper Display
This is a snapshot of the stepper in the middle of computing the value
of
((lambda () (:* (:+ 4 5) (:~ 4 5))))
. Unstepped tasks are
shown in boldface and may be stepped by selecting them with the mouse.

Traveler also provides stepping by transaction, but with a new twist. Steppers usually allow you to
step through a procedure call in one step, so you don't have to waste time stepping through procedures
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which you think are working fine. Traveler provides this capability by allowing you to step through a
transaction in one step, so you can step from a request to its corresponding reply without stepping
through the subtransactions needed to compute the reply. The difference is that the transaction is
recorded, so that if the reply does not tum out as expected, you can open the transaction and examine its
trace to find out what happened.

Displaying the stepped tasks as a trace and stepping by transaction both pose problems in im-
plementation: how do you catch the response for a transaction and display it correctly in the trace? To
solve this problem we use the same technique we used in building the trace, the transaction customer.
When we step a request, we insert a transaction customer to take care of the reply. The transaction
customer keeps track of the correct location in the screen’s transaction structure for the reply, so when it
receives the reply it is displayed in the correct place ready for stepping.

This stepping facility has proven to be very useful for small and medium small applications, but as
we move into larger applications, we have found that there is too much careful but tedious stepping just
to get to the problematic parts of the program. A breakpoint mechanism is needed so that we can start
stepping in the middle of a program.

B.4 Viewing Lifelines

When there are history sensitive objects in a concurrent computing system, the ordering of events
at an object becomes important to observe. We noted above that it is important to be able to control the
ordering of concurrent transactions which interact with a common, history sensitive actor; when examin-
ing a ftrace, it sometimes becomes important to know how things happened from a particular actor’s
viewpoint. For example, there may be many concurrent transactions dealing with the same bank account,
and we think we've constrained the ordering of the transactions so that no withdrawals will bounce, but if
we find that a transaction occasionally does bounce it is useful to find out in what order the transactions
really did arrive at the bank account so we can figure out what went wrong. We record this arrival order
of recorded tasks at an actor in the actor’s biography;, the display of this biography is called a lifeline.

Recording the biography is fairly straightforward; each time we create a task record, we add it to
the corresponding target actor’s biography. The only subtle point is that we store a copy of the target
actor’s state in the task record rather than just a reference to the target actor; thus when we look back at
the biography we can see a history of states as well as a history of tasks, and better understand why the
actor behaved as it did as it evolved into its current state.

Displaying the biography is also straightforward; we display the list of tasks in the order the
arrived. Traveler provides a few conveniences: users may change the level of detail with which a task is
displayed, or they may hide the ¢cvents between disparate events in the lifeline to juxtapose them for
bettei comparison. See figure B-6 for an example lifeline.
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I This actor was born as a a ﬂkRCCOUﬂl fictor "12750338> with Rcquaintance:

Balance: @

--- Start of Lifeline ----
(:Balance) H<DEFRULT-TOP-LEVEL-SPONSOR-SCRIPT Actor 12759896> M<RETURN-TO-LISP-CUE

zizzzzzA ]

(Request
N (Request = (:Deposit 300@) B<DEFAULT-TOP-LEVEL-SPONSOR-SCRIPT Rctor 12761918> H(RETURN-TO-LIE
§(Update .= (Balance: 30@0))
N(Request + (:Deposit S@@) W<DEFAULT-TOP-LEVEL-SPONSOR-SCRIPT Actor 12764@83) #<RETURN-TO-LIGF
%(Update « (Balance: 3500))
N(Request +  (:Mithdrawal S@) W<DEFAULT-TOP-LEVEL-SPONSOR-SCRIPT fEc¥Tva -10-L1
N (Update +« (Balance: 3450)) T
‘R Hide Above
§(Request « (:Withdrawa) S0) B<DEFRULT-TOP-LEVEL-SPONSOR-SCRIPT | Hide £ N -10-L)
N(Update + (Balance: 2358)) ide tven
§ This actor became a R<ACCOUNT Actor~12758338> with Acquaintan Hide BC'OW
§ Balance: 2350 Examine Task '
N(Request + (:Withdraual 5@68) #<DEFAULT-TOP-LEVEL-SPONSOR-SCRIP| Display Transaction [URN-TO
N (Update )
§ ----- End of Lifeline -----
\
N
%
N
§
X
O]
Lifeline Lock Decache Snapshot History
‘Mouse-L, -M, ~A: Show only activating event.
He Jan 2:22: ar 1Hann{ng CC-USER: Tyl “[Tsp Rachl

Figure B-6: Lifeline Snapshot
This is the lifeline of a bank account; the ellipses indicate portions
of the lifeline are hidden to juxtapose different parts of the lifeline.

In our experience so far, lifelines haven't been used as often as transaction traces or even stepping,
but they were very helpful when they were needed. The small programs we've tried so far are probably
not complex enough for arrival ordering to get too far out of hand, and I expect lifelines may come into
more use as more complex programs are tried. However, lifelines are useful for studying acters which
arise as history sensitive managers as programs become more complex. The current format of displaying
only the arriving tasks in the lifeline has also been a limitation on their use; it would be a beter idea 10
present a lifeline of transactions where possible so that not only can you find whal messages arrived, but
you can sudy what the actor did with each message.

B.S Summary and Future Work

Traveler is an integrated set of tools for examining actors and actor computations built on a
window interface. In addition to the transaction and lifeline displays mentioned here, the current state of
an actor may be examined simply by mousing any actor in the display. Traveler's panes can be
reconfigured in several sizes to fit the lask at hand, and each of the work panes can hold any transaction,
lifeline, or examination.
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All communication with actors to determine their state and for printing them is done through
message passing. However, since debugging tools need to work even when there are problems with
locked serialized actors (especially if the locking is the problem), communication with the user's actors is
done with special system-requests which bypass the normal locks and handlers. Thus the debugging
system bypasses fragile and possibly broken user code while still waking advantage of the distributed
message passing nature of the system while it is investigating.

Of course, all this recording does come at a price. While recording, what is normally just two
events, a request and a reply, now expands into at least 4 additional events 0 link the records. Three
actors are created: the request record, the reply record, and the transaction customer. Because of this
overhead, in our current emulation system programs can take from 5 to 20 umes as long to run. Most of
this overhead is due to the paging that goes on because of the high memory allocation rate.

Traveler has proven to be a very useful tool for observing and dcbugging concurrent actor
programs on the Apiary. The strategy of recording a concurrent transaction and then examining the
record is successful: transaction oriented tracing and stepping have been a huge leap forward over the
chronological tracing and stepping facilities which existed before it, allowing us o observe and debug
more complex programs. As we develop even larger programs, we are finding a few improvements and
additions can be made; in particular, selective tracing and breakpoints are needed.

For the future, we plan to make the improvements I've suggested, as well as work on other tools.
In particular, a source-oriented stepper (based on earlier work of Henry Lieberman) is under develop-
ment. This stepper will display source code and allow concurrent expressions and commands within the
code to be stepped by selection; when a value is produced, it replaces the expression which produced it in
the code. An interpreter for our cnre actor language, Acore, is also under development o support this
stepper.
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Appendix C

Acore: An Actor Core Language Reference Manual
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Chapter One

Introduction

Acore is a core actor language for research in actor language development. It is a step above Pract,
the primitive actor language, in that the Acore compiler does generate continuation customers for
expression evaluation. [t also generates the proper customers for joining parallel transactions, cither by
waiting for all results or by continuing with only the first result. This manual gives an overview of the
language, and demonstrates how other language constructs can be quickly implemented in terms of the
core constructs through the use of the macro facility.

Overview

The main portion of this manual is concemed with introducing and explaining the various forms
which are part of the core language Acore. We start by explaining the top level name scoping and
defining constructs, then move on to defining behaviors and actors. This is followed by several chapters
presenting the various types of commands and expressions. Finally, there are chapters cxplaining
sponsors (used for computational resource management), complaints (used for signalling exceptions),
and interfacing to Lisp (used for I/O and other machine dependent programs).

At the end there are several appendixes which should help you get a little feel for what using this
language is like. The appendix on macros shows how many useful constructs can be defined in terms of
the core forms. The appendix on compilation gives a few short example programs, and shows how they
would be compiled into Pract. It is a good idea to study these examples to understand what is really
going on in an Acore program. The final appendix gives a grammar for Acore.

One of these days I hope to insert an introduction to actors here, but I haven't yet, so for now this
manual assumes you are familiar with actors and just want to leam about Acore.

174



Chapter Two

Controlling the Compiling/Loading Name Environment

An Acore program consists of a series of top level forms, each of which is either a definition or a
top level command. Definitions are associated with names which may be referenced by other definitions
or by top level commands; the subject of this chapter is the management of these names.

There are several levels of names used in Acore. Top level names are those visible at top level and
available to the user typing in commands. Modules provide private scoping for the names defined within
the module, and export only a few of those names to top level. Inside scripts, which dcfine actor
behaviors, names for an actor’s acquaintances may be used in any of the script's message handlers.
Within each handler, names for message arguments are available, and there may be even smaller scopes
binding intermediate values. In this chapter we are concerned with only two types of names associated
with definitions, names defined at the top level and names definined within modules.

Top level names provide the working environment for the Acore programmer. Compiling and
loading new definitions adds to these names; redefining corrected or updated definitions changes the
meaning of these names. A good programming environment for fast prototyping allows the programmer
to change the meanings of names easily and quickly; usually this means not taking the excess time o
recompile or relink the definitions that use those names. Therefore top level names indirectly name the
actor defined -- they name a forwarding actor which forwards all its messages to the actor in the
definition. Thus redefining a name at the top level only requires changing the forwarding address of the
forwarding actor, not of all the actors which use the name. However, this means that the top level name
represents a forwarding actor, not the actor produced by the defining expression.

However, this forwarding actor slows down message passing slighly by rcquiring an cxtra
message pass before the message reaches the actor. Therefore, two methods of defining top level names
are provided, one by using DefName to provide the flexibility of indirection through a forwarding actor,
and one using DefEquate to provide the extra efficiency of avoiding the extra message pass. Note
however that there can be no forward references 1o actors created using DefEquate, since without the
level of indirection it is impossible to create references to an actor before the actor is created.!

The following sections describe the Acore forms for declaring new names, declaring module
boundaries, and declaring macros to extend the language,

INote: This programming environment was designed 1o provide a programming environment for fast prototyping for research
purposes. Systems programming needs may be accomodated by providing a different enviroment, one which sccomodates the
separale development of modules, and where the top level provides 1ools for linking the exporned and imported names of different
modules to produce larger modules.
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2.1 Controlling Name Scoping: DefModule
(DefModule [ module-name | (recepl recep?...) TOP LEVEL FORM
top-level-forms...)

DefModule declares the boundaries of modules, which bound the scope of the names declared
inside of them. Module name is optional; in the future it may be used to name separate modules (o bhe
combined to form larger modules. (recepl recep2...) is the list of names declared within the module
which will be visibile outside the module; these are the receptionists for the system. Names are declared
inside a module by top level forms, and may be used by subsequent top level forms; any of these top level
forms may be nested modules.

Names which are visible in the scope where the module is defined may be used anywhere within
the module.

For linking efficiency, DefModule requires that forward references within a module should be
declared with DefName first and later redefined. For example:

(DafModula quicksort (quicksort)
(DefNama partition nil)
(DefFunction quicksort (sequence)

(partition pivot sub-saquence)
|
(DefProcedure partition (pivot sequence)

)
-)

Within the quicksort module, quicksort makes a forward reference to partition. Without the declaration
of partition as a name within this module, partition could be interpreted as a free reference and quicksort
might be linked to an actor named partition outside the module. This may be fixed in the future, but it is
not a high priority.

2.2 Defining Names: DefName

(DefNaizic name expression) TOP LEVEL FORM

DefName indirectly binds name to the value of expression in the current environment, be it the top
level environment or a module environment. It provides a level of indirection through a forwarding actor
so that the definition can be changed without changing all the actors which use name; the forwarding
actor forwards all its messages to the actor specified by expi-ession.

Forward references to names are permitted for names defined with DefName. In fact, whenever
the loader encounters an undefined name, it assumes it is a forward reference, and creates future for the
actor. When the name is finally defined, the future becomes a forwarding actor o the defined value, and
any messages which have accumulated are forwarded.

Scripts usually should not be defined using DefName since a forwarding actor cannot be used as a
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script of an actor. DefEquate should be used instead (see below).

2.3 Defining Constants: DefEquate

(DefEquate name expression) TOP LEVEL IFORM

DefEquate directly binds name in the current environment, be it the top level environment or a
module environment. It does not provide a level of indirection; thercfore, if name is redefined, any
programs which have used name will not see the change unless they are reloaded.

Forward references are not permitted to names defined with DefEquate.

2.4 Defining Macros: DefMacro, DefExpander

Macros allow you to define a syntactic abstraction in Acore. Macro forms are expanded by the
compiler into a new form defined by the expansion function. The new form replaces the original form
and is compiled.

Acore uses expansion passing style macros [cite], so macro expansion functions are responsible for
returning a fully macroexpanded form. To achieve this, expansion functions are passed (wo extra
arguments in addition to the form to be expanded: an expansion function to expand further forms with,
and an environment in which macros are looked up. Thus the expansion function has two avenues over
which it may change further expansion: either it may supply a different expansion function, or it may
supply a different (e.g. augmented) environment.

Macro names have the same lexical scoping properties of other names, so you can define a macro
which is only available inside a module, and if you bind a local name the local binding will override any
inherited definition of a macro of that name.

At this time the compiler is written in lisp, so the expansion expressions must also be written in
lisp.

As with any macro, Acore macros must be defined before they are used, and anything which uses
the macro must be recompiled if the macro is redefined.

See the appendix containing possible macros for examples of using DefMacro and some advanced
examples using DefExpander.

(DefExpander name (macro-env next-expander form) TOP LEVEL FORM
expansion-expression)

DefExpander defines an expansion function. It is used for complex macros which cannot be
defined with the simpler syntax of DefMacro. In particular, it is used for macros where the cxpander
needs to change how sub-forms are expanded, either by augmenting the environment or supplying a
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different expander function.

Since expanders are curren‘ly written in lisp, there are some lisp auxiliary functions used for
manipulating environments and forms. These are ac:expand, ac:expand-once, ac:map-expander,
ac:make-expander, ac:install-expander, ac:install-toplevel-expander, ac:push-macro-environment-
frame, ac:install-local-expander, ac:lookup-macro, and ac:initial-expander. Advanced macro
writers may want to look ‘nto these and the advanced expander examples in the appendix.

(DefMacro name (argl arg2...) TOP LEVEL FORM
expansion-expression)

DefMacro defines a simple expansion function which behaves like standard lisp macro expansion
functions. The args... are bound the parts of the form. The expression returned is sznt to ncoming the
expansion function, so macros may be used in the definitions of other macros.

DefMacro could have been defined as an expander something like the following; note how the
incoming expander is called on the results of the expansion:

(defexpander DefMacro (macro-env expander form)
(let ((name (second form)) (args (third form)) (body (cdddr form)))
' (defexpander ,name (macro-env expander form)
(let ((expanded-form
(apply ', (ac:make~expander ‘defmacro name args bhody)
form)))
(funcall expander macro-env expander expanded-form)))))
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Chapter Three

Defining Actors

To define an actor, you must provide it with a behavior and a set of acquaintances. Behaviors are
defined by other actors, called script actors. An actor’s state is represented by a tuple of values, its script
and its acquaintances. Actors can be created by create expressions, but this expression is so p.imitive
that in general functions are provided to create actors. Script actors are created by script special form
expressions; the major job of the Acore compiler is to convert the behavioral specification given in the
script form into an executable form.

3.1 Specifying Behavior: Script

(Script (acql acq2...) SPECIAL FORM EXPRESSION
[ ( [:machine-dependent] [:actor-types (rypel type2...) 1 ) ]
communication-handlers...)

A Script expression creates and returns an actor representing the general behavior specified by the
form. An actor which has this script will implement the behavior, parameterized by its specific
acquaintances. That is, it will respond to messages in the ways specified by the communication handlers;
these are discussed below.

The :machine-dependent option specifies that actors with this script depend upon some aspect of
the machine on which they are located (e.g. they are connected to an 1/O device) and should not be
migrated to other machines. This option is appropriate for any actor which serves as an interface from
the actor world to some machine specific hardware. Useful defaults should be defined for script defining
macros,

The :actor-types (rypel typ.....) option specifies that actors with this script should be considered
to have the types listed. This means that they will answer positively to an :are-you? trype request if rype
is a member of the list. To a :types request they will reply with the entire list.

Following the options list are the communication handler specifications. These handlers specify
the behavior of an actor with this script to messages with the keyword of the handler. Each type of
handler is described below. Note that expression context request handlers expect an expression body,
while the other three types of handlers expect commands in their body.
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3.1.1 Expression Context Request Handlers

((:keyword (argl arg2...) COMMUNICATION HANDLER
[ {:unserialized // :serialized ] |
[ :self target-symbol |
[ :sponsor sponsor-symbol |
[ :customer customer-symbol |
[ :reply-keyword reply-keyword-symbol |)
expression-body)

The most commonly used type of message handler is a handler for receiving requests and
specifying an exprcssion to evaluate and produce a value to return in response to the request. This
handler specifies that when it receives a message with selector ‘keyword, the parameters of the message
will be bound to the identifiers argl arg2..., and the expression body will be evaluated. The value
produced by the expression body will be sent in a reply message o the customer of the request.

There are several options which can be specified of the handler.

By default, the handler is assumed to be serialized, so a ready or become command should be
performed for every message processed by this handler. The handler may optionally be specified as
:unserialized, in which case the target is automatically unlocked immediately after receiving the
message, and may immediately receive another message. The programmer may also wish to specify that
a handler is :serialized for documentation purposes.

Also by default, self is bound to the target actor which received the request, sponsor is bound 1o
the sponsor of the request, customer is bound to the customer to which the reply to the request should be
sent, and reply-keyword is bound to the keyword with which the reply should be labeled. Each of these
defaults may be overridden by optionally specifying alternate symbols for the bindings to be overridden.

One request handler may be an otherwise handler which handles any requests which do not match
the keywords of the other handlers. The form of an otherwise handler is identical to any other handler
except that the :keyword is replaced by an unbound indentifier; for example:

((incoming-keyword (&rest args) :unserialized) ...)
The selector keyword of the unmatched message is then bound to the identifier (e.g. incoming-keyword)
so that it may be forwarded or included in a complaint message. '

The expression context request handler expects an expression body. An expression body is a list of
one or more commands or expressions, the last of which must be an <xpression. The value of the
expression body is the value of the last expression.

3.1.2 Command Context Request Handlers

(Is-Request (-keyword (argl arg2...) COMMUNICATION HANDLER
[ {:unserialized // :serialized } ]
[ :self target-symbol |
[ :sponsor sponsor-symbol |
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[ :customer customer-symbol |
[ :reply-keyword reply-keyword-symbol ])
command-body)

This handler is identical to the expression context request handler except that its body provides a
command context rather than an expression context. This handler is used in situations where no reply
value is to be specified, for example if the request must be put into a waiting queue for later processing
which will then produce a reply.

A command body is a list of commands or expressions. Since it is a command body, it is treated as
a command and has no value. The values of any expressions of the command body are ignored. Any
response to the request must be produced in some other way. Two possible ways of returning a response
to the customer are explicitly producing a response with the reply-to or complain-to comimands, or by
forwarding a request to another actor using a request command with the same customer,

3.1.3 Command Context Reply Handlers

(Is-Reply (:keyword (argl arg2...) COMMUNICATION HANDLER
[ {:unserialized // :serialized } ]
[ :self target-symbol |)

command-body)

This handler is identical to the command context request handler except that it handles reply
messages. This handler is very rarely used; it is only used when a special behavior is needed for a
customer which the compiler cannot produce. Normally the compiler generates all the customers needed
while compiling ask expressions and lets, so if you are using this you are probably doing something
wrong.

The fact that the incoming message is just a reply rather than a request makes several differences.
There is no default customer or reply keyword in the incoming message, so there is no form of the reply
handler with an expression body. There is no default sponsor in the incoming message, SO any
processing done in the command body of the reply handler must be wrapped in a with-sponsor form.
Since there is no incoming request from which to bind a sponsor, customer, or reply-keyword, there are
no default bindings and no options for specifying a binding for any of these.

3.1.4 Command Context Complaint Handlers

(Is-Complaint (:keyword (reply-keyword argl arg2...) COMMUNICATION HANDLER
[ {:unserialized // :serialized } ]
[ :self target-symbol ])

command-body)

This handler is identical to the command context reply handler except for two things: it handles
complaint messages instead of replies, and because of this it must have at least one parameter in the
argument list to bind the reply keyword. Like reply handlers, complaint handlers are used only when a
special customer must be specified, so if you are using this you are probably doing something wrong.
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Normally complaint handling can be specified using let-except.

Complaint messages are responses aborted transactions. The keyword of a complaint message
gives some indication as to why the transaction occurred. The reply keyword is also included so that the
customer of the transaction can identify the transaction (joining customers may be the customer for
several concurrent transactions). The reply keyword is only bound, rather than used in choosing the
handler, because the arguments of the complaint will depend upon the type of the complaint, which is
distinguished by the :keyword.

It is especially important to specify an is-complaint otherwise handler for any actor which may
receive responses so that any unforseen compaints generated by errors will be trapped and taken care of.

3.1.5 Handler Parameter Lists

The parameter list to any handler may include the lisp-like key'words &key, &allow-other-keys,
&rest, and &optional. &key means that the arguments following ir are keyword arguments, allowing
named rather than positional notation for matching formal w0 actual arguments. Here is an example in
both positional an keyword notation:

...((:do (price size color))...)
Invoked by: (:do order p s c)
...((:do (&key price size color))...)
Invoked by: (:do order :color c :price p :siza s)

&allow-other-keys means that extrancous keywords should not cause an error, but should be ignored.

&rest means any further actual arguments will be combined into a special list and bound the
following formal argument. This is useful for forwarding arbitrary m~ssages, ¢.g.

...(is-request (incoming-keyword (&rast arguments) :unserialized)
(request* forwarding-address (incoming-keyword arguments)
sponsor customer reply-keyword))...

&optional means the following arguments may be omitted from the actual arguments. If so, the formals
will be bound to nil.

Here is an example Script expression, in this case for a forwarding actor which forwards all its
messages to the number 0.

(defname forwarding-actor
(create
(script (forwarding-address)
(:actor-types (forwarding-actor))
(is-request (incoming-keyword (&rast arguments) :unserialized)
(raquest* forwarding-address (incoming-keyword arguments)
sponsor customer reply-keayword))
(is-reply (incoming-keyword (&rest arguments) :unserialized)
(reply-to* forwarding-address
(incoming-keyword arguments)))
(is-complaint (incoming-keyword (reply-keyword &rest arguments)
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‘unserializad)
(complain-to* forwarding-address
(incoming-keyvord reply-keyword arguments))))
0))

3.2 Creating New Actors: Create

(Create script-expression acquaintance-expressions...) EXPRIESSION

Create is a low level primitive for creating new actors. A creaie expression returns a new actor
with the script specified by script-expression and with the acquaintances specified by the acquaintance
expressions. It performs no checking that the types or even number of acquaintances are appropriate for
the script.

Script-expression must evaluate 1o a script actor; a forwarding actor 10 a script actor will not do in
this case.

Because of the low level nature of the create expression, it is strongly recommended tha any
abstractions which require creating actors provide functions for doing the creation. These creation
function - should perform any number and type checking necessary. See the macros for DefBehavior and
DefStructure in the Macros appendix.

Here is an example Create expression, using the forwarding script defined above. Assume that
new-address is defined. This €xpression creates a new forwarding actor with forwarding-script as its
script and new-address as its single acquaintance (the forwarding-addrcss).

(create forvarding—acript new-address)
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Chapter Four

Message Passing Expressions and Commands

4.1 Ask Expressions

(-keyword target argumenis...) EXPRESSION

An ask expression sends a request to an actor, and its value is the response retumed as a result of
the request. The request is sent to the valuc of the taPger expression. The request is specificd by the
value of the :keyword expression, which should evaluate to a keyword, and parameterized by the values
of the argument expressions, Paramcters are passed strictly by value (but see future and delay
expressions for simulating concurrent and delayed evaluation).

4.2 Call Expressions

(function arguments...) EXPRESSION
A call expression is simply shorthand for the ask expression:

(:do function arguments...)

Functions follow the convention of expecting :do keywords; see DefFunction in the Macro appendix.

Keywords such as :deposit may also serve as functions; what they do is to send the first argunicnt
a message with themselves as the selector and pass on any further arguments. So for example, if de}.nsit
is bound to :deposit, then

(deposit account 10)
is equivalent to

(:do :deposit account 10)
and when :deposit receives the :do message, it in turn sends the message

(:deposit account 10)

4.3 Returning Multiple Values

values values to be returned...

Normally an expression returns a single value. The values expression may be used o0 retum
multiple values for an expression. The multiple values must be bound with a let statement which handles
them; an expression returning multiple values cannot be used as a subexpression. Binding muliiple
values is covered under let.
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4.4 Request Commands
(Request targer (:keyword arguments...) COMMAND
sponsor customer reply-keyword)

A request command sends a request to the actor specified by the target expression. The request
contains the keyword and arguments specificd by the :keyword and argument expressions. The
transaction will be sponsored by the actor specified by the sponsor expression. The response will be sent
to the actor specified by the customer expression, and if it is a reply it will carry the keyword specified by
the reply-keyword expression,

Request commands need to be used only when programmers want o specify their own customer

for some reason; usually it is much casier to let the compiler gencrate the customers by using ask
expressions.

4.5 Reply-to Commands

(Reply-to target (:keyword arguments...)) COMMAND
A reply-to command sends a reply to the actor specificd by the rarger expression. The reply
contains the keyword and arguments specified by the :keyword and argument expressions.

Reply-to commands need to be used only when the programmer needs to explicitly delay the reply
for some reason, and reply at some later date. Usually it is much easier to use an expression context
request handler which generates the reply command automatically.

4.6 Complain-to Commands

(Complain-to target (-keyword reply-keyword arguments...)) COMMAND
A Complain-to command sends a complaint to the actor specified by the targer expression. The

complaint contains the keyword, the reply-keyword, and arguments specified by the keyword
reply-keyword and argument expressions.

The :keyword identifies the type of complaint. The reply-keyword must be included o identify the
transaction which complained.

Complain-to need to be used only in contexts similar to reply-to commands. Usually it is much
easier 10 use an expression context request handler and a complaint expression, which will generate the
complaint automatically.
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4.7 Request*, Reply-to*, Complain-to*

(Request* target (:keyword argument-list) COMMAND
sponsor customer reply-keyword)

(Reply-to* target (:keyword argument-list)) COMMAND

(Complain-to* target (-keyword reply-keyword argument-list)) COMMAND

These forms of the message passing commands are uscful for forwarding messages. argumeni-list
must be a special list bound by an &rest argument. Sce the forwarding actor script at the end of the
script section for examples of using these commands,

4.8 Ready

(Ready {(acquaintance-name new-value)}*) COMMAND

Upon receiving a communication with a serialized handler, an actor remains locked and may not
process another communication until a ready or become command is processed, specifying its new state
and releasing the lock. A ready command without any arguments simply releases the actor (o process its
next message. A ready command with (acquaintance-name new-value) pairs updates the specified
acquaintances with the new values; these are the values the acquaintances will have during the processing
of the subsequent message. For example, a bank account with an acquaintance called balance might
have a handler for deposit requests which looked like this:

(script (balance)
... ((:deposit (deposit-amount))
(let ((new-balance (balance :+ deposit-amount)))
(ready (balance new-balance))
‘:0k))...)

Note that acquaintance-name must be the literal name, and not an arbitrary expression which evaluates o
the name.

4.9 Become

(Become new-script new-acquaintances...) COMMAND

A become command is used when an actor completely changes its state, for example when an actor
representing a future or a thunk (delayed expression) becomes a forwarding actor (o the resulting value.
In this case, a new script must be specified, as must all the new acquaintances needed for the new script.
Like create, this command is dangerous because there is no checking that the types of acquaintances or
their number agrees with the requirements of the script.

4.10 Replace

(Replace rarget new-script new-acquaintances...) COMMAND
Replace is a primitive used to completely change the state of a locked actor. It differs from
become in that the target actor is specified. Like create, this is a primitive and it is strongly
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recommended that it be encapsulated in a function which can check that the number and type of the
acquaintances agree with the script.
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Chapter Five

Controlling Subexpression Evaluation

This chapter introduces the forms future, delay, and race. Futures allow expression values to be
passed around concurrently with the evaluation of the expression. Delays allow the evaluation of an
expression to be delayed until the actual value is necded; it may be passed around but isn't evaluated
until it is sent a message. Race performs the evaluation of its subexpressions concurrently, but it only
waits for the first result to return; thu. is the result of the race expression.

5.1 Future

(Future expression) EXPRESSION
(Future)

A future expression immediately returns a future actor which represents the value of the
expression. Simultaneously, the evaluation of the expression is begun, with the future as the cusiomer to
which the value will ultimately retum. While the future is waiting for the result of cvaluating the
expression, it buffers any requests it may receive. When it receives the result of the expression, if it is a
valid reply then .ll the buffered requests are forwarded to the value and future becomes a forwarding
actor to the value. If inctead a complaint had been generated, then the future becomes a complaint

generator, processing all the buffered requests by complaining to the customers and returning complainis
to any new requests it receives.

A future cxpression without expression just returns a future. The programmer is expected to
provide a replacement behavior (e.g. by calling a function which issues a replace command) for it
sometime in the future; otherwise it will just buffer messages forever.

5.2 Delay

(Delay expression) EXI'RESSION
A delay expression immediately retumns a delay actor which represents the expression and the
closure over the environment. Unlike the future actor, the delay actor remains dormant until it is sent a
message. Upon receiving a message, the delay actor lets the expression evaluate. Upon receiving a
result, if it is a valid reply then the message is forwarded to the value and the delay actor becomes a
forwarding actor 1o the value. If instead the result was a complaint, then the delay actor rewms a
complaint to the customer of the request and becomes a complaint generator just like the future.
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5.3 Race

(Race expressions...) EXPRESSION

A race expression concurrently begins the evaluation of all its subexpressions. It retums an actor
which behaves as an input stream; the values of the expressions are stored in the stream in the order that
they arrive. These values can be extracted from the stream by sending it successive :extract
messages.

The stream only stores successful values; complaints are not stored in the stream. Thus the stream
stores vaiues in the order of successful completion. Complained values can be stored in the stream by
wrapping each of the argument expressions in a let-except form; the value returned by this form will then
be the value of the expression and, if it is not a complaint, will be storzd in the stream.,

Once the stream has returned all successful values, it will retumn :end-of-stream o all
successive :extract messages.

189



Chapter Six

Binding Intermediate Values

This chapter introduces the let command and expression. Let forms allow a single or multiple
values in replies to be bound, just as request handlers may bind multiple argument valucs.

6.1 Let

(Let ( { ((vall val2..)) expression) }* ) EXPRESSION
expression-body)

(Let ({ (val expression) }* ) EXPRESSION
expression-body)

(Let ( { ((vall val2..)) expression) }*) COMMAND
commands...)

(Let ({ (val expression) }*) COMMAND
commands...)

The multiple value form of a let binds the identifiers vall val2... to multiple values returned from
expression. The identifier list can take any of the forms of a handler parameter list (minus the leading
selector keyword), including the use of &key, &allow-other-keys, &optional, and &rest. (See the
section on handler parameter lists for an explanation of these.) If a parameter mismatch occurs, a
complaint will be generated.

If only a single value is expected, then the single value form of let may be used for brevity. A
single symbol in a let arm binding is equivalent to a list of the symbol. For example, the following two
let forms are equivalent:

(lat (((total) (sum :do sequence))
((count) (sequence :length)))
(total :/ count))
(lat ((total (sum :do sequencae))
(count (sequence :length)))
(total :/ count))

If there are several arms with expressions to be bound, the expressions are evaluated concurrently;
when all the expressions have been evaluated, then the forms of the body are performed concurrently in
the environment extended by the new bound identifiers. If any of the expressions results in a complaint,
the result of the let form is the complaint and the body is not performed. Sequential binding can be
accomplished by nesting let commands or expressions.

Examples of use:
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(lat (((first raest) (cons-cell :decomposa)))
(if (null? rest)
(then first)
(else rest)))

(let (((&key ((:name namel)) ((:number numberl))
((:quantity quantityl)) ((:price pricel)))
(orderl :keyword-decompose))
((&4key {(:name name2)) ((:number number2))
((:quantity quantity?)) ((:price price2)))
(order2 :keyword-decompose)))
((pricel :* quantityl) :+ (price2 :* quantity2)))
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Chapter Seven

Flow of Control

The if command is the sole core primitive provided for making decisions and controlling the flow
of the computation. Other constructs can be made with macros, building on the primitive capability
provided by if.

Without message passing, an actor can only test whether two mail addresses are identical, and form
and, or, and not combinations of such tests. Therefore, any message passing expression used as the
conditional part of an if form is interpreted as a comparison between two mail addresses: the address
returned by the expression and the address of the unique actor representing falsity, nil. Thus, any
programs which use futures, delays, and other frrwarding actors must be careful about what values are

compared and used as conditions. In particular, a forwarding actor (future, delay) which forwards to nil
will not be considered nil, and will always be interpreted as a true value rather than false. This is
because the forwarding actor is an actor in its own right with its own mail address, which is distinct from
the mail address of every other actor, including the nil actor.

Therefore it is imperative that when using futures and delays, the address of the expression value
rather than the forwarding actor be used in comparisons and conditions. The value can be obtained by
sending a :self message to the actor to be compared; the forwarding actor will forward this message, and
non-forwarding actors reply with their mail address in response to this me.sage. See the examples
below.

7.11f

(If test-expression SPECIAL FORM EXPRESSION
(then expression-body)
(else expression-body))

(If test-expression SPECIAL FORM COMMAND

(then commands...)
(else commands...))

An if form evaluates and tests the value of test-expression; if the value is not the actor representing
falsity, mil, then the then branch is pe formed; otherwise the else branch is performed. The value of an if
expression is the value of the expre.sion-body performed. If evaluating test-expression results in a
complaint, neither branch is performed and the result of the if form is the complaint.

Examples of use:
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(If 'true
(then '’
(else '

(If nil
(then '
(elsa ’

:yes)
:no)) --> :iyes
:yes)
:no)) --> :no

(if (future nil)

(then ' :
(alse ’':

yes)
no)) --> :yeas

(if ((future nil) :self)

(then '
(else '’
(Lf (delay
(then '/
(elsa '/

:yes)
:no)) --> :no

nil)

:yes)
:no)) --> :yes

(if ((delay nil) :self)

(then ':
(alse ':

yes)
no)) --> :no
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Chapter Eight

Primitive Expressions

Primitive expressions in Acore are those expressions which do not require any further message
passing. They include constants, strings, bound identifiers, the identity (==) predicate, and the boolcan

operators not, or, and and.

8.1 The Identity Predicate

(== expression expression)

As mentioned in the previous chapter, the primitive decision making
ability of actors is based on comparing whether two mail addresses are
identical. The identity predicate performs this comparison, and
decisions are made based on whether the mail addresses produced by the
two examples are identical or not. You may think of the conditional
expression of an if statement as testing whether the result is

identical to the nil actor. For example,

(if (actor :are-you ’:integer)
(then ...)
(else ...))
is interpreted as

(if (== nil (actor :are-you ':integer))
(then ...)
(elsa ...))

However, to increase the flexibility of using this predicate as an
arbitrary expression, it can also be used to return a value. For
example,

(ready (:acq (== actor uniqua-value)))
is equivalent to the following

(ready (:acq (if (== actor unique-value)
(then t)
(else nil))))

8.2 Boolean Expressions

The following boolean expressions have much the same meaning that they
do in Pract. They interpret nil as false and any other value as

true; not returns ¢ as true. (This may change if we decide

there should be specific boolean actors rath«r than using symbols.)
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8.2.1 Not
(not expression) i(EXPRESSION
The value of a not expression is a truth value (t) if the value of expression is nil; otherwise the

value is nil.

8.2.2 And

(and expressions...) EXPRESSION
The value of a and expression is nil if the value of any of the expressions is identical to nil;
otherwise the value is the value of the last expression. Note that all expressions are evaluated.

8.230r

(or expressicns...) EXPRESSION
The value of an or expression is nil if the value of all of the expressions is identical to nil;
otherwise the value is the value of the first non-nil expression. Note that all expressions are evalualed.

8.3 Bound identifiers

identifier EXPRESSION

The value of a bound identifier is the actor which is bound to it. Identifiers may be bound by
virtue of being bound in the external environment, by being bound in the local module environment, by
being an acquaintance of the actor, by being a formal argument for a message handler or complaint
handler, or by being bound by a let statement.

8.4 Literals

There are four forms of literals: keywords, numbers, strings, and quoted list structure.

8.4.1 Keywords

:keyword EXI’RESS.ION
A keyword is a symbol preceded by a colon, and evaluates to itself. Keywords are unique; two

keywords with the same spelling must be identical, since keywords are the basis of message handler

selection.

8.4.2 Numerals

numeral ‘ EXPRESSION
Numerals are strings of digits, possibly with a leading sign, possibly with a single decimal point.

A numeral evalutes to the number it represents; numbers are not necessarily unique, depending upon the

implementation, so identical numerals may or may not evalutate to identical numbers.
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8.4.3 Strings

"string" EXPRESSION
A string is a sequence of characters surrounded by double-quotes. To include a double quote or a

backslash in a string, it must be preceded by a backslash.? It evalutates to an actor which represents the

sequence of characters.

8.4.4 Quoted List Structure

*list-structure EXPRESSION
Quoted list structure evaluates to the list structured under the quote, unevaluated. At this time it

may or may not evaluate to an identical actor each time.

Backslash is the Common Lisp single escape character.
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Chapter Nine

Sponsors

This chapter introduces the concept of sponsors and the constructs in Acore for using sponsors.
There is also a message protocol which is, so far, underdeveloped.

In a processing environment where there may be many threads of control proceeding concurrently,
frequently forking more threads or dying, there is a need (o control the rate at which each of these threads
proceeds, possibly aborting it entirely if it becomes unnecessary or wasteful. It is the role of actors
acting as sponsors to control the processing rates of the computations under its control.

Each transaction (a request and response) in an actor computation must be sponsored. When the
transaction is run, the system requests ficks from the sponsor, using the :more-sponsor-ticks message.
The sponsor may either reply with some number of ticks, or it may respond with the complaint
:sponsorship-denied meaning that the sponsor is unwilling or unable to grant any more ticks and thread
must be aborted. If the transaction is aborted, it will return a :sponsorship-denied complaint, so any
serializers can be unlocked, undoing any state changes in progress.

If a sponsor runs out of ticks, it may ask its parent sponsor for more ticks. If all the computations
controlled by a sponsor become unnecessary, the sponsor may be sent a :stifle message to abort all its
computations; it should respond with any remaining ticks.

These protocols will be extended. It needs protocols for temporarily suspending a computation if
the sponsor wants to hold it up for a while -- just not replying for a while is not good enough because the
computation may be holding some locks or resources which are needed by other computations. It also
needs a prc<ocol for guaranteeing a critical computation can complete without running out of ticks. A
protocol for letting a sponsor know when a computation it is sponsoring has completed would also be
useful,

9.1 Sponsor Messages

9.1.1 :More-Sponsor-Ticks

:more-sponsor-ticks max-allowed REQUEST MESSAGE
Sponsors receive a :more-sponsor-ticks message from the system when a transaction needs 10 be

sponsored. Rather than ask for sponsorship for every transaction, the system requests ticks for many

transactions. Max-allowed is the maximum number of ticks the system will accept at once; any more

may be thrown away. Sponsors should either reply to this message with an integer number of ticks
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granted, or complain :sponsorship-deaied to abort the transaction.

9.1.2 :Stifle
:stifle REQUEST MESSAGE
Sponsors may be sent a :stifle message if all the computations they are sponsoring should be
aborted. For example, after receiving a :stifle message, a sponsor may respond to all requests for more
ticks with the complaint :sponsorship-denied. (Note however that this is not required; in fact sponsors
sponsoring critical transactions which must be run to completion should not do this, but should continue
sponsoring the transaction to completion with the sponsor’s current tick supply.) Sponsors should
respond to the :stifle message by returning unused sponsor ticks.

9.1.3 :Sponsorship-Denied
:sponsorship-denied COMPLAINT MESSAGE

Sponsors retumn the complaint :sponsorship-denied if they are unwilling or unable to grant more
ticks. A transaction which was aborted because sponsorship was denied retumns this complaint as well.

9.2 Sponsor Forms

9.2.1 With-Sponsor

(With-Sponsor sponsor-expression EXPRESSION
body-expression)

(With-Sponsor sponsor-expression COMMAND
commands...)

With-sponsor first evaluates the sponsor expression. This actor then sponsors the performance of
the commands and expressions of the body.

198



Chapter Ten

Complaints

Complaints are the exception signalling mechanism of Acore. They are messages like replics, but
they are handled by different handlers. Complaints are generated by the complaint form and the
complain-to command. If an expression generates a complaint, either because the response o an ask
was a complaint message or because a complaint expression was encountered, the handling of the
complaint is specified by the closest lexically enclosing let-except which handles the complaint
generated. It is an error for a complaint to be generated in a context with no exception handler to handle
it, so most contexts should provide at least a default otherwise exception handler., For example, the
default request handlers with expression bodies provide default exception handling; the expression
context it provides is one place where a default (forward the complaint to the customer) makes sense.

10.1 Complaint Forms

10.1.1 Compliaint
(Complaint keyword-describing-the-complaint EXPRESSION
other-arguments-giving-context...)

Complaint generates complaints in expression contexts; the evaluation of the expression is aborted
and the enclosing complaint handling invoked. Keyword describing the complaint is a keyword by
which the complaint handler will be chosen. Other arguments giving context is usually a list of keyword
arguments giving the actors which were involved, for example the target actor which generated the
complaint, the message which it received, the customer which expected the reply (and from which the
sender of the message can usually be deduced), and any other information which may be pertinent
depending upon the exception. See messages below for examples. These keyword arguments should
probably be standardized, but this hasn't been done yet.

A complaint expression which is not enclosed by a Let-Except form providing a handler for it is
illegal. See Let-Except for an example of the valid use of complaint and let-except.

10.1.2 Let-Except

(Let-Except ( { ((vall val2...) expression) }*) EXPRESSION
(Except-When

{ ((:keyword (valA valB...)) expression-body) } )
expression-body)

(Let-Except ( { (val expression) }*) EXPRESSION
(Except-When

{ ((:keyword (valA valB...)) expression-body) } )
199



expression-body)
(Let-Except ( { ((vall val2...) expression) }*)

COMMAND
(Except-When
{ ((:keyword (valA valB...)) commands...) } )
commands...)
(Let-Except ( { (val expression) }*) COMMAND

(Except-When
{ ((:keyword (valA valB...)) commands...) } )
commands...)

Let-Except, when used in conjunction with the complaint expression within a script and
complain-to commands in other scripts, provides a means of non-local exit for exception handling. A
let-except form is evaluated like let -- the expressions in the arms are concurrently evaluated, the results
are bound to identifiers, and the body is performed in the environment resulting from extending the
surrounding environment with the new bindings -- except when one of the expressions in the arms
generates a complaint. In this case the enclosing exception handler with a matching keyword is invoked,
its parameter list is bound to the parameters of the complaint, and the body of the exception handler is
performed in the environment resulting from extending the environment surrounding the let-except form

with the bindings of the parameter list. In the case of the let-except expression, the value of the handler’s
body becomes the value of the let-except expression,

Note that the scope of the exception handlers is limited to the arms of the let-except statement, and

not the body. This design allows the same exception handlers to cover one or several concurrent
expressions.

Like message handlers, one of the exception handlers in a clause may be an otherwise handler.

This is indicated by replacing the keyword with a normal symbol, and the keyword will be bound to that
symbol in the body of the handler.

Note that the environment within the exception handlers does not include the bindings of the arms.

An example of how complaint and let-except may be used:

(DafFunction make-account (account-no name password initial-balance)
(Let-Except

((record
(Let-Except
{ (account (create account-script account-no
; If bad password, abort
(if (:> 5 (:length password))
(then (complaint :bad-password

password))
(else password))

; If no funds, trap
(if (:<= initial-balance 0)
(then (complaint
:insufficient-balance))
(else initial-balance)))))
; Catch Trap if no funds -- make a different record
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(Except-When
((:insufficent-balance)
(make-waiting-for-deposit-record
name password account-no)))
. Otherwise make a normal record
(make-record name account))))
, Catch any other traps, and complain to customer.
(Except-When
((some-arror (&rest args))
(complain-to* customer (some-error reply-keyword args))))
; If all is normal, just return the record.
record))

This might be an Acore implementation of a function which opens accounts. It normally creates 2 record
with the name and the account, and the account itself, which holds the balance and the password. In
creating the account, it may notice anomalous conditions uses the complaint mechanism to issue exit out
to a trap which performs the job in light of the condition. An :insufficent-balance complaint is
caught by the inner exception handler, which has a matching pattern; this handler resolves the situation
by creating a different kind of record instead, which is returned normally. Any other complaint which
may be issued, such as if the password didn’t recognize the : Llength message and complained, or the
:bad-password complaint was issued, will invoke the otherwise handler (some-error...) and
complain to the customer.

10.2 Some Complaint Messages

Below are some of the complaint messages generated by the system.

10.2.1 Uni ecognized-Request

:unrecognized-request COMPLAINT MESSAGE
starget actor which received the request
isponsor sponsor sponsoring the request
scustomer customer of the request
:reply-keywozd reply-keyword of the request
:selector selector keyword of the request
:arguments list of other arguments to the request

This complaint is generated when an actor receives a message for which it has no handler, i.e. the
selector keyword does not match the keyword of any of its hzndlers.

10.2.2 Machine-Error-Trap

:machine-error-trap COMPLAINT MESSAGE
:target actor which received the request
:SpONSOr sponsor sponsoring the request
:customer customer of the request
:reply-keyword reply-keyword of the request
:selector selector keyword of the request
sarguments list of other argumenis to the request
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ireport string describing problem

The system generates this complaint when a firmware error is trapped. Many errors, such as
arithmetic errors, wrong number of arguments, etc., will initially generate: this type of error, but hopefully
many of these will someday generate a unique complaint which can be recognized.
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Chapter Eleven

Interfacing with Lisp Programs and I/O Devices

Since Acore will initially be implemented on systems supporting Lisp, a mechanism to interface
with the Lisp system is provided so that Acore programs can interact with existing Lisp sofiware,
especially I/O systems such as the file system and the window system.

11.1 Interfacing to Lisp from Acore

References to lisp functicns and other object cannct be migrated from machine to machine as
Acore objects; Lisp assumes that all objects it operates on are local. Therefore any actors which
reference Lisp objects should be declared :machine-dependent (see script) so they will not be migrated.
For example it doesn’t make sense to display a string for the user on a machine other than the one
connected to the user’s console, so the actor which represents any window must be declared machine
dependent. Since the :machine-dependent declaration only prevents migration of actors, you should
also be careful to make sure the actor is created on the correct machine; this may mean making its creator
machine dependent as well.

11.1.1 The #L Form

#L(lisp-function-symbol arguments...)
SPECIAL FORM EXPRESSION )

The #L. form first evaiuates the arguments of the lisp function call as Acore expressions. If no
complaints occu, a separate process is created by the Lisp system on the current machine, and the lisp
function lisp function symbol is called with the arguments in that process. If the function returns
normally, the value returned is the value of the cxpression. If the function returns an error, a
:machine-error-trap complaint is generated describing the error.

Note that because lisp-function-symbol is looked up in the global Lisp environment of the
machine on which it is invoked, actors which invoke it should be machine dependent. Details of how the
argument objects/actors will appear to the Lisp function are implementation dependent, but probably the
representation of integers, symbols, and strings will be common, and at least a conversion to other list
objects, such as lists, will be available.
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11.2 Interfacing to Acore from Lisp

Interfacing to Acore from Lisp consisis of making requests to Acore actors from Lisp, and
receiving the reply.

11.2.1 Ask-From-LIsp
(ask-from-lisp-code target sponsor :keyword a-guments...) LISP FORM
The Lisp function ask-from-lisp-code makes a request to the Acore actor specified by the lisp
expression targe:. The request will be sponsored by the Acore actor specified by sponsor. The message
will contain :keyword and any arguments supplied. This function creates a machine dependent actor as
the customer for the request, then it creates a task sending the message to the target and puts it on an
A.piary queue to be executed. Finally it suspends the iisp process. When a response returns, it will be
sent to the customer, which communicates the results to the Lisp process and awakens it. Finally, the
function returns the result of the request.

If a single value is retumed to the customer, then this value is returned by ask-from:-lisp-code. If a
complaint is retuned by the customer, or a multiple value reply is retumed, then ask-from-lisp-coJe

generates a Lisp error.
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Appendix A

Macros for Advanced Constructs

11.3 Return

Return is a very simple macro for the common instance of replying to the default customer with the
default reply-keyword in command context.

(DefMacro Return (expr)
‘(reply-to customer (reply-keyword ,expr)))

11.4 Block

Block is a very simple macro for introducing an expression body in expression context.

(DafMacro Block (&rest expression-body)
‘(lat () ,@expression-i dy))

11.5 Lambda

Lambda creates and returns a functic.a actor by creating a script which defines the behavior of the
body and creating and returning the actor which has this script.

(DefMacro Lambda (arguments &body body)
‘(create (script () (:actor-types (lambda))
((:do (,Rarguments) :unserialized)

Example of use:

(map (lambda (starting-balance)
(make-bank-account starting-balance))
starting-balances)

11.6 DefFunction

DefFunction is a form for defining function actors, actors with no local state who return a result
when called with a set of arguments. They may be called with the form [name args...] which is
equivalent to the fonn (name :do args...). Since functions don’t change state, it is declared unserialized.

(DetfMacro DafFunction (name args &rest body)
‘(Dafnama ,name (lambda ,args ,@body)))

Example of use:

(DefFunction factorial (n)
(if (:=n 0)
(then 1)
(else (:* n (factorial (:- n 1))))))
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11.7 CLambda
CLambda is much like lambda except that it produces an actor with a command body rather than

an expression body.

(DefMacro CLambda (arglist &rest body)
‘(create (script ()
(is-request (:do (,@arglist) :unserialized)

11.8 DefProcedure

DefProcedure is much like DefFunciion excert that it provides a command body :ather than an

expression body.

(DafMacro vefProcedure (name arglist &rest body)
‘(dafnama ,name (clambda ,arglist , @body)))

11.9 SScript

A macro for safe scripts creates a guardian for the script which handles :create and :replace

messages.

(DefMacro SScript (acgs &body handlers)
‘(let ((the-script (script ,acqs ,@handlers)))
(create (script ()

((:create ,acgs :unserialized)

(createa the-script ,Qacgs))

((:replaca (target ,Qacgs) :unserialized)
(replace target the-script ,Racgs)
target)))))

Example of use:

(DefName bank-account-script
(SSscript (balance)
((:balance () :unserialized)
balance)
((:deposit (deposit-amount))
(let ((new-balance (:+ balance deposit-amount)))
(ready (balance new-balance))
' :0k))
((:withdrawal (withdrawal-amount))
(lat ((new-balance (:- balance withdrawal-amount)))
(if (:< balance 0)
(then (ready)
(complaint :overdraft
:by-amount new-balance))
(else (ready (balance naew-balance))
withdrawal-amount)))))
(defname my-account (:create bank-account-script 1000000))
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11.10 DefStructure

DefStructure is a macro for making simple actors which just store values in their slots, allowing
you to send messages to retrieve or set their values. A similar macro could be made for immutable
structures by omitting the set handiers. Structure actors also respond to a :decompose message which
replics with all the components, so they may be taken apart with a single message.

(DefMacro DefStructure (name slots)
‘(DefNama ,name
((SScript ,slots
(:actor-types (,name))
,@(map (lambda (slct-name)
‘((, (make-keyword slot-name) ())
,8lot-name))
slots)
,d(map (lambda (slot-name)
‘((, (make-keyword
(symbol-append ’'set- slot-nama))
(new-value))
(ready (, (make-keyword slot-name) new-value))
self))
slots)
(is-request (:decompose)
(reply-to customer
(reply-keyword
,8(£flatten
(map (lambda (slot-name)
(list (make—keyword slot-nama)
slot-nama)) slots))))))))))

Example of use:
(DefStructure cons-call (car cdr))

(DefFunction cons (car cdr)
(:create cona-cell car cdr))

11.11 Sequential Expressions

Sequence expressions evaluate a series of expressions in order. The value of the sequence
expression is value of the last expression.

(DefMacrrd> Sequential (&rest expressions)
(if (null expressions)
ll()
(let loop ((exprs expressions))
(let ((expr (first exprs))
(others (restl exprs)))
(if (null others)
expr
‘(let ((ignore ,expr))
» (Loop others)))))))

Example of use:
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(Sequence
(Print (Format nil "~&Ki there! What’s your name? "))

(read))

11.12 Cond Expressions
This macro implements a sequential cond -- each of the clauses is tried in order until one succeeds.

This is implemented as a chain of nested if’s.

(DefMacro Cond (&rest clause-list)
(if (null clause-list)
(second default-last) ;; if no clauses, complain
(let loop ((clauses clause-list))
(let ((clause (first clauses))
(others (restl clauses)))
‘(if , (car clause)
(then , (cdr clause))
(alse
, (if (cdr others)
(loop others)
(let ((last (car others)))
(if (eq (car last) 'else)
last
(loop (list last ' (else nil)H)M)IINNIN

Example of use:

(lot ((price
(cond ((age :< 5) 0)
((age :< 12) 2.00)
((or (age :< 18) (age :> 65)) 3.00)
(else 4.00))))
price)

11.13 Select Expressions
Select does 2 sequential test to see if the expression evaluated to any of the choices.
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(DefMacro Select (expression &rest clause-list)
(let ((valua-sym (unused-symbol))
(default-last ‘(else (complaint
:fell-off-end-of-select
:source , ‘'(select
,expression
, @clause-list)
:target self))))
(if (null clause-list)
(sacond default-last) ;; if no clauses, complain
‘(let ((,value-sym ,expression))
, (let loop ((clauses clause-list))
(let ((clause (first clauses))
(others (restl clausas)))
(let ((teat (if (listp (car clause))
‘(or ,@(map (lamhda (sub-test)
‘(eq ,value-sym
subtest))
(car clause)))
‘(eq ,value-sym
, (car clause)))))
‘(if ,test
(then , (cdr clause))
(else
, (L£ (cdr others)
(lLoop others)
(let ((last (car others)))
(if (eq (car last) ’'else)
last
(loop (list last
default-last
NI

Example of use:

(select (parse input)
(' red :red)
(('green ’'blue) :green-or-blue)
(('yellow ’'orange) :yellow-or-orange)
(alse :invalid-selection))

11.14 Let* Expressions

Let* is like Let except the arms are evaluated sequentially rather than concurrently, so cach
binding is available to the arms after it. This is just syntactic sugar for a set of nested let statements,
which this macro produces.

(DefMacro Lat* (bindings &rest body)
(labels ((recurse (bindings body)
(if (< (length bindings) 2)
‘(let ,bindings , @body)
‘(let , (list (car bindings))
, (recurse (cdr bindings) body)))))
(recurse bindings body)))
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11.15 LetRec Expressions

This macro implements a recursive let, where the identifiers o be bound may be used in the
expressions to which they will be bound. It is implemented using futures to represent the values before
they are known.

(DefMacro LetRec (bindings §body body)
‘(let , (mapcar (lambda (binding)
‘(, (first binding) (future)))
bindings)
,@(map (lambda (binding)
' (replace , (first binding)
forwarding-script , (second binding) ))
bindings)
' @bOdy) )
Example of use:

(letrec ((husband (make-person :spouse wife))
(wife (make-person :spouse husband)))
(marry wife husband))

11.16 LabeledLet Expressions

This macro implements a labeled let which allows the concise introduction of a function for
recursion purposes; it is often used when the first call requires initial values or the function needs to be
created with some call dependent free references, so that it is inappropriate to make the function a top
level function. It is inspired by the labeled let available in Scheme. This macro uses the LetRec and
Lambda macros we defined above.

(DefMacro LabeledLet (label bindings &body body)

(let ((vars (mapcar #’'first bindings))
(exprs (mapcar #’second bindings)))

‘(letrec ((,label (lambda ,vars , @body)))
(,label ,@exprs))))

Example of use:

(DefFunction factorial (n)
(Labeledlat rangeproduct ((low 1) (high n))
(cond ((:= high low) low)
((:= high (:+ low 1)) (:* high low))
(else (let ((average (:/ (:+ high low) 2)))
(:* (rangeproduct low average)
(rangeproduct (average :+ 1) high)))))))
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Appendix B

Acore Grammar

B.1 Top Level Form

<Acore-Top-Level-Form> =
<definition> Il <command>

B.2 Definitions

<definition> =
<module-definition> Il
<macro-definition> Il
<name-definition> Il <constant-definition>

<mndule-definition> =
(DefModule (<symbol>*)
<Acore-Top-Level-Form>*)
Note: The <symbol>'s in the list must be defined in the
body of the module so they can be exported.

<macro-definition> =
(Def-Acore-Macro <symbol> (<symbol>*)
<body-expression>)
I
(DefExpander <symbol> (<symbol> <symbol> <symbol>)
<body-expression>)

<name-definition> =
(DefName <symbol> <expression>)

<constant-definition> =
(DefEquate <symbol> <expression>)

B.3 Commands and Expressions

<command> =
<expression> ||
<let-command> |l
<if-command> |l

<request-command> |l <reply-command> Il <complain-command> Il

<ready-command> |l <replace-command> Il
<let-except-command> |l
<with-sponsor-command>
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<expression> =
<identifier> Il <constant> Il
<create-expression> |l <script-expression> |l
<ask-expression> |l <call-expression> |l
<let-expression> |
<if-expression> Il
<future-expression> Il <delay-expression> Il <race-expression> |l
<values-expression> Il <complaint-expression> |
<let-except-expression>
<boolean-expression> Il
<with-sponsor-expression> |
<lisp-expression>

<body-expression> = <command>* <expression>

B.4 Actor Creation

<create-expression> =
(create <expression> <expression>*)

<script-expression> =
(Script (<symbol>*)
[([:machine-dependent] [:actor-types (<actor-type>*)])]
<communication-handler>*)

<communication-handler> =
(<request-pattern>
<body-expression>)

(Is-Request <request-pattern>
<command>*)

]

(Is-Reply <reply-pattem>
<command>*)

]

(Is-Complaint <complaint-pattern>
<command>*)

<request-pattermn> =
(<keyword> (<communication-binding>*)
[:self <symbol>)
[:sponsor <symbol>]
[:customer <symbol>]
[:reply-keyword <symbol>]
[:unserialized |l :serialized] )

<reply-pattern> =
(<keyword> (<communication-binding>*)
[:self <symbol>]
[:unserialized |l :serialized] )
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<complaint-pattem> =
(<keyword> (<communication-binding>+)
[:self <symbol>]
[:unserialized |l :serialized] )

<communication-binding> =
<symbol> <communication-binding> Il
&key <communication-binding> Il
&rest <communication-binding> Il
&optional <communication-binding> I
&allow-other-keys <communication-binding> Il €

<identifier> = <symbol> which is bound in the enclosing scope
<constant> = <numeral> Il <keyword> Il <quoted-list-form> ...

<quoted-list-form> = "<list-form> Il (quote <list-form>)
<list-form> = <symbol> It <constant> Il (<list-form>*)

B.5 Boolean Expressions

<boolean-expression> =
<identity-expression> Il <not-expression> Il
<and-expression> Il <or-expression>

<identity-expression> = (== <expression> <expression>)
<not-expression> = (not <expression>)
<and-expression> = (and <expression>*)
<or-expression> = (or <expression>*)

B.6 Message Passing

<ask-expression> =
(<expression> <expression> <expression>*)
[This is interpreted as (<:keyword> <target> <args>*)]

<call-expression> =

(<expression> <expression>*)
{This is interpreted as (<target> <args>*) and is equivalent to
(.do <target> <args>*)]

<request-command> =
(request <expression> (<expression> <expression>*)
<expression> <expression> <expression>) ||
(request® <expression> (<expression> <expression>)
<expression> <expression> <expression>)

<reply-command> =

(reply-to <expression> (<expression> <expression>*)) Il
(reply-to* <expression> (<expression> <expression>))
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<complain-command> =
(complain-to <expression> (<expression> <expression> <expression>*)) |
(complain-to* <expression> (<expiession> <expression> <expression>))

<ready-command> =
(ready {(<keyword-symbol> <expression>)}* )

<become-command> =
(become <expression> <expression>* )

<replace-command> =
(replace <expression> <expression> <expression>*)

B.7 Subexpression Evaluation

<future-expression> =
(future <expression>) Il (future)

<delay-expression> =
(delay <expression>)

<race-expression> =
(race <expression>*)

B.8 Returning Multiple Values

<values-expression> = (values <expression>*)

B.9 Binding Intermediate Values

<let-command> =
(let ( {((<communication-binding>*) <expression>))* )
<command>*) Il
(let ( {(<symbol> <expression>)}* )
<command>*)

<let-expression> =
(let ( {((<communication-binding>*) <expression>)}* )
<body-expression>) [l
(let ( {(<symbol> <expression>)}* )
<body-expression>)
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B.10 Control Flow

<if-command> =
(if <expression>
(then <command>*)
(else <command>*))

<if-expression> =
(if <expression>
(then <body-expression>)
(else <body-expression>))

B.11 Sponsor Control

<with-sponsor-command> =
(with-spensor <expression>
<command>*)

<with-sponsor-expression> =
(with-sponsor <expression>
<body-expression>)

B.12 Complaint Generation and Trapping

<complaint-expression> =
(complaint <expression> <expression>*)

<let-except-command> =
(let-except ( {((<communication-binding>*) <expression>)}* )
(except-when
{ ((<keyword> <communication-binding>*)
<command>*) } )
<command>*) Il
(let-except ( {(<symbol> <expression>)}* )
(except-when
{ ((<keyword> <communication-binding>*)
<command>*) } )
<command>*)

<let-except-expression> =
(let-except ( {{(<communication-binding>*) <expression>)}* )
(except-when
{ ((<keyword> <communication-binding>*)
<body-expression>) } )
<body-expression>) |l ’
(let-except ( {(<symbol> <expression>)}* )
(except-when
{ ((<keyword> <communication-binding>*)
<body-expression>) } )
<body-expression>)
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B.13 Interfacing to Lisp

<lisp-expression> =
#L(<lisp-function> <expression>*) Il #I(<lisp-function> <expression>*)
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Chapter One

Introduction

Pract is a primitive actor language designed to serve as an interface between the compiler writer
and the computer architect for actor languages. In this sense it serves a function similar to that of
assembly languages or p-codes. Systems may be built by building high level actor language compilers
which produce Pract code, and simulators, virtual machines, or computer architectures can be built for
running Pract. Like assembly language, Pract code itself is not designed to be suitable for direct
interpretation, but provides a human readable intermediate form which may then be compiled into
implementation specific forms for execution.

High Level Languages

. Hardware: .
. processing, communications .

Pract was designed to divide the task of implementing an actor computing system into two parts:
that of designing and implementing the higher level languages, and that of creating an architecture
(simulator, virtual machine, or hardware) to perform actor computations. Pract is the constant interface
between these two developing, evolving parts. Pract is based on the Actor model of computarion
described by Gul Agha in Actors: A Model of Concurrent Computation in Distributed Systems.! The job
of the high level language implementor becomes that of generating the system of continuation behaviors
which will control a community of Pract actors in the ways described by the higher level language. (See
the appendix of Pract examples to see how one higher level actor language is compiled into Pract.) The
task for the architect is to implement the message passing semantics of Pract.

1.1 Guide to this Document

The next chapter provides a brief introduction to the model of computation, as described by Pract
programs. It does include a few details specific to Pract, so people familiar with the actor model of
computation should at least skim it, paying particular attention to how identity and decision making is
handled in Pract. The following chapters are a reference manual for Pract. The first appendix shows
some examples of Pract code; I urge anyone frying to understand Pract to study these examples carefully.

IMIT AI TR-844, June 1985, soon to be published by MIT Press
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A grammar in the second appendix is provided to help clear up any syntactical ambiguities.
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Chapter Two

The Actor Model of Computation

The actor model of computation is bascd on the idea that computation can be performed by
sending messages between dynamic objects called actors. Actors are somewhat like objects in Simula
and Smalltalk, except actors are designed to communicate and process messages in a concurrent rather
than a sequential environment. In order to make the guarantee of delivery of messages possible and 10
maximize the apparent concurrency available, an actor's behavior in response to receiving a message is
limited to the following actions: an actor may make simple decisions, create new actors, send new
messages to actors it knows, and specify the behavior which will process its next message. In particular,
actors may not make assignments to variables, since this obscures concurrency. Nor may they loop, for
two reasons: an actor in a possibly infinite loop cannot receive another message, and strict iteration
requires assignment. Therefore all control structures are implemented as patterns of passing messages,
so (for example) iterative loops are implemented with tail recursive message passing. Instead of
assignment, all actor languages accomodate change through the mechanism of specifying a replacement
behavior to handle the next message. Actors are like other object oriented languages in one respect:
everything in the actor model is an actor, so all computation is done through message passing.

2.1 The Structure and Behavior of an Actor

An actor has several parts which define its behavior. An actor’s acquaintances are the other actors
it knows about before receiving a message. The acquaintances store the state of an actor; an actor
changes its behavior by changing its acquaintances. All actors have at least one acquaintance, its script,
which is the *‘program’’ which tells it what to do when it receives a message. Many actors may share the
same script; they will have the same general behavior.

The behavior of an actor is how it reponds to messages. As stated above, in response to a message
an actor may only make simple decisions, create new actors, send new communications, and specify a
replacement behavior. Each of these may be carried out only using the local information available to the
actor -- the identity of the actors known. An actor may ‘‘know’’ (have a reference to) another actor only
because the other actor is a constant in the script, is an acquaintance, was part of the incoming message,
or was just created.

¢ Decisions: Since actors are designed to run concurrently, actors can only make decisions
based on the local information available to them. In particular, this means they cannot make
decisions based on the state of other actors, so they are limited to making decisions based on
the identity of actors.

¢ Creations: Since actors communicate only by message passing and do not have access to
each other’s internal state, the state of a new actor must be completely specified when it is
created. This means the script and all other acquaintances of the new actor must be known
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to the creating actor.

¢ Communications: Actors may send messages to other actors it knows, and the messages
may only contain references to actors it knows.

e Behavior Replacement: An actor must specify a replacement behavior to process the next
message. The behavior may be identical to the current behavior, in which case there is no
change in behavior. The actor may keep the same general behavior but change some
acquaintances. Or the actor may keep only its identity and take on a completely new
behavior by changing its script and its acquaintances.

A behavior is divided into different handlers, one for each message it can process. Each handler
may be described as either serialized or unserialized. A handler is serialized if it may change the actor’s
state; it is unserialized if it never changes the behavior. These terms are also applied to actors as a
whole, so an actor which cannot change its state (all its handlers are unserialized) is called an
unserialized actor, while other actors are serialized actors. Thus, for example, numbers (e.g. 1, 2,
3.14159, etc.) and functions (e.g. factorial, sine, etc.) are all unserialized actors, while actors which
change state (e.g. bank accounts) are serialized actors.

2.2 Communications Between Actors

The message delivery system of the actor model is similar in character to a mail system.
Communication between actors is asynchronous; when one actor sends another a message, the sender
does not wait for the receiver to get the mail, but may move on to process its next message.
Communicatiin is also buffered; if an actor is not ready to receive a message when it arrives, it is
queued in its mailbox.

To send a message to another actor, an actor must know the receiver’s mail address. Therefore all
references to actors are mail addresses: actors remember the mail addresses of their acquaintances, and
messages sent between actors contain only mail addresses. An actor’s mail address is unique: every
mail address belongs only to one actor, and each actor has only one mail address. Thus actors can make
decisions based on the identities of actors by comparing whether their mail addresses are identical.
However, the fact that two mail addresses are different does not imply that sending a message to each
one must have a different effect; the behavior of one of the actors (if it is a forwarding actor) may be to
forward all its messages to the other actor. For example, any actor which behaves as the actor nil,
including any actor which forwards all its messages to the actor nil, will respond to messages in the same
way as nil but does not have the same identity as nil and will fail any condition which compares its
identity to nil.

Messages are handled by the mail system in packets called tasks, which you can think of as
envelopes. A task contains the message to be transmitted and also holds the mail address of the recipient,
sometimes known as the rarget of the task. The execution of a task is called an event; it is the acceplance
of a communication by an actor. An event is atomic; it cannot be interrupted by another communication
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or any other action in the system. All of the operations performed by an actor in response t0 a message
are done at once without interruption; since the actor cannot loop, it is guaranteed to terminate.

Communications are divided into two general categories. A request communication is analagous
to a function or procedure call in traditional computer languages. The response can be one of two types,
either a reply communication or a complaint communication. Replies are like normal procedure or
function call returns, while complaints signal exceptional returns. A request task and its responding task
make a pair called a transaction.

Each of these communications contains a keyword which designates which of the actor’s handlers
should be used to process the message. For example, a request to a bank account for its balance would
have the :balance keyword and be processed by the handler for :balance requests, while a request for a
withdrawal would have the :withdrawal keyword and would be processed by the handler for :withdrawal
requests. The message may have zero or more additional arguments; these serve the purpose of
parameters to a procedure call or returned values of a function in traditional computer languages.

In addition to the keyword and any other arguments, request communications have some additional
parameters. A request must contain the mail address of the customer, the actor to whom the response
should be sent. It must also contain the reply keyword which will be used in a normal reply to designate
which of the cusiomer’s reply handlers should be used to process the reply. Finally, the request must
designate a sponsor which will oversee the transaction (sponsors will be explained more fully later).

When an actor receives a message, the system must find the handler with the right type (request,
reply, complaint) and keyword to process the message. If it cannot find a handler with the correct
keyword, then it selects the otherwise handler to process the message.2 Default handlers are provided for
some messages which all actors need to be able to process, such as producing a string for printed output.
Default orherwise handlers are also provided. For example, the search for a request handler may be
visualized as a top to bottom search through the following:

2A more complicated search for a handler (such es one using inheritance as in Smalltalk) has been avoided because it doesn't fit
in well with the concurrent running environment where actors respovid 1o messages based only on local state information. Instead
we are investigating sharing behavior through delegation, implemented with message passing.
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Handlers from Script
Request Handlers
keywordl Script handler 1
keyword2 Script handler 2

Handlers from System
Default Request Handlers
keywordl Default handler 1
keyword2 Default handler 2

Script Request Otherwise Handler

Default Request Otherwise Handler
Otherwise handlers are important for handling spurious, unrecognized messages. The reply otherwise
handler is separated from the complaint otherwise handler because an unrecognized reply generally
indicates a programming error and should generate a complaint, while a complaint otherwise handler
may be used to trap errors and retry, or may just relay the complaint.

2.3 Resource Management with Sponsors

The use of resources by the many branches of an actor computation is controlled through sponsors.
Each transaction must have a sponsor actor which ‘‘pays for’’ executing the transaction. When a request
is executed, the systern may request a resource of ‘‘ticks’’ from its sponsor. If the sponsor has ticks
available, it supplies some ticks and the task is executed. If there are any ticks left over afterward, the
remaining ticks are returned to the sponsor. When the sponsor runs out of resources, it may ask its parent
sponsor for more resources. Depending on the state of the computation, the parent sponsor may or may
not grant additional resources, and may take time making its decision or waiting for additional
information. Once a decision is made, if additional resources are granted, the computation may continue;
otherwise a sponsor may decide a subcomputation is no longer needed and force any pending
transactions to abort.

For example, if a parallel search is being performed, the parent sponsor can give each branch of the
search a small number of ticks. Each branch must then periodically report back asking for more ticks. If
one branch finds an answer, then the other branches can be told to abort the next time they report back
for more ticks again, conserving computational resources.

Ticks for a transaction are charged at the time of the request to make sure the transaction can be
aborted; otherwise the problem arises that a transaction stopped because of lack of funds can't be aborted
cleanly because of lack of funds to send the complaint messages.

The requirement that each transaction be sponsored also solves the problem of controlling runaway
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computations without stopping all computations running in the system. The runaway computations can
simply be denied further resources, so when they run out of resources they must abort.

2.4 Continuations

Actor computations make wide use of short-lived actors as continuations. When an actor must
make subtransactions before the response to a request can be determined, the actor (sometimes called the
leading actor) creates a continuation actor to serve as the customer for the subtransaction. Any actors
which will be needed to continue computing the response once the subtransaction is complete are stored
as acquaintances of the continuation. This probably includes the customer to whom the final response
should be sent, the keyword with which a reply should be sent, and the sponsor which will oversee any
further subtransactions. It may also include parts of the original request, acquaintances of the leading
actor, or the leading actor itself. Since sequential transactions are performed by sequences of
continuations, intermediate results may also be acquaintances. In this sense the set of acquaintances of a
continuation actor are like a stack frame, and the behavior of the continuation is like the return address in
a conventional machine. Since customers are generally continuation actors, these ‘‘frames’’ are linked
together through the customer links; these chains resemble stacks except that they may be distributed
throughout the machine and the ‘‘stack’’ may fork due to parallel subtransactions. Unlike some stacks
models, however, continuations may not access other stack frames.

If the leading actor can specify its replacement behavior without any intermediate results (for
example, if the behavior stays the same), then it is free to accept its next communication immediately
following the request event and the continuation will take care of completing the first transaction. Since
the continuations are created dynamically for each transaction, many transactions to the same actor may
be computed in parallel, or a transaction may recursively make requests to the same actor.

If the replacement behavior of the actor which received the request depends upon the intermediate
results, the actor specifies the insensitive behavior as its replacement behavior. While the actor is
insensitive, it accepts no messages except an update or replace communication sent by a continuation at
the point in the computation when the replacement behavior is determined. The update or replace
communication specifies the replacement behavior, and after it is received the actor may accept further
communications. Update communications are used to make incremental changes to the behavior, e.g.
change an acquaintance or two, while replace communications are used to make complete changes of the

behavior. Update is also used when the continuation decides there should be no change, e.g. when some
subtransaction is aborted due to an error.

The factorial example in the appendix shows how continuations are used to implement expression
evaluation. The bank account example shows how continuations use the update communication to
designate a replacement behavior for the leading actor once it has been computed. It also shows how the
continuations make sure leading account is unlocked when some transaction is aborted. Both examples
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show how continuations use update to designate their own replacement behaviors between sequential
transactions.
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Chapter Three

Top Level Pract Forms

3.1 DefModule

(DefModule [ module-name ] (exported names...) TOP LEVEL FORM
top level forms...)

DefModule is a form for restricting the scope of names defined by defpract and defname. By
default, the names defined inside of a module are visible only in the module, and are not available
outside the module. If a name defined inside a module is listed in the list of exported names, then the
name will be visible in the environment enclosing the module as well. Module name is optional; in the
future it may be used as a name for the module when composing modules,

Example:

(defmodule (square) (*)
(defpract square-script () (*)
(is-raquest (:do n)
(request * (:do n n) sponsor customer reply-keyword)))
(defname square (create square-script)))

3.2 DefName

(DefName name pract-expression) TOP LEVEL FORM
DefName enters name into the Pract loader table and defines a special forwarding actor to the
value of pract-expression. If name is new or was not previously defined with DefName, a forwarding
actor which forwards to the value of pract expression is created and bound to name. If name is being
redefined, the forwarding actor is sent a message to redirect any future messages to the value of pract
expression. Thus using DefName allows you to compile programs incrementally (cf. DefEquate).

Note that the script used in create expressions must be a script actor and not a forwarding actor to
the script, so it is usually wrong to name a script with DefName; use DefEquate instead.

When the loader comes across an undefined name, it will issue a warning and DefName the name
to an ‘‘undefined’’ actor which generates an error if it receives a name. The loader expects that the name
will be DefName'd later.

Example:

(DefName my-account (creata checking-account-script 1000))
(DefName spouses-account my-account)
(DefName my-account (create savings-account-script 20000))

After loading the above forms, both my-account and spouses-account refer 10 a
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forwarding actor to a savings account.

3.3 DefEquate

(DefEquate name pract-expression) TOP LEVEL FORM

DefEquate enters name into the Pract loader table and binds the value of pracr expression directly
10 name. If name was already in the loader table, previous uses of name will not get the new definition.
Thervefore, when a name defined with DefEquate is redefined, all code which uses that name should be
reloaded.

DefEquate is usually the right thing to use for scripts, since the script argument 10 a create
expression must be a script actor and not a forwarding actor to a script (cf. DefName).
Example:

{(DefEquate my-account (create checking-account-script 1000))
(DefEquate spouses-account my-account)
(DafEquate my-account (create savings-account-script 20000))

After loading the above forms, my-account refers directly to a savings account, while
spouses-account refers directly to a checking account.

3.4 DefPract

(DefPract name (acquaintances...) (imported names...) TOP LEVEL FORM

{ (/:machine-dependent/ [:actor-types (types...)]) }*
handlers...)

DefPract is a form for defining behaviors, i.e. script actors. It is equivalent to defining a constant
to be the value of a script expression. For example, the following two forms are equivalent:

(DefPract cartesian-point-script (x y) (cartesian-to-polar)
(is-request ((:polarize) :unserialized)
(request cartesian-to-polar (:do x y)
sponsor customer reply-keyword)))

(DefEquate cartesian-point-script
(script

((x y) (cartesian-to-polar)
(:actor-types cartesian-point-script)
(is-requast ((:polarize) :unserialized)
{raquest cartesian-to-polar (:do x y)

sponsor customer reply-keyword)))
cartesian-to-polar))
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Chapter Four

Defining Actors

Every actor has an acquaintance called its script which defines its general behavior; it specifies
how the actor will respond to messages in terms of the actor’s acquaintances. Scripts are actors which
are created by script expressions; once a script is defined, many actors with the same general behavior
represented by the script may be constructed using create expressions.

4.1 Script

(Script EXPRESSION
((acquaintances...) (constant names...)

{ ({:machine-dependent] [:actor-types (types...)]) }*
hardlers...)
constant actors...

Script is a form for defining behaviors, i.e. script actors. The script actor defined is returned as the
result of the expression. All actors which have this script will have the general behavior defined by this
script; in particular, they will respond to messages in the general way defined by the handlers. Each
actor with this script may have different acquaintances, so the specific response to a message may
depend upon how the handler reacts to the identity of the individual actor’s acquaintances. Handlers may
also refer to the actors referenced by the constant names, but these actors will be identical for all actors
with this script. The acquaintances are used to refer to those actors which will be different for different
instantiations of the behavior, such as the balance of a bank account, and may or may not change over
time. The constant names refer to actors which are the same for all instantiations of the behavior, such as
the sine function actor. The Pract expressions constant actors specifies the actors to which the constant
names will be bound.

The :machine-dependent option, if present, specifies that instantiations of this behavior depend
upon the the machine on which they are created and should not be migrated to other machines. This is to
be used whenever an actor depends upon the hardware of a particular machine in some way; it is used
mostly for actors which represent input/output facilities.

The types of a behavior are simply a list of symbols which records static type information. The
first symbol on this list is used by the default actor print handler.

Each handler may take any of the following forms:
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(Is-Request (:keyword args...)
commands...)

(Is-Reply (:keyword args...)
commands...)

(Is-Complaint (.error-keyword reply-keyword args...)
commands...)

The handlers contain patterns for messages and the commands to perform when a message is received
which matches the pattemn. Only the keyword of the message is actually matched with the pattern; the
rest of the message is bound to the variables in the argument list of the pattern. Thus in the complaint
handler, the -error-keyword is matched literally, while reply-keyword and any other args are bound to the
incoming parts of the complaint, namely the reply-keyword of the tansaction and any other parameters
of the complaint.

At most one request handler, one reply handler, and one complaint handler may be an otherwise
handler. An otherwise handler matches any message if no other handler matches it.> An otherwise
handler has a normal symbol instead of a keyword in the the keyword postion of the pattern; the
incoming keyword is bound to the symbol. For example, the following is a request othierwise handler:

(is-request (keyword &rest args)
(complain-to customer (:unrecognized-message reply-keyword
:selector keyword
:target self
:customer customer)))

By default, each handler is serialized, but if the :unserialized option is specified, the handler will
be unserialized. A serialized handler locks the actor when it receives a message; the actor will stay
locked until an update or replace message is received. An unserialized handler leaves the actor unlocked
when it is through.* For documentation purposes, you may also specify the :serialized option in a
serialized handler.

By default, in request handlers, reply handlers, and complaint handlers, the actor which is
receiving the message is bound to self. In request handlers only, the sponsor, customer, and reply
keyword are bound to the identifiers sponsor, customer, and reply-keyword respectively. To override
any of these defaults and provide another symbol to be bound, the following forms may be used
(replacing the italicized symbol with vour own identifier):

3See the section on messages for a full explanation of how a handler is found.

“An implementation may find it necessary 1o lock the actor momentarily to make sure the handler gets a consistent set of
acquaintances.
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(Is-Request ( (-keyword args...)
:self self :sponsor sponsor
:customer cusiomer :reply-keyword reply-keyword
(:unserialized |l :serialized])
commands...)
(Is-Reply ( (.keyword args...) :self self
[:unserialized Il :serialized])
commands...)
(Is-Complaint ( (.keyword reply-keyword args...) :self self
[:unserialized Il :serialized])
commands...)

4.2 Create

(Create script acgs...) EXPRESSION
Create is the primitive fcr creating a new actor. The expression script designates the actor which

will be the script of the new actor. The acgs... designate the actor’s acquaintances in order. Create

creates a new actor with script as its script and acgs as its acquaintances.

Example:

(Creata account-script 100)
#<ACCOUNT-SCRIPT Actor 5055948>

Create is a low level primitive, and does not do any checking. In particular, it does not check
whether script is a script actor, nor does it check whether the right number of acquaintances are provided.
Create should not be directly available in a higher level language, but should be replaced with functions
which use create, and do the required checking. (See the bank account example in the appendix for an
example.)
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Chapter Five

Pract Commands

5.1 Request

(Request target (:keyword args...) COMMAND
sponsor customer (:reply-keyword})

The Request command sends a request message to the actor designated by target. The primary
content of the message is the :keyword and args. The transaction will be sponsored by sponsor. The
response to this request, be it a reply or a complaint, will be sent to customer. If it is a normal reply it
will be sent with the keyword reply-keyword, which defaults to :value.

5.2 Reply-To

(Reply-To target (:keyword args...)) COMMAND

The Reply-To command sends a reply message to the actor designated by target. The primary
content of the message is the keyword and any arguments which may be result values to be returned. If
this is a normal reply, :keyword should probably be the reply-keyword which came with the
corresponding request.

5.3 Complain-To

(Complain-To target (:error-keyword reply-keywordargs...)) COMMAND

The Cemplain-To command sends a complaint message to the actor designated by targer. The
error-keyword identifies the type of complaint, such as :unrecognized-request or
:machine-error-trap; some types are described in the section about complaints. The reply-keyword
identifies the transaction which caused the complaint, so when several responses come back to a joining
customer, the customer can tell which one(s) complained. Often complaint messages follow the
convention that further arguments are preceded by keywords identifying parts of the message, such as the
:target and :customer involved. See the section on complaints for further details.

(is-raqueast ((keyword &rest args) :unserialized)
(complain-to customer (:unrecognized-message reply-keyword
:target self
:salector keyword
:SpONsor sponsor
:customer customer)))
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5.4 Update
(Update targer) COMMAND
(Update target (acq# new-value) (acq# new-value) ...)

The Update command sends an update message to the actor designated by target. If the actor is
locked, this will update the actor’s acquaintances indicated and unlock the actor. If the actor is not
locked, the system should generate a runtime error. The acquaintances are numbered from 1 in the the
order given in the acquaintance list of the actor. Acquaintance 0 is the script of the actor. Thus, a very
simple actor can be programmed as follows:

(DefPract Memory-Cell (cell) ()
(is-request (:read)
(reply-to customer (reply-keyword cell)))
(is-request (:write new-value)
(update self (1 new-value))
(reply-to customer (:ack))))

A higher level language should restrict the ability to update so it is available only within a higher level
actor’s script, i.e. only an actor or its continuations may issue updates to the actor, thereby guaranteeing it
must have been locked.

Update is provided to make simple changes to an actor’s behavior -- those which do not change
every acquaintance or the number of acquaintances. Common changes such as updating the balance of a
bank account can be implemented efficiently by using update rather than replace.

(Many, if not most, updates will be performed by continuations rather than the original actor which
received the message, but the continuations’ scripts do not have direct knowledge of the acquaintance
names of the original actor, so the acquaintances are referred to by numbered position rather than by
name. Pract is intended as a target language for higher level compilers, so keeping the numbers straight
shouldn’t be a problem.]

5.5 Replace

(Replace rarget script acql acq2...) COMMAND

The Replace command sends a replace message to the actor designated by rarger. If the actor is
locked, this will replace the actor’s entire state with the state represented by the new script and
acquaintances, i.e. the actor will become an actor which has script as its script and acql, acq2, ... as its
only acquaintances.

Replace is provided to make complete changes in an actor’s behavior -- those which change every
acquaintances and/or change the number of acquaintances. Note that it doesn’t make sense to change the
number of acquaintances without changing the script. Thus part of the scripts for a future and the
forwarding actor it becomes might look as follows:
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(DafPract Future-Script (waiting-room) ()

(is-reply (:value result)
(replace self Forwarding-Script result))
)

(DefPract Forwarding-Script (forward-to) ()
(is-request (keyword &rest args)
(request* forward-to (keyword args)
sponsor customer reply-keyword))

.)

5.6 Let

(Let ((identifier expression) (id expr) ...) COMMAND
commands...)

The Let command allows you to bind a name to a Pract expression and use the name in the
commands of its body. This is used primarily for binding a name to a newly created actor so it may be
used in several commands, e.g. as the customer to several requests:

...(let ((continuation (create cont-1 ...)))
(request x (:do) s continuation :x)
(requaest y (:do) s continuation :y)
(request z (:do) s continuation :z))

When there are several bindings taking place, all the expressions are evaluated first, then the names are
bound to the expressions. A sequential binding can be performed by nesting Let expressions.

Directly creating a set of recursively referent actors is not possible at this time; it must be
accomplished through message passing after the actors are raade.

5.71f

(If expression {Then commands) (Else commands)) COMMAND

The If command is the conditional command of Pract. Conditional testing is based whether or not
the Pract expression expression evaluates to a distinguished false value or not; in Lisp implementations
this value is typically nil. Note that an actor which behaves the same as nil is not the same as nil; in
particular, an actor which forwards all its messages to nil is not equivalent to nil.

If expression does not evaluate directly to nil, the commands of the Then clause are performed. If
expression does evaluate directly to nil, the commands of the Else clause are performed.
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5.8 Lisp-Request
(Lisp-Request (function args...) COMMAND
sponsor customer reply-keyword)

The Lisp-Request command is the interface from Pract to a Lisp system running on a particular
machine. It is intended to be used to interface Pract actor systems with software systems written in Lisp,
such as window systems for user interfacing, file systems for storage, etc. An actor which makes
Lisp-requests serves as the interface to the Lisp systern from the Pract actor world. It must be machine
dependent so it won’t be migrated to another machine where the instance of the sofiware system or the
hardware -- or perhaps even Lisp -- is not available.

When a Lisp-request is made, the Pract implementation forks another process in which to run the
request. This guarantees that if the process hangs waiting for an event or goes into a loop, mesage
passing may still continue in parallel. If the Lisp request completes successfully, the value returned will
be sent to the customer with the reply keyword. If the Lisp request generates an error, a complaint will
be sent to the customer describing the error. In both cases the process is terminated upon completion,

5.9 System-Request
(System-Request rarget (:keyword args...) COMMAND
sponsor customer | :reply-keyword))

System request is a command used by system debugging software which issues a special type of
request message called a system request. System requests are intended only for systems and debugging
software; they should not be present in other code. System requests are handled by a special set of
system request handlers maintained by the system; they are the same for all actors. See the section on
System Requests for the messages which are currently handled.

5.10 Request*, Reply-to*, Complain-To*, System-Request*

(Request* target (-keyword args-nospread) COMMAND
sponsor customer [ :reply-keyword))

(Reply-to* target (:keyword args-nospread))

(Complain-to* target (-keyword reply-keyword args-nospread))

(System-Request* target (:keyword args-nospread)
sponsor customer [:reply-keyword])

The starred (*) form of these message sending commands is used primarily for forwarding
arbitrary messages, usually by otherwise handlers. The paramelters to the message are collected into an
&rest argument which is then passed on as an args-nospread with one of these commands. For
example, a common type of complaint otherwise handler appears somcthing as follows:
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;. This transaction botched, unlock target actor so it can handle
;, next message, and relay complaint up the customer chain.
(Is-Complaint ((unknown-selector reply-keyword &rest args)
:Unserialized)
(Updata leading-actor)
(Complain-To* my-customer
(unknown-selector reply-keyword args)))
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Chapter Six

Pract Expressions

6.1 Symbols

identifier EXPRESSION
Symbols can be used as expressions as long as they are bound in the context where they are used.
A symbol is bound in a Pract handler if it is either:
1. an imported name declared in the header of the DefPract form,

2. an acquaintance declared in the header of the DefPract form,
3. a message argument bound from the incoming message,
4. a message keyword bound in an otherwise handler,

5. one of self, sponsor, customer, reply-keyword unless these default identifiers are overridden
(see Script), or

6. a let variable bound in a Let command or expression.

6.2 Or, And, Not

(Or expr expr...) EXPRESSION
(And expr expr...) EXPRESSION
(Not expr) EXPRESSION

These expressions are mainly useful as conditions of If commands. Like the condition of the If
command, they interpret their argument expressions as either being the false value nil or not. Other
actors which may behave as nil are not equivalent to nil in this usage. Given this interpretation, Or
returns nil only if all its parameter expressions evaluate to nil; And returns nil if any of its parameter
expressions evaluate to nil; and Not returns nil only if its parameter expression does not evalute to nil.

6.3 Identity: ==

== expr expr) EXPRESSION
== is the identity predicate for testing whether two expressions refer to the same actor. It is

primarily useful as a condition in If commands. Like the other conditions, == implements the most

primitive and most efficient check possible. At the present it is guaranteed to work on any actor created
with create; in addition it is guaranteed to work on keywords and other symbols, and on nil. Currently it
is not guaranteed to work on other built-in actors such as lists or (big)numbers, because these
representations may be copied by the underlying implementation.

Example:
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(DefName my-account (create account-script 1000))
(DefName your-account (create account-script 1000))
(DefName my-spouses-account my-account)

(== my-account my-account)

true
(== my-account my-spouses-account)

{rue
(== my-account nil)

false
(== my-account your-account)

false

6.4 Quote ()

(Quote form) EXPRESSION
"form EXPRESSION

Quote is used for expressing literals of symbol and list structure in handler code. The form itself is
returned as the value; form is not evaluated. A quote form can be abbreviated as *form as in Lisp; the
reader expands the apostrophe into the quote form.

(Quote Hi)

HI

'Hi

HI

(Quote (Hi thera))
(HI THERE)

’ (Bye bye)

(BYE BYE)

6.5 Numerals
Numeral EXPRESSION

Numbers evaluate to themselves.

1632
1632
2.54
2.54

6.6 Strings

"string" EXPRESSION

Strings evaluate to themselves.,

"Hello again."
"Hello again.”
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6.7 Let

(Let ( {(identifier expression)} ) EXPRESSION
{ commands...}

expression)

A Pract let expression evaluates the Pract expressions in the arms and binds them to the identifiers;
the value of the let expression is the result of evaluating the body expression in the environment extended
by the new bindings. Commands may also be performed in the same environment; they are performed
concurrently with the evalutation of the expression. A Pract let expression is much like a Lisp let
statement with the restriction that the expressions may only be Pract expressions; thus it will be most
useful when the expressions are create or script expressions.

A Pract let expression allows directed acyclic networks of actors to be constructed; in particular, it
allows directed acyclic networks of scripts to be built as a single expression which returns the leading
actor’s script. This is important for the implementation of scripts constructed at nintimne, such as those
implementing the closure produced by a lambda expression in a higher level language.

6.8 If

(If condition-expression EXPRESSION
(then { then-commands... }
then-expression)
(else { else-commands... }
else-expression))

A Pract if expression evaluates the condition-expression; if the condition succeeds or evaluates to a
non-nil actor, the value of the if expression is the value of the then-expression; otherwise it is the value of

the else-expression. Commands may also be performed within the branches; they are performed
concurrently with the evaluation of the expression.

Pract if expressions aren’t strictly necessary, but they help keep down the size of Pract scripts
when dealing with Pract expressions by avoiding the need to duplicate the condition. They also make it
much simpler to compile if expressions of similar form from higher level languages into Pract.

6.9 In-Lisp

(In-Lisp Lisp-expression) EXPRESSION

The Lisp-expression is evaluated in the lexical environment of the current handler. This form of
Pract expression is very implementation dependent, and its use is strongly discouraged. It is an escape to
the implementation for writing systems code. It is intended for use only in machine dependent actors for
very quick operations such as looking up the value of a variable, e.g. a status flag on a machine with an
I/O device. For opemﬁons which may take longer and for general interfacing to Lisp systems, see the
Lisp-request command.
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Chapter Seven

Built-in Actors

Built-in actors are those actors in a system at which the message passing *‘bottoms out’’, whose
behaviors are implemented in the hardware or by firnware. In a Lisp-based implementation, these will
often be many of the datatypes provided by Lisp. For efficient implementation, some of these actors will
usually be represented in the form most convenient to the host machine, so they are not given mailboxes.
Since they do not have mailboxes, they must be copied from machine to machine; therefore they must be
immutable.

Built-in actors respond to a variety of messages, some of which are described below. Many
messages are implementations of equivalent Lisp function calls; for a full description of their parameters
and the values returned, see a Common Lisp manual. For these messages, the Lisp function calls of the
forms:

(functionA argl)
(functionB argl arg2)

can respectively be translated into request commands:

(request argl (:functionA) sponsor customer :reply-keyword)
(request argl (:functionB arg2) sponsor customer :reply-keyword)
If there are no errors, then the value which would have been retumed by the function is returned to the
customer in a reply which is identical to one sent by the following command:
(reply-to customer (reply-keyword value))
Currently, all errors trapped by the hardware generate complaints which look something like the one
generated by the following command:
(complain-to customer (:machine-error-trap reply-keyword
:target <targetactor>
:salector <:keyword of message>
:further-argquments (list of other parameters)
:customex actor to whom complaint was originally sent
:reply-keyword <:reply-keyword of message>
:report “string describing the error"))
This may be changed so the complaint keyword is more descriptive; the current form is is ok for
debugging but is not sufficient for trapping errors with complaint handlers.

In order to handle forwarding actors as arguments in messages implementing binary operations on
built-in actors, built-in actors which expect another built-in actor as an argument trap the error and
reverse the message. For example, if we sent the message

(request 5 (:- H<Forwarding~Script Actor 52353>) s ¢ :k)
the 5 would find it could not calculate the result using the identity of the forwarding actor, so it would
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forward the reversed message to the forwarding actor. The reversed message would look something like
this:
(requast ¥<Forwarding-Script Actor 52353> (:-% 5) s c :k)

The keyword with a special character (‘%’ in this example®) appended to the keyword *: -’ invokes a
message handler where tiic arguments are intcipreted in the opposite manner. Thus if the forwarding
actor forwarded to a 2, the 2 would then calculate the difference (5-2) and return the result to the
customer. This reverse occurs only once; if second target cannot recognize the argument to the reversed
message (with the ‘%), then a complaint is generated.

7.1 Numbers: Fixnums, Bignums, Single-float

All of these types of numbers are currently supported; in addition, further types (such as Double-
float) may be added in the future. They are based on the standards described in Common Lisp. There
are too many messages to enumerate them all here; suffice it to say that most 1 and 2 parameter Common
Lisp functions on numbers are supported in the fashion described above.

7.2 Symbols, Keyword Symbols

Keyword symbols are used in Pract to select which handler of an actor will be used to receive a
message. Therefore a keyword with the same spelling must always represent the same actor; otherwise
communcations between actors will break down. SInce the primary feature of a keyword symbol is its
identity, there aren't really many interesting messages you can send to it, but some Lisp functions are
supported as messages.

7.3 Lists

Identity of lists. Lists are currently represented in Pract directly as Lisp list structure so that
non-mutating list operations can be performed on them quickly. This means that lists must be copied
between machines, so that == may not work or: lists. Lists in Pract are immutable.

Creating lists. Currently the only way to create lists is either through the use of Quote or by
using functions such as List with the Lisp-Request or in-1isp forms. This will change in the
future.

Operations on lists. Lists respond to selector messages corresponding to the Lisp functions such
as :car, :cadr, :first, :second, :cdr, etc.

’Implemenuu'om should try 1o choose a character unlikely 1o be found in user defined message keywords to prevent conflicts
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7.4 Arrays and Strings

Arrays are currently implemented as an immutable datatype; they are currently provided primarily
to implement operations on strings. Mutable arrays may become available in the future. Lisp operations
are available as messages to arrays as described above; the most important of these is probably :aref
subscript. Creation of arrays is currently accomplished by by using ™ ... " for strings or by using
Lisp functions in conjunction with Lisp-Request or in-1isp forms. This will change in the future.
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Chapter Eight

System Provided Actors

Just as most system provide a set of datatypes and functions for performing operations on the
datatypes (and possibly i/o if i/o streams are not a datatype), Pract provides some actors which implement
datatypes and operations. This set is currently very small, and may be eliminated -- this kind of
functionality really should lie in a higher level language specification.

8.1 Null-customer

This actor is used as a bottomless pit for unwanted replies.

8.2 Futures

A future is an actor which waits for a reply, and becomes a forwarding actor which forwards
messages to the actor which is the value of the reply. Any requests which are received by the future are
queued up and later forwarded to the reply value when it is know. Futures are used for implementing
eager evaluation,

(requeat make-future (:do) sponsor customer :reply-keyword)
(Create future-script nil)

both create a future; the latter form is subject to change.

Currently futures do not handle complaints; this is a problem.

8.3 Forwarding Actors

A forwarding actor is an actor which forwards any message it receives to another actor. For
example, a future actor changes its behavior to that of a forwarding actor once it receives a reply with the

following command:
(replace self forwarding-script actor-to-forward-to)

8.4 Format

The Format actor implements a primitive form of the Lisp format function. It expects a message of
the form:

(:do stream format-string &rest args)
Stream may be nil, in which case the formatted string is returned; it may be T, in which case output is
presented on the user’s terminal output stream; or it may be an actor which accepts a message of the form
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(:do formatted-string)

Format is limited in that it does not allow one to specify the printed representation of actors. All it
does is to ask each actor in args a :string-for-printing message, and combines these strings
with the format string with the lisp Format function.
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Chapter Nine
Default Handlers

There are some messages we would like all actors to be able to handle. Other object oriented
systems handle the problem of providing actors with default handlers using a behavior inheritance
mechanism or a delegation mechanism, but since the topic is currently under research for actors, no
behavior sharing mechanism has been implemented. Instead, default handlers are provided for these
messages. A behavior may override the default message handler by providing its own handler for the
message. (See section on handlers for a description of how a handler is found for a message.)

9.1 Default Otherwise Request Handler

This handler is called if no other request handler for a message is found. It is unserialized, so the
actor is left unlocked. It performs the following:

(complain-to customer (:unrecognized-request reply-keyword
:target actor
rcustomer customer
:sponsorxr sponsor
:salector selector keyword
:argumants list of other arguments) )

9.2 Default Otherwise Reply Handler

This handler is called if a customer receives a reply for which it has no reply handler. The reply is
turned into a :machine-error-trap complaint which is sent to the customer instead.

9.3 Default Otherwise Complaint Handler

This handler is called if no other complaint handler is found for a coinplaint. It is unserialized, so
the actor is left unlocked. At present, it does nothing; you should override it with a default complaint
handler which does something useful such as forward the complaint up the customer chain, and if the
receiver is a continuation, possibly unlock the leading actor so it can receive further messages.

9.4 :Are-You

(:are-you type-symbol) MESSAGE
The default response to the : are-you message is to return a non-nil value if the actor is of the
type described by rype-symbol; otherwise it returns nil.
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9.5 :Types

(:types) MESSAGE
The default response to the : t ypes message is to return the list of types of an actor, i.e. a list of

those symbols such that asking the actor : are-you with the symbol returns a non-nil value.

9.6 :Script

(:script) MESSAGE
The default response to the : script message is to return the actor's script actor, which defines
the actor’s general behavior.

9.7 :Self

(:self) MESSAGE
The default response to the : self message is to return the actor itself. This is used to to find the
identity of the actor to which a forward actor forwards its message, i.e. what actor really receives the

message.

9.8 :String-for-Printing

(:string-for-printing) MESSAGE
The default response to the :string-for-printing message is to return a string which
describes the actor. For built-in actors, this string is the same as that produced by the Lisp printer; this
currently does not work well for lists if components of the list are not on the same machine. For actors
whose behavior is defined with DefPract, the string will look something as follows:
"#<ACCOUNT-SCRIPT Actor 55043201>"
The name of the actor’s script will be used as the name. The actor’s UID is used as the number if it has a
UID; otherwise a number is generated using a hashing function. This number is displayed to help
differentiate several actors with the same script,
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Chapter Ten

System Requests

System Rcquests are special messages used by systems code and especially the debugging systems
for communicating with actors. System requests should not be used by normal user code at any time.
They are documented here for completeness.

System requests provide the debugger with the special capability to communicate with locked
actors. This dangerous capability is necessary to display the state of a computation which has
deadlocked or otherwise stopped be~ause of program bugs.

10.1 :Acquaintances
(:acquaintances) SYSTEM MESSAGE
The :acquaintances system request returns a list of the actor’s current acquaintances in order.

10.2 :Acquaintance Names

(:acquaintance-names) SYSTEM MESSAGE
The :acquaintance-names system request returns a list of names of the actor’s
acquaintances, as specified in its script.

10.3 :Are-You

(:are-you type-symbcl) SYSTEM MESSAGE
See the : are-you default request.

10.4 :Biography

(:biography) SYSTEM MESSAGE
The response to the :biography svstem message is to return the actor’s biography. The

biography represents a history of recorded messages which the actor received; unrecorded messages are

not represented in this history. See the Apiary Memos on Traveler for more information on biographies

and recording debugging information.
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10.5 :Incoming Queue

(:incoming-queue) SYSTEM MESSAGL
The :incoming-queue system message returns the actor’s queue of messages wailing to be

processed.

10.6 :Script

(:script) SYSTEM MESSAGE

See the : script default request

10.7 :Self

(:self) SYSTEM MESSAGE
See the : self default request

10.8 :String-for-Printing
(:string-for-printing) SYSTEM MESSAGE
See the :string-for-printing default request.

10.9 :Types

(:types) SYSTEM MESSAGE
See the : t ypes default request.

10.10 :Uid

(:uid) SYSTEM MESSAGE
The :uid system message returns the actor’s unique identifier, if it has one. The uid is the

number used to identify the actor in communications between machines; if no references 10 the actor

have migrated to other machines, the actor may not have a UID, so this will return NIL. This aspect if its

behavior may change.
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Appendix A

Example Programs

The examples which follow show how a higher level actor language could be compiled into Pract.

A.1 A Simple Recursive Factorial

Factorial is a simple example which shows how expressions and a simple conditonal in a high
level actor language may be unraveled into a chain of simple Pract behaviors.

Below is a possible high level representation of Factorial. We assume that a call expression, which
has the form [target argl arg2 ...],is a shorthand for an ask expression, which has the form
(target :do argl arg2 ...). The value of an ask expression is the reply retumed as a result
of sending target a request with the given keyword and arguments. We could introduce actors for the
individual mathematical functions such as * and < but we have chosen to implement these as direct
messages to the actors (numbers) involved.

(DefFunction factorial (n)
(if (: < n 1)
(then 1)
(else (:* n (factorial (:1- n))))))

Notice that in the Pract version, the actor which receives the initial message creates a customer which
serves a similar function to a stack frame, storing intermediate state between calls to other actors. This
customer takes on different behaviors as each subcalculation is completed, so at each call it represents the
continuation of the computation. For clarity, the behaviors of the sequence of continuations are defined
by the scripts named fact-c1, fact-c2,elc.

(defmodula (factorial) ()
(defpract factorial-script () (fact-cl)

(is-request ((:do n) :unserialized)
{(request n (:< 1)

sponsor

(create
fact-cl ; script
n ; original argument
customer ; lop-customer
reply-keyword ; top-reply-keyword
sponsor ; lop-sponsor

))))

(defname factorial (create factorial-script))

(defpract fact-cl (n top-customer top-reply-keyword top-spo-.sor)
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(fact-c2)
(is-reply (:value n-less-than-1?)
(if n-less-than-1?
(then (ready self)
(reply-to top-customer (top-reply-keyword 1)))
(else
(update self (0 fact-c2)) ; acquaintance 0 is the script
(request n (:1-) top-sponsor self))))
(is-complaint (keyword replied-keyword &rest args)
(ready self)
(complain-to* top-customer (keyword replied-keyword args))))

(defpract fact-c2 (n top-customer top-reply-keyword top-sponsor)
(fact-c3 factorial)
(is-reply (:value n-minus-1)
(update self (0 fact-c3))
(request factorial (:do n-minus-1) top-sponsor self))
(is~complaint (keyword replied-keyword &rest args)
(ready self)
(complain-to* top-customer (keyword replied-keyword args))))

(defpract fact-c3 (n top-customer top-reply-keyword top-sponsor) ()
(is-reply (:value value-minus-one-factorial)
(ready self)
(raquast n (:* value-minus-one-factorial)
top-sponsor top-customaer top-reply-keyword))
(is-complaint (keyword &rest args)
(ready self)
(complain-to* top-customer (keyword args))))

) ;end defmodule

A.2 A Parallel Factorial

This example demonstrates how parallel transactions can dispatched simultaneously in Pract, and
the replies can be synchronized with the help of reply keywords.

In a higher level language, this might be programed as follows (the Let syntax for introducing an
auxiliary function is stolen from Scheme). Note that the arms of the Let are evaluated in parallel.

253



(DefFunction rk-factorial (n)
(let rk-rangeproduct ({low 1) (high n))
(cond ((:= low high)
low)
((:= (:- high low) 1)
(:* low high))
(else
(let ((average (:/ (:+ low high) 2)))
(let ((successor-of-average (:1+ average)))
(let ((low-product (rk-rangeproduct low average))
(high-product (rk-rangeproduct
successor-of-average high)))
(:* low-product high-product)))}))))))

In the Pract version, note that the first request after joining the two parallel transactions is duplicated in
two handlers, since it is not known which reply will return last. The redundancy is not excessive since
only the first request is duplicated; further continations would be shared. Also note that complaint
handlers have: been omitted for brevity.

(defmodule (rk-factorial) ()
(defname rk-factorial (create rk-factorial-script))

(defpract rk-factorial-script () (rk-rangeproduct)
(is-request ((:do n) :unserialized)
{request rk-1angeproduct (:do 1 n)
sponsor customer reply-keyword)))

(defmodule (rk-rangeproduct) ()
(defnama rk-rangeproduct (create rk-rangeproduct-script))

(defpract rk-rangeproduct-script () (rk-rp-1)
(is-request ((:do low high) :unserialized)
(let ((cont (create rk-rp-1
customer reply-kayword sponsor
low high nil)))
(request low (:= high) sponsor cont))))

(defpract rk-rp-1 (top-customar top-reply-keyword top-sponsor
low high ignore) (rk-rp-2)
(is-reply (:value equal?)
(if equal?
(then (reply-to top-customer (top-reply-keyword low))
(ready self))
(elsa (update self (0 rk-rp-2))
(requast high (:- low) top-sponsor saelf)))))

(defpract rk-rp-2 (top-customer top-reply-keyword top-sponsor
low high ignore) (rk-rp-3)
(is-reply (:value difference)
(update self (0 rk-rp-3) (6 difference))
(request difference (:= 1) top-sponsor self)))

(defpract rk-rp-3 (top-customer top-reply-keyword top-sponsor
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low high difference) (rk-rp-4)
(is-reply (:value consecutive?)
(if consecutive?
(then (request low (:* high)
top-sponsor top-customer top-reply-keyword)
(ready self))
(else (update self (0 rk-rp-4))
(request low (:+ high) top-sponsor self)))))

(defpract rk-rp-4 (top-customer top-reply-keyword top-sponsor
low high ignore) (rk-rp-5)
(is-reply (:value sum)
(update self (0 rk-rp-5))
(request sum (:// 2) top-sponsor self)))

(defpract rk-rp-5 (top-customer top-reply-keyword top-sponsor
low high ignore) (rk-rp-6)
(is-reply (:value averaga)
(update self (0 rk-rp-6) (6 average))
(request average (:1+) top-sponsor self)))

; : The continuation which dispatches the parallel calls
(defpract rk-rp-6 (top-customer top-reply-keyword top-sponsor
low high average) (rk-rangeproduct rk-rp-7)
(is-reply (:value successor-of-average)
(updatae self (0 rk-rp-7) (6 2))
(request rk-rangeproduct (:do low average)
top-sponsor self :low-product)
(request rk-rangeproduct (:do successor-of-average high)
top-sponsor self :high-product)))

; 7 The continuation which receives the replies from the parallel calls
(defpract rk-rp-7 (top-customer top-reply-keyword top-sponsor
low high nwaiting) ()
(is-reply (:low-product low-valua)
(if (= nwaiting 2)
(then (update self (4 low-value) (6 1)))
(else (ready self)
(request low-value (:* high)
top-sponsor top-customer top-reply-keyword))))
(is-reply (:high-product high-valua)
(if (== nwaiting 2)
(then (update self (5 high-value) (6 1)))
(else (ready self)
(raquest low (:* high-value)
top-sponsor top-customer top-reply-keyword)))))
) :; end of rk-rangeproduct module
) ::; end of rk-factorial module
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A.3 A Simple Bank Account

This example shows how a serialized behavior may be programmed using Pract.

In a higher level language, the bank account might be programmed as follows:
(def-module (make-account)
(DefScript account (balance)
(is~req (:balance) balance)
(is-req (:deposit deposit-amount)
(let ((new-balance (balance :+ deposit-amount)))
(ready (:balance new-balance))
' :done))
{is-req (:withdrawal withdrawal-amount)
(let ((new-balance (balance
(if (new-balance :< 0)
(then
(ready)
(complain (:overdraft)))
(else
(ready (:balance new-balance))
withdrawal-amount)))))
(DefFunction [make-account starting-balance]
(new account (:balance starting-balance))))

:- withdrawal-amount)))

In the Pract version, note that the account actor (as opposed to the customer it creates) stays locked until

a continuation issues an update (except for the trivial :balance request which doesn't require a
continuation).

(defmodule (make-account) ()

(defmodule (account) ()

(defpract account (balance) (account-cl account-c2)
(is-request ((:balance) :unserialized)
(reply-to customer (reply-keyword balance)))
(is-request (:deposit deposit-amount)
(let ((continuation (create account-cl
self customer reply-keywond)))

(request balance (:+ deposit-amount) sponsor continuation)))
(is-raquest (:withdrawal withdrawal-amount)

(let ((continuation (create account-c2
saelf withdrawal-amount nil

customer reply-keyword sponsor)))
(raquest balance (:- withdrawal-amount) sponsor continuation))))

(defpract account-cl (account top-customer top-reply-keyword) ()
(is-reply (:value naw-balanca)

(reply-to top-customer (top-reply-keyword ’:done))
(update account (1 new-balance)))

(is-complaint (complaint-keyword reply-keyword &rest args)
(udpate account) (update self)
(complain-to* top-customer

(complaint-keyword top-reply-keyword args))))
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(defpract account-c2 (account withdrawal-amount balance
top-customer top-reply-keyword top-sponsor)
(account-c3)

(is-reply (:value new-balance)

(update self (0 account-c3) (3 new-balance))
(request new-balance (:< 0) top-sponsor self))

(is—complaint (complaint-keyword reply-keyword &rast args)
(update account) (update self)
(complain-to* top-customer

(complaint-keyword top-reply-keyword args))))

(defpract account-c3 (account withdrawal-amount naw-balance
top-customer top-reply-keyword top-sponsor) ()
(is-reply (:value overdraft?)
(1f overdraft?
(then
(complain-to top-customer (:overdraft top-reply-keyword))
(updata account))
(elsa
(reply-to top-customer (top-reply-keyword withdrawal-amount))
(update account (1 new-balance))))
(update salf))
(is-complaint (complaint-keyword reply-keyword &rest args)
(update account) (update self)
(complain-to* top-customer
(complaint-keyword top-reply-keyword args))))
) ;; end account sub-module

(defmodule (make-account) (account)

(defpract maka-account-script () (account)
(is-request ((:do starting-balance) :unserialized)
(reply-to customer
(reply-keyword (create account starting-balance)))))

(defname make-account (create make-account-script))

) ;: end make-account sub-module
) :; end module
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Appendix B

Pract Grammar

10.11 Top Level Forms

<pract-top-level-form> =
<name-definition> i
<constant-definition> ||
<send-command> Il
<script-definition> Il
<module-definition>

<module-definition> =
(defmodule [ <loader-identifier> }

(<loader-identifier>*) (<loader-identifier>*)

<pract-top-level-form>*)
Note: The first (optional) <loader-identifier> may be used in the
future to combine modules as configurations. The <loader-identifier>'s in
the first list must be defined in the body of the module so they can be
exported. The <loader-identifier>'s in the second list should be defined
in the lexically enclosing environment so they can be imported.

<name-definition> =
(defname <loader-identifier> <expression>)

<constant-definition> =
(defequate <loader-identifier> <expression>)

<script-definition> =
(defpract <loader-identifier> (<symbol>*) (<loader-identifier>*)
[([:machine-dependent] [:actor-types (<actor-type>*)])]
<communication-handler>*)

<actor-type> = <symbol>
Note: <actor-type> symbols are not evaluated.

10.12 Actor Definition

<script-expression> =
(script
((<symbol>*) (<symbol>*)
[([:machine-dependent] [:actor-types (<actor-type>*)])]
<communication-handler>*)
<pract-expression>*)

<communication-hander> =
(is-request <pattern>
<command>*) |l
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(is-request (<pattern>
:self <symbol>
:sponsor <symbol>
:customer <symbol>
:reply-keyword <symbol>
[{ :unserialized | :serialized })])
<command>*) Il
(is-reply <pattern>
<command>*) |l
(is-reply (<pattern>
:self <self-id>
{{ :unserialized | :serialized })])
<command>*) I
(is-complaint <complaint-pattern>
<command>*) I
(is-complaint (<complaint-pattern>
:self <self-id>
[( :unserialized | :serialized }])
<command>*)

<pattern> = (<keyword> <cominunication-bindings>*)
<complaint-pattern> = (<keyword> <symbol> <communication-bindings>*)

<communication-binding> =
<symbol> <communication-binding> |l
&key <communication-binding> Il
&rest <communication-binding> |l
&optional <communication-binding> Il
&allow-other-keys <communication-binding> Il €

<create-expression> =
(create <pract-expression> ; new actor’s script
<pract-expression>*) ; new actor’s acquaintances

10.13 Pract Commands

<command> =
<send-command> |l
<let-command> i
<if-command> |l
<zeplace-command> |l
<update-command>

<send-command> =
<request-command> I
<reply-command> |l
<complain-command>

<request-command> =
(request <pract-expression> ; target actor
(<keyword> <pract-expression>*)  ; message name and args
<pract-expression> ; sponsor actor
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<pract-expression> ; customer actor

<pract-expression>) s reply keyword

I

(request® <pract-expression> ; target actor
(<keyword> <args-nospread>) ; message name and args
<pract-expression> ; sponsor actor
<pract-expression> ; customer actor
<pract-expression>) ; reply keyword

<reply-command> =
(reply-to <pract-expression> ; customer actor

(<keyword> <pract-expression>*))  ; keyword and values
Il
(reply-to* <pract-expression> ; customer actor
(<keyword> <args-nospread>)) : keyword and values

<complain-command>> =

(complain-to <pract-expression> ; customer actor
(<keyword> <pract-expression> ;err & reply keyword
<pract-expression>*)) ; other values
Il
(complain-to* <pract-expression> ; customer actor
(<keyword> <pract-expression> ; err & reply keyword
<args-nospread>)) ; other values

<let-command> =
(let ( {(<symbol> <pract-expression>)}* )
<command>*)

<replace-command> =

(replace <pract-expression> ; actor to replace
<pract-expression> , with new behavior script
<pract-expression>*) ; and new acquaintance values

<update-command> = (update <pract-expression> ; actor to update
((<acquaintance-number> <pract-expression>)} *)
, new acquaintance values

<acquaintance-number> = {A non-negative integer|]

<if-command> =
(if <pract-expression>
(then <command>*)
(else <command>*))

10.14 Pract Expressions

<pract-expression> =
<create-expression> |l <script-expression> (see behavior defn.)
<if-expression> Il <let-expression> ||
<bound-identifier> Il <condition> Il <constant> |l

<if-expression> =
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(if <pract-expression>
(then <command>* <pract-expression>)
(else <command>* <pract-expression>))

<fet-expression> =
(et ( {(<symbol> <pract-expression>)}* )
<command>* <pract-expression>)

<condition> =
<bound-identifier> |
(not <condition>) Il
(or <condition>*} |l
(and <condition>*)
[Note: <bound-identifier> is interpreted as either NIL or
(not NIL). The symbol should be bound either as acq-name, arg
identifier, or let binding.]

<args-nospread:> = [A symbol to which is bound the &rest arguments of a handler,
<keyword> = <symbol>

[Note: a <keyword> should be a symbol in the keyword package,

e.g. :high, :low, or an identifier bound to a keyword symbol,

such as the reply-keyword.]

<loader-identifer> = [identifer referencing load-time symbol table]
<bound-identifier> = <symbol>

<symbol> = [a lisp symbol not in the keyword package]

<constant> = <number> Il <quoted-symbol> Il <quoted list> ...
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Index

' 241
== 240

Account 256

:Acquaintance-Names systan message 250
:Acquaintances system message 250
Acquantances 224

:Actor-types DefPract keyword 232, 258
Agha, Gul 222

And 240

:Are-You default handler 248

:Are-You system message 250
Args-nospread 261

Arrays 245

Atomicity of events 225

Bank account 256
Behavior replacement 225
:Biography system message 250

Command 259
Communication handler 258
Communication-bindings 259
Complain-To 235, 260
Complain-To* 238
Complaint communication 226
Condition 261

Constant definition 258
Continuations 22§, 252
Create 234, 259
Creating actors 2.

Creating lists 244

Cusiomer 226

:Customer handler keyword 233, 258

Decisions actors can make 224,225
Default otherwise complaint handler 248
Defauli otherwise reply handler 248
Default otherwise request handler 248
DefEquats 231, 258

DefModule 230, 258

DefName 230, 258

DefPaa 231,258

Event 225

Pactorial 252,253

Format 246

Forwarding actors 223, 243, 246
Futures 246

Handler 258
Handler, search for 226

Identity
See also  decisions actors can make
Identity of lists 244
Identity: == 240
If 237
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f command 260

f expression 242, 260

In-Lisp 242

:[ncoming-Queue system message 251
Insensitive behavior 228
[s-Complaint 232, 258

Is-Reply 232,258

Is-Request 232, 258

Keyword 226, 261
Known actors 224

leading actor 228

Let 237

Let command 260
Let expression 242, 261
Lisp 238,242,243
Lisp-Request 238

List operations 244
Lists 244

:Machine-dependent DefPract keyword 232, 258
Mail addresr, 225
Module definition 258

Name definition 258
Not 240
Null-customer 246
Numbers 241, 244
Numerals 241

Or 240
Otherwise handler 2285, 233

Parallel factorial 253
Parallel transactions 253
Pattern 259
Pract-top-level-form 258

Quote * 241

Recursive factorial 252
Replace 236, 260

Replace communication 228
Reply communication 226
Reply keywords 226, 253
:Reply-keyword handler keyword 233, 258
Reply-To 235, 260
Reply-To* 238

Request 235,259

Request communication 226
Requent* 238

Response 226

Reversing arguments 243
Rk-factorial 253

Script 258

:Script default handler 249
Script definition 258

:Script system message 251
Scripts 224

Selector keyword 226

:Self default handler 249

:Self handler keyword 233, 258
:Self system message 251
Serialized 225
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:Serialized handler keyword 233, 258
:Sponser handler keyword 233, 258
Sponsors 227

:String-for-Printing default handler 249
:String-for-printing system message 251
Strings 241,245

Symbols 244

Symbols as expressions 240
Sysiem-Request 238

Target 225

Tasks 225

Transaction 226

:Types default handler 249
:Types sysiem message 251

:Uid system message 251

Unserialized 225

:Unserialized handler keyword 233, 258
Update 236, 260

Update communication 228
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