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Abstract

The aim of this paper is to present an investigation of the pos-
sibility of efficient, discrete representations of random signals, In
many problems a conversion is necessary between a signal of con-
tinuous form and a signal of discrete form. This conversion should
take place with small loss of information and yet in as efficient a
manner as possible.

Optimum representations are found for a finite time interval,
The asymptotic behavior of the error in the stationary case is related
to the spectrum of the process,

Optimal solutions can also be found when the representation is
made in the presence of noise, These solutions are closely connected
with the theory of optimum linear systems.

Some experimental results are obtained using these optimum
representations,
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CHAPTER 1

INTRODUCTION

1.1 THE PROBLEM OF SIGNAL REPRESENTATION

A signal represents the fluctuation with time of some quantity,
such as voltage, temperature, or velocity, which contains information
of some ultimate usefulness. It may be desired, for example, to
transmit the information contained in this signal over a communi-
cations link to a digital computer where mathematical operations
will be performed. At some point in the system, the signal must
be converted into a form acceptable to the computer, that is, a
discrete or digital form. This conversion should take place with
small loss of information and yet in as efficient a manner as possible.
In other words, the digital form should retain only those attributes of
the signal which are information-bearing.

The purpose of the thesis research presented here has been to
investigate the possibility of efficient, discrete representations of
random signals.

Another example which involves the discrete representation of
signals is the characterization of nonlinear systems described by
Bose.4 This involves the separation of the system into two sections,
a linear section and a nonlinear, no-memory section. The linear
section is the representation of the past of the input in terms of the
set of Fourier coefficients of a Laguerre function expansion. The
second section then consists of nonlinear, no-memory operations
on these coefficients. Thus, the representation characte_rizes the

memory of the nonlinear system. This idea originated with Wiener.



This thesis actually originated on a suggestion by Prof. Bose
in connection with this characterization of nonlinear systems. He
suggested that since in practice we shall only use a finite number of
Fourier coefficients to represent the past of a signal, perhaps some
set of functions other than LLaguerre functions might result in a better
representation. We have been able to solve this problem with respect
to a weighted mean square error or even a more general criterion., It
is not a complete solution, however, since what is really wanted is a
best representation with respect to the operation of the nonlinear system
as a whole.

The problem of discrete representation might be described as
shown in Fig. 1.1. A set of numbers which are random variables
are derived from a random process x(t) and represent that process
in some way. We must then be able to use the information contained
in the set of random variables to return to a reasonable approximation
of the process x(t). The fidelity of the representation is then measured

by how close we come to x(t) with respect to some criterion.

1.2 THE HISTORY OF THE PROBLEM

The problem of discrete representation of signals has been con-
sidered by many authors, including Sl’l.‘:).nnon,28 Ba.la.kri.?.hnan,1 and
Ka.rhunen.lq Shannon and Balakrishnan considered sampling repre-
sentations while Karhunen has done considerable work on series
representations. To our knowledge, the only author who has done
considerable thinking along the lines of efficient representations is
Huggins.,11 He considered exponential representations of signals

which are especially useful when dealing with speech waveforms.



Fig. 1.1.

The discrete representation of a

random function.



CHAPTER 1I

BASIC CONCEPTS

In this chapter we shall briefly present some of the fundamental
ideas which will form the basis of the following work., The first three
sections will cover function spaces and linear methods. A theorem
which will be used several times in the later chapters is presented
in the fourth section, The fifth section will discuss random processes
and some methods of decomposition, This chapter is intended as a
resume, and the only part of it which is original with the author is

a slight extension of Fan's theorem in Section 2. 4.

2.1 FUNCTION SPACE

A useful concept in the study of linear transformations and
approximations of square integrable functions is the analogy of
functions with vectors (function space). As we can express any
vector ¥i in a finite dimensional vector space as a linear combination

of a set of basis vectors {q;i }

n
ke Z Vi ¥ (2.1)
=1

SO can we express any square integrable function defined on an interval
fl as an infinite linear combination of a set of basis functions

@
£(t) = Z a, ¢, (t) (2.2)

i=1

The analogy is not complete, however, since in general the equality



sign in Eq. 2.2 does not necessarily hold for all t e . If the a,
are chosen in a certain way, the equality can always be interpreted

in the sense that

2
n
lim f E(t) = Z a, ¢i(t):| dt=0 (2:3)
L 7 i=1
To be precise we should say that the series converges in the mean
to f(t) or
n
i 1ot s Z 2, . ()
e A

where l.i. m. stands for limit in the mean. Moreover, if it can be

shown that the series converges uniformly,T then the equality will

be good for all t ¢ {} , that is

ift)= lim a, ¢i(t)

=@

If the set {cbi (t)} is orthonormal

1 i=j
f¢i(t) ¢;(t) dt={
(" 0 i#]j

and complete; i.e.,

f¢i(t) f(t)dt=0 alli
Q

If, for any strip (f(t) + ¢ f(t) - ¢) for t ¢ § , the approximation

n

z a; :pi(t) lies within the strip for n large enough, the series

i=1

converges uniformly. For a discussion of uniform and nonuniform
convergence, see Courant,6 p. 386,

1

1,2..-.

t

5



if and only if f(t) = 0, then the coefficients a, in Eq. 2.2 can be given

by

a;= £(t) ¢i(t) dt
Q
and the limit 2. 3 holds,

Uniform convergence is certainly a stronger condition than con-
vergence in the mean, and in most cases is much more difficult to
establish. If we are in%:erested in approximating the whole function,
in most engineering situations we will be satisfied with convergence
in the mean, since Eq. 2.3 states that the energy in the error can be
made as small as is desired. If, on the other hand, we are interested
in approximating the function at a single time instant, convergence in
the mean does not insure convergence for that time instant and we
shall be more interested in establishing uniform convergence,

Another useful concept that stems from the analogy is that of length,
Ordinary Fuclidian length as defined in a finite dimensional vector space
is

n 1/2

jvi=| ) vE

i=1
and in function space it can be defined as
1/2

l£@)| = £2(t) at
Q

It can be shown that both these definitions satisfy the three conditions

that length in ordinary Euclidean three dimensional space satisfies;



namely,

(1) |v] =0, if and only if v = 0.

2)Jey|=c|y]|

BRI lie ] v )]
The first states that the length of a vector is zero if and only if all
its components are zero, the second is clear, and the third is another
way of saying that the shortest distance between two points is a straight
line.

There are other useful definitions of length which satisfy the con-

ditions above, for example

: 1/2

| £(t)] = W (t) fz(t) dt
0

where W(t) > 0, We shall call any such definition a norm, and we

shall denote a norm by ||f(t)]] or ||£f]|.

In later chapters we shall use the norm as a measure of the
characteristic differences between functions. Actually, it will not
be necessary to restrict ourselves to a measure which satisfies the
conditions for a norm and we do so only to retain the geometric picture,

In vector space we also have the inner product of two vectors?

<nw>= ) W

i=1

and its analogous definition in function space is

<LhLig> = £(t) g(t) dt
$

TWe use the bracket notation <V, w> to denote the inner product.,



An important concept is the transformation or operator. In
vector space, an operator L is an operation which when applied to

any vector v gives another vector w

w=L[v]

It is a linear operator when

j [aizi 4 aZ_‘:_Z] = alL[_Y_l] + azL [‘_’_2]

for any two vectors vy and Voo Any linear operation in a finite dimen-

sional space can be expressed

n

w.=z a.. v, i
i iy

j=1

1]

lgooe;n

which is the matrix multiplication

w.| = a.. .

W] = (2] v

The same definition holds in function space and we have
g(t) = L [£(t)]

A special case of a linear operator is the integral operator

g(s) = K(s, t) £(t) dt

Q
where K(s, t) is called the kernel of the operator.

A functional is an operation which when applied to a vector gives

a number; i.e.,

izl

and a linear functional obeys the law



i l:alf_l + aZ__Z:I = alT[:l] G aZT[iz:]

For function space we have

c=T [f(t)]

The norm and an inner product with a particular function are func-

tionals., In fact, it can be shown that a particular class of linear
functionalsT can always be represented as an inner product, that
is
Tlew)] = [ @) gt) at
Q

for any f(t).

2,2 INTEGRAL EQUATIONS

There are two types of integral equations which will be considered

in the following work. These are

K(s,t) ¢(t) dt = X\ & (s) s e (2.4)
Q

where the unknowns are ¢(t) and )\ and

fK(s,t)g(t) dt = f(s) sef) (2.5)
(9
where the unknown is gf(t).

The solutions of the integral equation 2.4 have many properties

and we shall list a number of these which will prove useful later. We

éélK(s,t)lz ds dt <

shall assume that

()
pp. 18-22,

These are the bounded or continuous linear functionals., See Friedman

10



and that the kernel is real and symmetric
K(s, t)= K(t, s)

The solutions ¢i(t) of Eq. 2.4 are called the eigenfunctions of K(s, t)
and the corresponding set {)\i} is the set of eigenvalues or the
spectrum. We have the following properties:T

(1) The spectrum is discrete; that is, the set of solutions
is a countable set.

(2) Any two eigenfunctions corresponding to distinct eigen-
values are orthogonal. If there are n linearly independent solutions
corresponding to an eigenvalue )\i, it is said that )\i has multiplicity
n. These n solutions can be orthogonalized by the Gram-Schmidt
procedure, and in the following we shall assume that this has been

done.

(3) If the kernel K(s, t) is positive definite; i. e.,

ffK(s,t) f(s) f(t)ds dt > 0
550

for f(t) # 0, then the set of eigenfunctions is complete.
(4) The kernel K(s, t) may be expressed as the series of eigen-

functions

e0]
Kl t)= ) % o(e) 8, (0) (2. 6)

i=1

which is convergent in the mean.

TThe proqifs are given in the following references: (1) Courant and
Hilbert,  p. 122, (2) Petrovskii,2® p. 61, (3) Smithies, 27 p, 127
(4) Petrovskii,2® p. 72, (5) Petrovskii,2 p, 76, (6) Petrovskii,2®
p. 68, (7) Smithies,29 p. 131.

10



(5) If K(s, t) is non-negative definite; i.e.,

'/"/‘K(s,t)f(s)f(t) ds dt > 0
na

for any f(t), then the series 2.6 converges absolutely and uniformly

(Mercer's theorem).

(6) It
f(s) = f K(s,t) g(t) dt
0

where g(t) is of integrable square, then f(s) can be expanded in an
absolutely and uniformly convergent series of the eigenfunctions of
K(s, t) (Hilbert-Schmidt theorem).

(7) A useful method for characterizing the eigenvalues and eigen-
functions of a kernel utilizes the extremal property of the eigenvalues.

The quadratic form

./‘./‘K(s,t) f(s) f(t) ds dt
20

where f(t) varies under the conditions

ffz(s) ds = 1

Q

./‘f(s)yi(s)ds=0 i2 1,2,..,,0=1
Q

where the yi(t) are the eigenfunctions of K(s, t), is maximized by the
choice f(t) = yn(t) and the maximum is A\ . There exists also a minimax
characterization which does not require the knowledge of the lower order

eigenfunctions.,

1§



We shall adopt the convention that zero is a possible eigenvalue
so that every set of eigenfunctions will be considered complete.
T

By Picard's theorem,' Eq. 2.5 has a square integrable solution

if and only if the series

® | £(t) v, (t) dtlz
§ L

i=1 i

converges. The solution is then

18]
1

g(t) = Z T Yi(t) '/‘ £(t) Yi(t) dt $ €83

: i

=) Q

[

2.3 THE SPECTRAL REPRESENTATION OCF A LINEAR OPERATOR

A useful tool in the theory of linear operators is the spectral

representation.* Let us consider the operator equation
L{s®)] =\ () (2.7)

where the linear operator L is self-adjoint; i.e.,

<f,L[g]>=<L[f].g>

An example of such an operator equation is the integral equation 2.4

where the kernel is assumed symmetric, It is self-adjoint since

fCourant and Hilbert, ! p. 160
=|=An interesting discussion of this topic is given in Friedman, 1
pp. 110-113, 125-127.

12



<f,L[g]> = [ £(s) K(s,t) glt) dt b ds
0 Q
= f{fK(t,s)f(s)ds g(t) dt
9} 9}
= <L[t],g>

The solutions of Eq. 2.7 are the eigenvalues and eigenfunctions of L
and the set of eigenvalues { ki} is called the spectrum.,

We shall assume that Eq. 2.7 has a countable number of solutions;
1.€s 5 { )\i} is a discrete spectrum. It can be shown that any two
eigenfunctions corresponding to distinct eigenvalues are or1:hogona1.;-r
therefore, if the set of eigenfunctions is complete, we can assume that
it is a complete, orthonormal set. If {Yi (t)} is such a set of eigen-
functions, then any square integrable function f(t) may be expanded as

follows

()= )t v (2.8)

e

[
i
[

If we apply L we get

L [f(t)] = £\ v, () (2.9)

e

i=1

The representation of f(t) and L [f(t)] in Eqs, 2.8 and 2.9 is called the

spectral representation of L.. It is seen that the set of eigenvalues and

eigenfuncttions completely characterize L.
If we want to solve the equation L [f(t)] = g(t) for f(t), then we use

the spectral representation and we get

TSe:e Friedman, 10 pP. 96.

15



28]
()= ) + g v

=1 !

It is then seen that the eigenvalues 1/)\i and eigenfunctions yi(t)

characterize the inverse L_l of .. For example, if we have an

integral operator with a kernel K(s, t) = § N yi(s) yi(t) then the
i=1

inverse operator is characterized by 1/)\i and vy, (t) and we could

write

Yo, 1) = ——_y(sy(t)

i MB

where K"l(s, t) is the inverse kernel, which makes sense only if the
series converges,
It is also interesting to note that if we define an operator L" to

be the operation L. taken n times; that is

n[f(t)] =L [L. [ ) [f(t)] ]
then the spectrum of L" is {h?} where {?\i} is the spectrum of
L, and the eigenfunctions are identical,

It must be pointed out that the term ''spectrum'' as used here is
not to be confused with the use of the word in connection with the
frequency spectrum or power density spectrum of a random process.
There is a close relation, however, between the spectrum of a linear
operator and the system function of a linear, time invariant system.

Consider the operation

@
y(t) =f hit - s) x(s) ds
-

14



where h(t) = h(-t). This is a time invariant operation with a

symmetrical kernel, The equation

(e8]
h(t - s) o(s) ds = X o (t)
-

is satisfied by any function of the form

¢f t) = ejZﬂft

where

(00]
A = H(f) = ht) e

-

-j2nft dt

Thus, we have a continuum of eigenvalues and eigenfunctions and H(f)
is the continuous spectrum, or what is known in linear system theory
as the system function. This is a useful representation since if we
cascade two time invariant systems with system functions H1 (f) and
H, (f), the system function of the resultant is Hl(f) H, () A similar
relation occurs for the spectra of linear operators with the same
eigenvalues. If we cascade two linear operators with spectra

{)\i(l)} and {kl(z)} , the spectrum of the resultant linear

operator is {?\i(l) ?Li(z)} o

2,4 A USEFUL THEOREM
We now consider a theorem which is a slight extension of a theorem
of Fan, Suppose that L is a self-adjoint operator with a discrete

spectrum and suppose it has a maximum (or minimum) eigenvalue,

1.See Fan,9 Theorem 1; see also Smithies,29 p. 134.

15



The eigenvalues and eigenfunctions of L are Npphgs oo and
yl(t), yz(t), ... arranged in descending (ascending) order. We
then have the following theorem which is proved in Appendix 1.

Theorem The sum

Z c; <op L [&]>
i=1

wherec; > ¢, > ... 2 ¢ is maximized (minimized)with respect

to the orthonormal set of functions { ¢, (t) } by the choice

¢1(t):Y1(t) i= lnzl-owjn

and this maximum (minimum) value is

n
i=1

It is useful to state the following corollary for the case of the integral

operator L [f(t)] = K(s, t)f(t) dt.

Corollary The sum

Z ffK(s.t)¢i(s)¢i(t)ds dt
i=1 av

is maximized with respect to the orthonormal set of functions { d)i(t)}

by the choice

¢;(t) = v; (t) EE -

and the maximum value is

16



n
>
1
i=1

where the \; and vy, (t) are the eigenvalues and eigenfunctions of K(s, t).

2.5 RANDOM PROCESSES AND THEIR DECOMPOSITION

For a random process x(t), we shall generally consider as relevant

statistical properties the first two moments

m(t) = E [x(t)]

r(s,t) = E[(x(s) - m(s))e(t) - m(t))]
m (t) is the mean value function and r(s, t) is the autocovariance function.
We also have the autocorrelation function R(s,t) = E [x(s) x(t)] which

is identical with the autocovariance function if the mean is zero, For

stationary processes
R(s,t)= R(s - t)

and we have the Wiener-Khinchin theorem

jenft

)
R(t) = S(f) e df

-

and its inverse

m -
S(f)=f Kit) e VAP 44
=00

where S(f) is the power density spectrum of the process x(t).

Much of the application to random processes of the linear methods

9020

of function space is due to Karhunen. The Karhunen-Loeve

167/



expansion theorem ! states that a random process in an interval of
time f) may be written as an orthonormal series with uncorrelated
coefficients. Suppose that x(t) has mean m(t) and autocovariance
r(s,t). The autocovariance is non-negative definite and by con-

sidering the integral equation

r(s,t) yi(t) dt = N yi(s) s e
9]

one gets the expansion

®
Xfth = aft) ¥ Z a, v, (t) T 2.10)
i=1
for which
ki i=j
E [a.iaj] =
0 i#j

where a, = f (x(t) - m(t)) y.(t) dt fori=1,2,... . Moreover, the

representatmn 2,10 converges in the mea.n* for every t. This is

a direct consequence of Mercer's theorem since

rSee Davenport and Root,8 p. 96,

J'iThis. is convergence in the mean for random variables which is not
to be confused with convergence in the mean for functions. A sequence
of random variables x converges in the mean to the random variable x
if and only if

nli_x;nm E [(x - xn)z] =0

18



i=1
n
2
% Z N Yy (t)
i=1
n
2
=r(tt) - Z )\-i Yi (t)
i=1
By Mercer's theorem
n
lim X: ¥ ) = £l t)
i
A= =1

therefore,

1]
(2]

n 2
lim E||[|x(t) - m(t) - a, .(t)]

Karhunen has given another representation theorem which is the
infinite analog of the Karhunen-Loeve representation. Let x(t) be a
process with zero mean and autocorrelation function R(s,t), and suppose
that R(s, t) is expressible in the form of the Stieltjes integralr

(e0]

R(s, t) = f(s,u) £(t, u) do(u)
-

where o(u) is a nondecreasing positive function of u. There exists, then,

i

For a definition of the Stieltjes integral, see Rudin,27 p. 88.

19



an orthogonal processt Z(s) so that

@
x(t)—-f f(t,s) dz(s)
-

where E [Zz(s)] = o(s). If, in particular, the process x(t) is
stationary, then we have from the Wiener-Khinchin theorem in

the form of a Stieltjes integral

m -
R(s-t)=f 2T (s-t) yp ()

-

so that we have the following spectral decomposition of the stationary

m .
x(t)=f eIZ™E a7 )
@

process

which is originally due to Cramér.

Ta process is orthogonal if for any two disjoint intervals (ul,uz)
and (uj,u,), E [(Z(uz) - Z(u ) (Z(uy) - Z(u3))T = 0.,

20



CHAPTER 1II

THE THEORY OF DISCRETE REPRESENTATIONS

3.1 GENERAL FORMULATION

An important aspect of any investigation is the formulation of the
general problem. It gives the investigator a broad perspective so that
he may discern the relation of those questions that have been answered
to the more general problem. It also aids in giving insight into the
choice of lines of further investigation.

In the general formulation of the problem of discrete representation,
we must be able to answer the following three questions with respect
to any particular representation.

(a) How is the discrete representation derived from the random
process x(t)?

(b) In what way does it represent the process?

(c) How well is the process represented?

We see that for answering these questions it is necessary to make
some definitions.

(1) We shall define a set of functionals {Ti} by which the random
variables {ai } are derived from x(t); i.e., a, = T, [x(t)] ’

(2) For transforming the set {ai} into a function z(t) which in
some sense approximates x(t), we need to define an approximation
I

(3) We must define in what sense z(t) approximates x(t) by

function F for which z(t) = F(t, COTRREE

introducing a norm on the error,r lle®)]] = |Ix(t) - z(t)]]. This
T_In general, it would not be necessary to restrict ourselves to a

norm here; however, it is convenient for our purposes.

21



norm shall comprise the criteria for the relative importance of the
characteristics of x(t).

(4) We must utilize a statistical property of ||e(t)|| to obtain a
fidelity measure across the ensemble of x(t). In this report we use

f

0=E [[le(t)l] 2] although others could be defined.’ We shall some-
times call 6 '"the error."

The process of fidelity measurement of a discrete representation
would then be as shown by the block diagram in Fig, 3.1.

We are now in a position to state the fundamental problem in the

study of the discrete representation of random signals. We must so

determine the set {Ti} and F that

0= E[lIx(®) - Fltsaye.era)ll?] (3.1)

shall be a minimum. We shall denote this minimum value by 8° and
the {Ti} and F for which it is attained by {T?} and F*. In many
cases the requirements of the problem may force the restriction
of {Ti} and F to certain classes in which case we would perform
the minimization above with the proper constraints.

It is certain that the solution of this problem in general would be
a formidable task. We shall be dealing largely with those cases in
which {Ti} and F are linear and the norm is the square root of a
quadratic expression, This is convenient since the minimization of

Eq. 3.1 then requires simply the solution of linear equations.

TFor example, P [!]e(t)]l 2 kl . It may be well to point out, however,
that the choice of the expected value is not arbitrary but made from
the standpoint of analytical expediency.

22
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3.2 LINEAR REPRESENTATIONS IN A FINITE TIME INTERVAL

In this section we consider the case of a random process x(t) to
be represented in a finite interval of time. We shall assume that

(1) the approximation function F is constrained to be of no higher
than first degree in the variables ajyesend and

(2) the norm is ||f(t)]| = [flf(t)lzdt ]1/2 where the interval of
integration, ), is the region of ?over which the process is to be
represented.

On considering t as a parameter, we see that F(t, CERRRY an) may

be written as

n

F(t, al,...,an)= glt)+ Z a, ¢i(t)

i=1

We then want to minimize

. E[ﬁx(t) i = Z 2., (0)] dt} (3.2)
9} §=]

The minimization will be performed first with respect to the functionals
{Ti} while F is assumed arbitrary (subject to the constraint) but fixed,
There is no restriction in assuming that the set of functions {¢i (t)} is
an orthonormal set over the interval{), for if it is not, then we can

put F into such a form by performing a Gram-Schmidt orthogonali-
zation.T

We have then

TSee Courant and Hilbert, ‘ p. 50.
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f¢i(t)¢j(t) dt = 5.
Q

where aij is the Kronecker delta.
It follows from the minimal property of Fourier coefficients!
that the quantity in brackets of Eq. 3.2 is minimized for each x(t)

by the choice

i= l’noa,n

over all possible sets {Ti}° Likewise, it follows that its expected
value, 8, must be minimized. Setting y(t) = x(t) - c(t), we see that

the minimized expression is

ew[f]m- Y. %) fy(s)q,i(s)dsﬁdt]
Q i=1 YA
= IRY (t, t) dt - Z ffRy(s,t) ¢i(s)¢i (t) ds dt
Q i=1 *Q *Q

By the corollary of the theorem of Section 2.4 we know that

ffRy(s,t) cbi(s)d:i(t) ds dt .‘Z./‘./.Ry(s,t) yi(s)yi(t) ds dt
i=1 (9] i=1

5

n

=in

i=1

where the \; and the vy, (t) are the eigenvalues and eigenfunctions of the

1'See ! If Petrox}skiiﬂ), p. 48, cf. Theorem,
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kernel Ry(s, t). 0 is then minimized with respect to the ¢i(t) by the

choice ¢i(t) = \«fi(t)° The error is now

6 = fRy(t,t) dt—z Ki

0 i=1

From Mercer's Theorem (see Sec. 2.2) we have

so that

9.0]

RY(S-t) = Z N Y;(8) v, (t)
j=1
(00]
fRy(t, t) dt = z A
9] =1

and therefore

8]
i
1 1

1 i=n+1

@
o< -
1

i=1

n

1

We now assert that each eigenvalue is minimized by choosing

>
1

]

$
+

We have for each eigenvalue

f./‘Ry(s, t) v;(s) y;(t) ds dt

Q

Q2

fE [x(s) x(t) - x(s) c(t) - c(s) x(t) + c(s) c(t)] Y; (s) yi(t) ds dt
9

f Rx(s,t) yi(s) yi(t) ds dt - mex(s) y; (s) ds fc(t) yi(t) dt
9] (9]

P
-/'c(s)yi(s)ds:l (3:3)
Q
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Now since

lfc(s)yi(s) ds - fmx(s) Yi(s)ds'ZZO

0 a

|./‘c(s)yi(s)dsl2 - mex(s) yi(s)ds fc(t) yi(t) dt

{ i 9]

> - lfmx(s) v;(s) ds|?
Q

where the equality sign holds for

fmx(s)yi(s)ds= fc(t) yi(t) dt
$ g)

On applying this inequality to Eq. 3.3 we find that \; is minimum for

'/‘mx(s) Yi(s) ds = fc(t) yi(t) dt

Q Q

and since we want this to hold for all i, we have

then

c(t) = m_ (t)

So we finally see that if we have a random process x(t) with mean
m_(t) and covariance function rx(s, t)= E [{x(s)-mx (s)} {x(t)-mx(t)}]

then € is minimized for

n

*
F (t,a.l,.,.,an)zmx(t)-kz a, yi(t)
i=1

2T



where the yi(t) are the solutions of

rx(s,t) yi(t) dt = A, yi(s) s ef)
(92

arranged in the order \| 2 Ay 2 ... and

a, = x(t) yi(t) dt - mx(t) yi(t) dt
Q Q
The minimum error is then
n ®
*
o = [ (tt) dt-z g = Z i (3. 4)
£l i=1 i=n+1l

This solution is identical to the Karhunen-Loeve expansion of a
process in an orthonormal series with uncorrelated coefficients which
was described in Section 2.4. The result was first proved by Koschma.nn‘?'l
and has since been discussed by several other authors., 1243, &2

In this section we have assumed that x(t) has a nonzero mean. In
the solution, however, the mean is subtracted from the process and
for the reconstruction it is added in again., In the remainder of this

thesis we shall consider mostly zero mean processes for if they are

not, we can perform a similar procedure.

3.3 AGECMETRICAL DESCRIPTION

A useful geometric picture may be obtained by considering a
random process in a finite time interval as a random vector in an
infinite dimensional vector space. This geometric picture will be

used in this section in order to gain understanding of the result of
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the last section, but we shall confine ourselves to a finite m-
dimensional vector space. The process x(t) will then be repre-
sentable as a finite linear combination of some orthonormal set

of basis functions {Wl(t)} D

x(t) = i x ¥ )
i=1

where the x, are the random coordinates of x(t). We see then that
x(t) is equivalent to the random vector x = {xl, +s0y xm} .

We shall assume that x(t) has mean zero and correlation function
Rx(s, t). The random vector x then has mean zero and covariance

matrix of elements rij = E [xixj] where

Rx(s, t) =

M3
Mz

rij ‘Pi(s) \”J(t)

=
1]
—
e
1l
-

Our object is to represent x by a set of n random variables
{al, s alas an} where n < m, Using arguments similar to those of
the last section, we see that we want to find the random vector

n

z= ¢+ Z a, ¢i which minimizes
B e

0=E [|x-2°]

Since x has zero mean, we shall assume that ¢ = 0, =z is then a

random vector confined to an n-dimensional hyperplane through
the origin., Since the set {¢i } determines the orientation of this

plane, there is no restriction in assuming that it is orthonormal;

1: €., <¢i : ¢:j > = 6ij° If we are given a particular orientation for
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the plane, that is, a particular set {¢i}, and a particular outcome

of x, then it is clear that the best z is the projection of x onto the

plane, as shown in Fig, 3.2, That is,

n
z= Z<i' % > ¢
i=1 e

so that a, =<x, ¢.;>, i=1,...,n). This corresponds to the minimal

—

property of Fourier coefficients as was mentioned in Section 3,2, The

error, 0, then becomes

0=5 [|x- 2]
n n
“E[<x- ) <x4> 0 x- ) <x6> 6]
U S SRR =

-=[izf] - 23 <x 9]
j=1 @

Now, we must find the orientation of the hyperplane which minimizes
6. From Eq. 3.5, we see that this is equivalent to finding the orientation

which maximizes the average of the squared length of the projection of

x. We have for the inner product

m
- Z *j 94
gy

where $; = {‘Pil’ o "¢im} . © then becomes

—m——
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Fig. 3.2. The best approximation of a random
vector,

Fig. 3.3. The surface generated by the quadratic
form.
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The quantity in brackets is a quadratic form

m m
5”1[4’11'”"4’111] ‘:Z Z Tik %45 Pix
=1 k=1

so that we must maximize

le"([q)il'””cbim]

where {q:i }is constrained to be an orthonormal set.
Suppose that n = 1, then we must maximize 3% [q:u, S ¢lm]
subject to the condition | ¢l| = 1. By the maximum property of the

eigenvalues mentioned in Section 2.2 we see that

w0 ]3] =
[ ][y

|y [y
where \; is the largest eigenvalue of the positive definite matrix
[rij] and y, is the corresponding eigenvector. So we have the
solution for n = 1. The surface generated by f}f’j by allowing ¢1

to take on all possible orientations would be similar to that shown

in Fig. 3.3 for m = 3., This surface has the property that
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m
Z: "‘w/[ d, ] is invariant with respect to the set { ¢i } and is equal
m
to ¥ \;. This must be so since if all m dimensions are used in the
i=1
approximation, the error must be zero.
By the maximum property of the eigenvalues we also have

w0 15[ 4] =,

X

< Yj>ag T Leei-l

so from this and by observing Fig. 3.3 we might expect that

This is in fact true, but it does not follow so simply since in this
procedure the maximization at each stage depends on the previous
stages. The fact that it is true depends on the character of the surface,

and it follows from Fan's Theorem (Sec. 2.4 ).

3.4 MAXIMUM SEPARATION PROPERTY
There is another geometric property associated with the solution
to the problem of Section 3.2. Let [' be an m-dimensional linear vector
space the elements of which are functions over a certain time interval
f) . Suppose that the random process x(t) consists only of certain

waveforms s, BYiisins s (t) which occur with probabilities P, ..., P .

1 n

Only one waveform occurs per trial. The autocorrelation function

is then R_ (s, t) Z P.s. (s) s. (t) and we shall assume that E [x(t ] B,
i=1

Suppose that we arbitrarily pick a set of ,! orthonormal functions

3 i aes, Y,l (t) which define an _£-dimensional hyperplane I"j of Tl
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Let yj+1(t), V5 o7 Y (t) be an arbitrary completion of the set so
that {Yi(t)} is a basis for the whole space. The projections of

the waveforms on Fj are then

V4 L
si(t) = Z Yj(t) '/. si(t) \(j(t) dt = Z 53 yj(t) i% 1, 00s,M1
=l Q

=1

where

Sij= ./‘Si(t) Yj(t)dt j= l,e00, m
Q

We shall define the average separation S of the si(t) in I"I to be

S = 2 Pin f[si(t)-sj(t)]zdt

i, j=1 (9]

and we shall be interested in what orientation of Pf maximizes S,

We have
n £
S = z Z B (S - S )2
i ik jk
i, =1 k=1
n =z n V4 n £
_ 2 2
= PR ha= Z =
Z Z i"j ik T /£ ¥Ry Rl Z Z P aasy
1,1 k=1 i,j=1 k=1 i, j=-1 k=1
n L Z n
o, 2
25 S ndeey {3 oee)
i=1 k=1 k=1 i=1
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We note that

n n n
E [x(t)] = Z P, s, (t) = Z P, Z 555 Y t)
i=1 =1 j=1

m 15§
=) v, ) P e
=1 i=1

therefore
n
ZP.S..=0 12 Ljvewsn
i71ij
i=1
and
n Z
8= B -
T i ik

b
>~

4
P.f
1
i=1 k=1

fsi(S) s;(t) vy (s) v, (t) ds dt
00

Z
=2 Z ffo(s,t) Vi (8) yk(t) ds dt
k=1 *0°Q

As we have seen before, this is maximized by using the first
eigenfunctions of R_(s, t) for the Yy E)seen, VY (t), so that the orientation
of F,Z which maximizes the average separation is determined by
these,

Consequently, we see that if we have a cluster of signals in
function space, the orientation of the hyperplane which minimizes

the error of representation in the lower dimension also maximizes
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the spread of the projection of this cluster on the hyperplane, weighted
by the probabilities of occurrence of the signals. If there were some
uncertainty as to the position of the signal points in the function space,
then we might say that this orientation is the orientation of least con=

fusion among the projections of the signal points on the hyperplane,

3.5 THE ASYMPTOTIC BEHAVIOR OF THE AVERAGE ERROR
IN THE STATIONARY CASE'

In this section we shall consider the representation of a stationary
process x(t) for all time. This will be done by dividing time into
intervals of length 2A and using the optimum representation of
Section 3.2 for each interval., Since the process is stationary,
the solution will be the same for each interval.

Suppose that we use n terms to represent each interval, We then
define the density to be k = n/2A or the average number of terms per
unit time. If we consider an interval of length 4A, as shown in Fig. 3.4,
consisting of two subintervals of length 2A each separately represented,

we would have an average error

26" (2A) _ 8 *(24)

4A 2A

If we now increase the interval of representation to 4A while using 2n

terms, that is, holding the density constant, we would have an average
*
error 0 (4A), It is certainly true that
4A
%* %
8 (4A) < 8" (2A)
4A = 2ZA

(3.6)

TSee ref, 16,

36



since if it were not true, this would contradict the fact that the

representation is optimum. It is the object of this section to study

0 (24)
2A

the behavior of as A increases while the density is held

constant,
Since the process is stationary, Rx(t, t) = Rx(G), and we have

from Eq. 3.4

n
1% _ 1
L 0™ (24)= R_(0) - 55 in
i=1

where the \; are the eigenvalues of

A
f Rx(s -t) ¢i(t) dt = A, q:i(s) -A<s<A
-A

Since n = 2kA must be a positive integer, A can only take on the values

A = 37 n=1|2,oo

5

The sequence w is monotonically decreasing because of the
2A
n

argument leading to the inequality of Eq. 3.6. Since 0" (ZAn) 20, all

n, the sequence must have a limit,T We then want to find

*

o (ZAn) . ZkAn
lim ———— = Rx(O) - lim — Z Ki
n— m ZAn n—am ZAn =

We now make use of a theorem proved in Appendix 2 which states

2kA, n
lim 1 Z A, = lim %ZRi=fo(f)df
Dre @ el et e E
TSee Rudin, i p. 41, Theorem 3. 14.
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Fig. 3.4. The division of the process into intervals.
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Fig. 3.5. The method of finding the asymptotic error.

AS(f)

Fig. 3.6. The spectrum of a bandlimited process.

|
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where
e8]
-3 2wft
= J
Sx(f) f Rx(t) e dt
=@
and is the power density spectrum of the process, and

E=[f s ()24]

where j is adjusted in such a way thatT
u[E] = x (3.7)
Now since
W
- jewit
Rx(t) f S_(f) e df
-0
then
(00)
RX(U) = f Sx(f) df
-
and

*

0 (2A_) &
lim —— 2 = s () at - [ s (f)af = S (£) df
== 2An [00) E 1R

(3.8)

' = -
where E [f, Sx(f) < j] .

In other words we take the power density spectrum (see Fig. 3.5)
and adjust 2 in such a way that the length along f for which Sx(f)z £

is k and then integrate over all the remaining regions, This gives a

1'The notation [If,' 8 {f)< j] means ''the set of all f such that
Sx(f)< VAR [E]xdenotes the measure of the set E (or length
for our purposes).
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lower bound for the average error and the bound is approached
asymptotically as A increases.

If the process x(t) is bandlimited with bandwidth k/2 cps, that
is, it has no power in the frequencies above k/2 cps, then we have
a spectrum as shown in Fig., 3.6. If we then use a density of
k terms/sec, then we see that j must be adjusted, according to

the condition of Eq. 3.7, to a level j= 0. By Eq. 3.8 we have

6" (2A.)

. n
lim ——— = Sx(f) df = 0
n—@m n E!

This implies that we can approach arbitrarily closely an average error
of zero with a finite time linear representation by allowing the time
interval to become large enough. This is in agreement with the
Sampling TheoremT which states that x(t) can be represented

exactly by k equally spaced samples per unit time; and, in

addition, we are assured that this is the most efficient linear

representation,

3.6 A RELATED CASE
Suppose that x(t) is 2 zero mean random process in the interval
[-A. A] with autocorrelation function Rx(s, t)e We now consider the

problem in which the a, are specified to be certain linear operations

A
a.i:./‘ x(t)gi(t) dt i=1ueest
A

on x(t)

t

See Shannon28 and Balakrishnan, 1
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and we minimize 0 with F constrained as in Section 3,2; i.e.,

n

F (t, a, ceera )= z a, ¢i(t)
i=]

(c(t) = 0 since the process is zero mean), If we follow a straight-
forward minimization procedure, we find that the set {q;i (t)} must

satisfy

A
f R(st)g(t)dt-z [f R, (3, v) g;(0) g;(v) du dv
-A

i.=].,uua,n

which is just a set of linear equations in a parameter t.
If the a; are samples of x(t), we then have gi(t) = §(t - ti) and the

set {¢i(t)} is then the solution of
n
R_(t,t,) = Z &5(t) R, &, t.) £l .l g 4 (18108)

Solving this using matrix notation we have

6;0)] = [Ryt )] R (0 t))]

If we consider ¢j (t)] for t = ¢, i=1...,n), then we have the matrix

equation

o5 [Ratttp]™ [Retptp] = [1]

where [I] denotes the identity matrix, so we see that

9% 't=tj .
¢j(t)={ 15 TR

0, t=ti, i
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If the process x(t) is stationary and the a, are equally spaced

samples in the interval (-m,® ), Eq. 3.9 becomes

©
R_(t - kT )= Z ¢,€ (¢) R (kT - ,ZTO)
A=~

= 0:1)"1) 2! "2000

where To is the period of sampling. On substituting t' =t - kTO we

get
(0]

R (t') = Z ¢£ (¢ + kT ) R_(kT_ - jTo)

£=-m©

k=0,1,-1,2;-2,.4

This holds for k equal to any integer so that

(e8]
R ()= ) by b+ (kT R((k+)) Ty LT
£=-o

[09)
L=

and we have

‘bl (t+kTo)=¢£+j €+ (k+j) T)

or

dpyy KT )=dp €+ (k-3) Tp)
so that for ,f= 0, k=20

45(®) = 0, (t - JT,)

where j=0,1,-1,2,-2,... « The set {cpj(t)} is just a set of trans-

lations of a basic interpolatory function, which is the solution of
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(00)]
RM)= Y 4y + LT ) R (fr)
£=-o
30

This problem has been studied by Tufts: He has shown that the

average error in this case is

af (3.10)

where fo = I/TO.

3.7 AN EXAMPLE
Let x(t) be a stationary random process in the interval [-A, A]

with a zero mean and autocorrelation function

~ _ -27|s -t|
R_(s,t) = Rx(s-t) =n e

The power density spectrum is then

1
S, (f) =
e 14 £

The eigenfunctions for this example are

ci cos bit i, edd
¢i(t) = {

(:i sin bit i, even

where the ¢, are normalizing constants and the bi are the solutions of

the transcendental equations

bi tan biA = 21 i, odd

bi cot biA =& i, even
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The eigenvalues are given by

X Joe 4'rr2
i &

1 p2 4 4
i
The details of the solution of this problem have been omitted since
they may be found elsewhere,T
The minimum average error, -217&9* , has been computed for
several values of A in the case k= 6 terms/sec, and these results

are shown in Fig, 3.7. The predicted asymptotic value is

(00} w
2 s, (f) daf = 2
k/2 3

1
1 +f

5 df = 0. 644 (3.11)

This is plotted in Fig. 3.7 along with the error incurred by sampling

at the rate of 6 samples/sec and reconstructing with ok

interpolatory
functions. This error is just twice the error given in Eq. 3.11, or
twice the area under the tails of the spectrum for |[f| >3. This is a
known fact; however, a short proof is given in Appendix 3 for reference,
Also shown in Fig. 3.7 is the error acquired by sampling and using an

optimum interpolatory function. This error was computed from Eq. 3.10.
3.8 OPTIMIZATION WITH UNCERTAINTY IN THE REPRESENTATION

It is of interest to know whether or not the solution of Section 3, 2
is still optimum when the representation in the form of the set of random
variables {ai} is subject to uncertainties, This would occur for
example if the representation is transmitted over a noisy channel

in some communications system.

TSee Davenport and Root, & pp. 99-101.

44
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Fig. 3.7. A comparison of errors for several representations.
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In the following we shall assume that the process is zero mean,

the representation is derived by the linear operations

a.i=fx(t) g, (t) dt (3.12)
Q

and the approximation function is

n

Fftaayseeeia )= Z 2 &, (t)

i=1

Our object is then to determine under what conditions

6=E [ f[x(t) = i (a.i + ei)cbi(t)]z dt:l
0 iz}

is minimized, where the ¢ are random variables representing the
uncertainties., On the assumption that {¢i (t)} is an orthonormal set

we obtain

D
1

Rx(t, t)dt - ZEl:z (ai + ei) fx(t)q:ai(t) d{|+ Z Ej(ai + Ei)z
i=1 Q =]

and we substitute Eq. 3.12 getting

./‘R (t, t)d t-ZfoRx(s,t) gi(s)dai(t)ds dt

0 1

f./-R (s, t) g;(s)g; (t) ds dt-ZZ f ex(t)]q:i(t) dt
=1

(3.13)

-

™
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n
1=

1

n
fE [ei x(t)] g (t) dt + ZE[{‘]
Q i=1l

If we replace g; by g + an, in this expression, we know from the

t

calculus of variations®' that a necessary condition that 8 be a minimum

with respect to 8; is

9
aae

a=0

Applying this we obtain

. =2f17i(s)ds{,/-Rx(s,t)¢i(t) dt - fo(s,t) gi(‘t) dt
a=0 Q 0

Q
A [eix(s )]} =0

and since 'qi(s) is arbitrary the condition becomes

a
a—ae

fo(s,t) [¢i(t) - gi(t)] dt = E[eix(s)] s e
{4}

It is seen, then, that if E [eix(s)] =0, s f, then¢,(t) = g,(t) G=1,...,n)

satisfies the condition. For this case Eq. 3.13 becomes

n n
0 = fRX {t, t)di -~ Z ffo(s,t)¢i(s)¢i(t) ds dt + Z E [612]
Q =R R

i=1

Consequently, we see that if E [eix(s)] =0({i=1...,n), for all s e},

1.See Courant and Hilbert, [ p. 184.

1;If Rx(s, t) is positive definite, this solution is unique.
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then the solution of Section 3.2 is still optimum and the minimum

error is now

n n
p* = R(t,t)dt-z 7\..+ZE[E.2]
x 1 1
Q i=1 =1

3.9 A MORE GENERAL NORM

Although in the general formulation of the problem, given in
Section 3.1, we consider a general norm, until now we have made
use of only the root mean square norm. In many problems, however,
we shall be interested in a measure not only of the average difference
between functions but of other characteristics of the functions as well.
For example, in Chapter 1 it was described how a linear representation
of the past of a random process is useful in a characterization of non-
linear systems. For the most part, such a characterization is useful
only for those nonlinear systems for which the influence of the remote
past on the operation of the system is small compared to the influence
of the immediate past. In such a case we would be interested not in
a norm which weights the average difference between functions uniformly
over function space, as in the case of the root mean square norm, but
in a norm which weights the immediate past more heavily than the
remote past.

In this problem we might also be interested in a norm which
discriminates not only in time but also in frequency. The high
frequencies may influence the operation of the system to a lesser

degree than the low frequencies. So we see that it would be of
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interest to consider a norm more general than the root mean square
norm which discriminates neither in time nor in frequency.

In this section we consider a generalization on the root mean
square norm which allows more general discrimination in the
characteristics of the random function. This norm has the additional
property that with it the solution of the representation problem still

requires only the solution of linear equations. This norm is

1/2
[HAE £2(t) dt
Q

where f, (t) is obtained by operating linearly on f(t); i.e.,

f,(t) = K(t,u) f(u) du t e dl (3. 14)
Q

t

where K(t, u) is determined by the requirements of the problem.
Essentially what we have done is to pass the error e(t) through a
linear filter and then use the root mean square. In order for this

to be a true norm, K(t, u) must satisfy the condition

K(,u) f(u)du=0 £ el) (3..15)
91
if and only if f(u) = 0 foru ¢ )

(see Sec. 2.1). A necessary and sufficient condition that this be true

is that the symmetrical kernel

T

Wehave assumed that the linear operation is an integral operation,
although this is not necessary. In our first special case on p. 52
it is not strictly an integral operation,
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K, (s, t) = ./.K(u, K(u, t) du
Q

be positive definite. This is because the conditions

fl(t)= fK(t,u)f(u)du'—‘ 0
and Q2

ff?(t) dt = '/.f{ fK(t,u) K(t,v)dt} fu)f(v)dudv =10
L9 Suea Q

are equivalent,

The error, 8, now becomes

8=E i dt {fK(t,u) [x(u) - clu) - zn: ai¢i(u)J du}z:'
= (o) i=1

Q

r n 2
= E f dt { fK(t u)x(u)du - fK(t,u) c(u)du - a f}{(t,u)cbi(u)du} J
-0 o =Ly

s0 we see from the second of these equations that the problem reduces

to the representation of the process

y(t) = fK(t, u)x(u) du
£

by the method of Section 3.2, Consequently, our solution is

n

F (t,al,,.,,an)=mx(t)+z a2, v, (t) (3. 16)

i=1
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where the yi(t) are solutions of

‘bi(t)= ./‘K(t.u) yi(u)du {3.17)
£

and the ¢>i(t) are the eigenfunctions of

'/‘G(s,t) Cbi(t) dt =, oo} i(S) s e f) (3.18)
19/

arranged in the order A\; 2 A, 2 ... . G(s, t) is found from

1

G(s, t) = ./‘ fK(s, u) K(t, v) rx(u, v) du dv (3.19)
Q%0
al = fdsd)i(s) fK(s,v) [x(v) = mx(v)]dv
Q £

The minimum error is

8 ./'G(t,t)dt-z ./‘fG(s,t)cbi(s)(bi(t)ds dt
Q L )

./‘G(t, £t - Z A (3, 20)

i=1

and we have

1]

where the Ki are the eigenvalues of Eq. 3.18.
We have a particularly simple case when K(s, t) is expressed over

the basis of eigenfunctions {;pi(s)} of rx(s, t); i.e.,
0]

K t)= > By ¥ (6) W)

i=1
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We then have for G(s, t)

Gl )= ) BZa; ¥,(6) W40
i=1

where the a; are the eigenvalues of rx(s, t). We then have

®(5)= ¥;(6)

v;(s) = ﬁi V. ()

forizl.z,-eo °

We shall now discuss two special cases of this norm which demand

special attention.
THE FIRST CASE

First we consider the case of the root mean square norm weighted

in time, that is, we have

1/2
1E@))| = I:fwz(t)fz(t) dt]
3

so that the linear operation is just multiplication by W(t). This corresponds

to a kernel K(t,u)= W(t) 6§(t-u). The solution is now

n

p b, ()
F (t,al,,..,an)=mx(t)+ aiW(t—)
i=1
'/'W(s) 7 (5, )W () Dy (t) dt = X, @ (s) s Q
f

a, = fw(t)d:i(i:) [x(t) - rnx(t)] dt
9}

b2



where the error is

8* = sz(t) rx(t, t) dt - Z ffW(s) rx(s,t) W(t) d)i(s )¢i(t) ds dt
o) i=1 *Q *Q
= ./‘Wz(t) r_(t,t) dt - Z N
g i=1

This is of special interest in the nonlinear filter problem where
we want to represent the past of a random function with a norm which
minimizes the effect of the remote past. In fact, if theprocess is
stationary, we must use this weighted norm in order to get an answer

to the problem at all. This is because if we use the method of

Section 3.2, the first term of Eq. 3.4 would be infinite; i.e.,

G
'/‘ r (0)dt=
=0

and no matter how many terms we use, we would not improve the

situation. Also, the kernel of the integral equation

0
f rx(s-t) yi(t) dt =\, Yi(s) s € [-m, 0]

(00]

is not of integrable square; that is, we have

8 2
./:/‘ lrx(s-t)|ds dt = o
-

so that we are not assured that the integral equation has a countable

set of solutions. However, if we use a weighting function W(t) chosen
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in such a way that

0 0

'/‘ w? t) r2(0) dt = r2(0) wh ) at
- s 3,

then we can find a solution.

It might be well to point out in addition that although we have said
that we must pick a weighting W(t), we have not attempted to suggest
what W(t) to use. This must depend upon the nonlinear filtering
problem at hand and upon the insight and judgment of the designer.

As an example we consider the zero mean random process x(t)

with autocorrelation function

R_(s,t) = g lE=tl

We shall be interested in representing the past of this process with a
weighting function W(t) = e:t over [- @, 0] . However, for the sake of

convenience, we shall use the interval [0,00] and weighting function

W(t) = e this case the solutions of the integral equa.tionT
2 t t
¥ grtAtl @, (t) dt = N ¢>i(s) s 20
0
are

(3.21)

See Juncos al 7.
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where the q; are the positive roots of
J,(q;) =0

The .]'i(x) are the Bessel functions of the first order and the Ai are

normalizing constants. The error in this case is

(e8] n n
9*=./-e'2tdt-2k.=l- X
i 2 i
0 i=1 i=1
The first two zeros of Jo(x) arel
q) = 2.4048
q, = 5.5201
so that the first two eigenvalues are
Xl = (0. 3458
KZ = Oo 0656
The error for one term is then
0] = 0.5 - 0.3458 = 0.1542 (3.22)
and for two terms
@, = 0.5 - 0.3458 - 0,0656 = 0.0886 (3.23)

THE SECOND CASE

The second case that we consider is the case in which the interval
of interest is [-OD, CO], and the kernel of the linear operation of Eq. 3.14
factors into the form

K(s,u) = K, (s) Kz(s'-u)

so that we have

TSee Jahnke and Emde,12 p. 166.
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(00}
fl(s) = Kl(s) ' Kz(s-u) f(u) du

-
Thus, the operation consists of a cascade of stationary linear filtering
and multiplication. If K, (s) 2 0 and the Fourier transform of K, (s)
is real and positive,T then we can consider the norm as a frequency
weighting followed by a time weighting.
Let us consider the example of the representation of white noise
x(t) of autocorrelation function Rx(s, t) = 6(s-t) and mean zero. Here

we use as weightings

Kz(s)= e

that is, gaussian weightings both in time and frequency. From Eqs. 3.18

and 3.19 we see that we must find the eigenfunctions of G(s,t) where

(v0)]
G(s, t) = f Kl(s) Kz(s-u) Kl(t) K, (t-v) Rx(u, v) du dv
-

Q-2 2 .2 2
f e”® e-(s-u) e e-(t_v) §(u-v) du dv

The Fourier transform of e-t is*

1'For these conditions, the condition of Eq. 3.15 for the kernel of the

norm is also satisfied,

f This is shown in Appendix 4,
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© 2 2.2
(v0]

we know that

(o8] (v 0) :
ff(cr)g(t-cr) do = f F () G() eI 2™ at
(e0]

- -

where F (f) and G(f) are the Fourier transforms of f(t) and g(t). Wwe

then have
© 2 2 @ 2.2
fe-u e-(s-t-u) du:“f e-?_-n-f eJZTTf(S—t)dt
- =00
2
LS e
7 2
so that

1 2
2 2 -5 (s-t)

G(s,t)=f\/“§'e_s ¢

It is shown in Appendix 4 that the eigenfunctions of this kernel are

218 d 22

i i=0|1|oo-
dt

P, (t) = A e

where the Ai are normalizing constants and the eigenvalues are

A =T gL (3 - 24/2) A Uy
34 2.2

It is seen that these functions are the Hermite functions modified by

57



.

a scale factor, The Hermite functions are given by

2 n 2
n =1/2 t /2 d -t
Hn(t)=(2 nl /) / e /ﬁe ne 8 1,2, 06
therefore, we have
D, (t) = (‘7“/,’3)1/4 H, [(2&)1/2 t] i=0,1,2,00.
and the Ai are given by
1/4
A. = .(Zﬁ) im0, 1,2, 00

1T @2ty Sy 2
Referring to Eq. 3. 16 we see that in order to have the complete solution

we must find the A (t) which are the solutions of

S £ (t u)z

(I)i(t)= e e V7 yi(u) du 1=0,1,2,,¢s
-

according to Eq. 3.17. It is shown in Appendix 5 that the solution is

iz 2
y; (t) = A, -—-———-———("/Z'FZ)1 ez-i-“/E d—l e_"/zt2
! Y /m(2-42) at*

so that the best representation is given by

n o 42 2
; 1 =y .
F* (ti ao)ouo,an):' ai Ai (-/2-+2) ez-‘-ﬂ dl _ﬁtz

- e

i=0 \ﬁr(?l-—«/i) at’

1.See Courant and Hilbert, p. 93. The usual definition of Hermite
functions includes a (-1)! but we have neglected this.,

=




and

0 2 .4 2 © 2
a = ds A, e(\/Z-l)s L e-Z-./Zs e—(sﬂt) x(t) dt
i i dsl
£ =0

(00]

and the error is

© 2 = !
8" f gt dt-z-n- AL WY
Lo e VEREYL
n
iy 4 i
. E L2 3.
;2'/3”./5 (3 - 2/2)

3.10 COMPARISON WITH LAGUERRE FUNCTIONS

]

i

1
NTB

We now return to the first example of the last section, but this time
we use Laguerre functions in place of the functions of Eq. 3.21. We
shall be interested in just how close we can come to the minimum possible
error given by Eqs. 3.22 and 3,23, The Laguerre functions are given
byl

- L

x/2 d"”
n+1 () = n! o

L e

(3.24)
for x 2 0.
Since orthogonality of functions over [O,m] is invariant with
respect to a change in scale, we have a degree of freedom at our

disposal. The Laguerre functions given above satisfy the relation

@ LA iy
fLi(y) Li(y) dy = {
0 0 i#]

tsee Courant and Hilbert, p. 95.
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and if we make the change of variable y = ax, we have

® L =
a Li(ax) Lj (ax) dx =
0 0 i#]j
from which it follows that the set of functions /@ L_(ax) is orthonormal.
We shall be interested in picking a best scale factor a for a repre-

sentation in terms of these functions.

By replacing the functions q:’i(t) in Eq. 3.20 by the set ,/a Ln(ax)

we obtain for the error

®
e = '/‘Wz'(t) r_(t,t) dt
0
n (o Xeo)
5 W
i=1 0

and for the example it becomes

(s) rx(s, t) w(t) ./a Li(o.s) Ja l.,i(at) ds dt
0

n v}y Weo)
6=1- Z et emlot ap (as) L, (at) ds at

Suppose n = 1. The first scaled Laguerre function is

_%x
JaL(ex)= Ja e
so that we have for the error
e _as gt
Bl(u)=%- i £ idy 8t
00

which becomes on performing the integration
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4q

-1
0,@) =7 - GF2)rd)
This error is shown in Fig. 3.8 plotted as a function of a. It has a

minimum at a = 2/2 for which 61(24/2-) = 0,157,
Now suppose that n = 2. The second scaled Laguerre function is
Ja I_.z(ax) = /8 (e'm"'“/2 -ax e'ax/z)

and the error becomes

1 4a
0,00) =3 - GF2)(er9)

e o
_ffe—s—t-ls-tl u[e-as/Z . ud e—as/z ] [e-at/z vak e-at/Z] i
0*0

which becomes on performing the integration

3
i 4a 4a(a” - 4a - 16)
02(0) =7 - GF2)(@rd) - G+ 2 oAl

e -0.5 + lfm.3 - 32a +128
(a + 2)4 (o + 4)3

4 for which

i

This is also shown in Fig. 3.8 and it is minimum at a

0,(4) = 0,093,

We see first of all that the best scale factor for n = 1 is not the
same as for n = 2. Also, it is interesting that the performance of
the Laguerre functions for the best scale factor is remarkably close

to optimum. The minima of the curves in Fig. 3.8 are very nearly

the values given in Egqs. 3.22 and 3. 23.
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Fig. 3.8. The error as a function of scale factor for
Laguerre functions.
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This example illustrates the value of knowing the optimum
solution. In practice, if we are interested in representing the past
of x(t), we would derive the random variables a; from x(t) by means
of linear filters. In this example, the synthesis of the filters for the
optimum solution would be much more difficult than the synthesis of
the filters for Laguerre functions. For representing the past of x(t)
we would have (reversing the sign of t since in the example we have

used the interval [O,CD] )

0
a*i“' = x(t) W(-t) @ (-t) dt
-
0
_ t t ’\/_-:{._ t
= x(t) e Ay e T, ’\i e dt
-

so that we would use a linear filter of impulse response

L -2t 2 -t
hi(t)- A e Jl[x/:i e ]

which would not be easy to synthesize, Now, if we use Laguerre

functions we would have

0
&= x(t) e Ja Li(-at) dt

—{20]
and we would use a filter of impulse response
h,(t) = /3 e " L (at) (3. 25)

which is quite easy to synthesize and gives us an error very close to

optimum. By means of cascades of simple linear networks we can
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¥

synthesize impulse responses in the form of Laguerre functions
or other orthonormal sets of the exponential type.* In Eq. 3.25

we have a multiplying factor of et which can be accounted for in

the complex plane by displacing the poles and zeros of these net-
works in the direction of the real axis by -1. For example, suppose
that we want to represent the past of x(t) using Laguerre functions
with a scale factor a = 4. By observing Eq. 3.24 we see that the

Laplace transform of a Laguerre function is

s - 5)"
0{;+1(S)=HL£ (S—+1—‘;?lﬁ as 0,1, ...  (3,26)

2

so that the Laplace transform of hi(t) is from Egq. 3.25

2 aien Y
* (s + 3)

We then see that we could derive the random variables a; from the past
of x(t) by using the cascade of linear networks shown in Fig. 3.9,

By replacing s by j2«f in Eq. 3.26 we obtain the Fourier transform
of L (t) which is

n

; I .
L Gt - jeut - 5
1)n+1 n! 52wt +_é_

The magnitude squared of this expression is

152 4
25 SRS, W (3.27)
ns 1+ 16?1“2{2

TSee Y. W. Lee.,z'3

*See W.H. Huggins. '
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x(t)

| s+3 1 5 +3 12 B+3

Fig. 3.9. A linear circuit for representing the past of a signal .
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We note that this is similar in form to the spectrum of x(t) in the
example. That is, since the correlation function of x(t) was
R_(t) = exp(lt]) then the spectrum was the Fourier transform

of this or S_(f) = e . Heuristically speaking, this may be
% 2.2 ¥

1+4nf
the reason why the set of LLaguerre functions did so well. If the
spectrum of x(t) were markedly different from the form of Egq. 3.27,

then we might not expect the results to be as good.

66



CHAPTER IV

REPRESENTATION IN THE PRESENCE OF NOISE
AND ITS BEARING ON OPTIMUM LINEAR SYSTEMS

4,1 REPRESENTATION IN THE PRESENCE OF NOISE

There are, perhaps, many situations in which a representation
of a random signal is desired when the signal is not available directly,
but only in a more or less contaminated form. Such a situation would
occur, for example, when the representation is derived from the signal
after it has been transmitted over a noisy channel. This chapter will
deal primarily with this problem and its close relationship to optimum,
time-varying linear systems.

A discrete representation of x(t) will be found, but the set of random
variables {ai} will be derived from another process y(t) statistically
dependent on x(t). The process y(t) will in most cases be the perturbed

version of x(t). In a fashion similar to that in Section 3.1 we have

ai=Ti[y(t)] 3o B ey

z(t) = F(t, S LERRE an)

and the problem can be stated generally as the minimum problem

min min E[Hx(t)- F(t,al,u-.an)llz]
{7} o

We shall now consider the linear case in which we find it necessary
n
not only to restrict F(t, ajseees an) to be of the form c(t) + Z aiqai(t)
i=1
but also to restrict the functionals to be linear in x(t). The latter

does not follow from the former as it did in the case of direct
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representation. Also, we shall assume that the processes are zero
mean; otherwise, it is only necessary to subtract the mean as was
seen in Section 3.2. Making use of the same norm as before, we

shall minimize
n 2
0=E [f [:x(t) ; Z a, ¢i(t):| dtjl (4.1)
0 i=1

and without loss of generality we can assume

1 i=]
f¢i(t) 6;(t) dt = {
Q 0 i#]

Since the functionals are linear, we shall assume that

a, = fgi(t)y(t)dt 12 1y eesyh
9]

Substituting this into Eq. 4.1, we have

n
8 = E ':fxz(t) dt - 2 Z '/‘x(s)q)i(s) ds fy(t) gi(t) dt
Q =l o Q2
n
£ ffv(s)y(t) g;(s) g () ds dt]
i=1 /Yy

and on interchanging the order of averaging and integration we obtain

fRX(t,t) dt - 2 Z ffoy(s,t) ¢i(s) gi(t) ds dt
0 i=1 “n “n
+Z ffR (s, ) g,(s) g, t) ds at (4.2)
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Our object is then to minimize this with respect to the sets of functions
{gi(t)} and {¢i(t)} on assuming that {¢i(t)} is an orthonormal set.
We first minimize with respect to gi(t). We replace gi(t) by gi(t) + a-qi(t)

and solve the equation

from which we obtain

./‘Ry(s, t) gi(s) ds = foy(s,t) q:i(s) ds = fi(t) tel) (4.3)
Q Q

By Picard's theorem (see Sec. 2.2) there exists an integrable square

solution to Eq. 4.3 if and only if the series

@ 2
Z Lz [fej(t) £ (t) dt:I (4.4)
=1 B Ly

converges, where the B; and e, (t) are the eigenvalues and eigenfunctions

of Ry(s, t), and this solution is

e8]
gi(5)=z -[517 e (s) fej(t)fi(t) at (4.5)
0

This can be verified by substitution back into Eq. 4.3. We shall assume
in what follows that g, (s) is given by Eq. 4.5.

By substituting Eq. 4.3 into Eq. 4.2 we obtain

0= fRX(t,t)dt-Z ./-'/ny(s,t)¢i(s)gi(t)dsdt (4.6)
L9/ =L Q=0

and by substituting Eq. 4.5 into this we have
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o3 1
f ny(s, t) q:i(s) ds Z B—J e (t) '/‘ej(u) £i(u) du dt
Q Q

fo(t.t) dt
Q

22

i=]

i
b.\.

'/'foy(s,t) ¢;(s) ej(t) ds dt'/"/ny(v.u)cpi(v)ej(u)dv du
7 a0 51 8

fo (s,t)ej(t)dt, we obtain after some rearrangement
Q

|l'M8

If we set hj(s) =

B = ./‘Rx(t,t) dt - Z '/‘fK(s, v) ¢i(s) q:i(v) ds dv (4.7)
92 i %5

i=]1

where

K(s, v) =

T~

1
= hj(s) hj(v)

B

I
5 f g5 1) e(t) dt '/‘ny(v,u) e;(u) du
0 93

We know, then, from the corollary of the theorem of Section 2.4 that

0 is minimized by choosing as the set {d)i (t)} the set of eigenfunctions

We see that our solution is

=
]
—

[\/]8

tas
i
—

{yi(t)} of the kernel K(s, t).
n

%*
F (t,al,o..,an)?-z a, y; (t)

i=1
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where the y; (t) are the solutions of

./'K(s,t) yi(t) dt = X, yi(s) s e §)
9

arranged in the order A, 2 )\2?. nioe anid

15
[10)
= _1' u)e.lu u v AV v
K(s,t)-Z : [foy(s, ) e;(u) d R, (tv) e,(v) d
=1 Q Q

(4. 8)
where Bi and ei(t) are the eigenvalues and eigenfunctions of Ry(s. t),

and also

= g;(t) y(t) dt i
(9]

2 vns (4.9)

where the g, (t) are solutions of

fRY(S't) gi(s) ds = ./‘ny(s,t) yi(s) ds = fi(t) 1%) 25005
Q Q

(4.10)

and the error is

n
8 = R (t,t)dt-z X,
X 1

Q i=1

Thus, we have found the solutions to our problem of representation in

the presence of noise using a mean square norm., The solution for the
more general norm discussed in Section 3.9 can also be found in precisely
the same way as before.

In finding this result, we have assumed that Eq. 4.3 has solutions
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gi(t) which are of integrable square, The result can be proved,
however, under slightly more general conditions. This condition

is that the

fi(t)= -/'ny(s.t) ¢i(s)ds
{9

be each expressible as a uniformly convergent series of the eigen-
functions ei(t). This includes our original assumption since if gi(t)

is integrable square, fi(t) can be expressed as a uniformly convergent
series of eigenfunctions of Ry(s, t) (see Sec., 2.2). In order to show
that it is more general, let us consider the case in which gi(s) is the

impulse function §(s - sl).. We have
and from Mercer's theorem

[00]
6= ) By els)) eglt)
i=1
and the series converges uniformly.
For a positive definite, non-degenerate kernel, the order of
summation and integration in Eq. 4.8 cannot be interchanged without

sacrifice of rigor since the series

e

1
5_1 s (u) e (v)

L
i
(=X

does not converge either uniformly or in the mean. As was pointed out
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in Section 2.3, this series can represent the operation which is

inverse to the operation

z(s) = Ry(s,t) f(t) dt
f

We shall formally denote this series by

5] K 1
R (s,t)—-z 5 e &0

.t

With this notation, Eq. 4.8 becomes

1

K(s, t) = ny(s,u) ny(‘t,v) R; (u, v) du dv (4.11)

=

Q

and for Eq. 4.10 we have

gi(t)= '/‘./‘R;l(t,s)ny(u,s)yi(u)duds (4.12)
95 7

which are to be interpreted in a symbolic sense only.

4,2 ANOTHER INTERPRETATION

We have found the solution in a manner which is more or less
straightforward but yet not very enlightening. We now consider a
s lightly different approach which will give us a better idea of what

the solution means. On consideration of Eq. 4.3 we see that it

Tlf the kernels are degenerate, this is equivalent to the matrix
multiplication

[5] = [25] [35] [2g]°

i,



implies that there exists some sort of linear relation between gi(t)

and :bi(t),, We could write

gi(t)= ’/’h(s,t)cbi(s)ds 3% bty B
Q

If we substitute this into Eq. 4.3, we obtain

'/‘Ry(s,t) fh(u,s)¢i(u) du ds = foy(s,t) ¢'i(5)d5
Q Q

Q

then we interchange the order of integration

f¢i(u) du fh(u, s) Ry(s.t) ds = foy(s, t) ¢i(s) ds
Q (9

Q

and since we are assuming that the set {q)i(t)} is complete, we must

have

fh(u,s) Ry(s,t) ds = ny(u,t) u,t e £
9

which is similar to the integral equation of Bootonr for the optimum

time-varying filter. If we invert this equation formally, we obtain

hu,s) = '/-R;_l(t.s)ny(u,t) dt
195

If we pass y(t) through this filter, the output is

z(t) = fh(t, u) y(u) du
Y

TSee Booton,3 Eq. 24; this is slightly different since we are confining
ourselves to filtering based on a finite time interval.
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The autocorrelation function of this output is then

Rz(s, t)= E [z(s) z(t)]= h(s, v) h(t, u) Ry(u, v) du dv
(3 Rl 0
= ./‘h(s, v) ny(t,v) dv
Q

-1
ffoy(s,u) ny(t, v) RY (u, v) du dv
.9

which is identical to the kernel given by Eq. 4.11. The solution can
then be described in the following way. We first pass y(t) through an
optimum linear filter and then we represent in the optimal manner

described in Section 3. 2.

SPECIAL CASES
(1) First we consider the case in which the signal y(t) is white;
that is, RY (s,t)= 6(s-t). On observing that the kernel which is inverse

to an impulse is also an impulse we have for K(s, t)

K(s,t) = f ny(s, u) ny(t, u) du
(9]

so that if A, and y,(s) are the eigenvalues and eigenfunctions of K(s, t),
we have

n

F* (¢, 31s0ses an) = Z a, yi(t)

i=1

a;‘=’/’x(t)gi(t)dt i VO PR
$)
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where by Eq. 4.10

;) = ./.ny(s.t) v;(s) ds
Q

and the error is

g* = fo(t,t) dt-z N
0 i=1

(2) Now suppose that the signal y(t) is the original signal x(t)
plus independent white noise so that ny(s, t) = Rx(s, t) and Ry(s, t) =

Rx(s, t) + N §(s-t)e From Eq. 4.9 we have

fo(s, t) ei(t) dt + N ei(s) = B, ei(s)
Q

from which we get

;) = v )

fii-:u‘i+No

where a; and vy, (t) are the eigenvalues and eigenfunctions of Rx(s’ £).

K(s, t) is then from Eq. 4.8

K(s,t) =

a,
— v6) v
j=l 1 o

18

From Eq. 4.10 we have

'/‘Rx(s.t) g;(s) ds + N g.(t) = a, v, (t)
Q
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so that

B i
gi(t) - ﬂ'i + No Yi(t)

and the results are

n

F¥(taj,oeesa )= Z a, v;(®)

i=1

= e W 21

L
|

i 7o +N x(t) v, (t) dt
Q

(o

@
118

R(ttdt-
Q

HM:J
p
+"'N
z

4.3 A BODE-SHANNON APPROACH

The derivation of the main results of the last sections were rather
long -winded; however, it is noted that the results of the first special
case are quite simple. We shall now describe how this result can be
derived in a shorter, more heuristic way, and then we shall argue that
any problem may be reduced to this one by passing the process y(t)
through a whitening filter. This approach is, of course, very similar
to and motivated by the familiar Bode-Shannonz approach to optimum
linear filtering for stationary processes.

Let us suppose that we decompose the white process y(t) and the

process x(t) that we wish to represent into the orthonormal series

Wt



@

&)= ) ;w0

i=1

(4.13)
[00]

x)= ) x ¢;6)

i=1
so that the random variables

Yls st Fgs eiais

xl, xz, X3; 880

represent the processes. Now, suppose we do this in such a way that

N, i=j
i
E [yi xj] - { (4. 14)
0 i#]
2 2
where )\1 & Ay 2 ... » If we want to represent the set {xi} by

n linear operations

w

1

o

\
in such a way that the total mean square error is minimum, intuitively

we would first try to approximate the variable with the highest correla-
tion first, and then the next and so on. For approximation of X, we

would minimize

© sl i

E [(xl -21)2] =E[xf] -ZZKiE[xlyi] +Z ZKinE[Yin]
i=1 & =

@® o

=[] -2k 2 [xy)] +Z el \q

i=1
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now
El(kx, - zl)z] = -2E [xlyl] + 2K =0

so that

The total error is then
2 2
i E[x] - %[ xy)]
i=1 ‘
S50 we would approximate the set { xi} by
Z.‘:E[xiyi]Y- 1=lgoo-,n

1 1

Now the question is what orthonormal sets {\Ui(t)} and {ct)i (t)}

do we use for Eqs. 4. 13 so that conditions 4, 14 hold? Since we want

E [xiyj] = ’[;./-‘Q ny(s,t)¢i(s) \bj(t)ds dt= 0 i#j

Then we use the solutions of

Lny(s,t) q;i(t) dt = N c])i(s) s € §)

or

ny(s,t)q)i(s) ds = \, q;i(t) t ¢ 8)

5

tSee Courant and Hilbert.7 p. 159
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for which

./. l:'/‘ny(s,u) ny(t,u) du:l ¢i(t) dt = hiz qai(s) s e §)
Q Q

(4,15)

Therefore, we use

RV fy(twi(t) dt=fy(t)gi(t)dt
Q Q

N
i
®
]

where
g () = f R, (5, 1) &;(s) ds
Q
and
i |
SR Bl Z 2, b, (t)
i=1

where the ¢i(t) are solutions of Eq. 4.15. The error is

n
0= ./‘R (t,t)dt-z x?
X 1

Q izl

and we are in agreement with our previous results in the first special
case,
If the process y(t) is not white, we can make it so by performing the

linear operation

y)(6) = fR;‘/z (s,1) y(t) at
Q

o8}

where R"l/z(s,t) =Z 571/2 e.(s) e.(t)e The B. and e, (t) are the
¥y =]t 1 1 1 i
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eigenvalues and eigenfunctions of Ry(s,t). To show that ¥ (s) is white

we take its autocorrelation function

RV} L= [yl( ylft ff 1/2 ,u) 1/2(1: V)R(u, ) du dv

(s, t)
(00)] [00]
,/'R;/Z(s,u) du f Z [31_1/2 ei(t) ei(v) z 5_]' ej(u) ej(v) dv
Q Q) i=l =1

!

[00] [00]
- .L‘R;l/z(s,u) du Z Bil/z ei(t) ei(u) = Z ei(s) ei(t)
i=1 i=1

If we take any function f(t) of integrable square and perform the operation

j(;RYl(s,t)f(t)dt fze(s e(t t)dt—-Ze(s f t) f(t) d

= f(s)
then this implies that

1}

@

Ryl(s, t) = Z ei(s) ei(t) = §(s-t)

i=1

which proves our assertion. We have lost nothing in performing this
operation since we may recover y(t) by operating with R;,./2 (s,t). We
now apply the results obtained for white processes. The kernel K(s, t)

becomes

K(s, t) = ’/‘nyl (s, u) nyl(t, u) du
Q
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but

nyl(s,t)= E l:x(s) 'L'R;l/z(t,u)y(u) du:|

= ./.R;l/z(t, u) ny(s, u) du
Q

so that
K(s,t) = ffR;l/z(u,v)ny(s,v) dv '/.R;l/z(u,w)ny(t,w) dw du
88 kY]
=ffoy(s,v)ny(t,w)fR;l/z(u,v)R;l/z(u,w)dudwdv
"0
= R__(s,v)R (t,w)R_l(v.w)dv dw (4.16)
and

a, = fhi(t)yl(t) dt = fgi(t)v(t)dt
£ Q

where

h,(t) = ./‘nyl(x, t) yi(s) ds
Q

=ffa;1/2(t,u) R, (5,u) v;(s) du ds
7 Kl 9

where the yi(t) are the eigenfunctions of K(s,t). Now,
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)
.
I
5\.
=
pod s
=
Lo
=
—
w
o
n
I
5\.

hi(s) '/‘R;l/z (s, t) y(t) dt ds
k9

so that

g, (t)

./-R;l/z(s,t) hi(s) ds
Q

= fR;l/z(s, t) ds '/.f R}l’/z(s, u) ny(v, u) yi(v) du dv
Q

aQ%a

ffR;l(t, u) ny(v, u) \A (v) dv (4.17)
0 g 9

We then see that Eqs, 4.16 and 4,17 agree with Eqs. 4.11 and 4.12.

4,4 TIME-VARYING LINEAR SYSTEMS

The problem considered in the last sections can be interpreted
in another slightly different manner which underlines its close relation-
ship to optimum time-varying linear operations. As we pointed out
earlier, the optimum time-varying linear operation on a process y(t)

to approximate x(t) is given by

z.(t):fh(t,u)y(u)du (4.18)
)

where h(t, u) is the solution of

L h(t, u) Ry(u, v) du = ny(t, v) v e8]

If we assume that u is a parameter, the kernel h(t, u) can be expanded

in the series
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00]
B(tu)=ho(t)= ) () v,
i=1
where {yi(t)} is orthonormal and

g;(u) = f ht,u) v;(t) at
Q

If we substitute Eq. 4.19 into Eq. 4. 18 and interchange the order of

summation and integration, we obtain

0]
20)= ) v;t) fy(u> g;(w) du
i=1 Q

so that
o8]
2= ) a; ;0
i=1
where

a, = f y(a) g; () du
Q

We can then conclude that on the basis of the results of the previous

section the finite series
iu
D gl v)
i=1

where {gi(t)} and {yi(t)} are solutions of the equations on pages 70

and 71, approximate the linear operation 4,18 in a most rapidly
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convergent manner in the sense that the mean square error between

z(t) and

0= ) v [ y@) g @) de (4.20)
i=1 Q

is minimized for every n,

If we wished to perform a filtering of y(t) over all time, then we
could do so by dividing the time axis into a series of intervals of the
form [lT, (,2+1)T] where j is any integer and then perform the
optimum operation indicated in Eq. 4.20 for each interval. If the

processes are cycloatationary,T that is

R B,t)=R (s+T,t+7T
g t) =R (s )
ny(s,t)=ny(s + T, t+ T)

then the {yi(t)} and {gi(t)} are the same for each interval. The
finite term approximation in Eq. 4.20 can then be realized in the form
shown in Fig. 4. 1. The process y(t) is first passed through filters of
impulse responses gi(T - t), the outputs are then samples by an impulse
at the end of each interval so that the result is an impulse of value a;.
The impulses then excite the second set of filters of impulse responses
yi(t), and the outputs are added together, The result is then the filtered
version Zin(t - T) and we have a delay of T seconds. Thus, we have
found an approximation of a time-varying filter for this cyclostationary
case using stationary components. The time-varying information comes

from the knowledge of the sampling instants.

t

" Cyclostationary" means that the ensemble statistics of the process
vary periodically with time. The word was coined by W. R. Bennett.
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Fig. 4.1.

The finite term approximation of a time-varying filter.



SINGLE TIME INSTANT ESTIMATION

Kos(:?ﬂ:mannz1 has considered a problem which is related to the
one considered here. It is the optimization of a set of coefficients

{bi} in such a way that

2
E [(z(Tl) - x(T,)) ] (4,21)

is minimized where 0 £ 'I‘1 € T and
z(T,) £(t)y(t)d (4.22)

that is, the estimation of the value of the process x(t) at a single time
instant based on an observation of the process y(t) during the whole
interval, He showed that the optimum set {bi} must be a solution

of the set of equations

@ T 5
Zl bi'/:/; Ry(u, v) fi(u)fj(v) du dv = ny(Tl,s)fj(s) ds

0

T (4.23)

In order to show that our solution using b, = yi(Tl) and fi(u) =g (u) also
satisfies this condition, we substitute in Eq. 4.10 and after inverting

the order of integration we obtain

® T
2 Vi(T1 f Y4 (u) d {f ny(u,v) gj(v) dv}
=1 0 0

xy (T2 8) g;(8) d
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The series on the left is an orthonormal series with Fourier coefficients
and it therefore converges in the mean to the function on the right.T

Moreover, since our solution minimizes

T
f E[(zn(t) 3 x(t))z] at
0

n L
where zn(t) = Z A (t) gi(s) y(s) ds, then we can say that although
i=1 0

for our choice the series of Eq. 4.22 does not necessarily converge
in a most rapid manner for every Tl’ it does so on the average over

the interval.

4,5 WAVEFORM TRANSMISSION SYSTEMS

One example of a cyclostationary signal is the signal that occurs
in a waveform transmission .-slys’cem,,1= In such a system we have at
the transmission end a set of n random variables {Ci} which occur
independently every T seconds. Each random variable multiplies one
of an orthonormal set of waveforms {si(t)} , each of which is zero
outside of the interval [O, T] , and the results are summed so that

our resultant random waveform signal is

x(t) = Z c, s;(t)
i=1
and
R_(s,t) = z E [clz] si(s) si(t) = Z N si(s) si(t)
i=1 i=1

TConvergence in the mean insures that Eq. 4.23 is satisfied everywhere
except at points of a set of measure zero, See Courant and Hilbert,? p. 110,

?

An experimental system has been studied by L0ve1125 et al.
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where Ao = E [cf] . We shall assume that the signals are arranged

in such a way that A, Z X, 2 ... o If we transmit this signal over

a noisy channel, we would then be interested in making an optimum
linear estimation of the set {ci} based on the received signal y(t)u
We note that there is a difference between this problem and the one
considered in the last two sections. In this problem we are interested
only in estimating the value of the parameters {ci} whereas before
we were interested in estimating the entire waveshape.

Let us consider the case in which we want to find linear estimates

{p;} ot {c;} where

1T
by= [ g (t) y(t) at
0
in such a way that
n
2
E Z ®, - <) (4. 24)
i=1

n
is minimized.T This is equivalent to finding an estimate z(t) = Z bisi(t)
i=1

of x(t) in such a way that

i
E &G - 2k a
0

is minimized since

TThis can be pictured by thinking of ¢ = {Cl’””cn} and b = {bl’”"bn}

as vectors, Then 4,24 is the average of the distance squared between
the two vectors.
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T T - . 2
E[f (x(t) - z(t))2 dt] = Ef [ Z c. si(t) 0 Z bj sj(t)] dt
0 g =l a5

= E [ i (bl - Ci)z]
i=1

We have already considered such a minimization in the first part
of the representation problem considered in Section 4.1, so that we

see from Eq. 4.3 that gi(s) must satisfy

T i
'/‘0 Ry(s, t) gi(s) ds ='[O ny(s, t) si(s) ds (4.25)

for 0 S 5T,

The best linear estimates of the c; are then realized by passing
y(t) through filters of impulse responses h, (t) = gi(T - t) and sampling
at the end of each interval as shown in Fig., 4.2. If we have additive

and independent noise, then

Ry (1) = E [x(s)(x(t) + n(t))] =R_(s,t)

so that Eq. 4.25 becomes

T
f Ry(s,t) g (s) ds = \, s,(t) 0<t<T
0

which is the equation for the matched filter in the non-white noise

casegt If the noise is white, that is Rn(s, t) = N_& (s-t), then we have

T
./‘ Rx(s,t) gi(s) ds + N gi(t) =k si(t) OLELT
0

TSee Davenport and Root, - pPp. 244-247, esp. Eq. 11-87.
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N,

i . i i
the solution is gi(s) BT I si(s) fori=1,...,n so that
) i o
b (t) = b s.(T-t). In this case by substituting into Eq. 4.6,
a e N
i o

the error is

n

w xf * \N_

922:"1'2: N~ + N =§, ~ + N (4.26)
s 1 0 v 1 (o]
i=1 = |

i=1

This linear estimator is a coherent device since its operation
depends on the knowledge of the sampling instants; that is, any such
system must include a method of extracting timing information from

the signal.

4,6 WAVEFORM SIGNALS WITH MINIMUM BANDW’IDTHT

In the case in which the random waveform signal is perturbed by
independent white noise we see from Eq. 4.26 that the error is indepen-
dent of the particular set of orthonormal waveforms used. We shall now
concern ourselves with the problem of picking the set of waveforms in

such a way that the expression

(v 0]
£2 s(f) dt (4, 27)

- @
is minimized where S(f) is the power density spectrum of x(t).
Expression 4,27 is the second moment of the spectrum and is, in a
certain sense, a measure of the bandwidth, Of course, x(t) is not
stationary so that it does not have a spectrum in the usual sense of

the Wiener-Khinchin theorem. However, if we make the process

t

This problem was discussed for a slightly different case in
reference 15.
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e gI(T-f) jS} > bl
.—-—b-g2(T“f) :{S} I-b2
g (1) =g

== g (T~1} AjS)—‘ba

SAMPLER

Fig. 4.2. The best linear estimator for the
parameters Ci'

¢, T 4 1 = s, (t)
l ‘ (t)
X

l i =8 s(t]

Fig. 4.3. The generation of a waveform signal.
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stationary by assuming a random phase relationship between the
members of the ensemble, we can then apply the Wiener-Khinchin
theorem to the resulting stationary autocorrelation function., This
is tantamount to using the time definition of the autocorrelation
function using a single ensemble member

T
C%x(r)z lim ;_T x(t) x(t + ) dt

T—®m -T

In the following discussion we shall assume that the waveforms
have continuous and bounded first derivatives and that E [ai] =0
fori=1,...,n because, if E [ai] were nonzero, periodicities would
occur and S(f) would contain impulse functions. In such a case it would
not be apparent what set of waveforms minimizes the expression 4,27,

We can find S(f) by assuming that the random waveform signal was
derived by applying impulse functions to a bank of linear filters with
impulse responses sl(‘t), %% § sn(t), which are zero for t > T, and
adding the outputs, as shown in Fig. 4.3. The impulses are applied
once every T seconds, and the impulse applied to the ith filter has
value Cye Since the c, are uncorrelated, the input processes are
also, Letting §(t) be the unit impulse function, we obtain for the

individual input autocorrelation functions
o 2 .
R,(t) = E [af] 8(t) = x, 6)

In accordance with the Wiener-Khinchin theorem the power density

specira are @ (f) = \;- It can be shown that the resulting output
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process has a power density spectrumT

n n

s@) = 15,0017 ®,0= 15,6017 (4. 28)

i=1 i=1

where

© T
Si(f) = f s_ (t) exp(-j2nft) dt =f sn(t) exp (-j2wft) dt  (4.29)

This method to find S(f) is essentially the same as that used by Lee. 4

Expression 4,27 now takes the form

® n o
-/‘fz S(f) af Z xif £ |s,(0)| % at

- i -®

®
:Z hiffz s; (f) s, () af (4.30)
e 0

1

1]

e—

]

)

=

where the bar denotes the complex conjugate.

t

In order for the integral 4. 27 to converge, it is necessary that
2 -k
£ s(f) = o(l£] ™)
for large f, withk > 1.} Then

s(E) = 0(]£]7%"2)

TSee Davenport and Root, 8 p. 184,

ilf(x) = 0(g(x)) signifies that f(x)/g(x) remains bounded as x tends
toward its limit.

*See Courant, 6 p. 250,
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and from Eq. 4.30

Is,®)1% = oel™2) e 2 et
T I
_ =ap e 1 _
Is; ) = o(lf] ) B 12, ey (4380

where k > 1.

We shall now show that in order for Eq. 4.31 to hold, it is

necessary that
si(0)= si(‘H'—'O 15 B2y ) ee,m (4.32)
Integrating Eq. 4.29 by parts we get

si(O) - 5.(D) exp(-j2nft) 1 L
S, (f) = . ¥ == s!(t) exp(-j2nft) dt (4.33)
1 i2of jém 1
j2m 0

where the prime denotes differentiation.
Since the si(t) are bounded, then [si(t)[ < Kfor 0 t £ T for some

number K, It follows that

< K |1 - exp(-j2niT)|
j2nt] | 2nf |

T
‘]%T-E./. si(t) exp (-j2wit) dt
0

= o(|£]7%)

Unless the conditions 4,32 hold, it is seen that
-1
s,) = o(lel™

which violates Eq. 4.31l. As seen from Eq. 4,33 with si(O) = si(T) = 0,

the Fourier transforms of the si(t) are (jZ'rrf)Si(f). From Parseval's
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theorem we obtain

(0 0) 2 (00) -
f (j2nf) S, (€) (-j2mi) 5, (F) df =f [si)]
-

-

(00)]
_~.4an £ |s, ()]

=i
so that from Eq. 4.30 we see that the minimization problem has

reduced to the minimization of

T
xif [s1) at (4. 34)
0

under the constraints that {si(t)} be an orthonormal set and

si(O) = si(T) =0foralli=1,...,n. Integrating by parts we obtain

£ T
f [s:i'(t)]2 dt = si(T) si(T) - s'i(O) si(O) = f si(t) s} (t) dt
0 0

g
- f s (t) sy (t) at
0

so that the minimization of 4. 34 is equivalent to the maximization of

h,/‘ sy(t) d (4. 35)
T

e f s, (t) L (t)] dt
0
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where L is the linear operator

2
d
L) === Ift)
] -2
with boundary conditions £(0) = £(T) = 0.

This operator is self-adjoint since

T
f g(t) L [£()] at =
0
T
=./- g'(t) £'(t) at =
0

;i
g(t) £'(t) dt

=%

76

g"(t) £(t) dt

b

i

L [g(t)] £(t) dt

by integration by parts where g(0)= g(t)= 0 and £(0) = £(t) = 0.

By the theorem of Section 2.4 the expression 4, 35 is then maximized
by the first n solutions of

dZ

— s.(t)= B, s.(t
=3 5;t)= B ;0

with the boundary conditions si(O) = 5.(T)= 0. These solutions are

1/2
s (t)=[—-2-] sinz—ﬂ't 0St=T
Y4 T T j: o
=0 elsewhere s gy
for which
It
B/f "[_'1'*—] L= 132, vas
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For these solutions

2
2 ST 2
s, )] ° = cos” wfT A odd
) (22 r 4sz2)2 -2
Z
= 84°T sin2 £ T jeven

From Eq. 4.28 the power density spectrum becomes
n )\‘e/gz

= L cos wiT =
S(f) 11-2' ( o ) L (12 ) 4{2'1‘2)2
£ odd

n N ZZ
BT .. 2 £
=5 (sin wfT)

K even

The power density spectra obtained by using n= 1, 2, and 3 are shown

(lz ! 4f2'1"2')2'

in Fig, 4.4 for T=1., In these examples it was assumed that

= = %
Kl‘KZ—eou‘-Kn_nu

Let us consider a normalized version of this spectrum

n
Sf.ZT

Sn) = 50)
for the case in which Ay 2 Ay 2 .00 » After some algebraic manipulation

we find that

2 et Y 2
S ff) = WLE I:[cos 'rr_{n_:l
N " 2 z ( }z _ {29292

n
i £2=1
fgdld . £ odd
o
+ [sin m]z i —é———z }
2 422-2 (22 B fZ.nI:‘.)Z
Leven
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n
2
< Z o
£=1 (l 'fn)
Iff > 1, then

‘22 < nZ
wz ] f2.112).?. (nZ B f.7.’.nZ)2‘.

foer n so that for f > 1

z L* £ g g Ll
O R R RN I

therefore, we have the following upper bound for the spectrum for f >1

1

S. (£) <
n) T

This tells us that it is possible to make up a signal with waveforms which
are time limited to T seconds in such a way that the signal has on the
average n/T degrees of freedom per unit time and the power contained
outside of a bandwidth of n/2T cps is vanishingly small for n large
enough., We note in this respect that if we drop the time limited
restriction we can do it with zero power outside of a bandwidth of

X >
functions,

n/2T cps by using
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CHAPTER V

THE NUMERICAL COMPUTATION OF EIGENFUNCTIONS

In general, the analytical solution of integral equations of the form

K(s,t) ¢(t) dt = X ¢(s) s e§) (5.1)
Q
is a formidable problem. In view of this we have developed a computer
program for the solution of these equations on the IBEM 704 computer in
the M.I. T. Computation Center. A general description of the methods

used in this program follows.

5,1 THE COMPUTER PROGRAM

The program can be divided into three main sections. These are

(1) The approximation of the integral equation by a matrix equation

(2) The diagonalization of the matrix equation

(3) The manipulation of the diagonalizing matrix to obtain the desired
approximation of the eigenfunctions.,

For approximating the integral equation by a matrix equation, we use
the Gauss-Legendre quadrature method for the approximation of a definite
integral, On assuming that the integral has been normalized in such a
manner that the interval of integration is [-1, 1] » we approximate the

integral by a finite sum

1 n
f f(t) dt = Z a f(ti)

-1 i=1
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where the weights a; and the abscissas ti are to be chosen. If we

specify that the approximation above be exact for f(t) = 1, x, xz, sy xzn'l,
then we have 2n equations and 2n unknowns, and we can solve for the

ai's and ti's. The approximation is then exact for any polynomial of
degree 2n-1 or less. The weights and abscissas are tabulated for

the interval [-1, l] for n up to 16.T If 2 more accurate approximation
is desired, the interval can be divided into sub-intervals with a separate
approximation for each interval. In the program we have used a ten
point approximation for the basic interval so that n will be any multiple

of ten.

If we apply this method to Eq. 5.1, we obtain

fK(S-t) ¢(t) dt Z a; K(s, t;) o(t;) = A 6(s)
Q =1

and considering this for the same values of s as t we get the following

set of linear equations B

n

Zaj K(ti,tj)¢(tj)= xq:(ti)‘ 1% Femesh
=1

We now make the substitution y(tj) = Jaj ¢(tj) from which we have

n
Z ,/?a'l K(ti’ tj) q/aj Y(tj):: )Ly(ti) §2 iyl
J=1

t

For a brief description o§ the method and a tabulation of these values,
see Tables of Functions, 1 pp. 185-189,
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These equations are now symmetrical, and can be solved by diagonal -

izing the matrix
[Ja',; K(t,, tj) ,/aj }

This is done by means of an efficient and accurate sub-program
written by F. J. Corbato of the M.I. T, Computation Center. This
program gives the eigenvalues )&k and the diagonalizing matrix with
the eigenvectors yk(tj) as columns,

Our approximations of the eigenfunctions ¢k(1;) of Eq. 5.1 are

then

il .
q’k(t_]): E Yk(tj) k!:|= laovt:n
j

We now have n samples of each of the approximations of the eigen-
functions. These samples are rather far apart and in order to find
intermediate values we have to interpolate. The interpolation is done
separately for each sub-interval by assuming that the function is a

linear combination of the first ten Legendre functions ,il(t)

10
Zai ,Zi(tj)=f(tj) 1% i, 10
i=1

so that we have ten equations and ten unknowns, each equation cor-
responding to one sample point or abscissa. We then solve for the

a.i's by using a program for solving linear equations.f

1‘Share Identification No, MIDHI3,

fWe used program No. ANF402,
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The time required for the running of the program on the IBM 704
for n = 40 is approximately ten to fifteen minutes.,

We have described the program operation for a finite interval of
integration, If the interval is {} = [O, CO] , We can approximate the
integral equation in a similar fashion. In the program we have divided
the time axis into the four sub-intervals [0,3], [ 3,8], [8,16], and

[1 6, (D] « In the first three we have used a ten point Gauss-Legendre
approximation and in the last interval we have used a fifteen point
Gauss-Laguerre approximation so that we have a 45 x 45 matrix,

The Gauss-Laguerre approximation is used when the integral to be
approximated is over the semi-infinite interval and is similar to the
Gauss-Legendre except that it is specified that the approximation be

t 2n-1e-t°t

exact for £(t) = e—t, X€ jesc,X The remaining operations are

then the same as before,

5.2 THE COMPARISON OF NUMERICAL RESULTS WITH

A KNOWN SOLUTION

In order to check the accuracy of the program, we have used it to
compute the solutions of an example the results of which are known

analytically. We have used as a kernel

K(is,t)=n N

The eigenfunctions and eigenvalues for this kernel are given in Section 3,7

but are repeated here for convenience, The eigenfunctions are

¢y COs b .t k odd
k
¢k(t) * {

Sk sin bkt k even

For a description and tabulation, see Tables of Funt:tions,3l pp. 191-199.
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where the ck‘s are normalizing constants and the bk's are the solutions

of the transcendental equations

b, tan bkA= 2m k odd

k

bk cot bkA = k even

The eigenvalues are given by

41r2

Ry, B SEmSmen
k 2 2
bk + 4w
The transcendental equations were solved and the eigenvalues and eigen-

functions for k= 1,2, 3,6, and 10 were found to be

Ny = 0.7105 ¢1(t) = 0.830 cos 1.003t
N\, = 0.3392 ¢, (t) = 0,907 sin 2.193t
Ay = 0.1632 ¢3(t) = 0,952 cos 3,558t
Xp ™ 0.0367 ¢6(t) = 0,989 sin 8,047t
A= 0.0120 ¢10(t)= 0.996 sinl4, 247t

The eigenvalues computed by the program for n = 20 were

Kl = 0,7136
A, = 0.3426
)\3 = 0,1655
)\6 = 0.0399
?\10= 0.0160

and those for n = 40 were

105



kl =0,7113
Ay = 0.3400
7\3 = 0, 1640
)‘6 = 0.0375
)\lor-' 0.0128

The sample points for the computer eigenfunctions over one-half of
the interval are shown plotted with the true eigenfunctions in Figs. 5.1a,
5.1b, and 5.lc. The first two eigenfunctions ¢, (t) and ¢2(t) are not
shown since there was no discernible difference between actual and

computed.

5.3 THE EXPERIMENTAL COMPARISON OF EIGENFUNCTIONS
AND LAGUERRE FUNCTIONS FOR THE EXPANSION OF
THE PAST OF A PARTICULAR RANDOM PROCESS

The optimum set of functions for expanding the past of a signal
can in some cases do much better than lL.aguerre functions. To show
this we have taken a sample function of a random process generated
in the laboratory and expanded it by means of the digital computer,

We chose a zero-mean random process with correlation function
R(T)= exp [ -|T|] cos 37T

and used a weighted norm with weighting function W(t) = exp [-t/4] .

The process has power density spectrum

1 1
S(f) = 2 + 5

1§ dn® [f.+2—;] 1+4w2[f-2%-r]

T

We use the terminology of Section 3. 9.
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Fig. 5.la. The comparison of the actual and

computed forms of ¢3(t).
107



O 3
X
T 1 |
- S 05 1.0
X n=20
e N=40
-1.o-

X

Fig. 5.1b. The comparison of the actual and
computed forms of ¢6(t).
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Fig. 5.1c. The comparison of the actual and
computed forms of ¢ 10(t).
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The autocorrelation function and power density spectrum are shown
in Figs. 5.2 and 5.3. Such a process was generated by passing white

noise through a filter with system function!

H(s)=-\/i 2‘s+.~/10
5 4+ 2s + 10

The first ten eigenfunctions computed by the program for the integral
equation

00)
exp [- % -Tt_i' - ls-tl] cos 3(s-t) ¢(t)dt = X\ ¢(s)
0
are shown in Fig. 5.4.
The scale factor that was used for the Laguerre functions was chosen
by minimizing the weighted error for the first LLaguerre function in a
manner similar to that in Section 3,10. The scale factor found on this

basis was
a= 4,5

The approximations of a sample function of the process over a
period of 7.5 seconds using the eigenfunctions and Laguerre functions
in a straight orthogonal expansion forn=1,..., 10,15, and 20 terms
is shown in Figs. 5.5a and 5.5b, It is seen that the eigenfunctions do
much better especially in approximating the higher frequency portions
than the Laguerre functions, This is because, as was pointed out in
Section 3,10, the Laguerre functions have Fourier transforms of the

form

t

Of course, the actual circuit used was scaled up in frequency and
impedance level, but this is irrelevant here.
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Fig. 5.2. The autocorrelation function of the process
to be experimentally represented.
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Fig. 5.3. The power density spectrum of the process
to be experimentally represented.

111



\ 1.n
G2nt -35)
1)n+1

!
e (j2wf + 5

n=0,1;2 .

a4

so that most of their energy is near the origin. As seen from Fig. 5.3,

however, most of the energy in the random process is not near the

origin so that the performance of the Laguerre functions is not

expected to be near optimum.
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using eigenfunctions and Laguerre functions.
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APPENDICES

APPENDIX 1, PROOF OF THEOREM OF SECTION 2.4
Theorem The sum

n
Y e <ép L[e]>
i=1
where <, > <, B <. is maximized with respect to the orthonormal

set of functions {¢i(t)} by the choice
¢i(t)=yi(t) i:‘-l;Z,-on,n

and this maximum value is

n

Z C. X
i i

i=1

Proof: First, the eigenfunctions are the solutions of
L [yi(t)] =\, v (t) 121,200

arranged so that N; 222 ... . Since L is self-adjoint, the yi(t)

form an orthogonal set. If the yi(t) are normalized, we see that

In n
Z o <vp L[y]> = Zci f\’i(t)L[Yi(t)] gt
i=1 i=1 Q
n
= Z c:i hi
i=1
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Now we shall show that this is the maximum. Suppose we have some

other orthonormal set {cbi(t)} for which

T < ¢, (&), Yj(t)> = f¢i(t)vi(t) dt
Q

then

1]
E:.J\.
©
=
=
I
Prem—r
;]
€
3
Sl
=7
| Sy
=
e
o
ol

'/‘¢i(t) L [¢;0)] at
Q

I
b'\.
sl
=
INg:
‘_IP‘
£
'_:-4
=
£
I
18

J=1 J=1
(00) n
B 2 2
Ny ) ey ) Oy a e
i j=1
n
< +Z B Lial
N ] n’ i}
=1
e
since 2. w2 =1, alli, and\, -\_ < 0 all j > n+l, then
=1 4 j n
n

n

i=1

i=]

n
=n>\n+Z(Rj -kn)+z ()\j_)\
J=l

=1

therefore,
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'/‘q;i(t) L [q;i(t)] dt £ n)x + Z (xj -xn) Z ‘*’izj
Q i=1
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<

IA
[+

€
iy

IA
gl

€
S

i

—

then

i ./‘ntbi(t)L [¢,®)] at si ¥

=l
and this is true for any n. Now consider

chpteh, taas te A = cn(hl + eee +)s.n)

2

+ (Cn;I = 2 Cn)(ll + 0 9 + R + L +

n-l)

+ (c1 - cz)(kl)
If we set a; = f ¢i(t) L [q:l(t)] dt, we know that
Q
R

A - T SN TR
1 n 1 n

v
a

. 3 L = >
If we multiply consecutively by Ch' Snol = Cp? e s €1 - C 2 0

2
and add, we get
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n n n
Z con, 2 Z c; o, = Z & f¢i(t) L [q,i(t)] dt
i=1 i=1 =1

Q

which was to be proved. The proof of the second case is similar.

APPENDIX 2, PROOF OF THEOREM USED IN SECTION 3.5

We shall first state the following theorem of Kac, Murdock, and
Szeg618 which will be used to prove our theorem.

Theorem Consider the integral equation

A
f P (s-t) ¢i(t) dt = N, ¢i(s) -A £ s <A
-A
with eigenvalues ;| 2 X\, 2 ... . If we define
(00]
F(f)=f P (t) exp(-j2nft) dt (A2-1)
=100
then
im 5= N,(@,b)= £ [f; a < FE) <b| (a2-2)
o BE Al ; -

where NA(a,b) is the number of eigenvalues of the integral equation
having values falling within (a, b) and where [E] denotes the measure
(or length for our purposes) of the set E. The limit A2-2 is true provided
that (a, b) does not contain zero and the sets where F(f) = a or F(f) = b
are of measure zero.

If Rx(t) = p (t) in the theorem above, F(f) is then Sx(f), the power

density spectrum of the process x(t) and is therefore even and everywhere
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positive. Let us assume that Sx(f) is continuous and monotonically
decreasing for positive arguments. We then subdivide the interval
(ao, bo) in the range of S, into n subintervals, denoting the subdivision
by (ao. 3)yeeesay 1,3 = b,) where aj = Sx(fo) and b, = SX(O). The
corresponding subdivision of the positive domain is (’fn = 0, fn-l' asie

I

l’fO) where a, = Sx(fi). We now observe that from the theorem

— < . < S
e T Alj_néo 2A By = 4y o =y
D,
1

where D, = [i. a: - & Ap & a.] , and from this it follows that
1 i-1 f 1
n n
! %
, - < - < o
é Z 2.0 8., -8) = Alj_moo ZA Z Mk = Zz a1 - )
i=] D i=l

where D = [j ; ?\2 2 ao] . This is true for any subdivision and by

the definition of the Riemann integral,r if Sx(f) is integrable, then

n n

Lattyb, 2 z a; 4 (fi-l - fi)= g.l.b. 2 Z ai(fi-l - fi)
i=1 i=]
£ f
o
= zf sx(f) df =f sx(f) df
0 -f

o

and we have

o T p. 88.
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Placing f; = k/2 we get
k/2
1
A2 sw
D -k/2

where D = [ 13 )\i 2 Sx(k/Z)] « We then observe that from the theorem

lim = (8, (k/2),0 )=k
A o A N

or

NA(Sx(k/Z),m )=n ~ 2kA

so that we have finally

lim — Sx(f) df
n—-o" Z fk/z

A similar result can be obtained for monotonic spectra subject to
the conditions of the theorem. It amounts to adjusting a, in such a way

that

w5 @ 2 a,] =x

We then have

A
lim-liz x.:f S_(f) df
n 1 X
E

n—@om i=

i

where E = [f; 5_(f) 2 ao] , and this result is used in Section 3.5,
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APPENDIX 3, THE ERROR INCURRED BY SAMPLING AND

SIN X

RECONSTRUCTING BY MEANS OF X

FUNCTIONS

Let x(t) be a random process with autocorrelation function R(t)

and power density spectrum S(f). We sample the process at the rate

sin x

- samples per second and reconstruct with functions getting

2 W

a new process

QO sin%r-(t LA
y6) = ) xeT)—
n=-a ?('t - Il"l‘.')
where T = W We want to find the error

=
—
(0]
|8
—_——
ot
g
et
11

£ [ ) - x)?]
E[y*®)] +E[*®)] -2E [xty®)]

e8] [00)]
E[xz(t)] +Z Z Rnht -mt)

n=-m m=-00

. .
sin (t - n7)sin (t-mT)

I

+ (t-n7)Z(t-m7)

D sinl(t ~ B
-3 R(t - nt) =
HZ_(D _—T;-(t _ HT) (A3—1)

The second term may be reduced in the following manner (due to Slepian).

Let n-m =/

o & in < (t - - m sin = (t - m
r(LT) Z : :( = T)ﬂ ok al (A3-2)
= = o Fh-dr-m )I@-mT)
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but since is bandlimited, we have the identity
sin—;-rr(x-a) © sin-g—(mr - a) sin—g-(x -mrt)
s P :
= (x-a) e +(mz - a) =[x ~ me]

and letting a = t and T=1t - x, we get

sin%!‘r i sin; 6~ mz) sin Tr?(t o jr -mT)
™ i T
4 2o L-mr) + @& - £t -mr)

so that expression A3-2 becomes

00]

ZZ R(fr) Si’; T =R(0)=E [xz(t)]
=-

We now have for the series A3-1

: ™
sin= (t - nt)

(08}
E [ez(t)] = 2E [xz(t)] M2 Z Rt - n1)

m
= 0 “f.'(t—n't')

Now the last term is periodic of period T, so we average over a period

Y2 /2 sin = (t-nt)
%f E [ez(t)]dt 2E [xz(t)] —%./. Z R(t-nT) ———— dt

/2 -T/2 n=v00 7 (t-nT)

1]

where we make use of the identity
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/2 o ©
'/‘ z £(t - nt)dt = f £(t) dt
-T2 m=-@ -0

Now according to Parseval's theorem we have

o sin —t w
’/.R(t)—-—ﬂl-—dt-—' rf 5, (f) df
Tt W

-

i

T/z w
?l-f E [e®®)] at=2E [x*@)] - Zf Syl

i
[S]
m B8
»
=
o
iy
1
(Y]
¥ =
0n
»
=
o
4

W ©
z[f Sx(f)df+f s (£) de
W

0 )

which was to be proved.

APPENDIX 4. DETERMINATION OF THE EIGENVALUES AND
EIGENFUNCTIONS OF A CERTAIN KERNEL

We shall find the eigenvalues and eigenfunctions of the kernel

-ps®-pt®- 2 (s-t)?

K(s,t)= e (A4-1)
First, we shall need two identities. The first is
2
© 2 | WL
f g (HIAETE 4 =\/%_ e (A4-2)

-0
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We have

I
o
]
p|=
o)
[\%)
l\
8 8
e +
Y
b -
™
1
W
o
[3Y)
(o R
—t

The second identity is

@ n 2 2 .
f {d o-bt } oat’ g-i2wft g
at™
-

2 2
._.n LI L bg £2
_ [.ia [ W a a(b-a)
i [T] TP {_n ¢ }
df
Consider
(00]
n 2 2 .
I=f E—I—le-bt } et & IVt g
4 dt
2
y ® oo 2y aft-jL)?
3 -i5=)
= e@'a‘ f -d—n = bt } = 22 dt
o

since the integrand is entire
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% 2
© T
) eﬁ [E]n = -b [t+J Za.] atz
= : — e e dt
J dyn
-
2
2 b
iy n 7% by
_ Aa [Za] d 4a ~(b=alt 1 =3 dt
;1 oo e e Y e
A =0
2 b 2 b2y?
2 rza® @ 422 43° (.3}
e [T] d_yﬁ = D
R 3%2- RT
_[2a 1r a a(b-a
. [_] ] b-a € dyn 3

If we now let y = 2wf, then we have the identity.

Now we want to show that

2 n 2
kt- d -2kt
¢ ()= e E;ﬁ e (Ad.4)
are solutions of
@ 2 ..2 2 |
f o-Bs-Pt H(s-t) o, (t) = X, ¢n(s) (A4.5)

- @
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for some scale factor k. Substituting A4-4 into the left side of

Eq. A4-5, we have

2
2 ©_2 (s-t) 2 n 2
I=e'ﬂs fe 2 e(k-ﬁ)t {’d_ﬁ e-Zkt } dt
dt

@ W
f £(s) g(t-s) ds = f 2™ £ () G ) at
(o8] (e8]

-
P Zkﬂz 2
n B fz n 2 £
j(k-B) /[ k-p d k™-p
[ = kK+p © = df
I [ﬁ 1112] 2
_ 2q” JZTI'fS k-B~ a
. a(k+B)
Pkwt 2
n = .2 .2
L. kP } gt
df

where we have applied the identity A4-3, If we apply it again and

simplify, we get
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_1____6] 2
ool e B

Zkasz
i 2 zZ -2
&[5 - 2] Ga-par2(®-p%)
=5
ds™
If we set k = +vB(a+p), after some manipulation we see that
n d 2
1 =\/ 2 [1 - £ (/BEB) ~[3)] e L -Zks
a+ 2 /B(at+p) + 2B S

so that the eigenvalues and eigenfunctions are

*n =\/a + 2 «/;T(Tam) + 28 [1 E % (plesp) - B):ln

o Blrp)t® &% -2 /Blatp)tt
n

(t) = A
®n n e

forn=0,1,2,... . Inour case a=f = 1 and the kernel was multiplied

b}r'\/lz‘:T so that
1 n
o=t St (3. 27)
= 34+ 22

2 n 2
¢n(t) =LA e‘/z—t ;—n e"?'*/z—t
t

tot av=n0, B 20 sl
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APPENDIX 5, THE SOLUTION OF A CERTAIN INTEGRAL EQUATION

We want to find the y_(t) which solves the equation
¥n

An - n
dt

n

2 .n 2 2 ® 2
J2t at e_zﬁt _ oot f o - (t-u) e 1 1

®
2oy 2 2
% e(«/E+1)t d” _-2/Zt =f - (t-u) o s
n dtn

If we take the Fourier transform of both sides, we get (using the identity

A4-3)
2

A ["M%f_l.)_}n\/% eﬁfz{% e_zﬁwzfz}

2f2.
SV RS )

where Pn(f) is the Fourier transform of yn(t). We then see that

242 2.2

T_(6)=4a [_j(@+l)]n\/%eﬂ+1

f

W
af”

Taking the inverse Fourier transform of both sides and simplifying we get
1+ﬁt2
1 22 dt e_ﬁtz
w2 -~ +/2) dt”

v (t) = A_(/Z +2)°
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