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Abstract

The aim of this paper is to present an investigation of the pos-
sibility of efficient, discrete representations of random signals, In
many problems a conversion is necessary between a signal of con-
tinuous form and a signal of discrete form, This conversion should
take place with small loss of information and yet in as efficient a
manner as possible,

Optimum representations are found for a finite time interval,
The asymptotic behavior of the error in the stationary case is related
to the spectrum of the process,

Optimal solutions can also be found when the representation is
made in the presence of noise, These solutions are closely connected
with the theory of optimum linear systems.

Some experimental results are obtained using these optimum
representations.
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CHAPTER 1

INTRODUCTION

..1 THE PROBLEM OF SIGNAL REPRESENTATION

A signal renresents the fluctuation with time of some quantity,

such as voltage, temperature, or velocity, which contains information

of some ultimate usefulness. It may be desired, for example, to

transmit the information contained in this signal over a communi-

cations link to a digital computer where mathematical operations

will be performed. At some point in the system, the signal must

be converted into a form acceptable to the computer, that is, a

discrete or digital form. This conversion should take place with

small loss of information and yet in as efficient a manner as possible.

In other words, the digital form should retain only those attributes of

the signal which are information-bearing.

The purpose of the thesis research presented here has been to

investigate the possibility of efficient, discrete representations of

random signals.

Another example which involves the discrete representation of

signals is the characterization of nonlinear systems described bv

Bose? This involves the separation of the system into two sections.

a linear section and a nonlinear, no-memory section. The linear

section is the representation of the past of the input in terms of the

set of Fourier coefficients of a L.aguerre function expansion. The

second. section then consists of senlinear, no-memory operations

on these coefficients. Thus, the representation characterizes the

memory of the nonlinear system. This idea originated with Wiener.



This thesis actually originated on a suggestion by Prof. Bose

in connection with this characterization of nonlinear systems. He

suggested that since in practice we shall only use a finite number of

Fourier coefficients to represent the past of a signal, perhaps some

set of functions other than lL.aguerre functions might result in a better

representation, We have been able to solve this problem with respect

to a weighted mean square error or even a more general criterion. It

is not a complete solution, however, since what is really wanted is a

best representation with respect to the operation of the nonlinear system

as a whole.

The problem of discrete r- —esentation might be described as

shown in Fig, 1.1. A set of numbers which are random variables

are derived from a random process x(t) and represent that process

in some way. We must then be able to use the information contained

in the set of random variables to return to a reasonable approximation

of the process x(t). The fidelity of the representation is then measured

by how close we come to x(t) with respect to some criterion.

1.2 THE HISTORY OF THE PROBLEM

The problem of discrete renresentation of signals has been con-

sidered by many authors, including Shannon, 28 Balakrishnan, | and

Karhunen? Shannon and Balakrishnan considered sampling repre-

sentations while Karhunen has done considerable work on series

representations. To our knowledge, the only author who has done

considerable thinking along the lines of efficient representations is

Huggins.!! He considered exponential representations of signals

which are especially useful when dealing with speech waveforms.



~~ —_ ~ fa, »0,)

f'ig. 1.1. The discrete representation of a

random function.



CHAPTER 1I

BASIC CONCEPTS

In this chapter we shall briefly prcs-at some of the fundamental

ideas which will form the basis of the following work, The first three

sections will cover function spaces and linear methods. A theorem

which will be used several times in the later chapters is presented

in the fourth section. The fifth section will discuss random processes

and some methods of decomposition. This chapter is intended as a

resume, and the only part of it which is original with the author is

a slight extension of Fan's theorem in Section 2. 4.

2.1] FUNCTION SPACE

A useful concept in the study of linear transformations and

approximations of square integrable functions is the analogy of

functions with vectors (function space). As we can express any

vector v in a finite dimensional vector space as a linear combination

of a set of basis vectors {4 }

J

n

). Yi
i=1

(2.

SO can we express any square integrable function defined on an interval

fl as an infinite linear combination of a set of basis functions

f(t)
a0

2. a. 4. (t) (27

The analogy is not complete, however, since in general the equality



sign in Eq. 2.2 does not necessarily hold for all t ey . If the a,

are chosen in a certain way, the equality can always be interpreted

in the sense that

Ym [[w0-3 a, 6, (t)
1-0 0 {= 1 -

To be precice we should sav that the reries

dt =  Ll 2 (2.3

converges in the mean

to f(t) or

n

f(t) = 1.1. m. &gt; a, 6:(t)
n—o .--

where l.i.m. stands for limit in the mean. Moreover, if it can be

shown that the series converges uniformly,T then the equality will

be good for all t ¢ §) , that is

n

i)= lim &gt; a, $, (t)
n—qao i=1

N

if the set {o,(t)} is orthonormal

1 i

J $.(t) &amp;.(t) a-{
QO 0 i

and complete; i.e.

f*

JERS dt=0 alli= 1,2...
a

Fi, for any strip (f(t) + ¢ f(t) - ¢) for t ¢ 8, the approximation
n

&gt; a; fh. (t) lies within the strip for n large enough, the series
i=1
converges uniformly. For a discussion of uniform and nonuniform
convergence, see Courant. B p. 386.



if and only if f(t) = 0, then the coefficients a, in Eq, 2.2 can be given

y-

| £(t) ¢, (t) at
0

and the limit 2. . holds,

Uniform convergence is c_rtainly a stronger condition than con-

vergence in the mean, and in most cases is much more difficult to

establish, If we are interested in approximating the whole function,

in most engineering situations we will be satisfied with convergence

in the mean, since Eq. 2.3 states that the energy in the error can be

made as small as is desired. If, on the other hand, we are interested

in approximating the function at a single time instant, convergence in

the mean does not insure convergence for that time instant and we

shall be more interested in establishing uniform convergence.

Another useful concept that stems from the analogy is that of length.

Ordinary Euclidian length as defined in a finite dimensional vector space

n 11/2
2oe1=1

and in function space it can be defined as

1/2
&amp;)| = [ea a |

9] -

Cc

It can be shown that both these definitions satisfy the three conditions

that length in ordinary Euclidean three dimensional space satisfies;



namely,

(1) |v] = 0, if and onlyif v = 0.

(2) lev] =clv]|

BYlv+twilg|y| tv]
The first states that the length of a vector is zero if and only if all

its components are zero, the second is clear, and the third is another

way of saying that the shortest distance between two points is a straight

line.

There are other useful definitions of length which satisfy the con-

ditions above, for example

fi) = | [woo at
0 —

1 /A
iJ =

where W(t) &gt; 0. We shall call any such definition a norm, and we

shall denote a norm by ||f(t)]] or ||f]l.

In later chapters we shall use the nor—1 as a -neasure of the

characteristic differences between functions. Actually, it will not

be necessary to restrict ourselves to a measure which satisfies the

conditions for a norm and we do so only to retain the geometric picture.

In vector space we also have the inner product of two vectors]

 yy

tr we = v, Ww.
1=1

and its analogous definition in function space is

&lt;t,g&gt; = [ «o g(t) dt
0

Fwe use the bracket notation ~v w* to denote the inner product.



An important concept is the transformation or operator. In

vector space, an operator L is an operation which when applied to

any vector v gives another vector W

w=L[v]
It is a linear operator when

L (23; * a5V2 | = a Lv] + 2,L [v2]

for any two vectors vy and Voye Any linear operation in a finite dimen-

sional space can be expressed

T av,1]
i=1

"

8 ao gs I1

which is the matrix multinlication

wv] = [2s] +]

The same dc "nition holds in function space and we have

gt) =L [£(t)]

A special case of a linear o~ - "or is the integral operator

g(s) = | xe. t) £(t) dt
3

where K(s, t) is called the kernel of the operator.

A functional is an operation which when applied to a vector gives

a number: i.e...

i =T|[ v]
and a linear functional obevs the law



T 217) + 2272 | = 2,7 + |v]
For function space we have

c=T [£(t)]

The norm and an inner product with a particular function are func-

tionals. In fact, it can be shown that a particular class of linear

functionals] can alwavs be »-——--~ented as an inner product, that

ret)] = [ee g(t) dt
0

for any f(t).

2,2 INTEGRAL EQUATIONS

There are two types of integral equations which will be considered

in the following work. These are

p_

| Kt) 6) dt = x 6s)
vey

o 0 (2.4,

where the unknowns are ¢(t) and A and

*

K(s,t) g(t) dt = f(s)

“0
where the unknown is g(t).

i i (2.5)

The solutions of the integral equation 2.4 have many properties

and we shall list a number of these which will prove useful later. We

shall assume that

[[i=e.0? ds dt &lt; (1

' These are the bounded or continuous linear functionals. See rriedman'®
oD. 18.22.



and that the kernel is real and symmetric

K(s, t) = Kt, s)

The solutions ¢, (t) of Eq. 2.4 are called the eigenfunctions of K(s, t)

and the corresponding set {ng} is the set of eigenvalues or the

spectrum. We have the following properties:!

(1) The spectrum is discrete; that is, the sct ot soiurions

is a countable set.

(2) Any two eigenfunctions ccrresponding to distinct eigen-

values are orthogonal. If there are n linearly independent solutions

corresponding to an eigenvalue A, it is said that \. has multiplicity

n, These n solutions can be orthogonalized by the Gram-Schmidt

procedure, and in the following we shall assume that this has been

done.

(3) If the kernel K(s, t) is positive definite; .. .

EZ f(s) f(t) ds di
Q%0

for f(t) # 0, then the set of eigenfunctions is complete.

(4) The kernel K(s,t) may be expressed as the series of eigen-

Functions

@®

K(s,t) = &gt; As ¢, (s) ¢, (t)
1=1

(2.
’

9)

which is convergent in the mean.

I The proofs are given in the following references: (1) Courant and
Hilbert, ‘ p. 122, (2) Petrovskii,26p.61, (3) Smithies,27p.127,
(4) Petrovskii,2® p, 72, (5) Petrovskii,2®6 p. 76, (6) Petrovskii,?
p. 68, (7) Smithies,29 p. 131.

- ——— Baron



(5) If K(s, t) is non-negative definite; i.e.,

f 5
K(s,t) f(s) f(t) ds dt.)

for any f(t), then the s~~ies 2.6 conver

2

.8 absolutely and uniformly

(Mercer's theorem).

(6° If

f(s) = [ x 0re0a
0

where g(t) is of integrable square, then f(s) can be expanded in an

absolutely and uniformly convergent series of the eigenfunctions of

K(s,t) (Hilbert-Schmidt theorem).

(7) A useful method for characterizing the eigenvalues and eigen-

functions of a kernel utilizes the extremal property of the eigenvalues.

The quadratic form

[[eer ds dt
00

where f(t) varies under the condiuons

/

£%(s) ds = 1

f(s) y;(s) ds = 0 i=1,2,...,n-1
&amp;°

2)

where the v,(t) are the eigenfunctions of K(s, t), is maximized by the

choice f(t) = Y,,(t) and the maximum is A. There exists also a minimax

characterization which does not require the knowledge of the lower order

eigenfunctions.



We shall adopt the convention that zero is a possible eigenvalue

50 that every set of eigenfunctions will be considered complete.

Bv Picard's theorem, Eq. 2.5 has a square integrable solution

if and onlv if the series

©

) | [ro vio ae]

converges. The solution is then

©

gt)= ) =v; t) [eo y,(t) dt
i=1 0

t - 0

2.3 THE SPECTRAL REPRESENTATION OF A LINEAR OPERATOR

A useful tool in the theory of linear operators is the spectral

repr e-entationd Let us consider the opcrator equation

L, [ot] =n of)

where the linear oncrator L is self-adjoint; i.e.,

(2 {

&lt;t,L[g]&gt;=&lt;L][t],g&gt;
An example of such an operator equation is the integral equation 2. 4

where the kernel is assumed symmetric, It is self-adjoint since

Courant and Hilbert, ! p. 160.

F An interesting discussion of this topic is given in Friedman."
pp. 110-113, 125.127.



&lt;t,L[g]&gt; = [ee { [xen g(t) dt a
0, Q

1 [starter : g(t) dt
0

» &lt;r[t],g&gt;

The solutions of Eq. 2.7 are the eigenvalues and eigenfunctions of ..

and the set of eigenvalues {\} is called the spectrum.

We shall assume that Eq. 2.7 has a countable number of solutions;

l.e., { A } is a discrete spectrum. It can be shown that any two

eigenfunctions corresponding to distinct eigenvalues are orthogonal; !

therefore, if the set of eigenfunctions is complete, we can assume that

it is a complete, orthonormal set. If {v (t) 1 is such a set of eigen-

functions, then any square integrable function f(t) may be expanded as

follows

00

. y.(t)f(t) = 2 fv; (2.8

If we apply L we get

@

L {£(t)] = &gt; EN, v(t)
1=1

(2.9)

The representation of f(t) and LL [£®)] in Eqs. 2,8 and 2.9 is called the

spectral renresentation of L.. It is seen that the set of eigenvalues and

eigenfunctions completely characterize L.

If we want to solve the equation L [£(t)] = g(t) for f(t), then we use

the spectral representation and we get
————————————————————;

[Gen Friedmar 10 “ af



&gt; = g; v;(t)
“= &gt;

It is then seen that the eigenvalues 1/x and eigenfunctions Yi (t)

characterize the inverse $1 of L. For example, if we have an

integral operator with a kernel K(s, t) = 2. A Y;(s) Y; (t) then the

inverse onerator is characterized by 1, and Y; (t) and we could

rite

©

cis,t)= &gt; = vs) v; (0)
i=1 1!

-1 . .

where K~ ~(s, t) is the in" rse kerne.

series converges.

. Waizwal makes sense only if the

It is also interesting to note that if we define an opcrator L.° to

be the operation LIL taken n times: that is

L?[£@)] = L[L[...L[t®)]...]
n. n .

then the spectrum of IL. is {\'} where {M} is the spectrum of

I., and the eigenfunctions are identical,

It must be pointed out that the term ""'spectrum!' as used here is

not to be confused with the use of the word in connection with the

frequency spectrum or power density spectrum of a random process.

There is a close relation, however, between the spectrum of a linear

operator and the system function of a linear, time invariant system.

Consider the operation

® (OD

v{t) - [ h(t - s) x(s) ds
-m



where h(t) = h(-t), This is a time invariant operation with a

symmetrical kernel, The equation

 Fr F

| ft -s)d(s)ds = \ ¢..

is satisfied by any function of the torm

4 ’,. : go SJ2mtt

vhere

©

= H(f) = [ h(t) e JET gy
0

Thus, we have a continuum of eigenvalues and eigenfunctions and H(f)

is the continuous spectrum, or what is known in linear system theory

as the system function, This is a useful representation since if we

cascade two time invariant systems with system functions H, (f) and

H, (£), the system function of the resultant is H,(f) H,(£). A similar

relation occurs for the spectra of linear operators with the same

eigenvalues. If we cascade two linear operators with spectra

(0) and (HE) , the spectrum of the resultant linear

operator is { ab) WEN .

2,4 A USEFUL THEOREM

We now consider a theorem which is a slight extension of a theorem

of Fan. Suppose that L is a self-adjoint operator with a discrete

spectrum and suppose it has a maximum (or minimum) eigenvalue,

see Fan.) Theorem 1: see also Smithies. 2? bp. 134.
ate ————————— A



The eigenvalues and eigenfunctions of L are ANps Ros eee and

yy (EB), Y,(t), ... arranged in descending (ascending) order. We

then have the following theorem which is proved in Appendix 1.

Theorem The sum

&gt;. c; &lt;ép L[4]&gt;
i=1

where c, &gt; ¢, 2 ... 2 cis maximized (minimized)with respect

to the orthonormal set of functions { ¢, (t) } by the choice

b.(t) = vy, (t) i —
-

and this maximum (minimum) value 18

i 3
N

n

&gt; C, \.11

1i=1

It is useful to state the following corollary for the case of the integral

operator L [£0] = [ste dt.
Corollary The ih

&gt;. [ [se ¢,(s) &amp;;(t) ds at
i=1 n*Q

is maximized with resp~ct to thc C o aqonormal set of functions { 6) }
bv the choice

b, (t) = Yi te) 1 - Ly Les 50 63 3}

and the maximum value is



41

Z,
where the }. and vy, (t) are the eigenvalues and eigenfunctions of K(s, t).

2.5 RANDOM PROCESSES AND THEIR DECOMPOSITION

For a random process x(t), we shall generally consider as relevant

statistical properties the first two moments

mt) = E [x(t)]

r(s,t)= E[ (xls) - m(s))f(t) - m(t))]

m(t) is the mean value function and r(s, t) is the autocovariance function.

We also have the autocorrelation function R(s,t) = E [x(s) x(t)] which

is identical with the autocovariance function if the mean is zero. For

stationary processes

R(s,t) = R(s - 1)

and we have the Wien~~ "7" ~~ "nn “1-orem

© .

R(t) = | sf) el 2™t gf
-0

and its inverse-

-jewitsE)= | R(t) eA gt
vm

a3)

where S(f) is the power density spectrum of the process x(t).

Much of the application to random processes of the linear methods

of function space is due to Karhunen.' 20 The Karhunen-l.oeve



expansion theorem| states that a random process in an interval of

time {) may be written as an orthonormal series with uncorrelated

coefficients. Suppose that x(t) has mean m(t) and autocovariance

r(s,t). The autocovariance is non-negative definite and by con-

sidering the integral equation

BF

 rs,t)v(t)dt =X, vy, (s,
)

0

one gets the cxmansion

X . 4

20)

=m)+)av)
1=1

9] (2.10)

for which

A 1s

= [2] -{
0 1 #

where a, = [ (x(t) - m(t)) y;(t) dt fori= .,2,... . Moreover, the
Q

representation 2.10 converges in the mean) for every t. This is

a direct consequence of Mercer's theorem since

See Davenport and Root,” p. 96.

F This is convergence in the mean for random variables which is not

to be confused with convergence in the mean for functions. A sequence
of random variables x_ converges in the mean to the random variable x
if and only if D

lim E [x = x) =
n nN o_o.



n 2 n

E [xo - mit) - &gt; a, v0] = r(t,t) - 2 &gt; y; (t) | r(t,s)v,(s) ds
i=1 i=1 0

—
ou

It

2.

i=]

2

Ft) - ) A V0)
i=1

By Mercer's theorem

n

lim &gt; nyo)=rt,t)1 1

r--@O 7

therefore,

n 2

lim E I - mt) - &gt; a, ©] = 0
r= @ i=1

Karhunen has given another r~ - 2sentation theorem which is the

infinite analog of the Karhunen-Loeve representation. Let x(t) be a

process with zero mean and autocorrelation function R(s,t), and suppose

that R(s,t) is expressible in the form of the Stieltjes integral

®

ON ROSIE do (u)
-m

where ou) is a nond “-a~'ngEpositive function of u., There exists, then,

"For a definition of the Stieltjes integral, see Rudin, 2? pe. 8



an orthogonal process Z(s) so that

(1)=
 -~

5

f(t,s)dz(s)

where E [2%6)] = o(s). If, in particular, the process x(t) is

stationary, then we have from the Wierer-""binchin theorem in

the form of a Stieltjes integral

P ag

© .

Ct)=f J2mi(s-t) dF (£)
 mM

so that we have the following snectral decomposition of the stationary

nrocess

Z
f

ty J—

od

| oJ2mit az (f)
-M

which is originally due to Cramdr.

'A process is orthogonal if for any two disjoint intervals (u;,u,)
and (u,,u,), E [(Zz,) - Z(u, NZ(uy) - Z(u;))] = 0,

&gt;



CHAPTER III

THE THEORY OF DISCRETE REPRESENTATIONS

3.. GENERAL FORMULATION

An important aspect of any investigation is the formulation of the

general problem. It gives the investigator a broad perspective so that

he may discern the relation of those questions that have been answered

to the more general problem. It also aids in giving insight into the

choice of lines of further investigation.

In the general formulation of the problem of discrete representation,

we must be able to answer the following three questions with respect

to any particular representation.

(a) How is the discrete rr~-" -=antation der. ved trom the random

process x(t)?

(b) In what way does it represent the process?

(c) How well is the process represented?

We see that for answering these questions it is ~ "ry to make

some definitions.

(1) We shall define a set of functionals {1;} by which the random

variables {2 } are derived from x(t); i.e., a, = T, [x(t] .

(2) For transforming the set {2} into a function z(t) which in

some sense approximates x(t), we need to define an approximation

function F for which z(t) = F(t, Ais eees a).

(3) We must define in what sense z(t) approximates x(t) by

introducing a norm on the erron He®)] = ||x{) - z(t)]]. This

Fin general, it would not be necessary to restrict ourselves to a
norm here; however, it is convenient for our purposes.



norm shall comprise the criteria for the relative importance of the

characteristics of x(t).

(4) We must utilize a statistical property of ||e(t)]| to obtain a

fidelity measure across the ensemble of x(t). In this report we use

6 =E [let ?] although others could be defined. | We shall some-

times call 0 "the error."

The process of fidelity measurement of a discrete representation

would then be as shown by the block diagram in Fig, 3.1.

We are now in a position to state the fundamental problem in the

study of the discrete renresentation of random signals. We must so

determine the set {1;} and F that

B=FE [11 (t) - F(t, Aysoces a IZ] (3.1,

shall be a minimum. We shall denote this minimum value by 6° and

the {1;} and F for which it is attained by {1}} and F*. In many

cases the requirements of the problem may force the r:striction

of {1,} and F to certain classes in which case we would perform

the minimization above with the proper constraints.

It is certain that the solution of this problem in general would be

a formidable task. We shall be dealing largely with those cases in

which {r;} and F are linear and the norm is the square root of a

quadratic expression, This is convenient since the minimization of

Eq. 3.1 then requires simply the solution of linear equations.

[For example, P [Ile ®)ll 2 k| . It may be well to point out, however,
that the choice of the expected value is not arbitrary but made from
the standpoint of analytical expediency.

&gt;,
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3.2 LINEAR REPRESENTATIONS IN A FINITE TIME INTERVAL

In this section we consider the case of a random process x(t) to

&gt;e represented in a finite interval of time. We shall assume that

(1) the approximation function F is constrained to be of no higher

than first degree in the variables ay rr a and

(2) the norm is ||f(t)]] = | [ewe Jz where the interval of
integration,{),isthe region of vor which the process is to be

renresented.

On considering t as a parameter, we see that F(t, = cosa) may

he written as

Br

il

(Ly Au, coord) = c(t) + &gt; a, ¢, (t)
1i=1

We then want to minimize

9 - #| [|x - ct) - &gt; ab; (t)|* a |
$ i=

(3.2)

The minimization will be performed first with respect to the functionals

{r,} while F is assumed arbitrary (subject to the constraint) but fixed.

There is no restriction in assuming that the set of functions {s,)} is

an orthonormal set over the intervalf). for if it is not. then we can

put F into such a form by performing a Gram-Schmidt orthogonali-

Lation.]

Ne have then

See Courant and Hilbert. ’ p. 50.



J a0 b(t) dt = 5.
0)

where 8; is the Kronecker delta.

It follows from the minimal property of Fourier coefficients!

that the quantity in brackets of Eq. 3.2 is minimized for each x(t)

by the choice

a. = T, [x)] = [Is - ct) ¢, (t) at
QO

es 00g 1

over all possible sets {r;} Likewise, it follows that its expected

value, 6, must be minimized. Setting y(t) = x(t) - c(t), we see that

the minimized expression is

ox] [jro- &gt;. 6; [reroerefe
2 i=1 Q

n

/ Toh ). [ [ayes b. (t) ds dt
0 i=l *0%0

By the corollary of the theorem of Section 2.4 we know that

&gt; [ [x 600me0 ds dt [fry v;(s) v(t) ds dt
i=1 *°0n%0 i=1%% Yq

It

2
i=1

where the \, and the Y; (t) are the eigenvalues and eigenfunctions of the

4 ’ 20 -

TSee I. Petrovskii™ , bp. 48. cf. Theorem.

}



kernel R (s,s t). © is then minimized with respect to the ¢,(t) by the

choice ¢, (t) = Y; (t)o The error is now

0

n

[zy dt - &gt; A
n i=1

From Mercer's Theorem (see Sec. 2.2) we have

90)

R58) = ) A; v;6) v(t)
i=1

so that

a

| R(t t) dt = &gt; A,
Q i=1

and therefore

0 —n

 -—

00) n (00)

SSeSi i 5

i=1 i=1 i=n+1

We now assert that each eigenvalue is minimized by choosing

c(t) = m_(t). We have for each eigenvalue

f ’R.J S608) v: (5) v: (0) ds 6

»

| [2x x(t) - x(s) cit) - c(s) x(t) + c(s) c(t) ] Y;(s) Y; (t) ds dt
190
” ,

[ R_(s,t) Y;(s) v; it) ds dt - t [mgt y; (8) ds [ c(t) Y;(t) dt

Brae Q ‘0
c(s) v.(s) ds (3.7

A (8) v;(s)

?



Now since

] cls) v;(s) ds - [mater vieresf*2 0
1 0

then

[corns -2 [me yee [eo y;(t) dt
0 0 0

A

r
—— | mete v;(s) ds|”

0

where the equality sign holds Io

| m,(5) v;(s)ds= Jw v;() dt
0 Q

pr
ym

On applying this inequalitv to Ea. 2.3 we find that A. is minimum for

| ms) ;(s) ds = [ew v6)
0 0

and since we want this to hold for all i, we have

c(t) = m_(t)

So we finally see that if we have a random process x(t) with mean

m_,(t) and covariance function r (s,t)= E [{x(s)-m, s)} {x@®)-m_®)}]
then 6 is minimized for

3

n

(t. a reseed )= m (t)+ 2, y,(t)
i=]



where the y(t) are the solutions of

r (s,t) y (t) dt = A y;(s)
“1

arranged in the order A, 2 \, 2 A.J

S  ce 0

*

[ x) v; 6) at - | m,(8)v;&amp;)dt
YQ QO

The minimum error is then

® n @©

| r (t,t) dt = &gt; A = &gt; ’
i) i=1 i=n+!

(2.4)

This solution is identical to the Karhunen-Loeve expansion of a

process in an orthonormal series with uncorrelated coefficients which

was described in Section 2.4. The result was first proved by Koschmann®’

and has since been discussed by several other authors. 13,5. 22

In this section we have assumed that x(t) has a nonzero mean. In

the solution, however, the mean is subtracted from the process and

for the reconstruction it is added in again. In the remainder of this

thesis we shall consider mostly zero mean processes for if they are

not. we can perform a similar procedure.

3.3 AGEOMETRICAL DESCRIPTION

A useful geometric picture may be obtained by considering a

random process in a finite time interval as a random vector in an

infinite dimensional vector space. This geometric picture will be

used in this section in order to gain understanding of the result of

? 8



the last section, but we shall confine ourselves to a finite m-

dimensional vector space. The process x(t) will then be repre -

sentable as a finite linear combination of some orthonormal set

of basis functions {v,®)} } 152.

((t) = 2. x, V(t)

where the x. are the random coordinates of x(t). We see then that

x(t) is equivalent to the random vector x = {x “hoy x_} .

We shall assume that x(t) has mean zero and correlation function

R_(s,t). The random vector x then has mean zero and covariance

matrix of elements Ty = E EX3 where

SS ro. y.(s) yg.
=), J. ij ¥3

Our object is to represent x by a set ¢f n random variables

{a,, coayd 3 where n &lt; m. Using arguments similar to those of

the last section, we see that we want to find the random vector
n

z= ct 2 a, b. which minimizes

A = E [1x ~ a

Since X has zero mean, we shall assume that c=0. z is then a

random vector confined to an n-dimensional hyperplane through

the origin, Since the set { ¢; } determines the orientation of this

plane, there is no restriction in assuming that it is orthonormal;

i.e,. &lt;h. 4 = 6... If we are given a particular orientation for



the plane, that is, a particular set 1%; }s and a particular outcome

of x, then it is clear that the best z is the projection of x onto the

plane, as shown in Fig. 3.2. That is

22) &lt;x 4&gt;4
i=1 -_ —-

so that a, =&lt;x, ¢,&gt; i=1...,n). This corresponds to the minimal

property of Fourier coefficients as was mentioned in Section 3.2, The

error, 0, then becomes

0=E [|x - 2°]

2 -
“E[&lt;x- ) &lt;x 0 To) &lt;He 60

i=] — FE

=[ixf] - o[&lt;xe¥)
-~ ~~ \
0

Now, we must find the orientation of the hyperplane which minimizes

B. From Eq. 3.5, we see that this is equivalent to finding the orientation

which maximizes the average of the squared length of the projection of

xX, We have for the inner product

 Pp.

m

=) Xb
=1

where b, = {51° oo +®im } . © then becomes

20)



Fig. 3.2. The best approximation of a random
vector.
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Fig. 3.3.

L -

The surface generated by the quadratic
form.
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n m m

; E[|x|] - 2 2 2 Tik ®:5 Pik
i=1 Lj= =

The quantity in b-~¢” ’‘s is a quadratic form

m m

57 [oobi] 22 0
i=1 k=1

 QJ Pix

so that we must maximize

2Foe dim]
where {4 }is constrained to be an orthonormal set.

Suppose that n = 1, then we must maximize o% [ $177 PEI Pim]

subject to the condition| ¢, | = 1, By the maximum property of the

eigenvalues mentioned in Section 2,2 we see that

Ay] =7 v,—— - —[ &amp;]X Sf

| ¢;]=

where Ny is the largest eigenvalue of the positive definite matrix

[75] and Yq is the corresponding eigenvector. So we have the

solution 10% = 1. The surface generated by 7 by allowing bq

to take on all possible orientations would be similar to that shown

in Fig. 3.3 for m = 3. This surface has the property that



m

&gt; | $b, ] is invariant with respect to the set { ¢, } and is equal
i=1 ——— —

m

to Aso This must be so since if all m dimensions are used in the
i=1

approximation, the error must be zero,

By the maximum property of the eij;cnalucy we also have

max oy [=F [wi] =x
LI TiS a j= locos :

so from this and by observing Fig. 3.3 we might expect that

5) 204] nl)
&amp;

This is in fact true, but it does not follow so simply since in this

procedure the maximization at each stage depends on the previous

stages. The fact that it is true depends on the character of the surface

and it follows from Fan's Theorem (Sec. 2.4).

3.4 MAXIMUM SEPARATION PROPERTY

There is another geometric property associated with the solution

to the problem of Section 3,2. Let I' be an m-dimensional linear vector

space the elements of which are functions over a certain time interval

fl. Suppose that the random process x(t) consists only of certain

waveforms s, &amp;) oc54 s_(t) which occur with probabilities P,...,P_.

Only one waveform occurs per trial. The autocorrelation function

is then R_(s, t) = &gt; P.s.(s) s,(t) and we shall assume that E [x(t)] = 0.

Suppose that ee arbitrarily pick a set of Z orthonormal functions

‘| (t), oo. ~,(t) which define an _£-dimensional hyperplane Ty of I.

21



Let \ya (t), coos \ (t) be an arbitrary completion of the set so

that {v0} is a basis for the whole space. The projections of

the waveforms on ry are then

£ L
s(t) = J), | s.(t) v;(t) dt = &gt; Si; v;(t) i= 1,000,n

= 1 vQ), i=1

here

| 5; (t) v;(t) dt j= 41000, m
0

We shall define the averace senaration S of the s!(t)iny to be

~

n

1 &gt; P,P, [0-507
i, j=1 )

and we shall be int¢—- sted in what orientation of Iy maximizes S.
We have

Re
-

fl

i, =

2.
i, i=] k=

™

VA
i=l k-

P,P. (sy = 54)

n

2PP; 85, ¢ D
i=

Y
r

\

“P.s% - &gt;JE ve

i, j~u k
mar”

 |

po

\ 5 2
2shez) » po |

k=1 i=1

PP; ®ir%



We note that

 BE [ x(t)] = 3 P, s(t) .3 py 5; Y(t)
i=1 i=1 j=1

m n

). vt) ) P, $3 =
j=1 i=1

therefore

n

&gt; p, s..=0i7ij
i=1

j= 1, 00:30)

1-4

¥
bY

A

-

2, —0 2
2 Zz Lo PF, ik

1=] J!

2

n

ic
P [[ao s.(t) Yi(s) Yy(t) ds dt

QQ

lee. t) vi (s) v,(t) ds dt
as al

Tare

As we have seen before, this is maximized by using the first

eigenfunctions of R_(s, t) for the Yi()seon, Yy (t), so that the orientation

of Ty which maximizes the averase gsenaration is determined by

these.

Consequently, we see that if we have a cluster of signals in

function space, the orientation of the hyperplane which minimizes

the error of re~resentation in the lower dimension also maximizes

YC



the spread of the projection of this cluster on the hyperplane, weighted

by the probabilities of occurrence of the signals. If there were some

uncertainty as to the position of the signal points in the function space,

then we might say that this orientation is the orientation of least con=

fusion among the projections of the signal points on the hyperplane.

3.5 THE ASYMPTOTIC BEHAVIOR OF THE AVERAGE ERROR

IN THE STATIONARY CASE!

In this section we shall consider the re-~rz2sentation of a stationary

process x(t) for all time. This will be done by dividing time into

intervals of length 2A and using the optimum representation of

Section 3.2 for each interval. Since the process is stationary,

the solution will be the same for each interval.

Suppose that we use n terms to represent each interval, We then

define the density to be k = n/2A or the average number of terms per

unit time. If we consider an interval of length 4A, as shown in Fig. 3.4

consisting of two subintervals of length 2A each - -~ arately rerresented,

we would have an average error

20" (2A) _ 6724)
4A 2A

If we now increase the interval of representation to 4A while using 2n

terms, that is, holding the density constant, we would have an average
%*

error 0 (44) It is certainly true that
4 A

0” (44) &lt; 0” (24)
4A — 2A

(3.6)

Pee ref. 16.



since if it were not true, this would contradict the fact that the

representation is optimum. It is the object of this section to study
%*

the behavior of0(24) as A inc -
2A

constant.

Since the process 1s stationary, R_(t,t)= R_(C), and we have

from Eq. 3.4

d1

Lo Ly 1L0%(2a)=R_(0)-55&gt;
i=]

where the A. are the eigenvalues of

8

R (s-t) ¢.(t) dt = \, .(s)
»

-A Ts &lt;A

Since n = 2kA must be a positive integer, A can onlv take on the values

A = o-
&gt;k

nn—= /

dg

The sequence o(ag) is monotonically dec: .asing because of the
2A

argument leading to the inequality of Eq. 3.6. Since 0" (2A) 2 0, all

n, the sequence must have a limit.) We then want to find

*

0 (24) | hn
lim ———m = R_(0) - lim —r0 &gt; \.
n— oo 2A n—-—0o 2A —

n n i=1

We now make use of a theorem proved in Appendix 2 which states

2kA,, n

im 1 &gt; A = lim Ene [sma
1 ® ZA, i) RTO in E

feee Rudin. wf p. 41. Theorem 3. 14.
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Fig. 3.4. The division of the process into intervals.
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The method of finding the asymptotic error.
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Fig. 3.6. The spectrum of a bandlimited process.
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where

00)
. _ -j 2wfto- [ R_(t) e dt

- (1)

and is the power density spectrum of the process, and

E= [ts ()22]

vhere xX is adjusted in such a way that!

u[E| = k (3.7)

Now since

0
- j2wit

R(t) = | s_(f) e df
- (1)

then

2 0D

R_(0) = J 5, (£) df
-

and

*

0 (2A) @
lim — 2 = 5(E) df - S (f) df = s_(£) af
n— 0 2A - © Ti

(3.8)

where E! = E s_(f) &lt; 2]

In other words we take the power density spectrum (see Fig. 3.5)

and adjust £ in such a way that the length along f for which S_(f)&gt; £

is k and then integrate over all the remaining regions. This gives a

TThe notation E S_(f)&lt; Z| means ''the set of all f such that
S_(f)&lt; ZL. H I [E]°denotes the measure of the set E (or length
for our purposes).

YO



lower bound for the average error and the bound is approached

asymptotically as A increases.

If the process x(t) is bandlimited with bandwidth k/2 cps, that

is, it has no power in the frequencies above k/2 cps, then we have

a spectrum as shown in Fig. 3.6. If we then use a density of

k terms /sec, then we see that V4 must be adjusted, according to

the condition of Eq. 3.7, to a level A = 0. By Eq. 3.8 we have

0" 2A.)
lim SA = s_() df =

n— 0 n E

This implies that we can approach arbi’rarilv closelv an av. rage error

of zero with a finite time linear representation by allowing the time

interval to become large enough. This is in agreement with the

Sampling Theorem | which states that x(t) can be represented

exactly by k equally spaced samples per unit time; and. in

addition, we are assured that this is the most efficient linear

representation.

3.6 A RELATED CASE

Suppose that x(t) is a zero mean random process in the interval

A, Al with autocorrelation function R_(s, t)e We now consider the

problem in which the a. are specified to be ¢ r*1in linear overations

on x(t)

mA

a. - x(t) g(t) dt Le 000y IN

ISee Shannon2® and Balakrishnan.



and we minimize 6 with F constrained as in Section 3.2; i.e.,

n

ty a 2 000 a = &gt;va)= ) a4)
i=1

H

(c(t) = 0 since the process is zero mean). If we follow a straight-

forward minimization procedure, we find that the set {o, (t)} must

gsatisfv

-

A n A

R _(s,t) g(t) dt = &gt; wo [[ R_(u, v) g;(u) g,(v) du dv
=1 _A

-

~hich is just a set of linear equations in a parameter t.

If the a, are samples of x(t), we then have g(t) = §(t - t.) and the

set {o.0)} is then the solution of

R(t, t,) = &gt;Ltt) bt) R(t,t;)
= 1]

Solving this using ma.i. I noLaw.on we have

vs 000 Il (3.9,

5,0] = [Ryley t)]7R (tt)
If we consider ?; ®] for t = t, (i=1...,n), then we have the matrix

equation

- -1 ~[ei] [Rast] [Rott] = [1]
where [1] denotes the identity matrix, so we see that

J +) -— /
» t

is o0 0 a 13



If the process x(t) is stationary and the a, are equally spaced

samples in the interval (-m,®), Eq. 3.9 becomes

©

R(t - kT)= &gt; J, (t) R (kT - JT)
J/=-0 0

k=20,1,-1," A.
aCe

where T_ is the period of sampling. On substituting t' = t - kT we

get

@

R(t") = &gt; 4g (t* + kT)R(kT - ZT)
P=-0

k = 0.
: .

n = = A A

This holds for k equal to any inte~er so that

J
w a &gt;

0=-«
bp (t+ (k+:;)T )R_((k+j) T_ - £1

a
— :

pa 4 bi EF (+5) TOR (KT - AT.)
Seq

and we have

bp (+ kT )=¢ py; t+ (x+j) T))

PQ 4 (t+ kT.) = ¢p t+ (:--

so that for £ = 0, k=20

) T )

b.(t)=¢_(t - iT _!

where j= 0,1,-1,2,-2,... » The set {s.0)} is just a set of trans-

lations of a basic interpolatory function, which is the solution of



R_.(t \
©
Ln}

hn3
iy Cob LT) R (JT

This problem has been studied by Tufts He has shown that the

average error in this case is

where f = 1/T
 mn A

2

R. (0) fT
-® § S(f - Qf)

f=_-o ©

a.

(3.10)

3.7 AN EXAMPLE

Let x(t) be a stationary random process in the interval [-a, Al

with a zero mean and autocorrelation function

R (e,t)=R_(s-t)=m ¢ -27|s -t]

The power density s~2ctrum is then

1
S_(f) = ——

1 + £2

The eigenfunctions for this ci.ample are

Cc. cos b.t i,
i i

b.(t) {
~. 8in b.t 1.

odd

EVEen

where the c. are normalizing constants and the b. are the solutions of

the transcendental equations

&gt;. tan b,A = 27

“cot bh. .A= 21

i, odd

1, even



The eigenvalues are given by

YL
cd gn

The details of the solution of this problem have been omitted since

they may be found elsewhere]

The minimum average error, + 0" , has been computed for

several values of A in the case k= 6 terms/sec, and these results

are shown in Fig. 3.7. The predicted asymptotic value is

00] 00]
[ s()di=2 | —1— df=0.644
i X 2

" , L+f ”
(3.1%)

This is plotted in Fig, 3.7 along with the error incurred by sampling

at the rate of 6 samples/sec and reconstructing with LE interpolatory

functions. This error is just twice the error given in Eq. 3.11, or

twice the area under the tails of the spectrum for |f| &gt; 3. This is a

known fact; however, a short proof is given in Appendix 3 for reference.

Also shown in Fig. 3.7 is the error acquired by sampling and using an

optimum interpolatory function. This error was computed from Eq. 3.10.

3.8 OPTIMIZATION WITH UNCERTAINTY IN THE REPRESENTATION

It is of interest to know whether or not the solution of Section 3.2

is still optimum when the representation in the form of the set of random

variables {2} is subject to uncertainties. This would occur for

exambple if the renrecentation is transmitted over a noisv channel

in some communications system.

MSee Davenport and Root, $ PP. 99-101.
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In the following we shall assume that the process is zero mean,

the representation is derived by the linear operations

[ x(t) g(t) at
1)

(3.12)

and the approximation function is

5 Lidyyeeera )=

n

Luan
/va 80

i=1

Our object is then tu 5 -r»mine under what conditions

3 = BE [Teo ] &gt; (a, + Jo; 1)? dt
0 i=1

is minimized, where the e. are random variables representing the

uncertainties. On the assumption that {o.(t)} is an orthonormal set

re obtain

n r xl

I R(t, t)dt - =p (a, te, J x(t), (t) we &gt; E(a, + .)’
“0 i=1 0, i=

and we substitute Ea. 3.12 getting

“ J R_(t, t)dt - 2 &gt; [ [re g.(s) o,(t) ds dt
Q i=199 70

pias.

Y x(t] $,(t) dt(t) ds at-2) [=[[ren g;(s)g, A
(3. 1 3°



» [= [« x(t)] g(t) dt + &gt; E[&lt;]
i=1 7 i=1

If we replace g; by g; tan, in this exnression, we know from the

calculus of variations! that a necercary condition that 6 be a minimum

with respect to g. is

50 =
da a=0

Applying this we obtain

5S o = 2 J 7,;(s) ds { [re ¢, (t) dt - [ Rete g(t) dt
a=0

Q Q 0

E x] = 0

and since 7;(s) is arbitrary the condition becomes

[00 [0,) - gt)| at = E[¢ x(s)]
0

8 € 0

ea 00 a IN

It is seen, then, that if E [6x6] = 0, s ef), then ¢, (t) = g(t) i=1]..0,n

satisfies the condition.] For this case Eq. 3.13 becomes

J (t, t)dt - 2 [ [2 t)e;(s)d,(t) ds dt + 2 E [&lt;]

Consequently, we see that if E [e.x(s)] =0 (i= 1, 00.0,n), for all s ef),

See Courant and Hilbert, ' p. 184.

Fie R_(s,t) is positive definite, this solution is unique.



then the solution of Section 3.2 is still optimum and the minimum

eT TOT 1S NOW

[ana-S ry E [&lt;]
2 i=1 i=1

3.) A MORE GENERAL NORM

Although in the general formulation of the problem, given in

Section 3.1, we consider a general norm, until now we have made

use of only the root mean square norm. In many problems, however,

we shall be interested in a measure not only of the average difference

hetween functions but of other characteristics of the functions as well.

For example, in Chapter 1 it was described how a linear representation

of the past of a random process is useful in a characterization of non-

linear systems. For the most part, such a characterization is useful

only for those nonlinear systems for which the influence of the remote

past on the operation of the system is small compared to the influence

of the immediate past. In such a case we would be interested not in

a norm which weights the average difference between functions uniformly

over function space, as in the case of the root mean square norm, but

in 2 norm which weights the immediate past more heavily than the

remote past.

In this problem we might also be interested in a norm which

discriminates not only in time but also in frequency. The high

frequencies may influence the operation of the system to a lesser

degree than the low frequencies. So we see that it would be of

110



interest to consider a norm more general than the root mean square

norm which discriminates neither in time nor in frequency.

In this section we consider a generalization on the root mean

square norm which allows more general discrimination in the

characteristics of the random function. This norm has the additional

property that with it the solution of the representation problem still

requires only the solution of linear equations. This norm is

1/2

eel = [go a
(9)

where £,(t) is obtained bv oocrating linearly on f(t); i.e.,

F(t) = [ K(t,u) f(u) du
Q

i) (3. 14)

where K(t, u) is determined by the requirements of the problem.)

Essentially what we have done is to pass the error e(t) through a

linear filter and then use the root mean square. In order for this

to be a true norm, K(t, u) must satisfy the condition

Ydu=1) fu[xe1

if and only if f(u) = 0 for u ¢ 0

\ } (3.15)

(see Sec. 2.1). A necessary and sufficient condition that this be true

is that the symmetrical kernel

‘We have assumed that the linear operation is an integral operation,
although this is not necessary. In our first special case on p. 52
it is not strictly an integral operation.



K,(s,t) = | nnn a
0

be positive definite, This is because the conditions

and

Lt) = | K(t,u) fu) du = ¢
0

[go dt = [A JECE Kh v)a | flu) f(v)dudv=20
Q Qn Q

are equivalent.

The error, 6, now becomes

—

3 =Fk
| .

n 2

[ [xem [ x(a) - cfu) - &gt; 236; (a)| oo} |
L 0 i=1

 FE | [ dt {JRCEae - [ste c(u)du - &gt; a, [an
v. Q 0 i=1 eq

sO we see from the second of these equations that the problem reduces

to the representation of the process

rt) = [xe. u)x(u) du
 QO

by the method of Section 3,2. Counscaquently, our solution is

in

t,2 ,..0,a_)= m_ (t) + &gt; a, y; (t)
i=1

(=. 16)

20



where the vy,(t) are solutions of

 PH t) = [xe u) y; (u) du
0

(3.17)

and the §. (t) are the eigenfunctions of

[eemomann om Ss
)

arranged in the order \, &gt; \, ...

Q

Lg
G(s, t) is found from

“3 Ey) [ [xe u) Kt, v) r_(u,v) du dv
Q YN

(3,18)

(3.19)

and we have

[oso [xeon EL - m_(v)] dv
0 Q

The minimum error is

( Gt, t)dt - &gt; [ [ews ®,(s)D,(t) ds dt
0 i=1 *Q°Q

( Gt, t)dt - 5 A;
1i=1

(3,20)

where the A, are the eigenvalues of Eq. 3.18.

We have a particularly simple case when K(s, t) is expressed over

the basis of eigenfunctions {v6} of r_(s, t); i.e..
©

K(s, t) = &gt; Bs Vv .(s) V(t)
1=1

5 |



We then have for G(s, t)

(3 s.0)= ) Ba vie) v0)
i=1

where the a. are the eigenvalues of r_(s,t). We then have

DP.(s)= ¢.(s)

A
oy Ta.

vy (s) = . V,(s)

fori=1,2,..

We shall now discuss two special cases of this norm which demand

special attention.

THE FIRST CASE

First we consider the case of the root mean square norm weighted

in time. that is, we have

I UNITE [we £2 (t)at |L Jo

i — 1/-

so that the linear operation is just multiplication by W(t). This corresponds

to a kernel K(t,u) = W(t) 6§(t-u). The solution is now

 ER

2 d.(t
ceera y= m_(t)+&gt; pal

i=1

'W(s) r(s, t)W() D, (t) dt = \.D (s)
3“3

0

WD.¢)[ xt) - m



~vhere the error is

n

| w(t) r (t,t) dt - &gt; [ [we r_(s,t) W(t) @ .(s)P,(t) ds dt
‘0 i=1 YQ YQ

| Wot) (t,t) at -
4

n

2.
1=1

This is of special interest in the nonlinear filter problem where

we want to represent the past of a random function with a norm which

minimizes the effect of the remote past. In fact, if the process is

stationary, we must use this weighted norm in order to get an answer

to the problem atall, This is because if we use the method of

Section 3.2, the first term of Eq. 3.4 would be infinite; i.e.,

0

[roa
yo

 LL

and no matter how many terms we use, we would not improve the

situation. Also, the kernel of the integral equation

 -»

. ) 8S «r, (s-t) vy;(t) dt = A, Y;(s
PE

is not of integrable souare: that 1s. We lav

re| | 7, (s-t)]ds dt = ©
- 2}a

[ -00,U|

so that we are not assured that the integral equation has a countable

set of solutions. However, if we use a weighting function W(t) chosen

2



in such a way that

w (t) rZ(0) dt = Zo wh (t) dt
-&gt;

Ad

then we can find a solution.

It might be well to point out in addition that although we have said

that we must pick a weighting W(t), we have not attempted to suggest

what W(t) to use. This must depend upon the nonlinear filtering

problem at hand and upon the insight and judgment of the designer.

As an example we consider the zero mean random process x(t)

with autocorrelation function

R (s,t) = e~15-tl

We shall be interested in renvcsenting the past of this process with a

weighting function W(t) = g over [- ©, 0] . However, for the sake of

convenience, we shall use the interval [0,0] and weighting function

W(t) = et, In this case the solutions of the integral equation’

$s .-ls-t] -t d.t)dt=)r. &amp;.(s) ~

A

Ar"

D.t)= 4 vr
(3.21)

Mee Juncos 217



where the q, are the positive roots of

IT (a) = {

The J, (x) are the Bessel functions of the first order and the A, are

normalizing constants. The error in this case is

0 n

| a" 2t dt - &gt; &gt;
i=1

Ji

J.
i=1

The first two zeros of J_(x) are

q; = 2.4048

1, = 5.5201

so that the first two eitenvalues are

A. = 0.3458

vn = 0.06586

The error for one term is then

0) = 0,5 - 0.3458 = 0. 1542

and for two terms

85 = 0.5 - 0.3458 - 0.0656 = 0.0886

(3.22)

(3.23)

I'HE SECOND CASE

The second case that we consider is the case in which the interval

of interest is [- 3 o] , and the kernel of the linear operation of Eq. 3.14

factors into the form

K(s,u) = K, (s) K,(s-u)

so that we have

Tee Jahnke and Emde, 12 p. 166.



08)

f(s) = so [ K,(s-u) fu) du
-D

Thus, the opcration consists of a cascade of stationary linear filtering

and multiplication. IfK,(s) 2 0 and the Fourier transform ofK, (s)

is real and positive,’ then we can consider the norm as a frequency

weighting followed by a time weighting.

[Let us consider the example of the re~resentation of white noise

x(t) of autocorrelation function R_(s,t) = &amp;6(s-t) and mean zero. Here

we use as weightings

K (s)= o~%

k

K_(s)= ee”

that is, gaussian weightings both in time and frequency. From Eqs. 3.18

and 3.19 we see that we must find the eigenfunctions of G(s, t) where

00

G(s, t) = /[ K,(s) K,(s-u) K,(t) K,{t-v) R (u,v) du dv
- MT

B

[a
f

*

fg
'

r a8

§ 1)

(t-v)~ Stu-v) du dv

“(s-u)” _-(t-u)” du

The Fourier transform of ¢ 1g}

t For these conditions, the condition of Eq. 3.15 for the kernel of the
norm is also satisfied.

f This is shown in Appendix 4.



° 0
Z 2.2

_-t ojemit dt = {7 eT f
~~,=

we know that

re ©£(c) g(t-o) do = | F() Gf) 2 at
J 4 ©

where F(f) and G(f) are the Fours: "
ud anstorms of f(t) and g(t). We

then have

© 22mg? j2mi(s-t) dt2 - :© 2 -(s-t-u) wer [fo.2 [
a

JE Te
so that

Za
-S -

G(s,t)=/7 P c

1 a

 3 (s-t)

[t is shown in Appendix 4 that the eigenfunctions of this kernel are

1
} 2 i(t) = A, V2 a o-2V2 t%

Eye
1 —

where the A. are normalizing constants and the eigenvalues are

Val
Rt

+ 2.2

3 - 24/2) 3 J. 2 BBMm

It is seen that these functions are the flermite functions modified by

n —



a scale factor, The Hermite functions are given byl

2 n AL

H 0) = 2" nim)" 1/2 ot /2 5. .
n g+F

n==0,1,2,...

therefore, we have

®.() = v4 1, [(2v2)/2 4] = 0, 4i,2,00.

and the A, are given bv

A 2/2) 4 Co
A= . 1 = C. 19 2, oe o

- 2! il JH) 2

Referring to Eq. 3.16 we see that in order to have the complete solution

we must find the vy, (t) which are the solutions of

PD
00]

(t) = [ S
©

~(t-u)“u) vy.(u) du 1 = 0, 1,4, 60a

according to Eq. 3.17. It is shown in Anmendix 5 that the solution is

1+4/2 2 :
(V2 +2) 22 + V2VE eT x

so that the best .ay »~entation is given by

n 1+4/2 .

faenadz ) a A _(V2r2) 2/2 dl _J/24P
1 1 a Ld

i=0 /(2-/2) a’

F See Courant and Hilbert, p. 93. The usual definition of Hermite
functions includes a (-~1)! but we have neglected this.



and

© WS 2 i 2 @ 2[ds A, e -1)s gL 22s [Cote x(t) dt
ds of -mv1

and the error is

re 2 C 1 i
I -2t &gt; x Ll (3.24)JVie * 3+ 2/2

- 00 i=0

3.10 COMPARISON WITH LAGUERRE FUNCTIONS

#e now return to the first example of the last section, but this time

we use Laguerre functions in place of the functions of Eq. 3.21. We

shall be interested in just how close we can come to the minimum possible

error given by Eqs. 3.22 and 3.23. The Laguerre functions are given

_ 1 x/2 a" n _-x -

Loe) (x) = € IE (x e ) n=0,1.e.0.

(3 24)

for x 2 0.

Since orthogonality of functions over [0,00] is invariant with

respect to a change in scale, we have a degree of freedom at our

disposal. The Laguerrcz functions given above satisfy the relation

D0 1 i=

[6 L(y) dy = {
A 0 4

gee Courant and Hilbert. -



and if we make the change of variable y = ax, we have

1 1=

J L,(ax) L.(ax) dx 4
| 0 i#°

from which it follows that the set of functions ,/a L_(ax) is orthonormal.

Ne shall be interested in picking a best scale factor a for a repre-

sentation in terms of these functions.

Bv replacing the functions ®P.(t) in Ea 5. ev ov the set Ja L_(ax)

we obtain for the error

@

[we r_(t,t) at
Ja
I pe ©

). INEC r_(s, t) W(t) Ja L.(as) Ja L. (at) ds dt
i=1 0 0

and for the example it b-comes

n pe ©

= 5 - &gt; [fe els-tl aL; (as) L, (at) ds dt
i=1 ¥Q ¢Q

0

Suppose n= 1. The first scaled L.c rc function is

JaL,(ax)= Ja -

so that we have for the error

 pe 0 _as at
owed [[esteta 2 2 ds Gt

0 JO

vhich becomes on ps.”  ing the integration



ho A 4a
8,() = 3 - GF2)(ard)

This error is shown in Fig. 3.8 plotted as a function of a. It has a

minimum at a = 2/2 for which 0, (2/2) = 0.157.

Now suppose that n = 2. The second scaled Laguerre function is

fa L, (ax) = fa (e”%*/* —ax/2.

and the crror becomes

 4 4a
I,(a)=7% - (a+2)(at4)

em

[emer a [emoe/2 Cas o-0s/2 ] [e=0t/2 Cat e-0t/2] de dt
(O40)

which becomes on performing the integration

5. (a) _ 1 4a } da(a’ - 4a - 16)

2 2” 2)8TT 0) (@ sap

. -a’ + 16a&gt; - 32a +128

(@+2)* (@+ 4)

This is also shown in Fig. 3.8 and it is minimum at a = 4 for which

9, (4) = 0.093.

We see first of all that the best scale factor for n = 1 is not the

same as for n= 2. Also, it is interesting that the performance of

the Laguerre functions for the best scale factor is remarkably close

to optimum. The minima of the curves in Fig. 3.8 are very nearly

the values given in Eqs. 3.22 and 3. 23.

AY
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This example illustrates the value of knowing the optimum

solution. In practice, if we are intrrested in representing the past

of x(t), we would derive the random variables a, from x(t) by means

of linear filters. In this example, the synthesis of the filters for the

optimum solution would be much more difficult than the synthesis of

the filters for Laguerre functions, For representing the past of x(t)

we would have (reversing the sign of t since in the example we have

used the interval [0,0] )

x(t) W(-t) @.(-t) dt
Fo,

—
—

vy =a

wr Jon
- A "J, VE

so that we would use a linear filter of impulse response

h(t)=A.e2A. e tr |VE et]

which would not be easy to synthesize. Now, if we use Laguerre

functions we would have

 y

0

/ x(t) e* Va L,(-at) dt
-m

and we would use a filter of impulse rcsponse

h.(t)= Jae 'L,(at) (3,25)

which is quite easy to synthesize and gives us an error very close to

optimum. Bv means of cascades of simple linear networks we can



synthesize impulse responses in the form of Laguerre functions)

or other orthonormal sets of the exponential type.t In Eq. 3.25

we have a multiplying factor of e~! which can be accounted for in

the complex plane by displacing the poles and zeros of these net-

works in the direction of the real axis by -1. For example, suppose

that we want to represent the past of x(t) using L.aguerre functions

with a scale factor a = 4. By observing Eq. 3.24 we see that the

[Laplace transform of a LLaguerre function is

Let £2
+187 5 hn (s + 1yn*!

 nn = Us 15000 (3.26)

so that the Laplace transform of h,(t) is from Eg. 3.25

H re fs =1)
n+  5) = 2n! =—(s + = :yt]

x Les00oO

We then see that we could derive the random variables a, from the past

of x(t) by using the cascade of linear networks shown in Fig, 3.9.

Bv replacing s by j2nf in Eq. 3.26 we obtain the Fourier transform

of L_(t) which is

1 4 _—1 (j2wf(G2 .: n£43 :1) 1 nl! j2mf+=2

The magnitude squared of this exo. oSs10n 1s

&amp;)? —i1Ly

mofoA
J |; 1

jert + 35

(3.27)

S——___

see Y. W. Lee. 23

fcee Ww. H. Huggins. 1)
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Fig. 3.9. A linear circuit for representing the past of a signal.



Ne note that this is similar in form to the spectrum of x(t) in the

example. That is, since the correlation function of x(t) was

R(t) = exp (ltl) then the spectrum was the Fourier transform

of this or S_(f) =ei.Heuristically speaking, this may be
* 1+ an’?

the reason why the set of LLaguerre functions did so well. If the

spectrum of x(t) were markedly different from the form of Eq. 3,27,

then we might not expect the results to be as good.

~



CHAPTER IV

REPRESENTATION IN THE PRESENCE OF NOISE

AND ITS BEARING ON OPTIMUM LINEAR SYSTEMS

i.» REPRESENTATION IN THE PRESENCE OF NOISE

There are, perhaps, many situations in which a representation

of a random signal is desired when the signal is not available directly,

but only in a more or less contaminated form. Such a situation would

occur, for example, when the representation is derived from the signal

after it has been transmitted over a noisy channel. This chapter will

deal primarily with this problem and its close relationship to optimum,

time-varying linear systems.

A discrete revresentation of x(t) will be found, but the set of random

variables {2} will be derived from another process y(t) statistically

dependent on x(t). The process y(t) will in most cases be the perturbed

version of x(t). In a fashion similar to that in Section 3.1 we have

a.=T; [v®)] i=Il...,n

z(t) = Fi, a,, coe, d_)

and the problem can be stated generally as {ie &gt;" mum problem

min min E[||x() - Fla. ...,a I]F n

i{r.}
We shall now consider the linear case in which we find it necessary

n

not only to restrict F(t, a ,..., a) to be of the form c(t) + ) a, (t)
i=1

but also to restrict the functionals to be linear in x(t). The latter

does not follow from the former as it did in the case of direct



representation. Also, we shall assume that the processes are zero

mean; otherwise, it is only necessary to subtract the mean as was

seen in Section 3,2. Making use of the same norm as before, we

shall minimize

J -
— E | c0-S 2; 4; at

0 i=1

(4, 1}

and without logs of genr ality we can assume

| 1 i=i

J 40 ¢,(t) dt = { =
0 i:

Since the functionals are linear, we shall assume that

| &amp;@) yk) at
¥

 sv 0 0 0 3 11

Substituting this into Eq. 4.1. we have

3 E [ee at-2) [rere ores [56 g(t) at
Q i=l oq Q

n

No

[ [ve v(t) g;(s) g;(t) ds at
~ Q

le

1=,

and on interchanging the crc
-~

a ¥
A and ~tion we obtain

| R (t,t) dt - 2 &gt; [ [rae b.(s) g.
v) i=1 *0 *0)

p~

} ds at

py]

i 'R (s,t) g.(s) g, (t) ds at
i=1 “n oe)

—



Our object is then to minimize this with respect to the sets of functions

{&amp;;®)} and {o;)} on assuming that {s;®)} is an orthonormal set.

We first minimize with respect to g,(t). We replace g,(t) by g; (t) + a.(t,

and solve the equation

3 = 0

dal_q

from which we obtain

'P (s,.) pr (s) ds =

YY
[aye $b. (s) ds = f(t) tefl (4.3)
0

By Picard's theorem (see Sec. 2.2) there exists an integraktle square

solution to Eq. 4.3 if and only if the series

©

&gt; &gt; NEC f(t) dt |
i=t Pj Lg :

(4.4

converges, where the B. and e.(t) are the einenvalues and eigenfunctions

of R (s,t), and this solution is

©
.(s) = L |3. (s) 2. 7. e;(s) JRC dt

i=1 J 0 :
(4. S

This can be verified by substitution back into Eq. 4.3. We shall assume

in what follows that g,(s) is given by Eq. 4.5.

By substituting Eq. 4.3 into Eq. 4.2 we obtain

n

[®_t) dt - &gt; [ [ries ¢, (s) g.(t) ds dt (4.6)
Yd i=1 *Q "a

and by substituting Eq. 4.5 into this we have

Jn



;-

| R_(t, t) dt
0

| ed 1

&gt; [[ Ry (82 t) $b;(s) ds &gt; B; of (t) [ 2, (u) £.(u) du dt
=a 00 j=1 QO

) dt(t, tR xX

Jo
! 09]

&gt; &gt; 5; [ [rg $b;(s) e.(t) ds oo [ [reste dv do
i=1 j=1 0 v0 h Jo

If we set h,(s) = [rg t)e,(t)dt, we obtain after some rearrangement
0

\

n

J R(t, t) dt - &gt; [ [xe v) ¢;(s) ¢,(v) ds dv
0 i=] JnvYn

(4, 7)

vhere

(09)

K(s, v) = &gt; 1— h.(s

2. 5: 38) Bb; (v)

©

2.5; [gto e (t) at [rays e.(a) du
=1 f 0

We know, then, from the corollary of the theorem of Section 2.4 that

d is minimized by choosing as the set {o;®)} the set of eigenfunctions

{v,)} of the kernel K(s,t). We see that our solution is

~ t.2,...,2 ) wo

n

&gt; a; vy; (t)



where the vy, (t) are the solutions of

[ ks, t) v(t) dt = \, v.(s)
0

5 Q

arranged in the order \, 2 A, 2 ... and

QQ

K(s, t) = !3 5. [x (s,u5, [foaereirn][ A xy (tr V) ©: (v) dv

(4, 8)

where B. and e (t) are the eircnvalues and eigenfunctions of R_(s, t),

and also

[et y(t) dt
») 4

i ens

o-
’

3 &amp;90©Oo (4

where the g;(t) are solutions of

=

J R (st) g;(s) ds =
0

[5,0 Y;(s) ds = f, (t) i=.
Ya

yg 080

4 10°

and the error is

[= (t, t)dt =
X ZL

Q 5

Thus, we have found the solutions to our problem of renresentation in

the presence of noise using a mean square norm. The solution for the

more general norm discu- “ed in Section 3.9 can also be found in precisely

the same way as before.

In finding this result, we have.~~ sumed that Eq. 4.3 has solutions



g, (t) which are of integrable square. The result can be proved,

however, under slightly more general conditions. This condition

is that the

f(t) = [ nen $;(s) ds
BD]

be each expressible as a uniformly convergent series of the eigen-

functions e, (t). This includes our original assumption since if g(t)

is integrable square, f(t) can be ex~r~ssed as a uniformly convergent

series of eigenfunctions of R.(s, t) (see Sec. 2.2), In order to show

that it is more general, let us consider the case in which g,(s) is the

impulse function §(s - s,). We have

£.(t) = R_(s 1? t)

and from Mercer's theorem

©

E(t) = &gt; B; e;(s;) e.(t)
1=1

and the series converges uniformly.

For a positive definite, non-degenerate kernel, the order of

summation and integration in Eq. 4.8 cannot be interchanged without

sacrifice of rigor since the series

00)
1
= e.(u)e.(v)2 By “3

does not converge either uniformly or in the mean. As was pointed out

7



in Section 2.3, this series can rc- —~esent the operation which is

inverse to the operation

&gt; {gs "Rr (s,t) f(t) dt

J.
We shall formally denote this series Dv

BOOED SENORNC
=1 J

¥ith this notation, Eq. 4.3 becomes

Ks, t) = [[rte u) R(t v) n=l (u, v) du dv
00

(4.11)

and for Eq, 4.10 we have

7. (t) = [[ ROE, s) R,.,(@, s) y; () du ds
0°40

which arc Lo  Jina. -bhnlic ase only,

(4.12)

1,2 ANOTHER INTERPRETATION

‘Ne have found the solution in a manner which is more or less

straightforward but yet not very enlightening, We now consider a

slightly different approach which will give us a better idea of what

the solution means. On consideration of Eq. 4.3 we see that it

Fie the kernels are degenerate, this is equivalent to the matrix
multiplication

- -1 T[x] = [r_] [RC ] [rR]



implies that there exists some sort of linear relation between g(t)

and 6. (t). We could write

0; (6) = J h(s,t) ¢;(s)ds i= 1,...,n
a

If we substitute this into Eq. 4.3, we obtain

Ry(st) JE du ds = J R,.(s,t) ¢,(s) ds
0 0 Q

then we int---¢’~~~2theorderofin*2gration

$. (u) du [se s)R_(s,t) ds =
J 1 | y

Q Q
[yt t) ¢,(s) ds
0

and since we are assuming that the set fo.0)} is compiecte, we must

have

[pe Ry(ss t) ds = R_. (a t)
Q

u. nN)

which is similar to the integral equation of Booton' for the optimum

time-varying filter. If we invert this equation formally, we obtain

} -1 :

h(u,s) = [5 (t, 8) R_,(u, t) ai

If we pass y(t) through this filter. the output is

A

| h(t, u) y(u) du
Q_

TSee Booton,” Eq. 24; this is slightly different since we are confining
purselves to filtering based on a finite time interval.



The autocorrelation function of this output is then

R,(s,t) = E | z(s) 2 (t)]= [] h(s,v) hit,u) R_(u,v) du dv
020

his, v) R__(t, v) dv

il

Y\) *\

-1
R_ (s,u) R_., (t, v) R_ (u, v) du dv

which is identical to the kernel given by Eq. 4.11. The solution can

then be described in the following way. We first pass y(t) through an

optimum linear filter and then we r  &gt;»sent in the optimal manner

described in Section 3, 2,

SPECIAL CASES

(1) First we consider the case in which the signal y(t) is white;

that is, R_(s,t) = 6(s-t). On observing that the kernel which is inverse

to an impulse is also an impulse we have for K(s, t)

K(s,t) = J Ry (sr) Ry (tu) ca
 qN

so that if Ns and Y; (s) are the eigenvalues and eigenfunctions of K(s, t),

we have

i

n

(t-a.,000,2 )= &gt; a, ¥; (4)
i=1

 x(t) g(t) dt
ve

iit

0 0 0s 11



where by Eq. 4.10

3. 4) = [Ruyter v;(s) ds
QO,

and the error is

~

r Il

| R_(t, 1) dt- y Ny
0 i=1

(2) Now suppose that the signal y(t) is the original signal x(t)

plus independent white noise so that R_.(s t) = R_(s, t) and R_(s,t) =

R_(s, t) + N_ §(s-t). From Eq. 4.9 we have

[rt e.’'t) dt + N, e.(s) = B, e.(s,
0

from which we get

e.(t) = v, (t)

B. =a, + N_

where a. and vy, (t) are the eigenvalues and eigenfunctions of R_(s, t).

K(s, t) is then from Eq. 4.8

© 2

KE. 0=&gt;a v6) v0
=1 1 0

From Eq. 4.10 we have

re

'R fs, t) g.(s) ds + N, g(t) = a, y; (t)



so that

Qa.

i(=x. vl)
1 oO

and the results are

n

a ~ !ta-.oen,a) &gt; aw
1i=1

\-

+= [0 v(t) dt
© Jn

n 2

a
| R(t, t)dt - &gt; =

Q i=1 1?

i

 PL = 3 9g 0009 I

4, A BODE-SHANNON APPROACH

The derivation of the main results of the last sections were rather

long-winded; however, it is noted that the results of the first special

case are quite simple. We shall now describe how this result can be

derived in a shorter, more heuristic way, and then we shall argue that

any problem may be reduced to this one by passing the process y(t)

through a whitening filter. This approach is, of course, very similar

to and motivated by the familiar Bode-Shannon® approach to optimum

linear filtering for stationary processes.

Let us suppose that we decompose the white process y(t) and the

process x(t) that we wish to represent into the orthonormal series



[08]

=) vv;
i=1

(4.13)
(00)

€t)= &gt; x; 40)
1=1

so that the random variables

y «1 Yo, VAY °o 0 &amp;

4 +9 ) Xa a b 9

represent the processes. Now, suppose we do this in such a way that

® [vi] 2 i # (4

2 2&gt; &gt;where A 2 Ny 2 coe a If we want to represent the set {=} by

a

n linear operations

©

). ¥: 7; j=  es 0 0 0 9 &amp;1

in such a way that the total mean square error is minimum, intuitively

we would first try to approximate the variable with the highest correla-

tion first. and then the next and so on, For approximation of x., we

would minimize

a 00) (00)

E [6 - z))°] = E[xf] =% 3 K, E [xy] + D. D. KE, E [vp]
=1 i=1 5=1

7 [x] -2K. E [x.v. |
a

’
J

t



MTOW

2K. = 02 E[ 6 - 2))%] = -2E [x;y] +2K,
3K,

 un 73 that

K, = E [x,v,] = MN

’d i=2,3,...

The total error is then

Q |

DE [x] - E” [ xy,
Ls |

So we would approximat~= the set { x; } by

= E [xy], i=1... ,n

Now the question is what orthonormal sets {v;®)}

do we use for Eqs. 4.13 so that conditions 4. 14 hold?

and { 6. (t) }
Since we want

E [xv] = [] Roy (8:8) 00s) Y(t) ds dt = Q

4

Then we use the solutions of

.(s)$y=) W(t) dt =(s, tR_.J

[= (5:1) ¢. (s) ds = Ns y(t)
0

S

uv

y

0

YSee Courant and Hilbert. p. 159



for which

 2f | [rg R(t u) | ¢.(t) dt = \; $.(s)
) 9

S € 0

(4,15)

Therefore, we use

| y(t) ¥,() dt= | y(t) g(t) at
0 0

where

2; t) = | CE t) $, (s) ds
0

and

elt) ~ z(t) = &gt; a, (t)
i=1

where the ¢.(t) are solutions of Ea. 4.15. The error is

n

| R_(t, t) dt - &gt; £2
J X 1
Q i=1

and we are in a~reement with our previous results in the first special

CaASe.

If the process y(t) is not white, we can make it so py performing the

linear operation

¥-
! h
|=

oD

| RY2 (5,4) yt) at
y

do)

/, poll? thwhere rZ1/2, t) = L B. / e.(s) e.(t). The B, and e, (t) are the
bi 1



eigenvalues and eigenfunctions of R_(s, t). To show that y (s) is white

we take its autocorrelation function

*  (s,t) = E [v) (s) y,(¢) ] = [ [x20 R212, v) R (u,v) du dv
(SES)

\

(s. \ 1
/n 2

2 oe,() 2. B, e,(u) e.(v) dv
ya

L

(00)

2 i} of} xi 2g, 4) au y pl e.() e,(x)
0 i=1"Q

00)

&gt; e,(s) e,(t)
1=1

If we take anv function f(t) of int~ rable sauare and perform the oneration

00) ®
R. (s,t) f(t) dt = [ e.(s)e,(t) f(t) dt = e.(s) [ei f(t) dtJ; 71 a 2 2 0

ay
Ke

then this implies that

00)

R_(s,t) = &gt; e (s) e,(t) = §(s-t)
1=1

which proves our as=ertion. We have lost nothing in performing this

operation since we may recover y(t) by operating with rR, t)e We

now apply the results obtained for white rrocesses. The kernel K(s, t)

becomes

Ks, t) = | R_,_ (s,u) R_ (t, u) du
vo V's Ya

é



hut

Rov. (s,t)= E xls -1/2i ) [= (t,u) yu) du

| rol/2g u) R_.(s u) du
B|

so that

K(s, t) = [ [552005000 dv J R20, w) R(t w) dw du
0 v0 0

( R_.(s: v) R__(t w) [ 5526. v, °° 12, w) du dw dv
Jy on 2

-R_ (s,v)R (t, w) R=} (v, w) dv dw
Jo Ja = xv v

(4,16)

and

"nit)y,(0)at=| ©) yt) at
Vy 0

vhere

h(t) = [a t) y;(s) ds

Co o=1/2
! Ry (t, uv) R_(s,u) v,(s) du ds

a “0

”
|

 ol

where the y; (t) are the eigenfunctions of K(s, t;. Now,

37



s)ds=(s) y(h,
Jq

| h,(s) J (s,t) y(t) dt ds
QQ Q

50 that

g. (t) = | ©
Aa

Fe

Ho (s,t) h.(s) ds

-- 12, t) ds [[ RY/2(, u) R_ (vs u) v. (v) du dv
Nl °0

y

- = (t,u) R__(v,u) ~~) dv
Joy + 1

(4, 17]

Ve then see that Eqs. 4.16 and 4.17 apree with Eqs. 4.11 and 4.12.

4. TIME-VARYING LINEAR SYSTEMS

The problem considered in the last sections can be interpreted

in another slightly different manner which underlines its close relation-

s hip to optimum time-varying linear operations. As we pointed out

earlier, the optimum time-varying linear operation on a process y(t)

to approximate x(t) is given bv

ire [hearst du
0

(4.18)

where h(t, u) is the solution of

~

J hit,u) R_ (u,v) du=R__(t v)
Q

kL
9  Vv : 0

If we assume that u is a parameter, the kernel h(t, u) can be expanded

in the series



(98)

h(tu)=h (0) =) gl) v0)
1=1

where {v;)} is orthonormal and

3 fu) = [no y;(t)at
Q

If we substitute Eq. 4.19 into Eq. 4.18 and interchange the order of

summation and integration, we obtain

90)

2t)= ) v0) | ya) g;(u) du
i=1 Q

so that

00)

z(t) = &gt; a, y; (t)
i=1

where

» " yt) gw) du
M),

We can then conclude that on the basis of the results of the previous

section the finite series

D&gt; gl) vy)
i=1

where {g,®)} and {v;®)} are solutions of the equations on pages 70

and 71, approximate the lincar operation 4.18 in a most rapidly

3



convergent manner in the sense that the mean square error between

z(t) and

~ r

a® =) v0) | oy) ge) a
i=1 “2

(4,20)

is minimized for every n-

If we wished to perform a filtering of y(t) over all time, then we

could do so by dividing the time axis into a series of intervals of the

form PAY (£+1)7) where Zz is any integer and then perform the

optimum operation indicated in Eq. 4.20 for each interval. If the

processes are cyclostationary,] that is

R (s,t)=R (s+ T, t+ T)

R_(s,t)=R__(s+T, t+ 7

then the {v;)} and {e;®)} are the same for each interval. The

finite term approximation in Eq. 4.20 can then be realized in the form

shown in Fig. 4.1. The process y(t) is first passed through filters of

impulse responses g; (T - t), the outputs are then samples by an impulse

at the end of each interval so that the result is an impulse of value ao

The impulses then excite the second set of filters of impulse responses

v; (8), and the outputs are added together. The result is then the filtered

version z(t - T) and we have a delay of T seconds. Thus, we have

found an approximation of a time-varying filter for this cvclostationary

case using stationary components, The time-varying information comes

from the knowledge of the sampling instants,

ir Cyclostationary" means that the ensemble statistics of the process
vary periodically with time. The word was coined by W. R. Bennett.

Ny
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n | 4. 3 The finite term approximation of a time-varying filter.



SINGLE TIME INSTANT ESTIMATION

Koschmamns’ has considered a problem which is related to the

one considered here, It is the optimization of a set of coefficients

[b, } in such a way that

2
E [(2(T)) - x(T)))"]

is minimized where 0 £ T, £ T and

00] T

(T=) sf f(t) y(t) at

(4,21)

(4.22)

that is, the estimation of the value of the process x(t) at a single time

instant based on an observation of the process y(t) during the whole

interval. He showed that the optimum set {v.} must be a solution

of the set of eauations

® T T

&gt; off R, (uv) f.(u) f.(v) du dv -[ R_(Tyss)f.(s) de
i=1 0 0

i =To? (4.23)

In order to show that our solution using b, = v;(T,) and f.(u) = g, (u) also

satisfies this condition, we substitute in Eq. 4.10 and after inverting

the order of integration we obtain

00) T T

&gt; wr [ Y; (u) of Rv) gv) ob
i=1 0 0

-

| R(T, s)g;(s) ds
a

ogy



The series on the left is an orthonormal series with Fourier coefficients

and it therefore converges in the mean to the function on the right.]

Moreover, since our solution minimizes

a

E[ (2 (t) - x(t) ] dt
J.
n T

where z(t) = &gt; Y; of g (s) y(s) ds, then we can say that although
1=1 0

for our choice the series of Eq. 4.22 does not necessarily converge

in a most rapid manner for every T,, it does so on the average over

the interval,

4,5 WAVEFORM TRANSMISSION SYSTEMS

One example of a cyclostationary signal is the signal that occurs

in a waveform transmission system.} In such a system we have at

the transmission end a set of n random variables {.} which occur

independently every T seconds, Each random variable multiplies one

of an orthonormal set of waveforms {s,®)} , each of which is zero

outside of the interval [o, T] , and the results are summed so that

our resultant random waveform signal is

x(t) = &gt; c, 5,(t)
i=l

21) J
n n

~ 2 -R_(s,t) = &gt; E [cf] s,(s) s;(t) = &gt; Ng s;(s) s,(t)
i=] i=1

l Convergence in the mean insures that Eq. 4.23 is satisfied everywhere
except at points of a set of measure zero. See Courant and Hilbert,”p.110.

t 25
"An experimental system has been studied by Lovell et al.



where A = E [of] . We shall assume that the signals are arranged

in such a way that A, 2 x, 2 ... . If we transmit this signal over

a noisy channel, we would then be interested in making an optimum

linear estimation of the set {e;} based on the received signal y(t).

We note that there is a difference between this problem and the one

considered in the last two sections. In this problem we are interested

only in estimating the value of the parameters {c,} whereas before

we were interested in estimating the entire waveshape.

[Let us consider the case in which we want to find linear estimates

(v,} of {c;} , where

dk

J. g. 1) y(t) dt

in such a way that

7) 3 eadi=1 -

(4,24)

n

is minimized.) This is equivalent to finding an estimate z(t) = &gt; bs.(t)
i=1

of x(t) in such a way that

T

| [ (x(t) - z(t) dt |
0

1S minimized since

bo .
This can be pictured by thinking of ¢ = {ec ,...,c_} andb= {b,,...,b_}
as vectors, Then 4.24 is the average of the distance squared between
the two vectors.



T T n n L

=| [ (x(t) - 2(t))? “ = = [ | &gt; c, s. (t) - &gt; by 550] dt
4 , Lisl =1 7

. E |Z (b - |

We have already considered such a minimization in the first part

of the representation problem considered in Section 4.1, so that we

see from Eq. 4.3 that g, (s) must satisfy

i R (5, t) seran[ (i cor(S2t) s.(s) ds (4,25)

for02t&lt;T.

The best linear estimates of the c, are then realized by passing

y(t) through filters of impulse responses h, (t) = 8, (T - t) and sampling

at the end of each interval as shown in Fig. 4.2. If we have additive

and independent noise, then

2. (s,t)= E[x(s)x(t) + n(t)] = R (5,1)

so that Eq. 4.25 becomes

_ I=

J R (s,t) g;(s) ds = Ng 8, (t) 0&lt;t&lt;T
PN

which is the equation for the matched filter in the non-white noise

sates) If the noise is white, that is R_(s, t) = N_§ (s-t), then we have

a

 a»

|
R_(s,t) g;(s) ds + Ng. (t)=\, s;(t) 0% ¢

0

T

rt

See Davenport and Root, 3 pp. 244-247, esp. Eq, 11-87



Ne
A A _ i -

the solution is g;(s) = FNTNs,(s)for i= 1,...,n so that
A.

h, (t) = tr s.(T-t). In this case bv substituting into Eq. 4.6,
i i

A. + N
i 0

the error is

n n A n MN
qt —. a )=&gt; N-) EH =&gt; (4. 26]

-” = i 0 — i o
i=1 i=1 1i=1

This linear estimator is a coherent device since its operation

depends on the knowledge of the sampling instants; that is, any such

system must include a method of extracting timing information from

the signal.

4.6 WAVEFORM SIGNALS WITH MINIMUM BANDWIDTH!

[In the case in which the random waveform signal is perturbed by

independent white noise we see from Eq. 4.26 that the error is indepen-

dent of the particular set of orthonormal waveforms used. We shall now

concern ourselves with the problem of picking the set of waveforms in

such a wav that the expression

©

[Ce S(f) af
Y. mm

(4,27)

is minimized where S(f) is the power density spectrum of x(t).

Expression 4.27 is the second moment of the spectrum and is, in a

certain sense, a measure of the bandwidth. Of course, x(t) is not

stationary so that it does not have a spectrum in the usual sense of

the Wiener-Khinchin theorem. However, if we make the process

Fries problem was discussed for a slightly different case in
reference 15.

EEE TAA EEA
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Fig. 4.2.
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The best linear estimator for the

parameters C:.
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t)s,(
Dmx (1)

 wn
&amp; s,(t)

Fig. 4.3. The generation of a waveform signal.
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stationary by assuming a random phase relationship between the

members of the ensemble, we can then apply the Wiener-Khinchin

theorem to the resulting stationary autocorrelation function. This

is tantamount to using the time definition of the autocorrelation

function using a single ensemble member

T

A (7)= lim 37 J x(t) x(t + 7) dt

In the following discussion we shall assume that the waveforms

have continuous and bounded first derivatives and that E [2] =0

fori=1]...,n because, if E [2] were nonzero, periodicities would

occur and S(f) would contain impulse functions. In such a case it would

not be apparent what set of waveforms minimizes the expression 4, 27,

We can find S(f) by assuming that the random waveform signal was

derived by applying impulse functions to a bank of linear filters with

impulse responses s(t) oe) s(t), which are zero fort &gt; T, and

adding the outputs, as shown in Fig. 4.3. The impulses are applied

once every T seconds, and the impulse applied to the a filter has

value C,e Since the c, are uncorrelated, the input processes are

also. Letting §(t) be the unit impulse function, we obtain for the

individual input autocorrelation functions

R(t) = E [22] 5)= \, 6(t"

In accordance with the Wiener-Khinchin theorem the power density

spéctra are @ ,(f) = A... It can be shown that the resulting output

373



process has a power density spectrum!

wher

s@)=) Is,01° m= 1» Is;01
i=1 i=1

fe

(4,28)

0 1

S, (f) = [ s(t) exp(-j2rit) dt -[ s(t) exp(-j2nft) dt (4.29
cen 0

This method to find S(f) is essentially the same as that used by Lee. 24

Exnression 4.27 now takes the form

a n ©

IG s@) df= ) ql £2 Is.)at
D i=] -®

n ®
2 —————&gt; yf S, (f) s, (f) df

| -m

(4, 30)

where the bar denotes the complex conjugate.

In order for the integral 4.27 to converoe, it is necessary that!

t2 sf)=o(]£]7X)
for large f, with k &gt; 1.} Then

5)=0(|£]"K"2)

Tee Davenport and Root, 8 Pp. 184,

te) = 0(g(x)) signifies that f(x) /g(x) remains bounded as x tends
toward its limit.

see Courant, 6 p. 250,



and from Eq. 4.30

1s. (€)]% = ole]2%)

-3 1
ERUIRERU(E

7

1 = [,2,000,0

eo 0 03 IN (4,31;

where k &gt; 1.

Ne shall now show that in order for Eq. 4.31 to hold, it is

hecccsary that

3.3)= rr. MY = 2 yl, ese, (4.32)

Integrating Eq. 4.29 by carts we get

s.(0) - s.(I) exp (-j2nft) ! -
S.f)=— =n" ——— + 5 s}(t) exp(-j2nft) dt (4.33)
i i2f jewt i

0

where the prime denotes differentiation.

Since the s!(t) are bounded, then lst (t)] &lt; Kfor 0£ t £T for some

number K. It follows that

| de J sit) exp (-j2nit) dt
0

&lt; _K |1 - exp(-j2nfT)]
~|2nt| | 2wf |

—
_. o(1£1~4)

Unless the conditions 4.32 hold, it is seen that

s.€) = o(]f]"1

which violates Eq. 4.31. As seen from Eq. 4.33 with s.(0) = s.(T) = 0,

the Fourier transforms of the s!(t) are (j27f)S,(f). From Parseval's

.
3%



theorem we obtain

5

w 00)

(j2f) S,(f) (-j2nt) s, (f) df = | [s16)] 2 at
” -

00)

( £2 |, (0)|% at
; -

so that from Eq. 4.30 we see that the minimization problem has

reduced to the minimization of

fl T

of [s1(1)]% at
=1 v0

(4.34)

under the constraints that {s.t)} be an orthonormalsetand

5. (0) = s.(T) =0foralli=1l,...,n. Integrating by parts we obtain

T

s1)] dt = s!(T) s.(T) - s'. (0) s.(0) - [ s.(t) =. (t) dt
o

J

.

 s(t) s(t) at
n

so that the minimization of 4. 4 1 equivalent to the maximization of

n T

&gt; yf s(t) s!'(t) at
i=] 0

-
3 \

which is

n T

&gt; A [ s(t) L[s, (t)] dt
i=1 0

3



where L is the linear operator

L, [£(0)] _d*2 f(t)

vith boundary conditions (0) = f(T) = OC.

This operator is self-adjoint since

T

 0) Le) at -[ g(t) f(t) dt

-

o
SU) f(t) dat | g"(t) f(t) dt

J L[g(t)] tt) at
3D

oy integration by parts where g(0) = g(t)= 0 and £(0) = f(t) = 0.

Bv the theorem of Section 2.4 the expression 4, 35 is then mm.ximized

5y the first n solutions of

a?
2 s,(t) = B. s(t)

with the bound-- ditions £,(0) = s.(T) = 0. These solutions are

) 0-4" sin BF 4 elsewhere Z-= 1,2,...
0&lt;t&lt;T

for which

3
p -[&amp;I J=1,2,...



For these solutions

2

Isp €)1% = ——250cos?mT
(p° -4t"T")" =

2

ST gin?mi
(f° - 4£°T) =

2 odd

{ even

From Eq. 4.28 the power density ¢m-~'rum becomes

S{EY = 82 (cos ET)? &gt;
££
Lei

A g £2

i “a
va en

Er —————

al te

,

-

2?
—

- £&amp;Z (sin fT)
=&gt; @"- T2

{even

The power density spectra obtained by using n= 1,

in Fig, 4.4 for T= 1. In these examples it was assumed that

- _ _ _1

Thy FT eee TA Toe

, and 3 are shown

[.et us consider a normal:
7

Sm,
 al ar Sih Y_.cion of this spectrum

Sf ==| 27 |
Snff) = 500)

for the case in which A, 2 \, 2 ym After some algebraic manipulation

we find that

Sf) = ————: [cos xa” 3 2%
5 1 2 Va £2 2.22 ro £=1 - n )

£0 £ odd

[stn 72 2
| 2% 2

n

 8%
2, cr]

L£=2
 LQ even

ph
”

r
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The nowenr dene lI. LY) DO ry ra dined hv 118inge the optimum waveforms



Te
—— Y Frape (&gt; - £202)?

[ff &gt; 1, then

2° a
2 5732 &gt; &gt; 773

2° - fn”) (n” - £7n")

for Z&lt; n so that for f &gt; 1

n

\ ' A &lt; n —— ——— = ~~ ———

JE _ £2)? 02 - 22% nl - £2)
Ed

Le

N-

therefore, we have the following upp.r bound for the - ~~ ztrum for f ~&gt; |

Spf) § ——r
n(l - £7)

This tells us that it is possible to make up a signal with waveforms which

are time limited to T seconds in such a way that the signal has on the

average n/T degrees of freedom per unit time and the power contained

outside of a bandwidth of n/2T cps is vanishingly small for n large

enough, We note in this respect that if we drop the time limited

restriction we can do it with zero power outside of a bandwidth of

n/2T cps by using chigs functions,
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CHAPTER V

THE NUMERICAL COMPUTATION OF EIGENFUNCTIONS

In general, the analytical solution ¢

[xe t) ot) dt = \ ds)
Q

r .ntegral equations of the form

5 \ A -

is a formidable problem. In view of this we have aeveloped a computer

program for the solution of these equations on the IBM 704 computer in

the M.I. T. Computation Center. A general description of the methods

used in this program follows.

5.1] THE COMPUTER PROGRAM

The program can be divided into three main sections. These are

(1) The approximation of the integral equation by a matrix equation

(2) The diagonalization of the matrix equation

(3) The manipulation of the diagonalizing matr~«to obtain the desired

approximation of the eigenfunctions.

For approximating the integral equation by a matrix equation, we use

the Gauss-l.egendre quadrature method for the approximation of a definite

integral. On assuming that the integral has been normalized in such a

manner that the interval of integration is [-1. 1] , we approximate the

integral by a finite sum

Le

ow

S a. f(t.)

(Qos), ; (t;
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where the weights a, and the abscissas t, are to be chosen, If we

specify that the approximation above be exact for f(t) = 1, x, «2, ve

then we have 2n equations and 2n unknowns, and we can solve for the

a's and t.'s. The approximation is then exact for any polynomial of

degree 2n-1 or less, The weights and abscissas are tabulated for

the interval [-1, 1] for n up to 16.1 If a more accurate approximation

is desired, the interval can be divided into sub-intervals with a separate

approximation for each ihterval. In the program we have used a ten

point approximation for the basic interval so that n will be any multiple

of ten.

If we apply this method to Eq. 5.1, we obtain

[xe b(t) dt = &gt; a; K(s, t;) dt V= No(s
£ i=1

and considering this for the same values of s as We ect the following

set of linear equations

a.K2 Kt) (0) = Aa(t;) I

We now make the substitution y(t.) = +a, ¢(t)from which we have

2, aK2 ; Kitt) va ye) =x yi)
q , I

For a brief description of the method and a tabulation of these values,
see Tables of Functions, 1 pp. 185-189,
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These equations are now symmetrical, and can be solved by diagonal-

izing the matrix

5 K(t,, t;) Vay |
This is done by means of an efficient and accurate subeprogram)

written by F. J. Corbato of the M,I. T. Computation Center. This

program gives the eigenvalues Mc and the diagonalizing matrix with

the eigenvectors Vi (t5) as columns.

Our approximations of the eigenfunctions ¢, {{) of Ea. 5.1 are

rh an

b(t) = 2 vie (55)
 -

-
te . a aoe 1

We now have n samples of each of the approximations of the eigen-

functions, These samples are rather far apart and in order to find

intermediate values we have to interpolate. The interpolation is done

separately for each sub-interval by assuming that the function is a

linear combination of the first ten Legendre functions Lt)

10

&gt; a. BD.) = f(t,

so that we have ten equations and ten unknowns, each equation cor-

responding to one sample point or abscissa. We then solve for the

a.'s bv using a program for solving linear equations.f

Tshare Identification No. MIDHI3.

Fe used program No. ANF402,



The time required for the running of the program on the IBM 704

for n = 40 is approximately ten to fifteen minutes,

We have described the program operation for a fir‘“e interval of

integration, If the interval is {) = lo,  ] , we can approximate the

integral equation in a similar fashion. In the program we have divided

the time axis into the four sub-intervals [0,3], [ 3,8], [8,16], and
[16, | » In the first three we have used a ten point Gauss-Legendre

approximation and in the last interval we have used a fifteen point

Gauss -lLaguerre approximation so that we have a 45 x 45 matrix.

The Gauss-l.aguerre approximation is used when the integral to be

approximated is over the semi-infinite interval and is similar to the

Gauss -Legendre except that it is specified that the approximation be

exact for f(t) = et xe se% 0 -2n-1.-t 1 The remaining operations are

then the same as before.

5.2 THE COMPARISON OF NUMERICAL RESULTS WITH

A KNOWN SOLUTION

In order to check the accuracy of the program, we have used it to

compute the solutions of an example the results of which are known

analvticallv,. We have used as a kernel

K(s. 1) = mw e-2TIs-tl

The eigenfunctions and eigenvalues for this kernel are given in Section 3,7

but are repeated he~~ for convenience. The eigenfunctions are

Cy COs bt k oddJd

by (t) = {
c._ sin bt k even

Por a description and tabulation, see Tables of Functions, &gt;t pp. 191-199.
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where the c's are normalizing constants and the b, 's are the solutions

of the transcendental equations

b,, tan b, A = 27

b, cotb, A= -2«w

&lt;

re

oad

even

I'he eigenvalues are given by

W,

+ 4.2

The transcendental equations were solved and the eigenvalues and eigen-

functions for k= 1, 2,3, 6, and 10 were found to be

A. = 0,7105

A, = 0.3392

Ay = 0.1632

A. = 0.0367

N= 0.0120

The eigenvalues computed by tlie

¢,(t) = 0.830 cos 1.003t

9,(t) = 0,907 sin 2.193t

p(t) = 0.952 cos 3.558t

$(t) = 0.989 sin 8.047t

¢;4(t)= 0.996 sinl4, 247

Jdgram for n= 20 were

N, = 0.7136

A, = 0.3426

A, = 0.1655

Ne = 0.0399

No= 0.0160

and those for n = 40 were

| OE



\ =0,7113

5 = 0.3400

N= 0,1640

A = 0.0375

A 17 F 0.0128

The sample points for the computer eigenfunctions over one-half of

the interval are shown plotted with the true eigenfunctions in Figs. 5.1a

5.1b, and 5.1lc. The first two eigenfunctions ¢, (t) and $b, (t) are not

shown since there was no discernible differcnce bc*reen actual and

computed.

5.3 THE EXPERIMENTAL COMPARISON OF EIGENFUNCTIONS

AND LAGUERRE FUNCTIONS FOR THE EXPANSION OF

THE PAST OF A PARTICULAR RANDOM PROCESS

The optimum set of functions for expanding the past of a signal

can in some cases do much better than lL.aguerre functions. To show

this we have taken a sample function of a random process generated

in the laboratory and expanded it by means of the digital computer.

We chose a zero-mean random process with correlation function

R(T)= exp [171] cos 3T

}
and used a weighted norm with weighting function W(t) = exp [-t/4] a

The process has power density spectrum

5 x J

1+ an” [+52] 1+ 4n° [- 2]

"we use the terminology of Section 3. 9.
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The autocorrelation function and power density spectrum are shown

in Figs. 5.2 and 5.3. Such a process was generated by passing white

noise through a filter with system fungilon)

(s)= 2 sts0+10
s + 2s +10

The first ten eigenfunctions computed py the program for the integral

equation

 Fr 3 AJ

exp [- 5 -= -Is-t1] cos 3(s-t) opt) dt = \ ¢(s)

are shown in Fig, 5.4.

The scale factor that was used for the Laguerre functions was chosen

by minimizing the weighted error for the first ILLaguerre function in a

manner similar to that in Section 3.10. The scale factor found on this

nasis was

The approximations of a sample function of the process over a

period of 7.5 seconds using the eigenfunctions and Laguerre functions

in a straight orthogonal expansion forn=1,..., 10, 15, and 20 terms

is shown in Figs. 5.5a and 5.5b. It is seen that the eigenfunctions do

much better especially in approximating the higher frequency portions

than the L.aguerre functions. This is because, as was pointed out in

Section 3,10, the Laguerre functions have Fourier transforms of the

form

Tot course, the actual circuit used was scaled up in frequency and
impedance level, but this is irrelevant here.
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I An! ”
nf - 1

2nf &gt;
+4L +1

n=0,1,2,c.-

so that most of their energy is near the origin. As seen from Fig. 5.3,

however, most of the energy in the random process is not near the

origin so that the performance of the L.aguerre functions is not

expected to be near optimum.
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APPENDICES

APPENDIX 1. PROOF OF THECOC&amp;KEM OF SECTION 2.4

Theorem The sun

n

), c; &lt;¢p L|&amp;;]&gt;
et

where cy &gt; c, 2 ees 2 c, is maximized with respect to the orthonormal

set of functions {0} by the choice

b.(t) = vy, (t) »
hi v 0 0 3 ia

and this maximum value is

n

&gt; Cc. A.
i'l

fu]

Proof: First, the eigenfunctions are the solutions of

L [v,®)] =x, v,® i=1,2..

arranged so that N{ 2 Xp, 2 ... . Since L is self-adjoint, the Y; (t)

form an orthogonal set. If the vy, (t) are normalized. we see that

J. eo &lt;vp L[y]&gt; = D&gt; [oreo] dt
i=1 i=1 £

n

&gt; Cc. \.
ii

i=1

 | $



Now we shall show that this is the maximum. Suppose we have some

other orthonormal set fo.) for which

.(t) dt= [01
t), v(t)&gt; 5&lt;&lt;&amp;, (t),

then

©

[ue Le] at= [o.@L[ ) ov0)] at
0 j=1

ju

=1

 wo
2

oo ij v;() j “ij
1 i

hh!

 n=
( |

i=1

0
.2 2

Ww, + &gt; nN. = \) w..
” J n’ 1;

i=n+1

 nN

= Nc y
. ! 2 0 = A )

z ‘ n’ ij

(00)

since &gt; of; = 1, alli, and). ~ A &lt; 0Oallj2 n+l, then
j=1

n n

&lt;

&gt; | 6.) L [4 (6)] dt S nx + &gt; 0 a, of;
i=1 YQ j=1 i=1

a A +

nn

fd

n

2
A. -. ( j N,) &gt; “i !

j=1 i=1 -

therefore,

1 1



&gt;a &gt; [aorlo0] at &lt;
i=1 i=l Yq

Dn

yn

i

Now, since MN. = No iy All

3
-»

n

DohW.. =
1) Te

i=1 ’

00]
—

wig =
1

SN.
"4

5

ne
4

- n

| 1. w. |2
- i=1 mate

‘hen

n
——

"o.L [o0)] at -

and this is true for any n. Now consider

A ted. rteen te A =c (Ny foenn n''1
A

a CH n=1" ch) (\

Fey = cy)(0)

If we set a, = | 4,6) L [4,(t)] dt, we know tha.
9)

: + A 2 o + LE) + u

A

If we multiply consecutively by Cc.» C_

= 51
7 =|

- —u
a

and add, we get

i 18



n n

Cc. \. &gt; Cc. a.
ii ii

i=1 i=1 i-

n
Ts

c, [estre[oe] dt
9)

which was to be proved. Thc procf © the ¢- -~r.d case is similar.

APPENDIX 2. PROOF OF THEOREM USED IN SECTION 3.5

We shall first state the following theorem of Kac, Murdock, and

SzeqdlS which will be used to prove our theorem.

Theorem Consider the integral equation

 1A
A

P(s-t) dp, (t) dt = \. 6. (c

with eigenvalues \, 2 A, - FR “f we detine

00)

Fi) = f P(t) exp (-j2nft) dt

 JY

 A =~ s £ A

(A2-1)

then

lim Lo = .im IN N,(a,b) um [ £; a &lt; Ff) &lt; b] (A2-2)

where N,(a, b) is the number of eigenvalues of the integral equation

having values falling within (a, b) and where pu [E] denotes the measure

(or length for our purposes) of the set E. The limit A2-2 is true provided

that (a, b) does not contain zero and the sets where F(f) = a or F(f) = b

are of measure zero.

fR_(t) = p (t) in the theorem above, F(f) is then S_(f), the power

density spectrum of the process x(t) and is therefore even and everywhere
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positive. Let us assume that S, (f) is continuous and monotonically

decreasing for positive arguments. We then subdivide the interval

(a, b,) in the range of S_ into n subintervals, denoting the subdivision0’ ~0 x

by (ay d1seeesd 458, by) where a, = S_ (fy) and b= s_(0). The

corresponding subdivision of the positive domain is (f, = O, £ pre

*.,f,) where a, = 5_(f.). We now observe that from the theorem

 tie phe &gt; &lt; fo
2a. (£4 -f) = JH SA 8 Mp s 2a (£. _. -

~vhere D, = /; a. &lt; y. &lt; a.| , and from this it follows thati-1 i

)

n 11

&lt;1 A &lt;&gt; a. 4 (£4 -f) £ lim SA &gt; Mp S 2 &gt; a. (tf, , - f.,
i= 1 A= © D i=1

where D = V4 3 Np 2 a, | . This is true for any subdivision and by

the definition of the Riemann integral if S_(f) is integrable, then

n n

- TV = -,U.b, 2 &gt; a; 4 (£ _, g.l.b, 2 &gt; a,(f. 4 £.)
i=1 i=]

&amp;

~ ff) df -[ s_() df

and we have

lim &gt; on
A - © 5 J

[
’

a (0) af

‘See Rudin, ?’ p. 8°
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Placing f; = k/2 we get

k/2
LL &gt;Jim 75 A; = [ s,(f) at

D “k/2

where D=[ i; A. 2 S_(k/2)|. We then ob- -»
- that trom the theorem

» 1
lim 55 N, (S_(k/2),0)

Amp 2A A Vy

N,(S (l/c ®)=n ~ 2kA

30 that we have finallv

n k/2

im £30, S (f) df
n—-m- 1 x

i- “k/2

A similar result can be obtained for monotonic spectra subject to

the conditions of the theorem. It amounts to adjusting a, in such a way

that

1 |G sf) 2 ay| =k

Ne then have

n

.k )lim £0) ve S_ (f) df
1—=0 j= n=

vhere E = [ 1; S(f) 2 a, | , and this result is used in Section 3.5.
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APPENDIX 3. THE ERROR INCURRED BY SAMPLING AND

RECONSTRUCTING BY MEANs oF 2%

FUNCTIONS

Let x(t) be a random process with autocorrelation function R(t)

and power density spectrum S(f). We sample the process at the rate

vy samples per second and rcconstruct with S1BX functions getting

a hew Drocess

0 sin=(t - nT)

oe $a iElonn= 00 = -n1’

where T = Si . We want to find the error

elf] = 266) -x)?]
-E [y*0)] +E[x*®)] -2E [xy]

—
sv — [ x? t)]

(00) 00)

J.) Rbx-ms
n=-0 m=-0

3
oD sin=(t-nr)

&gt; R(t - nt) ~
n= - —=it -n7)

. . T 3

sin (t - nT)sin— (t-mT’

Z(t-nt)=({t-mT)

(A3-1)

The second term mav be reduced in the following manner (due to Slepian).

[,et n-m ny

2 2 sine (t-0t-mr) ine (t - mt)

alr) So nE odemusing= © me © zt-ft-m )z(t-mT)
(A3-2)



but since == is bandlimited, we have the identity

sin (x-a) 5 sin (mt - a) sin = (x - mt)
Tk-a) Lr F(mr-a) + (x - mT)

and letting a = t and T= * Xx, we get

T L b —_.— (t - Im T SS; - T -— 1

50 that « - “~~gion A5-2 becomes

a
~

» R(fr) 320 = R(0)=E[x]
Fa

Ne now have for the ceries As5-|

2 ® I

Ee] = 22 [20] 22) Re-an00
n=-qo T(-nt)

Br

Now the last term is periodic of period 7, so we ¢v-r a period

7/2 sin — (t-nt)T/2 , m

TF 2 = x2 (t +f &gt; R(t-nT) ———Ho Ee (t)] at 2E | t)] T ey Lo A
-.T/?2 5

di

00)

2E [x%(t)] +f ri) SET| (A3-3)

where we make use of the identity
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o r/2 © [00]
-nnacs [ f(t) dtpa

n=-00 -

Now according to Parseval's theorem we have

© sin—t w
Rt)——dt= tT S_(f) af

Ty x
Y. 0 T ur

50 that

7/2 AT

[ E [e*(t)] dt=2E EO) - . | S, (f) df
vy /3 uy

ls m)ydf -: [ s,(£) df
"nm o/ wy

-W 03)

| [ s_(£) ar [ S_(f) dt
- Ar -—

which was to be proved,

APPENDIX 4. DETERMINATION OF THE EIGENVALUES AND

EIGENFUNCTIONS OF A CERTAIN KERNEL

We shall find the eigenvalues and eigenfunctions of the kernel

-Bs°-8t&gt;. 2 (s-t)°
K(s. t) = e :

First, we shall need two identities. The {irst is

» 0 2 T°
-=~j2wft at =1/Z e a

(A4d-1)

(A4-2)

| 2 A



We have

[© -at? -j2mft P -a(t+ig f)° I?eo e dt = e e at

Ae)= 1}

Le .

La @+jf ai
e dt

-0+jIf
-

-

since the integrand is entire

2 eo, ape
-at _ /w af et gro/T6

Cy

The second identity is

LY n 2 2.

[ { d_ o-bt } oat’ g-izmft g
Lop Lat

—

2 2

. .n gt a? -aeayt_ ja /_w a a(b-a2 b-a © LL © 1 (A4-3)

Consider

- tee ‘ at’ e Jy dt
n dt

» y

J n 2 a(t-j Y)%
. 4a | d o bt 1 e 2a dt

~ Cs dt

since the integrand is entire

| DE



- co
J 0, n -b|tt+] J 2

= ~3a [ {5 e %) 1 22 Ci
dt

-

L Ll

RE 2a] ao [eo [+i 2 | at? .
dy on

by . byt2 b © 2 yor
5 [zap &amp;® 4a’ f -(b-akt” _ diet [2] =e

J dv .

be 2
b so SX‘ 27 ™ 4a" (b-a

ra a? —_—4a [37 d 3a / T_
c j do?

2
Io nn ge yt

2a1® Sw 4a d 4a(b-a)
[4 ] b-a © av™ ©

If we now let yv = 27f, then we have the identity.

Now we want to show that

Pe
kt? @® 2k?

) = e ER €
dt

(Ade4)

are solutions of

-8s2-8t%-%(s-t)° ot) =r &amp;_(s)
J mm

A)

(A4+.5)
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for some scale factor k, Substituting A4-4 into the left side of

Eq. A4-5, we have

2 22 2 n okt

: pai ee-Pt {g e 2 } dtpach : at”
- 0)

[

but since

a

f f(s) g(t-s) ds =
 MD

0

| eI? £5) Gf) at
-D

vhere F and G are the Fourier transforms of f and g, we have

0 in 2
2 : 3 -—1f 9

gs f iznts VE. :
-0 )

2 2 2kn”
i n — f n T.2 2 C

jk-B) fT k-3 d k™-s3) k+p © gh € » df

2 2
2n%y 2

[ip fan” ps? © ants =k £2]
“Tw a(k+p) © © ©

-

2k? £2
n ,2 .2

{fe ©F Laeaf

where we have applied the identity A4-3., If we apply it again and

simplify, we get

J



8ot : |TT les2m e’ 2 (k+PB)= |! - =

o okes®

{ # [es-2]ke-parz(&lt;®-p?)}— e

ds™

If we set k= VB(at+p), after some manipulation we see that

 ny 2 1s JE [C2 - a" s
Fee ee a (VRE) -p| ds™ ©

so that the eigenvalues and eizeniunctions ar.

 am
/ a+ 2B) + 28 k - z (VB(at+B) - 8) |

} YTb_(t)= Ae VBlIBIt a 2 Bate)?
dt

for n=0,1,2,...

yi so that

A

In our caace a f—
ay B=1 and

[1 3-2/2)"ro ( )

the kernel was multiplied

2
po)=AeY2t£22

ETRY

forn=0,1,2,...
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APPENDIX 5, THE SOLUTION OF A CERTAIN INTEGRAL EQUATION

Ne want to find the y_(t) which solves the equation

2 a Ii . os
v d eZ -

A&gt;

2 .n ~—
y JW2HIES dT TE

4+°
[
2:5

5

tu! 4

" (uw) cu

foo
Vy (2) da

If we take the Fourier transform of both sides, we get (using the identity

A4.3)

x“ 2

i zeny [Tw J | dt 2nd |m JZ - 1 [£

or/Te I~

vhere I'_(f) is the Fourier trans’orm of y (i). We then see that

V2+2 2.2

E)= A [20] /— ZH]&gt; 1

at _-24Znlt?
el

Taking the inverse Fourier transform of both sides and simplifying we get

14/2 2
a(t) = A_ 2 + 2)? A 22 at 21?

JT(2 - 2) at” °
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