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ABSTRACT

Continuous flow formulations of manufacturing systems offer
an appealing way to reduce the complexity inherent in traditional
discrete parts modeling. However, many manufacturing processes
have significant delays in the material flow and this phenomenon
is absent in existing continuous formulations. Delay is also
present in large aggregations of machines that process many
parts at a time. A linear system approximation technique is
proposed for dealing with such. Both analytical and practical
results are derived. Heuristic, sub-optimal control laws are
constructed from the analytical results by numerical
experimentation. Features of the control for interconnected
manufacturing systems are also explored and a simple heuristic
for two machines in series is developed.
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CHAPTER 1 - THE MANUFACTURING ENVIRONMENT AND DELAY

1.1 INTRODUCTION

The problems in American manufacturing are increasingly the
focus of public asttention. We are now beginning to recognize that
our ability to compete in world markets, to support sustained
economic growth, and to realize an improving standard of living
depends on our ability to produce products efficiently.
Automation is seen by many as a solution for the problems our
manufacturers face. The conventional wisdom holds that if enough
robots, numerically controlled machine tools, radio controlled
materials handling carts, machine vision systems, etic. are
installed in factories, then our manufacturing woes will
disappear. Conspicuously absent in this vision, however, s
sufficient wisdom on how we will effectively control these

enormously complex and expensive "factories of the future®.

Recent experience (Nag 1986) suggest that automation often
introduces as many problems as it solves. Managers are faced
with the task of directing an extremely complex system that
incressingly is being stripped of human operators - operators
whose adeptness at reacting to the change of events on the
factory floor is not easily duplicated in control algorithms. It
appears that if we are truly going to benefit from the
application of this new technology. a more rational understanding

of factory behavior and control is needed.
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The uitimate research goal in manufacturing systems is to
develop models and techniques for analyzing a general
manufacturing process. What we are presenting in this thesis
addresses two features that are common in many manufacturing
systems, namely delay and interconnected machines. We hope that
our results and observations represent a step forward in the

understanding of more general systems.

1.2 THE MANUFACTURING ENVIRONMENT

Before we can address the issue of control in an automated
manufacturing environment, a more detailed discussion of the
qualitative features of these systems and the problems inherent
in their control is in order. In this section we provide a brief
overview of the nature of the automated manufacturing problem and

discuss some of the problems a controller must contend with.

Perhaps the most significant quality the new meanufacturing
technologies posses is flexibility., A machine tool that once only
performed a single, restricted operation (e.g. drilling or
cutting) is replaced by a numerically controlied machine capable
of performlnc‘a complex sequence of operations, a sequence that
may be changed by simply providing the machine with new data. A
conveyer belt is replaced by an sutomated materials handling

system that can redirect the flow of parts between machines and
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workstations on demand. An sutomated inspection station can
dynamically examine parts for defects so that parts may be sent

back for rework or discarded (Gershwin et al. 1986).

Flexibility, however, increases the complexity of the
decisions that must be made on the shop floor. If this increased
complexity can be successfully managed, the potential benefits of
automation can be significant. But, flexibility also creates the

potential for confusion and the misuse of resources.

The situation is made yet more complex by the presence of
randomness in the form of machine failures and part defects and
by the presence of delays, which, as we shall see later, are

inherent in many manufacturing systems.

Manufacturing systems are often very large scale systems,
which makes global control difficult. Some sort of decomposition
is necessary to generate problem formulations that are tractable.
One possible approach that seems particularly appropriate for
manufacturing systems is to decompose the problems hierarchically
by time scales. This approach is a common technique for treating
large-scale traditional control problems and has the added appeal
of paralleling the organizational structures found in most

factories,.

For example, a machine operator is concerned with the
loading of individual parts, his supervisor is concerned with the

daily scheduling of a whole line or work center and the plant
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meanager {s responsible for the weekly operation of the whole
factory. Each is concerned with problems that span a different
time horizon and scope, yet they must communicate and coordinate
their individual decisions in such s way that the overall
objectives of the factory are met without overburdening each

other with information or responsibilities.

Gershwin @®et al. (1986) has suggested a methodology for
defining a hierarchy in which modules in the hierarchy pass
information to lower levels in the form of requirements (e.g.
production rates, set-up frequencies) and pass information to
levels above them in the form of constraints (e.g. capacity,
machine states). Each module then solves an optimization problem
based on these constraints in order to generate the requirements
for the next lower level. The control problem is thus reduced to
a collection of smaller optimization problems which are

analytically tractable.

1.3 PREVIOUS WORK

The work we propose falls within the general study of
flexible manufacturing systems (FMS). Since we are primarily
concerned with control issues involving delay, we will also

review the optimal control literature concerning delay.
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1.3.1 FMS Literature Survey

The rise of flexible manufacturing systems has paralleled
the rise of microprocessors. With computing power no Jlonger the
limitation it was in the past, the real-time control of whole
factories is now possible. This control capability has awakened
an interest within the operations research and control theory
communities in devising algorithms to optimally control flexible
manufacturing processes. Reviews of progress in this area are
given In Buzacott (1982), Buzacott and Yao (1982) and Gershwin
et al. (1986).

Some of the research to date has addressed the problem of
optimal routing in simple networks of queues. Examples of this
work include Olsder and Suri (1980), Seidman and Schweitzer (1982),
Teitsiklis (1980), Ephremides et al. (1980), Maimon and

Gershwin (1986) and Hahne (1981).

Stidham (1985) provides a good review of research progress
in the area of controlled queues. It appears, however, that
optimal controls for networks of queues are often difficult to
derive even for the simplest systems possible and computational
techniques appear to be limited (Hahne 1981). The fundamental
difficulty in modeling manufacturing systems as networks of
queues is the large state space required to represent such a

system.
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One technique for avoiding the dimensionality problem is to
represent the material flow in a factory as a continuous flow.
Kimemia (1982) and Kimemia and Gershwin (1983) proposed a
hierarchical control system where the top levels use a model in
which the flow of material between workstations is continuous.
The discrete dispatching of parts is left to lower level work
station controllers. The flow level control accounts for changes
in the state of workstations (i.e. machine failures) and
observes capacity constraints. Using the methods of Rishel
(1975), they derive a control law based on the gradient of the
optimal value function. However, it is only possible to compute
the optimal value function for very simple systems (cf. Akella
and Kumar (1986) and Bielecki and Kumar (1986)). Using quadratic
approximations to the optimal value function, Akella e al
(1984) developed sub-optimal strategies that have proved very

effective in handling simulated systems of realistic size.

One key assumption made in most continuous flow models is
that the time that parts spend in a workstation is negligible
compared to the rate of flow. This limits the applicabjlity of
the model for, as we show in Chapter 3, delay through a work-

station is often unavoidable.
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1.3.2 Delay Literature

Since continuous flow manufacturing models are a recent
development, delay issues have not yet been addressed. However,
theoretical and practical techniques for accommodeting delay have

been addressed for traditional control problems.

Donoghue (1977) gives a good comparison between the Smith
predictor, a classical block diagram approach to handling delays
(Smith, 1957), and modern optimal control results for linear
quadratic (LQ) systems with delays in the control. He
demonstrates that even though the optimal control approach can be
used to generate an optimal controller, a predictor is often easier
to implement. It is also intuitively easier to interpret and
adjust. However, the uncertainty and constraints involved in
complex manufacturing systems makes it difficult to construct a

predictor.

Mariani and Nicolleti (1973) address a general discrete time
optimal control problem with delays in the dynamics and controls.
They derive a discrete maximum principle for a deterministic
system with convex costs, linear dynamics and convex constraints.
Their results are primarily useful for static, very large scale
non-linear programming approaches. Such an approach would
involve discretizing time over a finite horizon and then
optimizing over the states at all time steps simultaneously.

However, the dimensionality of a typical manufacturing system
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would make this type of approach computationally infeasible.

Ross and Flugge-Lotz (1969) derive the optimal control for
a deterministic LQ problem with delay and show that the gain
matrix contains a term which is an integral of product of the
past states and a matrix function. This matrix function is,

however, difficult to compute.

Koivo (1969) shows that for similar LQ delay systems with
white Gaussian noise in the process and measurement (LQG),
certainty equivalence holds. Certainty equivalence says that
using the expected value of the state in the deterministic
optimal control law for the same system without noise is optimal.
The separation of estimation and control is thus preserved for

LQG systems with delay.

Hess (1972) and Hess and Hyde (1973) use an approximation
technique due to Repin (1965) to estimate the matrix function of
Ross and Flugge-Lotz. Though the problem they address is a LQ
problem wit.h delays in the state and no randomness, their

approximation technique forms the basis for our analysis,

These traditional control problems give us valuable
techniques for accommodating delay. However, the results are, by
themselves, not directly applicable to our problem because the LQ

model is not appropriate for manufacturing systems.
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1.4 PREVIEW AND OUTLINE OF THESIS

In Chapter 2, we present the continuous flow FMS model
of Kimemia and Gershwin. Kimemia and Gershwin made several

important assumptions in developing their continuous flow model:

1) The setup time is much less than the processing time of

parts.

2) The operation times are much less than the mean time
time to repair (MTTR) and mean time between failure (MTBF)
of the machines.

3) The MTTR and MTBF of machines is much less than the

planning horizon.

A consequence of these assumptions is that the material
movement can be modeled as a continuous flow between machine
failures and repairs. This flow can then be described by an
ordinary differential equation. However, as we show in Chapter 3,
systems that operate on many parts at a time require a delay

differential equation to describe the material flow.

Chapter 3 contains a simple analysis of the source of delay
in continuous flow models and the effect of delay on internal
inventories. The FMS control problem for simple delay systems is

then formulated.
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In Chapter 4, we present a strategy for approximating delay
by a finite-dimensional system of first order equations without
delay following the work of Hess and Repin. The approximated
system is then analyzed using the Kimemia-Gershwin results. The
approximation can be made arbitrarily good by increasing the
dimensionality of the approximate system to arrive at an optimal

control for the original system.

While this approach yields the optimal control in theory,
the lack of methods for computing the optimal value function for
a non-delay system means that a direct application of the
approximation technique is still not possible. However, using
quadratic approximations to the value function we arrive at a
particularly simple and interesting form for the control law
involving a linear term in the current inventory level and a
“correlation® or “convolution® type term in the past controls.

Simulation results based on this control law are also presented.

Another assumption in the Kimemia-Gershwin model is that

the instantaneous capacity not be violated. The instantaneous

capacity is a set that describes the mix of parts that can be
produced at any given time. If storage is allowed in a FMS,
however, it is possible to begin production on parts even though
some machines needed for part production are not operational.
Increased capacity can thus be realized if a FMS is subdivided

and internal storage is allowed.
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In Chapter 5, the consequences of the instantaneous

capacity restriction are discussed and a surplus space

represantation of interconnected systems is introduced. The
surplus is defined as the difference between what has been

produced by a machine and the cumulative demand at a given time.

Numerical optimal contirols are generated for a simple
interconnected system and then graphed in surplus space. The data
suggest that the optimal conirol can be characterized by two
regions. In one region the control is approximately a surplus
hedging point policy, while In the other region, the control is
approiimltely a buffer hedging point policy. A heuristic
strategy based on this observation, called a two-point
control, is introduced. A simple technique for generating

the parameters of a two-point control is developed.

Chapter 6 contains a summary of the results discussed in the

previous chapters and suggests topics for further research.
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CHAPTER 2 - THE KIMEMIA-GERSHWIN MODEL

In this chapter we review the results of Kimemia and
Gershwin (1983) for a continuous flow model of an FMS. The
remaining chapters require a great degree of familiarity with

many features of this basic model.

2.1 FPROBLEM FORMULATION

The manufacturing system we consider is represented in
Figure 2.1. The FMS consists of a collection of individual
workstations and processes a given family of parts. Each work-
station, in turn, consists of a set of identical machines. The
supply of material at the input to the FMS is assumed infinite
and the demand is known. Machines are subject to random

fallures,

There are several important assumptions that are made in
this model concerning the relative frequency of events. These
time scale assumptions are that 1) the time parts spend in the
system i{s negligible, 2) many operations take place between
machine failures and repairs so that a flow rate can be
meaningfully defined in these Intervals, and 3) many machine
failures and repairs occur during the planning horizon so that an

infinite horizon criterion is appropriate.
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Some of these time scale assumptions can be relaxed, and
this is discussed further in Chapters 3 and 5. For now, we will

assume they always hold and proceed with the development of the

basic model.

Control of the system is organized hierarchically as shown
in Figure 2.2, At the top level, long-term production rates for
each part type are determined based on estimates of demand and
the steady state system capacity. These production rates are
passed down to the flow control level, which calculates short
term production rates based on the instantaneous capacity of the
FMS. The flow control level tries to keep production close to the

long term rate without creating excess inventory.

The lowest level is the dispatich level. The dispatch level
determines when to load individual parts based on the short-term

rates set by the flow control level.

Our focus here and throughout this thesis is on the flow
control level. We now give a precise mathematical description of
the FMS model. The workstations of the FMS are denoted
m=1,2,...M and the part types are denoted n=1,2,...N. Each

workstation has Lp, identical machines.

Let u(t) be the N-vector of production rates and d be the N
vector of demand rates. The total number of finished parts

produced is measured against the long-term production demand, d,
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by forming a production surplus measure, x(t). Negative values of

x(t) represent a backlog of parts. The N-vector x(t) satisfies

x(t) = u(t) - d (2.1)

The quantity x(t) is simply a measure of how far ahead or
behind the FMS is relative to the target production rate d. It is
an accounting quantity and does not measure the amount of material
anywhere on the factory floor. The objective is to keep x(t)
close to zero by penalizing the FMS for being to far ahead or too

far behind the target production rate, d.

If multiple FMS's are connected together and each follows
such a policy, it is reasonable to expect that, in the long run,
no single FMS will get too far ahead or too far behind the
others. We explore this issue in greater detail in Chaptef S

where we discuss inter-connected systems.

The repair state of a FMS is denoted by an M-tuple of

integer variables
a(t] - ( a‘(t]n az(t]. e g c"(t] ) (2.2)
where

@p(t) = k  if k machines at workstation m (2.3)

are operational at time t.
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Machines are assumed to have independent, exponentially

distributed failures and repairs. Therefore, the rate at which

machines are repaired in a workstation is proportional to the

number of broken machines and the rate at which machines fail is

proportional to the number of operational machines. The dynamics

of a are thus given by:
Pl ap(t+est) = k-1 | ap(t) = k ] = kp 5t

Pl ap(test) = kel | ap(t) = k ] = Lp-k)ry5t

For any two states i and j we define

)\uﬁt = Pl a(tedét) = j | af(t) = 1 ) for i = J
Ay - '?"u

The production rates are constrained by the current

of the system. We define

T,m = Processing time of type n parts on machine m.

u,(t) = Production rate of type n parts.

2.6
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We now make the important assumption that no material is
allowed to accumulate in the system. Only production rates that
can be satisfied at every workstation in the system are allowed.
The quantity EThn Upl(t) has units of material
(product of production rate and time) and represents the
"quantity”™ of parts being processed at time t. Note that in using
the continuous model, we must speak of a "quantity" of parts
that can have a continuum of values rather than a “"number™ of
parts that has discrete values. The number of available machines
at time t is ap(t). Since we can not have have more material

being processed than the number of available machines, we must

have

E"mn u(t) s ay(t) for all m (2.10)

The instantaneous capacity set is therefore defined by

(@) = { u|u 20, u satisfiles 2.10 } (2.11)

The instantaneous capacity set is a polyhedral in u. It
defines the set of production rate vectors, u, that can be
achieved given the current state of the workstation. Note that
by constraining u(t) in this way we do not allow a production

rate at the input to the FMS that cannot be satisfied at every
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workstation in the system. We examine the consequences of this

restriction in Chapter 5.

We are now ready to formulate an optimization problem for
the the flow control level. Given an initial production state x

and machine state o, we would like to minimize the cost

Jxa) = Jm 4 EC [ Talx(t) dt | x(0) = x , a0) = a ) (2.12)

where g(x) penalizes each component of x for being too positive

or too negative. In particular we require

¢(x) = = g (x,) (2.13)
Jim @, (x) = o (2.14)

and
8,00 =0 (2.15)

We now look for control laws, or policies, that minimize the
cost, (2.12), and satisfy the capacity (2.11). These policies
will be functions of the current buffer level and the current
machine state. We define the cost-to-go from a state x and «

using the policy u by
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Jyca) = Jim 4 EC [ Tex(t) ¢t | x(0) = x , a(0) = a ) (2.16)

It is shown in Kimemia (1982) using the results of Rishel
(1975) that the optimal policy, u*(x,a), and optimal cost-to-

go, J,S(x,u), satisfy
0= u%) (glx) + 9,3, % + § Nap Ju'[xB] ) (2.17)

If we substitute the state equation

X =u-d (2.18)

into (2.17) we get

0= mn (gl + VJ," (u-a) + Z Aop (%81 ) (2.19)

The optimal control, u*(x,a), in this equation is

determined by

mip Ve J u (2.20)
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Equation (2.20) is the main result of Kimemia and Gershwin,
It shows that the optimal control must satisfy a linear program

at every time instant. (Recall that the capacity set, f(a), |is
polyhedral.)

As x(t) changes the coefficients of the linear program
(2.20) will change. The value function thus divides the X-space
into regions where the control takes on a particular extreme
point value of Q(a). For example, Figure 2.3 shows tﬁe set 0O
and the regions of x-space for a single workstation producing two
types of parts, Type 1 and Type 2 when all machines are

operational.

For a some x and a states, the solutions to the linear
program (2.20) will be at extreme points of Q, which corresponds
to an interior region of x-space as shown in Figure 2.3. If a
machine state has sufficlent capacity to meet demand, there

exists a point in x-space, called a hedging point, where

VJ,[x)-O or, if the gradient does not exist, where the

minimization is not determinable. This is the point labeled x*

in Figure 2.3.

If the system reaches the hedging point, the optimal policy
is to set u(t)=d and let the system remain there until the
machine state changes. Gershwin, Akella and Choong (1985) discuss
this behavior in detail. They also discuss the behavior of the

control on the boundaries between regions.
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Some boundaries are attractive, meaning the control regions
adjacent to the boundary drives x(t) back toward the boundary.
This can result in a back-and-forth, or chattering, type of
behavior. On attractive boundaries, the optimal control is to
follow the boundary. Other boundaries are repulélve and the

control simply changes extireme points as these boundaries are

crossed.

Unfortunately, we need to know the gradient of the optimal
value function to use (2.20). In general it is difficult to
compute the optimal value function for problems of realistic
dimension and approximations are needed in practical applications

(see Gershwin, Akella and Choong (1985) and Kimemia(1l982)).

The optimal value function is shown in Kimemia (1982) to be
convex and continuous. To approximate the convexity of the value
function, Kimemia and Gershwin proposed a quadratic approximation
to the value function. They showed that such an approximation
yielded very good system behavior. When actually applying the
control, the exact value function seemed to matter less than its
gross characteristics. In general, the experience of Gershwin and
his co-workers seems to show that the behavior of the system is

relatively insensitive to changes in value function parameters.

Several features of this optimal control derivation are
needed in Chapter 3 when we introduce delay. The first is that

the optimal control is determined from (2.17) by substituting a
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differential equation for x(t). Also, only a differential
equation that is linear in wu(t) yields the linear program (2.20).
Having a differential equation representation of the evolution of
the system state is necessary if we are to apply this same
analysis to other systems. This is an important consideration for
systems with delay, because the evolution of the state of a delay
systems is not trivially described using simple differential

equations.

2.2 EXTENDING THE BASIC MODEL

The Kimemia-Gershwin control has proved very effective in
detailed simulations of actual manufacturing systems (Akella,
Choong and Gershwin 1984). It turns out, however, that some of
the assumptions made in developing the model, namely the
assumption that the processing time is small and the assumption
that the instantaneous capacity be strictly satisfied, limit the

application of the control law.

These assumptions are true for an FMS with a small number of
machines (typically less than ten machines). To extend the model
to larger systems, these two assumptions must be reexamined.
Extending this model and its solution to larger systems is the

main objective of the remaining chapters of this thesis.
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CHAPTER 3 - THE FMS MODEL WITH DELAY

In this chapter we examine the effects of adding delay to
the FMS model of Chapter 2. A simple analysis shows that an FMS
that works on a large number of parts should be modeled with a
process delay. We examine the effects of delay within work-

stations and on the FMS as a whole.

Delay in individual workstations can be tolerated within
the framework of the basic FMS model. However, doing so requires
that internal inventories be maintained between workstations to
keep the workstations supplied during changes in the production
rate. These inventories are proportional to the delay so for
large delays, the inventory levels will be excessive. Subdividing
the control of the FMS may therefore be necessary to reduce the

level of work in progress (WIP).

A process delay in an {sclated FMS with constant demand is
a relatively simple extension of the basic model. Delay in an

interconnected FMS i{s less satraightforward.

3.1 FUNDAMENTAL SOURCES OF DELAY IN MANUFACTURING SYSTEMS

To understand why delay is an important consideration in a
continuous flow model, the basic assumptions behind a flow model

must be reexamined. Figure 3.1 shows a simple workstation. This
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station consists of a single machine producing two part types.

The operation time is T.

To accurately model the material flow as a continuous
process, it is reasonable to measure the rate of flow over a time
period that is much greater than T. For example, if T=1 min.,
then we could measure, at least approximately, a continuum of
“parts/hour” rates, but we could not reélly measure a continuum

of "parts/min.". (i.e. We would see 1 part or 0 parts only.)

We define the time scale of parts production for this
process to be of order T, meaning that during intervals of time
less than T very few part production events can take place. The
basis for the assumption that the processing time is negligible
in the Kimemia-Gershwin model is, therefore, that the time parts

spend in the system is of order T or less.

Increasing the processing time, T, does not in itself
introduce delay. We can see this by noting a change in the
production rate at the input of the system in Figure 3.1 still
results a change in the 6utput within T time units. It does not
make sense, therefore, to define a delay in the "flow" within
this time period, since we require a period of at least several T

to define a flow in the first place.

For example, in Figure 3.1, a change in production from all

Type A production to all Type B production, would look like an
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instantaneous change in the rate of flow if measured over a

time span much larger than T, even though T may be several hours.
It is therefore reasonable to model flow rates at the input and
output of this processes as identical at any given time. What has

changed by increasing T is the time scale of parts production.

This non-delay model is, however, not appropriate for all
systems. For example, Flgure 3.2 shows a conveyer belt dryer
process. In this process, parts enter the system, pass under the

dryer and then exit.

The time between the loading of individual parts may be much
less than the time spent in the dryer, especially if the conveyer
belt process is slow. For example, suppose parts are loaded once
a minute and the drying process takes 1 hour. If we have been
producing Type A’s all morning and then start loading Type B’'s at
12:00 noon, then from 12:00 to 1:00 we will measure a flow rate
of 60 B’s per-hour at the input, while at the output, we will

still measure 60 A's per-hour. There is a true delay in the rate.

It is not the processing time that introduces this delay but
the processing time relative to the Iinterarrival time of parts.
For example, if the conveyer belt is short or very fast and
therefore holds only one or two parts, then the production rate
at the input and output would be the same. If the belt typically
holds many parts at a time, the output rate will be delayed

relative to the input rate.
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To see how delay may arise for more general systems,
consider a workstation with N machines of the type we saw in

Figure 3.1. Such a system is shown in Figure 3.3.

Parts in this system can arrive N times faster than in the
Figure 3.1 system but the processing time for each part, T, is
still the same. The time scale of the flow in the Fig. 3.3 system
will thus be 1/N’'th the time scale of the flow in the Figure 3.1

system.

A change in loading rate in the Figure 3.2 system does not
change the output rate immediately because parts currently in the
machines must complete their operations before the rate of
finished parts at the output is equal to the new loading rate.
The process flow speeds up as the number of machines increases
but the processing time remains fixed. Therefore, the processing
time becomes an increasingly larger multiple of the interarrival
time as the number of parts in the system increases. For large

enough N, the processing time becomes a significant delay.

This phenomenon is a simple consequence of Little’s Theorem
(Little 1961). Little’'s Theorem states that if N is the mean
number of parts in a system, T is the average time spent in the

system and N is the arrival rate, then

N = AT (3.1)
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Writing (3.1) as T=N(1/A), we see that the system time, T,
is N times the average interarrival time. For N large, T is large
compared to the {nterarrival time and thus it represents a

significant delay.

This observation suggests that eany manufacturing work-
station or cell that operates on many parts concurrently should

be modeled with a delay between input and output.

This result has significant consequences for hlerarchical
strategies. In a hierarchical control system, higher levels will
typically deal with more highly aggregated portions of the
factory, which will typically Involve many machines. Thus, high
level controllers will typically need to consider the effects of

delay.

In particular, the model of Chapter 2 is subject to this
same delay phenomenon. A workstation may be a conveyer belt or
other serial process, or a workstation may consist of many
identical machines in parallel (e.g. the number of machines,
L

m+ IS much greater than one for some workstation m). In

either case there will be flow rate delays in the process.
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3.2 WORK STATION DELAY IN A FMS

We first examine delay within the workstations of an FMS.
Delays within workstations can be accommodated within the basic
model, though at the expense of requiring more internal inventory

than may otherwise be desirable.

In implementing a u(t) in an FMS that satisfies the
instantaneous capacity constraint Q(a), the assumption is that
all the workstations have material available to work on. A
u(t)eQ is considered feasible because each workstation has
capacity to produce at rate u(t) at time t. However, we must also
guarantee that all workstations have a sufficient supply to

implement a production rate.

How much material is enough? The answer, roughly speaking,
is enough to ensure that any transition from a rate u’ to a rate

u'* does not leave a workstation starved. More precisely, let us

assume that material produced by workstation m accumulates in a

single downstream buffer reserved only for workstation m. Define

Bpm(t) = the number of type n parts in the buffer (3.2)

downstream of workstation m at time t

and
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Bp(t) = [ By Bop . By 1 T (3.3)

Let the delay of workstation m be denoted Sm and u®(t)
be the partial vector of production rates, u,(t), at
workstation m. That is, u®(t) only contains components,
u,™, that correspond to part types produced by workstation m.

Since the rate u(t) is the same throughout the system, we have

Bp(t) = u®(t - s;) - ul(t) (3.4)

If we require u(t)eQ(a), there will be a fixed amount of
material contained in a workstation and its downstream buffer
because the production rate at the input to workstation m equals
the rate at which material is removed from the buffer. Let Cmn

be this fixed amount of material. Symbolically,
Co = | tt-'.. u®(0) do + B (t) (3.5)
Using this definition we obtain,
t-

Bu(t) = Cg - [ U do (3.6)
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Now let U™ be the component-wise, least upper bound on
u® due to the finfte machine capacities. That {s,
LS G VAl S | S I (3.7)
u®,(t) s U™ for all t (3.8)

The bound, U,,m. is the maximum rate at which part type n can

be produced by woarkstation m. Then By(t)20 =

m 2 jl . u®(c) do for all t (3.9)

which means C, must satisfy

o 2 j‘t U™ do = U™ s (3.10)

U"‘sm is therefore the smallest value of C that

m
guarantees that any u(t)eQ(a) will never empty a buffer.
Letting C, take this minimum value and noting that the average

amount of material in workstation m is &™s;, where o

is the average production rate at station m, we get
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E[ Bu(t) ] = sy (U™ - ™) (3.11)

Equation (3.11) gives the minimum average buffer level
for each workstation when operating the FMS according to the

instantaneous capacity rule, u(t)ef(a).

Note that for s;—~0, the average buffer level is zero. The

average buffer level s also small If U®=d®, which
would be the case for a highly reliable FMS operated very close

to capacity. In general the higher the average production rate,

d™, the smaller the average inventory level needed to ensure

no-starvation. This is somewhat counterintuitive, but recall that
the reason we keep this inventory is to support a workstation
during changes in the production rate. A system that is
heavily loaded will tend to use its inventory more often and
thus the average level of the inventory will be lower under

heavy loading.

Because the minimum average buffer level is proportional to
Sy for this class of policies, long delays within workstations
will require large inventories. This suggests that subdividing
the FMS into several blocks may be necessary to reduce the level
of the internal workstation buffers. We will examine the control
of a subdivided system in Chapter 5. In the next section, we

examine the impact of delay on single FMS.
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3.3 A SINGLE FMS WITH DELAY

If we choose to maintain the minimum internal material
levels, U"‘sm, given in the previous section, we must still
consider the effect of the end-to-end delay through the FMS. We
show the resulting FMS delay problem for a single FMS is a simple

extension of the problem in Chapter 2.

Consider the system described in Section 2.1 but with a new

delay state equation due to internal workstation delays, namely

x(t) = u(t-s) - d . (3.12)

We still have the same constraint u(t)eQ(a(t)).

The state of the system now includes not only x(t) and af(t)
but also the past controls, {u(o)it-ssost). We will

denote this set u(t). The value function then becomes

Joema) = Mm f EC ) dt | x(0) = x , a(0) = @ wltlw}  (3.13)

Note, however, that x(t) is completely determined over the
interval O0stss by the initial conditions x and u, that

is
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x(t) = x + Iut u(-g) do - td O<t<s (3.14)
This means we can write the value function as

Jaa) = Jim 3 [ “slxto)do

+ Mm & EC [ Tate(t) dt | x(9) = R , a(0) = & ) (3.15)

where

R=x+ [°ut-0) do - sd Ostss, (3.16)

The first Ilimit in (3.15) is zero. By comparing the second
term to (2.16), we see this problem is equivalent to the Chapter
2 problem if we use ¥ in place of x in (2.16). The strategy is,
therefore, to calculate %, the future wvalue of x, watch

the current o and apply the control (2.20) using % in place
of x. The minimum buffer stocks between workstations guarantee

that the rate will be feasible.
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3.4 A PROBLEM WITH INTERCONNECTED FMS’S AND DELAY

In the previous section, we saw by simply computing the
future value of x(t) and using it in the control law for a non-
delay problem, that we could get an optimal control for a single
FMS with delay. Unfortunately, this simple manipulation does not
work for interconnected FMS's. In this section we will examine an
example of a simple interconnection of FMS's, namely the two FMS

system shown in Figure 3.4.

The system in Figure 3.4 consists of two FMS's in tandem.
Each FMS is of the type presented in Section 2.1. There are two

independent machine states, o, and a;, and two capacity
sets, £}y and ;. There {is a buffer between the machines

whose level we denote Bl(t).

The system equations are

iz(t) - Uz(t) - d (3.18]

Because B;(t) is a physical buffer level, it is positively

constrained
B,(t) 2 O for all t. (3.19)
x,(t) is a production surplus as in the single FMS case.
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We have assumed that only the first system has delay, since
we can advance the surplus, X, as shown in the previous

section to put the system equations in the above form.

We now have a cost function
8(Bux2) = &,B) + g (x,) (3.20)

where g, and g, are functions of the form described in

Section 2.1.

Note that trying to advance the state equation to get B(t+s)

yields
B(t+s) = B(t) + [ w(t-o) do - [, usltra) do (3.21)

The first two terms are known since they involve only the
current B and the past u. The third term, however, is the
integral of the future u,. This term would be computable if we

knew the value of a on the interval [t,t+s], but a is random.

The problem arises because the differential equations are
now functions of both the present and past control and not just
the past control, as was the case for the single FMS with delay.

The interconnection problem yields a value function that is a
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general function of the past u,. That is

J = Jmplz.llpﬁ].

(3.22)

The evolution of B, and x, is described by the delay

differential equations, but the evolution of the set

difficult to describe. If a differential equation does not

to describe the evolution of 4, it is not clear, a

that the linear program control form

will be valid for interconnected FMS problems with delay.

Whether the optimal control still satisfies a linear
of this form and what that linear program looks like will

addressed in the next chapter.
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CHAPTER 4 - A LINEAR SYSTEM APPROXIMATION TECHNIQUE FOR
SYSTEMS WITH DELAY

In Chapter 3 we saw that a network of FMS's with delay could
not be solved by simple translation in time. We also observed
that the evolution of the past controls is not easily described.
In this chapter, a technique that allows us to approximate the
evolution of the past controls by using a system of ordinary

differential equations is developed.

The technique is based on the work of Repin (1965). Hess
(1972) and Hess and Hyde (1973) used the same approach for
approximating delay in a linear-quadratic problem. Hess and Hyde
were able to use the approximation to met an ordinary
differential system that could then be solved using the steady
state Ricatti equation. They then showed that the approximation
ylelded the same matrix-integral equation form derived by Ross

and Flugge-Lotz (1969).

We reverse this order and use the approximation technique to
generate the form of the control law for a system of
interconnected FMS's directly. This approach, however, requires
that we know the solution to the non-delay problem, which, as we
mentioned in Chapter 1, is only available for scalar problems.

Therefore, we must approximate the value function.

We examine the form of the control for a delay problem using

a quadratic approximation of the value function. Quadratic



approximations were used successfully by Akella, Choong and
Gershwin (1984) for non-delay systems and provide a reasonable
approximation to the convex value function within a small

neighborhood of a nominal operating point (e.g. hedging point).

The gradient of the quadratic approximation yields a
convolution term involving the past controls and a weighting
function. A heuristic predictor interpretation of the resulting

control is then suggested.

4.1 A LINEAR SYSTEM APPROXIMATION FOR A DELAY LINE

In this section, we develop the delay approximation

using a simple first order differential equation, or Jink.
Bounds on the error introduced by this approximation are then
developed. We then improve this approximation by using multiple
links in series. However, the approximation is only good for
functions that satisfy certain smoothness conditions. It turns
out, however, that for an FMS problem only the integral of the
error must approach zero. Based on this fact, an important lemma,
Lemma 4.1, is developed to justify the use of the linear system

approximation for a FMS.
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4.1.1 Single Differential Equation Approximation

We begin by considering a general delay line defined by

y(t) = ult-7). | (4.1)

We will assume that u(t) is bounded and absolutely integrable and
that u(t)=0 for tsO0. In the model presented in Chapter 2, this
delay line would represent the delay through a workstation. The
output, y(t), would feed a buffer and the input, u(t), would be

the production rate.

To see how one might approximate a delay line by a linear
system, consider the two “snapshots” of a delay line shown in
Figure 4.1. The top figure shows the actual distribution of
material in the line at time t. The bottom figure shows the same
amount of material but averaged over the entire delay line. Let
z(t) be the average value of u(t) In the line. Then 7z(t) Is the

total amount of material in the line.

If we now let time advance by a small increment, §t, u(t)
will enter and u(t-7) will leave. The value 2z(t) will therefore

change according to

7 z(t+8t) = 7 2(t) + u(t)ét - u(t-7)st. 4.2)
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u(t) yt)=u(t-7)

u(t) 2(t)

T2(t) + 2(t) = u(t)

FIGURE 4.1 “SNAPSHOT" OF MATERIAL IN A DELAY LINE
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