
MIT Open Access Articles

Congestion tolling — Dollars versus tokens: Within-day dynamics

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Seshadri, Ravi, de Palma, André and Ben-Akiva, Moshe. 2022. "Congestion tolling 
— Dollars versus tokens: Within-day dynamics." Transportation Research Part C: Emerging 
Technologies, 143.

As Published: 10.1016/J.TRC.2022.103836

Publisher: Elsevier BV

Persistent URL: https://hdl.handle.net/1721.1/148398

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/148398
https://creativecommons.org/licenses/by/4.0/


Transportation Research Part C 143 (2022) 103836

A
0
(

Contents lists available at ScienceDirect

Transportation Research Part C

journal homepage: www.elsevier.com/locate/trc

Congestion tolling — Dollars versus tokens: Within-day dynamics
Ravi Seshadri a,∗, André de Palma b, Moshe Ben-Akiva c

a Department of Technology, Management and Economics, Technical University of Denmark, DTU, 2800 Kgs. Lyngby, Denmark
b CY Cergy Paris Université THEMA 33 Boulevard du Port, 95000 Cergy-Pontoise, France
c Massachusetts Institute of Technology (MIT), Room 1-181, 77 Massachusetts Avenue, Cambridge, MA, 02139, United States of America

A R T I C L E I N F O

JEL classification:
D61
R41
R48

Keywords:
Tolls
Tradable credit schemes
Mobility permits
Congestion
Dynamic models
Efficiency
Equity

A B S T R A C T

Tradable credit schemes (or tolling in tokens) are a form of quantity control, which promise to
be an appealing alternative to congestion pricing (or tolling in dollars) owing to considerations
of revenue neutrality, equity, reduced infrastructure costs, and political acceptability. The
comparative performance of the two instruments under uncertainty in demand and supply has
only recently received attention in the transportation setting, despite being widely studied for
emission markets. In this paper, we add to this literature by considering a tradable credit
scheme in a departure time context wherein users are provided an initial endowment of
tokens by the regulator and incur a token charge (determined prior to all departures) to
travel in a specific time-period. Tokens can be bought and sold within a marketplace at a
price determined endogenously by token demand and supply. Two key features of the market
model are: (1) the time-of-day dynamics of price is explicitly modeled through a smooth market
clearing mechanism in each period, and (2) the selling decisions of users, which determine the
distribution of token supply in the market over the day are explicitly modeled. This enables us
to study the impact of selling behavior on performance of the credit system. Travel demand is
modeled using a logit mixture model and supply consists of static congestion.

Extensive experiments under stochastic demand show that when the tolls (in dollars and
tokens) are not day-to-day adaptive, tolling in tokens outperforms tolling in dollars when
congestion effects are more severe (e.g., realistic BPR models and steep congestion functions,
high demand levels and high day-to-day variability). Importantly, we find that this result is
robust with respect to selling behavior in the market, although there can be welfare losses in
the quantity control system when selling behavior in the market is excessively irrational. These
findings underscore the importance of examining disaggregate market behavior when designing
tradable credit schemes. Moreover, when the supply of tokens can be adapted from day to day,
the credit system was found to be superior in all tested scenarios, provided the selling behavior
of individuals is rational. Finally, even in the case when toll revenues in the price instrument
are equally redistributed (often difficult in practice), tolling in tokens (when tokens are equally
distributed) is marginally more equitable in scenarios where congestion effects are more severe.
These findings make a case for tolling in tokens.

1. Introduction

Congestion is a pervasive problem in most transportation networks worldwide and the standard approach to address this issue
has been to internalize congestion externalities through a toll in dollars (congestion pricing). Extensive reviews may be found in de
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Palma and Lindsey (2011) and Santos and Verhoef (2011). Pricing, however, has long been beset by issues of inequity, complexity,
high infrastructure costs and public and political acceptability, notwithstanding the redistribution of toll revenues, whose benefits
may take years to be realized (see also Jaensirisak et al. (2005) and de Palma and Lindsey (2020) for more on the acceptability of
road pricing). In contrast, tradable credit schemes (or tolling in tokens; also called tradable permit schemes) are a form of quantity
control typically characterized by the following features (Fan and Jiang, 2013): (1) a fixed total number of tokens (mobility credits)
or ‘quota’ is pre-specified by the regulator, (2) an initial endowment allocates or distributes the tokens to a selected population (all
individuals may not receive tokens), (3) individuals are allowed to buy and sell tokens in a market, (4) use of the road network
requires tokens and can be differentiated by time of day, geography, vehicle type etc., and (5) enforcement is necessary to ensure
valid trading/consumption of tokens.

Tradable credit schemes have several potential advantages over pricing. First, they are revenue neutral and hence, may not
e faced with similar public opposition, more so if the tokens are handed out for free. Second, they are viewed as being less
ertically inequitable than pricing (de Palma and Lindsey, 2020). Since the number of tokens each user receives may differ, any
egressive effect (very well documented for congestion pricing), which may trigger political opposition, will not occur with tokens.
n other words, lower income users who tend to travel less by car can obtain monetary gains by selling their excess credits. Third,
mplementation costs may be low given developments in information and communications technology. Finally, they provide the
bility to directly control quantity, which may be beneficial in some situations, for example, when the price elasticity of demand in
he short or medium term is low. Note that the distribution of tokens allows the regulator to cap the maximum number of travelers.
his is a pure version of quantity control, which appears to be more flexible than conventional policies (such as the odd and even

icense plate policy, or reduced speed) to reduce environmental costs. Other forms of quantity control include ramp metering,
erimeter control, and metering-based dynamic priority schemes (Lamotte et al., 2022).

Despite the large body of literature on Tradable Credit Schemes (TCS) in the transportation context, relatively little attention has
een paid to the comparison of the price and quantity control instruments under uncertainty. In this paper, we consider a tradable
redit scheme in a departure time context wherein users are provided an initial endowment of tokens by the regulator and incur
token charge (determined prior to all departures) to travel in a specific time period. Tokens can be bought and sold within a
arketplace at a price determined endogenously by token demand and supply. Travel demand is modeled using a logit mixture
odel and supply consists of static congestion specific to each time period.

This paper contributes to the existing literature on tradable credit schemes and the comparative performance of price and quantity
ontrol instruments under uncertainty in several respects. First, from a methodological standpoint, we propose a smooth market
learing mechanism that can be used to model price dynamics across time intervals for a tradable credit scheme (wherein tokens
re bankable across time intervals) using a tractable equilibrium approach. Selling decisions of users are explicitly modeled and
etermine the distribution of token supply in the market over the time of day (to the best of our knowledge, this has yet to be
ddressed in the literature). This enables us to study the impact of selling behavior on performance of the credit system. Although
e use a logit model for convenience, in principle, any continuous model may be used. The proposed framework can also be used

o incorporate more complex models of selling behavior (see for example, Dogterom et al. (2017)).
Second, in terms of numerical findings, we obtain new insights into the impact of selling behavior on the performance of a

radable credit scheme relative to pricing under uncertainty: (a) Welfare losses are present in a TCS system with irrational sellers,
hich has the effect of equalizing token supply across time intervals leading to a deterioration in the performance of the quantity

nstrument. However, despite these losses, the TCS with fixed token supply is still superior to pricing when congestion effects are
evere; (b) In the case when token supply in the TCS can be adapted from day to day, the quantity control system is still not
onsistently superior to price control as one may expect (it can be inferior in cases with irrational selling behavior when congestion
ffects are less severe); (c) Even when toll revenues in the price instrument are equally redistributed, tolling in tokens (when
okens are equally distributed) is marginally more equitable in scenarios where congestion effects are more severe. These findings
nderscore the importance of examining disaggregate market behavior when designing tradable credit schemes.

Finally, we show that the under uncertainty, in a more complex setting involving within-day dynamics (with time dependent
olls, market prices and congestion), quantity control is superior to price control in cases where congestion effects are more severe
steep BPR functions, high demand, high day-to-day variability). The optimal network usage is relatively similar across states for
uantity control whereas the optimal toll in dollar amounts varies significantly across states. In this regard, we generalize the
indings of de Palma et al. (2018), de Palma and Lindsey (2020), showing that their results on the efficiency differences between
he two instruments are robust (holding even in the presence of irrational sellers) and generalize to this more complex setting. These
indings make a potential case for tolling in tokens.

The remainder of the paper is organized as follows. Section 2 reviews the existing literature on tradable credits and describes
ur contributions. Section 3 describes the basic model of supply, demand and equilibrium in the case of deterministic demand (and
upply) for both instruments (dollars and tokens). The comparison of the two instruments in this case can be performed analytically.
ollowing this, Section 4 describes the model for stochastic demand for which, the comparisons must be performed numerically.
he numerical experiments and findings are described in Section 5. Finally, Section 6 provides concluding remarks and directions
or future research.

. Review of literature

Although discussions on the use of tradable credits in the transportation sector date back to Raux (2004), Verhoef et al. (1997)
2

nd Goddard (1997), they have received significant attention only in the recent past (detailed reviews may be found in Fan and
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Jiang (2013) and Grant-Muller and Xu (2014)). In particular, a variety of tradable credit schemes have been proposed (utilizing
largely network and market equilibrium approaches) in the context of mobility management (at the network level) and bottleneck
management, and these are discussed in turn.

In the context of mobility management, Yang and Wang (2011) propose a scheme wherein the social planner initially distributes
certain number of credits to all potential travelers, charges a link-specific number of credits for a given link, and allows trading

f the credits among travelers. Supply is modeled using static congestion (separable link performance functions) and travelers are
ssumed to be homogeneous. They demonstrate that for a given set of tolls in tokens (or credit rates) in a general network, the
ser equilibrium (UE) link flow pattern is unique under standard assumptions, and the credit price at the market equilibrium is
nique under some relatively mild additional assumptions (i.e., if all equilibrium path flow patterns contain at least two paths with
ifferent credit charges connecting the same O–D pair). The proposed network equilibrium formulation is a variant of the standard
E model with the additional network-wide credit feasibility constraint, which simply states that the total consumption of tokens
t equilibrium is less than or equal to the total credit endowment. Extensions that consider heterogeneity in the value of time and
ultiple user classes are proposed in Zhu et al. (2015) and Wang et al. (2012), whereas He et al. (2013) consider allocations of

redits to not just individual travelers, but to transportation firms such as logistics companies and transit agencies. In a similar vein,
areto-improving credit based congestion management schemes on a general two mode network are investigated in Liu and Nie
2017). Multi-period tradable credit schemes have also been proposed where travelers can transfer credits to future periods within
planning horizon (Miralinaghi and Peeta, 2016, 2019).

In contrast with most studies which adopt an equilibrium perspective, Ye and Yang (2013) examine the price and flow dynamics
nder a tradable credit scheme using a continuous dynamic model within a finite time horizon, deriving conditions for asymptotic
tability and convergence. Recognizing the practical challenges of optimally designing tradable credit schemes, which require
nowledge of both demand and supply functions, Wang and Yang (2012), Wang et al. (2014c) propose trial and error methods
when demand functions are not known) for a single road and general networks, respectively. Both the credit tariffs and credit
llocation are updated in an iterative fashion based on observed link flows and revealed credit prices.

Nie (2012) examines the effect of transaction costs in a tradable credit scheme for two types of markets: an auction market
n which users purchase all of the needed mobility credits through a competitive bidding process (they can also purchase directly
rom the government at a pre-specified price), and a negotiated market in which users initially receive certain amount of mobility
redits from the government and trade with each other through negotiation to meet their needs. A brokerage service is built into
oth markets to facilitate transactions and accordingly, the users have to pay a commission fee proportional to the value of the
rade. The modified UE formulation of Yang and Wang (2011) is extended to incorporate transaction costs for both the auction
nd negotiated markets. Based on numerical experiments on a toy network, it is shown that an auction market can achieve an
quilibrium allocation of mobility credits if the government sets the price suitably (price at which users purchase tokens directly
rom the government) and the unit transaction cost is lower than the price that the market would reach in the absence of transaction
osts. The work also highlights the fact that in case of the negotiated market, the initial allocation of mobility credits may affect
he final equilibrium when marginal transaction costs are constant.

The design of tradable credit schemes for mobility management has also been explored using bi-level optimization formulations
mathematical programming problems with equilibrium constraints). For instance, Wang et al. (2014b,a) formulate the continuous
etwork design problem with a tradeable credit scheme as a bi-level programming problem, where the decision variables for the
pper level problem are capacity enhancements for selected links whereas the lower level problem determines equilibrium link flows
nd the credit price. Along similar lines, Wu et al. (2012) proposed a framework that considers decisions of mode/route choice and
rip generation on a multimodal transportation network to design efficient and equitable congestion pricing and tradable credit
chemes (considering a measure including both net social benefit and equity). They find that the Pareto frontier (with respect to
he two aforementioned objectives) of the credit scheme strictly dominates that of congestion pricing although the two schemes
chieve the same level of maximum net benefits. Further, their results suggest that tradable credit schemes can be progressive
hereas congestion pricing schemes are largely regressive for the tested network. Finally, the literature on mobility management
lso includes a series of studies on credit-based congestion pricing (CBCP), where credits in CBCPs are allowances used to pay
olls (Kalmanje and Kockelman, 2004; Kockelman and Kalmanje, 2005). The studies involved the use of destination, mode, and
eparture time choice models to examine the potential impacts of using a CBCP scheme.

Tradable mobility credit schemes have also been proposed to manage bottleneck congestion and achieve peak spreading in an
fficient manner. Nie and Yin (2013) developed an analytical framework to model a tradable credit scheme that manages commuters’
ravel choices in a simple transportation system consisting of two parallel routes. The scheme attempts to persuade commuters to
pread their departure times evenly within the rush hour and between primary and alternative routes to mitigate traffic congestion.
t defines a ‘peak-time’ window within which users are charged mobility credits to travel on the primary route and those that avoid
ither the peak-time window or the primary route may be rewarded with credits (see also Nie, 2015). Tian et al. (2013) investigate
he efficiency of a tradable travel credit scheme for managing bottleneck congestion and modal split in a competitive highway/transit
etwork with a continuously distributed value of time. They propose a tradable credit scheme which emulates bottleneck congestion
ricing and transit subsidy in a revenue-neutral manner and demonstrate that both the modal split and credit charge at equilibrium
re unique.

Xiao et al. (2013) examined the efficiency of a tradable credit system in managing morning commute congestion with both
omogeneous and heterogeneous users. They show that even in the presence of heterogeneity, an optimal credit scheme that
liminates the bottleneck queue always exists under the assumption that late arrival is not allowed. More recently, Akamatsu and
3

ada (2017) proposed a tradable bottleneck credit scheme where the regulator issues link- and time-specific credits permitting
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passage through a certain link or bottleneck in a pre-specified time period. They develop a model to describe time-dependent flow
patterns at equilibrium under a system of tradable bottleneck permits for general networks and show that the equilibrium obtained
under this system is efficient in that it minimizes the social transportation cost. Bao et al. (2019) show that the equilibrium with
a tradable credit scheme may not be unique for particular models of traffic congestion, including the first-best solution for the
conventional Vickrey’s bottleneck model. Liu et al. (2020) examine properties of a TCS in a departure time context using a day-to-
day modeling framework and a trip-based MFD model of traffic congestion, and Chen et al. (2021) examine market design aspects
of the TCS, including allocation and expiration of tokens, price adjustment, regulator intervention, and the role of transaction fees.
Finally, Brands et al. (2020) conduct an interesting lab-in-the-field experiment of tradable credit schemes with virtual mobility
behavior and real financial incentives. They adopt a market design, which lets users trade with a price setting intermediary, termed
a virtual bank. An incremental price adjustment scheme is adopted and their experiments suggest that it ensures that the price
stays largely within the equilibrium range. Overall, their results are promising and indicate that tradable credits can be a viable
alternative to pricing in a parking setting.

In contrast, comparisons of price and quantity control under uncertainty in transportation are relatively sparse (for other contexts
ee Weitzman (1974), Laffont (1977)). Note that in the emissions context, agents are not directly impacted by the externality they
enerate, while in the transportation context they are (as far as congestion is concerned). For this reason, their results on stochastic
emand and stochastic supply are not directly applicable here, even if they are useful as a general guideline. Shirmohammadi et al.
2013) examine the performance of tradable credit systems under demand and supply uncertainty using a toy network. Specifically,
hey compare the performance of a link differentiated toll system (in dollars) and a mobility credit system that is differentiated by
ink. However, their analysis does not focus on measures of efficiency but rather examines performance relative to a given target
olume of cars. They find strong variations in the credit prices are required to ensure demand matches the specified volume targets.

de Palma et al. (2018) compare the performance (in efficiency terms) of congestion pricing and tradable mobility credit schemes
nder uncertainty using a simple road network in a stochastic route choice setting (including a public transit alternative). They find
hat when the tolls (in either dollars or tokens) cannot be adapted from day to day, the credit scheme performs better typically when
he slope of the congestion function is steep. Further, when the token supply can be adapted from day to day, the token system always
utperforms congestion pricing. More recently, de Palma and Lindsey (2020) ranked the efficiency of tradable permits and tolls for
ne route, one time period and elastic demand. They study additive and multiplicative demand and cost (capacity) shocks and
how that these may lead to qualitatively different results. Their approach is analytical and considers linear and non-linear demand
showing the role of the convexity of demand). They also study the impact of the correlation between demand and supply on the
anking. Along similar lines, Lindsey et al. (2022) compare the allocative efficiency of tradable permits and tolls under uncertainty
n a bimodal network and derive a general rule for ranking the efficiency of the two instruments. Rezaeinia et al. (2021) consider
he comparison of tolls and permits in a radial network, within the Vickrey framework. Users select mode, departure time and route
ased on a Nested Logit continuous/discrete framework, and congestion is computed using the METROPOLIS software (de Palma
t al., 1997). Tolls and permits are independent of the time of the day. They find that tolls outperform permits if capacities shocks
re perfectly correlated. However, the ranking is reversed if capacities shocks are independent.

In summary, literature on the comparative performance of the price and quantity control instruments under uncertainty is
elatively sparse. Existing studies (Shirmohammadi et al., 2013; de Palma et al., 2018; de Palma and Lindsey, 2020) are limited to
oute choice and a single time-period (i.e., they are static models). This paper attempts to extend the literature by generalizing the
ork of (1) de Palma et al. (2018), who consider static congestion (with parallel routes) and one time period, and (2) de Palma and
indsey (2020), who consider a single route with elastic demand and static congestion. Here instead, users decide when to travel
ithin a multi-period setting (departure-time choice context), and we propose a smooth market clearing mechanism within each

ime-period to describe within-day market price dynamics of a TCS when tokens or credits are bankable across time intervals. This
nhancement, which involves explicitly modeling selling behavior in the market (to the best of our knowledge, this has not yet
een addressed in the literature) is a critical step in moving to large-scale simulation-based assessments of tradable credit schemes
n real-world networks. It also enables us to study the impact of selling behavior on performance of the credit system. Given the
omplexity of our model, comparisons of the two instruments under uncertainty cannot be performed analytically.

Lastly, in comparison with Ye and Yang (2013), two key points are noteworthy. First, they propose a continuous-time evolution
odel to study price and flow dynamics of a TCS within a finite-length time period of interest (tokens expire at the end of this

ime period). In contrast, we consider a discrete-time setting with 𝑁 time intervals within a day where tokens are bankable across
hese time intervals. The dynamics of market prices over the day are determined by a market clearing mechanism in each interval.
ote that the numerical scheme we utilize to compute the market clearing price in each time interval is largely identical to their
rice evolution process. However, rather than the evolution process within each time interval, our focus lies in the equilibrium
ime-of-day prices and their impact on comparative efficiency of the TCS relative to the price instrument. Second, we consider
ay-to-day variability in the form of demand stochasticity (in contrast with the deterministic demand setting they study).

. Multiperiod model: Deterministic demand

The transportation network of interest consists of a single origin–destination pair connected by a single route (this can be
xtended to multiple OD pairs and routes with no methodological difficulty). We consider commuting trips performed within a
ime period 𝑇 , which is partitioned into 𝐼 sub-periods 𝑇1, 𝑇2,… , 𝑇𝑖 … 𝑇𝐼 so that 𝑇1

⋃

𝑇2 …
⋃

𝑇𝐼 = 𝑇 . Note that 𝑇1, 𝑇2,… , 𝑇𝐼 may
represent any 𝐼 time periods within a day, and are not necessarily contiguous (the terms time period and time interval are used
4

interchangeably when referring to 𝑇𝑖). We denote the set of the 𝐼 time intervals by . There are a total of 𝑁 users who wish to
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travel, and each user performs a single trip or activity during the day in any one of the 𝐼 intervals or chooses to stay at home
(denoted by 𝑇0). A glossary of notation can be found in Appendix D.

We assume that the network is subject to time dependent congestion justifying the need for congestion control in the form of
either a price instrument (tolling in dollars) or a quantity instrument (tolling in tokens). Under the price control instrument, users
have to pay a toll in dollars 𝜏𝑖 to travel in time period 𝑇𝑖 (𝑖 = 1… 𝐼). In case of the quantity control system, we make several
assumptions. The regulator distributes a certain number of credits (tokens) 𝑀 (known in advance) to each potential user at the
beginning of the time period 𝑇 . The tokens expire at the end of time period 𝑇 , or in other words, their market value is zero at
the end of time period 𝑇 . Tokens cannot be banked or traded across days (i.e., across periods 𝑇 ). This assumption is similar to
that of Brands et al. (2020) and is used to mitigate undesirable speculation and hoarding of tokens. Further, the tokens cannot be
transferred or used outside the market. Users have to spend a certain number of tokens to travel in time interval 𝑇𝑖, 𝑖 = 1… 𝐼 , given
by 𝛿𝑖 (toll in tokens). Tokens can be bought and sold within a marketplace. The price of the token in time interval 𝑇𝑖 is denoted
by 𝑝𝑖, and is determined endogenously by the demand and supply of tokens in the market in time interval 𝑇𝑖. In order to avoid
speculation, tokens can only bought if they are needed for travel. This will prevent users from buying tokens for the sole purpose
of trying to make a profit in the market, an aspect of the tradable credit scheme that can hamper acceptability. Users must sell all
their unused tokens in a single time interval 𝑇𝑖, 𝑖 = 1… 𝐼 . Once again, this assumption minimizes excessive transactions for the
ole purpose of making a profit. However, it should be pointed out that this assumption can potentially affect market efficiency
see Brands et al. (2020) for a detailed discussion). Nevertheless, we defer relaxation of this assumption to future research. Finally,
o improve acceptability and ease of implementation, we assume that all transactions take place at the beginning of each time
nterval 𝑇𝑖.

Note that the regulator has the flexibility to institute any desired token allocation scheme including ones wherein users receive
n unequal number of tokens. Given that user choices are unaffected by the token allocation (ignoring income effects and transaction
osts), this implies that in principle any desired distribution of equity can be achieved through the initial token allocation (see Yang
nd Wang (2011)).

In this section, we consider the case of deterministic demand (i.e., the number of users 𝑁 is deterministic and known). The
ransportation model is first described, followed by the two instruments (price and quantity) in turn and a comparison with respect
o individual benefits, social benefits, and equity.

.1. Transportation model: Demand, supply and equilibrium

The money-metric utility of an individual 𝑛 traveling in a time period 𝑇𝑖, 𝑖 = 0… 𝐼 (𝑖 = 0 denotes the stay at home option) is
given by,

𝑈𝑛(𝑇0) = 𝐵𝑛
0 + 𝜇𝑛𝜖0, (1)

𝑈𝑛(𝑇𝑖) = 𝐵𝑛
𝑖 − 𝛼𝑛𝑡𝑖(𝑋𝑖) − 𝑝𝑖𝛿𝑖 + 𝜇𝑛𝜖𝑖, 𝑖 = 1… 𝐼, (quantity control)

𝑈𝑛(𝑇𝑖) = 𝐵𝑛
𝑖 − 𝛼𝑛𝑡𝑖(𝑋𝑖) − 𝜏𝑖 + 𝜇𝑛𝜖𝑖, 𝑖 = 1… 𝐼, (price control),

where 𝑋𝑖 is the flow in time period 𝑇𝑖, 𝜖𝑖 is an i.i.d. Gumbel disturbance term and 𝜇𝑛, 𝐵𝑛
𝑖 , 𝛼

𝑛 are individual specific parameters with
log(𝜇𝑛), 𝐵𝑛

𝑖 , log(𝛼𝑛) normally distributed. The alternative specific benefit 𝐵𝑛
𝑖 incorporates time-period specific scheduling preferences,

or alternatively, time-period specific schedule delay costs. 𝛼𝑛 and 𝜇𝑛 are the value of time and scale parameter, respectively, for
individual 𝑛.

A standard BPR type function is assumed to model the travel time 𝑡𝑖(𝑋𝑖) in time period 𝑖,

𝑡𝑖(𝑋𝑖) = 𝑡𝐹𝐹
𝑖

(

1 + 𝛼𝑖
(

𝑋𝑖∕𝐶𝑖
)𝛽𝑖

)

, (2)

where 𝑡𝐹𝐹
𝑖 is the free flow time in period 𝑖, 𝐶𝑖 is a capacity associated with time period 𝑖 and 𝛼𝑖, 𝛽𝑖 are function parameters. Note

that we assume that the 𝐼 time periods are independent in the sense that congestion does not spill over from one period to the next
(in other words we have 𝐼 static models). This is a time-sliced static traffic assignment common in planning applications (Nakayama
and Connors, 2014), which admittedly may not realistically capture the dynamics of congestion and flow propagation. However, it
suffices for the comparison of the instruments in our context. A more detailed treatment of the dynamics of congestion is beyond the
scope of the paper although we note that the methodology proposed is generic and not restricted to any specific type of congestion
model.

Further, let 𝜽𝒏 = (𝜇𝑛, 𝐵𝑛
𝑖 , 𝛼

𝑛) denote the vector of parameters for individual 𝑛. The probability of individual 𝑛 choosing to travel
in time period 𝑇𝑖 is given by,

𝑝(𝑇𝑖|𝜽𝒏) =
exp[𝑉 𝑛(𝑇𝑖,𝜽𝒏)]

∑

𝑗=0…𝐼 exp[𝑉 𝑛(𝑇𝑗 ,𝜽𝒏)]
, (3)

where 𝑉 𝑛(𝑇𝑖,𝜽𝒏) is given by,

𝑉 𝑛(𝑇0,𝜽𝒏) =
(

1∕𝜇𝑛
) (

𝐵𝑛
0
)

, (4)

𝑉 𝑛(𝑇 ,𝜽 ) =
(

1∕𝜇
) (

𝐵𝑛 − 𝛼𝑛𝑡 (𝑋 ) − 𝑝 𝛿
)

, 𝑖 = 1… 𝐼, (quantity)
5

𝑖 𝒏 𝑛 𝑖 𝑖 𝑖 𝑖 𝑖
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𝑉 𝑛(𝑇𝑖,𝜽𝒏) =
(

1∕𝜇𝑛
) (

𝐵𝑛
𝑖 − 𝛼𝑛𝑡𝑖(𝑋𝑖) − 𝜏𝑖

)

, 𝑖 = 1… 𝐼, (price).

The number of travelers traveling in the 𝐼 periods 𝑋𝑖 (𝑖 = 1… 𝐼), given 𝜏𝑖 (𝑖 = 1… 𝐼) in the price system and 𝑝𝑖𝛿𝑖 (𝑖 = 1… 𝐼) in
the quantity system, are obtained by solving the fixed-point problem (note that 𝑋0 = 𝑁 −

∑𝑖=𝐼
𝑖=1 𝑋𝑖),

𝑋𝑖 =
𝑛=𝑁
∑

𝑛=1

exp[𝑉 𝑛(𝑇𝑖,𝜽𝒏)]
∑

𝑗 exp[𝑉 𝑛(𝑇𝑗 ,𝜽𝒏)]
, 𝑖 = 1… 𝐼. (5)

Since the set of demand feasible flows  =
(

𝑿 ∶
∑

𝑖=0…𝐼 𝑋𝑖 = 𝑁 ;𝑋𝑖 ≥ 0, 𝑖 = 0… 𝐼
)

forms a closed and convex set, and the right
hand side of Eq. (5) is a continuous function of flows, Brouwer’s fixed-point theorem implies that a solution exists to the fixed-point
problem in Eq. (5). On the conditions for solution uniqueness we refer the reader to Konishi (2004) and Lindsey (2004).

3.2. Tolls in dollars: Price control

In the price control system, the regulator is assumed to have knowledge of the demand 𝑁 and sets the tolls in dollars 𝜏𝑖 (𝑖 = 1… 𝐼)
to maximize total welfare (defined as the sum of consumer surplus and regulator revenue). Consumer surplus is calculated as the
logsum measure (see Small and Rosen (1981) and De Jong et al. (2007)) and regulator revenue is simply the total toll revenue. In our
context, the definition of welfare is straightforward since there are no income effects (Anderson et al., 1992). Thus, determination
of the tolls can be formulated as the following optimization problem,

Max
𝜏1 ,𝜏2 ,…𝜏𝐼

𝛺𝑝 =
𝑁
∑

𝑛=1
𝜇𝑛log

(

∑

𝑗=0…𝐼
exp[𝑉 𝑛(𝑇𝑗 ,𝜽𝒏)]

)

+
∑

𝑗=1…𝐼
𝜏𝑗𝑋𝑗 (6)

s.t

𝑋𝑖 =
𝑁
∑

𝑛=1

exp[𝑉 𝑛(𝑇𝑖,𝜽𝒏)]
∑

𝑗 exp[𝑉 𝑛(𝑇𝑗 ,𝜽𝒏)]
, 𝑖 = 1… 𝐼,with

∑

𝑖=0…𝐼
𝑋𝑖 = 𝑁, 𝑋𝑖 ≥ 0, 𝑖 = 0… 𝐼.

The optimum welfare obtained by solving (6) above and the corresponding optimum welfare and tolls in dollars are denoted
y 𝛺∗

𝑝 and 𝝉∗ = (𝜏∗𝑖 , 𝑖 = 1… 𝐼) respectively. Note that the optimization problem in Eq. (6) is non-convex due to the non-linear
quilibrium constraints. Solution approaches for this problem are discussed in Section 5.1.

.3. Tolls in tokens: Quantity control

Recall that in the quantity control system, the regulator distributes a certain number of credits (tokens) 𝑀 to each potential user
at the beginning of a time period 𝑇 , and the number of tokens required to travel in time interval 𝑇𝑖, 𝑖 = 1… 𝐼 is given by 𝛿𝑖.

3.3.1. Demand for tokens
For a given set of tolls in tokens and market prices 𝛿𝑖, 𝑝𝑖 (𝑖 = 1… 𝐼), the total demand for tokens in period 𝑇𝑖 is 𝑋𝑖𝛿𝑖 and the total

amount of tokens possessed by people traveling in period 𝑇𝑖 is 𝑋𝑖𝑀 , where 𝑀 is the initial token endowment. Thus, the demand
or tokens in period 𝑇𝑖 (𝑖 = 1… 𝐼), is given by,

𝐷𝑖 = 𝑋𝑖Max(0,
(

𝛿𝑖 −𝑀
)

). (7)

here 𝑋𝑖 (𝑖 = 1… 𝐼) are obtained from the solution to Eq. (5). Note that in the above we assume that the token endowment to each
ser is equal (𝑀). This assumption can be relaxed.

.3.2. Supply of tokens
We assume that the decision to sell tokens is made after the mobility decision and hence, users sell all unused tokens. Note also

hat it is assumed that there is some scarcity in the system, namely that the number of tokens available is less than what would be
onsumed if the tokens were free. Formally, if 𝑋̄𝑖 (𝑖 = 0… 𝐼) denotes the equilibrium flows in the absence of tolls, we assume that
𝑖=1...𝐼 𝑋̄𝑖𝛿𝑖 > 𝑀𝑁 .

In the case that there is no congestion (i.e., 𝑡𝑖 is constant), we have 𝛿𝑖 = 0 (𝑖 = 1… 𝐼), or equivalently, 𝛿𝑖 < 𝑀 (𝑖 = 1… 𝐼), and
ence, the price of tokens 𝑝𝑖 (𝑖 = 1… 𝐼) is zero and the tokens have no effect/value. We focus on the case where congestion effects
re present, and hence, it should be the case that at least one of 𝛿1, 𝛿2,… 𝛿𝐼 is larger than 𝑀 (note that 𝛿0 = 0), which implies that
𝑖 > 0, for at least one period 𝑇𝑖. Let the subset of time periods where 𝛿𝑖 > 𝑀 be denoted by ̃, then the subset of time periods
here 𝛿𝑖 < 𝑀 is  ⧵ ̃.

As noted before, we assume that tokens can only be bought if they are needed for travel. Further, we assume that the regulator
equires the user to sell all her unused tokens in one time interval. This assumption is made from a practical standpoint to ensure
6

implicity of the system. Since the tokens are worthless at the end of the last time interval, no user will keep tokens unused.
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Observe that sellers are individuals who have chosen to travel in an interval 𝑇𝑗 , 𝑗 ∈  ⧵ ̃ whereas buyers are individuals who

ave chosen to travel in 𝑇𝑖, 𝑖 ∈ ̃. We assume that the token price in interval 𝑇𝑖, 𝑖 ∈ ̃ perceived by a seller is given by,

𝑝̃𝑖 = 𝑝𝑖 + 𝜖𝑖, (8)

where 𝑝𝑖 is the market clearing price of the token and 𝜖𝑖 is an i.i.d. Gumbel term with scale parameter 𝜇̄. The rationale for the additive
term is the following. There may exist day-to-day fluctuations around the average equilibrium price (long-run market clearing price
that we have referred to as 𝑝𝑖 thus far) for a given interval. These fluctuations are the result of the operation of the market and
dynamic adjustments (they may also arise due to the intrinsically stochastic nature of traffic flows and other sources of uncertainty,
see for example (Chen et al., 2002)). Travelers do not have exact knowledge of these fluctuations when making the travel decision
at the beginning of the day and hence make their decision based on the long-run average prices (Eq. (1)). The selling decisions
on the other hand are made at the beginning of each interval, within the day. When the users make their selling decisions, they
have additional information about the day including actual prices revealed in the intervals thus far. This could give rise to different
perceptions of the actual prices. Thus, there is a distribution of perceived prices across the population (around the long-run average
market clearing prices) that determines the selling decisions of users.

Note that Eq. (8) permits an alternative interpretation, i.e., 𝑝̃𝑖 is the utility obtained from selling in interval 𝑖. The selling decision
may be based on a number of factors apart from price that are subsumed into the error term. These could be the result of factors
like different reservation prices, lack of attention satisfying behavior, endowment effects, loss aversion, risk aversion, multiple trips
during the day (because of which users wish to sell at different intervals) and so on, all of which are not incorporated within the
model.

For a seller, we model the choice of a selling interval using a simple logit model based on Eq. (8), where the systematic utility of
selling in interval 𝑇𝑖, 𝑖 ∈ ̃ is based on the average market price in the interval, and given by 𝑝̃𝑖. Consider a user 𝑛 who has decided
to travel in period 𝑇𝑗 , 𝑗 ∈  ⧵ ̃. We assume that the amount of tokens to sell does not influence the time period of selling. The
probability of the user 𝑛 selling his/her token in interval 𝑇𝑖, 𝑖 ∈ ̃, 𝑄𝑖 is assumed to be,

𝑄𝑖 = Prob[𝑝̃𝑖 > max
𝑗≠𝑖;𝑗∈̃

𝑝̃𝑗 ] =
exp(𝑝𝑖∕𝜇̄)

∑

𝑗∈̃ exp(𝑝𝑗∕𝜇̄)
. (9)

The supply of tokens from users traveling in 𝑇𝑗 , 𝑗 ∈  ⧵ ̃ who have decided to sell in period 𝑇𝑖, 𝑖 ∈ ̃ is given by,

𝑆𝑖 =
∑

𝑗∈⧵̃
𝑄𝑖𝑋𝑗

(

𝑀 − 𝛿𝑗
)

+𝑄𝑖𝑋0𝑀. (10)

Or,

𝑆𝑖 = 𝑄𝑖

⎛

⎜

⎜

⎝

∑

𝑗∈⧵̃
𝑋𝑗

(

𝑀 − 𝛿𝑗
)

+𝑋0𝑀
⎞

⎟

⎟

⎠

𝑖 ∈ ̃. (11)

The total supply of tokens is given by,

𝑆 =
∑

𝑖∈̃
𝑆𝑖 =

∑

𝑖∈̃
𝑄𝑖

⎛

⎜

⎜

⎝

∑

𝑗∈⧵̃
𝑋𝑗

(

𝑀 − 𝛿𝑗
)

+𝑋0𝑀
⎞

⎟

⎟

⎠

=
∑

𝑗∈⧵̃
𝑋𝑗

(

𝑀 − 𝛿𝑗
)

+𝑋0𝑀. (12)

We next study the market clearing condition.

3.3.3. Market clearing
The market clearing conditions in each interval 𝑇𝑖, 𝑖 ∈ ̃ imply,

𝑆𝑖 = 𝐷𝑖,∀𝑖 ∈ ̃, (13)

Or,

𝑄𝑖

⎛

⎜

⎜

⎝

∑

𝑗∈⧵̃
𝑋𝑗

(

𝑀 − 𝛿𝑗
)

+𝑋0𝑀
⎞

⎟

⎟

⎠

= 𝑋𝑖
(

𝛿𝑖 −𝑀
)

,∀𝑖 ∈ ̃. (14)

Further, the total demand for tokens is given by,

𝐷 =
∑

𝑖∈̃
𝐷𝑖 =

∑

𝑖∈̃
𝑋𝑖

(

𝛿𝑖 −𝑀
)

. (15)

Thus, market clearing requires 𝐷 = 𝑆, or,
∑

𝑖∈̃
𝑋𝑖

(

𝛿𝑖 −𝑀
)

=
∑

𝑗∈⧵̃
𝑋𝑗

(

𝑀 − 𝛿𝑗
)

+𝑋0𝑀,

Or,
∑

𝑖
𝑋𝑖𝛿𝑖 = 𝑀

(

∑

𝑖
𝑋𝑖 +𝑋0

)

= 𝑀𝑁. (16)

The market clearing conditions in all periods is satisfied (𝑆𝑖 = 𝐷𝑖, 𝑖 ∈ ̃). However, the demand (or supply) for tokens in different
7

intervals may be different, i.e., 𝐷1 ≠ 𝐷2 ≠ 𝐷3 … (or 𝑆1 ≠ 𝑆2 ≠ 𝑆3 …).
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3.3.4. Computation of market clearing prices
For a given vector of tolls in tokens (𝛿𝑖, 𝑖 = 1… 𝐼), the market clearing price in each time interval can be computed through the

following iterative process, where the price in iteration 𝑤 + 1 is given by,

𝑝𝑤+1
𝑖 = 𝑝𝑤𝑖 + ℎ(𝐷𝑤

𝑖 − 𝑆𝑤
𝑖 ), 𝑖 = 1… 𝐼, (17)

where ℎ′(.) > 0 and ℎ(0) = 0; 𝐷𝑤
𝑖 , 𝑆

𝑤
𝑖 denote the demand and supply of tokens in interval 𝑖 and iteration 𝑤, respectively. This is a

standard cobweb adjustment process. It should be noted that the price adjustment process above is merely a numerical method to
compute the market clearing prices and does not imply that the market actually operates in this manner. Otherwise, users could
discover this and make use of the knowledge of this process strategically, which will lead to a complex game theoretic problem
outside the scope of this paper (and possibly behaviorally unrealistic in any case). Alternatively, a simpler iterative process can be
used to compute the market clearing prices (∀𝑖 ∈ ):

𝑝𝑤+1
𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑤𝑖 + 𝛥𝑝 𝐷𝑤
𝑖 > 𝑆𝑤

𝑖
𝑝𝑤𝑖 𝐷𝑤

𝑖 = 𝑆𝑤
𝑖

𝑝𝑤𝑖 − 𝛥𝑝 𝐷𝑤
𝑖 < 𝑆𝑤

𝑖 ,

(18)

where 𝛥𝑝 > 0. More details on how this price adjustment scheme is used within the solution framework (to compute market clearing
prices) are provided in Section 5.1.

Conjecture 1. The equilibrium prices for the 𝐼 time intervals satisfy 𝑙𝑖𝑚
𝜇̄→0

𝑝𝑖 = 𝑝∗, 𝑖 ∈ ̃ for any 𝛿1, 𝛿2,… 𝛿𝐼 .

A discussion of this is provided in Appendix C.

3.3.5. Optimization
As before, let 𝐼 denote the subset of time periods where 𝛿𝑖 > 𝑀 . We assume that the regulator has knowledge of the demand 𝑁

and sets the tolls in tokens for time periods 1, 2… 𝑖−1, 𝑖+1… 𝐼 , and the supply of tokens 𝑀 (𝛿𝑖 is normalized to 1 token without loss
of generality; the period 𝑖 can be chosen arbitrarily, for example the morning peak hour) that maximizes total welfare. The welfare in
the case of quantity control is simply the consumer surplus, since the regulator revenue is zero given that the instrument is revenue
neutral. However, the calculation of consumer surplus differs slightly from the price control case. Recall that in the definition of the
utility in Eq. (1), the entire token payment for each individual contributes to a real monetary disutility or monetary loss and does not
account for the initial free token allocation or the monetary gains for the users who sell tokens. Therefore, this monetary loss has to
be added back to the consumer surplus to reflect the free allocation from the regulator and the monetary gains for sellers. Note that
monetary transfers between users and between the regulator and users have no impacts on overall welfare, provided the transfers do
not alter or change behavior. Thus, the determination of the toll in tokens can be formulated as the following optimization problem,

Max
𝛿1 ,…𝛿𝑖−1 ,𝛿𝑖+1 ,…𝛿𝐼 ,𝑀

𝛺𝑞 =
𝑁
∑

𝑛=1
𝜇𝑛log

(

∑

𝑗=0…𝐼
exp[𝑉 𝑛(𝑇𝑗 ,𝜽𝒏)]

)

+
∑

𝑗=1…𝐼
𝑝𝑗𝛿𝑗𝑋𝑗 (19)

s.t

𝑋𝑖 =
𝑁
∑

𝑛=1

exp[𝑉 𝑛(𝑇𝑖,𝜽𝒏)]
∑

𝑗 exp[𝑉 𝑛(𝑇𝑗 ,𝜽𝒏)]
, 𝑖 = 1… 𝐼,with

∑

𝑖=0…𝐼
𝑋𝑖 = 𝑁 ; 𝑋𝑖 ≥ 0, 𝑖 = 0… 𝐼,

where the equilibrium prices 𝐩 = (𝑝1, 𝑝2,… , 𝑝𝐼 ) satisfy the market equilibrium conditions (and 𝑄𝑖 is given by Eq. (9)),

𝑄𝑖

⎛

⎜

⎜

⎝

∑

𝑗∈𝐼⧵𝐼

𝑋𝑗
(

𝑀 − 𝛿𝑗
)

+𝑋0𝑀
⎞

⎟

⎟

⎠

= 𝑋𝑖
(

𝛿𝑖 −𝑀
)

,∀𝑖 ∈ ̃.

The optimum welfare obtained by solving (19) above and the corresponding optimal tolls in tokens are denoted by 𝛺∗
𝑞 and

𝜹∗ = (𝛿∗𝑖 , 𝑖 = 1… 𝐼) respectively. The associated market clearing prices are denoted by 𝑝∗𝑖 , 𝑖 = 1… 𝐼 .
We refer the reader to Appendix A for a discussion of the existence and uniqueness of a solution for the market and network

quilibrium constraints in Eq. (19). Convergence of the price adjustment schemes in Section 3.3.4 is also discussed.

.4. Comparison

In the deterministic case, the comparison of the two instruments is trivial and can be performed analytically. The two instruments,
hen optimally chosen, yield identical social welfare. This is shown in Proposition 1 below.

roposition 1. Under deterministic demand and supply, the two instruments, price and quantity, when optimally chosen, are equivalent.

roof. Refer Appendix B.
8
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4. Multiperiod model: Stochastic demand

In the discussion thus far, transportation demand and supply were assumed to be deterministic. We now turn our attention to
he case where the demand is stochastic.

.1. Transportation model: Demand, supply and equilibrium

Assume that there exist two days or states of nature 𝑠1 and 𝑠2 (denoted by 𝑠𝑘, 𝑘 = 1, 2), where the alternative specific benefit
to travel for individual 𝑛, varies across the days, taking values 𝐵𝑛,𝑠1

𝑖 for period 𝑖 (𝑖 = 1, 2,… , 𝐼) with probability 𝑞 and values
𝐵𝑛,𝑠2
𝑖 , 𝑖 = 1, 2,… , 𝐼 with probability 1 − 𝑞. In other words, the source of day-to-day variability or stochasticity is on the demand

side and arises due to fluctuations in the scheduling preferences of travelers (note that the total number of users is fixed). The
variability in scheduling preferences may be due to special events, weather etc. leading to a higher number of users who wish to
travel during the peak period. Stochasticity may also arise from external factors affecting supply such as incidents and accidents, or
factors affecting both demand and supply. The methodological framework can be extended in a straightforward manner to model
these cases as well. Note also that the framework can be extended to several states of nature or even for a continuum of states with
no methodological difficulty.

The systematic utilities to travel in time period 𝑇𝑖 on day 𝑠𝑘, 𝑘 = 1, 2 (denoted by 𝑇 𝑠𝑘
𝑖 ) are given by,

𝑉 𝑛
𝑠𝑘(𝑇

𝑠𝑘
0 ,𝜽𝒏) =

(

1∕𝜇𝑛
) (

𝐵𝑛
0
)

, 𝑘 = 1, 2 (20)

𝑉 𝑛
𝑠𝑘(𝑇

𝑠𝑘
𝑖 ,𝜽𝒏) =

(

1∕𝜇𝑛
)

(

𝐵𝑛,𝑠𝑘
𝑖 − 𝛼𝑛𝑡𝑖(𝑋𝑠𝑘

𝑖 ) − 𝑝𝑠𝑘𝑖 𝛿𝑖
)

, 𝑖 = 1… 𝐼, 𝑘 = 1, 2 (quantity)

𝑉 𝑛
𝑠𝑘(𝑇

𝑠𝑘
𝑖 ,𝜽𝒏) =

(

1∕𝜇𝑛
)

(

𝐵𝑛,𝑠𝑘
𝑖 − 𝛼𝑛𝑡𝑖(𝑋𝑠𝑘

𝑖 ) − 𝜏𝑖
)

, 𝑖 = 1… 𝐼, 𝑘 = 1, 2 (price),

where 𝑝𝑠𝑘𝑖 and 𝑋𝑠𝑘
𝑖 are the token price and number of individuals traveling in time period 𝑇 𝑠𝑘

𝑖 , respectively. Note that in case of
the price system, the terms 𝑝𝑠𝑘𝑖 𝛿𝑖 are replaced by 𝜏𝑖. As before, for a given set of tolls in tokens (𝛿𝑖, 𝑖 = 1...𝐼) and token prices
(𝑝𝑠𝑘𝑖 , 𝑖 = 1...𝐼 ; 𝑘 = 1, 2) — or tolls in dollars (𝜏𝑖, 𝑖 = 1...𝐼) in the case of price control—, 𝑋𝑠𝑘

𝑖 for 𝑘 = 1, 2 can be determined by solving
the following fixed-point problem (note that 𝑋𝑠𝑘

0 = 𝑁 −
∑𝑖=𝐼

𝑖=1 𝑋
𝑠𝑘
𝑖 ),

𝑋𝑠𝑘
𝑖 =

𝑛=𝑁
∑

𝑛=1

exp[𝑉 𝑛
𝑠𝑘(𝑇

𝑠𝑘
𝑖 ,𝜽𝒏)]

∑

𝑗 exp[𝑉 𝑛
𝑠𝑘(𝑇

𝑠𝑘
𝑗 ,𝜽𝒏)]

, 𝑖 = 1… 𝐼. (21)

4.2. Tolls in dollars: Price control

In case of the price instrument, we assume that the regulator may not wish to change the tolls from day to day for reasons of
acceptability and ease of implementation (or may not have knowledge of the specific realization of the state of nature). For instance,
in the ERP system of Singapore, tolls are revised only once every few months and do not vary from day to day. Thus, in the case
of stochastic demand, the regulator sets the tolls in tokens for the 𝐼 time periods that maximizes expected total welfare, formulated
s the following optimization problem,

Max
𝜏1 ,𝜏2 ,…𝜏𝐼

𝑞

{ 𝑁
∑

𝑛=1
𝜇𝑛log

(

∑

𝑗=0…𝐼
exp[𝑉 𝑛

𝑠1(𝑇
𝑠1
𝑗 ,𝜽𝒏)]

)

+
∑

𝑗=1…𝐼
𝜏𝑗𝑋

𝑠1
𝑗

}

+ (1 − 𝑞)

{ 𝑁
∑

𝑛=1
𝜇𝑛log

(

∑

𝑗=0…𝐼
exp[𝑉 𝑛

𝑠2(𝑇
𝑠2
𝑗 ,𝜽𝒏)]

)

+
∑

𝑗=1…𝐼
𝜏𝑗𝑋

𝑠2
𝑗

}

(22)

s.t

𝑋𝑠𝑘
𝑖 =

𝑛=𝑁
∑

𝑛=1

exp[𝑉 𝑛
𝑠𝑘(𝑇

𝑠𝑘
𝑖 ,𝜽𝒏)]

∑

𝑗 exp[𝑉 𝑛
𝑠𝑘(𝑇

𝑠𝑘
𝑗 ,𝜽𝒏)]

, 𝑖 = 1… 𝐼 ; 𝑘 = 1, 2,with

∑

𝑖=0…𝐼
𝑋𝑠𝑘

𝑖 = 𝑁, 𝑘 = 1, 2; 𝑋𝑠𝑘
𝑖 ≥ 0, 𝑖 = 0… 𝐼, 𝑘 = 1, 2.

4.3. Tolls in tokens: Quantity control

We distinguish two configurations of the quantity control system. First, in the case of adaptive token supply, the supply of tokens
can vary by day and is denoted 𝑀𝑠1 and 𝑀𝑠2, whereas in the case of fixed token supply, it is assumed that the total supply of tokens
is fixed across days i.e., 𝑀𝑠1 = 𝑀𝑠2 = 𝑀 . From the standpoint of implementation, adapting the token supply is likely to be far easier
than adapting the tolls in tokens (or dollars), which may involve communicating a complex tariff structure (in a general network)
to commuters.
9
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The market clearing conditions in Eq. (14) now apply in each time interval for both days and are given by (the same notation
s before is used with the added superscript 𝑠𝑘 to denote the day),

𝑄𝑠𝑘
𝑖

⎛

⎜

⎜

⎝

∑

𝑗∈𝐼⧵𝐼𝑠𝑘
𝑋𝑠𝑘

𝑗
(

𝑀𝑠𝑘 − 𝛿𝑗
)

+𝑋𝑠𝑘
0 𝑀𝑠𝑘

⎞

⎟

⎟

⎠

= 𝑋𝑠𝑘
𝑖

(

𝛿𝑖 −𝑀𝑠𝑘) ,∀𝑖 ∈ 𝐼𝑠𝑘, 𝑘 = 1, 2. (23)

In the case of fixed token supply, we assume that the regulator does not have knowledge of the specific realization of the state
f nature (or day) and hence, sets the tolls in tokens for time periods 1, 2… 𝑖−1, 𝑖+1… 𝐼 , and the supply of tokens 𝑀 (as before 𝛿𝑖
s normalized to 1 token without loss of generality) that maximizes expected total welfare, formulated as the following optimization
roblem,

Max
𝛿1 ,…𝛿𝑖−1 ,𝛿𝑖+1 ,…𝛿𝐼 ,𝑀

𝑞

{ 𝑁
∑

𝑛=1
𝜇𝑛log

(

∑

𝑗
exp[𝑉 𝑛

𝑠1(𝑇
𝑠1
𝑗 ,𝜽𝒏)]

)

+
∑

𝑗
𝑝𝑠1𝑗 𝛿𝑗𝑋

𝑠1
𝑗

}

+ (1 − 𝑞)

{ 𝑁
∑

𝑛=1
𝜇𝑛log

(

∑

𝑗
exp[𝑉 𝑛

𝑠2(𝑇
𝑠2
𝑗 ,𝜽𝒏)]

)

+
∑

𝑗
𝑝𝑠2𝑗 𝛿𝑗𝑋

𝑠2
𝑗

}

(24)

s.t

𝑋𝑠𝑘
𝑖 =

𝑛=𝑁
∑

𝑛=1

exp[𝑉 𝑛
𝑠𝑘(𝑇

𝑠𝑘
𝑖 ,𝜽𝒏)]

∑

𝑗 exp[𝑉 𝑛
𝑠𝑘(𝑇

𝑠𝑘
𝑗 ,𝜽𝒏)]

, 𝑖 = 1… 𝐼 ; 𝑘 = 1, 2,with

∑

𝑖=0…𝐼
𝑋𝑠𝑘

𝑖 = 𝑁, 𝑘 = 1, 2; 𝑋𝑠𝑘
𝑖 ≥ 0, 𝑖 = 0… 𝐼, 𝑘 = 1, 2,

where the equilibrium prices 𝐩𝑠𝑘 = (𝑝𝑠𝑘1 , 𝑝𝑠𝑘2 ,… , 𝑝𝑠𝑘𝐼 ), 𝑘 = 1, 2 satisfy the market equilibrium conditions:

𝑄𝑠𝑘
𝑖

⎛

⎜

⎜

⎝

∑

𝑗∈𝐼⧵𝐼𝑠𝑘
𝑋𝑠𝑘

𝑗
(

𝑀 − 𝛿𝑗
)

+𝑋𝑠𝑘
0 𝑀

⎞

⎟

⎟

⎠

= 𝑋𝑠𝑘
𝑖

(

𝛿𝑖 −𝑀
)

,∀𝑖 ∈ 𝐼𝑠𝑘, 𝑘 = 1, 2.

In the case of adaptive token supply, we assume that the regulator has knowledge of the specific realization of the state of
nature (or day) and sets the tolls in tokens for time periods 1, 2… 𝑖− 1, 𝑖+ 1… 𝐼 , and the supply of tokens 𝑀𝑠1,𝑀𝑠2 (as before 𝛿𝑖 is
normalized to 1 token without loss of generality) that maximizes expected total welfare, formulated as the following optimization
problem,

Max
𝛿1 ,…𝛿𝑖−1 ,𝛿𝑖+1 ,…𝛿𝐼 ,𝑀𝑠1 ,𝑀𝑠2

𝑞

{ 𝑁
∑

𝑛=1
𝜇𝑛log

(

∑

𝑗
exp[𝑉 𝑛

𝑠1(𝑇
𝑠1
𝑗 ,𝜽𝒏)]

)

+
∑

𝑗
𝑝𝑠1𝑗 𝛿𝑗𝑋

𝑠1
𝑗

}

+ (1 − 𝑞)

{ 𝑁
∑

𝑛=1
𝜇𝑛log

(

∑

𝑗
exp[𝑉 𝑛

𝑠2(𝑇
𝑠2
𝑗 ,𝜽𝒏)]

)

+
∑

𝑗
𝑝𝑠2𝑗 𝛿𝑗𝑋

𝑠2
𝑗

}

(25)

s.t

𝑋𝑠𝑘
𝑖 =

𝑛=𝑁
∑

𝑛=1

exp[𝑉 𝑛
𝑠𝑘(𝑇

𝑠𝑘
𝑖 ,𝜽𝒏)]

∑

𝑗 exp[𝑉 𝑛
𝑠𝑘(𝑇

𝑠𝑘
𝑗 ,𝜽𝒏)]

, 𝑖 = 1… 𝐼 ; 𝑘 = 1, 2,with

∑

𝑖=0…𝐼
𝑋𝑠𝑘

𝑖 = 𝑁, 𝑘 = 1, 2; 𝑋𝑠𝑘
𝑖 ≥ 0, 𝑖 = 0… 𝐼, 𝑘 = 1, 2,

where the equilibrium prices 𝐩𝑠𝑘 = (𝑝𝑠𝑘1 , 𝑝𝑠𝑘2 ,… , 𝑝𝑠𝑘𝐼 ), 𝑘 = 1, 2 satisfy the market equilibrium conditions,

⇒ 𝑄𝑠𝑘
𝑖

⎛

⎜

⎜

⎝

∑

𝑗∈𝐼⧵𝐼𝑠𝑘
𝑋𝑠𝑘

𝑗
(

𝑀𝑠𝑘 − 𝛿𝑗
)

+𝑋𝑠𝑘
0 𝑀𝑠𝑘

⎞

⎟

⎟

⎠

= 𝑋𝑠𝑘
𝑖

(

𝛿𝑖 −𝑀𝑠𝑘) ,∀𝑖 ∈ 𝐼𝑠𝑘, 𝑘 = 1, 2.

4.4. Comparison

In contrast with the deterministic case, when demand (or supply) is stochastic, the comparison of the price and quantity control
instruments cannot be performed analytically. Hence, we perform the comparison numerically.

5. Numerical experiments: Stochastic demand

5.1. Experimental design

The two instruments are compared using a synthetic example across a wide range of demand and supply inputs. The setting
we consider involves three time intervals (e.g., early morning, peak, off-peak), i.e., 𝐼 = 3, wherein there are 𝑁 potential travelers
who may choose to either travel in one of three time periods (𝑇 , 𝑖 = 1…3) or cancel their trip (option 𝑇 ). The stochasticity or
10
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Table 1
Fixed factors.

Parameter Time period

𝑇1 𝑇2 𝑇3
𝐵𝑛,𝑠1
𝑖 [Mean] ($) 7.5 10.0 7.5

𝐵𝑛,𝑠1
𝑖 [SD] ($) 0.25 0.25 0.25

Free flow time (min) 13 13 13
Capacity (vehicles/time period) 350 350 350
𝛼 (BPR parameter) 0.175 0.15 0.2

Table 2
Variable factors and levels.

Factors Levels

COV of mobility model scale 𝜇𝑛 0.0 0.2 0.33 0.5
Scale of selling model (𝜇̄) 1 1.5 2 100000
Number of travelers (𝑁) 1400 1550 1700
BPR Congestion coefficient (𝛽) 3 4 6
Benefit Difference in $ (𝛥) 3 4 5

variability in demand – as noted in Section 4 – is modeled by varying the levels of the alternative specific benefit to travel (in time
periods) on the two days, 𝐵𝑛,𝑠𝑘

𝑖 , 𝑖 = 1…3, 𝑘 = 1, 2 (refer Eq. (20)). Thus, the source of day-to-day variability or stochasticity is on
the demand side and arises due to fluctuations in the scheduling preferences of travelers, which may arise due to special events,
weather etc. leading to a higher number of users who wish to travel. The mean and standard deviation of the alternative specific
benefit to cancel trip (𝐵𝑛,𝑠𝑘

0 𝑘 = 1, 2) are normalized to zero, and the probability 𝑞 is assumed to be 0.5.
The values of the fixed factors are shown in Table 1. The capacities are set based on the range of demand values (varies with

cenario, see Table 2) to yield a ratio of congested to free flow travel time (in the absence of tolls) in the range 1.25–2.5. The free flow
ravel time is set to be 13 minutes (assuming a free flow speed of 60 km∕hr, this corresponds to a trip length of 13 km, which is in
he range of average trip lengths in typical urban transportation networks). The mean of the alternative specific benefit is assumed
o be higher in period two to represent peaking effects and commute behavior (note that the table describes the distribution of the
lternative specific benefits in the different time periods for day 𝑠1; the values on day 𝑠2 vary with the scenario, and are part of
he experimental design, which is described later in the section). The coefficient of variation of the alternative specific benefit is
ssumed to be lower in period 𝑇2 reflecting a morning commute context where work start times are largely in this time interval.
urther, we introduce some asymmetry in periods 𝑇1 and 𝑇3 through the BPR congestion function, which could potentially reflect
hoices of different routes in these periods. The mean and standard deviation of the value of time are assumed to be 0.33$ per min
around 20$ per hr) and 0.067$ per min (around 4$ per hr) respectively (refer Prato et al. (2014), Hess et al. (2005), Cirillo and
xhausen (2006) for empirical evidence; note that the literature reports a wide range of values for the coefficient of variation, we
dopt a conservative value of 0.2).

In the experimental design, five factors are varied, which include the coefficient of variation (COV) of the scale parameter 𝜇𝑛
n the mobility model (the mean of 𝜇𝑛 is fixed at 1.5), the scale parameter of the selling model 𝜇̄, total number of users 𝑁 , the
ongestion coefficient 𝛽, and the benefit difference between the two days 𝛥. The factor levels are shown in Table 2. A total of 432
est instances or scenarios (42 × 33) were simulated.

Several additional points are noteworthy. First, in all the scenarios wherein 𝜇𝑛 is deterministic (in other words, COV of 𝜇𝑛 is
ero), the standard deviations of all other randomly distributed parameters (i.e., 𝛼𝑛;𝐵𝑛,𝑠𝑘

𝑖 , 𝑖 = 1…3, 𝑘 = 1, 2) are also set to zero.
hus, this subset of scenarios represents the setting with no heterogeneity in the mobility model. Second, in order to set the values
f the alternative specific benefits for a given scenario with a benefit difference 𝛥, the values of 𝐵𝑛,𝑠1

𝑖 , 𝑖 = 1…3, are first sampled
based on the mean and standard deviation in Table 1), and 𝐵𝑛,𝑠2

𝑖 , 𝑖 = 1…3 is given by, 𝐵𝑛,𝑠2
𝑖 = 𝐵𝑛,𝑠1

𝑖 + 𝛥, 𝑖 = 1…3. Third, the
cenarios with 𝜇̄ = 100 000 represent non-rational market behavior or a purely random selling model (i.e., 𝜇̄ → ∞).

The two instruments (tolling in dollars and tolling in tokens) are compared across the 432 test instances based on the optimum
ocial welfare obtained by solving the optimization problems in Eqs. (22), (24) and (25). These are solved as bi-level problems;
iven the non-convexity of the problems, two approaches are adopted for solving the upper-level problem.

For price control (Eq. (22)), in the first approach, the optimization problem at the upper-level (decision variable is the toll in
ollars; 𝜏𝑖, 𝑖 = 1… 𝐼) is solved using a genetic algorithm (GA). The GA is well suited to mathematical programs with equilibrium
onstraints (MPEC) (Zhang and Yang, 2004). A population size of 50 with a maximum of 300 generations and a crossover fraction
f 0.8 is used (for more details see Deep et al. (2009)). This is implemented directly using the MATLAB ga routine. For each
valuation of the objective function for a given candidate solution of the toll in dollars 𝜏𝑖, 𝑖 = 1… 𝐼 , the lower-level Stochastic
ser Equilibrium (SUE) problem is solved as a system of non-linear equations using the lsqnonlin routine to determine the flows
𝑋𝑠𝑘

𝑖 , 𝑖 = 0… 𝐼, 𝑘 = 1, 2). In the second approach, the GA is replaced by the sequential quadratic programming algorithm, which has
lso been applied to non-convex MPEC problems (Meng et al., 2004). However, in this case, given the non-convexity, 25 randomly
enerated starting points are used for the optimization algorithm (the value of 25 was arrived at empirically based on preliminary
xperiments wherein it was found that increasing the number of starting points beyond 25 did not yield improvements in the
11
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Table 3
Summary statistics: Welfare differences.

Statistic Welfare difference ($) Percentage diff. Welfare ($)

ADP-NT SP-NT SQ-NT SQ-SP ADP-SP (SQ−SP)
NT

(SQ−SP)
ADP NT ADP

Mean 1776 1555 1681 127 222 2.0 1.4 7347 9123
Median 1569 1416 1501 90 169 1.2 1.0 7443 9132
Min 575 517 104 −545 39 −6.8 −6.2 4645 8024
Max 4667 3890 4590 701 778 13.9 7.2 9021 10336
25th per. 1003 867 874 15 103 0.2 0.2 6613 8668
75 per. 2181 1896 2076 213 286 3.3 2.4 8131 9540
𝑁𝑆 (>0) 432 432 432 351 432 351 351 – –
𝑁𝑆 432 432 432 432 432 432 432 432 432
%>0 100 100 100 81.3 100 81.3 81.3 – –

For quantity control (Eqs. (24) and (25)), in the first approach, the upper-level problem (decision variable is the toll in tokens;
𝑖, 𝑖 = 1… 𝐼) is again solved using GA and implemented using the MATLAB ga routine. For each evaluation of the objective function

for a given candidate solution of the toll in tokens 𝛿𝑖, 𝑖 = 1… 𝐼 , we now need to compute both the equilibrium (SUE) flows
𝑋𝑠𝑘

𝑖 , 𝑖 = 0… 𝐼, 𝑘 = 1, 2) and the market clearing prices for each interval (𝑝𝑠𝑘𝑖 , 𝑖 = 1… 𝐼, 𝑘 = 1, 2). Here, we use the iterative price
adjustment process described in Section 3.3.4. We start with a candidate set of prices (𝑝𝑠𝑘𝑖 , 𝑖 = 1… 𝐼, 𝑘 = 1, 2), and solve the SUE
problem (again using the lsqnonlin routine) to determine the flows (𝑋𝑠𝑘

𝑖 , 𝑖 = 0… 𝐼, 𝑘 = 1, 2). Next, the demand and supply of tokens
(𝑆𝑠𝑘

𝑖 , 𝐷𝑠𝑘
𝑖 , 𝑖 = 1… 𝐼, 𝑘 = 1, 2) are computed and the prices are adjusted using Eq. (18). This process is repeated until convergence of

the prices, at which point we have the solutions of (𝑋𝑠𝑘
𝑖 , 𝑝𝑠𝑘𝑖 , 𝑖 = 1… 𝐼, 𝑘 = 1, 2) for a given toll in tokens (𝛿𝑖, 𝑖 = 1… 𝐼), and we can

compute the objective function. In this price adjustment process we use a simple bisection method where the value of 𝛥𝑝 in Eq. (16)
progressively decreases with successive iterations. In the second approach, once again, the Genetic algorithm is simply replaced by
the SQP algorithm.

In all the 432 test instances (for all the instruments), both the GA and the SQP algorithm (with multiple starting points) converged
to the same optimal welfare and toll values.

5.2. Results and discussion

The results from the numerical experiments and their implications are discussed in this section. After a description of the overall
results in terms of optimum social welfare, the effects of congestion, extent of day to day variability, selling model, and heterogeneity
are discussed in turn.

5.2.1. Welfare
Summary statistics (across the 432 scenarios) of the welfare differences between various instruments under stochastic demand

are presented in Table 3. The following abbreviations are used: NT for the no-toll equilibrium, SP for the price system or tolling
in dollars, SQ for the quantity system or tolling in tokens. We also include a benchmark (abbreviated ADP) in which the tolls (in
either dollars or tokens) are adaptive across the two days and set by the regulator based on the realization of demand. Clearly, in
this case, the price and quantity instruments are equivalent (as shown in Section 3.4), and this benchmark represents the maximum
welfare that can be attained in case of stochastic demand. 𝑁𝑆 denotes the number of scenarios.

The results show that in the case of the fixed token supply, neither instrument is consistently superior across all scenarios (column
SQ-SP in Table 3). The quantity system is superior in around 81% of the tested scenarios, with the absolute welfare difference (SQ-SP)
ranging between −545$ and 701$, and mean and median values of 127 $ and 90 $ respectively. To put these differences in context,
the total welfare of the no toll equilibrium ranges between 4645$ and 9021$ while that of the benchmark ranges between 8024$ and
10336$; the total toll revenue in the benchmark system ranges between 4240$ and 7027$. The percentage difference in welfare
(SQ-SP) relative to the welfare of the no-toll equilibrium ranges between −6.8% and 13.9%, with mean and median percentage
differences of 2% and 1.2% respectively. Note that all welfare values (ADP, SQ, SP, NT) can be considered as being relative to a
situation where all travelers stay at home (i.e for example, due to very large travel times), which will yield zero welfare due to the
normalization of the utility of the cancel trip option. The percentage differences need to be interpreted in this context.

Moreover, an examination of the average welfare difference between the price and quantity instrument (column SQ-SP in Table 3)
relative to the average welfare difference between the price instrument and the adaptive benchmark (column ADP-SP in Table 3)
suggests that the added flexibility of the credit market allows us to recover a little over 57% of the welfare lost due to the tolls
in dollars and tokens being fixed across days. This is also evident when looking at the welfare differences between the price and
quantity instruments relative to the adaptive benchmark (column (SQ-SP)/ADP in Table 3), which ranges between −6.2% and 7.2%
with a mean value of 1.4%.

The overall distribution of welfare differences (SQ-SP) is shown in Figs. 1(a) and 1(b) (the kernel density is plotted assuming a
normal kernel function), which as noted before indicate that when the supply of tokens is fixed across days, neither instrument is
consistently superior in terms of efficiency. In order to gain more insights into the conditions under which the quantity instrument
is superior, we next examine the impacts of the shape of the congestion function, selling behavior, the benefit difference across days
12

and the extent of heterogeneity.
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Fig. 1. Distribution of welfare differences.

Fig. 2. Welfare difference: Effect of BPR congestion coefficient and demand.

5.2.2. Effect of congestion function
We first examine the effect of the congestion function, and draw on recent theoretical insights from de Palma and Lindsey

(2020), who study tradable permit schemes in a setting with homogeneous agents and a single congestible facility. They conjecture
(and explore through simple numerical examples) that in the case of variable demand and a fixed, but nonlinear cost function, the
performance of a quantity control system dominates that of a price control system when the cost function is more steeply curved.
This relates to their general finding that a quantity control system is relatively efficient if optimal usage levels are similar across
states whereas a congestion fee achieves high efficiency if the first-best fee varies little over states.

The results from our experiments support these findings. First, the BPR congestion coefficient has a statistically significant effect
(level of significance 𝛼 = 0.01) on the difference in total welfare between the quantity and price control systems. The average
difference increases from $2.1 at 𝛽 = 3 to $63.8 at 𝛽 = 4, and $313.9 at 𝛽 = 6. Moreover, the percentage of scenarios where the
quantity control system is superior increases from 61.8% at 𝛽 = 3 to 82.6% at 𝛽 = 4 and 99.3% at 𝛽 = 6. The effect of 𝛽 on the
welfare difference is shown in the box plot in Fig. 2(a) where it can be seen that the quantity control mechanism is superior in
terms of total welfare typically when the congestion curve is steeper or more convex (high value of 𝛽 = 4, 6). In the box plot, the
lower and upper edges of the blue box represent the 25th and 75th percentile respectively, the red line represents the median, and
the notch represents a 95% confidence interval for the median.

A similar trend of increasing and statistically significant (𝛼 = 0.01) welfare differences (SQ-SP) is observed as the demand level
increases (under fixed capacity, i.e., congestion levels increase). The average difference increases from $26.9 at 𝑁 = 1400 to $138.6
13
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Table 4
Illustrative scenarios: Effect of BPR congestion coefficient 𝛽.

Instrument Day Flows Optimal/Equivalent tolls

𝑇1 𝑇2 𝑇3 𝑇0 𝑇1 𝑇2 𝑇3
Scenario 1

No Toll (NT) s1 377 542 367 115 0 0 0s2 419 567 407 8

Stochastic Price (SP) s1 326 404 315 356 2.59 4.31 2.63s2 436 498 421 45

Stochastic Quantity (SQ) s1 374 459 351 216 1.16 2.67 1.33
s2 395 428 365 212 5.85 8.07 6.11

Benchmark (ADP) s1 338 416 327 319 2.26 3.96 2.30
s2 411 474 397 118 4.60 6.36 4.64

Scenario 2

No Toll (NT) s1 389 469 382 160 0 0 0s2 441 498 432 28

Stochastic Price (SP) s1 287 337 281 495 3.17 4.90 3.21s2 419 443 410 128

Stochastic Quantity (SQ) s1 343 401 340 316 1.52 2.84 1.63
s2 360 372 355 313 6.22 8.27 6.42

Benchmark (ADP) s1 326 366 319 389 2.59 4.30 2.63
s2 372 401 364 263 5.29 7.06 5.33

at 𝑁 = 1550, and 214.4$ at 𝑁 = 1700. Moreover, the percentage of scenarios where the quantity control system is superior increases
from 50.7% at 𝑁 = 1400 to 93.1% at 𝑁 = 1550 and 100% at 𝑁 = 1700. The effect of total demand (number of travelers) on the
welfare differences between the quantity and price instruments is shown in the box plot in Fig. 2(b).

In order to gain more insight into the effect of the BPR congestion coefficient and the total demand (number of users), we
examine several illustrative scenarios. First, we compare two scenarios (referred to as 1 and 2) with 𝛽 = 3, 𝑁 = 1400, 𝛥 = 5 and
= 6, 𝑁 = 1400, 𝛥 = 5, respectively. All other factors including the scale of the mobility model and selling model are the same. The
elfare difference between the quantity and price instruments (SQ-SP) are −72.9$ and 271.0$ in scenario 1 and 2 respectively.

Table 4 summarizes the flows in different time periods and the tolls in dollar amounts (note that for the price instrument this
s directly the toll in dollars whereas for the quantity instrument it is the product of the toll in tokens and the token market price).
irst, observe that for both scenarios, as expected, under the price instrument (SP), the number of individuals traveling (total flow
n periods 𝑇1, 𝑇2, 𝑇3) varies significantly across the days s1 and s2 (also evident from the number of travelers canceling trip, i.e., flow
n 𝑇0) whereas the toll in dollar amounts is fixed. In contrast, under the quantity instrument, the number of travelers traveling is
oughly the same across the two days whereas the toll in dollar amounts varies significantly. Next, we see that the optimal usage of
he network (or number of people traveling) under the adaptive benchmark ADP varies more across the states S1 and S2 in scenario
than in scenario 2 (difference in the optimal flows for 𝑇0 across days is 319 − 118 = 201 for scenario 1 versus 389 − 263 = 126 in

scenario 2). Conversely, looking at optimal tolls under the benchmark ADP, one can see that the toll difference across s1 and s2 is
higher in scenario 2 compared to scenario 1 (in interval 𝑇2, 7.06−4.30 = 2.76 for scenario 2 versus 6.36−3.96 = 2.40 for scenario 1).
Thus, the results suggest that at higher BPR coefficients or steeper congestion functions, the optimal usage levels of the network are
relatively more similar across states leading to superiority of the quantity instrument. More intuition for this is provided analytically
by de Palma and Lindsey (2020) who look at the welfare losses of the two instruments using a single congested alternative under
linear and non-linear demand.

Along similar lines, to examine the effect of the total number of travelers 𝑁 , we compare two different scenarios (referred to as
1 and 2) with 𝛽 = 3, 𝑁 = 1400, 𝛥 = 5 and 𝛽 = 3, 𝑁 = 1700, 𝛥 = 5 respectively. All other factors including the scale of the mobility
model and selling model are the same. The welfare difference between the quantity and price instruments (SQ-SP) are −72.9$ and
88.73$ in scenario 1 and 2, respectively. Table 5 presents the flows in different time periods and the tolls in dollar amounts for
these two scenarios. We observe – as before in the case of higher 𝛽 – that when the overall demand level is higher (scenario 2), the
difference in optimal toll rates across s1 and s2 is higher compared to scenario 1 (in interval 𝑇2, 7.55 − 4.57 = 2.98 for scenario 2
versus 6.36 − 3.96 = 2.40 for scenario 1). Thus, at higher demand levels (and hence, more severe congestion effects) the optimal toll
rates vary more across states, once again leading to superior performance of the quantity control instrument relative to scenarios
with lower demand levels.

5.2.3. Selling model
The explicit treatment of selling behavior is an important characteristic of the proposed model and allows us to examine the

impact of the selling decisions on the performance of the quantity control system. Fig. 3(a) presents a box plot of the effect of the
scale parameter of the selling model on the difference between the quantity and price instruments. The value of 𝜇̄ = 100 000, which
corresponds to 𝜇̄ → ∞ represents a purely random selling model (or a non-rational market) and has the impact of equalizing the
supply of tokens across the three time periods (consequently, the demand of tokens as well). As the results show, this has the effect
14
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Table 5
Illustrative scenarios: Effect of demand.

Instrument Day Flows Optimal tolls

𝑇1 𝑇2 𝑇3 𝑇0 𝑇1 𝑇2 𝑇3
Scenario 1

No Toll (NT) s1 377 542 367 115 0 0 0s2 419 567 407 8

Stochastic Price (SP) s1 326 404 315 356 2.59 4.31 2.63s2 436 498 421 45

Stochastic Quantity (SQ) s1 374 459 351 216 1.16 2.67 1.33
s2 395 428 365 212 5.85 8.07 6.11

Benchmark (ADP) s1 338 416 327 319 2.26 3.96 2.30
s2 411 474 397 118 4.60 6.36 4.64

Scenario 2

No Toll (NT) s1 446 586 432 235 0 0 0s2 522 638 505 35

Stochastic Price (SP) s1 321 399 311 668 3.65 5.39 3.69s2 493 549 476 182

Stochastic Quantity (SQ) s1 399 498 387 416 1.85 3.04 1.86
s2 416 469 401 414 6.58 8.50 6.62

Benchmark (ADP) s1 362 435 350 553 2.84 4.57 2.88
s2 441 500 426 333 5.77 7.55 5.80

Fig. 3. Welfare difference: Effect of selling model.

of a deterioration in the performance of the quantity control system, reflected in the mean difference in welfare between the two
instruments (Quantity − Price), which takes a mean value of 85.7 S$ at 𝜇̄ = 100 000 versus 140.2 S$ for 𝜇̄ ∈ [1, 2]. Note that within
the range of 𝜇̄ ∈ [1, 2], performance of the quantity control does not vary substantially. However, interestingly, even within the case
of a non-rational market, the quantity instrument remains superior to the price instrument in cases where congestion effects are
severe (e.g. 𝛽 = 6 in Fig. 3(b)). In other words, the advantages of the quantity control system noted in Section 5.2.2 remain even if
users are not perfectly rational in the selling market, although the extent of welfare difference is marginally lower.

The impact of market behavior is illustrated in Fig. 4 for a few selected scenarios which yield the highest deterioration in welfare
for 𝜇̄ = 100 000 compared to the corresponding scenarios with 𝜇̄ = 1, 1.5, 2. Each marker type or series represents scenarios where
all parameters are identical except 𝜇̄. Note that the interpolating lines between each point are not meant to be indicative of the
actual trend but are used to simply make the figure more legible. As noted above, we observe that within the range 𝜇̄ ∈ [1, 2], the
differences in welfare of the quantity instrument are negligible whereas the welfare deteriorates if users are more irrational in the
selling market. Thus, the findings suggest that market design aspects of the quantity control instrument are important and can have
effects on efficiency. This is explained in more detail next.

In order to gain more intuition into the effect of selling behavior in the market, we examine two illustrative scenarios, one with
𝜇̄ = 1 and the second with 𝜇̄ = 100 000 (𝛽 = 4, 𝑁 = 1550, 𝛥 = 3 in both scenarios). Thus, the two scenarios are identical in all respects
except the scale parameter of the selling model. The welfare of the scenario with 𝜇̄ = 1 is higher than that with 𝜇̄ = 100 000 by
15
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Fig. 4. Effect of 𝜇̄ on welfare of quantity control (SQ) for selected scenarios (note: each series represents a given scenario with varying 𝜇̄).

Table 6
Illustrative scenarios: Effect of selling behavior.

Instrument Day Flows Optimal tolls

T1 T2 T3 T0 T1 T2 T3

Stochastic Quantity (SQ) s1 366 440 353 391 2.22 3.77 2.29
𝜇̄ = 1.0 s2 381 418 365 386 5.00 7.10 5.09

Stochastic Quantity (SQ) s1 355 378 341 476 2.72 5.06 2.82
𝜇̄ = 100000 s2 355 378 341 476 5.72 8.06 5.82

Benchmark (ADP) s1 346 409 336 459 2.26 3.96 2.30
s2 391 444 380 335 4.60 6.36 4.64

Demand for tokens Supply of tokens

T1 T2 T3 T0 T1 T2 T3

Stochastic Quantity (SQ) s1 53.89 148.93 56.04 – 53.89 148.93 56.04
𝜇̄ = 1.0 s2 56.07 141.53 57.96 – 56.05 141.53 57.95

Stochastic Quantity (SQ) s1 111.81 111.81 111.81 – 111.81 111.81 111.81
𝜇̄ = 100000 s2 111.81 111.81 111.81 – 111.81 111.81 111.81

104.2$. Table 6 summarizes the flows in different time periods, the tolls in dollar amounts (note that is the product of the toll in
tokens and the token market price) and the demand and supply of tokens for all time intervals and both days s1 and s2. First, note
that non-rational selling behavior or 𝜇̄ = 100 000 has the effect of equalizing the probability of selling in all three time intervals
and hence, equalizes the supply of tokens for all three intervals (last two rows in Table 6). Interestingly, this also causes the token
supply to be equal on both days s1 and s2 (for all three intervals). Thus, we see that the optimal tolls (SQ with 𝜇̄ = 100 000) on
days s1 and s2 differ by an additive constant of 3$ (which is exactly equal to the benefit difference between the two days, 𝛥 = 3$)
resulting in identical token supply and also, identical flows on both days s1 and s2. Moreover, the equal token supply results in
lower flows in interval 𝑇2 (for example, 440 on s1 for 𝜇̄ = 1 versus 378 on s1 for 𝜇̄ = 100 000). This results in a significantly higher
number of travelers canceling trip (choosing 𝑇0) in the scenario with 𝜇̄ = 100 000 (476) versus the scenario with 𝜇̄ = 1 (391 and 386)
leading to a loss in welfare. In summary, we see that the quantity control instrument is robust with respect to selling behavior in the
market and is still superior even with irrational sellers when congestion effects are more severe. However, there is a deterioration
in welfare when the behavior of sellers is more irrational, which causes the equilibrium price of tokens to increase leading to less
travel.

5.2.4. Difference between states of nature
The benefit difference between the two days or states of nature (𝛥) is a measure of the extent of day to day variability, and

the results indicate – similar to the congestion coefficient and demand – that it significantly affects the relative performance of
the two instruments (𝛼 = 0.05). The average difference increases from $81 at 𝛥 = 3 to $125 at 𝛥 = 4, and 175.4$ at 𝛥 = 5.
16
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Fig. 5. Welfare difference: Effect of benefit difference and interaction between benefit difference/beta.

Further, the variance in difference between the two instruments also increases as is evident from the boxplot in Fig. 5(a). This can
be better understood by examining the interaction effects of the benefit difference with the BPR congestion coefficient. Thus, when
the congestion curve is steeper, a larger degree of day to day variability results in a greater advantage for the quantity control
system (𝛽 = 6, 𝛥 = 5 versus 𝛽 = 6, 𝛥 = 3 in Fig. 5(b)). On the hand, when congestion effects are less severe, an increase in day to
day variation (𝛽 = 3, 𝛥 = 5 versus 𝛽 = 3, 𝛥 = 3 in Fig. 5(b)) results in a poorer performance of the quantity control system.

This can be explained once again by the fact that at higher levels of the benefit difference (or day to day variability) and BPR
coefficient, the optimal toll rates (in dollar amounts) tend to vary significantly across the states s1 and s2, leading to superior
performance of the quantity instrument.

5.2.5. Impacts of heterogeneity
The impact of the coefficient of variation (COV) of the scale parameter 𝜇𝑛 in the mobility model (note that 𝜇𝑛 is assumed to be

lognormally distributed across the population of travelers) is shown in the boxplot in Fig. 6. First, it can be observed that as the
COV increases from 𝜇𝑛 = 0.2 to 𝜇𝑛 = 0.5, the mean difference in welfare between the quantity and price instruments increases only
marginally from 109.8 $ to 123.1 $ (statistically insignificant at 𝛼 = 0.05).

In contrast, when we examine the effect of overall heterogeneity in the mobility model (recall that the scenarios with 𝜇𝑛 = 0
represent the homogeneous case where all other parameters in the mobility model are also assumed to be deterministic), we see a
significant effect (𝛼 = 0.05). The mean difference between the quantity and price control systems for the homogeneous scenarios is in
fact higher at 158$ (scenarios with COV of 𝜇𝑛 = 0 in Fig. 6) compared to 115$ when heterogeneity is considered (scenarios with COV
of 𝜇𝑛 = 0.2, 0.33, 0.5 in Fig. 6) . This has important implications and suggests that ignoring heterogeneity can potentially overestimate
the benefits of the quantity control system. This contrasts with the findings in de Palma et al. (2018) where heterogeneity was found
to slightly increase the average welfare difference between the two instruments. The intuition for these differences is hard to arrive
at; one potential cause may be differences in the nature of variability, which arises from scheduling preferences in our case as
opposed to the total number of users in their case.

5.2.6. Equity: winners and losers
Equity is a key consideration in the comparison between the price and quantity control instruments. In this section, we compare

the two instruments using the Gini coefficient computed based on the logsum (a measure of user benefits). For a detailed discussion
of measures of inequality and welfare in the transportation context, we refer the readers to Trannoy (2011) and Delle Site et al.
(2021). We first discuss the computation of the Gini coefficient followed by a discussion of findings.

Consider the population of 𝑁 travelers (𝑘 = 1…𝑁), and let 𝑈𝐵(𝑘) denote the user benefit of individual 𝑘 in $ amounts. In the
case of the no toll equilibrium (denoted NT) and tolling in dollars with no redistribution of toll revenues (denoted SPN), 𝑈𝐵(𝑘) is
simply the logsum of individual 𝑘. In the case of tolling in dollars with an equal redistribution of toll revenues (denoted SP), 𝑈𝐵(𝑘)
is the logsum of individual 𝑘 plus the average toll revenue per individual. Finally, in the case of tolling in tokens (denoted SQ),
𝑈𝐵(𝑘) is the logsum of individual 𝑘 plus the market value of the initial token endowment (since tokens are distributed for free and
no tokens are unused at the end of the day). Assume that drivers arranged in increasing order of their user benefit and let 𝑥 = 𝑘∕𝑁 .
Define,

𝑔(𝑥) =

∑𝑥𝑁
𝑗=1 𝑈𝐵(𝑗)

∑𝑁 , (26)
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Fig. 6. Welfare difference: Effect of heterogeneity and COV of mobility scale.

Table 7
Summary statistics: Gini coefficient.

Statistic 𝐺𝐶𝑁𝑇 Percentage difference in Gini coefficient

(SPN-NT)/NT (SP-NT)/NT (SQ-NT)/NT (SQ-SP)/SP

Mean 0.183 28.7 −43.7 −43.7 −0.6
Median 0.175 32.3 −43.0 −43.9 0.0
Minimum 0.123 −2.4 −65.9 −68.9 −11.2
Maximum 0.275 46.2 −22.9 −1.9 40.1
25th percentile 0.155 21.7 −51.8 −52.2 −3.3
75th percentile 0.208 38.1 −34.2 −34.3 1.4
Scenarios >0 324 312 0 0 156
% Scenarios >0 100 96.3 0 0 48.1

𝑁𝑆 324

where 𝑔(𝑥) represents the Lorenz curve, which is the cumulative share of total user benefits (based on the logsum measure) obtained
by the bottom 𝑥𝑁 individuals in the population (note that 𝑥𝑁 is an integer). The Gini coefficient of user benefits (denoted GC) is
computed as,

𝐺𝐶 =

|

|

|

|

|

0.5 − ∫

1

0
𝑔(𝑥)𝑑𝑥

|

|

|

|

|

0.5
. (27)

The Gini coefficient is a measure of equity and takes a value between 0 and 1; a value equal to zero implies total equity and a value
of 1 indicates total inequity. The larger it is, the more inequitable is the policy.

Table 7 summarizes the distribution of the Gini coefficient (across the 324 scenarios with heterogeneity) for the NT equilibrium
(denoted by 𝐺𝐶𝑁𝑇 ) and percentage differences between the Gini coefficient for the different instruments. First, observe that with
tolling in dollars wherein toll revenues are not redistributed, in a majority of the scenarios (96.3%), the Gini coefficient increases
(i.e., is more inequitable) relative to the No Toll equilibrium and is on average 28.7% higher (column three of Table 7). This is in
line with the general observation that pricing is vertically inequitable and benefits the rich (here the individuals with high value
of time) more than the poor. The scatter plots (Fig. 7) of logsum difference (between SP and NT) versus value of time (a proxy
for income) corroborate this observation, where we see that the benefits clearly increase with an increase in value of time. The
plots represent two illustrative scenarios for the s2 day and each point in the plot represents an individual. Interestingly, there are
a small number of scenarios (3.7%), where the Gini coefficient reduces even when toll revenues are not redistributed. This occurs
in scenarios where the congestion effects are the most severe (BPR coefficient of 6 and highest demand level).

Our second observation is that both in case of the quantity instrument and the price instrument (when toll revenues are equally
redistributed), there is a significant improvement of equity, by an average of 43.7%, relative to the No Toll equilibrium (column
four and five of Table 7). This is a key finding and implies that both instruments favor the poor (low value of time individuals)
18
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Fig. 7. User benefits versus value of time.

Table 8
Summary statistics: Welfare differences (Adaptive token supply).

Statistic Welfare difference ($) Percentage diff. Welfare ($)

SP-NT SQ_A-NT SQ-SP SQ_A-SP ADP-SP (SQ_A-SP)/NT NT

Mean 1555 1745 127 190 222 2.9 7347
Median 1416 1561 90 158 169 2.1 7443
Min 517 348 −545 −177 39 −2.0 4645
Max 3890 4656 701 767 778 15.2 9021
25th per. 867 952 15 82 103 1.0 6613
75th per. 1896 2143 213 263 286 4.0 8131
𝑁𝑆 > 0 432 432 351 410 432 410 –
%>0 100 100 81.3 94.9 100 94.9 –

since there is a large reduction in the Gini coefficient across all scenarios relative to the No Toll equilibrium. The primary reason is
that an equal redistribution of toll revenues (price instrument) and the equal allocation of tokens (quantity instrument) results in
an increase in the cumulative share of benefits obtained by lower income travelers, leading to an improvement in equity. Further,
note that in case of the quantity instrument, a further improvement in equity can be achieved through any progressive allocation
of the tokens.

Finally, comparing the Gini coefficient for the quantity instrument and the price instrument with equal redistribution of toll
revenues (column six of Table 7), we see that neither instrument is consistently superior in terms of equity, although the quantity
instrument is on average marginally better (average difference of 0.6%). Moreover, similar to the comparative performance with
respect to welfare, we find that the quantity instrument is superior in terms of equity in scenarios with more severe congestion
effects (high BPR congestion coefficient of 4 and 6) and when the selling behavior of individuals is rational. These findings make
an additional case for tolling in tokens.

5.3. Adaptive token supply

The experiments in Section 5.2 consider a quantity control system wherein the token supply is fixed across days and the results
indicate the tolling in tokens is not consistently superior to tolling in dollars. The results also suggest that the price system is typically
superior when congestion effects are less severe (slope of the congestion function is less steep, demand is lower). In these cases, as
seen in the illustrative scenarios in Section 5.2.2, the quantity targets may be too lax on the s1 day and thus, the performance of
the quantity control system can be improved by allowing the token supply to be adapted across days in response to the realization
of demand (Eq. (25)).

In this section, we examine the comparative performance of the two instruments when the token supply is adaptive. Note that,
in this case certain parameters of the quantity control system (𝑀𝑠1,𝑀𝑠2 in Eq. (25)) are dependent on the state of nature. This is
in contrast with the adaptive tradable permit system (TPS) considered in de Palma and Lindsey (2020) where the regulator issues a
certain number of permits, but in addition, offers to sell further permits at a price 𝑠, and buy permits at a price 𝑟, where 𝑟 < 𝑠. This
limits the price of permits to the range [𝑟, 𝑠], where 𝑟 and 𝑠 are fixed and state independent.
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Fig. 8. Welfare differences (adaptive token supply): Effect of selling model.

The results are summarized in Table 8 and as expected, indicate that the quantity control system with adaptive supply is superior
to that with fixed supply in all scenarios. The mean welfare difference between the quantity system with adaptive supply (denoted
SQ_ A) and the price system is 190 $ compared to 127 $ with fixed supply (refer columns SQ-SP and SQ_A-SP). Moreover, a
comparison of these numbers against the mean difference of 222$ between the adaptive benchmark and the price system (ADP-SP)
reveals the extent of welfare improvements that can be attained by adapting the token supply across days. Thus, while the quantity
instrument with fixed token supply recovers a little over 57% of the welfare loss due to fixing the tolls (in dollars and tokens) across
days, the quantity instrument with adaptive token supply recovers almost 86% of this welfare loss.

However, contrary to intuition, even with adaptive token supply, the quantity control system is still not consistently superior to
the price control system although it yields a higher welfare in 94.9% of the tested scenarios. This is in contrast with the findings
in de Palma et al. (2018) for a single period setting where the quantity control with adaptive token supply is consistently superior.
A more detailed examination shows that the scenarios where the price control is superior are in fact all scenarios where the selling
behavior is non-rational or completely random (i.e., 𝜇̄ → ∞), as shown in the box plot in Fig. 8. As shown in Section 5.2.3, this has
the effect of forcing the token supply to be equal across time periods, reducing the efficiency of the quantity control system in a
manner that is not redressed even with the adaptive token supply. This once again highlights the importance of market design in
the efficiency of the quantity control system.

6. Conclusions and further research

This paper develops a methodology to compare price control (tolling in dollars) and quantity control (tolling in tokens)
instruments in the context of a within-day setting with departure time choice. In the quantity control system, users are provided
an initial endowment of tokens by the regulator and incur a token charge to travel in a specific time period. Tokens can be bought
and sold within a marketplace at a price determined by a smooth market clearing mechanism in each time period. A key feature of
the market model is that the dynamics of price adjustment and selling decisions of users are explicitly considered.

Numerical experiments across a wide range of scenarios with demand uncertainty yield the following key insights. First, when the
tolls (in dollars and tokens) can be adapted from day to day, the two instruments are equivalent. Second, when the token supply is
fixed across days or states of nature and the tolls (in dollars and tokens) are non-adaptive, the quantity control instrument is superior
in welfare terms when congestion effects are more severe, i.e., steep congestion functions (realistic BPR models), high demand levels
and high day-to-day variability. In these scenarios, the optimal network usage is relatively similar across states whereas the optimal
toll in dollar amounts varies significantly across states. Third, non-rational selling behavior, which has the effect of equalizing token
supply across time intervals leads to a deterioration in the performance of the quantity instrument. However, in general, the token
system is robust (in welfare terms) with respect to selling behavior in the market. Fourth, when the token supply can be adapted
from day-to-day, the quantity instrument is superior in all scenarios where selling behavior is rational. Finally, when toll revenues in
the price instrument are equally redistributed (typically difficult to implement in practice) and tokens (in the quantity instrument)
are equally distributed, tolling in tokens is marginally more equitable in scenarios where congestion effects are more severe. These
findings make a potential case for quantity control.

Several points are however noteworthy. First, income effects and second-order effects on the use of toll revenues are not
considered. Second, transaction costs associated with the trading of credits, the process of finding a buyer or seller, negotiating
a price, etc. are ignored. These are likely to affect the overall welfare of the quantity control system (see Nie (2012)). However, as
noted by Brands et al. (2020), transaction costs may be minimized through suitable market designs. For instance, they make use
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costs compared to designs that include consumer to consumer trading (and over existing designs such as Dutch and English auctions,
sealed-bid auctions and Vickrey auction markets). Third, the public acceptability of tradable credits is not necessarily guaranteed
and will depend on the initial allocation of credits and the extent of volatility in the credit market.

There are several avenues of further research including the use of more realistic network and congestion models (for example,
he morning commute problem with 𝛼−𝛽−𝛾 preferences (Lamotte and Geroliminis, 2021) and general networks), the consideration
f both departure time and route/mode choice, joint modeling of the travel and selling decision, and the inclusion of income effects
nd transaction costs. Further, the model can be extended to allow for users to buy tokens and resell them later if they change their
ravel decision, a market feature that is clearly desirable.
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ppendix A. Existence, uniqueness and convergence of price adjustment schemes

Recall that the market and network equilibrium conditions for the quantity control system (deterministic case in Section 3) can
e written as,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋𝑖 =
𝑁
∑

𝑛=1

exp[𝑉 𝑛(𝑇𝑖,𝜽𝒏)]
∑

𝑗 exp[𝑉 𝑛(𝑇𝑗 ,𝜽𝒏)]
, 𝑖 = 1… 𝐼,

𝑋𝑖
(

𝛿𝑖 −𝑀
)

= 𝑄𝑖

⎛

⎜

⎜

⎝

∑

𝑗∈𝐼⧵𝐼

𝑋𝑗
(

𝑀 − 𝛿𝑗
)

+𝑋0𝑀
⎞

⎟

⎟

⎠

,∀𝑖 ∈ ̃,
(28)

where 𝑋𝑖 ∈ , =
(

𝑿 ∶
∑

𝑖=0…𝐼 𝑋𝑖 = 𝑁 ;𝑋𝑖 ≥ 0, 𝑖 = 0… 𝐼
)

; 𝑄𝑖 is given by Eq. (9). Define 𝒑̃ = (𝑝𝑖, 𝑖 ∈ ̃) and 𝐗 = (𝑋0, 𝑋1,… , 𝑋𝐼 ). We
wish to show that there exists a solution (𝑿, 𝒑̃) to the above equilibrium conditions (note that 𝑝𝑖 = 0,∀𝑖 ∉ ̃). We denote the demand
and supply of tokens in interval 𝑖 ∈ ̃, as 𝐷𝑖 and 𝑆𝑖 respectively. Thus, 𝐷𝑖 = 𝑋𝑖

(

𝛿𝑖 −𝑀
)

, and 𝑆𝑖 = 𝑄𝑖

(

∑

𝑗∈𝐼⧵𝐼 𝑋𝑗
(

𝑀 − 𝛿𝑗
)

+𝑋0𝑀
)

.
Note that 𝒑̃ > 0, since we have assumed that ∑𝑖=1...𝐼 𝑋̄𝑖𝛿𝑖 > 𝑀𝑁 , where 𝑋̄𝑖 (𝑖 = 0… 𝐼) denotes the equilibrium flows in the absence
of tolls (see Remark 3.1 in Ye and Yang (2013)).

From the definition of ℎ(.) in the price adjustment mechanism in Eq. (17), at equilibrium, we have ℎ(𝐷𝑖 − 𝑆𝑖) = 0,∀𝑖 ∈
̃ ⟺ 𝐷𝑖 = 𝑆𝑖,∀𝑖 ∈ ̃. From Lemma A.1 in Ye and Yang (2013), (𝑿, 𝒑̃) solves ℎ(𝐷𝑖 − 𝑆𝑖) = 0,∀𝑖 ∈ ̃ if and only if it solves
𝑝𝑖 = [𝑝𝑖 + 𝜌.(𝐷𝑖 − 𝑆𝑖)]+,∀𝑖 ∈ ̃, where [𝑥]+ = max[𝑥, 0] and 𝜌 > 0. Thus, the market and network equilibrium conditions in Eq. (28)
are equivalent to the following fixed-point problem:

⎧

⎪

⎨

⎪

⎩

𝑋𝑖 =
𝑁
∑

𝑛=1

exp[𝑉 𝑛(𝑇𝑖,𝜽𝒏)]
∑

𝑗 exp[𝑉 𝑛(𝑇𝑗 ,𝜽𝒏)]
, 𝑖 = 1… 𝐼,

𝑝𝑖 = [𝑝𝑖 + 𝜌.(𝐷𝑖 − 𝑆𝑖)]+,∀𝑖 ∈ ̃.
(29)

Along the lines of Ye and Yang (2013), we can demonstrate that the fixed-point problem in Eq. (29) has a solution by invoking
he Brouwer–Kakutani fixed-point theorem.

First, note that [.]+ is continuous. Since 𝑡𝑖(𝑋𝑖) are continuous functions of 𝑋𝑖 for 𝑖 = 1… 𝐼 , the right hand side of the first set
f equations in (29) are continuous functions of (𝑿, 𝒑̃). Further observe that the set of demand feasible flows  forms a closed and

convex set. Thus, it suffices to show that there exists closed and convex sets 𝛺𝑝𝑖 ,∀𝑖 ∈ ̃ such that for all 𝑝𝑖 ∈ 𝛺𝑝𝑖 , [𝑝𝑖+𝜌.(𝐷𝑖−𝑆𝑖)]+ ∈
𝛺𝑝𝑖 . Observe also that since we have a toll free alternative 𝑇0,

lim
𝒑̃→∞

∑

𝐷𝑖 → 0, (30)
21
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we do not require a lower bound on the token allocation to guarantee solution existence (as is necessary in Ye and Yang (2013)).
Denote 𝑍𝑖(𝑿, 𝒑̃) = 𝐷𝑖−𝑆𝑖, 𝑖 ∈ ̃. For some 𝑿̂ ∈  (denote this set as −), if 𝑍𝑖(𝑿̂, 𝒑̃) ≤ 0,∀𝒑̃ > 0, then [𝑝𝑖+𝜌.(𝐷𝑖−𝑆𝑖)]+ ≤ 𝑝𝑖,∀𝒑̃ > 0.

Next consider 𝑿̂ ∈  ⧵ − for which 𝑍𝑖(𝑿̂, 𝒑̃) > 0 for some 𝒑̃ > 0. For convenience, we expand 𝒑̃ as 𝒑̃ = (𝑝𝑖, 𝒑̃∗), where
𝒑̃∗ = (𝑝𝑗 , 𝑗 ≠ 𝑖, 𝑗 ∈ ̃). Clearly, from Eq. (30) (and given that 𝐷𝑖 − 𝑆𝑖 is strictly decreasing in 𝑝𝑖), there exists some 𝑝̄𝑖 > 0, such that

𝑖(𝑿̂, (𝑝𝑖, 𝒑̃∗)) ≤ 0,∀ 𝑝𝑖 ≥ 𝑝̄𝑖, and thus, [𝑝𝑖 + 𝜌.𝑍𝑖(𝑿̂, (𝑝𝑖, 𝒑̃∗))]+ ≤ 𝑝𝑖,∀ 𝑝𝑖 > 𝑝̄𝑖. Thus, if we define, 𝑝+𝑖 = max𝑝𝑖≤𝑝̄𝑖 [𝑝𝑖 + 𝜌.𝑍𝑖(𝑿̂, (𝑝𝑖, 𝒑̃∗))]+,
hen ∀ 𝑝𝑖 ∈ [0, 𝑝+𝑖 ], [𝑝𝑖 + 𝜌.𝑍𝑖(𝑿̂, (𝑝𝑖, 𝒑̃∗))]+ ≤ 𝑝+𝑖 . Hence, ∀ 𝑝𝑖 ∈ 𝛺𝑝𝑖 ≜ [0,max𝑿̂∈⧵− ,𝒑̃∗>𝟎 𝑝

+
𝑖 ],∀ 𝑖 ∈ ̃, and 𝑿 ∈ , [𝑝𝑖 + 𝜌.𝑍𝑖(𝑿, 𝒑̃)]+ ∈

𝛺𝑝𝑖 ,∀ 𝑖 ∈ ̃.
Thus, from the above, for intervals 𝑖1, 𝑖2...𝑖∣̃∣ ∈ ̃,  × 𝛺𝑝𝑖1

×⋯𝛺𝑝𝑖∣̃∣
is a compact and convex set, implying that there exists a

solution to the fixed-point problem in Eq. (29). This completes the proof.
Demonstrating solution uniqueness analytically is less straightforward and hence, we examine it numerically using six arbitrarily

chosen example test instances (COV of 𝜇𝑛 = 0.2, 𝜇̄ = 1.5, 𝑁 = {1550, 1700}, 𝛽 = {3, 4, 6}). 𝛿𝑖, 𝑖 = 1… 𝐼 and 𝑀 are chosen arbitrarily.
For simplicity, we use the deterministic model in Section 3. We first consider the price adjustment mechanism in Eq. (17), where
ℎ(𝐷𝑖 − 𝑆𝑖) is defined as ℎ(𝐷𝑖 − 𝑆𝑖) = 0.01(𝐷𝑖 − 𝑆𝑖), if 𝑝𝑖 > 0;ℎ(𝐷𝑖 − 𝑆𝑖) = [0.01(𝐷𝑖 − 𝑆𝑖)]+, if 𝑝𝑖 = 0. The evolution of the token price
for the three intervals 𝑇1, 𝑇2, 𝑇3 is shown for four different sets of initial prices (randomly chosen) for each of the six example test
nstances in Fig. 9. As can be seen, in all scenarios the prices converge to the same values for the three intervals, and all the market
learing conditions are satisfied for these prices. The equilibrium flows were also found to converge to the same values for all four
nitial sets of prices in all six scenarios.

Next, we examine convergence of the second price adjustment scheme (Eq. (18)) in Fig. 10. Note that here the price update
ule is used within a interval halving scheme wherein the size of interval 𝛥𝑝 is halved if there is a price increase followed by a

price decrease in successive iterations (or vice versa). Once again, we observe that in all six scenarios, the four different initial
prices converge to the same unique prices for all three intervals, and these are identical to the prices obtained under the first price
adjustment scheme. In a similar manner, the price adjustment schemes were verified to converge in all 324 test scenarios.

Appendix B. Proof of Proposition 1

Proof. Let 𝛺𝑝
(

𝝉∗
)

and 𝛺𝑞
(

𝜹∗,𝒑∗
)

denote the optimum welfare attained by the price and quantity instruments respectively, where
∗ is the optimum vector of tolls (assume 𝝉∗ > 𝟎 without loss of generality), 𝜹∗ is a vector of optimum number of tokens required for

each time interval, and 𝒑∗ is the vector of market clearing prices. Note that for simplicity (w.l.o.g), we do not adopt the normalization
of 𝛿𝑖 = 1 and instead assume that 𝑀 is fixed arbitrarily, and the regulator optimizes 𝜹. Further, let the optimum flows obtained
under the price instrument be denoted by 𝑿𝒑 = (𝑋𝑝

𝑖 , 𝑖 = 0… 𝐼). We wish to show that 𝛺𝑝
(

𝝉∗
)

= 𝛺𝑞
(

𝜹∗,𝒑∗
)

.
Since 𝝉∗ is the optimum toll vector, we have

𝛺
(

𝝉∗
)

> 𝛺 (𝝉) ∀𝝉 ≠ 𝝉∗. (31)

First, assume that 𝒑∗ is given exogenously. Clearly, if we set 𝛿∗𝑖 = 𝜏∗𝑖 ∕𝑝
∗
𝑖 , 𝑖 = 1… 𝐼 , the flows under the quantity instrument satisfy

𝑿𝒒(𝜹∗,𝒑∗) = 𝑿𝒑, and hence, 𝛺𝑞
(

𝜹∗,𝒑∗
)

= 𝛺𝑝
(

𝝉∗
)

. The prices 𝑝∗ can be determined from the market clearing conditions in Eq. (14),
which imply that (note that since 𝝉∗ > 𝟎, it must be the case that 𝛿𝑖 > 𝑀, 𝑖 = 1… 𝐼 and hence, 𝒑∗ > 𝟎),

𝑄𝑖𝑋
𝑝
0𝑀 = 𝑋𝑝

𝑖
(

𝛿𝑖 −𝑀
)

,∀𝑖 ∈ 𝐼. (32)

Substituting 𝛿∗𝑖 = 𝜏∗𝑖 ∕𝑝
∗
𝑖 , 𝑖 = 1… 𝐼 , we obtain the market clearing prices,

𝑝∗𝑖 =
𝜏∗𝑖

𝑀

(

1 +
𝑄𝑖𝑋

𝑝
0

𝑋𝑝
𝑖

) ,∀𝑖 ∈ 𝐼. (33)

Note that 𝑀 can be set arbitrarily; the prices will adjust accordingly. Thus, to summarize, by setting 𝛿∗𝑖 = 𝜏∗𝑖 ∕𝑝
∗
𝑖 , 𝑖 = 1… 𝐼 , where

𝑝∗𝑖 is given by Eq. (33), we have 𝛺𝑞
(

𝜹∗,𝒑∗
)

= 𝛺𝑝
(

𝝉∗
)

.
Now, assume that there exists 𝜹 = 𝜹′ and 𝒑 = 𝒑̃ such that 𝛺𝑞

(

𝜹′, 𝒑̃
)

> 𝛺𝑝
(

𝝉∗
)

. Then, setting 𝜏′𝑖 = 𝑝̃𝑖𝛿′𝑖 (𝑖 = 1… 𝐼), we have
𝑝
(

𝝉 ′
)

> 𝛺𝑝
(

𝝉∗
)

. This contradicts Eq. (31) and hence, the result follows. ■

ppendix C. Note on Conjecture 1

The intuition for Conjecture 1 is as follows. The case 𝜇̄ = 0 corresponds to a deterministic selling model. In this case, there is
erfect competition between the players (users) so that all prices have to be the same, since otherwise an arbitrage opportunity
ould exist. Thus, no token will be sold in a given interval if its price is lower than that in another interval (with an active market,

.e., a period where tokens are bought or sold). On the other hand, all users would be willing to sell their tokens if the price in a
eriod were higher than the price in any other interval. As a consequence all prices are the same on any active period. 𝜇̄ = 0 would
ive rise to strong reaction as soon as a price is infinitesimally larger or smaller than the others and for this reason we introduce a
mooth price adjustment mechanism. Introducing the Logit model to guarantee the existence of an equilibrium is a well accepted
ethodology in several fields, especially in economics (see Anderson et al. (1992)).
22
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Fig. 9. Convergence of price adjustment scheme (Eq. (17)).
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Fig. 10. Convergence of price adjustment scheme (Eq. (18)).

Appendix D. Glossary

Notation
Symbol Description
𝐵𝑛
𝑖 Alternative specific benefit for individual 𝑛 in time interval 𝑇𝑖 (𝑖 = 0… 𝐼)

𝐶𝑖 Capacity in time interval 𝑇𝑖 (𝑖 = 1… 𝐼)
𝐷𝑖 Demand for tokens in time interval 𝑇𝑖, 𝑖 ∈ ̃
 Set of time intervals (𝑇𝑖, 𝑖 = 0… 𝐼)
̃ Subset of time intervals 𝑇𝑖 where 𝛿𝑖 > 𝑀
𝑀 Token endowment per traveler
24
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B

C

C

C

D

d
d
d
d
D

D

D

F
G

G
H
H
J
K
K
K
L
L
L

𝑀𝑠𝑘 Token endowment per traveler on day 𝑠𝑘 (𝑘 = 1, 2)
𝑁 Number of travelers
𝑝𝑖 Token market price in time interval 𝑇𝑖 (𝑖 = 1… 𝐼)
𝑝̃𝑖 Perceived token market price for time interval 𝑇𝑖 (𝑖 = 1… 𝐼)
𝑝𝑠𝑘𝑖 Token market price in time interval 𝑇𝑖 (𝑖 = 1… 𝐼) on day 𝑠𝑘 (𝑘 = 1, 2)
𝑄𝑖 Probability of selling in time interval 𝑇𝑖, 𝑖 ∈ ̃
𝑠𝑘 State of nature or day (𝑘 = 1, 2)
𝑆𝑖 Supply of tokens in time interval 𝑇𝑖, 𝑖 ∈ ̃
𝑡𝐹𝐹
𝑖 Free flow travel time in interval 𝑇𝑖 (𝑖 = 1… 𝐼)
𝑡𝑖 Congested travel time in interval 𝑇𝑖 (𝑖 = 1… 𝐼)
𝑇𝑖 Time interval 𝑖 (𝑖 = 0… 𝐼)
𝑈𝑛(𝑇𝑖) Utility of time interval 𝑖 for individual 𝑛
𝑉 𝑛(𝑇𝑖) Systematic utility of time interval 𝑖 for individual 𝑛
𝑉 𝑛
𝑠𝑘(𝑇

𝑠𝑘
𝑖 ) Systematic utility of time interval 𝑖 on day 𝑠𝑘 for individual 𝑛

𝑋𝑖 Flow in time interval 𝑇𝑖 (𝑖 = 1… 𝐼)
𝑋𝑠𝑘

𝑖 Flow in time interval 𝑇𝑖 (𝑖 = 1… 𝐼) on day 𝑠𝑘 (𝑘 = 1, 2)
𝛼𝑛 Value of time of individual 𝑛
𝛼𝑖 BPR function parameter for interval 𝑇𝑖 (𝑖 = 1… 𝐼)
𝛽𝑖 BPR function parameter for interval 𝑇𝑖 (𝑖 = 1… 𝐼)
𝛿𝑖 Toll in tokens for time interval 𝑇𝑖 (𝑖 = 1… 𝐼)
𝜖𝑖 Error term in utility for time interval 𝑇𝑖
𝜇𝑛 Scale parameter of individual 𝑛 (mobility decision)
𝜇̄ Scale parameter of selling model
𝛺𝑃 Optimum welfare of price instrument
𝛺𝑄 Optimum welfare of quantity instrument
𝜏𝑖 Toll in dollars for time interval 𝑇𝑖 (𝑖 = 1… 𝐼)
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