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Abstract
In the first chapter, an analysis is made of the long

time behavior of the spectral cumulants in a conservative
system of random, weakly non-linear, c¢ravity waves, The
system of equations describing this hehavior is found to
be clesed., Tn particular it is found that, to the first
closure, the spectral energy is transferred by means of a
resonance mechanism, The second chanter deals with a con
servative svstem of random, weakly non-linear, surface
tension waves on which a forcing mechanism is anplied,
finally in the third chapter, the energy transfer in the
local snectral neighborhood of a travellino wave is dis-
cussed,
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Note:
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pgs. 159 - 318. As the total thesis will be bound

together by the library at some later date, thls page

will serve as an explanation for the temporary division

wand will not be numbered with the rest of the thesis.
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CITAPTER

introduction,

It is well known that a transfer of energy occurs

&gt;etween different wave components in a nonlinear system

'n the case of fully developed turbulence, the exnres-

sion for the energy transfer contains third order cunu-

lants, This leads to a closure difficulty, for the

rate of change of the third order spectral cumulant is

tiven in terms of (nurth order spectral cumulants, and

. . - ;SO on, In order to obtain a finite closure for the

system of equations describing the rates of change of

the spectral cumulants, it is necessary to adopt some

assumption, One such assumntion is that of lieisenbery

"or the case of isotronic turbulence in which the energy

transfer terms are renlaced by an expression containine

only energy densities, Another such assumntion is the

fuasi Gaussian hynothesis, which assumes that the fourth

order snectral cumulant is zero.

In the following work a weak™ ncnlinear conserva-

tive system of random waves is considered. The model

chosen is that of ocean waves includine both surface

tension and gravity forces, Unlike the case of fully

leveloped turbulence, it is found that, without anv

assumptions as to the nature of the statistical distribu-

tions, the system of ecuations describing the longs time

hehavior of the spectral cunulants is closed, A nhysical

internoretation for the mechanism for cnergy transfer can

11so be oiven,



“» a paper in the Journal of Fluid lechanics T

DM Phillips suggested a mechanism by which weakly inter-

acting gravity waves could exchange energy. lle showed

that this was a resonance mechanism which can be repre-

sented as follows, If (ki, W(F:) ) , 1=1,2,3,4; are

the wave number vectors an: corresnonding frequencies of

four discrete gravity waves and if when K, +ka +k, = k

for some choice of the sign parameters, + (i(k) + w(x’

 +t (ky) = +0 (k) , then it is possible for energy to be

transferred between these four wave components, This is

due to the nonlinear terms of the equation describing the

system, as a linear system would allow the four waves to

travel independently, The time scale associated with this

anergy exchange is of the order of ¢* , where &amp; is the

small parameter describing the relative magnitude of the

nonlinear terms, Phillins examined the initial growth of

a wave produced by this mechanism, Bennev [ | ] develonec

equations describing the long time sharing of energy pro-

cess between four such waves,

In [ + ], Hasselmann examined the spectral energy

transfer between random gravity waves, in which the velocity

notential and the function describing the surface elevation

vere homogeneous random quantities over the ocean surface.

Using a perturbation technique and assuming that the statis-

tical distribution of the random quantities was Gaussian,

ne obtained an expression for the spectral energy transfer,



The expression clearly demonstrated that the mechanism

for energy transfer was identical to that suggested by

Phillips. However the time scale on which the spectral

energy was exchanged for the random problem was found tc
-u

he of the order £&amp;

Jsing a model equation, Benney and Saffman [ 2

showed that in the case when triad resonances are possible

the Gaussian assumption was not necessary as long as the

zeroth order term in the asymptotic expansion of the high-

er cumulants remained continuous, and that a closure, at

the ge time scale, for the spectral energy was indeed

nossible, Triad resonances occur when the corresponding

frequencies of three wave numbers kK, kK. , and kK, which

are related by k +k, = K, , obey the relation

rik) +0) = +w((k) , for some choice of the sign

narameters, Benney and SQffman then conjectured that in

the case of gravity waves, their analysis, if continued,

vould lead to the same result Hasselmann obtained; namely,

that the equation describing the transfer of spectral

energy would not contain any spectral cumulants other than

2nergy densities and would therefore be closed,

It was in order to examine such a conjecture that the

following analysis was undertaken. At first, the analysis

included the effects of the surface tension and so, as

shown by Phillips [ ¥ ], it is possible that certain fre-

quency triads (for example, *u(k,) +uw(k,) +w(k,)



could vanish somewhere in the spectrum, A perturbation

scheme is adopted and a multiple time scale device in-

serted in order to keep the asymptotic expansions for each

of the spectral cumulants well ordered in time, It is to

he emphasized that the ordering procedure must take place

in physical space, It is found that there are two distinct

types of terms in the asymptotic expansions, The first
. - © »

type begins with the order ¢§ terms, and each term in

this series carries as a factor an exponential with an

imaginary exponent (the sum of frequencies). These terms

describe the first oscillation of the spectral cumulants

arising from the linear balance in the governing equations

for the system,

fowever, there are also ferms in the spectral cumu-

lants higher than the second, which are at least of order

€ and which have the property that thev can eliminate the

fast oscillation and thus give rise to a type of quasi

steady behavior for the corresponding cumulant in phvsical

space, This means, if one looks at the long time hehavior

of the physical cumulants higher than the second, that one

vould find that the quasi steady terms remain; whereas the

Riemann Lebesgue lemma shows that terms of the first tvpe

tend to zero, This implies that an initially Gaussian

state does not remain Gaussian to all orders in E + Tt is

found that these terms, described as quasi steady terms,

never appear in a secular manner.



The first "t" growth secularities arise when one

investigates the second order ( 0s) components of

the asymptotic expansions for the spectral cumulants,

[n the case of the spectral energy, secular terms arise

because of triad resonances.

In taking the long time limit for the order

component of the second order spectral cumulant (which

represents the spectral energy) it is assumed that the

zeroth order term in the perturbation expansion for the

fourth order smectral cumulant is continuous, However,

this can be shown a posteriori to be a consistent assumn-

tion. For when one removes the secular terms from the

long time behavior of the g’ component in the perturba-

tion expansion for the fourth order spectral cumulant,

1sing the fact that the zeroth order terms in the pertur-

bation expansions for the spectral cumulants are slowly

¢
rd

varving functions of time, it is found that the zeroth

order term for the fourth order spectral cumulant does in

fact change continuously in time, This requires the

assumption that the zeroth order terms in higher order

spectral cumulants were continuous, However it can be

shown that the assumption that the zeroth order term in

the perturbation exnmansions for any of the snectral cumu-

lants is continuous is also consistent.

Thus keeping the asymptotic expansions for the

spectral cumulants well ordered in time to order ¢



sives a system of equations describing the rates ot

change of the zeroth order terms in the asymptotic ex-

pansions for these spectral cumulants, with respect to

the time scale ¢t , In particular, it is found that,

Lf one neglects surface tension effects (thereby elimi:

nating the possibility of frequency triads being zero

anywhere in the spectrum), the zeroth order component

of the spectral energy remains constant in time and that

111 of the other zeroth order spectral cumulants hehave
. z .

in an oscillatory manner on the ¢t time scale,

[n order to find the effects of gravity wave re-

sonances on the behavior of the cumulants, the analysis

is continued to the &amp;'t time scale, neglecting surface

tension. !lowever on account of the first closure of the
ES

system at the &amp;t time scale, a modified approach is

necessary in order to avoid spurious higher closures,

This modification will be more fully explained in the

analysis but in essence, it involves choosing free terms

which can be inserted as arbitrary functions when one

integrates with respect to the fast time t , in order tc

ensure that all of the components in the asymptotic ex-

pansions except the first term tend to zero as the fast

time t tends to infinity, However, as will be explained

later, it is not necessary, nor indeed possible, to sup-

press the quasi steady terms. It is then possible to con-

tinue the analysis to the £ t time scale, where it is



found that in order to suppress secularities, the rate

of change of the zeroth order spectral energy has to

be chosen, This gives an integro-differential eauation

identical to that obtained by Hasselmann, It is fairly

clear to see at this stage, that the rates of change of

the zeroth order comnonents of the other smectral cumu-

lants will be given bv eaqnations similar to those de-

reloned at the ¢°0C time scale.

One concludes therefore, that
.

Pr.

1 i3 nossible to

reach a first closure for the spectral energy indepen-

dently of the statistical nature of the svstem., Whether

this would be true for a second closure for the spectral

energy 1s open to conjecture, For examnle, if one con-

tinued the problem from the eC time scale, still per-

nitting resonant triads to occur, could one in fact,

reach a rvaotem of closed equations at the et time

scale? It is nossible that when triad resonances exist

that the enercy could tend to hecome localized in the

spectrum before the ¢*( time scale. One micht then

expect some sort of sidetand mechanism which Brooke

Benjamin proposed and which is examined in Chapter 17}

of this thesis, to become effective along with the re-

sonant quartets, In fact, there are terms which in the

present analysis are zero, which arise as derivatives of

the spectral cumulants across surfaces given bv a fre-

quencv triad being zero, and these mav be the manifesta-

tion of the sidebend mechanism entering the statistical



rroblem, The author and Dr. Benney intend to examine

this possibility in a later paper.



“quations of Motion,

The equation of motion for an inviscid incompressible

Fluid free from vorticity is

V0 = o,

shere  (Q(x,y,z,t) is the

Youndary conditions are

r2locitv potential, The

00 I
0%

\ constant, is the equation of the rigid

hot tom,

3 q 4 - 5 Su (1064) EN =2g Say
dt p (1#S+ € J"

ve|® *

 ETE .

SL Te. VE - “3
Ye dz

€ (xu, bt),

x (Oy, oly

(x,y,t) is the equation prescribing the elevation

of the surface above some ecuilibrium level, z = 0

Fquation (2) is the condition on the normal velocity at

the rieid horizontal bottom. Equation (3) is Bernoulli's

squation (including the effects of surface tension)

applied at the free surface £ = €(xy,t).



tquation (4) expresses the kinematic condition that a

Fluid element at the interface remains there,

One considers waves of small, but not infinitesimal

amplitude, by setting

p= cy

&gt;
\

=

being a measur~ nf the wave slope.

Substituting (2) into equations (1), (2), (3) and

‘4 and expanding the boundarv conditions at the sur-

face around the equilibrium position, z = i one

ybtains

J

J} at +=-fe

V, + - 3 + + 11 Ye 2 + 3t 99 P [Du Nyy )

7 30 Wea + ) (Wa tc + by Wye REY Ye |

2 neo 3
: To 1 + Ny Nx = Ly Ty - 2 7 1 " Moc I

Hy) Hoe) = 0,



lp=W+ + ow - :( Nu + hy ly Tae) 1 ¢ [1% Wea

5 #, Wey &gt; Fae, ) + Ole?) = 0. |b

y

he expansions are taken up to O(g*) only, as

the higher order coefficients are not required for

the final result,

The linear equation (6) together with thz2 boundary

~ondition (7) allow solutions of the form

Ly, 2,ty —-

) (uy, t)

. Coshlk](2+R)(RF~
) B(Rt) ——— dR (1°

- % Cosh IRI RA

.- SiRF

| Ale) ¢ dk y

and J are spatially random quantities,

their transforms B(F,t) and ACK, t) must be regarded

as generalized functions of Kk . The generalized func-

tion approach will be used as it is easier to manipulate

than the Fourier-St inteoral,

Substituting (10) and (11) into (7) and (9) using

‘he Fourier Convolution theorem one obtains



3 ¥ q A + 2 [nA Fy E J IE font EIR A(R) BR.)

(IRAIR enh IRI fanh [Ri] - AISLE §(k +k,-R) hk dk,

: I 2I&amp;l A(R) A(R) Be(Rs) t |, | Fonh IR [1%] *- Ra: Ry |

A(R) BK) R(R,) — 2 &gt; La ar rELT) R(ks) 2 ) (ix Re). (Rox Ry) = 3 HR Res Rs

A(R) ALR) A(R) | S(RotRosBy-R)dRdai.db,+0(e})=o, (12

A - kl Tenk (R18 B + €) (IRIs RR) RE) BE)

Ski h-R) dRdR + ¢’ I” [ky|Fan ffs] A

2 1l + Ry) AG) AG) by) 6 (Rv+By)dR

Of).

lo eliminate B, from under the integrals in equation

12), one solves for B. bv successive apnroximations.

v
JL

*2
30 TB, + £ 28



n setting

Akt) = 2
a" (awl
re) oY

A _ — YR A A, itt

3k t) 2 VR) ere) el
0

WR) = Rlkahikje (q+ 21R0

fk) = Gt = IR"

ne can then write equations (12) and (_7) as
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np ge vo ~ . = % eddy a a
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1

owing notations have heen used

4 KinRy
- IN)
N Le

1 LY |

Rk h Vv, Va
a . x a

Milo, 7. Dy

= J a

Ahoy F K =a
] Khoo - 3 9 R. Rr n3 !
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P being the cyclic permutation over 1, 2. and .

v2 ~

. RvR) FA vou (I=Ro8)on lai] FE CEE
NR | (wl | Bh 2 Ly 233J

vt(RIG) gq 08 Re fod Belk
Ty dd;
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Hon 5 : | = (1k) + Roky) + 2 [IR] Ref)

25 A NN 7 23
Gi TM nN —- I © H rR h, Ry| RR, ky 3

ie To 1 R, + kk |Jo iN 1 Dus ELE ho, ) + hw, = | 3
' Ri Re fy 2

Ww, = Ww LR) J Vi = Vo RU

fultiplying equation (12) by 4 and adding and sub-

racting this to equation (13) one obtains

0, (Rt) &lt; . So
a r &lt;

J- W

RD 44 , : (Si + = + Sew

{ Go Gr €Re, -- kt TT

Choi R) hee dR (00

vhere

Pe -
hk,- fi vy

3%i \\ b

Equation (W+) is the governi-z equation of the system and

vould seem to be typical for all conservative systems of

veakly coupled waves,

There are certain properties of the

vhich will be needed later in the work,

2

Lon
These are,

44



(1) {ron |od“ 1s symmetric to any interchange

hetween the numbers (1l,,.r). It is clear that this

can be accomplished as shown in the construction of

the first two terms and from the form of equation (24)

a dy
» - A &gt; - . -

(11) SW rx oe 1s a purely imaginary auantity (the

ki being real). This can be seen by insnection.

%
“« oo 9 92 ~~") -) = ~-- =) ~9 = ——--

GD A et =fR R, - R, “R=h, -- fh, “R -k,
-

 gq

To prove this one notes that since nN (r,t) is real
” xo

A(R, t) = A (~R.E)

vhich implies

CRE) = G(R). 1 q

“rom the govern ne equation (14), since t is real

CL (-R, £) - &lt;

. xX

® - x x
= J [ 3 3), *), 3

\ { Go * = a.
1 “Rh +h, = Yh, 3

mT ~
cy

¢

U(Swrbrtw,FSW)Eey ~
C(Kot + hy t i) diy chk,

3 ISettin ~ ~

2 Ry - Rk:

hand side of the above

1 tro richt

equation and using eauation (15)

ne obtains

(RE) = =

2 *

oa - -3y *" &lt;= Jy 1
- ‘

c S L G. -- GC
®-k, —k

Hh” dv —

LS vw, “ee ' oe = SW) E

SB +. +k-R dk, -- dk,



Comparing this result with equation (14) one sees that
 °”%

aa, oO po -- =,{. R, ’ R “0-H.- -h.

oN "Te

But Ln oon * &lt;n imaginary quantity, and so

{ ov 7
Rk,

\

£ -J, -* ~ a
-h “hh, ~

rN » ‘b.,

. ~ 22,

(iv) SR) Li...
This notation wil?! ™

k

“&gt;nlained in the following proof:

Since all mean values are zero

&lt;n- = 0

AlRe)? = O

This implies

Therefore

Che)? =n

EN(Rs) ~

S—

for all time,

“rom equation (!)

~

al 2k)7 Ky

-

4

ro.
— r-| ¥% = LN

Ses Linn oon elo Go
r Nd

"a

Si + ct Sew, ey + thy -k) lk,--clky

Also the mean value of r Tourier components can be

decomposed into cumulant transforms of the form

offHg ar 7 =
. - Jae=o3p

S(Rt- +k, | Div: boa] !

and since SR + - hy) Skt “+R, -R) = S(k) § Lk, + hy),

 tt is found that
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Statistics.

The primary interest in the following analysis is

the behavior in time of the statistical proverties of

the wave motion. One assumes that \U (x,y,z,t) and

1 (x,y,t) are random functions of the spatial variables

and y with spatial homogeneity, No further assump-

tion is made as to the nature of the statistical distri-

butions, All that is required is a knowledge that the

cumulants are initially smooth,

Spatial homogeneity implies that the mean value

(ensemble average) of &lt;n (1) N (T+)? is a function of
s only. The cumulants formed from these mean values

have the necessary behavior at infinity to permit Fourier

transforms, To be quite general let us suppose
0) G) .

+= R #0, PR being a function of t only,

&lt; nw) n(F) J = R (7-¢, E ) + RE) RCE) ‘

[n general &lt;9, SR has many possible decompositions:

for example 2x (r-2) 3 2X 3X (r-5) ; etc, The number

»f terms in anv particular decomposition

&gt; \ o Xn Dy

Cp, EPIC, (F-h-)) Gp, ab) Cp, (bm bs) Cp,
b's

IY



where bp; is the size of the decomposition and of

is the number of particular decompositions of this size

which occur, For example if the mean value of the ran-

dom quantity is zero (namely the order one cumulant) the

nossible decompositions of the mean value of six quantities

1Te

There 1s &lt;r
{- member ‘nn *-&gt;x J 1

class; there are

} . C

6G: 88 = 15 members in the (2X7) class; bo36
i i '

6C, ul, 2G10 members in the (3X3) &lt;class; and

members in the (2x2 X2) &lt;class.

The relation

ALY)s NF n(F+¥)&gt; = R )

imnlies that

ot

\.

Ww"

| i it RF riky-S
304) BR.) &gt; = Lt | &lt; (¥) $17 p + .  —or . 1 Nl J chr oS

- * then

CAR) AE)? = aa [ 6). ilRek).S tikopex) J hp) a8 df,

0 2 _ (Rb .[® (eR)a R(E) up |" of



AE) AE) = SEER) [TE 05 | R(F) ¢ Pay,

CER) ORE)

Therefore

GURY 6Joa (R(rh)? = Sk rkRIANA k,

yhe I" Q

DE ¢) © &lt;
(2) 4, 9, { (Soot Sew,)E

QO (r,t) ?
Nv ~~

R.=-k,

LO, = (Ry) = w (kr) =

N(k,t) is an ordinary function of both kK and

The corresponding spectral cumulant of R(F,,T., Pp,
tl , ~ |

is Q(k---k._.. ) and

bo 2)Y(Rov othe) OR Res

5 n= or

Sharh) 2 QE Ra)
Je
Es + Sewer) C



The Energy Density,

The energy in a parallelepiped of unit cross section

extending from the bottom of the ocean to the free sur-

face is composed of three parts,

(a) The kinetic energy, the ensemble average of

which, over the horizontal spatial variables

« and y , 1s denoted by E,: .

re

\ The potential energy, the ensemble average of

xhich, over the horizontal spatial variables

x and vy , is denoted by F pot. .

and (c) The work done on the fluid by the restoring

action of the surface tension at the surface,

The ensemble average of this quantitv over the

horizontal spatial variables x and vy ir

denoted by E.

— i

(a) Fes © 2 | ep! L

vhere V is the volume ¢© the parallelepiped described

above, and dt is the elemental volume dxdvdz

r -

—-K.e
o vo vo) A AT

a

L
y

\ FG Vga dS,
]

Since No FO



being the surface circumscribing the above described

volume, n being the unit outward normal to this sur-

face and dS being an elemental area on this surface.

Since ®@ pa is independent of x and vy the only

contributions come from the bottom and the ton. At the

hottom

Jo.n = ©

\t tH ton surface

J
SN

n ri
-@,, “9

1egeg
Hy
| I+ Cf

OA

| (eG ec

ot

|

Noting that dS = B : Cy dA , where dA is the

nrojection of the nerturbed surface onto the horizontal

equilibrium surface z = 0 , one finds the average energy

jer unit area is

LoS. = Lpet un,
“(RvR )-F o yr

~ re &lt;BR) Ale)? © clh, dh,
2 -&amp;

vy ~ Ng . 2%
| _ { VE IR font [Ra]RhTv, 3 7
PE 2 [ es &lt; GC, Ga /

NI -0 Ud, dW,

SiR ER) EF (Swrsiwn)€
0

0(g?) shafionam 1 Aan
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| 2 e 2 - 9.Es | 2f on Jog
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} Eper |
rl _

J Pq 2 ch

tog 5 Cans Funl |

Lpqin’
ob -t (R, thy J. rv (Soot Sw) t s

2 0 ol

— os @) %0, ists.) wb ~

PIE Z| Pee) &amp; dk
NI), JA

(c) Energy due to surface tension. The energy gained

oy the fluid as the surface tension force S acts on the

stretched area (da)' , with (da) as the elemental area

of the unstretched surface,

ve S| ea) ee
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The spectral cumulant OO (Rr) is thus a measure of the

spectral energy in the svstem,



fethod of Approach.1t———————a——

The governing equation for the system of nonlinear

aves

ww
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Tne Siw * esp -sw) bE
. Spe— \ r 9, 7 ~ : - 5 _
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vhere the a’ (k,t) are generalized functions of

If ) (x,y,t) were non-random and possessed a continuous

Fourier decomposition then a’(k,t) would renresent the

amplitude of a wave with wave number k and with wave

speed
IR]

The portr'rbation expansion

Wik) = Gl(R.E) + eGi(F SNan(RE) t

ls applied, Substituting this into the governing equa-

tion and equating powers of §£ one obtains expressions

For a’ (k) , a, (k) , etc, Trom these quantities the

rerturbation exnansions for the mean values are obtained
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and the perturbation expansions for the spectral cumu-

lants are obtained in turn from the perturbed mean values,
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Pid is a permutation operator on [---v g2iving all

the possible terms, a typical one being { f . For

example,
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Che long time behavior of Q, (Xk, Keet ) , (m 2 1), ir

examined with reference to the resulting behavior it

gives to the corresponding cumulant in physical space.

In most cases this will be equivalent to finding the
ry,

long time behavior for 0 NE kK... ) which will then

be denoted by 6 (X, - k,. ) and substituted into the

sxpression

(r) 5 o

R (b, oT bro)
oS (r) 3- - dr -(R,b, = =lky py

V (R,, kh, ., e
mM

0

p (Siwy tw + - +Sowr) bEClk,++h) db--dlky

() No dy "

However if any 0 wm (Ki k,., ) should contain functions

vith arguments which are not independent of (w.+- + wp)€

then the asymptotics must be applied to the total function
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fhe latter tyne terms do not belong to the same ordering

nrocedure as the former and give rise to a quasi steady

hehavior in the physical cumulant, (See Avmendix TIT,0

ff any "t'" growths or secular behaviors, shoul’

cccur in the asvmntotic e=2onsions - device will he used

to remove the troublesome terms ¢ +--+ t+hY= remaining

terms form a well ordered asymnt

cal snace for all time, This dev ce will consist of

~~n~i~n in phvsi

introducing time scales.

l= C, T= eC 7,

ind allowing
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NN tec b function ~€ these longer

vith this multiple t me s: Ting nrocedure,

the operator 2 1s replaced by 2 $i pa gt A +
PEREEYE ae MT Ey 3,

vhere T, has been renlaced by t f~~ convenience, An

secularities occurring will he removed * choosing the
(rl QT. == or

long time behavior of QO (, = Reet, T,, To - y - Tn the

nresent problem it wi'l be shown that to the order to

vhich we are interested only the time scales T, and T

ire reouired.
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will be denoted by Nw). On account ot the laborious

and lengthy nature of the manipulations the following

notational contractions have been adopted.
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Qs, Will be taken to mean the zeroth order term in the
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serturbation expansion for a (k,) . Gj will signify
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the 1 order term in the perturbation exnansion for G&amp;G (%;)



Analysis,

The order one halance ot the governing equation (4;

Y ve S

dao (Rt, 1,
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Therefore one has

PIR khGo(R) = Co (ks T, 1,
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MTlauation (/6) implies that 0. (Ri, = ®eey,) is a

(16

function

&gt;f the longer time scales only,

The order § balance in the governing equation (14
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vhich mav be written
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ne is interested in the long time behavior of the order

¢ spectral cumulants formed from the rerturbation ex-

pansion applied to the '"generalized'" amplitudes, In

order to find the long time behavior of the O(e)

comnonent of the second order cumulants one examines
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represents the Cauchy principal value of the

integral, This can be written
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d(w) being the Dirac delta function. For a detailed

rroof, see Appendix ll , page 15% , Schematically there-

“ore.
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and is therefore of order one. To obtain this result
3, dim

the assumption as to the smooth behavior of Oto ha|

nas been made. This assumption will he shown to be

consistent in the following analysis, It is then =

matter of uniqueness, Namely if one finds a consistent

continuous solution for the initial value problem with

vell behaved initial values, then one can say that the

consistent solution which is reached, is in fact, the

solution,

“Xxamining the order I.
| component of the third

&gt;rder cumulant, one has
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Again the fourth order cumulant term is an order one

term in long time; the term §&amp; (ke +k.) § (ko +k;)
(V9 3pm &amp;\v 7,9 .
Ole), (kh, vanishes by reason of the mean value

nroperty: namely (k +k.) reacts with § (ke +kp-k, ;

to give §(k,) . The third term is in fact the in-

teresting one, for here the above limiting nrocess does not

apply. Integrating over k, and Xk, one finds the con-
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for times t 27 1 but less than that time scale on which

Qn) (the energy) changes, One finds on SSanination of
the remaining spectral cumulants that no L, (Ror hoy)

axhibits either a secular term or a guasi steady term.

Therefore there is no need for a T, time scale in the

problem, If the system had a non-zero mean then the spec-

tral cumulants would exhibit a dependence on the T..

time scale, as has been shown by Renney.



The §&amp; balance,

\t this stage the order ¢ components of the

spectral cumulants are examined, Anticipating time

crowths one introduces the time scales
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The general mean value expression exnanded with the

rrescribed perturbation vields
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Lemma,

To find the behavior in time of the spectral
ir MN ~-- Jy

cumulant WR ke) the following lemmas are used.
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lhe only way a '"t'" growth can occur is when
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The last term gives zero as (ka+k,) reacts with

S (Kk, +k, -K,) to give §(k.) , and therefore vanishes

by reason of the zero mean value property, On account

of symmetry in n and p one may write the exnression
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Since Ve We + Mmm dW, is never zero identically

the only possible "t'" growth occurs when
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[he secondorder cumulant,

One first examines the long time behavior of the

second order cumulant
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From the properties of the R, { hn h, ky.

nreviously mentioned, the principal nart terms cancel
3 ~- 34 .

each other when one adds F ' and F._, . This corres-
1

ponds to the fact that modal interactions between nonre-

sonant waves change only the nhase and not the amplitude

&gt;f the waves. Thus one obtains the result,
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This result was obtained by Benney and Saffman

&amp; |. However if triad resonances are forbidden, (sup-

nose one is looking at gravity waves onlv and neglecting

surface tension), then it is clear that
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The long time behavior of

Using the lemmas (a) and (b), one can show that the

2limination of secular terms from O, (8) Ger) leads

to the following long time, (T,), behavior of Oe
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In order to obtain this result. some further notations
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1, 7 % dm, Ime Am,je Gua Coz" Com, Come, Gom, fH

|
~. JGoGar flarefi

vhere the curlv brackets stand for the cumulants formed

from the mean values, It will, first of all, be shown

hat

G C nN 72 % eM _ }
t ! Cu Cy Gon CT Goon § = C

vhere GG stands for the "t" growth of the quantityt

} { in long time. For example, if one considers the case

then rr = 3 , one obtains

CoS lcn tnd = (hata) 5 GO Gary, fom femme (6

~

 wn LO C
 a



Next one considers the case when ye

Ju § Gut Gus Gos Cou§ Ge &lt; Gt Qn Gos + /

on &lt;Cu Cor7 Con Gon 7

Go &lt;Gaas 7S Gin Coa

Go &lt; Cot Cow 7€ Cn Gog 7

dne knows Gg Le, Coos 7 = 0 since &lt;a Cor 7 v O(1)

Therefore using lemma (bh) on the first two terms.

Coy crat cst Cont 2 SRR) Sh Gh &lt; Gor God

ay = r* b .

y Reh) §-3, Gp, Ll; Coy -

ha

,et 1t be assumed that

GA eesCau Coir Cosoy

Tm
Com z QO, m =? (r-1) . =(c!

Then consider

Ge &lt; Ga Ca Gos  ely s Gjararad Gor



6, 2 |G re Gon] fl f-

be$jee famaf

The last term on the right hand side is zero since

Gy 3 Co Cl - - Com = 0. From hvpothesis (c), there is

only one set of terms coming from the second nart on the

right hand side which can contribute, and this is

) Cl oort X Gny decomposition of {ler + Gar

Since using the hypothesis.

Ce ) Co Coun Cor Tr Com )  Mm 73 0,

Therefore one has

Gy | Con Con Cos cc Gor { = Ge { Cu Cor Gos Tr Coos J

Co &lt;Q al7SGot~~ Gor

Slike) $5, GF &lt;Cot Gor/

SiRovk,) §o G, (Cot Gor

 /

3vy induction, this result is true for all



Therefore for ons obtains that

r) 9,- c Je

G, S(R, +-- + Ry) OG “+ ky,

G, @ fc. Coe="Coon Co PG } GG Gon or |

G, ® | &lt; Cay Con or Cer

5 " Tm Tm 4

{Ca Gor" Gom 7 \ &amp;o ma,

&lt; Qo) -
dT,

Lov

. 5 ~ dy

: Cot ~- Gov / [Freee Fr,

3 xX LI Yeas
S | 37, (Gor Gon | {Gome

© &lt;i amv Gon
~3 S,
Ye. A

Eloy, -- ay

Shot fork Fr) I 20,
dT,

tl 9, -- 23

(8. oe [fF Co £¥)Fe

(r) 2m- dr
'n order that G, (), (K,-- 6 | =  Ww



ne has

r\ A” - o
Sorta rc ko) Q LS - Ww | 5, _ Ay

_ - () (k, -- oe) li NE Fon ho, |
— 0

dT, |

&gt; -

 ew

[f triad resonances are possiblc fe,g., one is examining

the hich frequency part of the snectrum where surface

tension nlavs a major role) then ecuations (20) and (22°

ocive a clesurc for the system of snectral cumulants,

Note tha“ denends only on the enerov,

Towever, if there are no triad resonances, then

the energy is independent of the time scale T, and

squation (21) may be integrated to give

ula. &gt; (r) —_—
()(K,- - = () (&amp;.,- ko) |G Jue + ora | [

(t is tc be stressed, however, that this equation i:

only valid for that portion of the time scale where T,

is finite, "hen there are no triad resonances, only the

. . - .o 5 .

rrincinal part tyne terms remain in Te and it may be
~ - o S . . -

seen by inspection that Fe is pure imacinary., There-

fore all the snectral cumulants, in this case, excepting

the energy, oscillate on a time scale 7

in reality 1s nroducing a modified freauency

\ Al

I

— dl + t A
L

and is analogous to the Stokes frequency modulation ob-

~ained in a discrete analysis when no enercy transfer

1as taken place.



The ¢° balance,

[f one wishes to look at the resonant mechanism

developed by the gravity wave spectrum, one must con-

tinue the analysis to the ct stage, Tt will be as-

sumed in the following analysis that triads such as

© du +2,43,Ws) cannot vanish for any part of the

snectrunm,

The = balance of t.e governing equation gives

2 de] 3 X — \

1, (R) = -C 37 + by +0 + &lt; jd
1 |=

[he quantities on the right hand side are as follows,

{

— i 2 2 2 ” ” 2 |

g * 32% yy NG rE [iio 1230 khJy, = &gt; | , ks y G G ) chk el
N--dy -D

i

~~

&gt; s

3

} S | { URI N Mu Jya oh 0 Nh " 1.) P'S Raq ky R. Ry, he Gor Coy Coon Gung
i “Niasio Sus.)

Ws,
~ oo LhLYN chh,

cl,
_ = 2% ? R J, ?

[ y % Nn?Ls RR. ky Len L. »] . . . Gos a wie 7,Ot 7 40s

Nise. - AT —Dise,o No . os
. . -_ Sse Cee Yao Qh, db,
Wie "Ws

LCI - /
-

2% 7? J 9 3 7 2. 2 I 2i INN v3 y IF Yb ” N
Cos Gog Coy Got,: J fa fe Lona, Corl osmY, -oQ 3} ,

/ { Duse,o - Lao _ Desieo - bof 50,1 Gea dia cll dh
( Ws, 3 igs, Wie,

; &lt; 1% 2, ph URI , , Jesels - { &lt; [1 { heap? Dos, - 0,0 ~ ~
2-4), a Rh kh, Rh; he he (og Cos Go, Gov — o $305. $2.5 clk,---clby

iW,



Cxamination of the &amp; components of the spectral

~umulants shows that there is no need for the Ty; time

scale, llowever at a first examination, this is not clear.

In fact, as will be shown, cuite the reverse seems to be

the case, But on closer examination and using an example

to illustrate the point, it is found that a modified an-

proach is necessary in order to continue the problem at

this stage, From the modification, it will then be clear

that the T. scale is, in fact, unnecessary.

nea fi st e 1 |ne fir xamines the second order cumulant 0 ( :)
: 3 J

Shek) o (r)| oo ouPCa cl + P&lt; 0G. /

vhere

P {lay = {ia + GR) ew?

Since Sibor FSiwn + S303 + Saw, — SW

oo! ot ;

identically, P &lt; G,. 8,7 ~ 01) for long time, One now

examines

7’ ot bh) 9 2 ob! oa
\ Ceo Cs + Co Gye 7 = 3 F SS £2 Nh Kh fy oN dy Oy yon ‘Fr&gt;, _ R Ry Ry Ry k, Ry hy {Go Qo, Gog Goo, Gor /

L Nd -oh

Nizevo - Oizo

| Wes,

Sus Siig clk,---Clhg

The fifth order mean value decomposes into nroducts of

second by third order spectral cumulants., The notation



convention used, 1s that 002 Siu stands for the

break

Lo s _ _ GQ) 4' @) 1g du

S(Re 6) §(Rythy+Re)Q(rR)(J(heyna).

The array of cumulants into which the above mean value

Jecomnoses 1s

0)
Yo'y 834s 80's Sans

(2)

So, Sass
dj

Do's 8234

(3) ©) “)
323 Sous day So's 5 825 do's

) () (w)
33, Sos 35 Sora

¢)
Sus Sota3

Symmetry in (2,2) and (4,5) means that the behavior

rf some terms is the same as that for others, The only

terms which can give "t" growths are S, and S; . This

occurs because in these decompositions, it is possible

that DW +2, + wy — du is identically zero, Then

the time "t" dependent term in ¢ Qatk') G(R) + Colk) cs (#') 7

takes on the form Bip)-Als),(RE)+ 7) + 0(1).
z

—

as shown in Appendix 1} page 2%% . Tf m is a triad, and

*therefore does not vanish anvwhere in the snectrum,

Np) -00)- iT

— o + 001). Therefore, one obtains that
Vo

t ~ 3) = S$ ul ~ YY
(1)4' 00 AD aaa Mk 0) (or 1356.2 ell. dhe clh| (ksk,) — ROE\S,~ GE Sos (lk) bs I. due, “a et hy Yo Wey



ind

~ so’ © 29 0,-7 Uy * 15 PEEL 18s¢,0 ~ v

, v jt Soa P &lt; | on Ry -k 0) eth 3 Lin,he MEAN or els dy.
» “4.2 - Te -3 Wg o

The next term is

: ov’ = 22,2 173 I 7.97 26

ave? = 08) Lan LamCC , Ch + Go dy! ) hh lk, k. ky hy k. he hy
i="), - od

3 7 r Weao | 4
i 7 Ne 6

\ Lt Gos Coote Gor Got / D D0 Neos { cl’

d1, 856.) 812.0 OR, -- clk

The time '"'t" dependent term of this exnression is
+

Wiel . .

A... Ae, 0 at which is a term of the type

IN Alw) Alv) o Mat and can only exhibit a "t'" growth when
0

2sither (1) v= “A or (2) w= ak Tt is seen from
" wir k {pr bAppendix [| that { Nw) O(-p) ¢ ab = { Nw) A) dt

. ~ - 6 0

v tos + ot). This is so as «I and J , being triads

cannot vanish anywhere in the spectrum, The decomposition

of the above mean value denoted hy So's Suse , Sou S35¢

can allow W = "Me . The decompositions So's $3u¢ and

dot ius allow case (1) where V=-m

1s comnlete svmmetry between (3 4) and (5 3;

Ge { Co Jy + Gs oly 7
‘ Gl, do =?&amp; NW nse yr.

oo! iq! _ Ce [ 0 (fy, Re |1 hy AK hk, he hy VoFl [nn
N21 —R

i Si2,0 F8S6 cli, cli hy dhe .

Wi2.0 Wre2



TK stands for the coefficient of t in the long time

hehavior of The term

eo 2 9 7 oo’ _ =\ o's + Co Wp 7 = L { Pe { "hh {. 23 Jy [, dr
N--o JoR Robby Roky Ru ky ke hy

F ¢

\ n" &gt; I ) Nise, ie Nn Who!(Co GorCoon Qos Cog 7 [ 3 'p okt

S50, du, $s elk, ST chy

Fhe time dependent term of thi: evnression, which is of

he
F — 0 ivl

form | Aes§ — Ale) ¢ of can onlv exhibit =
2 Ho - a)

't" growth when Au =-v . Whereupon the above quantity

behaves in long time in a manner shown schematically,

Ot _ A -v i ’
Aw) - 0 ooh ~~ TT —— A C(4)

5 (lw+v) w+ Vv Vv

The quantities Wtv . V¥ are triads and cannot vanish

anywhere in the spectrum,

The triad

); Wy + Iw Wy, — J wy = — (qo, + 2a m0

only on the decompositions So' S15:

vhen one makes J,-= 13 and Jy=-2

and J =-dy, 3327) in the latter,

and Sa §o'seCi

in the former

This gives two
« 7

t'"" growth terms, the former being



00 u 17’ A » 790 Nn o-2 ~0 av) $1
1 \ Lv IV i de 7

Nhe, -Q

-

50,1 Hans Clk, hy Chg dh,
Weel Wao

and the latter is

J.

Ly P fos
19 NV =-0 G1 5-5

 Lien {ott A (+)
~

4 Se oi
Wha,0

YY,

Mor 5), 7% 2 $50.0 op dh,
(fs ke | - y

J R re hy © !
Jee VY -oh Ws,o

ne now considers the term

CC 3 Us 1 62sdj /
IY 5

- 20% |
Nh-")¢

Wh ni iM 7¢Coon Goz God, Cot

1202, { CT aLone h. h. h. Io.

Boris,o Nise Sess Sino ell cli
Wags,

[t 13 shown in the appendix that a ''t" denendent term of

the type Bp) — Bf) and since neither V¥: 7 —_— ~J Ot) ’ ~ 1 CLS0

pampo)
nor Wi, can be identically zero tihicre are no further

nossibilities of '"t" growths,

The next term one considers is

Iv)

oo q 2 dv I J 3 3 2 2 5
"9, 2 .

P &gt; {x { Ch {Cui Coy Geos lio Gos= R'R, ka % h Ry Ru Ry
hy” 0

! y =" clbyNic A, 8345.0 $12.0 dr,

CG, 0,CEC6 APA



Secular "t" growths can only occur when

Wis Bs + 2% Wa + delle wd3 -—

 rt

that is, on the decompositions denoted hy 31, Sas

in which we set dy = — and Ys = 3 Se Say and

bus S123 + From symmetry in (1,2) and (3,4,5) one

phtains the same result for each term. Hence one has

~ oo a ov 4 aa 2-2 Blo

J. &lt; Uy 2. + C, bor J ~ 3 &amp;¥ Soc 2 | Lr R R. -h 0 (R,) dk,
&gt;, - Lt t

\

G T

Nk \ Rk
ec)

. . ke

| bst,0 lhe clk,
Wi

3y similar reasoning,

Ge Gn C2 + alCh
&amp;

00 2 X=" ov

Xi ov 2 | Lone, Le R ~-h hoe cli,thk,
NI I ' : Wie

30 Ge)Fo SH
SE

| | {i ks keA -
» ia

Osu’ dk,
Wsi 6

o —y Ql
. i3efore adding all these terms to find G § (Rk!) 0, (RY,

some notational definitions are introduced,



One defines

cs YY Dams

| 2) n= &gt; { 7 ’\ { &gt;= J } S00 olk—_— {3 — + 4 5. | hh, tz, RiR-k, Wiz, 0

od

~ 4

et

Ow - tm GI,

®)cS
\ =

Fan @,
Thr Ry = ky Q, Ce) cAk, |

“hat is, the order one term in the long time behavior of

Oo); 2! which is(k)
2 &lt; = 2 pA ~ @) 2 L ( 1 a

P&lt; } Ls en (koh) 20 di otk,
N90, ~- A) Wi, 0

‘ne uses the fact that N,, ™
12,0 Wiz,o

vhen Jw, +%hw,. -JdwW does not vanish anvwhere in the

spectrum, One also defines

» OD mn 0 72." ~The hk, &lt;k (Ra) dk,

\dding terms ") and (') gives

oc’ (©) —_— &amp; \ 3), 1S, 00 LY ~

t P § E&gt; &gt; | { I Ou 5 (oto ore Ak, dh,
k N22 -A Rk Ra ot Th We, o!



\dding terms (2) and (5) gives

oo © _ *, 2 5, 7 (3) 1, 2,

(FS Fo 2 | Leer (O), (kb
MI) Yeo te

)
J

\dding these two latter terms one

do op an,
Wz, 0

cotains

t Sos Dk (F} t Fol
Adding terms (1), (3), and } ® one obtains

00’ @l 4 4)

=f 8oo" () (Rr) | ”

@)44 tl
£ Soo 0, (r) Fo = pt |

[Therefore one has that

x) | qd, ~
&gt; D0 (ry ha Og eg Gla [el bi

Ni - -t = FEO (Fria) +E QE[E HEL
 u(t]

[n particular when - ‘

2} 3-2
U(x) = 0+),

i¢
S1NnCe F h n

dT;
(i

Sn

i

“rom the provnerties of the coefficients {en k

[t would seem therefore that one requires a T,

scale in order to suppress "t'" growth secularities. Nne



vould then obtain

NER AE30, (n) hw)
ST,oO Tx

vhere

| 3-1) 0-0 2) 53. 3 (31 5, Se *3 ) o -

0 (k} i ¥ &lt; Lr Ry Os (R. R,) [81,0 eR, cd, .
[ARR \Wi20

'n general, therefore one obtains a closure at the T.

time scale, which is an infinite closure as in general

) R Walt de

— = [0
OTA

JTowever it mav hz noted, that initially at

0) - 3!

1M R (+) 5, =~ Ir

QO. (7-Rn0

chen a consistent scai.tion at the T, time scale would

(+) I ~~ Ir

0), ( k, i” © Reo) )

©) ay
20, ( &amp; cr Ryo )

QT,
Since in particular

3) 4 ?% =Yo (re. 0.)
DT

2 4-5
AQ, (n=

3Ta
[n fact, continuing the analysis on the assumption that

|

the system was initially Caussian leads to the result

obtained by Hasselman. This is rather curious for it



indicates that the energy transfer mechanism is radically

lifferent depending on whether the initial distribution

is Gaussian or not, It therefore seems that the term
~

2070 |
= might be in some sense 2 spurious 222

The argument could be used that, since O @) con-

tains integrals of the zeroth order spectral cumulants of

the third order which have been shown to oscillate on the

scale, the term -g*C RIC hv the Riemann Lebesgue

lemma can be at most Og x , . 4} = 0g),

and therefore does not affect the arder one term of the

asymptotic expansion, However, the objection raised to

rhis line of reasoning is that the form c¢~ the solution

4 1" mde r) No or

0) ie i ES ON USER | Ext ot

[Flo vw Fy 2)

.s onlv valid in ranges of finite T,, as can be demon-

strated by the example of the equation,

[ &gt;
.-

ov + os (1-0)

The first closure c¢ this equation at the T.- time scale

is indeed of an oscillatory nature, however this solution

loes not persist to times o(e?) .

The correct resolution of the snurious term is the

Fact that it is being produced by allowing free waves to

occur in the solutions for all the perturbation terms in

*he original solution. This approach does not maximize the

information which one can extract from a multiple time



scaling analysis, This wi” be demonstrated by considera-

tion of the following examnle,

Consider the problem

Fa
~

Let us treat this two ways, The first approach will be

 ¢
-

Fo exnand

and let

1
€ . &gt;

The second will

he tO set

and set

yi SCs G2

ES

Q Lye

be=
Go

“hereby obt=2ining an equation for Co , which is

: — 1S &lt;&lt; ”
ALT = be G'G

? 3. 5.

3} ne then expands

~

 nN
A

2

Co© A C =

-

4

((s.+s.-s)E

'¢ one follows the first approach Equation (25)

recomes

» _ 3"
= +e = Ll — oF LN HEN TERK\ at” at dT, ‘ dT; I ‘ J

/ 2 J -Ve + + £5, + € Ng ) fxs + Au? 3. 2k, +E (Doky +5,



he order one balance gives

3-
Theretfora  =

The order £&amp; balsas~

dX,
_— + XY
yr

i ~

Co e' 1: c

- gives

0, mat
JCold + Co + Co

he general solution of this problem is

“i * “is » i 2 1. t ( et 2k

Comte sare Ler + (-ieoe -Lale

there the free wave components are included to satisfy

the initial conditions. However since there are only

wo initial conditions to be satisfied, namely X(o),

rel, the complex amplitude GG, would be sufficient
0 satisfy these, so G&amp;G, 1is not really required, How-

ever 1f one were to treat the problem by the second ap-

proach one obtains as the governing equation

&gt; GG1S c S
2 212.TW

-

7

Q($0* Sh -5) t

\pplvying the perturbation

nS 3
Y = Coo t+ av

in this equation and equating powers of £ , one obtains

upon integration that

~ A 5, —~Ay - CO (Ta).
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ne can see therefore that if one treats the proh-

lem in the second approach that the free waves are

included in the order § solution. One now continues

“he problem with the first annroach keeping the free

yave terms,

Le
Go £ + Lee

°

-

“F
se =

AW

Nu
p - . sit

- ail 4 uf &lt;

Loaf : Lee + {CoC

"he Ole? balancz from equation (25) gives

2
\ of

) Xe + Xe, |
ot dT,
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To remove secularities, one

ACeo
3,

L
] oh.

wo Co -
»
-

Y

ch roses

CoC.

"Therefore

3Co p= = Sl Co Cs
oT, 3

"hen, integrating the rem~ining terms, one has

-

CC ut . _* nk

Lye = 2 Got © taal

ne =
. ~ / 3 cE / vd

tort Cla.) + 25,27 BE

"he € balance gives

i al. + ] X 3
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To remove secularities in X3 , one sunnresses all

. (€ iE .
coefficients of e and e bv setting

i hn Shey eco [Goes FEC Nil
IN dT, h

Ceo Co G,

, Ye LU kx —_

'L Coles Ce, : {re Cu -

[herefore, by rearranging, one has that

Go at, ’ v v J e ‘ ¥

\ — Lo - Li Co (CoC, + Go Co) t lt Go Go Gy = Iq Ceo Go CG,
IT, 37, 3

) oN GC :

dC, _ 5—_ —_ Los 0 ) y £ST (a Co t Go c.) - ! Colo Cy

Cxamining the zeroth order energy one obtains

Cola - — bh (Coll + Co »
AT DT

he right hand side is exactly of the
3 o )

Form of the MAY,

in the general nroblem, If one lets

a

a, ’
J ~ © de

Cs — Golo mG

1nd uses



0Co  _

3,

L ¥

~ CoG

me finds that

3 (Cot #CIC) A
&gt;T,

(t would seem therefore from the above equation !/

that the zeroth order energy does change, But one

knows that in this problem the energy is conserved,

Therefore in order to keep the zeroth order term in

the energy a meaningful quantity one must take &amp;, -

namely one must suppress all the free wave terms in the

solutions for the perturbed quantities and throw all

he initial conditions into ( .

Cssentially therefore one must use two devices for

finding the maximum information in the higher closures.

The first is to use the method of multiple time scales

(or some equivalent technique) to remove all t growth

secularities and the second is to add arbitrary functions

of the higher time scales to the solution of the higher

order perturbed quantity in order to sunpress free waves

In the general problem one must have as the solution of

du
Y-

_ S ha, 2, wo (Wielt * “0 ~

~ I. { nr, - Co Coy © Suz lh, db
ft 7

0, + «, (Rk, 7. )



This will mean tha 50) kSe ne 9p =e Jhat if one chooses o (Ry, oT br

J ly

to eliminate '"'t" growths, and the free terms to eliminate
. 7) Nh oT dr

the order one behavior of LR ok ) , thatJ r=

(en
ETRE Ir) ao
(i on) ; 9(ke-- Rr. ) + O ( e™) goss) -sfeaddy lems

The problem is now re-examined, this time adding in

arbitrary functions to the solution of the perturbed

amplitudes, The governing equation to the system was

)

A, 2 ¢" - Vr  bh.

Ad . ay C Winer £ o -

Ut $12 no clho-dhy,

’roceeding as before, onc has

ne ?
A = Ceo LR, {2 ,

lI| J

B ow { + « (R,T.)
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“ 15%
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"he order § balance zives
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and x, (k,7,) is the arh

this integration.

Clearly the results are precisely the same to the

f, time scale stage as the added ouantities do not pro-

duce any long time '"t" growth behavior, The effect of the

added terms are first felt at the T, time scale, The

-3
we
ha balance of the coverning eauation (14) is

IC. dC =a 703 Wn 7 nw nw th,
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Since one is primarily interested in the long time

behavior of the spectral energy, at this stage only
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One is interested in the long time behavior of
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These terms are now examined individually for their

possible secular growths, The first term considered is
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The first term is zero as 121 reaets with &amp;.3,.
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the result,
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he only terms which exhibit a secular behavior are
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It has been found that the long time behavior of the

spectral energy for any statistical distribution is ex-
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vector k can lose (gain) energy by itself interacting

vith two other wave vectors.
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lants change in a continuous fashion as given by equations
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\npendix ITT

The Ordering Procedure.
—————————————— 1) ”, a -Y

Tf one considers (kor) and looks for its lone

time behavior, one finds that one cannot do all of the

1symntotics in Tourier space,
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space, and in ceneral one cannot choose the cumulants

formed from the free terms in order to suppress this

sxnression, The resulting behavior in physical space
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cannot be used to suppress them, T% is shown that in fact
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Adding the secular contributions from these three "live"

terms one obtains
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as secular growths, and that the ordering procedure re-
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CHAPTER 11

Introduction,

Many efforts have heen made in recent years tc

explain the generation of surface waves on the sea by

a movement of air across the water, Jeffries [1925 °

pronosed a sheltering mechanism which took account of

the fact that if waves were already present on the ses

the pressure varies around the contour of the wave.

Miles [ 77 ] proposed that instabilities (caused by

Revnolds stress phase shifts) occurred because of vis-

cous lavers associated with the shear,

Tn 1957 Phillips [ 9 1, suggested the mechanism

of direct resonance as a possible way of exciting free

vaves, This nhenomenon is readily explained by the fact

that the freauency generated by taking the Fourier trans-

“orm of a convecting pressure distribution can he the

same, for a certain class of wave vectors x as the

freouencies exhibited by the free wave problem, TDPhillins

considered the excitation of these waves from an initiall»

tranauil sea and showed that the ensemble average of the

mean saquar- elevation grew linearly with time,

Here wi nresent a preliminarv analysis extending the

mechanism suggested bv Phillips to the state where nonlinear

terms in the inviscid model become imnortant., It has al-

rendv been shown in Chapter IT that these nonlinear terms



can introduce an internal resonance mechanism by which

energy density can be transferred between different wave

components,

The model used is that of random (spatially homo-

seneous) sea over which a random (and again, snatially

homogeneous) normal pressure distribution is moving with
~o

constant velocity U , The analvsis is carried to a

stage where a halance exists hetween the enercv heing fed

into the sea by the external pressure distribution and the

energy heing shared by different wave comnonents in the

sea due to the surface tension resonance mechanism, Taua-

tions are found which illustrate the wavy in which external

ennerev can be redistributed throuchout the snectrum by

means of the latter mechanism,



inalvsis.,

The equations describing the motion of an irrotational,

incomnressible fluid, over whose surface a convected random

nressure distribution is moving, are the same as those equa=

tions derived in Chapter T, with the exception of Bernoulli's

squation at the free surface, Thus,
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( Fr - Ut) is a spatially homogeneous random function

sver the surface of the sea.

ne sets
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in equations (I) and (4. . The external nressure term

has been taken to he 0(g*) as this choice provides a

rhysical balance of interest, Tf, in addition, one writes

In 1

A(R) = S Re) @ swt
\

- - Civ NF (swl t v

BR t) 2 ER CEH ve g+ IK]

and uses similar manipulations to those emploved in

“hapter 1, the following governing equation is obtained.
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cle?) A

[he coefficients L kt, n
7 2 2, 7y

{ kh he Re Ry are thean.

Same

’ FIL

as previously defined in Chapter I, and lo: Iv?

Before proceeding with the perturbation analvsis, some

relevant nroperties of the generalized function p(k) are

discussed, P( t-Ut ) is a spatially homogeneous random

function over the surface of the sea. One can therefore

show, in a similar manner as was used to show

- &gt;i - @) v - ~J ~ ~ —_

CAR) AWRY)Y = Srv) Q(R), that &lt; p(k) ptr) 7 = Sheth ) A(R)
vh y o oo 4 = I -(k-v yg

MTEC p(z) plier) y = €) A(R) ¢ dk
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Since P( k-Ut) is real, N(R) = a (-k)

Jowever, 1f one also considers

{
ny

(PE) PEAF)T = (PGS) P(STeF)Y 2 RET P(%) 2,

one sees that TR) = RR).

Equations (6) and (7) imply that RHR (k) is real, Tr
this arab len {of (0) will be taken to he zero.

Cne now introduces the perturbation expansion

OL ( | ) &gt; (R, ) O( } ) h, )  Ag

on a’ (k,t) into equation (5), and anticipating seculaz

hehavior, one uses the multiple time scale technique,

setting Te =t , T, =

The order one balance of tr Jk
 vs rovernineg eauation (5)

rives

A jr_ i

vhich imnlie-

oR) z Coo (R(T)

"he order ¢ balance gives

{ bi) N(RU-aw) + JA

(x,

Topo pen fof dRdheCo o { Ro (eo (2,0 ‘vhere {, SE Akron,
Ja —ch

As seen previously in Chapter I, there are no secular

terms arising from the long time behavior of 8, GoCo



As no "t" growths occur in the long time behavior (with
ow 3

asymptotics performed in physical space) of (RO se) {

}Ob(R) eee
scale,

The nrder

: dGo
A = -t&amp;

IT,

there is no need for a T, time

hal - Tz)
SNS
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dne now examines the long time bhehavior (with the

1svmptotics being performed in physical space, if neces-

sary) of the second order cumulant
1! 7" {

CGR) Gor) + GRY) G(R) + COR) Car
which renresents the Order ¢* component in the nrescribed

herturbation on the energy density, The only secular

yrowths come from the terms {- tel 3 = te 2 :
dT, 3

" 3! ~~ ov \

bre) ple) 7 Lp Lo DRU-s) NRG) [oyA

11dd C0) Qn) + ede) 6) 7a
Tne first considers the term

Lh {a NRG -w) NED +0) { blr) p(k) 7

ee) § LAE) DLE) Alu FO

This behaves in the lono time limit as

Wt AR) SRD rw) . Thus it is seen that secular

rrowths occur over a "discrete" continuum of wave vectors

, given bv the relation %U = + LD (K) . This class of

vave vectors 5 will be denoted bv K ,

rite the zeroth order energy of the sea as the sum of two

inteorals
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vhich can also he ~  t+ on

1S

 ACER CEREAL A (1?

w Ci ‘vin the zeroth order energy density, and not in

the zeroth order comnenents of the hisher snectral cumu-

lants, that this breakdown must be used,

ne now considers the term ¢ OAR) BIR

¢ "CorboyCoewk he ha Lp PRE {Go L Yo} 0

A [1 rein 1) ET Ff Wy Fio') foe clk, elt,

Ye ta » o 3 G) a 202 Ny

{ re. he { Rk! hy hu Cie heb Ry Fu) Vs (Korres)
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Sing ov s (2) NN @l % eg

dhehk)Shitv) Ok) ™
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; o ° o Q) a. ) (2) 7%CER) SE HR) OR) 0, (6) |



J

[hoo aay) No, +i wy + Sw') Siro 1.0 ok, th, Cig lk,

Since (), (Rh &amp;,) is a smooth function, the

yehavior in long time of the first term on the right hand

side is order one. The second term is identically zero b»

the mean value »nropertv, Tn the third term, it is seen
~/ ~

that after intecrating over k. and k, , secular growths

can only arise when 7,=-) ,

hecomes

~ &gt;, &gt; "mde =I Te else) —

tii) 3 | pe DLR) OCR)
rd, —oQ

Nsiotsie ~Sw) N(-sovii-tuon Few) Jia. 0
elk. eAky.

3efore any asvmptotics are nerformed, one must replace

ty.) 1) ,

Nia by Jw) +§(RE-w) p(k)
Te above py nvession then becomes the sum of three integrals

S 29 I - So- = 1 nn

L Sher’) = J Li or | v, (R) ¥ (&amp;,)
Ns tt Sed, ~ cu) (se —- Seon ro) Sine eAk, clk,
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202,
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I(f.0 - ew, ) $k 0 fos) N {sewn + fly -Sw) /LL -Sow “Slo Fe
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-— fy

Since Ls (k) 1is a smooth function, the asymptotics

mav be performed on the first integral, and one obtains

~ 0 44 a mYTuch op Wh EN 1 _

rt Elhek )% | Lenn Lennon Ful fin) Day Jiro clbielhs
on “ly

The asymptotics can also be performed on the second

"erm as there is one integration remaining when one inte-
~ 5 pr ~ -

srates over ki +k,-kXx = 0 , and k,U- nw = 0

yhtains that this term behaves in long time asx

Vy \ = 39, 9, “1-0 mh ht) Nh v

zt ((R+k 2 Bn, ett pte) 2, (ks) § (kG - nen) Sls itnwi-se
Chek -f) cr dhs



The asvmptotics cannot be performed on the third

term since S(R-0-nw), §(h-U-owy), S(k, +R, -R)
imply that the argument of the / function

Nor + Aor —IW becomes KO -

ne obtains therefore that the third term is

- o - Ss 205, 17 =

NOY, N(k0-re) N(-F0 tw) s[ Lenn Lonoke
202, ~

71-)b (k, ¢ i C0 w d ,” u wI) ) 0 (ko) Sk: 2 ) (kh. ~h .) favo dn db,¢ { L

fhe long time behavior of this term (the asymptotics being

lone in physical space) can be written

ot

iE Shik!) SRG Hw)
—

[
7 1.7, 2% —bh, Re La “a. ~h

2-7, ha), . “oo

b, (k.) P, Le.) $(h-0-5w) {8.0 we)
((h.+h -4 eth alks

\ similar analvsis on

CGR) CR) + Clk) (RY ro vields that

CCR) eR) + Gor) GRY 7,
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hus, one obtains
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‘quations (W) and (lt) can be readily interpreted

vith the aid of the following lemmas,

emma 1, IF k, LT {

and JW + tes 8
th 1

iA
roof, h,, ky, €K

AY) Id

Ri;v= nw, -
R. Vo Judy

Therefore (B+ ke). U = dw WAS

and thus
~ ~

Rw

Therefore k e

Lemma 2, 1f

*hen

\- and k +XLf J oT
1

IN

NW + Te We

Proof, R R., Rk. E yr —

R,-L = AW, 3 R,-LU = hw,

md -R.U0 = -&gt;w

\dding, one obtains

lo i1ce

(Ref -R 0

Yow; + ag”  ==

holly ) WJ Lom



Equation (13) represents the long time change of the
 N=) v

a 1 1snergy density Wb (e) , RR ¢

sents a feeding of energy to “- two other wave vectors

3 , k, when k , k, and k, form a resonant triad, Only

one of the wave vectors k, and k, can belong to K .

n

Ntherwise Lemma 1 would be violated. The second term on

the right hand side of equation (13) represents the loss
~

(cain) of energy density from the wave vector k , hy its

forming a resonant triad with two other wave vectors Kk,

and k, only one of which can belong to KX .

Fquation (Il4) represents the long time change of the

anersv density of a wave vector Ke K . The first term

renresents a feeding of energy from two other wave vectors

&lt; and kK, both bolonging to X , The second term re-

sresents a loss (gain) of energy from K bv its forming

a resonant triad with two wave vectors k, and K, neither

of which belongs to XK , The third term represents a loss

(gain) of energy due to k forming a resonant triad with

nN Sat « 7

wo wave vectors k, , k, each belonging to K . The

Fourth term represents the feeding of the wave components

relonging to X bv the external pressure distribution.

Tt is clear that a consistent solution of equations

(13) and (Iu) is J (x) =0 , if it was so initially,

Jowever this would provide a very unstable state as there

is no way that the wave comnonents k € K can lose energy

unless one included viscosity to damn out the energy fed

into the system by the external pressure distribution.



[t can also be seen from equation (I) that if no

internal resonance mechanism exists that the energy den-

sity would grow linearly with time which is consistent

vith the results Phillips obtained,



Conclusion,

It is stressed that the preceding analysis is onl

valid for the narticular model which was chosen, In a

more realistic treatment of air moving over water, Or

the effects of free stream turbulence on boundary laver

stability. the models would have t- include the effects

yf the vertical structure.



CHAPTER ITI

[he Sideband Mechanism,

Recently, it has been nointed out by Brooke-Benjamin

&lt;£
7 1 that energy can be interchanged in a weakly non-

linear system hetween a primary travelling wave, with

vave number k , and corresponding frequency I(k) , and

its neighborine wave components, with wave numbers Rt €

and corresponding frequencies W (kt€) , where &amp; is

the small parameter describing the relative magnitude of

the non-linear terms. The basic reason for this is that

the frequencies generated by the three wave components

ybey the relation

W(R +he) + W(R- Ae) - Jw(k) = Ole)

vhich is the order at which the non-linear terms first

affect the motion, Brooke-Benjamin found that the initial

crowth of the sidebands, in the case where their amplitudes

vere initially small, could be exponential,

'n the following analysis, this nhenomenon is examined

1sing a model equation. ne looks for a solution in the

form of a travelling wave whose amplitude is a slowly vary-

ing function of space and time, When this form of solution

1s substituted into the model equation, a fully non-linear

partial differential equation for the slowly varying amnli-

tude is obtained. It is clear therefore, that if one looks

For a solution of this equation in the form of a Fourier



series, that all harmonics will be generated and that their

amplitudes will be all of the same order after a short

neriod of time has elapsed.

However, one could nose the question that if one had

initially small sidebands, under what conditions would these

sidebands become unstable? Tt is found that it is indeed

possible for the energy in the sidebhands initially to grow

in an exponential fashion, Clearlv the exnonential growth

cannot exist for all time as the energy required for the

initial unstable growth must come from the nrinary wave.

I€ one assumes that the truncated Fourier series solution

‘see page 30{) is a good approximation for the slowly vary:

ing amnlitude, then one can see that it is nossible for

the energy in the sidebands to take on a neriodic structure

vhen it becomes comparable with the energy in the primary

A ave ea



\nalysis.
The following model equation is typical of a conser-

rative svstem of weakly non-linear dispersive waves,

Uee + Lote = - 7 (Wud),

vhere L., is an even differential operator in x

| Ro 1 ike
that Ly &amp; = wir) e

{

such

ne compensates for the fact that there are two length

scales in the problem by looking for a travelling wave

solution whose amplitude is a slowly varving function of

hoth x and € . Let

xt) - Cent) eet(xt) u(X, Tj 2 LU(X,T)e | J a)

vhere KX = pm¢, T= ml, M
i

Mme substitutes

the assumed form (XZ) into equation (1), and obtains the

"0llowing equation,

3lun [55% 5 Lo 3 x 27)3 Tr SX Ja —, = wd p [A du3 drt Adi |

Of pm) Lew V ( 3

vhere 3 1s now a constant depending on the wave number

of the primary and ow is the group velocity, which will

renceforth be denoted as Ww

IA = oe") , the first balance in the above equa-

10n (5) . occurs between the nondisnersive and nonlinear



“erms,

Ww Fw QV - 13 Vy
3 OX

3y a change of variables, ¥ ~ X-— WT and
-

ry

the above equation assumes the form.

 Vv&gt;Pp
dU

an
i

IN

"his has the solution, see Renney |

olen) = fig) ¢F Rl bb

f there were no nonlinear term, ,B=0¢ , then this

solution shows that the amplitude is a function of X-w'T7

only, Thus the locus of points at which the amplitude

ls constant moves with the group velocity, which locus

describes the envelope, The nonlinear term serves to

apply a Stokes type frequency modulation to the envelone

lowever the above solution is only valid for rances of
. o " 2 . . .

time in which ¢§ C is finite,

A more interesting balance occurs when

“or then the dispersive term is important,

sets
~

—

w= ole)

Tf one now

ind



»ne obtains the following fully nenlinear eauation.

dU — | x bo + in bru,
4 3%

“or convenience, one replaces fy«

X % 3 -

an

and obtains the equivalent equation

o ?
3 - ix ov Fp
at 3”

3\

Clearly a Tourier series approach in x would allow

all the harmonics to be generated to potentially the same

rrder, as the nonlinear term is now of order one. lowever

it is natural to first consider the stability of the non-

linear Stokes wave, One therefore looks for the hehavior

‘n time of a solution,

Jt) = Bele) + alt) eT eae) e v 0g).

The small narameter §€ 1s now the order of magnitude

describing the relative size of the harmonics and is unre-

lated to the § described previously, Substituting the

assumed form (9) into equation (8), one obtains the fol-

lowing eauations for a,(t) , a,(t) and a,(t)

2 + 2 + GQ t GGG Oe), fo)
{ © HAG Q fe (a G, CG Coo Go- \B s Up 1

alk

J el + 0I / to= Kk C, + in| as Cr + leott G, ) (¢°)
il

deo | Cig Ce, + IR [GGT + 2GoGe a.) + 0(e)
|



(t is important that the order £° term be retained i:

equation (10), as otherwise, to a first closure, the

energy in the mean would remain constant, This clearly

cannot he the case if one exnects a transfer of energy

to occur, Setting
£ Ye

| 08, ot0 = boe r)
| 0, iy

aquations (i), (nn) and (2 } become

Abo A eye A

t : dipe [45 4.4, + bob+to9.0. | (13 }

Abe [Abs - sh) bt A ds b.
Me

: ‘)¢ t (f ts4, :on L(plts-x4) ba
ne

vhere the higher order terms have now heen dropped. Multi
} X . .

lying ( 13) by #6, and taking the comnlex conjugate and

1dding, one obtains

16,0 2nd 4 68 448
UF

}



}y similar manipulations, it can be found

od 8.8,

SE

A 6,6,

2 FR NNEE NEN

3 btier - be 68),

(iF)

19,
AE

ol bo
JF

lige (ode 66. + 4(B84 XN 17

fultinlying (4) by b, and {~) bv b and adding.

Tives

dd. } ¥ 2

= 2 (pot vh’) bt ip bo (WI HGLD). le,
vhen one adds (17) and (1&amp;8). one obtains

. ¥ . t © ~ 04 6.)be, ' Babs 2p (4s b, by
Cae

[f one sets b, h, b,

1!

and bb, =W , equations (1), (2). (lt) and (20)

respectively become

Aw

Le

dy
Jb

—_— Lipe (ww + wy |

Lo, (uw=ww)

12

23



it. Lge [we ~uw")
ME

dw
"l : 2 (pa-vk)w FLpuy

“quations (21) and (2) imply that

 ly

25,

constant.

vhich means that the total energy is conserved. Since

quations

Y l= -F

*). (27) and ! “7)} become

qb
_ 20 [Ww Sy a)

iy hige(E-eyg)wvey)

14|

(7)

l I

At [ ple-ey) -xkT Jw Fy

vith a little manipulation on equations (.7), (2%) and

19), the following equations can be found.

Are - ued) Li (gE wh’ - 3pe'y) (Wwruw'] + digundy
 | +

{is e*(£-g) w®,



A (Ww + ww”,

-lb

2Ly
i

un”

ok

ww”
AE

3} -

di (pE-¥h"-3pey ) (We aw’. (31,

da (We - ww”)
/-
37 J

Lip e” (E-ey) (We - aw’)
£
3”

pe (ww-ue)
{

Bi

"rom equation (31),

f "Mo

LL - AA le oy
 dt1A

35)

substitutes equation (3%) in%s (33), one obtains

wn” co . ely

as -2e (E-&lt;y) yr
vhich integrates to give

TEAr ge T-lety Lu
&amp;

lince ur® = (bb,) =

Cc. = EB*, Therefore,

"ry
{ 1.

-

-r

LN 2

ACA = (E-ev )

a it is clear

\v

1

Lo



f one substitutes (13) into (3,), one obtains

hwoa

sb 1 ot

thich integrates t- give

since

ow = dy

12 L \ bh. . - equation (27) imnlies

37,

coe ava]hit. {. 0, - nt | + C

ff one calls hb. +
\ Eo os and

»,b, = E, , one sees that

 £

— FEe (8)
hb. = b bh. at 1 * ,. then

2G

Tf one now

substitutes (35) into (3) and integrates, ohe obtains

Ww Faw= a (pErrh” psy )y + Cy. 65]

Ine now substitutes (3), (.7) and (29) into equation

"3p), and obtains the equation

vhe

oly
YL

ra

ao b (048 )q + as” SOE bo

 (28°C, + bpetCG



will

/

-

\

ERE — ISparA

bp C. (pe-54")

/
 dQ CEe- 47)

ind

3y choosing CC. .C = 2 . the equation (40) becomes

K's L 2 4

ty + ey — 108eyY

vhere Vy is the energy in the sidebands,

A 1

There are two

~ases to consider,

Case (1), {&gt; 0 . This leads to an initial exponential

rrowth of the energy in the sidebands. If the truncated
. t AX -LhAX

series v = a, + a, e + a, e were a reasonable

approximation to the total solution one can see from the

sign of coefficient of y in equation (4), that a peri

ddic structure for the energy is reached after a time scale

¢ . However, it is clear when vy = o(¢*) that the

higher harmonies have already been generated and in some

way would have affected the system at this stage, In order

to properly describe the motion, one would require a solution

to the fully nonlinear initial value problem, In the next

section permanent envelope solutions are found which would

include all harmonics to potentially the same order. It is



nossible that the above solution, when one includes the

effects of all the harmonics could indeed tend to the

vermanent envelope solution if this were comnatible with

the initial conditions,

Case (2). f &lt; 0. In this case, the energy in the

sidebands stays the same order as it was initially, If

the energy in the sidebands was initially very small, then

the system would essentially be governed by the equation

Ae, .
— - i 2% s -

i" f3 Co Co , which simply shows that the primary

vave undergoes a Stokes frequency modulation. Ilowever if

the energy in the sidebands was initially of the same order

as the energy in the »nrimary, then there still is an energy

transfer mechanism, which also might lead to a permanent

snve lone solution,



&gt;ermanent Lnvelone Solution,

For a certain class of initial conditions, a permanent

rave solution of equation (Aq),

Yo 3 Yu ;

= = iy Wop
ot at

remember is noszible,

Let € = x - vt constant, and let v = Vv

(2|

{x

quation ( 42) becomes,

dU 3 "na

3 dF’
G2

 V

|, nt ln equation (43), which then

yccomes

Lo 4 CU Lo Ly J

2 vo
shere XX = — .

hx

aquation (44) and equating real and imaginary

obtains Co "
AFB + rb

i0(5)
Setting u = #(7) e 1

arts, One

(us)
3 \d

\-
Yr FO Fo ’ (let)

24

Squation (45) implies that

3 g ww wn Mowe 0

substituting equation (47) in (4() 3 one obtains the

7).

lifferential equation



»

[ ®,

fultiplying (43) *v - oo int2grating, one obtains

T
oo

1 (ud
-

v1

«-
—

i

Setting ~*~ v andl +? ~ne can draw the phase

ylane diagram, eiven by the equation,

2:So-wt ww B
lx
 Kk

JX

x
ad

J SN
- _ 0

 NM
an. Vv :

-

Fr
7%

yossible for the solution to exist for regions in the

(x,v nlane where x 7 0 and vy,&gt;v, . The different

hossibilities are shown in Figs. 1, 2, and 3, In Fie, 3,

ome has nerhaps the case of most interest, for it is when

 0 that the exnonential growth arises in they
—

)

yrevious harmonic analysis. One can see that there are

hermanent envelope solutions, (which in general are ellir

tic functions) which are neriodic., Tn Fig, 1

*he possibility of a solitary wave, when X= i

is chosen such that the curves Vv, and vy, share a com-

mon tangent, This occurs when the right hand side of equa-

Fion (50) has a double root, which implies (after some

nanirulation) that

’ 1 - 4 CL 3E r* =fo DER GroEo + LZ

[6 y*8"* 7 B



1B

hich can be written a:

) - Gl) - Ca ( «") t G » 0, a, , Co, Cs C0

since By € A) For this case, This equation has twe
2

Tr no real nositive roots for denending on whether

N s Ci Ca 2 2 [| CoyCen, &gt; :) | 1 2 !]Ag Re 3 ¥ &gt;7 ) + T tS C,, r= (¢ C. t LG,

“ne can find the form of the solitarv wave sclution b

10ting that eauation (49) can be written in the form.

a (¢ et Lt vl P

7) &gt;

i Lon 1"he solution of this equaticn -

y

ir ("= rt) Sech V[t= I

"bore fore for  e-

 Cc } for

z
&lt;y .

t

£
PN

[51]

-

»
"n

‘ne res that these solutions or. ra-~ "1"  nermanent

‘nvelones, Tt 1s the envelere of the wave train

"hat can move without change of shane,
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Similarity Solutions.
El 3AEeEtEME2FT.

Similarity solutions can also be found for the

~quation

Ju = dy ~ 1
~~ = Ix —, + IRV JSt ne TP

132

lere we indicate one such solution which is readily

‘ound by letting £- aE
y N= |

Lo
The above eauation

then becones

at

Y43
\ ~

v = u(q
i

 ce

Cd [EggEy2h Inu Vv

an. $133 equation becomes

 pox Lopate
oY)

vhich has as solution

B

u(y) = 7 bap }-p BB log 7

Theretore one obtains

gt 8" 1s 9 |~ 3 Exp ) a) p0) nhJ
53)

This solution is nossibly valid when the energy is

initially smeared over a continuous band of frequencies

in the local neighborhood of the wave number of the »nri-

mary travelling wave k . It is certainly true that if



10 nonlinearity was pnresent (&gt; = 0), that one would expect

1 time decay 4
Ve

of the envelope due to dispersion,



Summary and Conclusions.

From the preceding analysis it can be seen that there

is a mechanism present which is capable of transferring

energy between local sidebands and a primary travelling

wave, This is clear from equation (§ ), which demonstrates

that if there is any energy initially in a discrete side-

band, that this sideband along with its higher harmonics

notentially becomes of the same order as the primary

travelling wave, in long time, Tt is not quite as strong

1 mechanism as the quartet resonance mechanism in the sense

that in the resonance mechanism a discrete wave can he

senerated from an initially zero state by three other dis-

crete waves,

t is then purelv a matter of conjecture as to what

“he final state of the system is in long time, Tt has

been shown that there is the nossibility of permanent en-

velone solutions and in narticular a solution which describes

1 soliton permanent envelope, As to whether these states

are reached depends on the initial conditions,

[t seems plausible however that if initially the energy

vas distributed in a continuous band of wave numhers around

a primary travelling wave, that one could expect a solution

vhich behaved in long time like the similarity solution

which is given on page (31S). For if one had a system with

no nonlinearity then the method of stationary phase would

certainly indicate that the solution (53), with 8 = 10

1s valid in long time,
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