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ABSTRACT
In order to fully exploit the capacity of single mode‘optical
fibers, frequency multiplexing is currently being explored as a

transmission scheme. If frequency multiplexing is used with a large

‘number of channels, there arises the possibility that nonlinearities

within the fiber may cause unacceptable interchannel interference or
crosstalk. The purpose of this disseration is to explore the effects
of two of these nonlinearities, stimulated four wave mixing and
stimulated Raman scattering, from a communication system
perspective. This is accomplished by modelirg stimulated four wave
mixingbandvstimulated Raman scattering as noises that are dependent
on the system characteristics. We then find the structure and
performance of optimal and suboptimal receivers for signals

corrupted by these nonlinear noises.

Supervisor: Robert S. Kennedy
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I Introduction

1.1 Motivation

Because of their huge capacity, single mode optical fibers have
grown in popularity as communication media. Large volumes of
information that once required bulky cables can be transmitted over
a single hair-like fiber. Yet, because of speed limitations of the
interface electronics and other considerations, the capacity of
single mode fibers cannot now be fully exploited using time division
schemes. Consequently, researchers are investigating the use of
frequency division multiplexing as a transmission scheme. With
frequency multiplexing, the transmission capacity is limited by the
ability to generate and filter signals of different carrier

frequencies rather than by the speed of the interface electronics.

If frequency multiplexing with a large number of channels is
gsed, there arises the possibility that nonlinearities in the fiber
may cause unacceptable interchannel interference or crosstalk
[Stolen 80, 82]. Indeed, researchers have experimentally determined
that, under certain conditions, nonlinearities may be the limiting

factor in optical fiber communication systems [Tomita 83,Waarts 86].

The nonlinear effects of primary interest are stimulated Raman
scattering (SRS) and stimulated four wave mixing. Fig. 1 gives a
qualitative feel for these effects. Raman scattering [Smith 72,

Chraplyvy 83] transfers power from high frequency signals to the
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lower frequency signals. From Fig. 1A we see that this occurs only
when power is present at the same instant in both channels. The rate
at which power is transferred is dependent on the average signal
intensities and the frequency spacing between the channels. In
multichannel systems, each channel will experience different levels
of amplification and depletion. The lowest frequency channel is
amplified while the highest frequency channel experiences pure
depletion. The.channels in between these two extremes experience
either amplification or depletion depending on the number of
channels above and below the channel carrier frequency. The highesf
frequency channel is the worst case channel because it is subjected

to the most depletion.

Stimulated four wave mixing [Stolen 82, Hill 78] is depicted in
Fig. 1B. Four wave mixing occurs when signals at three frequencies
combine to produce signals at other frequencies. For multichannel
systems, the interference in any particular chamnnel due to four wave
mixing is the sum of all the mixing terms that fall into the
frequency of interest. The amplitude of any particular mixing term
is dependent on the signal powers, the length of fiber, and the
fiber dispersion characteristics. For frequency multiplexed systems
with many closely spaced active channels, we expect to see

significant levels of crosstalk.

If frequency multiplexing is to be used on a large scale within
optical fiber networks, it is important to understand the

limitations imposed by the nonlinearities on the system design. The



focus of this dissertation is to examine the effects of these
nonlinearities on frequency multiplexed communication systems
employing single mode optical fiber from a communication systems

perspective.

1.2 Previous Research on Nonlinearities in Fiber

The nonlinear properties of optical fibers have been studied
extensively [Stolen 79]. Most of the work has centered on analyzing
the physics of the phenomena rather than their effects on
communication system performance. Stimulated four wave mixing,
stimulated Raman scattering, and self phase modulation are the
nonlinear effects that have received the most attention. Four wave
mixing in fibers has been studied mainly for parametric
amplification applications [Stolen 82]. Stimulated Raman scattering
has also been studied for amplification as well as frequency
translation [Pochelle]. Some experiments have been performed to
ascertain the effects of nonlinearities on the performance of
specific communication systems. However, these studies concentrated
on physical performance metrics such as levels of depletion rather

than communication systems oriented measures such as bit error rate.

Stimulated Raman S—cattering
Several experiments concerning the effects of stimulated Raman
scattering on wavelength division multiplexed ( WDM ) systems have
been published (WDM is distinguished from frequency multiplexing by
it’s wider channel spacing). Tomita [Tomita 83] performed

experiments to determine the levels of crosstalk induced by



stimulated Raman scattering in two channel WDM systems. Using 1.Omw.
intensity modulated signals at 1.26um. and 1.34um., Tomita measured
crosstalk of -25dB. (in optical power) in 25km. of single mode

fiber.

Chraplyvy and Henry [Henry 83] constructed a simulation to
measure amplification of the long wavelength'channel in a two
channel system; the purpose being to investigate the use of Raman
scattering for optical amplification. Chraplyvy also analytically
approximated the worst case depletion of the shortest wavelength
chaﬁnel in 2 multichannel WDM system. He concluded that, for a ten
channel system with 100nm. channel spacing, input powers should be

at most 3.0mw. for depletion no worse than 0O.5dB.

Stimulated Four Wave Mixing
The physics of four wave mixing in fibers has been extensively
studied. Most of this research has focused on parametric
amplification and techniques for phase matching to maximize gain
[Stolen 75]. Recently, some analysis and experimentation has been

done in the context of frequency multiplexed communication systems.

Hill, Kawasaki, Johnson, and McDonald investigated stimulated
four wave mixing in single mode optical fibers [Hill 78]. They
presented an analysis of phase matched four wave mixing and
experimentally verified their results. Stolen has, over the years,
published many papers on four wave mixing and phase matching

techniques; most of this work is summarized in [Stolen 82]. The
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fundamental conclusion from these papers is that four wave mixing in
fibers is very sensitive to phase matching of the signals that‘are
being mixed; we show later that this implies that four wave mixing
is only a factor in frequency multiplexed systems that use low

dispersion fiber or when the channels are closely spaced.

Waarts, Braun, and Shibata [Shibata 86, Waarts 86] simulated the
effects of four wave mixing on a frequency multiplexed system
possessing many channels. They determined the maximum average input
power per channel allowable in order to limit the crosstalk induced
into any channel for many combinations of fiber dispersion,

attenuation, and fiber length.

1.3 Summary of Results

The purpose of the research contained in this dissertation was to
determine the effects of stimulated Raman scattering and stimulated
four wave mixing on frequency multiplexed communication systems
employing single mode optical fiber. We determined the effects of
these nonlinearities from a communication systems perspective by
first modeling four wave mixing and Raman scattering as noise and
then determining the structure and performance of the receivers used
to detect signals corrupted by these nonlinear noises. Because each
nonlinear effect dominates under unique conditions, we were able to
cqﬂsider four wave mixing and Raman scattering separately rather

than attempting to analyze their combined effect.



11

The system model used for the analysis consisted of a point to
point fiber link where N on-off modulated signals at sequentially
spaced carrier frequencies are input into the fiber (Fig. 2). A
quantum-limited heterodyne receiver at the end of the fiber is used
for detection. For each nonlinear effect, any particular frequency
channel could be modeled as a simple channel (Fig. 3) where a signal
is corrupted by the nonlinear interference and shot noise from the
local oscillator. Using this channel model and a description of the
interference due to each nonlinearity, we then determined

performance for a variety of receiver structures.

Stimulated Four Wave Mixing
Ve analytically determined the effects of stimu}ated four wave
- mixing on the performance of two system models. The first, the
synchronous model, assumed the frequency channels were slotted in
time so that pulses in different frequency channels in the same time
slot would be synchronized. Also, the synchronous model assumed
rectangular pulse shapes. As such, this represented a worst case
scenario whose performance could be used as a lower bound for
frequency multiplexed systems corrupted by four wave mixing. The
second model, the general case, was much more realistic because

assumptions about pulse shapes and synchronization were relaxed.

Ve determined that, for the general case, the interference

amplitude caused by stimulated four wave mixing could be modeled as



&

FIBER

Figure 2

System Model

LW e

>

N>

—

HETERoDYNE
REC=IVER

1T
NeNLNEAR  n&)

TNTZRFERENCE

Figure 3

Channel Model

=T )

12



13

an additive zero-mean Gauséian noise with correlation function
' 2 3 3
RI(T)= QHI/T [p(T)*p(T)]

where p(t) is a symmetric amplitude pulse shape ( * denotes

convolution ), T is the spacing between pulses, and o%

parameter dependent on the fiber dispersion characteristics and

is a

other system parameters such as number of channels, signal powers,
length of the fiber, etc. In order to experience significant levels
of interference, the differences in phase velocity ("phase
matching”) between the'channels had to be very small. This occured
when either the fiber dispersion was very low- such as with
dispersion shifted or dispersion flattened fiber- or the channels
were spaced very closely together. U? for a phase matched system is
described by

o2 = M (1)BPPO( 1 - &2 )2
where MN(i) is the number of mixing permutations that fall into
channel i, a is the fiber attenuation constant, B is dependent on
the fiber attenuation, L is the fiber length, and P is the
probability that a pulse is "on". For phase matched systems, the
interference induced into any particular channel is determined to a

large extent by MN(i). MN(i) is plotted in Fig. 4 for a 10,000

channel system.
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Figure 5
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Using the above description of the four wave mixing interference,
we determined the performance of a variety of receiver structures
assuming that p(t) was a sinc pulse (Fig. 5) and that the systems
were phase matched. The receiver structures were:

% Optimal coherent detector

% Optimal incoherent detector

a3 SuboptimalAcoherent matched-filter detector.

Comparing the performance of these receivers, we found that the
incoherent and matched filter receivers performed virtually the same

as the optimal coherent detector.

From the performance analysis results we determined the effects
of stimulated four wave mixing interference on this particular
system when the number of channels is large. We found that the
degradation in system performance is only a factor when the fiber is
long ( L > 25km. ) and the number of channels is large. For shorter
fiber lengths the stimulated four wave mixing interference is
negligible irrespective of the number of channels. This is
illustrated in Fig. © and Fig. 7 where we have plotted the
probability of error in the worse case channel for numbers of
channels and fiber lengths. For each length of fiber we set the
average input power per channel to yield a 10—9 bit error rate in
the absence of four wave mixing interference (approximately 10—8
Watts for L=25km.). The worst case channel, i=N/2, provides a good
estimate of the performance in most of the channels because of the

gradual roll-off of MN(i).
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 Stimulated Raman Scattering
Using the synchronous system model, we determined that, for
systems with large numbers of channels, stimulated Raman scattering
in the highest frequency channel (which is the worst case channel)
could be modeled as log-normal fading. This is depicted in Fig. 8
where the Raman fading is a multiplicative channel noise where the
noise is log-normal distributed. The signals in any particular time

slot were modeled as
E(o.L)= Ee X,

where the exponential term accounts for fiber attenuation and the Xi
is a modulation random variable that is one with probability P and
zero with probability 1-P. Given these signals, the received signal

in the worst case channel is of the form
r(uyL)= EXG(L)e ™ + n(t)
G(L)= e %
where n(t) is the white noise and G(L) is the Raman fade random

variable. X is a Gaussian random variable whose mean and variance

are dependent on the the system and fiber parameters:

E(x)= (L ;;P(0)/A ;)P z ™,
j
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2 2 2T 2
02 = (L_; P(0)/A_; )2 (P-P?) z*rj

J

where L = (1—e_aL

eff )/

and j is summed between 1 and N-1. Aeff is the effective cross
sectional area of the fiber, P(0) is the bit input power, P is the
probability that a pulse is on, and 7j is the Raman gain coefficient
that couples channel j with the worst case channel. The Raman gain

coefficient versus frequency separation is shown in Fig. 9.

Determining the performance of the optimal receiver for this
system was analytically intractable. So rather than using the
optimal receiver for our system, we resorted to a receiver structure
that assumed knowledge of the fade random variable. The detection
problem can be viewed as in Fig. 10 where a fade causes the two
white noise densities to move closer together- thereby increasing
the probability of error due to the additive white noise. The
receiver we used would set the optimal threshold given the fade
parameter. Thus, for any particular value of G(L), this receiver
would pick a threshold that was halfway between the means of the two
a posteriori densitie-. Clearly, this performs better than the
optimal fixed threshold receiver. When the standard deviatiéns of

- the noise densities are small compared to the bit energy, this
receiver gives reasonable, albeit optimistic, results because the
fade must be very deep in o-~der to see any significant change in
Pr(e) (Fig. 11). The performance for this receiver was measured in

terms of the



22

© NO FADE E
Figure 10
Raman Fading
e —— e = 31 — —
o EGW)
FADE

AN

E

Figure 11

Raman Fading for High SNR System




| \o_g,Q(Q(-ZB) | 23

S35 A
-0 -
-40 1
-S0 1
~60 -
~70
-Q0

_qo -

100 +

- \lo 4

-120

(=12km,

log, Q@ vs. N
o= 1.OdR/km,
BW= 1.5x10%/N
MIN, POWER

: t e ) —
ek KK ek I 1Ok

Figure 12

Performance in Presence of Raman Fading, Minimum Power



24

percentage of time that the fade was deep enough to cause Pr(e) to
exceed some threshold. Given that the link power budget for each
fiber length was set to yield a 10_9 bit error rate in the absence
of Raman scattering, we set our threshold to 10_6. For each N the
channels were evenly spacéd so they would occupy the entire Raman
gain band ( 0 to 450 cm—1 ).

Using these results we were able to determine under what

scenarios Raman fading is a factor. Setting
o s -6
% time Pr(e)210 ~ = Q(Z)

(where Q(Z) is Marcum’s Q function and Z is dependent on the system
parameters) we plotted loglo(Q(Z)) versus the number of channels for
various fiber lengths in Fig. 12. We see from Fig. 12 that the
chances of seeing a deep fade are practically nil. Thus, we
concluded that, even for moderately long (23km.) fiber lengths and
large numbers of channels, stimulated Raman scattering was not an
important factor. The primary reason for this result is that, for
systems that have large numbers of channels, the signal inpﬁt powers

are too low to stimulate significant Raman interaction.

1.4 ) Overview of Thesis
In chapter II we will introduce the physics of nonlinearities in
fiber and the modeling assumptions that will be used throughout the

analysis.



Chapter III‘examines the effects of four wave mixing on frequency
multiplexed digital communication systems employing single mode
fiber. We will start by analyzing the synchronous system model to
establish performance lower bounds and gain familiarity with the
analysis. We will then analyze a much more realistic digital
communication system model. Finally, the results of the analysis
will be examined to determine under what scenarios four wave mixing

degrades system performance.

Chapter IV analyzes the effects of stimulated Raman scattering on
frequency multiplexed digital communication systems. The synchronous
system model is analyzed in the presence of Raman scattering. The
optimal receivers are discussed and bounds are derived for the
performance of an idealized receiver. The results are then examined
to determine the effects of stimulated Raman scattering on

foreseeable communication systems.

This thesis examines the effects of nonlinearities on point to
point links that utilize frequency multiplexing. However, frequency
multiplexing is also being considered for use in fiber networks.
Therefore, we wrap up the thesis by suggesting issues for the
examination of nonlinear effects in optical fiber networks that

utilize frequency multiplexing and single mode optical fiber.
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II The Physics of Nonlinearities in Fiber

2.1 Basic Theory

In this section we review the physics of stimulated four wave
mixing and stimulated Raman scattering scattering in fiber. The
purpose of this review is to develop the theory needed to analyze
the effects of nonlinearitiés on frequency division multiplexed
systems using single mode optical fiber. We will begin our
discussion with a general description of waves in nonlinear media

which will then be extended to fiber and our specific applications.

The nonlinear interaction of waves in a medium can be described
by a set of coupled wave equations where the nonlinear
susceptabilities act as coupling coefficents. Stimulated four wave
mixing and stimulated Raman scattering are distinguished by the form
of the coupling but they are special cases of the same nonlinear

phenomenon.

For a general description of the propagation of plane waves in

nonlinear media, we start with Maxwell’s equations
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and the constitutive relations

B:}J.OH
B:&E*—F
(e}

J = oE.

Using the above equations and forming a wave equation

vxvxE=v(vE) - vE = M d (v x H)

dt
and assuming that v-E = 0 we conclude that
2= dE d’E a%p
VE-po _-pupe =pu .
° I oo °o 5
dt dt

By ‘expanding the polarization, P, into linear and nonlinear parts

the above equation becomes [Ippen 85]

o—
d PNL

dt2

_ = 2 _
V2E -uo EE - L e 'E__ { (1 + x(l))E } =
o 17 00 5 o
dt

where x(l) is the first order susceptability term. This wave
equation describes the interaction of an E field and the nonlinear
polarization term in a nonlinear medium. The polarization can be
considered to be the driving term of a system. As such, PNL can,
depending on the phase difference between PNL and E, add or remove

power from the E field.



For monochromatic TEM waves propagating in the z direction, we
can approximate the E field and PNL as slowly varying envelopes

times an oscillatory term

E(w,z,t) = ; E(z.t) é'J(kZ - wt)

- ~ —j(kpz - wt)
PNL(w,z.t) =p PNL(z.t) e .

Plugging these expressions into our wave equation and assuming the
waves do not change appreciably over a wavelength or one period we

find

EE.+ aE + (n/c) EE = - ° (e * p) PNL e p
dz dt 2n

~where we have assumed the waves are one-dimensional and that

dP a2p
WP > 0 _ Nk sy

NL
NL )
dt dt

a is the material attenuation constant, n is the refractive index,
and ¢ is the speed of light. Notice the solution to the above
differential equation is dependent on the relative phase of E and
PNL' By properly choosing PNL’ the resulting E field can, as a
function of z, monotonically grow, oscillate, or montonically

decrease in intensity.

28
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For our purposes we will assume that the waves vary slowly enough
as they traverse the medium to allow a quasi-static approximation to

the above equation

Jop ¢ . . jk - k )z
° (e » p) PNL e p

where we have set EE = 0.

dt
Expanding'PNL we see
_ (2)g2 , ,(3)3 | (4)4
PNL = eo(x EP"+ x"7ET + x*VET + L1 )
(i). . th . e
where x is the i order nonlinear susceptability term (we assume

{x(l)} are independent of frequency). Glass (the material of which
optical fiber is made) possesses a property known as inversion
symmetry according to which every even order nonlinear

susceptability term is zero. Therefore, for our purposes,

- (3):3 (5)¢5
PNL = eo(x ET + x*7ET + L),
The third order susceptability term, X(B), is responsible for
stimulated four wave mixing and stimulated Raman scattering. x(s) is

complex with the real part leading to four wave mixing and the
imaginary part giving stimulated Raman scattering in fiber. For the

study of four wave mixing and Raman scattering we can can truncate



the series expansion of PNL to yield
- (3)g3
PNL_ e.X E”.
2.2 Stimulated Four Wave Mixing in Fiber

Stimulated four wave mixing is similar to third order
intermodulation distortion in radio frequency systems; signals at
three carrier frequencies mix to produce interference at a fourth
carrier frequency. Stimulated four wave mixing is characterized by
its nonlinear polarization term. For our analysis we are interested
in the four wave mixing polarization term that occurs when N plane
waves at frequencies {wi} and propagation constantsr{ki} propagate
through a nonlinear medium. We are interested in mixing terms of the
form w, = wa+mb—wc, a,b # c because this is the only mixing
combination of interest that results in frequencies that fall in the

communication system channels. This polarization can be expressed as

P (0. L1) = 3¢ x3) ) D) E(o,.L. t)E(ey. L. )E (v . L, t)
abec
*6(i-(at+b-c))

where 6( ) is a kronecker delta used to select the terms such that
i=a+b-c and a,b,c are summed from 1 to N except i and L is the
length of the fiber. By plugging in the slowly varying envelope
representations of the fields we find

: -j(k_+k -k )L
PNL(wi,L)=3eox(3)§ E(,.L)E(v, . L)E (0_,L)e e 5(i-(at+b-c))

a,b,c
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Looking ét our wave equation again, it is apparent that the solution
for Ei will be dependent on the phase differences of each term in
the P sum and Ei which are defined by

NL

Ak = ka+kb_kc_ki'

For any Ak = O, we find that Ei will grow monotoniéally until all
the power has been depleted from the weakest contributing wave of
the term in PNL' However, for Ak # O the terms of Ei will oscillate
with z at a rate dependent on the value of Ak. Therefore, to see
significant levels of interaction due to four wave mixing the
propagation constants must be very well matched (i.e. the Ak terms
must be very small). In bulk materials this can belaccomplished by
adjusting both the direction and magnitude of the propagation
vectors. However in single mode optical fiber the direction of
propagation is fixed. This means, in order for Ak to be very small,
the frequencies of the waves must be very closely spaced or the
fiber dispersion over the frequency band must be very low (such as
with dispersion flattened or dispersion shifted fibers). Ak in
single ﬁode optical fiber for large channel spacing ( 21.0Ghz.) is
approximated by [Waarts 86]

2 2
By = 2TCN (42 )*/e

172
Af = |(fa—fc)(fb—fc)|
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where C is the fiber chromatic dispersion coefficent and A is the
wavelength of the center of the frequéncy band. With long fiber
lengths and very low dispersion over the frequency band, four wave
mixing will probably cause significant levels of crosstalk among

frequency channels.

2.3 Stimulated Raman Scattering

Stimulated Raman scattering is very similar to four wave mixing
because it is also a third order mixing phenomenon. It differs,
however, because it is a noncoherent effect, i.e. it does not depend
on the relative phases of the mixing waves. This is because
stimulated Raman scattering is third order mixing between the
channel of interest, i, and one other channel, a. This corresponds
to mixing of the form W = o + O The corresponding nonlinear

polarization is

~jk.L
P (05 -1)= 3¢ X)) E(o, 1) E(o L) [?e "t

a

where a is summed from 1 to N except i and xia) is the third order
susceptability for stimulated Raman scattering. Notice that the
stimulated Raman scattering PNL is dependent only on the initial
value of Ei and the intensities of the other coﬂtributing waves. It
is not dependent on the relative phases of the waves This means.that
the intensity of Ei will grow as the waves propagate down the fiber

until all of the power in the other waves has been depleted. The
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rate of transfer is dependent on the the intensities of the waves
and the stimulated Raman scattering coefficient at their

frequencies.

In fiber, stimulated Raman scattering acts to transfer power from
higher frequency channels to lower frequency channels. The rate of
transfer is dependent on the wave intensities and frequency
separations. Ignoring the power gain of the lower frequency waves
and using the quasi static approximation, the power depletion of the
highest frequency wave can be described as (see Chap. IV)
al

Py(t.L) = P(t,L=0) e exp[ ~(Lopg/ @A e )P(t,1=0) 2 wj]

J

al

L £ = (1- e ")/a

ef
where Tj is the Raman gain between the wave at wj and the highest
frequency wave at N Aeff is the effective cross section arez of
the fiber, and P(t,L=0) is the input (instantaneous) power pulse
shape'in each channel. j is summmed over the lower frequency

channels. The Raman gain is plotted vs. frequency separation in Fig.

13.

Notice that the Raman gain is very low for closely spaced waves:
the effect of Raman scartering will be very weak for this situation.
However, because of good phase matching resulting from the waves

being very closely spaced, stimulated four wave mixing will be
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strong. Therefore, stimulated four wave mixing dominateé when the
waves are closely spaced in frequency (assuming nonzero fiber
dispersion). Conversely, stimulated Raman scattering is strong for
more widely spaced waves- therefore Raman scattering dominates when
the waves are more widely spaced. For these two scenarios, we can

examine each nonlinear effect in isolation.
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ITI Effects of Stimulated Four Wave Mixing

3.1 Chapter Overview

In this chapter we will use the physics presented in Chap. II to
determine the effects of four wave mixing on frequency division
multiplexed systems employing single mode optical fiber. As we know,
four wave mixing introduces crosstalk among the frequency channels.
For any particular channel, this crosstalk can be considered to be
an additive interference (Fig. 14) where the interference is
dependent on the signals in the other channels, the length of the
fiber, and other system parameters. Our task is to characterize this
interference and then find the optimal receiver structure and it's

corresponding performance.

We will examine two types of frequency division multiplexed
systems. The first, the synchronized case, assumes bit
synchronization among the frequency channels and rectangular pulse
shapes. This will allow us to examine the system as if we were
trying to detect continuous waves instead of modulated carriers. The
synchronous model represents a worst case scenario that sets a lower
bound on the performance of frequency multiplexed systems corrupfed
by the nonlinearities. The second case (which we shall refer to as
the general case) is much more realistic in that it makes no
assumptions about synchronization or the pulse shapes. Using this
general model, we will determine the performance of a system that
uses a particular pulse shape. Throughout our analysis we will

assume on-off keying (OOK) modulation.
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3.2 The Synchronous Case

In this section we analyze‘the performance of frequency division
multiplexed systems corrupted by four wave mixing interference
assuming rectangular pulses and bit synchronization. Using a model
of the system, we will characterize the four wave mixing
interference as a random variable and determine it's statistics. We
will then determine the structure of the optimal receiver and it's

performance.

3.2.1 Communication System Model Description
The system we wish to analyze (Fig. 15) consists of N
sequentially spaced frequency channels with carrier frequencies {wi}

where
W, = wo + Awi ; 1 < 1 < N.

The signals in each channel consists of OOK modulated carriers that
are bit synchronized. In any particular bit slot these signals can

be characterized by

E(wi.L.t) =eEe aLXi cos(wit + ¢i —kiL)

1 ; w/ probability P

O ; w/ probability 1-P

¢i is phase R.V. uniform distributed [-w, 7]
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where Xi denotes the presence or absence of a pulse in channel i, ¢ﬁ
is a phase random variable, L is the length of the fiber, and ki is

the propagation constant. We assume the waves are linearly polarized

in the same direction. It is convenient to express the signals (Ei}

as

_ N j(wit—kiL)
E(wi.L.t) = eE(ui,L) e

i®; ol
E(wi.L) = XiE e e .

where a is the fiber attenuation constant. Throughout the analysis
we will use the envelope of the signals (E(wi,L)) without loss of
generality. Using this model we see that the signai and four wave
mixing interference envelopes will be constant over the duration of
one bit. The four wave mixing interference simply adds a complex
number to the pulse amplitude (which is also complex). The pulse is
then further corrupted by additive white Gaussian noise caused by

the shot noise from the local oscillator.

3.2.2 Characterization of Interference

Now that we have an idea of how the system looks, we must
characterize the interference in any channel due to four wave
mixing. We will define the interference amplitude in channel i as

- j(mit—kiL)
I(mi,L.t) = eI(mi,L)e
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I(w,.L) = Ie™®.

From chapter II we know the differential equation characterizing

I(w,L) can be expressed as

-juu c .
§E£2L£1.+ al(w,L) = ° PNL((.J.L)e‘JkL
' 2n

where EﬁL(w,L.t) = ;P((LJ,L)e‘jwt

40

where we have ignored the depletion of the signals that contribute

to the mixing (ignoring the depletion of the signals is an

appropriate assumption because the ith channel will be swamped by

the interference long before the depletion of any one channel

becomes noticable).

Using the expression for PNL(w,L) given in chapter II and our

signal model, we find

j -0 ) -j(k_+k -k )L
Pyplog-L)= BX(S)&OEBe—SaL } 2 } eJ(¢g+¢£ C)e 30 i)
abec

°XaXbX06(i—(a+b—c))

where a,b,c are summed from 1 to N except i. We exclude the ith

term

from the sum because we are interested in interference induced by

other channels rather than terms that involve the signal itself

(which actually contributes very little to the polarization term).
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-jk.L
Substituting I(w;.L)e  and Py (¢;.L) into the differential

equation and solving we obtain

-3 (9, +Q %)

-j(Ak,-j2a)L
LONSEE DD R Y
i

abec

-alL .
‘e XaXch6(1—(a+b—c))

3 (3)
wiuoceOBE X

where B=

2n.
i

and Aki= ka+kb—kc—ki.

As expected, the terms in the sum representing I(wi,L) are dependent
on the degree of phase matching which is determined by the
difference in propagation constants, Aki. Each term in the sum
oscillates with L with a period and amplitude determined by Aki' If
Aki for a particular term is large, the amplitude of the term is
small and oscillates very rapidly with L. On the other hand, if Aki

is zero the term grows monotonically with L.

After deriving the function describing the complex envelope of
the interference we must determine its statistics. Unfortunately, it
appears quite difficult to determine the exact statistics of the
interference. However, the complex envelope is the sum of a large
number of complex mixing terms— many of which are mutually

independent. It seems, therefore, appropriate to approximate the



TR N GWYE CSE e e g v

interference envelope density as a complex Gaussian random variable.
This will allow us to completely characterize the interference by

it’s first and second order moments.

Because I(wi.L) is a complex random variable, the jointly
Gaussian random variable describing it is characterized by three
expected values; E(I(wi.L)). E(Iz(wi,L)). and E(ll(wi.L)I2
Remembering that {¢H} are uniform distributed between -7 and w7, it

is easy to show that
E(I(wi,L))= 0
2
E(I (mi,L))= 0

We also see that (Appendix A)

E(11(w; 1) 1%)= B%Pe anh (a+b-c))

abec Ak? + 4a2

°[ 1+ e—4aL - 2e—2aL cosAkiL ].

If we assume perfect phase matching, i.e. Aki - 0, we see that

4al -2al

2pPe™2L 402y (1 + oAl | g 20l

E(|I(v, L) %)= N(1)B7P



43

where MN(i) = # permutations such that i=a+b-c. MN(i) is given by

(Appendix B):

N(N+2i-2) - (1/2)[(N+i)(N+i+1)+i(i+1)] + 3 ; 2<i¢(N/2)
MN(i)= N(N+2i-4) - (1/2)[(N+1)(N+i+1)+i(i+1)] + (4i+1) ; N/2<i<N

Using these results we can find the covariance matrix for the

joint density. We know that
I(wi,L)= Re[I(wi,L)] + jIm[I(wi.L)].

Ve define the covariance matrix as

B E(Re(I)2) E(Re(I)Im(I))
RI(w.,L)z
! 2
E(Re(I)Im(I)) E(Im(I)%)
Since E(]1(0,.1) %)= E(Re(1)?) + E(In(1)?)

and E(I2(wi,L))= E(Re(1)?) - E(In(1)2) + 25E(Re(I)In(I)) = O,
it follows that E(Re(1)2) = E(Im(2)?)
and E(Re(I)Im(I))= O.

Thus, we have  E(Re(I)2) = E(Im(I)2) = (1/2)E(]1(e,.L) 2.
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Defining 0? = (1/2)E(|I(wi.L)|2)
- o% 0 5 —
we conclude R (w,,L) = =0 I
IYi 2 I
0 oy

E(I(ui,L)) - 0.

Thus, we have characterized I(wi.L) as a zero mean, jointly

Gaussian two dimensional random variable with covariance matrix

given by RI(mi,L). In the next section we will use this
characterization of the interference to derive the optimal receiver

for the synchronous case.

3.2.3 Optimal Coberent Detector

Using the above characterization of the interference, we can
derive the optimal receiver for the synchronous case. Assuming a bit
is equally likely to be on or off in channel i, the optimal receiver

has the form

- 1
fi(rlHl) > .
= £
fi(rlHo) S

o

where fi(;WHl) and fi(;]Ho) are the a posteriori densities for the

received signal in channel i given that the transmitted signal was a
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one or zero respectivly. For channel i

cosQ,

;kc|H1)= Ee L [ sin¢z } +n(t) + f(ui,L) L 0Ct T

;(t|H0)= n(t) + -I—(mi.L) ; 0t (T

where T is the bit duration and n(t) is an additive Gaussian noise

characterized by

0]

. ] and R_(7)= (N_/2)6(m)I.

E(n(t))= [

where N0/2 is the noise level of the local ocillator shot noise.

Also, Re(I(wi.L)) ]

I{w;.L)= [ In(I(o, L))

After computing the a posteriori densities, we conclude the

optimal receiver structure is (Appendix C)

[\

T
f[ rr(t)cos¢g + ri(t)sin¢g ]dt (T/2)I:',e_aL
0

2B VaN

where rr(t) and ri(t) are the real and imaginary parts of the

received signal. It is interesting to note that this receiver
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structure is the same as for the case where there is no four wave
mixing interference. The performance of this receiver is given by

al

Pr(e)= Q| (1/2)Ee”

(o2 + (N /21) )72 ].

*

Notice that as T- ©
Pr(e) - Q[ Ee_aL/2crI ]

which means that the performance of the receiver is limited only by
the four wave mixing interference. This is because, given a long
enough interval of time, we can average out the noise but.not the
interference (because I(wi.L) is constant over T). As the four wave
mixing interference level goes to infinity ( U? - ®) P(e) » 1/2
because the interference swamps the signal and the best we can do is
guess the received signal. Conversely, as the interference goes to

zero Pr(e) goes to its white noise only form as we would expect.

Thus, we have derived the performance of the optimal receiver for
:é channel corrupted by four wave mixing interference and additive
white Gaussian noise caused by the receiver’'s local oscillator.
Because of the structure of the synchronous modél these results are
worst case for frequency multiplexed systems corrupted by four wave
mixing and, as such, set a lower bound on system performance. In
later sections wevwill use these results to determine the
performance of the synchronous system as a function of system

parameters.
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3.3 The General Case

In this section we will extend the previous results to determine
the effects of stimulated four wave mixing for a much more realistic
system model. As before, we will begin by describing the system
model that will be used to determine the characteristics‘of the four
wave interference. Armed with those results, we will then determine
the structure and performance of the optimal coherent receiver.
Because it is difficult to determine the phase of an optical
carrier, we will also examine a noncoherent receiver that assumes.no
knowledge. of the carrier phase. Lastly. we will examine a coherent
matched filter receiver and show how its performance almost matches

that of the optimal receiver.

3.3.1 Model Description

In this section we will describe a more realistic system model
for our four wave mixing analysis (Fig. 16). The system consists of
N frequency channels with frequency separation the same as before.

However, our signals in each channel are now of the form

k =o

~ —al
Eo;.t.L)= eEe ®F ) X P(t = KT ~ty.) cos(o;t b, ~k.L)

k= —o

where {¢ik} are independent, identically distributed (iid) phase
random variables for each pulse, {tdi} are the iid envelope delay
random variables (uniform between -D/2 and D/2 where D goes to
infinity), and {Xik} are iid random variables to denote the presence

or absence of a pulse as before. This model incorporates arbitrary
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pulse shapes and assumes the pulse trains in each channel are
randomly delayed relative to one another. The phase of the carrier
for each pulse is independent. Given this system model, we can now

determine the interference and its correlation function.

3.3.2 Characterization of Interference

In this section we will determine the interference given the
system model presented in the last section. Again, we will ignore
the depletion of the mixing channels and examine the interference

terms caused by the crosstalk only.

To facilitate the analysis of I(mi,L.t). we will put our signals

in the form

_ - jwit
E(wi,L.t)= e Ei(L,t)e

©
ol "9k =ja)L o 3O,
E(Lt)=EeLe 1 Ye e xr - tg;)-

k= ~c

Using our previous results, the envelope of the four wave mixing
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interference can be expressed by

I(wi.L.t)= Be 2 z 2 6(i-(a+b-c)) Fi(a.b.c)

abc (Ak? + 4a2) 172

'[ Z Pt =0T - tg)) X, o e ] [ Z Plt T ~tap) X S ]

a b

. [Zp(t 0T -t )X e_jqbnc ]

c
where Fi(a,b,c)=exp[j(tan'1(2a/Aki)-AkiL)]e'2“L -eXp[jtan‘l(za/Aki)]
and . Ty, and D, are summed between - and ®. As before, the
interference is the sum of a large number of random processes.
Consequently, we will again assume the interference is a Jjointly
Gaussian random process and, as such, is characterized by it’s first

and second order moments.

After averaging I(mi,L,t). I2(mi.L,t). and I(wi.L,t)I*(mi,L.t)
over {tdi}' {¢Ek}' and {Xik}' we find the first and second moments
of I(wi.L.t) are

E(I(w.L,t))= 0

E(I(o;.L.t)I(0;.L,t,))= 0
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@ D/2
3
x 2.
E(I(0;.L.t )1 (mi,L.tz))=2aI]§1_2L§-o(°1/D) p(tl—nT—td)p(t2—nT—td)dtd]
= - D/2

where a? is the same as before.

By assuming |t1 - t2| <D, T << D, and the pulse durations are
finite but arbitrarily large, we find the above expected value

becomes
o
»* 2 3
E(I(Ui,L,T)I (mi.L.O))= 20I [ (1/T)J‘p(-v + T)p(-v)dv ] .
- 0
vhere T =t1—t2. For symmetric pulses, this has the form
©
»* 2 3
E(I(mi,L.T)I (wi,L,O))= 201 [ (I/T)J‘p(T - v)p(v)dp ] .
-

The above expression is the correlation function of the general
case interference. For symmetric pulse shapes, notice the term
inside the brackets is just 1/T times the pulse shape convolved with
itself. Also, the level of interference is inversely related to the
pulse duty cycle- as the pulses are spread further apart in time
(i.e. larger T) the interference experienced at any point in time
decreases because the probability of having a signal available for

mixing in any particular channel decreases. The correlation function
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matrix relating the real and imaginary parts of I(wi.L.t) is given

by

(1/2)E(I17) 0 . —
RI(T) = x = (1/2)E(II ) I.
0 (1/2)E(117)

Thus, we have characterized the four wave mixing interference for
the general case as a zero mean, jointly Gaussian stationary noise.
Using this characterization, we will be able to determine the

optimal detector for the general case.

3.3.3 Detection Issues for the General Case

As we have shown, stimulated four wave mixing can be modeled as
an additive colored Gaussian noise. Given that, our system in any
particular channel consists of a communication channel that corrupts
our signal with an additive interference and with white noise caused
by the shot noise from the local oscillator of our receiver. This
detection problem is unique because the characteristics of the
interference are dependent on the system parameters (p(t), Aw, N,
ch.)._Consequently, if the system parameters are changed, so is the
interfe;ence. Thqs. to get some insight into the effects of four
wave mixing interference, we will examine the effects of four wave
mixing on a system that uses a particular p(t). Because of its
analytic characteristics, we will examine a system where p(t) is a

sinc pulse (Fig. 17).
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In the following sections, we will concentrate on deriving the
structure and performance of optimal and suboptimal single-shot
receivers. By single-shot we mean the receivers are designed for
detecting a single isolated pulse. In reality, though, we are trying
to detect a pulse embedded within a stream of pulses. Hence, there
might be other effects such as intersymbol interference that must~bé
taken into consideration. We will show in later sections how using a
suboptimal receiver structure and properly choosing p(t) can

eliminate intersymbol interference.

3.3.4 Optimal Coherent Detector Structure and Performance

In this section we present the structure and derive the
performance of the optimal detector for a system corrupted by four
wave mixing interference assuming knowledge of the signal carrier
phase, ¢E. Our procedure will be to first derive the correlation
function for p(t). This will then be used to determine the optimal
receiver structure and performance as a function of the system

parameters.

This is a binary detection problem where we are trying to
distinguish which of two signals was transmitted. The transmitted

signals (assuming knowledge of the carrier phases) are

— _ [ cos®. |
sp(0) =BT p(r)|
sinl 5

Zo(t) = 0.
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The received signals, given that a one or a zero was transmitted,

are
r(clH) = s (1) + I(v,.L.t) + n(t)
;;(tIHO) = f(mi,L.t) + ;kt)

here n(t) is the same as defined in the synchronous case.

Our first step is to determine the correlation function matrix,

ﬁi(T). for our particular p(t). The p(t) we will use is a sinc pulse

of the form (Fig. 17)
p(t)= sin(27Wt) / nt

where W is the bandwidth of the pulse’s spectrum. Using this and our

expression for the correlation function of a symmetric pulse
RI(T)= RI(T)I
2,3 3
Ri(7)= (207/T7) [ p(T)*p(7) ]
we can derive RI(T)'for the sinc pulse. First we define

h(r)= p(7)*p(7)
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h(T) <= H(f)

and

p(T) < P(f)

where H(f) and P(f) are the fourier transforms of h(7) and p(T)

respectivly. Using the fact that

R (7)= (205/T°)n3(7)

1 i WS f KW
P(f)= 0 ; otherwise
2
and H(f)= P7(f)
we find that
1 ; W f < W
H(f)= s
0 ; otherwise

h(7)= sin(2vW7)/7T .
Plugging into the expression for RI(T) we conclude
2.3 . 3
RI(T)= (20I/T )[ sin(27WT)/7T ]

Now that we have an expression for the correlation function, we

will derive it’'s cofresponding power spectrum which is defined by

Rp(T) — S_(f).
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We know that
2,3
Sp(£)= (207/T°)[ P(£)=P(£)%P(£) J.
After convolving P(f) with itself three fold we determine that

[ (1/2)(f+3W)2 D -3W < f < -W

Si(f)= (202/1%) - | W2 -2 wircw

(1/72) (-£+430)2; W < £ < 3%

0 ;  otherwise

Thus, we now have expressions for the correlation function and power
spectrum of the interference assuming p(t) is a sinc pulse. The

power spectrum is depicted in Fig. 18.

Using the correlation function and power spectrum of the
interference, we can now find the performance of the optimal
receiver. For equiprobable signals, the structure of the optimal
receiver is given by

[ Van Trees ]

j J ri(t) QI(t-u) sl(u) dtdu - (1/2)J‘J‘sl(t) QI(t—u) sl(u) dtdu O



where the inverse kernel, ai(t). is chosen such that

@

j Ei(t—u) a&(u—z) du = 6(t-z)I.

-

The performance of this receiver is given by

P(e) = Q(d/2)

_t - -
where d2 = j f sl(t) QI(t—u) sl(u) dtdu.

In order to evaluate P(e) we must determine QI(t). Assuming a
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long observation interval, the Fourier transform of ai(t), Sq(f), is

the inverse of the power spectrum of the noise plus the interference

[Van Trees]. In other terms
Ekwijz,t) has power spectrum gi(f)
. ;kt) has power spectrum §g(f)
then S,(f) = [ 8,(6) + s_(£) 17! = S(NT.

and 6&(T)= QI(T)T
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To determine the performance metric, we put d° in the form

[oe]

o2 =jp(t)q(t)dt

-

where q(t) = J‘Ql(t—s)p(s)ds

-0

which is just the convolution of QI(t) and p(t). Defining the

Fourier transform of q(t) as

q(t) < Q(f)
we know that
S (f) ; W<ECW
Q(f)= | ¢
0 ; otherwise
therefore
[ (N/2)+ (2021 30-£2) 778 cwgscw
Q(f)= °
0 : otherwise

Using Parseval’'s theorem,

© (2]

a%= Jp(t)q(t)dt - f P(£)Q(£)df.

-—C0 -0

59
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V'Y
Thus, = d°= J (E% ) (v s2)+(202/1°) (3%%-12) 171 as
W

Solving this integral we find

2.3 -2al .
B2 el

3

where ¥ = [ (N T°/40%) + 3w® 112 .

As a check of the result we see that

lim d% = (4W/NO)E2e_2aL
02+ 0
I
lim d2 = 0.
o @

Thus, as o7 - 0, d2 goes to it's white noise only value as it must.

- ©, d2 goes to zero because the signal is totally

N =N

Also, as o
swamped by the interference. Also, as the pulse duty cycle decreases
(increasing T) d2 goes to it's white noise only value because the
interference level goes to zero. Finally, we see that d2 decreases
with increasing W because of the increased white noise energy level

associated with the greater bandwidth.
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3.3.5 Single-Shot Noncoherent Detector

The optimal detector derived in the previous section assumed
knowledge of the carrier phase. However, estimating the carrier
phase of an optical carrier can be quite complicated. It seems
desirable, therefore, to know how well a noncoherent receiver
performs relative to the optimal coherent receiver. As before the

transmitted signals are of the form

_ _ cos®
sl(t)= Ee al p(t)[ sind J

so(t)= 0
where @ is uniformily distributed between -7 and 7 and each signal
is equally likely to be transmitted. From [Van Trees] we know the

likelyhood function for the random phase case has the form

Ar(0)]= [ p(®) expl Lcos + Losind - (1/2)a® Jad

L (2) ]

where r(t)= [
ri(t)
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p(®) is the probability distribution for ¢ . d2 is defined as

before,

L= Ee " Jj r (0)Qq(t-u)p(n)dtdu ,

—00

L= Ee " jf r(0)Q(t-1)p(n)dtdu .

—00

and QI(t-u) is the inverse kernel from the last section. Plugging in

our p(P) we see that

T
Q[;(t)]= (1/27) f exp[ Lccos¢ + Lssin¢ —(1/2)d2 ]ad .

-1
Solving this integral we find

2

-d"/2 10 (L2 + L2 172
o c

aLr(t)l= e )12
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