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Collagen is the most abundant structural protein in humans, providing crucial mechan-
ical properties, including high strength and toughness, in tissues. Collagen-based bio-
materials are, therefore, used for tissue repair and regeneration. Utilizing collagen
effectively during materials processing ex vivo and subsequent function in vivo requires
stability over wide temperature ranges to avoid denaturation and loss of structure, mea-
sured as melting temperature (Tm). Although significant research has been conducted
on understanding how collagen primary amino acid sequences correspond to Tm values,
a robust framework to facilitate the design of collagen sequences with specific Tm
remains a challenge. Here, we develop a general model using a genetic algorithm within
a deep learning framework to design collagen sequences with specific Tm values. We
report 1,000 de novo collagen sequences, and we show that we can efficiently use this
model to generate collagen sequences and verify their Tm values using both experimen-
tal and computational methods. We find that the model accurately predicts Tm values
within a few degrees centigrade. Further, using this model, we conduct a high-
throughput study to identify the most frequently occurring collagen triplets that can be
directly incorporated into collagen. We further discovered that the number of hydrogen
bonds within collagen calculated with molecular dynamics (MD) is directly correlated
to the experimental measurement of triple-helical quality. Ultimately, we see this work
as a critical step to helping researchers develop collagen sequences with specific Tm values
for intended materials manufacturing methods and biomedical applications, realizing a
mechanistic materials by design paradigm.

collagen j deep learning j thermal stability j generative algorithm j mechanics

Collagen is the most abundant protein in animals and is found in the extracellular
matrix of skin, tendons, bone, and vasculature as well as other tissues. The term
“collagen” encompasses a family of at least 29 glycoproteins with common features
responsible for the outstanding properties. Repeat units of glycine-X-Y (GXY) domi-
nate the sequences, where the X and Y amino acids are usually occupied by proline
(about 28% of the time) and hydroxyproline (about 38%) (1). These GXY sequences
adopt a left-handed polyproline type II helical conformation, which after forming
trimers, folds into a triple α-helical structure called tropocollagen, the basic structural
unit of collagen (2). Tropocollagen is typically 300 nm long and 1.5 nm in diameter
and assembles into hierarchical collagen structures including fibrils and fibers (Fig. 1A)
(3–9). This hierarchical structure enables collagen to provide significant mechanical
capacity under physiological conditions, exhibiting a tensile modulus of 0.2 to
0.86 GPa while maintaining elasticity in the human body (10–18).
Given this remarkable self-assembly process and the resulting mechanical properties,

along with inherent biocompatibility, collagen-based biomaterials are routinely sought
for in vivo tissue repairs, drug delivery systems, and other biomedical applications (19,
20). However, designing collagen to assemble in vitro to emulate the structural hierar-
chy and thermal stability of collagen in vivo remains challenging and limits the wide-
spread use of collagen as biomaterial constructs. Therefore, most of the collagen used
today has a reduced triple-helix content and thus, reduced thermal stability and
mechanical properties, which result in rapid degradation in vivo. To overcome these
challenges, synthetic collagen-based biomaterials are often stabilized via chemical cross-
linking and related methods (21), which while effective in extending longevity in vivo,
can negatively impact biological responses to collagen and alter the mechanical proper-
ties of the materials.
Given the importance of collagen’s structural integrity for its mechanical function

and thermal stability, one useful metric is the melting point (Tm), defined as the
midpoint during the temperature window in which the collagen triple helix unfolds
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(Fig. 1B) (22). The thermal stability of collagen from different
biological species or de novo collagen designs has been charac-
terized experimentally (23–28). Computational studies have
used molecular dynamics (MD) or coarse graining to determine
sequence–structure–function thermal and mechanical properties
in collagen across its different length scales (7, 12, 29, 30).
These prior research efforts have made significant progress in
understanding how mutations in the primary sequence affect
the thermal stability of collagen. However, these approaches are
computationally expensive and limited in the possibility to
explore vast variations of sequences and mutations.
A predictive framework that facilitates the a priori design of

collagen sequences with specific Tm values without prior
knowledge of chemical interactions would enable the efficient
design and subsequent synthesis of thermally stable collagens
for specific applications. Such a framework for discovery could
significantly propel the field of collagen-based biomaterials for-
ward. Toward this goal, equations were developed to predict
Tm values of collagen triple helices based on local interactions
between different amino acid chemistries in collagen tripeptides
following a GXY triplet ordering (31–33). In addition, an algo-
rithm (scoring function for collagen-emulating peptides’ tem-
perature of transition) was developed to predict the registry and
Tm values of synthetic collagen-based triple helices (34). Other
recent approaches have been based on machine learning, which
has emerged as a useful tool in the analysis of large datasets to
help develop design principles for biological materials without
knowledge of underlying biological interactions (35, 36). We
recently published a deep learning–based framework trained on
a large dataset of collagen sequences to quickly predict Tm val-
ues for a large number of mutations in collagen sequences (37).
Here, we report the development of a machine learning

model to design de novo collagen sequences with desired Tm

values. This approach builds on our previous deep learning
algorithm, which applied a self-evolutionary algorithm, one-
dimensional convolution, bidirectional long short-term mem-
ory (LSTM), and dropout features to predict Tm values of
existing collagen sequences (37). To demonstrate the predictive
power of our approach, we use MD, circular dichroism (CD)
spectroscopy, and differential scanning calorimetry (DSC) to

verify the Tm values of a few of our de novo collagen sequences.
From this approach, we are able to derive two insights. First,
our model has the highest predictive accuracy for de novo colla-
gen sequences with strong triple-helix folding as measured
through the triple-helical quality (ratio of positive to negative
peak intensity [RPN]) value extracted from CD spectroscopy,
and we demonstrate a correlation between hydrogen bonding
in the triple helix found through MD and the RPN value (38).
Second, given the high-throughput nature of our work, we
identify key collagen triplet amino acid sequences that espe-
cially contribute to the thermal stability of collagen. These
GXY triplet sequences should inform the design of the next
generation of thermally stable collagen sequences. The goal of
this work is to demonstrate the use of this generative algorithm
in suggesting de novo collagen sequences with desired Tm val-
ues, thus contributing to a more efficient method of designing
collagen-based materials with tailored properties.

Results

We report a generative model, implemented as a genetic algo-
rithm, to generate collagen sequences (Fig. 2 and SI Appendix,
Fig. S1) (39, 40). This model is named ColGen-GA to repre-
sent a collagen sequence generator, which is capable of generat-
ing (GA) homotrimeric type I collagen sequences with specific
Tm values. ColGen-GA builds on our previous Tm predictor
model ColGen (37), which uses a natural language processing
method (41, 42). Amino acids within the collagen sequence
were tokenized before passing them into the machine learning
model (43, 44). Each collagen sequence is encoded with tokens,
where amino acids are treated as a unique number from 1 to
21 so that the neural net can process the sequences.

Once collagen sequences are tokenized, they are passed into
a genetic algorithm to generate new sequences inspired by the
biological process of evolution, mimicking mutation, cross-
over, and mating of chromosomes. Here, the collagen sequen-
ces serve as a chromosome, and the genes are represented as
individual amino acids. Each generated collagen sequence is
optimized to meet the objective function of the algorithm,
which is a Tm value of choice. In this work, the Tm values are
selected as 22 °C or room temperature and 37 °C or body tem-
perature, as these are the two most relevant temperatures for
bioengineering applications.

In the genetic algorithm, an initial population is randomly
selected from the existing collagen dataset. Three parents are
further randomly selected from the initial population to
undergo tournament mating, where the two parents with the
closest Tm values to the desired Tm value are selected. The Tm

value is calculated from the previously reported ColGen model
(37). These parents then undergo cross-over and mutation to
produce “children” sequences. The cross-over and mutation
rate are optimized to ensure that there is sufficient sampling of
solutions, which prevents genetic drift while not leading to a
loss of good solutions. This optimization is a balance between
the number of generations required to reach convergence vs.
the number of unique sequences generated (SI Appendix, Fig.
S2). The child with the closest fit to the desired Tm value is
then selected as the final output. This whole process is repeated
over several iterations or “generations” until we reach a con-
verged state around the desired Tm value (SI Appendix, Fig.
S3). Further, we tested generation methods with “elitism,”
which is where the best children are overrepresented in the ini-
tial population such that the better traits stay in the genetic
pool for longer, and “randomness,” which is where the initial

A B

Fig. 1. The hierarchy of collagen helps maintain its structural integrity. (A)
The collagen amino acid primary sequence, often in the form of G-X-Y
repeat triplets, forms a larger chain. The three chains come together to
form a triple helix, characteristic of collagen, which is also known as tropo-
collagen. The tropocollagen assembles into larger fibril and fiber units. (B)
This work focuses on the thermal stability of tropocollagen. Thermal stabil-
ity is characterized by the Tm value, which is the midpoint temperature of
the denaturation process of the triple helix of tropocollagen to a disor-
dered state. Once collagen is not in a triple helix, it no longer contributes
to the mechanical stability of the larger fiber.
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population in the next generation is unrelated to the children
from the previous generation. While elitism helps ensure that
the quality of the generative algorithm does not decrease over
time, it has a disadvantage of converging on a local minimum
rather than finding the best solution. Selecting appropriate pop-
ulation sizes, mutations and cross-over frequencies, and elitism
is critical in the algorithm’s ability to generate a wide number
of sequences without losing the best features found in the gen-
erations. The specific parameters used in this model are listed
in SI Appendix, Table S1. Due to computational modesty, the
genetic algorithm model can easily be deployed on a laptop or
desktop computer without further requirement of GPUs.
The ColGen-GA model can quickly reach the desired Tm

value and maintain that value over several generations. In SI
Appendix, Fig. S3, the desired normalized Tm value of 0.9, cor-
responding to 37 °C, is reached almost immediately. The con-
vergence is even faster when elitism is implemented.
From the ColGen-GA, we are able to produce several de

novo sequences within our desired temperature range (Tm

values of 22 °C and 37 °C). We selected two sequences in each
temperature for further validation (collagen-like peptide 1
[CP1] and CP3 for 22 °C, CP2 and CP4 for 37 °C) as well as
another de novo sequence generated from a different generative
algorithm where the collagen primary sequence is not required
to be in a G-X-Y order (CP5). Table 1 shows strong agreement
between our initial prediction of the Tm value and the Tm value
found using an experiment within a few degrees centigrade.
Temperature sweep experiments revealed that the Tm values for
the CPs and type I collagen control as measured by CD and
DSC were in good agreement with those predicted by ColGen-
GA (Fig. 3, Table 1, and SI Appendix, Fig. S4). The slight
difference between CD and DSC is attributed to the higher
heating rate in DSC experiments.

The CD spectra of the de novo CPs show that the CPs are
able to form triple-helical structures (Fig. 4 A and B). The CPs
and the control follow a standard CD triple helix–forming col-
lagen spectrum. There is a clear positive signal at 222 nm in
the 5 °C wavelength scan (Fig. 4 A and B), related to the

NLP ColGen Deep
Learning Tm Predictor

Population

G P O G P O

G A C G L C

G C C G M O

100

Mutation

G P K G P O

G A C G L R

2

Best Child
De Novo Sequence

G P K G P O

1

Crossover

G P C G L C

G A O G P O

2

Elitism

G P K G P O

G P K G P O

G P K G P O

3

Tournament Mating

G P O G P O

G A C G L C

3

G C C G M O
G L C G M O

Fig. 2. The machine learning–based genetic algorithm used. Three sequences are randomly selected from a randomly generated population based on
the dataset collagen sequences. The three sequences undergo tournament mating to identify the two best parents; these parents undergo further cross-
over and mutations within their sequences to produce children offspring. The resulting children are then evaluated with the NLP (natural language proc-
essing) ColGen deep learning Tm predictor, and the best child matching the desired Tm value objective function is output. If elitism is implemented in the
model, the child is overrepresented in the initial population to help preserve its general sequence features. Numbers in the bottom right of the boxes
represent the numbers of sequences in each stage.

Table 1. Summary of the names, amino acid sequences, and Tm values of samples studied listed in order of
increasing to decreasing Tm value

Name Sequence Method

ColGen
Tm (°C)
model

CD
Tm (°C)
EXP

DSC
Tm (°C)
EXP

Tm calculator*
(°C) model

Collagen
type 1

Bovine collagen Control — 40.6 40.9 —

Std. GPOGPOGPOGPOGPOGPOGPOGPOGPOGPO Reference 62.0 — — 63.8
CP5 GPOGPOGPOGPOGPOGPPAGPOGROGRO Previous

algorithm†
46.6 21.5, 40.4, 60.9 26.5, 44.9, 62.8 22.2‡

CP4 GYOGPOGPOGKOGPOGKOGPOGPOGPHGPM Random 37.7 41.2 42.8 40.6
CP2 GPOGPOGPRGMOGPOGPOGPOGPO Elitism 37.3 35.4 36.4 38.5
CP3 GPOGPOGDOGATGPOGRCGPQGPOGPOGPO Elitism 22.0 20.8 22.6 21.1
CP1 GIAGPAGPOGDAGPOGPOGPOGPO Random 22.2 18.6 20.4 25.0
CP6 GVMGWGGALGYHGERGMNGHTGND Previous

algorithm†
�3.3 Does not form a stable helix �76.2

CP7 GEIGEVGSHGVNGHEGGFGYGGMGGG Previous
algorithm†

�26.6 Does not form a stable helix �83.0

EXP, experimental measurement.
*The Tm calculator prediction is from the work of Persikov et al. (22, 31–33, 71, 72).
†These de novo collagen peptides were generated from a previous genetic algorithm not discussed in the paper. Their Tm values, however, were predicted from ColGen, and as such,
they are useful for understanding the validation of the ColGen model.
‡The Tm calculator prediction from the work of Persikov et al. (22, 31–33, 71, 72) is unable to calculate Tm values for sequences that do not follow (GXY)n formatting.
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presence of a triple helix, which disappears in the 70 °C scan in
which collagen denatures (Fig. 4 A and C). The ratio of positive
signal at 222 nm to negative at 196 to 198 nm (RPN) serves as
a concentration-independent measurement of the quality and
quantity of triple-helix formation. An RPN value of 0.133 for
type I collagen is the highest compared with all the CPs (SI
Appendix, Table S2), indicating that it forms the best triple
helix; as expected, CP4 exhibited the highest RPN (0.129) of
all four CPs, followed by CP2 (0.121) and CP3 (0.104), values
similar to those of type I collagen. In contrast, CP1 and CP5
exhibited RPN values 61.6 and 35.3% lower than the control,
reaching values of 0.086 and 0.055, respectively. These results
indicate that CP2 to -4 were able to interact cooperatively,
developing stable triple helixes in a similar way to type I colla-
gen. Such interactions were less favorable for CP1 and CP5, as
seen by the lower RPN. The RPN value follows the order of
type I collagen control ∼ CP4 > CP2 > CP3 > CP5 > CP1.
This is also consistent with the intended Tm values of the CPs,
where CP2 and CP4 were designed to have higher Tm values
(around 37 °C) and thus, maintain a more stable triple-helical
configuration. Interestingly, CP5 showed a multistep denatur-
ation process with temperature, which was related to the inter-
rupted GXY sequence (SI Appendix, Fig. S5). This multistep
behavior hinders the assignment of a single Tm value to CP5.
Upon experimentally measuring the RPN and the Tm, we

found that the higher the RPN value, the lower the differences
between ColGen-GA predicted and measured Tm values (Fig.
5A). This is likely because a higher RPN corresponds to a

higher-quality triple helix, which is more likely present for the
high–Tm value sequences as discussed.

To further validate the ColGen-GA model and provide sup-
port to the CD and DSC experiments, MD simulations were
also used to simulate experimental heating of the triple-helical
peptides. While exact Tm cannot be extracted from MD due to
the faster heating rate used in simulation compared with experi-
ment, MD simulations confirm that the stability ordering
of the CPs is (GPO)10 > CP4 ∼ CP2 > CP3 > CP5 > CP1
(Fig. 5B), as observed in CD and DSC measurements. In MD,
(GPO)10 rather than bovine collagen is used as a model colla-
gen peptide mimetic with the highest Tm value. The MD
results demonstrate that all of the peptides are correctly ordered
in terms of their thermal stabilities, except for CP5, whose ther-
mal stability in MD simulations is predicted to be much less
than experimentally measured. This discrepancy is likely due to
a poorer prediction of triple-helical structure for CP5, as it does
not follow the GXY pattern consistently.

MD simulations also enabled us to further validate the rela-
tionship between RPN and Tm values and the accuracy of our
predictions by developing a mechanistic understanding of the
different CPs. We evaluated the triple-helix quality of the dif-
ferent CPs by measuring the amount of hydrogen bonds
between the strands as a proxy for triple-helix strength and
related it with their RPN value (SI Appendix, Fig. S6). We
found that the CPs with higher RPN present more hydrogen
bonds in their triple-helix structure compared with CPs with
lower RPN values (Fig. 5C and SI Appendix, Table S3). An

A B

Fig. 3. CD temperature scan at 222 nm for collagen peptides demonstrating triple-helix structure: (A) 22 °C peptides CP1 and CP3 and (B) 37 °C peptides
CP1 and CP3. Scans at 1 °C/min with sampling every 0.1 °C indicate that de novo peptides have Tm values within a couple of degrees of the target Tm.

A B C

Fig. 4. CD wavelength scan at 222 nm for collagen peptides demonstrating triple-helix structure: (A) type I collagen as a control at 5 °C and 70 °C and
de novo peptides at (B) 5 °C and (C) 70 °C. (B) Inset is zoomed into wavelength ranges from 210 to 250 nm for clarity. De novo peptides demonstrate the
same characteristic behavior as the type I collagen sequence, indicating that they have a triple-helical structure. Both the type I collagen and de novo pepti-
des denature at 0 °C.
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image of representative hydrogen bonds is provided in SI
Appendix, Fig. S7, and we note that in our sequences, glycine
qualitatively demonstrates the most hydrogen bonding. To our
best knowledge, this is a demonstration of the direct relation-
ship between the number of hydrogen bonds computed in MD
and RPN values experimentally measured with CD.
Given the validation of the model with experiment and MD,

we conducted high-throughput processing to derive insights
into GXY triplets of collagen that are most suitable in achieving
desired Tm values. After generating 1,000 de novo collagen
sequences with Tm values of 22 °C and 37 °C (Datasets S1 and
S2 and SI Appendix, Fig. S8), we found the top 1.3% most
commonly occurring triplets within our generated sequences
and determined their co-occurrence matrices in Fig. 6 A and B.
The co-occurrence matrix helps show which GXY triplets occur

with other GXY triplets to provide a graphical insight to how
to build a larger sequence from a combination of triplets. GPO
emerges as the most commonly present triplet in the generated
sequences. This is in agreement with the literature because
GPO is the canonical triplet in increasing the strength of CPs,
and (GPO)x is often used as a gold standard in collagen
mimetic peptides for thermal stability (33). Beyond the pres-
ence of GPO, we also find a number of other triplets that
emerge as useful motifs in achieving the desired Tm values. In
alignment with others who have noted the stabilizing effect of
KGE/KGD (33, 34, 45), lysine, glutamic acid, and aspartic
acid contribute stability to the collagen peptide, as the residues
GPK, GEO, and GDO have a minimal decrease in thermal sta-
bility compared with other frequently occurring triplets (Fig.
6B). Interestingly, all of these triplets are in a GPY or GXO

A B C

Fig. 5. Relationship between collagen triple-helix quality and Tm values using experiment and MD simulation. (A) There is an inverse relationship
between the RPN and the difference in Tm value between the experimental CD Tm and ColGen machine learning (ML) predicted Tm:

ΔTm = ðTm, experiment CD� Tm, ColGen� GAÞ
Tm, experiment CD . This indicates that the ColGen algorithm is able to more robustly predict the thermal stability of higher-quality triple heli-

ces. The RPN also follows a direct relationship with Tm value, indicating that more stable triple helices have a higher Tm. (B) MD simulations show that the
CPs maintain roughly the expected stability, measured by rmsd of the triple helix as predicted by ColGen. (C) Hydrogen bonding analysis at 50 °C in the MD
simulation shows a similar correlation as the RPN in A. Peptides with more hydrogen bonding generally have a lower deviation from ColGen-predicted Tm
values compared with experimental Tm values. Further, RPN has a direct relationship with the number of hydrogen bonds in the CP, indicating that a
higher-quality triple helix has more hydrogen bonding.

A B

C D

Fig. 6. High-throughput identification of the most frequent sequences in de novo collagen peptides. The co-occurrence matrix of the 1,000 generated
de novo collagen sequences for 22 °C (A) and 37 °C (B) when sorted by the most frequent triplets shows which triplets occur together in the same sequence.
These most frequent triplets from 22 °C (C) and 37 °C (D) are substituted n times into a (GPO)14 ideal standard peptide, and their destabilizing effect on Tm is
evaluated, where ΔTm = Tm(GPO)14 � Tm(sequence).
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configuration, where either P or O is present with the other
guest amino acid replaced. Further, these guest amino acids do
not follow a consistent physicochemical trend, and there is a
range of hydrophobic, polar, or charged residues that contrib-
ute to the mechanical stability of the CP. This lack of physico-
chemical consistency is not something we could have inferred
from analytical outcomes given that there is no trend in the
data. We also note that the demonstrated guest amino acids do
not follow the same occurrence as amino acids naturally occur-
ring in collagen, where basic residues are in the Y position and
Glu or hydrophobic residues are in the X position (33).
Instead, the guest amino acids demonstrated here follow a dif-
ferent occurrence given that this is a synthetic set. This provides
further justification for using large data generation means
through machine learning to derive design principles. Further,
comparing the highest-frequency triplets in the 22 °C (Fig. 6A)
to 37 °C (Fig. 6B) data, we find that ∼50% of the most
frequent triplets in 22 °C are also found in the list of most fre-
quent triplets at 37 °C. These are likely the triplets that con-
tribute most to the thermal stability of the collagen sequence,
while the other triplets help achieve the lower target tempera-
ture of 22 °C.
Given these most frequent triplets, we sought to understand

which triplets had the greatest effect on the Tm values (Fig. 6 C
and D). When substituted into the highest-stability (GPO)14
sequence, the top triplets in the 37 °C sequences induce a lower
amount of destabilization of the Tm value, where the destabili-
zation is measured as ΔTm = Tm(GPO)14 � Tm (de novo
sequence), compared with the most frequent triplets in the
22 °C de novo sequences.

Discussion

We developed a platform that uses a deep learning model
trained with input sequences from the literature to generate de
novo collagen sequences with desired Tm values. The model,
ColGen-GA, incorporates an LSTM-based Tm predictor
reported in our previous work (37) and a generative genetic
algorithm to produce new sequences with specified thermal sta-
bility behavior. We then validated our model by selecting some
of the generated sequences and testing them experimentally
with CD and DSC and computationally with MD simulations.
The CD experiments confirmed that these new collagen mimetic
peptides had triple-helical structure, and together with DSC, the
experiments confirmed the predicted Tm values of the de novo
sequences within a few degrees centigrade. By studying the qual-
ity of the triple-helical formation of the CPs, as measured
through its RPN value, we determined that higher–RPN value
CPs have less deviation between the experimental and ColGen-
GA–predicted Tm values. This means that CPs that have a
higher-quality triple helix and thus, a higher Tm are likely to
have a better Tm prediction than CPs that are less able to form
triple helices. These experimental results were also further vali-
dated by MD simulations, which showed that the de novo pepti-
des followed the stability order as predicted and that more
hydrogen bonds correlate directly with higher RPN values and
higher Tm values. Such a result is particularly relevant since a
mechanistic understanding of the relationship between the RPN
values and the number of H bonds promotes a deeper under-
standing and rationalization of the thermal stability of collagen
and more broadly, protein sequences.
Given the validation of the model, we used the large dataset

and computational power of the machine learning model to dis-
cover important triplets in the collagen sequences. ColGen-GA

enables the fast generation and prediction of Tm values of 1,000
new sequences in just 8 h using a laptop, compared with the 10
d per collagen sequence simulation required for MD on two
nodes and 32 CPUs. Because of this computational power and
speed, we are able to derive insights into important collagen
sequences compared with what our previous modeling or experi-
mental capacities enabled. We identified the highest-frequency
GXY triplets from the de novo sequences generated for target
Tm values of 22 °C and 37 °C. The triplets identified can be
used by other researchers when designing new collagen sequences
with specific Tm values. To assess these triplets in the context of
a longer sequence, we also provided a co-occurrence map to
understand how these important triplets work together in longer
sequences. These triplets would not have been discovered
through analytical means, as we find that a consistent physico-
chemical principle, such as hydrophobicity or charge, to explain
the triplet behavior is not present in the most frequent triplets.
We envision that the triplets identified here could be used in cre-
ating useful collagen sequences.

While the model enables the rapid generation of sequences
at desired Tm values, there are some limitations that can be
addressed in future work. These limitations can primarily be
addressed by expanding the dataset to include more collagen
sequences with varying lengths and compositions. Most of the
collagen sequences used in our present dataset were collagen
mimetic peptides rather than complete collagen sequences.
Incorporating longer sequences would help in the design of col-
lagen proteins from bacteria, which often produce longer pro-
tein sequences (26, 46, 47). Further, most of the sequences in
the dataset incorporate hydroxyproline (O) or a specific subset
of guest residues. As such, building sequences that do not
incorporate O, which is an especially important limitation to
bacterially produced collagens that have no means of producing
O, would be challenging with the current dataset used.
Expanding the compositional diversity of the dataset would
also help further improve the prediction. While we have strong
predictive capacity (SI Appendix, Figs. S9 and S10), this predic-
tive capacity decreases at the lower and higher ranges of Tm
values, where fewer data points exist in the training dataset.
Adding more triplet sequence variety would improve this con-
stantly evolving machine learning model. Another limitation of
exploiting GA could be the efficiency. Compared with other
optimization tools, such as the gradient method, GA has a slow
computational speed when processing large amounts of initial
populations or local minima. The convergence rate for the
same size of the initial population can be modulated by simu-
lated annealing to change the probability of cross-over and
mutation on the fly (48). Finally, manipulating the model itself
would help with the prediction of heterotrimer sequences
beyond the homotrimers presented here.

Despite these limitations, the reported approach represents a
powerful and efficient tool in the design of collagen sequences
with specific Tm values. Our approach should lead to the
design of collagen biomaterials and tunable properties with
a priori–desired Tm values. Further, our presentation of triplets
will help inform how to build mechanically robust collagen
sequences at desired temperatures into the future, especially
given the vast design space of 1021 combinations of (GXY)10
sequences.

Beyond the generation of sequences as an engineering tool,
our approach contributes to an understanding of collagen dena-
turation rates and how these Tm values correlate to structure.
Such information is important (for example, in understanding
the mechanical behavior of specific tissues with impacts on
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denaturation or biological function in scenarios, such as thermal
treatments for cancer). Further, many collagen-based diseases,
such as Osteogenesis imperfecta, are based on mutations in the
primary sequence of collagen. This method would help offer
insight and perspectives on these disease states in the context of
thermal stability, with implications for future repair routes.
Another aspect is collagen degradation by matrix metalloprotei-
nases (MMPs), crucial in many physiological processes, such as
wound healing, tissue remodeling, and organ morphogenesis. It
is well known that stable triple helices are far more resistant to
MMP degradation than denatured collagen, reflective of the
structural stability of the matrices (49, 50). Thus, CPs capable
of forming better triple helices are, thus, more resistant to
MMP degradation. Similarly, higher mechanical integrity and
structural order of collagen result in a more robust collagen
matrix (49, 51). Considering that human mesenchymal stem
cells proliferate, propagate, and differentiate in response to the
mechanical properties of the matrix they develop in refs. 52–54,
we envision that the ability of designing collagen sequences with
tailored thermal stability with this deep learning method would
allow us to create biomaterials with on-demand MMP degrada-
tion rates, mechanical properties, and tailored influence on cell
behavior. Finally, the role of collagen sequences in the context
of mineralization in vivo, such as with hydroxyapatite and bone
formation, can benefit from these methods related to engineer-
ing approaches to modulate organic (collagen) and inorganic
(e.g., hydroxyapatite) interfaces related to mechanics and bone
structure–function.

Materials and Methods

Collagen Dataset. We collected 633 homotrimer collagen sequences with
reported Tm values from a survey of the literature (Dataset S3) (4, 31, 33, 47, 49,
55–72). The distribution of the dataset is presented in SI Appendix, Fig. S6,
where sequences have experimentally measured melting temperatures ranging
from �17 °C to 70 °C, with a mean value at ∼30 °C. The data show a normal
distribution (SI Appendix, Fig. S10). The dataset is used to train the deep learn-
ing ColGen model.

Collagen Samples. Several de novo sequences from the ColGen-GA model
were selected for synthesis and experimental validation. These CPs were synthe-
tized by GeneScript Biotech (95% purity and trifluoroacetic acid removal). As the
triple helix–forming control, commercially available bovine type I collagen was
used (PureCol TypeI Collagen, catalog no. 5005; AdvancedBiomatrix). Table 1
summarizes the peptide naming scheme, amino acid composition, and experi-
mentally measured Tm values.

CD. Spectra were acquired using a Jasco J-815 Circular Dichroism Spectrometer.
CPs and bovine collagen type I were dissolved in PBS at 0.3 mg/mL (final pH of
7.1 to 7.3). Samples were kept at 5 °C for 72 h before scanning in the far ultravi-
olet (UV) (180 to 260 nm) at 5 °C. Ellipticity at 222 nm was monitored as a func-
tion of temperature while heating the samples from 5 °C to 70 °C at 1 °C/min
with data collection every 0.1 °C. For derivatization of the temperature scans and
calculation of the minimum of the first derivative, the data were smoothed using
a fast Fourier transform filter with a cutoff frequency of 0.342 Hz. Tm values were
calculated as the minimum of the first derivative of the temperature scans. After

reaching 70 °C, the temperature was maintained, and samples were scanned
from 180 to 260 nm. CD spectra included accumulating three scans at a scan-
ning speed of 20 nm/s and 4 s of digital integration time. For all plotted data,
the high-tension voltage of the photomultiplier was kept below 600 V.

DSC. Thermograms were acquired using a TA Instruments DSC (Q100 series; TA
Instruments). CPs and collagen type I were dissolved in phosphate buffered
saline (PBS) at 50 mg/mL (final pH of 7.1 to 7.4) and kept at 5 °C for 72 h before
measurement. A total of 20 μL of each sample was hermetically sealed in an alu-
minum pan (Hermetic Tzero pans model 901684.901; TA Instruments) and
scanned from 5 °C to 65 °C at a rate of 2.5 °C/min using as a reference 20 μL of
PBS. The melting temperature was considered as the minimum of the endo-
therm (SI Appendix) (32).

MD. MD simulations were performed using the Nanoscale Molecular Dynamics
(NAMD) code with the Chemistry at Harvard Macromolecular Mechanics
(CHARMM) force field (73, 74), which also includes parameters for the hydroxy-
proline residue. We prepared each peptide topology using the triple-helical
collagen building script (75) based on the primary amino acid composition,
including the hydroxyproline residue. The protein was solvated with a 2.4-nm
boundary water box using TIP3P (transferable intermolecular potential with
3 points) water molecules as the solvent. The total number of atoms in the
solvated system was ∼90,000. A 1-fs time step was used, and rigid bonds were
applied to constrain the bonds of the water molecules. van der Waals interac-
tions were computed using a cutoff for a neighbor list at 1.4 nm, with a switch-
ing function from 1.0 to 1.2 nm. For electrostatic interactions, the particle-mesh
Ewald sums method was used with periodic boundary conditions. A preliminary
energy minimization was performed using a steepest descent algorithm. The sys-
tems were then equilibrated at 275 K for 5 ns each under a constant atom, vol-
ume, and temperature (NVT) and then, constant pressure (NPT) ensemble. The
resulting systems were further equilibrated under NVT for 2 ns before beginning
the heating process to mimic the CD and DSC experiments. The temperature of
the simulation was increased by 10 K every 10 ns from 275 to 600 K (45). rmsd
of the protein backbone and hydrogen bonding number were determined from
the last 6 ns of each temperature by using visual MD plug-ins on trajectory files
that were output every 50 ps. Each simulation was repeated three times.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information.
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