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Dynamic fracture is an important area of materials analysis, assessing the atomic-level
mechanisms by which materials fail over time. Here, we focus on brittle materials failure
and show that an atomistically derived progressive transformer diffusion machine learning
model can effectively describe the dynamics of fracture, capturing important aspects such as
crack dynamics, instabilities, and initiation mechanisms. Trained on a small dataset of
atomistic simulations, the model generalizes well and offers a rapid assessment of
dynamic fracture mechanisms for complex geometries, expanding well beyond the original
set of atomistic simulation results. Various validation cases, progressively more distinct
from the data used for training, are presented and analyzed. The validation cases feature
distinct geometric details, including microstructures generated by a generative neural
network used here to identify novel bio-inspired material designs for mechanical perfor-
mance. For all cases, the model performs well and captures key aspects of material failure.
[DOI: 10.1115/1.4055730]
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1 Introduction
The dynamics of fracture [1–10] is an intriguing challenge in

mechanics and materials science. In brittle materials, the focus of
this study, cracks initiate upon a critical loading level and propagate
rapidly throughout the material. Depending on the details of the sce-
nario, such as the orientation of the crack relative to the applied
load, the crystal orientation, critical temporal aspects such as the
loading rate, the precise mechanisms, and temporal evolution, of
fracture, changes drastically. A method commonly applied to
model the dynamics of brittle fracture is the use of molecular
dynamics (MD) [10,11]. However, such models can be challenging
in terms of computational needs and quickly reach their limits espe-
cially when combined with optimization algorithms that seek to
identify a material’s optimal micro- or nano-structure to meet
certain design targets—such as preventing fractures from originat-
ing or directing fractures to move in a certain geometric fashion.
New modeling tools are hence required to expand the MD results
in a multiscale scheme, to effectively scale a set of MD results
toward broader applicability (Fig. 1).
In this paper, we propose a method to use MD simulation results

to train a deep neural network to directly and efficiently predict
dynamical information of crack spreading. In recent work, AI
systems have been shown to generate complex image solutions to
text prompts [12–15]. In the context of modeling a physical
system, here we replace the text prompt with an expression that
uniquely characterizes the input microstructure of a material—for
instance, used to characterize the presence of voids or cracks, as
outlined in Fig. 2. We then train a model to not only generate a
single image but rather to produce a series of simulation frames
that predict the dynamics of defect evolution from the input.

Various deep learning methods have been used to generate field
data such as images and, in some cases, video. Earlier attempts used
autoencoder architectures [16,17] and generative adversarial neural
networks (GANs) [18–20]. More recently, transformer-based diffu-
sion model architectures have emerged as a broadly applicable
approach for many data modalities including state of the art
text-to-image generation (e.g., VQGAN-CLIP [21,22], GLIDE
[14], DALL-E 2 [12,23], Imagen [13], or Latent/Stable Diffusion
[24]. Other recent work has focused on using deep neural networks,
including GAN and transformer architectures for video generation
[25–27]. However, in GANs, solutions are generated from noise,
in diffusion models a neural network is trained to translate,
through a series of progressive reverse diffusion steps [28], noise
into a proper solution, via a Markov chain. This denoising strategy
can be conditioned with additional information, such as text
prompts or as done in this study, an embedding of the material
microstructure.
The purpose of this study is to explore the use of diffusion models

for modeling dynamical physical phenomena and specifically the
dynamics of fracture. Our model is trained against MD simulation
results, here using a simple 2D Lennard–Jones material [8] that is
known to be a brittle material. It is noted that we anticipate that
the framework can be explored and possibly extended to other
dynamical phenomena in materials science, chemistry, physics,
and engineering. Naturally, instead of using simulated data, the
model could also be trained against other dynamical data (e.g.,
video or image sequences) from experimental studies, or use data
from various mechanical engineering devices. Since the model
can convert relatively low-dimension input (text, a single slice of
a microstructure, etc.) into a higher-order output—here, frames of
a time sequence of fracture states—it may also be possible to use
such models to predict folding patterns in origami or other
2D-to-3D transformations [29,30].

1.1 Opportunities and Challenges. One of the challenging
aspects of applying deep learning to mechanics is to expand
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models beyond relatively simple interpolation solutions or
“curve fitting” to make predictions for scenarios far from the
data set that was used to train the model. Developing a better
understanding of the predictive capacity of physics-based deep
learning has been a subject of various investigations [31,32]
and is an important frontier in the field. In this paper, we

focus on using deep learning for dynamic fracture modeling
and investigate the use of a small data set generated from lower-
level atomistic-level simulation results and the resulting general-
ization capacity in the context of other geometries, to bridge
scales [33–37]. Modeling field predictions has been reported
using earlier deep learning models developed for solid mechanics

Fig. 1 Overall workflow of the results reported in the paper, using a progressive transformer
diffusion model (details on the model in Fig. 3(a), Materials and Methods, and Supplementary
Information). We conduct a series of atomistic simulations based on an empirical potential
(albeit, in principle, these simulations could be obtained based on more complex interatomic
potentials or even quantum-level simulations; albeit not done here) to train a deep neural
network. Having been trained on a relatively small set of sample simulation results, the
deep neural network is then applied to generalize predictions toward a wider range of geom-
etries, beyond those included in the training set.

121009-2 / Vol. 89, DECEMBER 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/89/12/121009/6925738/jam
_89_12_121009.pdf by M

assachusetts Inst O
f Tech. user on 16 M

arch 2023

http://dx.doi.org/10.1115/1.4055730
http://dx.doi.org/10.1115/1.4055730


problems including elasticity and fracture cases [38–42] but has
not yet been applied to predict high-resolution full-field failure
sequences.

1.2 Scope of This Paper and Outline. It is emphasized that
this paper is meant to provide the first application of diffusion
models to describe dynamic materials failure, with numerous
research directions and open questions left to future work. The

model is tasked to learn to construct the evolution of the field solu-
tion, here focused on the potential energy field so that we can
closely examine the spreading of cracks and other atomistic
defects. We first report details on the data set generation and train-
ing, followed by a series of testing and validation steps. We succes-
sively expand the challenge of the test conducted to investigate the
predictive limit of the model. We conclude the paper with a discus-
sion on limitations and possible next steps.

Fig. 2 Molecular dynamics (MD) simulation setup (a) and sample result from MD simulation, used to build the training set
(b) and (c). The MD simulation setup consists of a 2D hexagonal lattice with LJ interactions; exposed to tension in the
x-direction. The small area outside of the area defined by the dashed line is fixed, whereas all atoms within are free to
move in x and y. We extract the potential energy fields in the region with mobile atoms for the construction of the data
set. (b) Example input microstructure and predicted 10 frames that capture the evolution of the potential energy fields,
thereby offering a detailed visualization of defect dynamics. Crack surfaces and dislocations are visualized in dark
shade/red color; a perfect hexagonal lattice in light shade/blue color. (c) Samples of the type of microstructures used in
the training set. All input microstructures feature a single crack, varied randomly in size, shape, and orientation. All
cracks are elliptical.
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2 Results and Discussion
To start, Fig. 2(a) shows themolecular dynamics (MD) simulation

setup and sample result from the MD simulation. The results from a
large number of MD simulations similar to that one are used to build
the training set. The MD simulation setup consists of a two-
dimensional (2D) hexagonal latticewith Lennard–Jones (LJ) interac-
tions (as described inMaterials andMethods). The crystal is exposed
to tension in the x-direction. Figure 2(b) depicts an example input
microstructure and 10 frames predicted from MD simulation.
These 10 frames capture the evolution of the potential energy
fields, thereby offering a detailed visualization of defect dynamics
(high-energy atoms are displayed in red color, representing surfaces
or other defects that deviate from the perfect crystal structure that is
visualized in blue). Figure 2(c) shows a larger number of samples of
the type of microstructures used in the training set. All input micro-
structures feature a single crack, varied randomly in size, shape, and
orientation, and all cracks are elliptical.
Figure 3(a) shows a summary of the neural network architecture

used in this study, whereby a microstructure encoder is fed to two
successive U-Nets (Unet 1 and Unet 2). Each U-Net produces a
series of 10 frames (selected here for a demonstration of the
method, but can be increased in principle), scaling up to a final res-
olution of 128 × 128 field predictions. To provide additional details
to the formulation of the diffusion model, Fig. 3(b) depicts the
denoising process that is learned. The top defines a Markov chain

operator q that successively adds Gaussian noise (according to a
defined noise schedule that defines how much noise ɛi is added at
each step i), translating the original data X0 (left) into pure noise
(right), XF via: whereby

Xi+1 = q(Xi) (1)

In a diffusion model, a deep neural network is trained to reverse
this process, identifying a reverse operator p that maximizes the
likelihood of the training data, thereby offering a means to translate
noise to solutions

Xi−1 = p(Xi) (2)

The deep neural network trained results in the reverse operator p,
which can then be used to systematically convert Gaussian noise into
a proper field solution and, in our case, a set of dynamical frames that
reflect the temporal process of cracking. Since all Xi have the same
dimensionality, the input and output of p must also be of the same
dimension and hence the use of a U-Net architecture. There are addi-
tional details in the exact formulation of the model, including the
encoding of the time-step in the neural network (since the amount
of noise changes at every denoising step, the model needs to under-
stand where in the process it is situated in order to predict the correct
amount of noise removal). The reader is referred to these papers for
additional mathematical details [43–46].

Fig. 3 Summary of the neural network architecture used in this study, whereby amicrostructure encoder is fed to two
successive U-Nets (Unet 1 and Unet 2; simple visual of a U-Net shown in Figure S4 available in the Supplemental
Materials on the ASME Digital Collection). Each U-Net produces a series of 10 frames, scaling up to a final resolution
of 128× 128 field predictions. (a) Summary of the model architecture and condition of the noise input based on the
microstructure and (b) illustration of the learned process p during training, denoising data to yield proper field solu-
tion, as described in Eq. (4). The schematic in b only shows one frame, whereas the model is trained to predict a suc-
cessive number of frames to capture dynamical information.
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Figure 4 shows sample neural network prediction results, and a
comparison with ground truth obtained from MD simulation, for
validation data. As can be seen, the model accurately predicts
whether a crack not only nucleates but also captures the dynamics
of fracture. Figures 4(a) and 4(b) show cases where fractures initi-
ate, due to the presence of a large crack exposed to loading orthog-
onal to the long defect axis. Figures 4(c) and 4(d ) represent cases
where cracks are oriented predominantly in the direction of stress
or too small to nucleate further damage.
Figure 5 provides a detailed analysis of testing the predictive

capacity of the model for cases with multiple cracks, not seen in
the training process. Figure 4(a) shows a multi-crack case where
nucleation of fracture does not occur. Conversely, Fig. 4(b)
shows a case where cracks nucleate. Figure 4(c) shows a direct com-
parison of the dynamics of fracture, for the prediction and ground
truth. While some differences emerge, the overall damage spreading
mechanisms and dynamics are predicted well.
For further analysis, we analyze the statistics of the potential

energy field for all validation cases, with results shown in
Fig. 6. Figure 6(a) shows predicted versus ground truth standard
deviation and Fig. 6(b) predicted versus ground truth variance.

Excellent agreement is found, with R2 values of ∼0.99 for both
cases.
Next, Fig. 7 depicts an analysis of even more complex validation

cases. Here, the analysis is only shown for the final frame. The input
microstructures considered here are vastly distinct from the types of
cracks in the training set. Still, the model makes good predictions
and good agreement with respect to dynamics of fracture, and initi-
ation location of the damage. Another important observation is that
the model has learned to identify surface atoms; this can be seen, for
instance, in Fig. 7(d ) where the interior of the heart-shaped defect is
clearly surrounded by a row of dark shaded/red-colored atoms indi-
cating the presence of a material surface. It is further noted that
Fig. 7( f ) shows a complex spider web-like microstructure (more
details on that case below, including how this microstructure was
generated using a deep neural network). A first important observa-
tion about this case is that both prediction and ground truth show
that no damage is predicted to occur. We believe that this is
likely due to a flaw-tolerance size effect since the filaments in the
architected material are only a few atomic spacings large. The
column on the right shows, for each case, a normalized histogram
of the potential energy field.

Fig. 4 Sample neural network prediction results and comparison with ground truth obtained from MD simulation, for valida-
tion data. As can be seen, the model accurately predicts whether a crack not only nucleates but also captures the dynamics of
fracture. (a) and (b) Cases where fractures initiate, due to the presence of a large crack exposed to loading orthogonal to the
long defect axis. (c) and (d ) Cases where cracks are oriented largely in the direction of applied load (c) or too small to nucleate
further damage (d ).
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We now go into a bit more depth and analyze two cases that
are included in Fig. 7. First, Fig. 8 shows a detailed analysis of
the dynamics of fracture for one of the validation cases
(Fig. 6(c)). The model has captured the details of the spreading
mechanisms and dynamics well. Next, Fig. 9 presents a detailed
analysis of the final potential energy field for the case presented

in Fig. 7( f ). Figure 9 shows the process by which the input
microstructure was generated from a text prompt using the
Latent Diffusion model, a text-to-image translation algorithm
[24,47]. The produced image in “sketch” style, used to obtain
an input that is largely bimodal in terms of colors, is processed
by thickening the lines and increasing the contrast, yielding a

Fig. 5 Testing the predictive capacity of the model for cases with multiple cracks, not seen in the training process. Panel
(a) shows a multi-crack case where nucleation of fracture does not occur. Conversely, panel (b) shows a case where cracks nucle-
ate. Both panels (a) and (b) show the final predicted result (frame 10). (c) A direct comparison of the dynamics of fracture, for the
prediction and ground truth. Certain differences can be observed, such as slightly different locations of crack nucleation and sto-
chastic variations of the precise crack path. This could be a subject of further study and investigation, especially to explore the
types of variations seen in the MD simulation itself (which show stochastic results themselves).

Fig. 6 As further analysis, we analyze the statistics of the potential energy field for all valida-
tion cases. (a) Predicted versus ground truth standard deviation. (b) Predicted versus ground
truth variance. Excellent agreement is found, with R2 values of ∼0.99 for both cases.
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black-and-white image (black=material, white= no material; con-
sistent with the notation used for the other cases considered, e.g.,
shown in Fig. 2). This simple example, which could be expanded
upon in future work, shows how a dynamic diffusion model as

used here could work hand-in-hand with a generative text-to-
image model to produce interesting new designs, which can
then be assessed against a particular material function or objective
function.

Fig. 7 Analysis of more complex validation cases; analysis shown for the final frame. The input microstructures considered here
are vastly distinct from the types of cracks in the training set. Still, the model makes good predictions and good agreement with
respect to dynamics of fracture, and initiation location of the damage. Note, panel ( f ) shows a complex spider web-like microstruc-
ture. Both prediction and ground truth show that no damage is predicted to occur likely due to a flaw-tolerance size effect since the
filaments in the architected material are only a few atomic spacings large. The column on the right shows, for each case, a normal-
ized histogram of the potential energy field.
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Fig. 8 Detailed analysis of the dynamics of fracture for one of the validation cases (Fig. 7(c))

Fig. 9 Detailed analysis of the final potential energy field for the case presented in Fig. 7( f ). (a) Generation
of the input microstructure from a text prompt using the latent diffusion model [24,47]. The produced image
in “sketch” type is processed by thickening the lines and increasing the contrast, yielding a black-and-white
image (black=material, white=no material; consistent with the notation used for the other cases consid-
ered, e.g., shown in Fig. 2).
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3 Conclusion
Dynamic fracture has been an area of intense interest in the mate-

rials modeling community. Here, we have shown that the aggregate
complexity of the results of MD simulations can be effectively
learned and upscaled using a diffusion model. This model is able
to predict a series of frames that reflect the dynamics of microstruc-
tural change of a material, here examined for potential energy fields
used to characterize the presence and geometry of cracks and other
damage.
The model was shown to generalize well. In spite of being trained

on a small data set with simple single cracks (Figs. 2(b) and 2(c)),
the model has a capacity to make predictions for microstructures
vastly different from the training set. This has been shown in
Figs. 5–9, for instance. We analyzed not only the spreading dynam-
ics of cracks, but also considered the effective statistical properties
of the potential energy fields produced by the model. As expected in
MD simulations, there are stochastic variations of the precise path a
crack takes. This can be easily validated by studying the error plots
included in the various figures. More work could be done to explore
the nature of these statistical variations, especially when cracking is
unstable (e.g., deviating from a straight line), as is often the case.
The most interesting performance assessment of the model is

seen for the cases considered in Fig. 7, where we predicted
damage evolution for microstructures that were vastly different
from the training set. Cracks were no longer ellipsoidal, but took
on various shapes including hand-drawn ones, text-generated
microstructures, and furthermore, featuring straight lines that the
model had never seen during training. While some differences are
clearly visible, the results are remarkably good considering the
small data set used to train. We anticipate that using a larger
more diverse data set can offer significantly improved performance,
and even consider a variety of other prompts beyond simply the
microstructure, but also including boundary conditions. This
could easily be realized by providing multiple input layers
beyond a single microstructural image, but also including different
material types, chemical details, concentration information, or loca-
tions of displacement, force, and other boundary conditions.
Finally, we explored one case where the input microstructure was

not constructed mathematically but instead produced by a genera-
tive diffusion model (Fig. 9). This resulted in a significantly
complex material design but the model was still able to yield
good results. The method opens a variety of new directions in
mechanics, especially converting design data into dynamical or
higher-dimensional information. The formulation of a diffusion
model, rooted in statistical physics (Fig. 3(b)), may offer added ben-
efits toward use in engineering.
There are many ways by which the model could be improved.

The scope of the study reported in this paper was deliberately
focused on a very small data set to explore how predictive a
model could be under this constraint, but increasing the dataset
for training—or exploring the use of fine-tuning or transfer learning
to predict distinct dynamical processes—could be a useful future
research direction. Other potential steps to be taken include an
increase in the number of denoising steps. In our study, we used
10, but better results are expected with ∼64 steps, which as
shown in Ref. [46] is still significantly reduced from 1,000 steps
or more as done in the original paper [43]. One may also explore
to deepen the U-Net architecture and increase the size of the
neural network by adding additional attention modules or more
attention heads. These and other avenues are left to future work.

4 Materials and Methods
4.1 Molecular Dynamics Simulations. We use a simple frac-

ture model to generate the dataset. The data set consists of an input
microstructure and a series of images that capture the evolution of
the potential energy field [10,48,49] (the simulation setup is
similar as reported in, with a higher strain applied to drive crack ini-
tiation [39]). We consider the geometry shown in Figs. 1(a) and

1(b), depicting a simple triangular lattice with a 12:6 LJ interatomic
interactions [50,51] under uniaxial loading, where interatomic inter-
actions as a function of interatomic distance rij are defined by

ϕ(rij ) = 4 ε
σ

rij

( )12

−
σ

rij

( )6
[ ]

(3)

while the LJ potential is a simplistic representation of atomic
bonding in materials, its use in a 2D hexagonal geometry is
known to yield a brittle material [10,51] and hence a good choice
for the proof of concept study done here.
The input geometry features a series of randomly located and ori-

ented cracks of different sizes and aspect ratios, as shown in
Fig. 1(b), showing also the fixed boundaries in which forces and
velocities of atoms are set to zero to allow for the application of
strain for mechanical loading. The system is confined to 2D
atomic motions in the x- and y-directions. The LJ interatomic poten-
tial parameters used in the generation of the data set, as defined in
Eq. (2) (see Ref. [39] for further details) are ɛ= 1 and σ= 1 with a
cutoff radius of rcut= 1.2 (all simulations carried out in non-
dimensional units).
The MD simulations are carried out using the LAMMPS simula-

tion package [52]. All samples are exposed to a homogeneous uni-
axial tensile strain of 2% in the x-direction, applied homogeneously
using the LAMMPS “deform erate” command.

4.2 Data Set Generation. The resulting field data obtained
from MD simulations are visualized using matplotlib. We save
images of both the input microstructure and the resulting potential
energy field to generate the data sets (only atoms in the mobile
region are saved into images). We use a “jet” colormap, with a
range between potential energy values of −3 (light shade/blue) to
−2.9 (dark shade/red). The time-step used in the MD simulation
is Δt= 0.0035, and frames are output every 1000 simulation steps
after loading is applied. The simulation is run for a total of
10,000 steps, resulting in 10 frames.
Input and output images are stored in CSV files and then used by

the data reader for processing in the machine learning code for train-
ing, testing, and validation or general inference.
The training set used to train the model includes only cases with a

larger number of randomly situated cracks (see Supplementary
Information). Validation cases include both very small/single
crack cases or scenarios with two and a much larger number of
defects and with a different crack geometry than what was used
in training.
The final training set used for the neural network training is based

on ∼630 images total for the computational experiments, 90% of
which is used for training and the rest for testing. A sample data
set can be accessed online.1

We further create a set of validation examples consisting of single
cracks, two cracks, and a larger number of cracks. We also consider
a variety of cases with very different crack geometries than those
used in the training set.

4.3 Progressive Diffusion Model. The dynamical diffusion
model is based on the Imagen architecture that introduced a multi-
step progressive approach to translation and upscaling of input to
output [13]. Instead of conditioning the input on text prompts, we
condition the predictions on microstructure embeddings. The
model consists of two U-Net architectures composed of convolu-
tional and transformer layers with skip connections (Fig. S2 avail-
able in the Supplemental Materials on the ASME Digital
Collection for details of all layers used in the neural network):
Unet 1 (constructed based on [45]) and Unet 2 (constructed as Effi-
cient U-Nets as proposed in [53]). U-Nets are a type of neural
network that features the same input dimension as the output

1https://www.dropbox.com/s/6i301iwnv9ljnw9/dynamic_fracture_small.zip?dl=0
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dimension, commonly used in problems such as image segmenta-
tion. The U-Nets implemented here feature a more complex archi-
tecture as described below and in Ref. [13], including the use of
ResNet blocks, attention modules, and skip connections.
The U-Nets are used to translate the input microstructure coding

into the final field output, over successive stages of translation and
upscaling, ultimately reaching a resolution of 128 × 128 with three
color channels, and producing a series of simulation frames. The
loss is the L2 distance between the actual, added noise ɛi and the
predicted added noise ε′i. That way, the trained model can predict
the added noise. Knowing this quantity then allows us to realize a
numerical solution to the problem stated in Eq. (2), which is used
to generate the next iteration of the denoised image

Xi−1 = Xi − ε′i (4)

In Eq. (4), the image Xi at step i is transformed by removing the
noise ε′i. This process is performed iteratively; whereas the neural
network predicts, given the current state Xi, the noise to be
removed (Fig. S4 available in the Supplemental Materials on the
ASME Digital Collection).
We use the improved noise schedule, sampling, and training pro-

cesses proposed in Ref. [46] since it provides us with enhanced and
computationally efficient predictions, specifically obtaining results
within just 10 denoising steps for each of the U-Nets. Table 1

provides details about the model architecture parameters, and
Figure S2 (available in the Supplemental Materials on the ASME
Digital Collection) shows a detailed PyTorch model readout to
reveal the entire architecture. The implementation is based on the
code published in Ref. [54].
The microstructure encoder scales the pixel data values to be

between −1…1 and feeds each of the three-color channels to the
neural networks in the embedding dimension. Since the input
microstructures solely consist of white (no material) and black
(material) building blocks, the input embeddings consist solely of
(1,1,1) and (−1,−1,−1) tensors for each building block that
makes up the material microstructure. In some sense, this is
viewed as a language prompt that provides a series of letters
defined at every pixel of the input geometry—“W” for void, “B”
for material, to the model. Future work can expand on this easily
and provide either more material choices or gradations or text
prompts that describe certain types of boundary conditions (see
also discussion in the main text).
The total number of parameters in the model is 101,506,434.

Unet1 features 41,507,444 trainable parameters, and Unet2
59,998,990 trainable parameters.
The model is trained successfully whereby each of the U-Nets is

trained individually (first Unet 1, then Unet 2). Training perfor-
mances are shown in Fig. S3 (available in the Supplemental
Materials on the ASME Digital Collection). Unet 1 is trained for
5.5 K steps, and Unet 2 is trained for 12 K steps.
The microstructure shown in Figs. 7( f ) and 9 are generated from

a text prompt using a latent diffusion model, as reported in [24,47].
Weights were used as reported in Ref. [55]. The text prompt used is
provided in the main text.

4.4 Data Analysis. For the discussions in this paper, we limit
the exploration to the potential energy fields. Slices of the potential
energy field plots are obtained by converting the field data with
three color channels into a grayscale image, by multiplying the
unscaled data in the three color channels with [0.299, 0.5870,
0.114] and then adding them up. This yields scalar field data of
the potential energy field and microstructure, respectively, that mea-
sures pixel-level intensity (the operation is done consistently for
ground truth and prediction data).
All potential energy values are normalized such that the smallest

value overall is 0, and the largest 1, for simpler comparison in the
field plots and the histogram analysis.

5 Software Versions and Hardware
We use PYTHON 3.8.12, PyTorch 1.10 with CUDA (CUDA

version 11.6), and a NVIDIA RTX A6000 with 48GB VRAM
for training and inference.
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Table 1 Parameters used in the progressive transformer
diffusion model (parameters for the two U-Nets, the integrated
architecture, and additional parameters are provided)

Neural network
component Parameter Value

Unet 1 Dimension 64
Dimension
multipliers

1, 2, 4, 8

Resnet blocks 1
Attention heads 8
Feedforward
multiplier

2.0

Unet 2 Dimension 64
Dimension
multipliers

1, 2, 4, 8

Resnet blocks 1
Attention heads 8
Feedforward
multiplier

2.0

Integrated architecture
(comprised of Unet 1 and
Unet 2)

Image sizes (each
frame)

64 × 64 128 × 128 (each
with 3 color channels)

Frames predicted 10
Cond. drop
probability

0.1

Sample steps (for
Unet 1, Unet 2

10, 10

σmin 0.002
σmax (for Unet 1,
Unet 2)

80, 160

σdata 0.5
ρ 7
Pmean −1.2
Pstd 1.2
Pchurn 80
St,min 0.05
St,max 50.
Snoise 1.003

Additional parameters Optimizer and
parameters

Adam learning rate=
1E-4, epsilon= 1e-8,
betas= (0.9,0.99)

Batch size 5

Note: See also Figure S2 (available in the Supplemental Materials on the
ASME Digital Collection).
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