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Abstract

We study the collapse and expansion of a cavitation bubble in a deformable porous medium. We develop a continuum-scale model that
couples compressible fluid flow in the pore network with the elastic response of a solid skeleton. Under the assumption of spherical
symmetry, our model can be reduced to an ordinary differential equation that extends the Rayleigh–Plesset equation to bubbles in soft
porous media. The extended Rayleigh–Plesset equation reveals that finite-size effects lead to the breakdown of the universal scaling
relation between bubble radius and time that holds in the infinite-size limit. Our data indicate that the deformability of the porous
medium slows down the collapse and expansion processes, a result with important consequences for wide-ranging phenomena, from
drug delivery to spore dispersion.
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Significance Statement:

Cavitation, the liquid–vapor phase transformation of a fluid driven by depressurization, is critical in many science and engineering
applications, but it also occurs in our daily lives, for example, when we crack our knuckles or when sea waves break at the beach.
Past research has focused on cavitation in free or wall-bounded fluids, but cavitation processes that occur in a soft porous material
remain unexplored. Here, we develop a computational model that shows that the deformability of a porous material slows the
collapse and expansion of cavitation bubbles and breaks down the classic scaling relation between bubble size and time. Our
results have profound consequences for diverse phenomena that involve cavitation in soft porous materials, from traumatic brain
injury and drug delivery to spore dispersion.

Introduction
The collapse of cavitation bubbles in free fluids has fascinated sci-
entists for decades, but what happens when a cavitation bubble
collapses in a soft porous material? Cavitation processes are ubiq-
uitous in physics (1, 2), engineering (3), and biology (4, 5). They
occur in our daily lives when we crack our knuckles and when
sea waves break at the beach. Cavitation is also used technolog-
ically in medical treatments (6) and cleaning systems (7). These
processes involve the nucleation, growth, and collapse of gas bub-
bles in a liquid. A large body of past work has led to the funda-
mental understanding of many aspects of cavitation in free liq-
uids (8) and in wall-bounded fluids (9). Recently, there has been
increasing interest in understanding the unstable expansion of a
bubble in a soft elastic or viscoelastic material (10–13) because it
is important for material characterization (14) and it may open
opportunities to understand failure in soft solids (15). However,
cavitation processes occurring in soft, porous materials, where
fluid flow and elasticity interact, have remained unexplored. The
energy barrier for nucleation in an elastic porous medium is un-
known and we also ignore how much energy is required to expand
or collapse a pre-existing gas bubble in an elastic porous medium.
These knowledge gaps limit our understanding of critical scien-

tific problems where cavitation occurs in soft porous materials,
such as traumatic brain injury (16, 17) and drug delivery (18). In
the context of traumatic brain injury, understanding the collapse
of cavitation bubbles in poroelastic media may play a critical role
in assessing and preventing brain damage. Liquids at conditions
similar to those occurring normally in the brain interstitial fluid
are known to contain small stable gas bubbles (19, 20). If the brain
is subjected to a pressure wave, these bubbles will grow when they
go through low-pressure conditions. After the growth phase, the
bubbles will collapse potentially producing damage in the brain.
Having a model of cavitation bubble collapse in poroelastic me-
dia is also critical to understand emerging forms of drug deliv-
ery for cancer. One example is liposome-assisted drug delivery.
In this drug delivery modality, the drug is encapsulated in lipo-
somes, allowing passive accumulation within tumors. The lipo-
somes are designed to remain stable during the delivery phase.
The release of the drug at the tumor site is achieved by use of ul-
trasound waves that produce expansion and subsequent collapse
of gas bubbles. The violence of the collapse disrupts the liposome
and leads to drug release.

Here, we study the collapse and expansion of a cavitation bub-
ble in a poroelastic material. We formulate a new continuum
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model that couples compressible fluid flow in the pore network
with the elastic response of the solid skeleton. Our theoretical and
computational results show that the elasticity of the solid skele-
ton slows down the collapse process, especially in the final stages.
One of the primary driving forces for bubble collapse in a free fluid
is the pressure difference between the bubble interior and the far
field (3). In a poroelastic material, however, establishing a pres-
sure gradient requires deforming the solid. As a result, pressure
gradients are smaller in a poroelastic medium and the collapse is
less violent. We also show that the collapse time for a single bub-
ble is predicted by an ordinary differential equation for the bubble
radius that extends the Rayleigh–Plesset equation to poroelastic
media. The newly proposed equation also shows that the elastic-
ity of the solid skeleton reduces the bubble’s expansion velocity in
the presence of ultrasound excitation. Our findings open new op-
portunities to understand the complex dynamics of cavitation in
soft porous materials, which may lead to technological advances
in medical imaging (21) and shed light on drug delivery processes
that rely on the violent collapse of cavitation bubbles (18, 22, 23).

Proposed model
Our model is based on continuum mechanics and mixture theory
(24). In our case of interest, one of the underlying assumptions of
the model is that bubbles are much larger than the pore size. To
derive our model, we assume small deformation kinematics (25,
26) and adiabatic conditions. The mass conservation equation for
the fluid phase is

∂ (φfρ )
∂t

+ ∇ · (ρq) = 0, (1)

where φf (x, t) is the porosity (volume of pores per unit volume
of porous medium) at point x and time t, ρ(x, t) is the fluid den-
sity, and q(x, t) is the volumetric flux vector [see (27)]. We model
a single-component liquid–vapor system by utilizing a barotropic
equation of state similar to that used in refs. (28, 29) for cavitation
in free liquids. We assume that the mixture is in local equilibrium
and follows an adiabatic path. Our equation of state can be ex-
pressed as p = F(ρ), where p is the pore pressure and

F(ρ ) = psat + C
(

1
ρc

− 1
ρ

)
+ C

b − ρc

ρ2
c

ρ − ρc

b − ρ
. (2)

Here, psat is the saturation pressure, ρc is the density that leads to
minimum speed of sound, 2C/ρc is the bulk modulus of the fluid
at minimum speed of sound, and b−1 is the fluid’s covolume. The
speed of sound predicted by eq. (2) is continuous with respect to
ρ. For the values of the parameters psat, C, b, and ρc taken in this
paper, eq. (2) produces excellent quantitative agreement with the
equation of state employed in ref. (28). The latter, however, leads
to a speed of sound that is discontinuous with respect to ρ, which
introduces challenges in the numerical discretization. We assume
that q is given by Darcy’s law,

q = − k
μ(ρ )

∇p, (3)

where k is the absolute permeability and μ(ρ) is the mixture’s dy-
namic viscosity. We take μ(ρ) = μv + (μl − μv)(ρ − ρv)/b, where
μl and μv represent, respectively, the viscosity of the liquid and
gas, and ρv is a representative density of the vapor phase such
that psat = F(ρv). We assume that the collapse process is primar-
ily driven by the difference between a preimposed, far-field static
fluid pressure in the liquid phase and the static fluid pressure in
the bubble’s interior, thus neglecting any surface tension effects,

Fig. 1. Schematic of a spherical poroelastic medium filled with liquid
water (blue) and water vapor (yellow). An overpressure �p = p∞ − psat is
applied on the external boundary producing the collapse of the bubble,
which is accompanied by the deformation of the solid skeleton.

which can be shown to be small for the cases studied in this work
(see the “Supplementary Material” section). Assuming that iner-
tial forces are small, the overall linear momentum balance of the
fluid–solid mixture can be written as ∇ · σ + b = 0, where σ is the
Cauchy stress tensor of the fluid–solid mixture and b represents
the body forces per unit volume. In what follows, we neglect grav-
ity and other body forces, which implies b = 0. Application of the
Gibbs–Duhem equation (27) leads to two constitutive equations:

σ = σeff − αpI, (4)

φf = φ0
f + αεv + α − φ0

f

Ks
p, (5)

where σeff = G(∇u + ∇uT ) + λ∇ · u represents the effective stress, u
is the displacement field of the solid skeleton, and G and λ are the
Lamé parameters. In eq. (5), φ0

f is the porosity of the undeformed
configuration, εv = ∇ · u is the volumetric strain of solid skeleton,
and α and Ks are poroelastic properties that characterize the me-
chanical behavior of the porous solid. In particular, Ks represents
the bulk modulus of the solid grains and α is called Biot’s coeffi-
cient (27).

Substituting eqs. (2), (3), and (5) into the mass conservation
equation for the fluid, and substituting eq. (4) into the linear mo-
mentum balance for the fluid–solid mixture, we obtain the gov-
erning equations of our model as

αρ
∂εv

∂t
+

[
W(ρ )

N
+ φ0

f

]
∂ρ

∂t
= ∇ ·

(
kW(ρ )
μ(ρ )

∇ρ

)
, (6)

∇ · σeff = α∇p, (7)

where W(ρ) = ρF
′
(ρ) and 1/N = (α − φ0

f )/Ks. To derive eq. (6), we
have assumed that (φf − φ0

f )/φ0
f is small, a standard approxima-

tion in poroelastic models that use small deformation kinematics
(27).

Results
Collapse of a spherical bubble in a poroelastic
medium
We initially investigate the collapse of a spherical cavitation bub-
ble in a poroelastic medium (see Fig. 1). Under the assumption of
spherical symmetry, eqs. (6) and (7) can be simplified to a single
scalar equation for the fluid density. By using standard expres-
sions for the differential operators in spherical coordinates, eq. (7)

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/1/4/pgac150/6657818 by M

assachusetts Institute of Technology (M
IT) user on 16 M

arch 2023



Leng et al. | 3

Table 1. Values of the model parameters.

α (−) k (m2) μl (Pa s) μg (Pa s) C (Pa kg m−3)

1 10−13 10−3 1.3 × 10−5 1,450

psat (Pa) φ0
f (−) b (kg m−3) ρc (kg m−3) K−1

s (Pa−1)
2,339 0.01 998.5 500 0

We assume that the solid grains are incompressible, thus, K−1
s = 0. This as-

sumption is widely used for soft porous materials (27).

Fig. 2. Cavitation bubble collapse in a spherical poroelastic medium.
Time evolution of the bubble radius for different values of Young’s
modulus. The simulations are performed using isogeometric analysis
(30), a generalization of the finite-element method that uses splines of
high-order global continuity as basis functions. We used a mesh with
4,096 quadratic elements with globally C1-continuous basis functions.
The time step is selected using the adaptive algorithm described in (31).

can be written as

M
∂εv

∂r
= α

∂ p
∂r

, where εv = 1
r2

∂ (r2ur )
∂r

. (8)

Here, M = (λ + 2G) is the P-wave modulus, r is the radial coor-
dinate, and ur the solid displacement in the radial direction. In-
tegrating eq. (8) leads to Mεv − αp = g(t). The function g can be
determined using the boundary conditions. We will focus on the
boundary condition ρ(L, t) = ρL, where L is the radius of the spheri-
cal poroelastic medium and ρL is a given density. Using the bound-
ary condition εv(L, t) = 0 for the linear momentum equation, we
obtain g = −αpL, where pL = F(ρL). Taking the time derivative of the
expression Mεv = α(p − pL) and substituting in eq. (6), we obtain

[
BW(ρ ) + φ0

f

] ∂ρ

∂t
= 1

r2

∂

∂r

(
r2 kW(ρ )

μ(ρ )
∂ρ

∂r

)
, (9)

where B = 1/N + α2/M. Once the density field is known, the dis-
placements can be obtained as

ur(r, t) = −αpL

3M
r + α

M
1
r2

∫ r

0
z2F(ρ(z, t)) dz. (10)

For the rest of this work, we parameterize λ, G, and M using
Young’s modulus E and Poisson ratio ν, namely, λ = Eν/[(1 + ν)(1 −
2ν)], G = E/[2(1 + ν)], and M = E(1 − ν)/[(1 + ν)(1 − 2ν)].

We perform numerical simulations of eq. (9) on the domain r
∈ (0, L), where L = 1 mm. The model parameters that are kept
fixed for all of the simulations in this paper are shown in Table 1,
corresponding to water and a generic soft porous material with
properties similar to those of adipose or brain tissue (32, 33). Ini-
tially, there is a cavitation bubble of radius L/2. The density at r =
L is set to ρL = 998 kg m−3, while the density in the vapor bubble
is ρ ≈ ρv. Figure 2 shows the time evolution of the bubble radius
R(t) for different values of the solid skeleton Young’s modulus. For
each value of E, we observe a monotonic decrease of the radius
with R reaching zero at the collapse time. After collapse, the fluid
remains in liquid state without any regrowth of the bubble. This

Fig. 3. Cavitation bubble collapse in a spherical poroelastic medium.
Time evolution of the fluid density (A), pressure (B), and solid
displacement (C). We used the parameters given in Table 1 and E = 15
kPa, ν = 0.45. We repeated this simulation on the domain r ∈ (0, 2L) with
L = 1 mm, keeping the same bubble size, and the results (not shown)
were nearly identical to those reported here.

was expected and is consistent with results of other models that
consider collapse of cavitation bubbles in free liquids without ac-
counting for noncondensable gases (NCGs) (34). The data show
that the solid deformation slows down the collapse process. Fig-
ure 2 also indicates that, for a rigid porous medium, the velocity of
the liquid–vapor interface increases quickly as the bubble shrinks,
especially in the final stages of the collapse process. A soft porous
medium significantly reduces the acceleration of the interface as
evidenced by the curve for E = 5 kPa.

Figure 3 shows more details of the collapse process for E = 15
kPa. The time evolution of the fluid density is shown in Fig. 3(A).
The overpressure at the right boundary produces flow from right
to left making the bubble shrink and finally collapse. Figure 3(B)
shows that after the liquid–vapor interface starts moving, the
pressure in the bubble remains fairly constant, but varies in the
liquid phase. The dashed lines in Fig. 3(B) represent the fluid pres-
sure for a similar collapse process in a rigid porous medium. The
collapse is faster in a rigid material, so dashed and solid lines of
the same color do not correspond to the same time, but rather to
times when the bubble radius was the same for the rigid and soft
materials. We observe that the pressure gradient at the bubble
interface, which is proportional to the interface velocity, is much
smaller in the soft material. This can be understood by examin-
ing eq. (7), which shows that if a pressure gradient is established
in the fluid, the solid needs to be able to produce a counteracting
force per unit volume of the same magnitude. This is the primary
reason why the collapse is slower in soft materials. Figure 3(C)
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shows that the solid skeleton is compressed throughout the col-
lapse process and relaxes to an undeformed configuration after
the collapse.

Poroelastic Rayleigh–Plesset equation
We gain further insight into the problem by deriving an ordinary
differential equation (ODE) for the time evolution of the bubble
radius. The ODE is an extension of the approach used by Rayleigh
(35) and Plesset (36) for bubble dynamics in a free liquid. We as-
sume that the solid grains are incompressible (α = 1) and that the
problem is spherically symmetric. The bubble is centered at r =
0, and its radius R depends on time. Let us restrict eq. (6) to the
domain r ∈ (R, L), where the fluid is in liquid state and we can
assume that the density is approximately constant. Under these
assumptions we obtain

∂εv

∂t
+ 1

r2

∂

∂r

(
r2q

) = 0, (11)

where

εv = 1
r2

∂ (r2ur )
∂r

(12)

is the volumetric strain in spherical coordinates. It follows from
eq. (11) that

r2(q(r, t) + vr(r, t)) = S(t), (13)

where S is an arbitrary function of time and

vr = ∂ur

∂t
.

If we evaluate eq. (13) at r = R and identify the fluid velocity
at the bubble surface with Ṙ, that is, q(R, t) = φ0

f Ṙ, we obtain S =
φ0

f R2Ṙ + R2vr(R, t). Our numerical simulations indicate that the ap-
proximation S ≈ φ0

f R2Ṙ leads to a negligible error, so we will use it
henceforth. Integrating eq. (13) in the domain (R, L), where the fluid
density can be assumed to be constant, we have∫ L

R

φ0
f R2Ṙ

r2
dr +

∫ L

R

k
μ

∂ p
∂r

dr =
∫ L

R
vr(r, t) dr. (14)

The left-hand side can be directly integrated under the assump-
tions of constant permeability and constant viscosity, leading to

φ
f
0 RṘ

L − R
L

+ k
μ

(pL − pB ) =
∫ L

R
vr(r, t) dr, (15)

where we have assumed that p(R) = pB. Herein, pB is the pressure
in the bubble. To transform the right-hand side of eq. (15) into an
expression that depends on R, we will take the time derivative of
eq. (10), which leads to

vr(r, t) = 1
M

1
r2

∫ r

0
z2F′(ρ(z, t))

∂ρ

∂t
(z, t) dz. (16)

From eqs. (15) and (16), we arrive at

RṘ
L − R

L
= − k

μφ0
f

(pL − pB )

+ 1
Mφ0

f

∫ L

R

1
s2

∫ s

0
z2 F′(ρ(z, t))

∂ρ

∂t
(z, t) dz ds. (17)

Eq. (17) does not admit closed-form solutions in general. Although
eq. (17) was derived by integrating eq. (6) in the liquid phase r ∈ (R,
L), its last term involves values of the density on the entire domain
r ∈ (0, s) with s > R. Thus, the assumption of constant density that
we made for the liquid phase is no longer valid here. Instead, we
assume that the density is a traveling wave of the form ρ(z, t) =
h(z − R(t)). There are multiple options for the function h, but the
simplest one is a step function that transitions from ρv to ρl at

Fig. 4. Comparison between the collapse time predicted by the
poroelastic Rayleigh–Plesset equation and the collapse time predicted by
numerical simulations of eq. (9).

the bubble surface, i.e. ρ(z, t) = ρv + (ρl − ρv)H(z − R), where H
is the Heaviside function. This assumption allows approximate
integration of the last term in eq. (17) and leads to the equation

RṘ(L − R)/L = −β, (18)

where

β = k(pL − pB )/(φ0
f μ)

1 + (ρl − ρv )F′(ρR )/(φ0
f M)

(19)

and ρR is the density of the fluid at the bubble interface. Because
the fluid density changes abruptly in space at the bubble inter-
face, ρR can be defined in multiple ways. We have determined the
value of ρR by fitting one result of the poroelastic Rayleigh–Plesset
equation with one high-fidelity simulation and used that value of
ρR for all other simulations and all other values of the material
parameters.

To assess the accuracy of the poroelastic Rayleigh–Plesset, we
compare the collapse time predicted by eq. (18) with the collapse
time obtained from the full-scale simulations. To perform this
comparison, we assume pB = psat in eq. (19), which is a common
assumption for vapor bubbles without NCG (36). Figure 4 shows
good agreement for a large range of Young’s moduli.

The inclusion of L as a characteristic length scale in the
Rayleigh–Plesset equation plays a critical role in the dynamics of
the bubble radius. When this length scale is neglected, i.e. L → ∞,
the poroelastic Rayleigh–Plesset equation becomes RṘ = −β. Di-
mensional analysis shows that the solution to RṘ = −β can always
be expressed as R̂(t̂) =

√
1 − t̂, where R̂ = R/R(0) and t̂ = 2βt/R(0)2.

Thus, for L → ∞, we can always rescale length and time so that
the radius time evolution remains invariant under changes of
the model parameters. When L < ∞, the universal scaling R̂ ∼
(1 − t̂)1/2 does not hold anymore.

Ultrasonic excitation of a cavitation bubble
We use the poroelastic Rayleigh–Plesset equation to study the dy-
namics of a bubble under ultrasonic excitation. To avoid singu-
larities in the collapse and to be able to study multiple cycles of
expansion and collapse, we assume that, in addition to vapor, the
bubble contains an NCG, such as nitrogen. We model this by tak-
ing the pressure in the bubble as

pB = psat + pg0

(
R(0)

R

)3η

, (20)

where pg0 = 0.1 kPa is the NCG pressure for a bubble radius equal
to R(0). Eq. (20) assumes a polytropic equation of state for the NCG,
and that the mass of NCG within the bubble remains constant. If
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Fig. 5. Ultrasonic excitation of a cavitation bubble of initial radius R(0) =
100 μm. (A) Time evolution of the bubble radius over two periods of the
pressure wave. The bubble initially collapses, and then expands. (B)
Time evolution of the radius for a bubble that expands first, and later
undergoes six additional cycles of compression and expansion.

the process is adiabatic, η = 1.4 for diatomic gases. We model the
ultrasonic excitation by taking the pressure boundary condition
as pL(t) = F(ρL) − ( −1)spamp sin(2π ft), where pamp = 1,000 kPa is the
ultrasonic wave amplitude, f = 20 kHz is the wave frequency, and
the constant s = 1, 2 is used to represent two scenarios: when s =
1, the bubble collapses first, and then it expands; and when s = 2,
the bubble expands first, and then it collapses. Figure 5(A) shows
the time evolution of the bubble radius over a time span of two
periods of the pressure wave for s = 1 and R(0) = 100 μm. We ini-
tially observe a bubble collapse, which is slower in the poroelastic
medium (see inset). The bubble remains small and compressed for

a time interval, and then it expands. The expansion velocity and
the maximum bubble size are smaller in the poroelastic medium.
Figure 5(B) shows the time evolution of R over six periods of the
pressure wave for s = 2. In this case, the bubble expands prior to
any collapse. The expansion velocity and maximum bubble size
are smaller in the poroelastic medium as before. Here, we can also
see that the collapse is stronger and the bubble reaches a smaller
size in the rigid medium.

Collapse of a bubble near a rigid wall
In many cases of practical interest, such as drug delivery, cavita-
tion bubbles collapse near a solid surface, instead of in isolation.
We study bubble collapse near a solid using axisymmetric sim-
ulations in cylindrical coordinates of eqs. (6) and (7). Figure 6(A)
shows the density field at the initial time. The initial bubble radius
is 1.2 mm and its center is located at 1.5 mm from the bottom
boundary, which represents a solid wall. The size of the porous
medium shown in the figure is 10 mm × 6.5 mm, and represents
a cut-plane of the cylindrical specimen where the cavitation pro-
cess occurs. On the solid wall, we set the normal component of
the Darcy velocity to zero. The density varies between ∼ 8.8 kg
m−3 in the bubble interior to 998.2 kg m−3 at the left, right, and
top boundaries, where its value is imposed. The solid displace-
ments are set to zero at the bottom boundary. All other boundaries
are subject to traction-free conditions. Figure 6(A to C) shows the
time evolution of the density in the undeformed configuration.
The bubble collapses at time ts

c = 0.180 s (not shown). Figure 6(D
to F) shows the hydrostatic stress in the deformed configuration
with the displacements magnified by a factor of 2. The solid defor-
mation is slightly larger in the early stages of the collapse process,
when the pressure gradient is greatest. Although the overall solid
specimen is compressed and shrinks during the collapse process,
an analysis of the stress field (see Fig. 6D to F) reveals tensions
in the periphery of the computational domain. The dashed lines
in Fig. 6(A to C) represent the bubble interface for a similar col-
lapse process in a rigid porous medium (E = ∞ kPa) at the same
time relative to the collapse time, that is, t/tr

c = 0.056, 0.333, and

Fig. 6. Time evolution of the fluid density ρ (kg m–3) (A to C) and hydrostatic component of the solid stress σ h (kPa) (D to F). The snapshots correspond
to t/ts

c = 0.056 (A and D), 0.333 (B and E), and 0.722 (C and F), where ts
c = 0.180 s is the collapse time for a soft porous medium. We used the parameters

given in Table 1 and E= 5 kPa, ν = 0.3. The dashed lines in (A to C) indicate the bubble interface for a similar collapse process in a rigid porous medium
(E = ∞ kPa) at the same time relative to the collapse time, i.e. t/tr

c = 0.056, 0.333, and 0.722, where tr
c = 0.015 is the collapse time in a rigid porous

medium.
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0.722, where tr
c = 0.015 s is the collapse time in the rigid porous

medium. The comparison shows that for the same time relative
to collapse time, the bubble in the rigid medium is larger, which
implies that the velocity in the final stages of the collapse is much
larger in the rigid medium. For the soft porous medium, not only
the collapse is slower, but the collapse point is farther from the
wall; both factors contribute to reduce the potential damage to
the wall. We observe that the bubble loses its circular shape dur-
ing the collapse process due to the presence of the solid wall, but
this is more evident in the rigid medium.

Conclusion
In conclusion, cavitation processes occurring in soft porous me-
dia had remained unexplored, despite their common occurrence
in physics, science, and engineering. The results presented herein
show that the collapse and expansion of a cavitation bubble is
much slower in a soft porous medium than in a rigid medium.
Our model indicates that this occurs because elastic forces reduce
the fluid pressure gradients at the bubble interface. The slower
collapse has important consequences for technological processes
that rely on the violent collapse of cavitation bubbles, such as
cavitation-triggered spore dispersion (37) and liposome-assisted
drug delivery (18). A relevant extension of this work would be
studying how elastic energy stored in the solid during the ex-
pansion phase could contribute to accelerate a subsequent col-
lapse. Although our first-order estimates indicate that this ef-
fect is small (see the “Supplementary Material” section), a more
detailed study is warranted. Future efforts should also include
extending the model to the large-deformation regime, studying
fracture of the solid skeleton, and understanding the expansion
of bubbles smaller than the pore size. We also expect that this
research will help address important and outstanding problems
such as bubble nucleation in a poroelastic medium.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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