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Abstract 

Cello 2.0 generates a DNA sequence for a “genetic circuit” based on a high-level software descrip-

tion and a library of characterized DNA parts representing Boolean logic gates. The software has 

been re-designed to enable flexible descriptions of the logic gates' structure and their mathematical 

models representing dynamic behavior. There are new formal rules for describing the placement 

of gates in a genome, a new graphical user interface, support for Verilog 2005 syntax, and a con-

nection to the SynBioHub parts repository software environment. Collectively, these features ex-

pand Cello's capabilities beyond Escherichia coli plasmids to new organisms and broader genetic 

contexts, including the genome. The design process of Cello 2.0 is divided into distinct stages: 

logic synthesis, technology mapping, placing, and export. These stages produce an abstract Bool-

ean network from a Verilog file, assign biological parts to each node in the Boolean network, 

construct a DNA sequence, and generate highly structured and annotated sequence representations 

suitable for downstream processing and fabrication, respectively. The final result is a sequence 

implementing the specified Boolean function in the organism and predictions of circuit perfor-

mance. Experimentalists may take several hours to learn how to configure the software, e.g., de-

velop a familiarity with Verilog and the syntax for gate libraries, while those with computational 

backgrounds can submit designs minutes. Depending on the size of the design space, jobs may 

take seconds or hours to complete. Cello 2.0 is cross-platform software written in Java, freely 

available as open-source code, and deployed in the browser at http://cellocad.org/. 

Introduction 

Principles of engineering electronic systems and circuits can be extended to design genetic circuits 

– artificial genetic regulatory networks that can perform computation – for use in living cells.1 

Useful principles in this regard include abstraction, modularity, standards, and modeling. A par-

ticular design approach is to use composable DNA elements to design sensors, therapeutics, and 

materials.2 In the design of electronic systems, digital circuits have matured to the point where 

high-level functional descriptions can be transformed automatically into semiconductor-based cir-

cuits.3,4 This transformation process is quite powerful not only because it is efficient but also be-

cause it is provably functionally correct, removing many errors and sub-optimizations that would 

have resulted in a manual process. 

 

The digital logic design abstraction can be adapted to transcriptional genetic circuits5 with two 

primary modifications. First, since signals are mediated by genetic products that diffuse throughout 

a shared space in the cell, each biological gate must have a unique genetic product that occurs only 

once in the circuit to provide signal orthogonality. Second, as each biological gate is constructed 

around a specific genetic product, the binary on and off states are not uniform over all gates. A 

software design framework called Cello has used this modified digital logic design paradigm to 

design genetic circuits in E. coli.6 These circuits respond to specific inputs and use “NOR” primi-

tives to create combinational logic circuits. The gate primitives are defined in a user constraints 

file (UCF), a JSON file that encodes gate characterization data, part sequences, rules for gate 

placement, and specifications of the integration sites in the host organism. Sequential logic circuits 

(those where the output is a function of both input and state) have also been constructed using a 

similar logic design paradigm.7 



 

 

While Cello version 1.0 was able to design circuits reliably, it also had notable limitations. Gate 

libraries were limited to a single gate type (NOR) with a fixed architecture: two input promoters 

in a tandem arrangement. Arbitrary gate structures, regardless of the resulting logic function, were 

not supported. This first version was also limited in its modeling abilities, in that it always assumed 

the total input to a gate was a simple linear combination of the gate's inputs, making no attempt to 

quantify possible "roadblocking" effects of promoters in sequence. The design rules8 that Cello 

version 1.0 uses to order parts and gates in a circuit could only be provided as a logical conjunction 

of constraints with no alternatives. The support for Verilog, the hardware description language 

used to describe circuit behavior, was minimal. Users could only write either purely “structural” 

Verilog specifying the exact layout of the desired Boolean circuit or explicitly provide a truth table 

in a limited “behavioral” Verilog format. Finally, while Cello version 1.0 could accept user-created 

libraries, only one was officially provided with the software. The Supplementary Material provides 

a detailed overview of these libraries' syntax and semantics along with sample files and case stud-

ies regarding the preparation of libraries. 

 

This work outlines Cello version 2.0. The rest of the Introduction section describes the new fea-

tures of Cello. The Materials and Procedure sections provide pragmatic instructions on using the 

software and its resources, including a case study on designing a circuit in S. cerevisiae.  The case 

study leads the user through the circuit design process in the graphical user interface from start to 

finish. All input files are provided, including a Verilog file that specifies the circuit behavior, as 

well as library files that encode the input & output parts and the biological gates that implement 

the circuit. A collection of expected results of the case study is included and discussed. The Trou-

bleshooting section lists a few error messages that may appear and suggestions on how to resolve 

them. The Anticipated results section describes sample outputs. A Supplementary manual is also 

included and provides descriptions of the UCF structure, input sensor, output device file structures, 

sample Verilog files, a case study on designing the UCF for S. cerevisiae, and a complete list of 

the results generated by Cello. 

General introduction to circuit design 

Synthetic biology and rapid, automated design of genetic circuits promise to produce advances in 

biosensing9, smart therapeutics10, and biofuels11 & biomaterials.12 Several approaches to the auto-

mated design of multiple genetic regulatory networks, for exploring the design space13 and engi-

neering stable systems14, are documented in the literature. A few of these are SBROME15, Match-

Maker16, Proto & BioCompiler17, GenoCAD18, Device Editor19, iBioSim20, RBS Calculator21, and 

Genetdes.22 Other example tools include the development of novel programming languages, such 

as GSL23 and GEC24. Each of these explored different constraints of the genetic circuit design 

process. For example, while in electrical engineering transistors are highly uniform and share com-

mon signal levels for "on" and "off" states, biological parts are more variable in chemistry, struc-

ture, and signal levels. Not only does each part or assemblage of parts into a functional unit need 

to be independently characterized to be reusable in many designs, but the design process must also 

solve the signal-matching problem to ensure that an upstream module has a sufficient output signal 

range to actuate a downstream module. Like in electrical circuits, minimization of circuit size (the 

total number of DNA base pairs of the circuit or the longest path length from input to output) is 

desirable. A highly descriptive output format is also important for design verification. 



 

 

We briefly review the advantages and disadvantages of the Cello 2.0 design approach. Cello is 

distinct from the tools listed in the previous paragraph in that there is a separation between the gate 

technology-independent phases in the design process and the technology-dependent phases. A 

technology-independent Boolean network is optimized first, and then biological gates are mapped 

to that network. Cello 2.0 has a UCF library format that captures highly specific constraints on 

gate architecture and parts placement, making circuits designed for a particular gate technology 

likely to function. Cello has five curated libraries, but the UCF format is also documented so that 

users can design their own libraries. Though the characterization process presents a non-negligible 

upfront cost to design circuits in a new host or new gate technology, once it is completed, arbitrary 

circuits can be designed quickly, giving a distinct advantage over a de novo circuit design process. 

Once the library characterization is complete, Cello users write code in the Verilog hardware de-

scription language to compile arbitrary combinational logic into genetic circuits. Verilog is quite 

flexible, though it requires the user to be familiar with its syntax. The digital logic paradigm for 

circuit design is also a simplification that may ignore biological phenomena potentially useful for 

computation. 

Cello 2.0 Experimental Design 

Overview of the software architecture 

Cello 2.0 is an open-source software tool written in the Java programming language. Cello accepts 

a Verilog file that describes the function of a circuit to be designed, as well as a library of gates 

and parts and an auxiliary configuration file. The process of converting the Verilog description to 

a genetic circuit is divided into four stages, see Figure 1. Each stage is intended to perform a 

specific task, such as synthesizing a Boolean gate diagram (or netlist) from the Verilog description 

or creating an ordered, genetic sequence from an unordered network of biological gates. Each stage 

may have many algorithms or implementations, different ways of performing the task associated 

with it. The auxiliary configuration file picks a particular implementation for each stage and spec-

ifies topical parameters, such as the number of sequence variants to produce, that affect the output 

files that are generated but not the design itself. The library of parts and gates is a composition of 

three files describing the parts and gates available in a particular organism (the “target”): a user 

constraints file (UCF) which describes the structure and function of the available gates and their 

constituent DNA parts, an input sensor file describing the input sensors to the circuit, and the 

output device file describing the circuit actuators, e.g., fluorescent output reporters. The standard 

user will interact with Cello as a web application in the browser, available at http://cellocad.org. 

The web application includes a limited Verilog editor as well as a set of different user constraints 

files and input and output files that can be selected. More ambitious or advanced users may prepare 

their own UCFs and load them into the web application, utilize the RESTful HTTP API to submit 

jobs programmatically, run their instance of the Cello web application, or use Cello locally from 

the command line.  

 

The Cello workflow is divided into four stages (Figure 1): the logic synthesis (LS) stage, the tech-

nology mapping (TM) stage, the placing (PL) stage, and the export (EX) stage. Each stage is 

equipped with one or more algorithms – different implementations of the tasks associated with that 

http://cellocad.org/


 

stage. The result is the sequence of a genetic circuit that implements the behavior specified in the 

Verilog file and can be integrated into the target organism.  

Logic synthesis (LS) 

In the logic synthesis stage, Cello 2.0 uses an open-source logic synthesis framework called 

Yosys25 to produce a Boolean gate network (netlist) based on a Verilog description of the desired 

circuit function. Verilog is a hardware description language typically used to specify the behavior 

of field-programmable gate arrays (FPGAs) and other integrated electrical circuits, and the process 

of compiling Verilog to a gate-level network has been studied at length.3,4 

Technology mapping (TM) 

In the technology mapping stage, biological gates that have been encoded in a user constraints file 

(UCF) and that implement the Boolean operations in the result of the logic synthesis stage are 

assigned to every node in the netlist. The gate assignment process is equivalent to a graph coloring 

problem26 and is guided by a circuit score (effectively a ratio of the transcription in the ON and 

OFF states for every output of the circuit) that is optimized by an implementation of the Simulated 

Annealing algorithm.6 After the technology mapping stage, all the biological parts that implement 

the desired circuit function are determined. 

Placing (PL) 

This stage arranges these parts into a linear DNA sequence. This process is constrained by a set of 

genetic insert locations or plasmids and rules for the relative positioning of parts. Certain parts 

may be forbidden by the gate technology to be adjacent to one another—a promoter that roadblocks 

its upstream neighbor, for example. Rules are specified in the Eugene language8. Many examples 

are shown in Figure 4. 

Export (EX) 

Finally, in the export stage, a circuit description file is created. The file is encoded using the Syn-

thetic Biology Open Language (SBOL) data standard27, which allows for extensive annotation of 

DNA constructs as well as encoding of functional relationships between components using the 

Sequence Ontology or Systems Biology Ontology, for example. SBOL files also provide prove-

nance information and can be uploaded to an instance of a SynBioHub28 parts repository where 

they can be assigned version numbers and grouped into collections.  

 



 

 
Figure 1: Basic software architecture of Cello 2.0. The workflow is divided into four stages, each 

with one or more algorithms to perform that stage's tasks. Cello ingests different input files: a 

Verilog file, the "target data" (a composition of the User Constraints File (UCF), the input sensor 

file, and the output device file), and a stage configuration file. Each stage produces some charac-

teristic output: the logic synthesis (LS) stage produces a Boolean gate-level network that imple-

ments the circuit behavior described by the Verilog code, the technology mapping (TM) stage 

assigns biological gates to each Boolean gate from the previous stage, the placing (PL) stage orders 

gates and parts into a linear DNA sequence, and the export (EX) stage produces interchange files 

(SBOL). 

Gate architecture specification 

The new UCF format has a structured JSON object type which allows library designers to specify 

gate architectures using arbitrary hierarchies of parts. This is critical for most of the new libraries, 

including two-input NOR gates where each input promoter may drive its own sequence variant of 

the repressor gene and where terminators and insulators may not be a part of the gate architecture. 

See Figure 2 for example gate architectures and their encodings. The UCF gate architecture de-

scription can also accommodate Boolean gate types other than NOR, such as AND, NAND, etc. 



 

The NOR operation is the standard primitive in the UCFs as it is the computational operation 

implemented by a repressor with two inputs, and NOR logic is "universal" or "functionally com-

plete," meaning that any Boolean function can be implemented exclusively with NOR gates, as 

can be shown with simple applications of De Morgan's Law.  

 

 
Figure 2: Different NOR gate architectures. a A visualization of the gate structure in d. b A tan-

dem promoter type gate architecture used in libraries Eco1C1G1T1 and Eco1C2G2T2. An exam-

ple JSON UCF encoding of this gate architecture is given in the Supplementary Manual §2.9.1. c 

A modified split-gate architecture used in the SC1C1G1T1 library. This architecture uses gene and 

output promoter variants. The genes and promoters produce and respond to the same protein, but 

the parts are sequence variants of one another to avoid recombination effects. An example JSON 

UCF encoding of this gate architecture is given in the Supplementary Manual §2.9.3. d A UCF 

encoding of a split-transcriptional-unit type gate architecture, used in the Eco2C1G3T1 and 

Bth1C1G1T1 libraries. The JSON UCF encoding of this gate architecture is reproduced in the 

Supplementary Manual §2.9.2. 

Custom gate models 

Each gate in a Cello library is equipped with a response function that maps the input transcriptional 

activity to some output activity. The Cello 2.0 UCF format includes a collection of models that 

can be used to define arbitrary auxiliary functions, e.g., to describe nonlinear input combinations 

and specify pointers to numerical parameters defined elsewhere. A gate is only required to have 



 

defined a response function. The response function can be any scalar-valued function that can be 

written as a closed-form expression, but in all libraries included with Cello 2.0, gates' responses 

are modeled by Hill functions. In the UCF, the standard Hill function response is defined only 

once (Figure 3), but parameters are resolved by pointers to values defined on the gate in which the 

Hill function is being evaluated. For example, the Hill function definition defines a parameter 

{"name": "ymin", "map": "#//model/parameters/ymin"} and a gate may define the parameter 

{"name": "ymin", "value": "0.04"}, the pointer will be resolved to the numeric value. 

 

Cello only models transcriptional gates which are structured such that the input to a gate is a tran-

scriptional activity over a regulator (due to some input promoters), and the output of a gate is the 

transcriptional activity due to a promoter controlled by the regulator. Any unit that measures tran-

scriptional activity in this way can be used to characterize gates and specified in the UCF, but all 

libraries included with Cello 2.0 use relative promoter units (RPU) to quantify gate inputs and 

outputs. Note that, as RPU is always defined using an output marker, the definition may change 

depending on the marker that is used and the host context. The Bacteroides UCF Bth1C1G1T1, 

which uses a luciferase marker, has an RPU definition that is different from the Eco2C1G3T1 UCF 

which uses a fluorescent protein that is produced from the genome. The exact definition of the 

carrier unit is always provided in the UCF, and users that design their own UCFs are free to specify 

their own signal carrier unit, as described in the Supplementary Manual §2.1. 

 

It should also be noted that this new version of Cello is intended to model combinational logic. 

These circuits will have outputs that are only a function of their current inputs. To avoid stateful 

logic (i.e., sequential logic), feedback and cycles are prevented in Cello 2.0 but are being consid-

ered for future releases.  

 

We refer to auxiliary functions as functions other than the response function or the cytometry or 

toxicity functions (defined below). Auxiliary functions are used in the Cello UCFs to define "input 

composition" functions that indicate how to collect all a gate's inputs into one quantity to be used 

as the single free variable in the Hill function response. Most libraries use an additive model that 

assumes the input transcriptional activity to a gate to be the sum of the transcriptional activities of 

the gate's input promoters. However, if input promoters occur immediately after one another in a 

tandem arrangement, roadblocking effects can occur. Such effects are quantifiable, and the 

Eco1C2G2T2 UCF (containing tandem promoters) considers a gate's input to be a weighted sum 

of the input promoters' activities.29 The weights in the sum depend on other functions defined by 

a gate, implemented in the UCF as a chaining of auxiliary functions, as shown in Figure 3. 

 

Cytometry distributions at various input levels can also be included in a gate's model. While it is 

the Hill function, the parameters of which are extracted from the cytometry distributions, that is 

used in the process of finding the optimal gate assignment, the inclusion of cytometry distributions 

in the UCF will cause the creation of a predicted cytometry distribution at each output state of each 

gate. As a cytometry distribution will be included in the UCF for each of a finite set of input levels, 

Cello will interpolate a new distribution given the predicted input to that gate. 

 

Finally, a gate "toxicity" measure can also be included in the gate model (see Supplementary Man-

ual §2.7). If, for each gate in the library, a lookup table function is defined that maps some input 

value in RPU to a real number on the unit interval, taken to be a percentage of cell growth relative 



 

to an unloaded cell (a host cell without the gate in question), then Cello will predict net toxicity 

due to all gates in the circuit. In all five Cello libraries (see Table 2), cell growth is measured via 

optical density at 600 nm (OD600). Note that gates are measured individually for their effect on cell 

growth. Cello 2.0 and the UCF format do not support encoding of non-additive or synergistic tox-

icity produced by specific combinations of gates, though support for this feature may be added in 

future versions of Cello. 

 

 
Figure 3: Visualization of gate model and function definitions. In all available UCFs, the gates' 

input/output characteristics are described by Hill functions. The Eco1C2G2T2 library uses a spe-

cial roadblocking model to compute the input to the Hill function. The function used to compute 



 

the input is parameterized by each gate and referred to in the Hill function definition by a pointer: 

#//model/functions/input_composition. 

DNA mapping with placement rules 

Cello uses Eugene rules8 in the PL stage to constrain the relative placement of parts and gates into 

a DNA sequence. Examples of such rules along with components that satisfy them are shown in 

Figure 4. For example, certain input promoter orderings may be disallowed, or a particular gate 

may need to be placed upstream of another for proper functionality. The Cello 2.0 UCF format has 

expanded the rule definitions to allow libraries to constrain the placement of gates across prede-

fined integration sites in a plasmid or genome. The genetic_locations section of the UCF now 

includes insert locations that are labeled symbolically, e.g., L1, L2, L3. The insert locations are 

defined relative to either a complete specification of the host genome or an input plasmid defined 

in a GenBank file or a link to an NCBI sequence. The insert location symbols can be referenced in 

the Eugene rules for gate placement. For example, if location L2 occurs after L1, a gate can be 

constrained to always appear in L1 by the rule GateA BEFORE L2. Cello 2.0 is able to accept 

rules nested arbitrarily in Boolean functions, for example: OR{ AND{ "GateX_a BEFORE L2", 
"GateX_b AFTER L2"}, OR{"GateX_a AFTER L", "GateX_b BEFORE L" }}.  



 

 

 
Figure 4: A selection of Eugene rules and circuits that satisfy or violate the rules. Cello accepts 

rules in the UCF to control the placement of input parts within gates (device_rules) and gates 

within a circuit (circuit_rules). Rules in the circuit_rules collection can include the location mark-

ers (L1 or L2 in the Figure) defined in the genetic_locations collection to control the placement 

of devices (gate fragments) across different plasmids or genome locations. The selections of cir-

cuits marked in green are those that pertain directly to and satisfy the adjacent rule. Selections 

marked in red violate the rule. pA and pB are promoters, d1 and d2 are devices (substructures of 

a gate). Location markers 1 (L1) or 2 (L2) are not parts but rather mark the beginning of an insert 



 

location in the UCF's genetic_locations section. For example, everything to the right of the '1' 

marker, up until the '2' marker, would be placed at genetic location L1. 

SBOL and SynBioHub 

After a successful project run, Cello generates an encoding of the genetic circuit structure using 

the SBOL data standard27 in the export (EX) stage. SBOL is a data standard that can describe a 

genetic construct in a hierarchical fashion, also encoding information like molecular interactions 

and numerical model parameterizations that cannot be represented natively in standard annotated 

sequence formats like GenBank or FASTA. 

 

The information about the genetic design encoded in SBOL can be shared using the SynBioHub28 

repository. SynBioHub is an open-source repository that stores genetic design information en-

coded using SBOL. It supports the search, visualization, and exchange of this information both 

using a graphical user interface (GUI) and an application programming interface (API). SynBio-

Hub facilitates the exchange and reuse of genetic parts and circuits between various research 

groups and software tools. To that end, the Cello web application GUI provides an interface to 

upload the SBOL-encoded genetic circuit to SynBioHub. Furthermore, all of Cello's UCF libraries 

have been converted to SBOL format and uploaded to a SynBioHub instance*. 

Verilog 

Cello 2.0 uses the open-source logic synthesis tool Yosys25, which comes with extensive support 

for the Verilog 2005 specification. This lets users specify the circuit logic using control structures 

familiar from high-level programming languages and will be useful when sequential logic or cir-

cuits partitioned over multiple cells become more common. It also allows for the exploration of 

many existing Verilog implementations to be tested quickly in Cello. See Table 1 for examples of 

various types of Verilog syntax supported in Cello. 

 

Syntactic feature Example Benefits 

structural not (w1, a); 
nor (w2, b, w1); 
nor (out, w1, w2); 

simple, predefined 

layouts 

continuous assign 

statements 

assign o = ~((a & b) | c ^ d);  pure combinational 

logic expressions 

conditionals if (reset == 1) 
  begin 
     q = 0; 
  end 

sequential logic, com-

plex designs 

loops for (i = 0; i < n - 1; i++) 
  bus[i] = bus[i + 1]; 

flexible program con-

trol, complex designs 

 

* https://synbiohub.programmingbiology.org 



 

relevant for future ge-

netic circuits 

Table 1: Example Verilog syntax supported in Cello 2.0. It supports almost all Verilog 2005 syn-

tax, including continuous assign statements, conditionals, and loops. 

GUI 

Cello 2.0 is outfitted with a new GUI served in the browser, available at http://cellocad.org. The 

user creates an account in the web application, then either retrieves a previously created project (a 

genetic circuit design) or begins a new project. A project view is divided into four tabs for the 

circuit specification and design results: the Library tab where the user chooses or uploads a UCF, 

the Design tab (Figure 5) where the user provides a Verilog circuit description and assigns input 

and output devices, a Settings tab where the user may tweak minor aspects of the workflow such 

as the number of sequence variants, and a Results tab (Figure 6) to view the final circuit design 

and its predicted behavior.  

 

 
Figure 5: The Verilog editor and input & output selection panes in the GUI. In a project specifi-

cation, the user navigates between this view and the library selection, advanced settings, and results 

views using tabs on the left-hand side. The user can choose from a few example Verilog files. 

Input and output symbols, whether provided in the Verilog module declaration or in the body of 

the module, are mapped to input sensor and output device selection boxes on the right. The user 

uploads or selects an available set of inputs and outputs, then optionally assigns a sensor or reporter 

to each input and output symbol extracted from the Verilog. 

 

http://cellocad.org/


 

 
Figure 6: The results view in the GUI. The circuit topology is shown in the graph at the bottom. 

Each node in the network has three pieces of information: the node name, the Boolean gate type, 

e.g., NOT, NOR, etc., and the biological gate assignment. Many gate placements (orderings of 

gates into a DNA sequence) may be generated, two are visible in this screenshot. Many other 

results (unpictured) are also generated: response plots for each gate, predicted cytometry distribu-

tions for each gate, a truth table, and a table with predicted transcriptional activity for each gate, 

and a prediction of optical density measurements (see examples for all in Figure 8). 

Support for new organisms 

Cello 2.0 supports new organisms with an updated user constraints file (UCF) format and five 

ready-made UCFs in different hosts. After beginning a design in the Cello web application graph-

ical user interface (GUI), the user can navigate to the Library tab to select a provided UCF or 

upload a custom file. All available UCFs are summarized in Table 2, and the results of designing 

an XNOR gate in all libraries are shown in Figure 7. A complete description of the UCF format 

that enabled these libraries is included in the Supplementary Manual §2.  



 

 

Library name Host Regulators Notes & references Genetic lo-

cation 

Gate definition Gate model Cytometry Signal 

carrier 

unit 

Eco1C1G1T1 E. coli DH10β TetR homo-

logs: PhlF, 

SrpR, BM3R1, 

HlyIIR, BetI, 

AmtR, AmeR, 

QacR, IcaRA, 

LitR, PsrA, 

LmrA 

Original Cello 1.0 li-

brary6 
Plasmid: 

p15a (cir-

cuit & out-

put on sepa-

rate plas-

mids) 

12 NOT/NOR Additive Yes RPU 

Eco1C2G2T2 E. coli DH10β TetR homo-

logs: PhlF, 

SrpR, BM3R1, 

HlyIIR, BetI, 

AmtR, AmeR, 

QacR, IcaRA 

Improved gates and tan-

dem promoter model29 
Plasmid: 

p15a 

9 NOT/NOR Non-additive 

tandem road-

blocking 

Yes RPU 

Eco2C1G3T1 E. coli MG1655 K-12 TetR homo-

logs: PhlF, 

QacR, BM3R1, 

BetI, AmtR, 

AmeRs 

Split transcriptional 

units30 
Genome, 

offsets: 

3911814, 

4196314, 

4506858 

6 NOT/NOR Additive Yes RPUG 

Bth1C1G1T1 B. thetaiotaomicron 

MT768 

CRISPRi: 

1,2,...,7 

Split transcriptional 

units, single guide 

RNAs (CRISPR-

dCas9)31 

Genome: 

attBT2-1, 

attBT2-2 

7 NOT/NOR Additive No RPUL 

SC1C1G1T1 S. cerevisiae BY4741 PhlF, QacR, 

BM3R1, PsrA, 

IcarA, CI, 

CI434, HKCI, 

LexA 

Split transcriptional 

unit, up to 11 regulatory 

proteins32 

Genome: 

ura3, leu2 

9 NOT/NOR Additive Yes RPU 

Table 2: Cello 2.0 is bundled with five different libraries in three organisms. Each library contains 

a different set of gates. The library names follow a naming convention, see the Supplementary 

Manual §2.1. Note that "7 NOT/NOR" in the Gate definition column indicates that seven gates are 

defined in the UCF, each one can perform either the NOT or NOR operation. Gates have different 

architectures, some with tandem promoters and others with two copies of the regulator gene with 

one promoter for each copy ("split transcriptional units" in the Table). Each gate library also uses 

a certain signal carrier unit, either RPU or a variant. RPUG is calculated with the measurement 

integrated on a genome landing pad, RPUL is calculated with a luciferase-based measurement 

standard. 

  



 

 
Figure 7: An XNOR gate designed in all five libraries available in Cello 2.0, shown with predicted 

(not experimental) OD600 and RPU output levels.  

 

  



 

 

Materials 

⚫ Personal computer with an Internet connection and a web browser like Mozilla Firefox, 

Google Chrome, or Microsoft Edge with JavaScript enabled. 

⚫ A user constraints file (UCF) describing the gates and the target organism. Complete files 

for gates in S. cerevisiae, E. coli, and B. thetaiotaomicron are shipped with the software 

and are available on Github† and cellocad.org. Information on creating a custom UCF is 

given in the Supplementary Manual §2 and §4. 

⚫ An input sensor file and output device file. Complete files for inputs & outputs in S. cere-

visiae, E. coli, and B. thetaiotaomicron are shipped with the software and are available on 

Github‡,§ and cellocad.org. 

⚫ (Optional) Docker**, if you wish to run your own instance of Cello 2.0. The webapp con-

tainer is available on Docker Hub as cidarlab/cello-webapp††. 

⚫ (Optional) Java Runtime Environment‡‡ version 8, Yosys25, Python§§ version 3, and 

dnaplotlib33, if you wish to run an instance of Cello 2.0 in your host operating system out-

side of a Docker container. 

Procedure 

General procedure 

1 Navigate to http://cellocad.org in your web browser. 

Timing 5s. 

 

2 Create a new account or login with an existing account. 

 Timing 10–60s. 

 

3 Download results from a previous project or create a new project. 

Timing 10–60s. 

 

4 Choose an available gate library or upload an already prepared UCF. 

Timing 1–10 min (preparing a custom UCF, including gate characterization experiments, 

may require 40–80 hours of effort). See instructions for preparing Cello input files from 

scratch in the Supplementary Manual §6.1. 

 

† https://github.com/CIDARLAB/Cello-UCF/tree/develop/files/v2/ucf 

‡ https://github.com/CIDARLAB/Cello-UCF/tree/develop/files/v2/input 

§ https://github.com/CIDARLAB/Cello-UCF/tree/develop/files/v2/output 

** https://www.docker.com/ 

†† https://hub.docker.com/r/cidarlab/cello-webapp 

‡‡ https://java.com/en/download/ 

§§ https://www.python.org/ 

http://cellocad.org/


 

 

5 Open the Verilog tab and compose or paste the Verilog description of your circuit. There 

is a small number of sample Verilog files available for selection in the GUI. Sample files 

are also provided in §3 of the Supplementary Manual. In general, the user does not need a 

strong familiarity with Verilog – the example files can easily be adapted to any Boolean 

function or truth table. 

Timing 1–30 min (users unfamiliar with Boolean logic and basic programming concepts 

may require additional time to understand Verilog syntax). 

 

6 In the Inputs section, under the file selection menu (see Figure 5), select an input sensor 

file to choose a set of available sensors. Optionally upload a new input sensor file by click-

ing on the cloud icon. A file must be selected to proceed with the design. See the Supple-

mental Manual for information on preparing a custom file. 

Timing 1–5 min (preparing a custom input sensor file, including the necessary characteri-

zation experiments, may require 40–80 hours of effort). 

 

7 In the Outputs section, under the file selection menu (see Figure 5), select an output device 

file to choose a set of available output devices. Optionally upload a new output device file 

by clicking on the cloud icon. A file must be selected to proceed with the design. See the 

Supplemental Manual for information on preparing a custom file. 

Timing 1–5 min (preparing a custom input sensor file, including the necessary characteri-

zation experiments, may require 40–80 hours of effort). 

 

8 (Optional) After a Verilog specification is present and an input sensor file has been se-

lected, a specific input sensor can be associated with a particular Verilog input symbol 

defined in the Verilog module. Likewise, when an output device file has been selected, 

output devices can be assigned to output symbols in the Verilog. 

Timing 0–10 min. 

 

9 (Optional) Open the Settings tab and select stage algorithms or select stage settings for 

output format. These settings are unlikely to be used by most users. 

Timing 0–5 min. 

 

10 Submit the job by clicking on the blue plane icon in the bottom corner, enter a job name, 

click run, then wait for the job to complete. 

Timing 1–30 min, depending on gate library and Verilog input. 

 

11 View results in the results tab. Optionally download results and submit SBOL description 

of circuit design to a SynBioHub instance. 

Timing 10–120 min. 

Case study 

We present a genetic circuit design case study with Cello 2.0 using the yeast (S. cerevisiae) gate 

library SC1C1G1T1. We design the circuit 0x01, otherwise called a three-input AND gate – the 

output is only high when all three inputs are high. 



 

 

1 Follow steps 1-3 in the General procedure section above. 

2 In the Library tab, click the library with identifier SC1C1G1T1. This will instruct Cello to 

use the S. cerevisiae gate library when designing the circuit. Note that instructions for pre-

paring Cello input files from scratch are presented in Supplementary Manual §6.1. 

3 Open the Design tab. In the Verilog editor, paste the following code: 

 

module x01(output y, input a, b, c); 
  
   and(y, a, b, c); 
  
endmodule 

 

4 In the Inputs section, under the file selection menu (see Figure 5), select SC1C1G1T1.in-

put.json. This will instruct Cello to use the input sensors that have been prepared to work 

in conjunction with the SC1C1G1T1 UCF. 

5 The input symbols in the Verilog file (a, b, and c) should be displayed in the Inputs section. 

Select aTc_sensor in the dropdown menu next to the input a. Select Xylose_sensor for b 

and IPTG_sensor for c. 

6 In the Outputs section, select the SC1C1G1T1.output.json file. 

7 Select YFP_reporter for the output y. 

8 Follow steps 7 & 8 in the General procedure section above. 

 

The results of the case study are given in the Anticipated results section. 

Timing 

Steps 1 and 2, navigate to cellocad.org and login: 5–65 s 

Step 3, create a new project: 10–60 s 

Step 4, choose a gate library or upload your own: 1–10 min 

Step 5, enter Verilog: 1–30 min 

Steps 6 and 7, select inputs & outputs files or upload your own: 2–10 min 

Step 8, assign input sensors and output devices: 0–10 min 

Step 9, select stage-specific settings: 0–5 min 

Step 10, submit the job: 1–30 min 

Step 11, view results or submit to SynBioHub: 10–120 min 

Troubleshooting 

This section describes a couple of error messages that may occur in the GUI. 

 

Step Problem 

(Error 

message) 

Possible reason Solution 



 

Verilog (Design 

tab of GUI) 

Error 

processing 

inputted 

Verilog. 

There is a syntax or structural 

error in the user-provided 

Verilog code. The GUI pro-

vides sample Verilog files, 

and we encourage designers 

to modify these as an intro-

duction to the language syn-

tax. 

Structural errors are not found 

until runtime. Ensure that each 

symbol is defined before the 

point at which it is evaluated 

in the code.  

Verilog (Design 

tab of GUI) 

Failed to 

synthesize 

verilog into 

netlist. 

The Verilog code is too struc-

turally complex to create a 

valid output within the given 

service time limit.  

Reduce the complexity of the 

circuit by removing 

declarations and assignments 

to determine which Verilog 

element is causing the issue. 

UCF selection 

(Library tab) or 

Input & Output 

selections 

(Design tab) 

Invalid JSON 

in target data 

The UCF or input and output 

files provided by the user 

could not be parsed as valid 

JSON. Trailing or missing 

commas and unclosed blocks 

or strings can trigger this er-

ror. 

For large files, use a JSON 

validator such as JSONLint 

(https://jsonlint.com/) to 

locate formatting errors. 

Placing stage of 

execution 

Could not re-

solve inputted 

rule set. 

The rules provided in the cir-

cuit_rules or device_rules 

sections of a custom UCF 

contain incompatible infor-

mation, e.g., pTet BEFORE 

pTac AND pTac BEFORE 

pTET. 

Review your custom UCF file. 

Check the Eugene syntax11 to 

ensure you understand the 

meaning of each keyword. 

Verify that no pair of rules can 

create a contradiction. 

Optionally download the 

failed project on your projects 

page and open the Eugene 

script (see Table 4) to view the 

subset of rules from the UCF 

that are applied to the circuit. 

Input file 

selection 

(Design tab) 

Input Sensor 

File not found 

The user did not select an in-

put sensor file in the Design 

tab of the GUI. 

See Figure 5 and Step 6 of the 

Procedure section. Specifying 

an input sensor file is not 

optional, as the sensors are 

characterized with ON and 

OFF transcriptional activities 

that propagate to allow Cello 

to model the behavior of the 

circuit. 

https://www.zotero.org/google-docs/?2kNlLq


 

Output file 

selection 

(Design tab) 

Output Device 

File not found 

The user did not select an out-

put device file in the Design 

tab of the GUI. 

See Figure 5 and Step 7 of the 

Procedure section. Specifying 

an output device file is not 

optional. 

UCF selection 

(Library tab) 

UCF File not 

Found 

The user did not select a UCF 

in the Library tab of the GUI. 

Review Step 4 of the 

procedure section. The 

selection of a UCF is not 

optional. Simply click the row 

corresponding to the UCF to 

be used and observe that it is 

highlighted, indicating that it 

is selected. A UCF that has 

been uploaded will appear in 

the table for selection and 

must be chosen after upload. 

Project 

Submission 

JSON Conver-

sion Problem 

The UCF or input and output 

files provided by the user 

could not be parsed as valid 

JSON. Toxicity or cytometry 

data with integer values (e.g., 

'1', without quotation marks) 

Review the preparation of 

Cello Input files (§6.1 in 

Supplementary Manual) and 

convert integer values to float 

data type (e.g., '1.00'. without 

quotation marks). 

Project 

Submission 

Project name is 

empty. Please 

fill out project 

name. 

The user did not enter in a 

project name during project 

submission. 

See Figure 5 and Step 7 of the 

Procedure section. Specifying 

a project title is not optional. 

Project 

Submission 

Project de-

scription is 

empty. Please 

fill out project 

description. 

The user did not enter in a 

project description during 

project submission. 

See Figure 5 and Step 7 of the 

Procedure section. Specifying 

a project description is not 

optional. 

Table 3: Troubleshooting. Note that the Step column indicates the source of the error, but the error 

will appear after project execution. 

Anticipated results 

General 

The expected result of a Cello 2.0 project is a genetic circuit design that implements the behavior 

in the Verilog file provided by the user. The software generates multiple images and text files that 

describe the circuit design and its expected behavior. Table 4 gives a complete listing of all the 



 

output files generated by Cello. Figure 8 contains a combination of the visual results presented in 

the GUI. It will generate a truth table for the Boolean circuit as well as expected values of tran-

scriptional activity in the signal carrier unit (RPU or a variant for any standard library) for every 

gate and every row in the truth table. Complete distributions of expected transcriptional activity 

for each gate are also drawn. The topology of the circuit is represented in two visualizations: a 

graph where each node represents a gate and is annotated with the Boolean gate type and the im-

plementing biological gate and a sequence diagram showing the ordering of the parts in the circuit 

and the interactions between them. A response curve for each gate is also drawn along with a table 

of expected toxicities for each state of the circuit. All the results are illustrated in the GUI (see 

example in Figure 8) and can be downloaded for offline use.  

 

The SBOL file is one of the most important outputs as it contains the fully annotated DNA se-

quence. SBOL files can be processed in libraries available in several programming languages and 

are generally intended to be stored in a SynBioHub repository. A SynBioHub instance can run 

database queries over its contents and serve as a distributor of circuit construct data in automated 

software pipelines. 

<project name>_<stage>.{dot,pdf,png} An image of the netlist after each stage. This 

will include a gate name, Boolean gate type 

(e.g., NOR), and biological gate for each node 

in the netlist. See Figure 8 b. Example: 

andgate_technologyMapping.png 

<project name>_outputNetlist.json The netlist encoded in JSON format. 

<project name>.xml The SBOL file representing the circuit. 

<project name>_logic.csv The truth table of the circuit. 

<project name>_activity.csv A table of the predicted transcriptional activ-

ity*** in RPU of each node in the circuit. 

<project name>_toxicity.csv A table of the predicted optical density for a 

cell carrying the circuit. "Toxicity" is some-

times used to describe a gate's or circuit's load 

on the host cell's growth, as indicated by an op-

tical density measurement. Plotted in Figure 8 

d. 

<project name>_dpl.{pdf,png} An image of the final circuit sequence gener-

ated by DNAplotlib. See Figure 8 e. 

dpl_{dna_designs,part_information, 
regulatory_information}.csv, plot_parame-
ters.csv 

The inputs to DNAplotlib’s library_plot.py. 

 

*** The meaning and accuracy of the transcriptional activity and toxicity predictions are discussed in more 

detail in the Supplementary Manual (§7.4.2). 



 

response_plot_<node>_<gate>.{png,py} A response plot and the Python script used to 

generate it. There is a response plot for each 

node in the netlist. The response function is 

marked with the different states the gate is ex-

pected to take. See Figure 8 c. 

cytometry_plot_<node>_<gate>.{png,py} A plot of the expected cytometry profile of the 

circuit and the Python script used to generate it. 

There is a cytometry plot for each node in the 

netlist. See Figure 8 a. 

<project name>_eugeneScript.eug The Eugene program that is executed to find 

rules-compliant DNA sequences. 

<project name>.ys The Yosys script used to synthesize the Bool-

ean layout from the Verilog file. 

Table 4: Output files generated by Cello. See Supplementary Manual §5 for complete examples 

of some of these files. 

Case study 

A collection of the anticipated results from the Case study are given in Figure 8, and additional 

results are presented in the Supplementary Manual §6. Along with the circuit layout, a predicted 

cytometry distribution is shown for each possible input state of the resultant circuit. The distribu-

tion for input state "+/+/+" is centered around a higher RPU output than the distributions for the 

other states, consistent with the expected output (three-input AND). Toxicity, as given by cell 

growth measured via relative OD600, is also shown to be consistently above a threshold value of 

0.7 in the case study results. Several different variants of gate ordering (DNA sequence) are given, 

as Cello 2.0 does not model the effect of such orderings. 



 

 
Figure 8: The expected results of a case study aiming at designing the circuit 0x01 (three-input 

AND gate) using the SC1C1G1T1 library. a The computational predictions of the cytometry pro-

files given the gate assignments in b. The right-hand y-axis label indicates the input state corre-

sponding to the subplot. For example, +/-/+ indicates that inputs a and c are ON, input b is OFF. 

b The circuit network for the 0x01 circuit in S. cerevisiae. Each node is marked with a node name, 

e.g., $1, a Boolean gate type, e.g., NOR, and a biological gate assignment, e.g., P1_PhlF. c The 

Hill function response of the final gate (named "$1") before the output. Closed circle markers 

indicate ON states, and open circle markers indicate OFF states. d The relative OD600 of the circuit, 

defined for each state. e Four sequence variants of the circuit layout. 

Data availability 

The data that support the findings of this study (i.e., standard UCF libraries, input sensor files, and 

output device files) is openly available at <https://doi.org/10.5281/zenodo.4676314>. 

Code availability 

Code for Cello 2.0 is divided among various openly available repositories. The core circuit de-

sign module is available at <https://doi.org/10.5281/zenodo.4676314>, the code for the web ap-

plication is available at <https://doi.org/10.5281/zenodo.4676310>, the source code of the GUI 

(which is compiled into the webapp) is available at <https://doi.org/10.5281/zenodo.4676300>. 

A supplementary file (in .zip format), containing all the source code in the version used in the 

study, associated test data, parameters, and documentation, is openly available at <https://publi-

cation-artifacts.s3.amazonaws.com/cellov2.zip>. The source code is openly distributed in ac-

cordance with Boston University’s Data Protection Standards <https://www.bu.edu/policies/data-

protection-standards/pdf/>, and under the MIT license at <https://opensource.org/licenses/MIT>. 

https://doi.org/10.5281/zenodo.4676314
https://doi.org/10.5281/zenodo.4676310
https://doi.org/10.5281/zenodo.4676300
https://publication-artifacts.s3.amazonaws.com/cellov2.zip
https://publication-artifacts.s3.amazonaws.com/cellov2.zip
https://opensource.org/licenses/MIT
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