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Non-Bayesian Social Learning with Gaussian Uncertain Models

James Z. Hare, César A. Uribe, Lance Kaplan, and Ali Jadbabaie

Abstract— Non-Bayesian social learning theory provides a
framework for distributed inference of a group of agents in-
teracting over a social network by sequentially communicating
and updating beliefs about the unknown state of the world
through likelihood updates from their observations. Typically,
likelihood models are assumed known precisely. However, in
many situations the models are generated from sparse training
data due to lack of data availability, high cost of collec-
tion/calibration, limits within the communications network,
and/or the high dynamics of the operational environment.
Recently, social learning theory was extended to handle those
model uncertainties for categorical models. In this paper, we
introduce the theory of Gaussian uncertain models and study
the properties of the beliefs generated by the network of agents.
We show that even with finite amounts of training data, non-
Bayesian social learning can be achieved and all agents in
the network will converge to a consensus belief that provably
identifies the best estimate for the state of the world given the
set of prior information.

I. INTRODUCTION

The setting of non-Bayesian social learning [1] often
assumes that there is a network of boundedly rational agents
who are receiving private observations, communicating, and
updating beliefs about the model that best represents the
underlying truth. In this framework, the beliefs are assumed
to be sufficient statistics for what individuals know about the
state of the world, and the update is known to suffer from
imperfect recall [2], which significantly simplifies combining
the agents beliefs as compared to Bayesian social learning
theory, at the expense of “double counting” information [3]–
[6].

The literature of non-Bayesian social learning theory typ-
ically studies various social learning rules that allows the
agents to sequentially combine and update their beliefs in
a manner that aggregates all of the information available in
the network. Much of the learning rules developed consider
that each agent combines their neighbors’ beliefs using a
weighted arithmetic [7]–[9] or a geometric average [1],
[10]. Then, the beliefs are updated by scaling the combined
beliefs by the likelihood of their new observation given
that the particular model is the ground truth. Variations of
these learning rules have been proposed to handle fixed
and time-varying graphs [11], weakly-connected graphs [12],
[13], increasing self-confidence [14], compact hypotheses
sets [15], and adversarial attacks [16], [17].
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There are several variations of these social learning rules
proposed in the literature which aim to improve the learning
rate of the agents. These include using one-step memory [18],
observation reuse [17], [19], and most recently the min-
rule [20]. Although the current literature has made significant
advances in this problem, they all assume that the statistical
models used to evaluate the likelihoods are known precisely.
This assumption requires that the agents collect a large set
of training exemplars to ensure that the estimated models
provide an accurate representation. However, in many situa-
tions, the amount of training data available may be limited or
too expensive to collect, requiring that the agents incorporate
their uncertainty into the likelihood models.

Modeling uncertainty has been previously studied in the
fields of possibility theory [21], probability intervals [22],
and belief functions [23], [24] by extending probability the-
ory and expressing the likelihood model parameters within
a fixed interval. Other approaches follow a Bayesian frame-
work by modeling the uncertainty in the likelihood model pa-
rameters as a second-order probability density function [25],
[26], which is typically a conjugate prior of the underlying
statistical model. Then, the uncertain likelihood model can
be computed as the posterior predictive distribution [27].

Recently, the concept of uncertain models for observa-
tions drawn from an unknown multinomial distribution was
proposed and was included in a social learning setting
[28], which was later extended to time-varying directed
graphs [11]. This technique proposed an uncertain likelihood
ratio as the likelihood model to test the consistency of
the prior evidence (training data) with the measurement
sequence (testing data) [11], [28]. The uncertain likelihood
ratio is defined as a standard likelihood ratio test, except
as a ratio of the posterior predictive distribution conditioned
on the prior evidence to the posterior predictive distribu-
tion conditioned on zero prior evidence (or non-informative
prior). In this regard, the beliefs generated by the social
learning rules are evaluated on their own merit. Applying
this approach in the limiting condition when the amount
of prior evidence grows unboundedly, the agents accurately
infer the ground truth model and achieve the same result as
traditional non-Bayesian social learning theory. Additionally,
when the amount of prior evidence is finite, uncertain models
generalize the problem allowing for a measure of confidence
in the inference results.

In this work, we expand upon the idea of uncertain models
[28] to address the scenario when measurements are real-
valued and drawn from a Gaussian distribution. We derive
the general Gaussian uncertain model for situations where
the mean and precision are unknown and implement this
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model into a standard non-Bayesian social learning rule.
We found that the beliefs of every agent converge to the
centralized solution, which is a geometric average of their
individual uncertain likelihood ratios. Furthermore, as the
agents’ amount of prior evidence grows unboundedly, the
beliefs with Gaussian uncertain models are the same as tra-
ditional non-Bayesian social learning theory. This indicates
that Gaussian uncertain models can successfully be used as
a general inference test for any amount of prior evidence.

The remainder of this paper is organized as follows. First,
in Section II we present the problem, our proposed algorithm,
and the main results. Then, we derive the Gaussian uncertain
models in Section III and the uncertain likelihood update
utilized in the social learning rule in Section IV. Then, we
outline the process of proving the main results, in Section V.
Finally, we provide a numerical analysis in Section VI to
empirically validate our results and conclude the paper in
Section VII.

Notation: Bold symbols represent a vector/matrix, while
a non-bold symbol represents its element. The indexes i and
j represent agents and t represents time. We abbreviate the
terminology independent identically distributed as i.i.d.. We
use [A]ij to represent the entry of matrix A′s ith row and
jth column. The empty set is denoted as ∅. The Gaussian
distribution is

N (ω|µ, λ−1) =

√
λ√
2π
e−

λ(ω−µ)2
2 , (1)

and the Gaussian-gamma distribution is

NG(x, λ|µ, κ, α, β) =
βα
√
κ

Γ(α)
√

2π
λα−

1
2 e−βλe−

κλ(x−µ)2
2 .

(2)

We denote the Kullback-Liebler (KL) divergence as

DKL(p(x)‖q(x)) = −
∫
p(x) log

(
p(x)

q(x)

)
dx, (3)

where p(x) and q(x) are two continuous probability distri-
butions over x ∈ R.

II. PROBLEM FORMULATION, SOCIAL LEARNING RULE,
AND MAIN RESULT

A. Hypotheses, signals, and prior evidence

Consider a network of m agents connected over a social
network who are trying to infer the unknown state of
the world θ∗ from a finite set of states (or hypotheses)
Θ = {θ1, ..., θm}. At each time step t ≥ 1, we as-
sume that each agent i collects an i.i.d. private observation
ωit ∈ R sampled from an unknown Gaussian distribution
Piθ∗ = N (·|µiθ∗ , λ−1iθ∗) with mean µiθ∗ and precision λiθ∗ =
1/σ2

iθ∗
1. We denote the set of measurements received up to

time t as Ωi1:t, where the measurements are independent
across the agents.2 The overall goal of the agents is to

1It is possible to generalize this to within Rn, however, this condition is
out of the scope of this paper and will be considered as future work

2In general, each agent may have a different measurement model or
sensing capability from one another. This can result in µiθ∗ and λiθ∗
varying between agents.

Fig. 1. Geometric interpretation of uncertain models: The outer square
represents a continuous probability space of the distributions of signals ωit.
The solid square and star represent the true distribution for hypothesis θ1 and
θ2 respectively, while the open square and star are the uncertain distributions
for θ1 and θ2, where θ2 is θ∗. The open circle in the center represents
the model of complete ignorance. The uncertain distribution is a mixture
between P (·|∅) and Pθ , which depends on the amount of prior evidence
collected. Zero prior evidence causes the location of P̂ (·|rθ) to be P̂ (·|∅),
while an infinite amount of prior evidence causes it to be located at Pθ .
Then, as measurements are received, the distributions P̂ (·|rθ1 ), P̂ (·|rθ2 ),
and P̂ (·|∅) traverse through the probability space until they eventually
collapse on Pθ∗ with an infinite amount of measurements. We define the
uncertain likelihood ratio Λθ = P̂ (·|rθ)/P̂ (·|∅) as our consistency test,
where a hypothesis with prior evidence consistent with the ground truth
will have a shorter trajectory from P̂ (·|rθ) to Pθ∗ than P̂ (·|∅) to Pθ∗ .

collectively agree on the hypothesis that best matches the
ground truth distribution.

Traditionally, each agent undergoes a training phase where
they collect a sufficiently large amount of labeled training
data to accurately estimate the parameters µiθ and λiθ of
the distribution Piθ = N (·|µiθ, λ−1iθ ) for each hypothesis θ.
This results in a precisely known statistical model for each
θ. However, this work considers that the agents collect a
varying amount of prior evidence (training data) for each
hypothesis, which may lead to inaccurate estimates of the
parameters, requiring uncertain statistical models.

Consider that an agent i has access to a hypothesis θ ∈ Θ
and collects Riθ ≥ 0 drawn from the distribution Piθ =
N (·|µiθ, λ−1iθ ), where µiθ and λiθ are unknown. This results
in a set of Riθ training samples riθ = {rikθ}∀k∈{1,...,Riθ}
which are then used to estimate the parameter µiθ and λ−1iθ .

Instead of adopting a frequentist’s interpretation and sim-
ply estimating the parameters by the sample mean and
variance, this work implements a Bayesian approach that
exploits conjugate distributions to estimate the posterior
distribution of µ and λ conditioned on the prior evidence
riθ. Since the family of statistical models is assumed to
be Gaussian with unknown mean and variance, a natural
conjugate distribution is the Gaussian-gamma distribution
[29]. Then, we estimate the uncertain likelihood using the
parameters posterior distribution by predicting the likelihood
of the measurement sequence give the prior evidence, i.e.,
P̂ (Ωi1:t|riθ), as the posterior predictive distribution [27]. An
example of the uncertain likelihood is shown in Fig. 1.

Typically in hypothesis testing [29], the likelihoods are
normalized over the set of hypotheses and the hypothesis
with the maximum likelihood is selected as the ground truth.
This can also be thought of as the likelihood distribution
closest to the ground truth in the probability space, see
Fig. 1. However, in the uncertain case, the posterior pre-
dictive distribution for each hypothesis is computed with



a varying amount of prior evidence making them incom-
mensurable [28]. Thus, we normalize the uncertain like-
lihood by another posterior predictive distribution of the
measurement sequence, except here we use a noninformative
Gaussian-gamma prior [30] having zero prior evidence, i.e.,
P̂ (Ωi1:t|riθ = ∅). This uncertain likelihood ratio Λiθ =
P̂ (·|riθ)/P̂ (·|∅) acts as our uncertain statistical model and
is derived in Section III. The uncertain likelihood ratio is a
consistency test between the prior evidence and the measure-
ment sequence. It quantifies the amount of evidence to accept
or reject the hypothesis that a model θ is distinguishable
from the ground truth θ∗. The set of hypotheses that are
indistinguishable from the ground truth for the i-th agent is

Θ∗i = {θ|N (·|µi,θ, λ−1i,θ ) = N (·|µi,θ∗ , λ−1i,θ∗) ∀θ ∈ Θ}.

We can visually interpret the uncertain likelihood ratio
in Fig. 1. As an agent collects measurements, the uncertain
distributions P̂ (·|rθ1), P̂ (·|rθ2), and P̂ (·|∅) inch their way
closer to Pθ∗ , where their rate depends on the amount of
prior evidence collected. The number of time steps that the
uncertain distribution is closer/further to Pθ∗ than P̂ (·|∅)
governs much greater than 1 or closer to 0 the uncertain
likelihood ratio will be, respectively. Thus, our consistency
test, presented in Section III, accepts/rejects hypotheses with
shorter/longer trajectories of P̂ (·|rθ) → Pθ∗ than P̂ (·|∅) →
Pθ∗ , respectively.

B. Social Learning Rule

Next, we propose the distributed inference algorithm for
a group of agents interacting over a social network. Initially
at time t = 0, each agent i constructs a belief µi0(θ) = 1
for each hypothesis θ ∈ Θ, where each belief represents an
aggregated uncertain likelihood ratio discussed above and
presented in Section III. Then, for each time step t ≥ 1,
each agent sequentially communicates their beliefs to their
neighbors, receives a new observation, and updates their
beliefs using a social learning rule.

We assume that the agents interact over a network modeled
as an undirected graph G = (M, E),3 whereM = {1, ...,m}
is the set of agents and E is the set of edges between agents.
If agents i and j can communicate their beliefs to each other,
then (i, j) ∈ E . We denote agent i’s set of neighbors as
Mi = {j|(j, i) ∈ E ,∀j ∈ M} and each edge is assumed to
be weighted and modeled as an adjacency matrix A, where
[A]ij > 0 if (i, j) ∈ E .

During each time step t ≥ 1, each agent i has access to the
information ψit(θ) = {ωit+1, riθ, µit(θ), {µjt(θ)}∀j∈Mi}
for each hypothesis θ. Then, agent i updates their belief
µit+1(θ) using the following update rule:

µit+1(θ) = `iθ(ωit+1|Ωi1:t)
∏
j∈Mi

µjt(θ)
[A]ij , (4)

where the product on the right hand side of (4) represents a
geometric average of their neighbors beliefs and `iθ(ωit+1)

3Note that the results herein hold for directed graphs as long as the the
graph satisfies Assumption 1.

is the Gaussian uncertain likelihood update defined as4

`iθ(ωit+1) =
Γ(αRiθ+t+1)Γ(αt)β

αt+1

t+1 β
αRiθ+t
Riθ+t

Γ(αt+1)Γ(αRiθ+t)β
αt
t β

αRiθ+t+1

Riθ+t+1

· (κt+1κRiθ+t)
1/2

(κtκRiθ+t+1)1/2
. (5)

For simplicity of presentation, we postpone the explicit
definition of the uncertain likelihood update parameters to
Sections III and IV in (9), (13), and (15). Note that κ
and α represent a count of the data items, while β is a
centralized sum of squares for the set of these data items.
This is a closed form expression of a ratio of predictive
posterior distributions, where the numerator is the expected
value of N (ωit+1|µ, λ−1) taken over the Gaussian-gamma
distribution conditioned on the prior evidence riθ and the
measurement sequence Ωi1:t and the denominator is the
expected value of N (ωit+1|µ, λ−1) taken over the Gaussian-
gamma distribution conditioned on only the measurement
sequence Ωi1:t.

This function is designed such that the product of Gaussian
uncertain likelihood updates

∏t+1
τ=1 `iθ(ωiτ ) is equal to the

uncertain likelihood ratio at time t+1. Therefore, the beliefs
µit+1(θ) represent an aggregated geometric average of all of
the agents individual uncertain likelihood ratios.

Next, we provide some assumptions that allow us to
quantify where the beliefs generated by the update rule (4)
converge asymptotically with Gaussian uncertain models.

Assumption 1: The graph G and matrix A are such that:
(a) A is doubly-stochastic with [A]ij = aij > 0 for i 6= j if

and only if (i, j) ∈ E.
(b) A has positive diagonal entries, aii > 0 for all i ∈ V .
(c) The graph G is connected.

Assumption 1 states that the adjacency matrix is ergordic,
i.e., aperiodic and irreducible, and is a common assumption
in the literature [18]. This allows every agent to communicate
their beliefs throughout the entire network.

Assumption 2: There is at least one agent that can distin-
guish any θ 6= θ∗ so that ∩i∈MΘ∗i = {θ∗}.
Assumption 2 guarantees that the collective group of agents
can determine θ∗. As a consequence of Theorem 2 below,
these agents can determine θ∗ with infinite prior evidence
(ie., precise models) as t→∞.

C. Main Results

Now we are ready to present the properties of the beliefs
generated using the update rule given by (4).

Theorem 1: Let Assumption 1 hold. Then, the beliefs
generated using the update rule (4) have the following
property:

lim
t→∞

µit(θ) =

 m∏
j=1

Λ̃jθ

 1
m

(6)

4Here, we have simplified the notation and will only provide the condi-
tioned measurements Ωi1:t when necessary.



for all i ∈M with probability 1 where

Λ̃jθ =
N (rjθ|µjθ∗ , λ−1jθ∗)

P (rjθ)
, (7)

is agent j’s asymptotic uncertain likelihood ratio and

P̂ (rjθ) =
Γ(αRjθ )β

α0
0 (2π)−

Rjθ
2

Γ(α0)β
αRθ
Rjθ

(
κ0
κRjθ

) 1
2

, (8)

is the posterior predictive distribution of the prior evidence
conditioned on a noninformative prior with parameters

κRjθ = κ0 +Rjθ, αRjθ = α0 +
Rjθ
2
,

βRjθ = β0 +
Rjθ
2

(
s2jθ +

κ0(r̄jθ − µ0)2

κRjθ

)
, (9)

r̄jθ = (
∑Rjθ
k=1 rjkθ)/Rjθ, s2jθ = (

∑Rjθ
k=1(rjkθ − r̄jθ)2)/Rjθ,

µ0 = 0, α0 = 1, β0 = 1, and κ0 = 1.
Theorem 1 states that the beliefs converge to the geometric

average of the agents’ asymptotic uncertain likelihood ratio,
which is the likelihood of the prior evidence conditioned on
the true parameters, normalized by the total probability of the
prior evidence. When the agents have a finite amount of prior
evidence, the beliefs converge to a finite value, i.e. µit(θ) ∈
(0,∞), where a value much greater than 1 indicates that the
prior evidence is consistent with the ground truth. However,
when the amount of prior evidence grows unboundedly, the
agents beliefs have the following properties.

Theorem 2: Let Assumption 1 hold and every agents’
amount of prior evidence grows unboundedly. Then, the
belief generated using the update rule (4) have the following
properties:

lim
t→∞,Riθ→∞

µit(θ)→∞, if θ ∈ Θ∗j ∀j ∈M, and

lim
t→∞,Riθ→∞

µit(θ) = 0, if ∃j ∈M s.t. θ /∈ Θ∗j , (10)

with probability 1 and in probability respectively.
Given Assumption 2, when the agents’ likelihood models

use an infinite amount of prior evidence, the agents’ beliefs
for a hypothesis that is not the ground truth will converge to
zero via Theorem 2. Likewise, the belief in the ground truth
hypotheses goes diverges to infinity. An outline of the proofs
for Theorem 1 and Theorem 2 are presented in Section V.

Given that the above properties hold for update rule (4),
the agents can use their beliefs to determine if there is
sufficient evidence to accept or reject a hypothesis θ. As
the amount of prior evidence goes to infinity, only the
ground truth hypothesis will be accepted while the others are
rejected, which is consistent with traditional non-Bayesian
social learning theory.

III. GAUSSIAN UNCERTAIN MODELS

In this section, we derive the Gaussian uncertain likelihood
ratio, discuss the uncertain likelihood ratio test, and present
the asymptotic properties of the uncertain likelihood ratio.

A. Uncertain Likelihood Ratio

As stated in Section II, each agent i has collected a set of
prior evidence riθ for each hypothesis θ ∈ Θ to estimate the
distribution of µ and λ in the training phase. This is achieved
by computing the posterior conjugate distribution of µ and
λ conditioned on the prior evidence riθ as follows.

f(µ, λ|riθ) =
1

P̂ (riθ)
N (riθ|µ, λ)NG (µ, λ|φ0)

= NG (µ, λ|φRiθ ) , (11)

whereNG (µ, λ|φ0) is a noninformative conjugate prior with
parameters φ0 = {µ0, κ0, α0, β0}5 and P̂ (riθ) is the total
probability of the prior evidence provided in (8); the posterior
distribution parameters in φRiθ = {µRiθ , κRiθ , αRiθ , βRiθ}
are µRiθ = (κ0µ0 +Riθ r̄iθ)/(κ0 +Riθ) and (9).

The parameters of the prior distribution NG (µ, λ|φ0) are
ideally chosen to be noninformative. A common approach in
the literature is to use Jeffreys prior [31], which suggests to
set µ0 = 0, κ0 = 0, α0 = 0, β0 = 0 to assign a uniform
distribution over the parameter space. However, this would
lead to an improper posterior conjugate prior and cannot be
chosen. In this work, we chose to utilize µ0 = 0, κ0 = 1,
α0 = 1, and β0 = 1 based on an empirical analysis that
found that smaller values of κ0, α0, and β0 cause the beliefs
for hypothesis θ 6= θ∗ at time t = 1 to jump to a value
� 1, requiring a larger amount of prior evidence to reject
the hypothesis. A detailed analysis of the parameter effects
on the overall inference will be studied as a future work.

Next, the agent collects a sequence of measurements
Ω1:t = {ω1, ..., ωt} in the testing phase and computes the
uncertain likelihood. Following the derivation in [32], the
uncertain likelihood is modeled as the posterior predictive
distribution of the measurement sequence conditioned on the
prior evidence,

P̂ (Ωi1:t|riθ) =

∫ ∞
0

∫
R
N (Ωi1:t|µ, λ)f(µ, λ|riθ)dµdλ

=
Γ(αRiθ+t)β

αRiθ
Riθ

(2π)−t/2κ
1/2
Riθ

Γ(αRiθ )β
αRiθ+t
Riθ+t

κ
1/2
Riθ+t

, (12)

where the prior parameters are provided in (9) and

µRiθ+t =
κRiθµRiθ + tω̄it

κRiθ + t
, κRiθ+t = κ0 +Riθ + t

αRiθ+t = α0 +
Riθ + t

2
,

βRiθ+t = βRiθ +
sit − tω̄2

it

2
+
κRiθ t(ω̄it − µRiθ )2

2κRiθ+t
(13)

with sit = sit−1 + ω2
it and ω̄it = (ω̄it−1(t − 1) + ωit)/t

s.t. si0 = 0 and ω̄i0 = 0. This model can be thought of
as the expected value of the likelihood of the measurement
sequence N (Ωi1:t|µ, λ) taken over the prior distribution
f(µ, λ|riθ), i.e., P̂ (Ωi1:t|riθ) = Ef(µ,λ|riθ)[N (Ωi1:t|µ, λ)].

5With an abuse of notation, throughout this work we will use φ to
represent the parameters of the Gaussian-gamma distribution.



When the agent has Riθ < ∞ and the number of ob-
servations grows unboundedly, the distribution P̂ (Ωi1:t|riθ)
eventually becomes Piθ∗ with probability 1 due to the strong
law of large numbers, as seen in Fig. 1. While when the
amount of prior evidence grows unboundedly, P̂ (·|riθ) =
N (·|µiθ, λ−1iθ ) with probability 1 and remains a fixed point
in Fig. 1 ∀t ≥ 1.

As shown in [28] and stated in Section II, hypotheses with
varying amounts of prior evidence are incommensurable and
must be evaluated on their own merit. Thus, the uncertain
likelihood (12) is normalized by the model of complete igno-
rance, i.e., the uncertain likelihood with zero prior evidence,
to form the uncertain likelihood ratio,

Λiθ(t) =
P̂ (Ωi1:t|riθ)

P̂ (Ωi1:t|riθ = ∅)

=
Γ(α0)Γ(αRiθ+t)β

αt
t β

αRiθ
Riθ

Γ(αt)Γ(αRiθ )β
α0
0 β

αRiθ+t
Riθ+t

(
κRiθκt
κRiθ+tκ0

) 1
2

, (14)

where

κt = κ0 + t, αt = α0 +
t

2
,

βt = β0 +
sit − tω̄2

it

2
+
κ0t(ω̄it − µ0)2

2κt
. (15)

The model of complete ignorance represents the ex-
pected value of N (Ωi1:t|µ, λ) taken over a noninfor-
matative Gaussian-gamma distribution, i.e., P̂ (Ωi1:t|riθ =
∅) = ENG(µ,λ|φ0)[N (Ωi1:t|µ, λ)]. Just like the uncer-
tain likelihood, P̂ (Ωi1:t|riθ = ∅) eventually collapses to
N (·|µiθ∗ , λ−1iθ∗) with probability 1 as seen in Fig. 1.

Then, the agent can infer if the measurement sequence is
consistent with the prior evidence collected for hypothesis θ
by utilizing an uncertain likelihood ratio test based on the
following insights:

1) If Λθ(t) converges to a value above one, there is
evidence to accept that θ is consistent with θ∗. Higher
values indicate more evidence to accept θ as θ∗.

2) If Λθ(t) converges to a value below one, there is
evidence to reject that θ is θ∗. Lower values indicate
more evidence to reject θ as θ∗.

3) If Λθ(t) converges to a value near one, there is not
enough evidence to accept or reject θ as θ∗.

As a practical matter, one can define a threshold υ > 1 so
that the hypothesis is deemed accepted, rejected or unsure if
Λθ(t) ≥ υ, Λθ(t) < 1/υ and 1/υ ≤ Λθ(t) < υ, respectively.
The exact choice of thresholds is application dependent to
balance the number of false positives and false negatives.

B. Properties of the uncertain likelihood ratio

Next, we provide the properties of the Gaussian uncertain
likelihood ratio that are necessary for our main results.

Lemma 3: The uncertain likelihood ratio (14) of hypoth-
esis θ converges to Λ̃iθ with probability 1 as t→∞, where
Λ̃iθ is the asymptotic uncertain likelihood ratio (7).

Proof: First, we note that the denominator in (14) is
actually the total probability of the measurement sequence,

i.e.,

P̂ (Ωi1:t) =

∫ ∞
0

∫
R
N (Ωi1:t|µ, λ−1)NG (µ, λ|φ0) dµdλ.

Then, utilizing Bayes rule, we can express (14) as

Λiθ(t) =

∫ ∞
0

∫
R

NG(µ, λ|Ωi1:t)N (riθ|µ, λ−1)

P̂ (riθ)
dµdλ,

where we used the fact that

NG(µ, λ|Ωi1:t) =
N (Ωi1:t|µ, λ−1)NG (µ, λ|φ0)

P̂ (Ωi1:t)
.

Then, as the number of measurements grows unboundedly,
the means of NG(µ, λ|Ωi1:t) are limt→∞ E[µ] = µiθ∗ ,
and limt→∞ E[λ] = limt→∞(αt)/(βt) = λiθ∗ , while the
variances are limt→∞ var(µ) = limt→∞(βt)/(κt(αt−1)) =
0, and limt→∞ var(λ) = limt→∞(αt)/(β

2
t ) = 0 with prob-

ability 1 due to the strong law of large numbers. This means
that NG(µ, λ|Ω1:t) collapses to a Dirac-delta function cen-
tered at the means as time goes to infinity, i.e., δ(µ−µiθ∗ , λ−
λiθ∗). Thus, limt→∞ Λiθ(t) = N (riθ|µiθ∗ , λ−1iθ∗)/P̂ (riθ)
with probability 1.

This result then leads to the following corollary when the
amount of prior evidence collected grows unboundedly.

Corollary 4: When the amount of prior evidence grows
unboundedly, the uncertain likelihood ratio (14) of hypothe-
sis θ has the following property:

lim
Riθ→∞

Λ̃iθ →∞, if µiθ = µiθ∗ and λiθ = λiθ∗ , and

lim
Riθ→∞

Λ̃iθ = 0, if either µiθ 6= µiθ∗ or λiθ 6= λiθ∗ . (16)

Proof: First, (14) can be rewritten as

lim
t→∞,Riθ→∞

Λiθ(t) = lim
Riθ→∞

NG(µiθ∗ , λiθ∗ |riθ)
NG(µiθ∗ , λiθ∗ |φ0)

(17)

where the right hand side was achieved by multiplying and
dividing (7) by NG(µiθ∗ , λiθ∗ |φ0) and applying Bayes rule.
Then, following the approach in the proof of Lemma 3,
limRiθ→∞NG(µiθ∗ , λiθ∗ |φRiθ )→ δ(µiθ−µiθ∗ , λiθ−λiθ∗)
with probability 1 due to the strong law of large numbers.
Then, since NG(µiθ∗ , λiθ∗ |φ0) is a strictly positive distri-
bution ∀µ and λ, Λiθ(t) will diverge to ∞ if µiθ = µiθ∗

and λiθ = λiθ∗ , or converge to 0 if either µiθ 6= µiθ∗ or
λiθ 6= λiθ∗ .

Lemma 3 and Corollary 4 provide insights into where an
individual agents uncertain likelihood ratio converges, which
can be used to design υ in the uncertain likelihood ratio test.

Furthermore, Corollary 4 can visually be interpreted in
Fig. 1, where as Riθ → ∞, the uncertain distributions
P̂ (·|rθ1) and P̂ (·|rθ2) are fixed points located at the solid
shapes and P̂ (·|∅) continues to follow its trajectory. For θ2
the expected Λiθ(t) will be greater than 1 for all t since it
is always closer to Pθ∗ than P̂ (·|∅), causing it to diverge to
∞. Whereas for θ1, there is always going to be a finite time
T where ∀t > T , P̂ (·|∅) is closer to Pθ∗ than Pθ1 . Thus,
the expected Λiθ(t) will be less than 1 and will eventually
converge to 0.



IV. GAUSSIAN UNCERTAIN LIKELIHOOD UPDATE

In the previous section, the Gaussian uncertain model was
presented where we assumed that an agent i has received
the entire measurement sequence up to time t, i.e., Ωi1:t.
However, in the social setting, each agent receives a new
measurement ωit at each time step t, requiring a recursive
formulation of the Λiθ(t) that allows for new information.
Particularly, we can express the uncertain likelihood at each
time t as follows:

Λiθ(t) =

t∏
τ=1

Λiθ(τ)

Λiθ(τ − 1)
=

t∏
τ=1

`iθ(ωiτ ). (18)

The uncertain likelihood update `iθ(ωit) ensures that the
agents beliefs are an aggregated mixture of each agents
Λiθ(t) ∀i ∈ M. Next, we discuss the properties of the
uncertain likelihood update `iθ(ωit) that enable our main
result.

Lemma 5: The uncertain likelihood update has the follow-
ing properties with probability 1:

1) limt→∞ `iθ(ωit) = 1 when Riθ <∞, and
2) limt→∞,Riθ→∞ `iθ(ω|Ωi1:t−1) = N (ω|µiθ,λiθ)

N (ω|µiθ∗ ,λiθ∗ )
.

Proof: We first prove condition 1. Generally, the
uncertain likelihood update (5) can be written as follows.

`iθ(ωit) =

∫∞
0

∫
R
N (ωit|µ,λ)N (Ωi1:t−1|µ,λ)NG(µ,λ|φRiθ )dµdλ∫∞

0

∫
RN (Ωi1:t−1|µ,λ)NG(µ,λ|φRiθ )dµdλ∫∞

0

∫
R
N (ωit|µ,λ)N (Ωi1:t−1|µ,λ)NG(µ,λ|φ0)dµdλ∫∞

0

∫
RN (Ωi1:t−1|µ,λ)NG(µ,λ|φ0)dµdλ

=

∫∞
0

∫
RN (ωit|µ, λ)NG(µ, λ|φRiθ+t−1)dµdλ∫∞

0

∫
RN (ωit|µ, λ)NG(µ, λ|φt−1)dµdλ

,

(19)

where the first line is achieved due to i.i.d. measurements,
while the second line is an application of Bayes’ rule. As
illustrated in the proof of Lemma 3, as the measurement
sequence grows unboundedly, limt→∞NG(µ, λ|φt−1) =
δ(µ − µiθ∗ , λ − λiθ∗) and limt→∞NG(µ, λ|φRiθ+t−1) =
δ(µ − µiθ∗ , λ − λiθ∗) with probability 1 since Riθ < ∞.
Thus,

lim
t→∞

`iθ(ω|Ωi1:t−1) =
N (ω|µiθ∗ , λiθ∗)
N (ω|µiθ∗ , λiθ∗)

= 1.

Next, we prove condition 2 when the amount of prior
evidence grows unboundedly. Following the same logic as
above, limRiθ→∞NG(µ, λ|riθ) = δ(µ − µiθ, λ − λiθ) with
probability 1. Then, the `iθ(ω) simplifies to

lim
Riθ→∞

`iθ(ωit) =
N (ωit|µiθ, λiθ)∫∞

0

∫
RN (ωit|µ, λ)NG(µ, λ|φt−1)dµdλ

.

(20)

Thus, as the number of private signals grows unboundedly,
the uncertain likelihood update converges to

lim
t→∞,Riθ→∞

`iθ(ω|Ωit−1) =
N (ω|µiθ, λiθ)
N (ω|µiθ∗ , λiθ∗)

, (21)

with probability 1 for any ω ∈ R.
Corollary 6: When Riθ →∞ and riθ is drawn from the

ground truth distribution, i.e., µiθ = µiθ∗ and λiθ = λiθ∗ ,

then the uncertain likelihood update converges to 1 with
probability 1 as t→∞.

These properties are critical in proving that the beliefs of
every agent converge (or diverge). When the agents have a
finite amount of prior evidence, the combined beliefs are
updated using `iθ(ωit) = 1, which turns the social learning
rule (4) into a consensus geometric average. Whereas, when
the agents prior evidence grows unboundedly, we can express
the beliefs as a function of the expected value of the log-
uncertain likelihood update captured in the following lemma.

Lemma 7: The expected value of the log-uncertain like-
lihood update when the agent i’s amount of prior evidence
grows unboundedly has the following properties,

E[log(`iθ(ωit))] = DKL

(
N (·|µiθ∗ , λ−1iθ∗)‖P̂ (·|Ωi1:t−1)

)
−

DKL

(
N (·|µiθ∗ , λ−1iθ∗)‖N (·|µiθ, λ−1iθ ))

)
,

(22)

where

P̂ (·|Ωi1:t−1) =

∫ ∞
0

∫
R
N (ω|µ, λ)NG(µ, λ|φ0)dµdλ (23)

is a student-t distribution [32] and

lim
t→∞

E[log(`iθ(ωit))] = −DKL(N (·|µiθ∗ , λ−1
iθ∗)‖N (·|µiθ, λ−1

iθ ))).

(24)
Proof: First, the proof of Lemma 5 showed that Riθ →

∞, the uncertain likelihood update is

`iθ(ωit) =
N (ωit|µiθ, λ−1iθ )

P̂ (ωit|Ωi1:t−1)
,

with probability 1. Then, the expected value of the log-
uncertain likelihood update is

E[log(`iθ(ωit))] =∫
R
N (ω|µiθ∗ , λ−1iθ ) log

(
N (ω|µiθ, λ−1iθ )

P̂ (ω|Ωi1:t−1)

)
dω. (25)

After adding and subtracting
N (ω|µiθ∗ , λ−1iθ ) log(N (ω|µiθ∗ , λ−1iθ )) inside the integral,
we achieve

E[log(`iθ(ω))] = DKL(N (·|µjθ∗ , λ−1jθ∗)‖P̂ (·|Ωi1:t−1))−
DKL(N (·|µjθ∗ , λ−1jθ∗)‖N (·|µjθ, λ−1jθ ))).

Then, as t → ∞, P̂ (·|Ωi1:t−1) converges to a Guassian
distribution N (·|µiθ∗ , λ−1iθ∗) with probability 1 due to the
strong law of large numbers. Thus, our desired result is
achieved since

lim
t→∞

DKL(N (·|µjθ∗ , λ−1jθ∗)‖P̂ (·|Ωi1:t−1)) = 0. (26)

Lemma 7 indicates that as time t be-
comes very large, `iθ(ω) behaves as
exp(−DKL(N (·|µiθ∗ , λ−1iθ∗)‖N (·|µiθ, λ−1iθ )) + ε) for
some ε > 0, where ε → 0 as t → ∞. This means that
if DKL(N (·|µiθ∗ , λ−1iθ∗)‖N (·|µiθ, λ−1iθ )) > ε, then the
expected beliefs will decrease exponentially based on the
KL divergence. This result is necessary to prove Theorem 2.



Finally, we provide the final property of the uncertain
likelihood update that is necessary to prove our main result.

Lemma 8: The uncertain likelihood update is finite and
lower bounded by a positive value with probability 1, i.e.,
`iθ(ωit) > 0 and finite ∀t with probability 1, for any t ≥ 0,
and any realization ωit and i ∈M.

Proof: First, for a finite t and Riθ, we note that `iθ(ωit)
(19) is a ratio of posterior predictive distribution, which are
continuous functions, strictly positive ∀ωit ∈ R, and proper.
Then, when Riθ → ∞ and t is finite, `iθ(ωit) becomes
(20), which has the same properties since the numerator is a
Gaussian distribution. Furthermore, in the limiting condition
when both t→∞ and Riθ →∞, `iθ(ω) becomes a ratio of
Gaussian distributions with the same properties (21). Thus,
in all three scenarios, `iθ(ω) can never be 0 or ∞ since the
distributions are proper and strictly positive.

V. OUTLINE OF THE PROOFS OF THEOREMS 1 AND 2

In this section, we will outline how to prove the main
results. However, we will not explicitly show the details of
the proofs due to space requirements.

A. Sketch of Theorem 1 Proof

To prove convergence, we must show a t → ∞
‖ log(µt(θ)) − ((

∑m
j=1 log(Λ̃jθ))/m)11′‖ → 0 with

probability 1, where µt(θ) is a vector of the agents
beliefs and 1 is a vector of all ones. Noting that
log(µt(θ)) =

∑t
τ=0 At−τ log(`θ(ωτ )) and using (18),

we can bound this absolute difference as
∑t
τ=0 ‖At−τ −

(11′)/m‖‖ log(`θ(ωτ ))‖, where `iθ(ωτ ) is a vector of the
individual uncertain likelihood updates. Noting that as t →
∞, log(`iθ(ωt))→ 0 and ‖At−(11′)/m‖ <

√
2mλt, where

λ < 1 is the second largest eigenvalue of the adjacency
matrix, we can directly use Lemma 3.1 in [33] to achieve our
desired result. Thus, the beliefs converge to the centralized
solution.

B. Sketch of Theorem 2 Proof

Starting with the condition θi = θ∗i for all i ∈ M, we
first show that the log-beliefs diverge to infinity following
the same logic as in the sketch of Theorem 1 proof above.
Using the fact that the uncertain likelihood ratio diverges to
Λiθ →∞ according to Corollary 4; the uncertain likelihood
update converges to `iθ(ω) = 1 according to Corollary 6
and is finite according to Lemma 8, we can follow the same
process as above to achieve the desired result.

For the condition θi 6= θ∗i for at least one agent i,
we first expand the log-belief equation log(µt(θ)) =∑t
τ=0 At−τ log(`iθ(ωt)) into a sum of three terms,∑T1

τ=0 At−τ log(`iθ(ωτ )),
∑t−T2

τ=T1+1 At−τ log(`iθ(ωτ )),
and

∑t
τ=t−T2

At−τ log(`iθ(ωτ )). We know that because
log(`iθ(ωit)) is finite according to Lemma 8, the first and
third terms are finite. Then, we can pick T1 and T2 large
enough such that | log(`iθ(ωiT1

))− E[log(`iθ(ω))]| < ε and
‖At−τ − (11′)/m‖ < ε for some ε > 0. Then, using the
law of large numbers, we upper bound the second term by
(t − T1 − T2)( 1

m

∑m
i=1 E[log(`iθ(ω))] + εB) where B > 0

(a) θ1 = θ∗ (b) θ2 6= θ∗

10
-1

10
0

Fig. 2. Evolution of beliefs updated using (4) with 30 agents connected
in a directed cycle graph with self-loops.

is finite and E[log(`iθ(ω))] is the negative KL divergence
between θ and θ∗. Since ε can be made arbitrarily small
by picking larger T ’s, this upper bound goes to −∞ as
t→∞. Then, since the exponential function is continuous,
the beliefs converge to 0.

VI. SIMULATION STUDY

In this section, we empirically validate the convergence
properties presented in Theorems 1 and 2. We simulate
a network of |M| ∈ [10, 20, 30] agents connected in an
directed cycle graph with self-loops such that the weight on
each edge is 0.5. The agents have a finite set of hypotheses
Θ = {θ1, θ2}, where the true parameters for each hypothesis
are µiθ1 = 0, λiθ1 = 0.5, µiθ2 = 0, and λiθ2 = 0.4 ∀i ∈ M
so that θ∗ = θ1. At each time step t ≥ 1, each agent receives
a measurement drawn from the ground truth distribution with
mean µiθ∗ = 0 and precision λiθ∗ = 0.5 ∀i ∈ M. In
the training phase, the amount of prior evidence collected
by each agent is randomly chosen within three categories,
Low Evidence with Riθ ∈ [0, 100], High Evidence with
Riθ ∈ [103, 104], and Infinite Evidence where we set Riθ
to a very large number. Then, the network is simulated for
T = 106 time steps with the belief update rule (4).

First, in Fig. 2, we present the evolution of beliefs for each
agent, category of evidence, and hypothesis. Additionally,
the dotted lines represent the beliefs point of convergence,
i.e., (

∏m
j=1 Λ̃jθ)

1
m , present in Theorem 1. As seen, the

amount of prior evidence directly effects the beliefs point
of convergence. When the prior evidence is low, the beliefs
converge to a value near 1 since their initialized uncertain
likelihood model is close to the model of complete ignorance.
Then, as the amount of evidence increases, the uncertain
likelihood model becomes closer to the truth distribution
of the hypothesis, causing the beliefs to converge to a
larger or smaller value. Furthermore, as the evidence grows
unboundedly, the beliefs of θ1 trend toward ∞, while the
beliefs of θ2 converge to 0, as presented in Theorem 2.

Fig. 2 also indicates that the beliefs are converging to
(
∏m
j=1 Λ̃jθ)

1
m . To further validate this result, we simulated

the network of agents with a fixed amount of prior ev-
idence within each of the three categories for 50 Monte
Carlo simulation runs, where during each run, a new set
of measurements were drawn by each agent. Then, we
computed the average log-difference between the beliefs and
the centralized solution as seen in Fig. 3. The speed of
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Fig. 3. The ensemble average difference between the log-beliefs
log(µit(θ)) and the log-centralized solution (

∑m
j=1 log(Λ̃jθ))/m over

the m ∈ {10, 20, 30} agents and 50 Monte Carlo runs.

convergence seems relatively unaffected by the number of
agents. On the other hand, as the amount of prior evidence
increases, the log-difference is larger at a given value of t
because the converged values are larger/smaller for θ1/θ2.
Also, it takes longer to burn off the effects of the larger
prior evidence. Still, the log-difference continues to decay
as t increases, indicating convergence.

VII. CONCLUSION AND FUTURE WORK

In this work, we explored the properties of non-Bayesian
social learning with Gaussian uncertain models, where the
amount of prior evidence collected to estimate the mean
and variance of the statistical models may vary between 0
and ∞. We built upon the concept of multinomial uncertain
models [28] and have concluded that the Gaussian and
multinomial uncertain models have the same underlying
properties that allow a group of social agents to perform
distributed inference. The main difference between the two
approaches is that the uncertain likelihood update and the
beliefs point of convergence differs. However, this difference
does not influence the learning process.

For future work, we seek to understand the noninformative
prior parameters and identify values that enhance inference
decisions. We also plan to extend the analysis to other
parametric distributions for real-valued measurements and
understand for what family of distributions the convergence
properties still hold. Finally, we plan to consider non-
parametric distributions.
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