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Robust and Adaptive Sequential Submodular Optimization
Vasileios Tzoumas,? Member, IEEE, Ali Jadbabaie,† Fellow, IEEE, George J. Pappas,‡ Fellow, IEEE.

Abstract—Emerging applications of control, estimation, and
machine learning, from target tracking to decentralized model
fitting, pose resource constraints that limit which of the available
sensors, actuators, or data can be simultaneously used across
time. Therefore, many researchers have proposed solutions within
discrete optimization frameworks where the optimization is
performed over finite sets. By exploiting notions of discrete con-
vexity, such as submodularity, the researchers have been able to
provide scalable algorithms with provable suboptimality bounds.
In this paper, we consider such problems but in adversarial
environments, where in every step a number of the chosen
elements in the optimization is removed due to failures/attacks.
Specifically, we consider for the first time a sequential version of
the problem that allows us to observe the failures and adapt,
while the attacker also adapts to our response. We call the
novel problem Robust Sequential submodular Maximization (RSM).
Generally, the problem is computationally hard and no scalable
algorithm is known for its solution. However, in this paper we
propose Robust and Adaptive Maximization (RAM), the first scal-
able algorithm. RAM runs in an online fashion, adapting in every
step to the history of failures. Also, it guarantees a near-optimal
performance, even against any number of failures among the
used elements. Particularly, RAM has both provable per-instance
a priori bounds and tight and/or optimal a posteriori bounds.
Finally, we demonstrate RAM’s near-optimality in simulations
across various application scenarios, along with its robustness
against several failure types, from worst-case to random.

I. INTRODUCTION

Control, estimation, and machine learning applications of
the Internet of Things (IoT) and autonomous robots [1] require
the sequential optimization of systems in scenarios such as:

• Sensor scheduling: An unmanned aerial vehicle (UAV)
is assisted for its navigation by on-board and on-ground sen-
sors. Ideally, the UAV would use all available sensors for nav-
igation. However, limited on-board capacity for measurement-
processing necessitates a sequential sensor scheduling prob-
lem [2]: at each time step, which few sensors should be used
for the UAV to effectively navigate itself?

• Target tracking: A wireless sensor network (WSN) is
designated to monitor a mobile target. Limited battery power
necessitates a sequential sensor activation problem [3]: at each
time step, which few sensors should be activated for the WSN
to effectively track the target?
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• Decentralized model fitting: A team of mobile robots
collects data to learn the model of an unknown environmental
process. The data are transmitted to a fusion center, performing
the statistical analysis. Ideally, all robots would transmit their
data to the center at the same time. But instead, communication
bandwidth constraints necessitate a sequential transmission
problem [4]: at each time step, which few robots should trans-
mit their data for the center to effectively learn the model?

Similar applications of sensor and data scheduling, but also
of actuator scheduling as well as infrastructure design are
studied in [5]–[16]. Particularly, all applications above require
the sequential selection of a few elements, among a finite set
of available ones, to optimize performance across multiple
steps subject to resource constraints. For example, the target
tracking application above requires the sequential activation
of a few sensors across the WSN, to optimize an estimation
error subject to power constraints. Importantly, the activated
sensors may vary in time, since each sensor may measure
different parts of the target’s state (e.g., some sensors may
measure only position, others only speed). Formally, all above
applications motivate the sequential optimization problem1

max
A1⊆V1

· · · max
AT⊆VT

f(A1, . . . ,AT ),

s.t. |At| = αt, t = 1, . . . , T,
(1)

where T is a given horizon; Vt is a given finite set of available
elements to choose from at t such that Vt ∩ Vt′ = ∅ for all
t, t′ = 1, . . . , T ;2 f : 2V1 ∪ · · ·∪2VT 7→ R is a given objective
function; αt is a given cardinality constraint, capturing the
resource constraints at t; and At are the chosen elements at
t, resulting from the solution of eq. (1). Notably, in all above
applications, and [5]–[16], f is non-decreasing, and without
loss of generality one may consider f(∅) = 0. For example,
in [11], f is the trace of the inverse of the controllability
Gramian, which captures the average control effort for driving
the system; and in [8], f is the logdet of the error covariance of
the minimum mean square batch-state estimator. Specifically,
in [8], f is also submodular, a diminishing returns property
that captures the intuition that a sensor’s contribution to f ’s
value diminishes when more sensors are activated already.

1Calligraphic fonts denote finite discrete sets (e.g., A). 2A denotes A’s
power set. |A| its cardinality. A\B denotes set difference: the elements in A
not in B. Given a set function f : 2V1 ∪ · · · ∪ 2VT 7→ R, and A1 ⊆ V1, . . .,
At ⊆ Vt, for some positive integer t ≤ T , the f(A1, . . . ,At) denotes
f(A1 ∪ · · · ∪ At ∪ ∅ ∪ · · · ∪ ∅) where the ∅ is repeated T − t times, and ∅
denotes the empty set. R denotes the set of real numbers.

2Even if the elements in V1, . . . ,VT correspond to the same system
modules, e.g., sensors, the elements among different Vt are differentiated
because they are chosen at different times. For example, consider the case
where T = 2, and two sensors s1 and s2 are available to be chosen at each
t; then, by denoting with si,t that sensor i is available to be chosen at t, it
is V1 = {s1,1, s2,1} and V2 = {s1,2, s2,2}, and, naturally, V1 ∩ V2 = ∅.
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Although the problem in eq. (1) is computationally hard, ef-
ficient algorithms have been proposed for its solution: when f
is monotone and submodular, then eq. (1) is NP-hard [17]
and the greedy algorithm in [18, Section 4] guarantees a
constant suboptimality bound across all problem instances;
and when f is only monotone, then eq. (1) is inapproximable
(no polynomial time algorithm guarantees a constant bound
across all instances) [19], [20] but the greedy algorithm in [18]
guarantees per-instance bounds instead [21]–[23].

In this paper, however, we shift focus to a novel reformu-
lation of eq. (1) that is robust against failures/attacks. Particu-
larly, in all above applications, at any time t, actuators can
be cyber-attacked [24], sensors can malfunction [25], and
communication channels can be blocked [4], all resulting to
denial-of-service (DoS) failures, in the sense that the actuators,
sensors, channels, etc. will shut down (stop working), at
least temporarily. Hence, in such failure-prone and adversarial
scenarios, eq. (1) may fail to protect any of the above appli-
cations, since it ignores the possibility of DoS failures. Thus,
towards guaranteed protection, a robust reformulation becomes
necessary that can both adapt to the history of incured failures
and account for future ones.

Therefore, in this paper we introduce a novel robust op-
timization framework, named Robust Sequential submodular
Maximization (RSM), that goes beyond the failure-free eq. (1)
and accounts for DoS failures/attacks. Specifically, we define
RSM as the following robust reformulation of eq. (1):

RSM problem:
max
A1⊆V1

min
B1⊆A1

· · · max
AT⊆VT

min
BT⊆AT

f(A1 \ B1, . . . ,AT \ BT ),

s.t. |At| = αt, |Bt| ≤ βt, t = 1, . . . , T.
(2)

where βt is a given number of possible failures (generally,
βt ∈ [0, αt]); and Bt is the failure against At.

By solving RSM, our goal is to maximize f despite worst-
case failures that occur at each maximization step, as captured
by the intermediate/subsequent minimization steps. Evidently,
since RSM considers worst-case failures, it is suitable when
there is no prior on the failure mechanism, or when protection
against worst-case failures is essential, such as in safety-cri-
tical target tracking and costly experiment designs.
RSM can be interpreted as a T -stage perfect information

sequential game between a “maximization” player (defender)
and a “minimization” player (attacker) [26, Chapter 4]. The
defender starts the game and the players act sequentially,
having perfect knowledge of each others’ actions: at each t,
the defender selects an At, and then the attacker responds with
a worst-case removal Bt from At, while both players account
for the history of all actions up to t − 1. In this context, the
defender finds an optimal sequence A1, . . . ,AT by accounting
at each t (i) for the history of responses B1, . . . ,Bt−1, (ii) for
the subsequent response Bt, and (iii) for all remaining future
responses Bt+1, . . . ,BT . This is an additional computational
challenge in comparison to the failure-free eq. (1), which is
already computationally hard.

No scalable algorithms exists for RSM. In this paper, to
provide the first scalable algorithm, we develop an adaptive

algorithm that at each t accounts only (i) for the history of
responses up to t − 1 and (ii) for the subsequent response
Bt (but not for the remaining future responses up to t = T ),
and as a result is scalable, but which still can guarantee a
performance close to the optimal.

Related work in combinatorial optimization. The ma-
jority of the related work has focused on the failure-free
eq. (1), when f is either monotone and submodular or only
monotone. In more detail, Fisher et al. [18] focused on f
being monotone and submodular, and proposed offline and
online greedy algorithms that both guarantee the constant 1/2
suboptimality bound. Similarly, Conforti and Cornuéjols [27],
Iyer et al. [28], and Sviridenko et al. [23] focused again on
f being monotone and sumodular but provided instead per-
instance, curvature-depended bounds. The bounds generally
tighten the ones in [18]. Finally, Krause et al. [29], Das and
Kempe [21], Wang et al. [22], and Sviridenko et al. [23] (see
also the earlier [30]) focused on f being only monotone, and
proved per-instance, curvature-depended bounds for the greedy
algorithms in [18], using notions of curvature —also referred
to as “submodularity ratio”— they introduced.

Recent work has also studied failure-robust reformulations
of eq. (1), typically per RSM’s framework but only for T = 1,
where no adaptiveness is required. Specifically, when f is
monotone and submodular, Orlin et al. [31] and Bogunovic
et al. [32] provided greedy algorithms with constant sub-
optimality bounds. However, the algorithms are valid only
for limited numbers of failures (for β1 ≤

√
α1 in [31] and

β1 ≤ α1/(logα1)3 in [32]). In contrast, Tzoumas et al. [33]
provided a greedy algorithm with per-instance bounds for
any number of failures (β1 can take any value in [0, α1]).
Also, Rahmattalabi et al. [34] developed a mixed-integer
linear program approach for a locations monitoring problem.
More recently, Tzoumas et al. [35] and Bogunovic et al. [36]
extended the previous works on the T = 1 case by focusing on
f being only monotone, and proved per-instance, curvature-
dependent bounds for the algorithm introduced in [33]. In
more detail, Bogunovic et al. [36] focuses on cardinality
constraints, whereas Tzoumas et al. [35] on the more general
matroid constraints, but, still, for the case where T = 1. The
latter framework enabled applications of failure-robust multi-
robot robot planning, and particularly of active information
gathering [37] and target tracking [38]. Other relevant work
is that of Mitrovic et al. [39], where a memoryless failure-
robust reformulation of eq. (1) is considered, instead of the
sequential framework of RSM, which takes into account the
history of past selections/failures. Finally, Mirzasoleiman et
al. [40] and Kazemi et al. [41] adopted a robust optimization
framework against non worst-case failures, in contrast to RSM
which is against worst-case failures.

All in all, in comparison to all prior research, in this paper
we analyze RSM’s multistep case T > 1 for the first time, and
consider adaptive algorithms.

Related work in control. In the robust/secure control
literature, various approaches have been proposed towards
fault-tolerant control, secure control, as well as secure state
estimation, against random failures, data injection and DoS
failures/attacks [42]–[61]. In contrast to RSM’s resource-



constrained framework, [42]–[61] focus in resource abundant
environments where all sensors and actuators stay always
active under normal operation. For example, [59]–[61] focus
on DoS failures/attacks from the perspective of packet loss and
intermittent network connectivity, which can result to system
destabilization. Generally, [42]–[61] focus on failure/attack
detection and identification, and/or secure estimator/controller
design, instead of the adaptive activation of a few sensors/ac-
tuators against worst-case DoS failures/attacks per RSM.

Contributions. We introduce the novel RSM problem of
robust sequential maximization against DoS failures/attacks.
We develop the first scalable algorithm, named Robust and
Adaptive Maximization (RAM), that has the properties:

• Adaptiveness: At each time t = 1, 2, . . ., RAM selects
a robust solution At in an online fashion, accounting for the
history of failures B1, . . . ,Bt−1 and of actions A1, . . . ,At−1,
as well as, for all possible failures at t from At.

• System-wide robustness: RAM is valid for any number
of failures; that is, for any βt ∈ [0, αt], t = 1, 2, . . ..

• Polynomial running time: RAM has the same order
of running time as the polynomial time greedy algorithm
proposed in [18, Section 4] for the failure-free eq. (1).

• Provable approximation performance: RAM has prov-
able per-instance suboptimality bounds that quantify RAM’s
near-optimality at each problem instance at hand.3 Particu-
larly, we provide both a priori and a posteriori per-instance
bounds. The a priori bounds quantify RAM’s near-optimality
before RAM has run. In contrast, the a posteriori bounds are
computable online (as RAM runs), once the failures at each
current step have been observed. The a posteriori bounds are
tight and/or optimal.4 Finally, we present approximations of
the a posteriori bounds that are computable before each failure
occurs. To quantify the bounds, we use curvature notions by
Conforti and Conruéjols [27], for monotone and submodular
functions, and Sviridenko et al. [23], for monotone functions.

We demonstrate RAM’s effectiveness in applications of sen-
sor scheduling, and of target tracking with wireless sensor
networks. We present a Monte Carlo analysis, where we vary
the failure types from worst-case to greedily and randomly
selected failures, and compare RAM against a brute-force
optimal algorithm (viable only for small-scale instances), the
greedy algorithm in [18], and a random algorithm. In the
results, we observe RAM’s near-optimality against worst-case
failures, its robustness against non worst-case failures, and its
superior performance against the compared algorithms.

Comparison with the preliminary results in [62], which
coincides with preprint [63]: This paper extents the results
in [62], considers new simulations, and includes the proofs
that were all omitted from [62]. Particularly, most of the
technical results herein, including Theorem 13, Theorem 14,
Corollary 21, and Algorithm 3, are novel and have not been

3Similarly to eq. (1), RSM is generally inapproximable: no polynomial
time algorithm guarantees a constant suboptimality bound across all problem
instances. For example, it is inapproximable for fundamental applications in
control and machine learning such as sensor selection for optimal Kalman
filtering [20], and feature selection for sparse model fitting [19]. Thus, in this
paper we focus our analysis in per-instance suboptimality bounds.

4A suboptimality bound is called optimal when it is the tightest achievable
bound among all polynomial time algorithms, given a worst-case family of f .

Algorithm 1: Robust adaptive maximization (RAM).
Input: RAM receives the inputs:
• Offline: integer T ; function f :2V1∪· · ·∪2VT 7→ R such

that f is non-decreasing and f(∅) = 0; integers αt, βt
such that 0 ≤ βt ≤ αt ≤ |Vt|, for all t = 1, . . . , T ;

• Online: at each t = 2, . . . , T , observed removal Bt−1

from RAM’s output At−1.
Output: At each step t = 1, . . . , T, set At.

1: for all t = 1, . . . , T do
2: St,1 ← ∅; St,2 ← ∅;
3: Sort elements in Vt s.t. Vt ≡ {vt,1, . . . , vt,|Vt|} and

f(vt,1) ≥ . . . ≥ f(vt,|Vt|);
4: St,1 ← {vt,1, . . . , vt,βt};
5: while |St,2| < αt − βt do
6: x∈arg maxy∈Vt\(St,1∪St,2) f(A1\B1, . . . ,At−1\

Bt−1,St,2 ∪ {y});
7: St,2 ← {x} ∪ St,2;
8: end while
9: At ← St,1 ∪ St,2.

10: end for

previously published. Also, the simulation scenarios are new
and include a sensitivity analysis of RAM against various failure
types (in [62] we tested RAM only against worst-case failures,
and in different scenarios). Finally, all proofs in [62] were
omitted and are now included here.

Organization of the rest of the paper. Section II presents
RAM, and quantifies its minimal running time. Section III
presents RAM’s suboptimality bounds. Section IV presents
RAM’s numerical evaluations. Section V concludes the paper.
All proofs are found in the appendix.

II. AN ADAPTIVE ALGORITHM: RAM

We present RAM, the first scalable algorithm for RSM, for-
mulated in eq. (2). RAM’s pseudo-code is given in Algorithm 1.
Below, we first give an intuitive description of RAM, and then
a step-by-step description. Also, we quantify its running time.
RAM’s suboptimality bounds are given in Section III.

A. Intuitive description

RSM aims to maximize f through a sequence of steps despite
compromises to each step. Specifically, at each t = 1, 2, . . .,
RSM selects an At towards a maximal f despite the fact that
At will be compromised by a worst-case removal Bt, resulting
to f being evaluated at A1 \ B1, . . . ,AT \ BT instead of
A1, . . . ,AT . In this context, RAM aims to achieve RSM’s goal
by selecting At as the union of two sets St,1, and St,2 (RAM’s
line 9), whose role we describe intuitively below:

a) St,1 approximates (aims to guess the) worst-case
removal from At: With St,1, RAM aims to capture the worst-
case removal of βt elements from At. Intuitively, St,1 is aimed
to act as a “bait” to a worst-case attacker that selects the
best βt elements to remove from At at time t (best with
respect to their contribution towards RSM’s goal). RAM aims
to approximate them by letting St,1 be the set of βt elements



with the largest marginal contributions to f (RAM’s lines 3-
4). As such, each St,1 is independent of the history of actual
removals B1, . . . ,Bt−1 and can be computed offline, before
any of the B1, . . . ,BT has been realized. In contrast, St,2 can
only be computed online, as we describe below.

b) St,1 ∪ St,2 approximates optimal solution to RSM’s t-
th step: To complete At’s construction, RAM needs to select
a set St,2 of αt − βt elements (since |At|= αt and |St,1|=
βt), and return At = St,1 ∪ St,2 (RAM’s line 9). Assuming
St,1’s removal from At, for At to be an optimal solution to
RSM’s t-th maximization step, RAM needs to select St,2 as a
best set of αt− βt elements from Vt \ St,1. Nevertheless, this
problem is NP-hard [17]. Thereby, RAM approximates such
a best set, using the greedy procedure in RAM’s lines 5-8.
Particularly, RAM’s line 6 adapts St,2 to the history of removals
B1, . . . ,Bt−1 and selections A1, . . . ,At−1, since it constructs
St,2 given A1 \ B1, . . . ,At−1 \ Bt−1. As such, each St,2, in
contrast to St,1, can be computed only online, only once the
history of removals B1, . . . ,Bt−1 has been realized.

Overall, RAM adaptively constructs an At to approximate an
optimal solution to RSM’s t-th maximization step.

Remark 1 (Further intuition on why St,1 and St,2 are selected
as in RAM). We first discuss why RAM (i) selects At as the
union of St,1 and St,2, and (ii) selects St,2 as a greedily picked
subset of Vt \ St,1. We then focus on St,1.

If St,1 guesses correctly the removal Bt from At = St,1 ∪
St,2, then all elements in St,2 remain intact (At \ Bt = St,2).
Therefore, since St,2 has been selected using the greedy
algorithm in RAM’s lines 5-8, which is an optimal approxima-
tion algorithm for maximizing monotone functions subject to
cardinality constraints [23],5 At is an optimal approximation
to RSM’s t-th maximization step. This explains why RAM
selects At as the union of two sets (St,1 and St,2), and
why RAM selects St,2 greedily from Vt \ St,1 given St,1.
Generally, if S1,1, . . . ,ST,1 guess B1, . . . ,BT correctly, then
RSM becomes equivalent to the attack-free eq. (1), and RAM
becomes equivalent to the optimal greedy algorithm for eq. (1).

But if St,1 guesses incorrectly Bt, then some of St,1’s
elements will survive, and, instead, some of St,2’s elements
will be removed. The question arising now is: Can the elements
that survived in St,1 compensate for the removed elements
from St,2? In this paper, we develop tools to prove that if
the elements of St,1 are chosen as in RAM’s lines 3-4, this
is indeed the case (proof of Theorem 10), providing the first
provable approximation guarantees for RSM via RAM.

B. Step-by-step description

RAM executes four steps for each t = 1, . . . , T :
a) Initialization (RAM’s line 2): RAM defines two auxil-

iary sets, namely, St,1 and St,2, and initializes them with the
empty set (RAM’s line 2).

b) Construction of set St,1 (RAM’s lines 3-4): RAM con-
structs St,1 by selecting βt elements, among all s ∈ Vt, with
the highest values f(s). In detail, St,1 is constructed by first

5An approximation algorithm is called optimal when it achieves the
tightest possible achievable suboptimality bound among all polynomial time
algorithms, given a worst-case family of functions f .

indexing the elements in Vt such that Vt ≡ {vt,1, . . . , vt,|Vt|}
and f(vt,1) ≥ . . . ≥ f(vt,|Vt|) (RAM’s line 3), and then by
including in St,1 the fist βt elements (RAM’s line 4).

c) Construction of set St,2 (RAM’s lines 5-8): RAM
constructs St,2 by picking greedily αt − βt elements from
Vt \ St,1, taking also into account the history of selections
and removals, that is, A1 \ B1, . . . ,At−1 \ Bt−1. Specifically,
the “while loop” (RAM’s lines 5-8) selects an element y ∈
Vt \ (St,1 ∪St,2) to add in St,2 only if y maximizes the value
of f(A1 \ B1, . . . ,At−1 \ Bt−1,St,2 ∪ {y}).

d) Construction of set At (RAM’s line 9): RAM constructs
At as the union of St,1 and St,2.

The above steps are valid for any number of failures βt.

C. Running time

We now analyze the computational complexity of RAM.

Proposition 2. At each t = 1, 2, . . ., RAM runs in O[|Vt|(αt−
βt)τf ] time, where τf is f ’s evaluation time.

Remark 3 (Minimal running time). Even though RAM ro-
bustifies the traditional, failure-free sequential optimization in
eq. (1), RAM has the same order of running time as the state-of-
the-art algorithms for eq. (1) [18, Section 4] [23, Section 8].

In summary, RAM selects adaptively a solution for RSM, in
minimal running time, and is valid for any number of failures.
We quantify its approximation performance next.

III. SUBOPTIMALITY GUARANTEES

We present RAM’s suboptimality bounds. We first present
RAM’s a priori bounds, and, then, the a posteriori bounds.
Finally, we present the latter’s pre-failure approximations.

A. Curvature and total curvature

To present RAM’s suboptimality bounds we use the notions
of curvature and total curvature. To this end, we start by
recalling the definitions of modularity and submodularity,
where we consider the notation:
• V ,

⋃T
i=1 Vt; i.e., V is the union across the horizon T

of all the available elements to choose from;

Definition 4 (Modularity [64]). f : 2V 7→ R is modular if and
only if f(A) =

∑
v∈A f(v), for any A ⊆ V .

Therefore, if f is modular, then V’s elements complement
each other through f . Particularly, Definition 4 implies f({v}∪
A)− f(A) = f(v), for any A ⊆ V and v ∈ V \ A.

Definition 5 (Submodularity [64]). f : 2V 7→ R is submodular
if and only if f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B), for
any A ⊆ B ⊆ V and v ∈ V .

The definition implies f is submodular if and only if the
return f(A ∪ {v}) − f(A) diminishes as A grows, for any
v. In contrast to f being modular, if f is submodular, then
V’s elements substitute each other. Specifically, without loss
of generality, consider f to be non-negative: then, Definition 5
implies f({v} ∪ A) − f(A) ≤ f(v). That is, in the presence
of A, v’s contribution to f({v} ∪ A)’s value is diminished.



Algorithm 2: Online greedy algorithm [18, Section 4].

Input: Integer T > 0; f : 2K1 ∪ · · · ∪ 2KT 7→ R such that
f is non-decreasing and f(∅) = 0; integers δt such that
0 ≤ δt ≤ |Kt|, for all t = 1, . . . , T.

Output: At each step t = 1, . . . , T, set Mt.

1: for all t = 1, . . . , T do
2: Mt ← ∅;
3: while |Mt|< δt do
4: x∈arg maxy∈Kt\Mt

f(M1, . . . ,Mt−1,Mt∪{y});
5: Mt ← {x} ∪Mt;
6: end while
7: end for

Definition 6. (Curvature [27]) Consider a non-decreasing
submodular f : 2V 7→ R such that f(v) 6= 0, for any v ∈ V ,
without loss of generality. Then, f ’s curvature is defined as

κf , 1−min
v∈V

f(V)− f(V \ {v})
f(v)

. (3)

Definition 6 implies κf ∈ [0, 1]. Particularly, κf measures
how far f is from modularity: if κf = 0, then f(V)− f(V \
{v}) = f(v), for all v ∈ V; that is, f is modular. In contrast,
if κf = 1, then there exist v ∈ V such that f(V) = f(V\{v});
that is, v has no contribution to f(V) in the presence of V\{v}.
Therefore, κf can also been interpreted as a measure of how
much V’s elements complement/substitute each other.

Definition 7 (Total curvature [23], [30]). Consider a monotone
f : 2V 7→ R. Then, f ’s total curvature is defined as

cf , 1−min
v∈V

min
A,B⊆V\{v}

f({v} ∪ A)− f(A)

f({v} ∪ B)− f(B)
. (4)

Similarly to κf , it also is cf ∈ [0, 1]. Remarkably, when f
is submodular, then cf = κf . Generally, if cf = 0, then f is
modular, while if cf = 1, then eq. (4) implies the assumption
that f is non-decreasing. In [65], any monotone f with total
curvature cf is called cf -submodular, as repeated below.6

Definition 8 (cf -submodularity [65]). Any monotone function
f : 2V 7→ R with total curvature cf is called cf -submodular.

Remark 9 (Dependence on the size of V and length of horizon
T ). Evidently, both κf and cf are non-decreasing as V grows
(cf. Definition 6 and Definition 7). Therefore, κf and cf are
also non-decreasing as T increases, since V ≡

⋃T
i=1 Vt.

B. A priori suboptimality bounds

We present RAM’s a priori suboptimality bounds, using the
above notions of curvature. We use also the notation:
• f? is the optimal value of RSM;
• A1:t , (A1, . . . ,At), where At is the selected set by

RAM at t = 1, 2, . . .;

6Lehmann et al. [65] defined cf -submodularity by considering in eq. (4)
A ⊆ B instead ofA ⊆ V . Generally, non submodular but monotone functions
have been referred to as approximately or weakly submodular [29], [66], names
that have also been adopted for the definition of cf in [65], e.g., in [67], [68].

• (B?1 , . . . ,B?T ) is an optimal removal from A1:T ;
• B?1:t , (B?1 , . . . ,B?t );
• A1:t \ B?1:t , (A1 \ B?1 , . . . ,At \ B?t ).

Theorem 10 (A priori bounds). RAM selects A1:T such that
|At| ≤ αt, and if f is submodular, then

f(A1:T \ B?1:T )

f?
≥

{
1−e−κf
κf

(1− κf ), T = 1;

(1− κf )4, T > 1;
(5)

whereas, if f is cf -submodular, then

f(A1:T \ B?1:T )

f?
≥
{

(1− cf )3, T = 1;
(1− cf )5, T > 1.

(6)

Evidently, Theorem 10’s bounds are a priori, since in-
eqs. (5)’s and (6)’s right-hand-sides are independent of the
selected A1:T by RAM, and the incurred failures B?1:T .

Importantly, the bounds compare RAM’s selection A1:T

against an optimal one that knows a priori all future failures
(and achieves that way the value f?). Instead, RAM’s has
no knowledge of the future failures. Within this challenging
setting, Theorem 10 nonetheless implies: for functions f with
κf < 1 or cf < 1, RAM’s selection A1:T is finitely close
to the optimal, instead of arbitrarily suboptimal. Indeed, then
Theorem 10’s bounds are non-zero. We discuss functions with
κf < 1 or cf < 1 below, along with relevant applications.

Remark 11 (Functions with κf < 1, cf < 1, and applica-
tions). Functions with κf < 1 are the concave over modular
functions [28, Section 2.1] and the log det of positive-definite
matrices [69]. Also, functions with cf < 1 are the support
selection functions [66], the average minimum square error of
the Kalman filter (trace of error covariance) [70, Section IV],
and the LQG cost as a function of the active sensors [10, The-
orem 4]. The aforementioned functions appear in control and
machine learning applications such as feature selection [21],
[71], and actuator and sensor scheduling [5]–[13], [70].

Evidently, when κf and cf tend to 0, then RAM becomes
optimal, since all bounds in Theorem 10 tend to 1; for
example, 1/κf (1− e−κf )(1− κf ) increases as κf decreases,
and its limit is equal to 1 for κf → 0. Application examples
of this sort involve the regression of Gaussian processes with
RBF kernels [69, Theorem 5], such as in sensor selection for
temperature monitoring [72].

Finally, since both κf and cf are non-decreasing in T and
V (Remark 9), the bounds are non-increasing in T and V .

Tightness and optimality (towards a posteriori bounds):
RAM’s curvature-dependent bounds are the first suboptimality
bounds for RSM, and make a first step towards separating
the classes of monotone functions into functions for which
RSM can be approximated well (low curvature functions),
and functions for which it cannot (high curvature functions).
Moreover, although for the failure-free eq. (1) the a priori
bounds 1/κf (1− e−κf ) and 1/(1 + κf ) (where f is submod-
ular) are known to be tight [27, Theorem 2.12, Theorem 5.4],
the tightness of ineq. (5) is an open problem. Similarly,
although for eq. (1) the a priori bound 1 − cf (where f is
cf -submodular) is known to be optimal (the tightest possible
in polynomial time in a worst-case) [23, Theorem 8.6], the



optimality of ineq. (6) is an open problem. Notably, in the
latter case (f is cf -submodular) both 1 − cf and the bound
in ineq. (6) are 0 for cf = 1, which is in agreement with the
inapproximability of both eq. (1) and RSM in the worst-case.

In contrast to Theorem 10’s a priori bounds, we next present
tight and/or optimal a posteriori bounds.

C. A posteriori suboptimality bounds

We now present RAM’s a posteriori bounds, which are
computable once all failures up to step t have been observed.
Henceforth, we use the notation:
• f?t is the optimal value of RSM for T = t;
• Mt is the set returned by the online, failure-free greedy

Algorithm 2 at t = 1, . . . , T ,7 when we consider therein
δt = αt − βt and Kt = Vt \ S1,t;

• M1:t , {M1, . . . ,Mt}.

Remark 12 (Interpretation of M1:t). Since each S1,t is the
expected future failures (“baits”) selected in RAM’s lines 3-4
(see Section II), M1:t are the sets one would greedily select
per Algorithm 2 if it was known a priori that indeed the future
failures are the S1,t, t = 1, . . . , T .

Theorem 13 (A posteriori bounds). For all t = 1, . . . , T ,
given the observed history B?1:t, RAM selects At such that
|At| ≤ αt, and if f is submodular, then

f(A1:t \ B?1:t)

f?t
≥

{
1−e−κf
κf

f(A1\B?1 )
f(M1) , t = 1;

1
1+κf

f(A1:t\B?1:t)
f(M1:t)

, t > 1;
(7)

whereas, if f is cf -submodular, then

f(A1:t \ B?1:t)

f?t
≥ (1− cf )

f(A1:t \ B?1:t)

f(M1:t)
. (8)

Theorem 14 (Tightness and optimality). There exist families
of f such that the suboptimality bounds in ineq. (7) are tight.
Also, there exist families of f such that the suboptimality
bounds in eq. (8) are optimal (the tightest possible) across
all algorithms that evaluate f a polynomial number of times.8

The bounds break down into the a priori κf - and cf -
depended parts, and the a posteriori f(A1:t \ B?1:t)/f(M1:t).
We refer to the latter as a posteriori since it is computable after
B?t has been observed. Intuitively, the a posteriori part captures
how successful the “bait” S1,t has been in approximating
the anticipated worst-case failure B?t . Indeed, if B?t = S1,t

for all t = 1, 2, . . ., then f(A1:t \ B?1:t)/f(M1:t) = 1 and
Theorem 13’s bounds become the tight/optimal a priori bounds
1/κf (1− e−κf ), 1/(1 + κf ) and 1− cf ,9 and, as such, they
are also tighter than Theorem 10’s a priori bounds.

In general, Theorem 13’s a posteriori bounds may be looser
than Theorem 10’s a priori bounds; yet, they are tighter when

7We refer to Algorithm 2 as “online” since each Mt can be chosen in
real time (at time t) sequentially, i.e., given the history of past selections
M1, . . . ,Mt−1. Observe, however, that if one wishes so one can also
execute all steps of Algorithm 2 offline at time t = 0.

8Theorem 14’s function families are the same as those in the proofs of [27,
Theorem 2.12, Theorem 5.4] and [23, Theorem 8.6], which prove the tightness
and optimality of 1/κf (1− e−κf ), 1/(1 + κf ) and (1− cf ) for eq. (1).

9Theorem 14 is proved based on this observation.

f(A1:t \B?1:t)/f(M1:t) is close enough to 1: e.g., for f being
cf -submodular and T > 1, if f(A1:t \ B?1:t)/f(M1:t) > (1−
cf )4, then the a posteriori bound in eq. (8) is tighter than
the a priori in eq. (6). Indeed, in the numerical evaluations
of Section IV, f(A1:t \ B?1:t)/f(M1:t) is nearly 1, whereas
(1−cf )4 ≤ .0001; thus, eq. (8) is 3 orders tighter than eq. (6).

Notably, the a priori parts 1/κf (1 − e−κf ), 1/(1 + κf )
are non-zero for any values of κf . In more detail, 1/κf (1 −
e−κf ) ≥ 1 − 1/e and 1/(1 + κf ) ≥ 1/2 for all κf ∈ [0, 1];
particularly, 1/κf (1 − e−κf ) increases as κf decreases, and
its limit is equal to 1 for κf → 0. Therefore, in contrast to
the a priori bound in eq. (5), which for κf = 1 becomes 0,
eq. (7) for κf = 1 becomes instead

f(A1:t \ B?1:t)

f?t
≥

{
(1− 1/e)

f(A1\B?1 )
f(M1) , t = 1;

f(A1:t\B?1:t)
2f(M1:t)

, t > 1.
(9)

Nevertheless, such simplification for eq. (8) is not evident, a
fact that is in agreement with both (i) RSM’s inapproximability
when f is not submodular, necessitating per-instance subop-
timality bounds for any polynomial time algorithm, and (ii)
eq. (8)’s optimality per Theorem 14.

Overall, Theorem 13’s bounds are computable online, at
each t = 1, 2, . . ., after failure B?t has been observed. We next
approximate the bounds before B?t occurs.

D. Pre-failure approximations of post-failure bounds

We present pre-failure approximations to Theorem 13’s
post-failure bounds. In particular, we propose a method to
lower bound f(A1:t\B?1:t) by a value f̂t, at each t = 1, . . . , T ,
given B?1:t−1 (but before B?t occurs).

In more detail, we recall f(A1:t \ B?1:t) is the value of the
constrained optimization problem

f(A1:t \ B?1:t) ≡ min
Bt⊆At, |Bt|≤βt

f(A1:t−1 \ B?1:t−1,At \ Bt).
(10)

Computing f(A1:t \ B?1:t) is NP-hard, even if f is submodu-
lar [73]. But lower bounding f(A1:t \ B?1:t) can be efficient.
Specifically, the non-constrained reformulation of eq. (10) in
eq. (11) below is efficiently solvable (see [73]–[76] for f being
submodular; and [77] for f being cf -submodular):

min
Bt⊆At

f(A1:t−1 \ B?1:t−1,At \ Bt) + λt|Bt|, (11)

where λt ≥ 0 and constant (λt acts similarly to a Lagrange
multiplier [78]). Evidently, Lemma 15 below holds true, where
B̂t(λt) denotes an optimal solution to eq. (11), i.e.,

B̂t(λt) ∈ arg min
Bt⊆At

f(A1:t−1\B?1:t−1,At\Bt)+λt|Bt|, (12)

and where f̂t(λt) denotes the value of f(A1:t−1 \B?1:t−1,At \
Bt) when Bt = B̂t(λt), i.e.,

f̂t(λt) , f(A1:t−1 \ B?1:t−1,At \ B̂t(λt)). (13)

Lemma 15. There exists λ?t such that f̂t(λt) ≤ f(A1:t \B?1:t)
and |B̂t(λt)| > βt for λt < λ?t ; whereas, f̂t(λt) ≥ f(A1:t \
B?1:t) and |B̂t(λt)| ≤ βt for λt ≥ λ?t .



Algorithm 3: Bisection.
Input: Integer βt per RSM; function f per RSM; histories
A1:t andB?1:t−1; u0>0 such that |B̂t(u0)| < βt, where
B̂t(·) is defined in eq. (12); ε > 0, which defines bise-
ction’s stopping condition (accuracy level).

Output: λt ≥ 0 such that f̂t(λt) ≤ f(A1:t \ B?1:t), where
λt and f̂t(λt) are defined in eq. (11) and eq. (13).

1: l← 0; u← u0; λt ← (l + u)/2;
2: while u− l > ε do
3: Find B̂t(λt) by solving eq. (12);
4: if |B̂t(λt)| < βt then
5: u← λt; {u always satisfies |B̂t(u)| < βt}
6: else
7: l← λt; {l always satisfies |B̂t(l)| ≥ βt}
8: end if
9: λt ← (l + u)/2;

10: end while
11: λt ← l; {l is ε-close to λ?t (λ?t is defined in Lemma 15)

and satisfies |B̂t(l)| ≥ βt}
12: return λt.

To observe such a value λ?t exists, it suffices to observe: (i)
for λt = 0, the cardinality of B̂t in eq. (11) is unconstrained,
and, thus, the optimal solution in eq. (11) is to remove all
At, which implies |B̂t(λt)| = αt ≥ βt; (ii) more generally,
for λt > 0, the cardinality of B̂t in eq. (11) is increasingly
penalized as λt increases, and, thus, |B̂t(λt)| is a decreasing
function of λt (in particular, if λt → +∞, then |B̂t(λt)| → 0).
Now, given (i)-(ii), denote by λ?t the first value of λt such
that |B̂t(λt)| ≤ βt, when λt is initially set to 0 and then
continuously increases: then, for λt < λ?t , it is |B̂t(λt)| > βt,
and, thus, f̂t(λt) ≤ f(A1:t \B?1:t), since |B̂t(λt)| > βt = |B?t |
and B̂t(λt) is an optimal solution to eq. (11); whereas, for
λt ≥ λ?t , it is |B̂t(λt)| ≤ βt, and, thus, f̂t(λt) ≥ f(A1:t\B?1:t).

Although λ?t is unknown, it can be approximated by using
bisection. For example, Algorithm 3 uses bisection with ac-
curacy level ε > 0 (Algorithm 3’s lines 2-10) to find a λt
that is ε-close to λ?t and for which f̂t(λt) ≤ f(A1:t \ B?1:t).
To start the bisection, Algorithm 3 assumes a large enough
u0 ≥ 0 such that |B̂t(u0)| < βt; such a u0 can be found
since |B̂t(u0)| → 0 for u0 → +∞. Next, at each “while loop”
(lines 2-10 of Algorithm 3), λ?t ∈ [l, u], since |B̂t(u)| < βt
and |B̂t(l)| ≥ βt (cf. line 5 and line 7 of Algorithm 3). Per
line 2 of the algorithm, l and u are updated until u − l ≤ ε.
Then, after at most log2[(u − l)/ε] iterations, the algorithm
terminates by setting λt equal to the latest value of l (lines 11-
12 of the algorithm). Therefore, λt is ε-close to λ?t and satisfies
|B̂t(l)| ≥ βt, which in turn implies f̂t(λt) ≤ f(A1:t \B?1:t), as
desired. All in all, given an approximation λt to λ?t , Lemma 15
implies the following approximation of Theorem 13’s bounds.

Corollary 16 (Pre-failure approximation of a posteriori
bounds). Let Algorithm 3 return λt, for t = 1, . . . , T . RAM

selects At such that |At| ≤ αt, and if f is submodular, then

f(A1:t \ B?1:t)

f?t
≥

 1−e−κf
κf

f̂1(λ1)
f(M1) , t = 1;

1
1+κf

f̂t(λt)
f(M1:t)

, t > 1;
(14)

whereas if f is cf -submodular, then

f(A1:t \ B?1:t)

f?t
≥ (1− cf )

f̂t(λt)

f(M1:t)
. (15)

Corollary 16 describes an online mechanism to predict
RAM’s performance before the upcoming failures, step by step.

Remark 17 (Utility of Corollary 16’s bounds). For T = 1,
Corollary 16’s bounds are computed before B?1 occurs, which
implies f̂1 can be computed offline (at any time t < 1).
Therefore, Corollary 16’s bounds, when tighter than Theo-
rem 10’s a priori bounds, allow for an a priori assessment
of RAM’s approximation performance (before RAM is deployed
in the real world). Examples of 1-step design problems where
T = 1, include robust actuator and sensor placement [7], [16],
[79], robust feature selection [21], [32], [80], robust graph
covering [81], and robust server placement [15], [82].

For T > 1, Corollary 16’s bounds can only be computed
online, once B?1:t−1 has been observed (but before B?t has
occurred), for each t = 1, . . . , T .10 As such, the bounds can
be used to balance the trade-off between (i) computation time
requirements (including computation and energy consumption
requirements) for solving each step t of RSM, and (ii) approx-
imation performance requirements for solving RSM at each
t. For example, if Corollary 16’s bounds indicate a good
performance by RAM at t (e.g., the bounds are above a given
threshold), RAM is used to select At, since RAM is computation
time inexpensive, being a polynomial time algorithm. However,
if the bounds indicate poor performance by RAM at t (less
than the given threshold), then an optimal algorithm can be
used instead at t (such as the one proposed in [34]), but at
the expense of higher computation time, since any optimal
algorithm is non-polynomial in the worst-case.11

IV. APPLICATIONS

We evaluate RAM’s performance in applications. We start
by assessing its near-optimality against worst-case failures.
We continue by testing its sensitivity against non worst-case
failures, particularly, random and greedily selected failures.
For such failures, one would expect RAM’s performance to be
the same, or improve, since RAM is designed to withstand the
worst-case. To these ends, we consider two applications from
the introduction: sensor scheduling for autonomous naviga-
tion, and target tracking with wireless sensor networks.

10Corollary 16’s bounds can only be computed online since RAM itself is
an online algorithm, computing At only once B?1:t−1 has been observed (yet
before B?t has occurred), for each t = 1, . . . , T .

11Even when RAM is used in combination with another algorithm to choose
A1:t, Corollary 16’s bounds are still applicable since they are algorithm
agnostic (cf. proof of Theorem 13).
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Fig. 1. Representative simulation results for the application sensor scheduling for autonomous navigation. Results are averaged across 100
Monte Carlo runs. Depicted is the estimation error for increasing time t, per eq. (16), where αt = α = 8 across all subfigures, whereas
βt = β where β varies across subfigures column-wise. Finally, the failure type also varies, but row-wise. Each subfigure has different scale.

A. Sensor scheduling for autonomous navigation

We demonstrate RAM’s performance in autonomous naviga-
tion scenarios, in the presence of sensing failures. We focus
on small-scale instances, to enable RAM’s comparison with a
brute-force algorithm attaining the optimal to RSM. Instead, in
Section IV-B we consider larger-scale instances.

A UAV moves in a 3D space, starting from a randomly
selected initial location. Its objective is to land at [0, 0, 0]
with zero velocity. The UAV is modeled as a double-integrator
with state xt = [pt vt]

> ∈ R6, where t = 1, 2, . . . is the time
index, pt is the UAV’s position, and vt is its velocity. The UAV
controls its acceleration. The process noise has covariance I6.

The UAV is equipped with two on-board sensors: a GPS,
measuring the UAV’s position pt with a covariance 2 · I3, and
an altimeter, measuring pt’s altitude component with standard
deviation 0.5m. Also, the UAV can communicate with 10
linear ground sensors. These sensors are randomly generated
at each Monte Carlo run, along with their noise covariance.

The UAV has limited on-board battery power and measure-
ment-processing bandwidth. Hence, it uses only a few sensors
at each t. Particularly, among the 12 available sensors, the
UAV uses at most α, where α varies from 1 to 12 in the
Monte Carlo analysis (per RSM’s notation, αt = α for all
t = 1, 2, . . .). The UAV selects the sensors to minimize the
cumulative batch-state error over a horizon T = 5, captured by

c(A1:t) = log det[Σ1:t(A1:t)], (16)

where Σ1:t(A1:t) is the error covariance of the minimum
variance estimator of (x1, . . . , xt) given the used sensors up
to t [83]. Notably, f(A1:t) = −c(A1:t) is non-decreasing and
submodular, in congruence to RSM’s framework [8].

Finally, we consider that at most β failures are possible at
each t (per RSM’s notation, βt = β for all t). In the Monte
Carlo analysis, β varies from 0 to α− 1.

Baseline algorithms. We compare RAM with three algo-
rithms. The first algorithm is a brute-force, optimal algorithm,
denoted as optimal. Evidently, optimal is viable only for small-
scale problem instances, such as herein where the available
sensors are 12. The second algorithm performs random selec-
tion and is denoted as random. The third algorithm, denoted
as greedy, greedily selects sensors to optimize eq. (16) per the
failure-free optimization setup in eq. (1).

Results. The results are averaged over 100 Monte Carlo
runs. For α = 8 and β = 4, 5, 6, 7, they are reported in Fig. 1.
For the remaining α and β values, the qualitative results are
the same. From Fig. 1, the following observations are due:

a) Near-optimality against worst-case failures: We focus
on Fig. 1’s first row of subfigures, where β varies from 4
to 7 (from left to right). Across all β, RAM nearly matches
optimal. In contrast, greedy nearly matches optimal only for
β = 4 (and, generally, for β ≤ α/2, taking into account the
simulation results for the remaining values of α). Expectedly,
random is always the worst among all compared algorithms.
Importantly, as β tends to α, greedy’s performance tends to



random’s. The observation exemplifies the insufficiency of the
traditional optimization paradigm in eq. (1) against failures.

Across all values of α and β in the Monte Carlo analysis,
the suboptimality bound in Theorem 13’s eq. (7) is at least .59,
informing RAM performs at least 50% the optimal (κf remains
always less than .93, while f(A1:t \ B?1:t)/f(M1:t) is close
to .95). In contrast, in Fig. 1 we observe an almost optimal
performance. This is an example where the actual performance
of the algorithm is significantly closer to the optimal than what
is indicated by the algorithm’s suboptimality bound. Indeed,
this is a common observation for greedy-like algorithms: for
the failure-agnostic greedy in [18] see, e.g., [14].

b) Robustness against non worst-case failures: We com-
pare Fig. 1’s subfigures column-wise, where the failure type
varies among worst-case, greedy, and random (from top to
bottom).12 Particularly, RAM’s performance remains the same,
or improves, against non worst-case failures, and the best
performance is being observed against random failures, as
expected. For example, if we focus on the rightmost column
(where α = 8;β = 7), at t = 5, then we observe: for
worst-case failures, RAM achieves error 1061; instead, for
greedy failures, RAM achieves the reduced error 1010; while
for random failures, RAM achieves even less error (less than
500). Finally, against greedy failures, RAM is still superior to
greedy, while against random failures, they fare similarly.

Overall, the above numerical simulations demonstrate both
the necessity for failure-robust optimization (RSM), as well
as the near-optimality of RAM, even for increasing number of
failures (system-wide failures). Similar conclusions we make
over the second application scenario below.

B. Target tracking with wireless sensor networks

We demonstrate RAM’s performance in adversarial target
tracking scenarios. Particularly, we consider a mobile target
who aims to escape detection from a wireless sensor network
(WSN). To this end, the agent causes failures to the network.

A UAV (the target) is moving in a 3D, cubic shaped
space. The UAV moves on a straight line, across two opposite
boundaries of the cube, keeping constant altitude and speed.
The line’s start and end points are randomly generated at each
Monte Carlo run. The UAV’s model is as in the autonomous
navigation scenario in Section IV-A.

The WSN is composed of 100 ground sensors. It is aware
of the UAV’s model, but can only noisily observe its state.
The sensors are randomly generated at each Monte Carlo run.

Due to power consumption and bandwidth limitations, only
a few sensors can be active at each t = 1, 2, . . .. Particularly,
we assume α = 10 active sensors at each t. Also, we assume
the sensors are activated so the cumulative Kalman filtering
error over a horizon T = 5 is minimized, as prescribed by

c(A1:t) =

T∑
t=1

trace[Σt|t(A1:t)], (17)

12We refer to a failure Bt as “greedy,” when Bt is selected greedily towards
minimizing f(A1:t−1 \B1:t−1,At \Bt), where A1:t and B1:t−1 are given,
as in Algorithm 2 but now for minimization instead of maximization.

where Σt|t(A1:t) is the Kalman filtering error covariance.
Noticeably, f(A1:t) = −c(A1:t) is non-decreasing and cf -
submodular, in agreement with RSM’s framework [70].

Finally, at most β failures are possible at each t. In the
Monte Carlo analysis, β varies from 1 to α− 1 = 9.

Baseline algorithms. We compare RAM with random, and
greedy. We cannot compare with optimal, since the network’s
large-scale size makes optimal unfeasible.

Results. The simulation results are averaged over 100
Monte Carlo runs. For β = 3, 5, 7, 9, they are reported in
Fig. 2, where random is excluded since it results to exceedingly
larger errors. For the remaining β values, the qualitative results
remain the same. From Fig. 2, we make the observations:

a) Superiority against worst-case failures: We focus on
Fig. 2’s first row, where β takes the values 3, 5, 7, and 9 (from
left to right). For β = 3 (also, for β = 1, 2, accounting for
the remaining, non depicted simulations), RAM fares similar
to greedy. In contrast, for the remaining values of β, RAM
dominates greedy, achieving significantly lower error (observe
the different scales among the subfigures for β = 5, 7, 9).

Across all β values in the Monte Carlo analysis (including
those in Fig. 2), the suboptimality bound in eq. (8) ranges
from .02 to .10, informing that RAM performs at least 2%
to 10% the optimal. Specifically, cf ranges from .89 to .98,
whereas f(A1:t \ B?1:t)/f(M1:t) remains again close to .95.
Hence, the possible conservativeness of the bound stems from
the conservativeness of its term 1− cf .

b) Robustness against non worst-case failures: We com-
pare Fig. 2’s subfigures column-wise. Similarly to the au-
tonomous navigation scenarios, RAM’s performance remains
the same, or improves, against non worst-case failures, and
the lowest error is being observed against random failures.
For example, if we focus on the rightmost column (where
α = 10;β = 9), at t = 5, then: for worst-case failures,
RAM achieves error 611; in contrast, for greedy failures, RAM
achieves the lower error 526; and for random failures, RAM
achieves the even lower error 456. Generally, against greedy
failures, RAM is again still superior to greedy; while against
random failures, both have similar performance.

In summary, RAM remains superior even against system-
wide failures, and even if the failures are non worst-case.

V. CONCLUSION

We made the first step to adaptively protect critical control,
estimation, and machine learning applications against sequen-
tial failures. Particularly, we focused on scenarios requiring the
robust discrete optimization of systems per RSM. We provided
RAM, the first online algorithm, which adapts to the history
of failures, and guarantees a near-optimal performance even
against system-wide failures despite its minimal running time.
To quantify RAM’s performance, we provided per-instance
a priori bounds and tight, optimal a posteriori bounds. To
this end, we used curvature notions, and contributed a first
step towards characterizing the curvature’s effect on the per-
instance approximability of RSM. Our curvature-dependent
bounds complement the current knowledge on the curvature’s
effect on the approximability of the failure-free optimization
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Fig. 2. Representative simulation results for the application target tracking with wireless sensor networks. Results are averaged over 100
Monte Carlo runs. Depicted is the estimation error for increasing t, per eq. (17), where αt = α = 10 across all subfigures, whereas βt = β
where β varies across subfigures column-wise. Finally, the failure type also varies, but row-wise. Each subfigure has different scale.

paradigm in eq. (1) [23], [27], [30], [65]. Finally, we supported
our theoretical results with numerical evaluations.

The paper opens several avenues for future research. One is
the decentralized implementation of RAM towards robust multi-
agent autonomy and large-scale network design. And another
is the extension of our results to optimization frameworks
with general constraints (instead of cardinality, as in RSM),
such as observability/controllability requirements, including
matroid constraints, towards multi-robot planning.

APPENDIX

In this appendix, we provide all proofs. We use the notation:

f(X | X ′) , f(X ∪ X ′)− f(X ′), (18)

for any X ,X ′. Also, X1:t , (X1, . . . ,Xt) for any X1, . . . ,Xt
(and (X1, . . . ,Xt) ≡ X1 ∪ . . . ∪ Xt).

APPENDIX A: PRELIMINARY LEMMAS

We list lemmas that support the proofs.

Lemma 18. Consider a non-decreasing f : 2V 7→ R such that
f(∅) = 0. Then, for any A,B ⊆ V such that A ∩ B = ∅,

f(A ∪ B) ≥ (1− cf ) [f(A) + f(B)] .

Proof of Lemma 18: Let B = {b1, b2, . . . , b|B|}. Then,

f(A∪B) = f(A) +

|B|∑
i=1

f(bi | A ∪ {b1, b2, . . . , bi−1}). (19)

The definition of cf implies

f(bi | A ∪ {b1, b2, . . . , bi−1}) ≥
(1− cf ) f(bi | {b1, b2, . . . , bi−1}). (20)

The proof is completed by substituting ineq. (20) in eq. (19),
along with f(A) ≥ (1− cf ) f(A), since cf ≤ 1. �

Lemma 19. Consider a non-decreasing f : 2V 7→ R such that
f(∅) = 0. Then, for any A,B ⊆ V such that A ∩ B = ∅,

f(A ∪ B) ≥ (1− cf )

[
f(A) +

∑
b∈B

f(b)

]
.

Proof of Lemma 19: Let B = {b1, b2, . . . , b|B|}. Then,

f(A∪B) = f(A) +

|B|∑
i=1

f(bi | A ∪ {b1, b2, . . . , bi−1}). (21)

Now, cf ’s Definition 7 implies

f(bi | A ∪ {b1, b2, . . . , bi−1}) ≥ (1− cf )f(bi | ∅)
= (1− cf )f(bi), (22)



where the latter holds since f(∅) = 0. The proof is completed
by substituting eq. (22) in eq. (21), along with f(A) ≥ (1 −
cf )f(A), since cf ≤ 1. �

Lemma 20. Consider a non-decreasing f : 2V 7→ R such that
f(∅) = 0. Then, for any A,B ⊆ V such that A \ B 6= ∅,

f(A) + (1− cf )f(B) ≥ (1− cf )f(A ∪ B) + f(A ∩ B).

Proof of Lemma 20: Let A\B = {i1, i2, . . . , ir}, where
r = |A − B|. cf ’s Definition 7 implies f(ij | (A ∩ B) ∪
{i1, i2, . . . , ij−1}) ≥ (1 − cf )f(ij | B ∪ {i1, i2, . . . , ij−1}),
for any i = 1, . . . , r. Summing the r inequalities,

f(A)− f(A ∩ B) ≥ (1− cf ) [f(A ∪ B)− f(B)] ,

which implies the lemma. �

Corollary 21. Consider a non-decreasing f : 2V 7→ R such
that f(∅) = 0. Then, for any A,B ⊆ V such that A ∩ B = ∅,

f(A) +
∑
b∈B

f(b) ≥ (1− cf )f(A ∪ B).

Proof of Corollary 21: Let B = {b1, b2, . . . , b|B|}.
If A 6= ∅, then

f(A) +

|B|∑
i=1

f(bi) ≥ (1− cf )f(A) +

|B|∑
i=1

f(bi) (23)

≥ (1− cf )f(A ∪ {b1}) +

|B|∑
i=2

f(bi)

≥ (1− cf )f(A ∪ {b1, b2}) +

|B|∑
i=3

f(bi)

...
≥ (1− cf )f(A ∪ B),

where ineq. (23) holds since 0 ≤ cf ≤ 1, and the remaining
inequalities are implied by applying Lemma 20 multiple times
(A ∩ B = ∅ implies A \ {b1} 6= ∅, A ∪ {b1} \ {b2} 6= ∅, . . .,
A ∪ {b1, b2, . . . , b|B|−1} \ {b|B|} 6= ∅).

If A = ∅, then the proof follows the same reasoning as
above but now we need to start from the following inequality,
instead of ineq. (23):

|B|∑
i=1

f(bi) ≥ (1− cf )f({b1}) +

|B|∑
i=2

f(bi).

�

Lemma 22. Consider the sets S1,1, . . . ,ST,1 selected by
RAM’s lines 3-4. Also, for all t = 1, . . . , T , let Ot be any
subset of Vt \ St,1 such that |Ot|≤ αt − βt. Then,

f(S1,2, . . . ,ST,2) ≥ (1− cf )2f(O1:T ). (24)

Proof of Lemma 22: For all t = 1, . . . , T, let Rt , At \
Bt; namely, Rt is the set that remains after the optimal (worst-
case) removal Bt from At. Furthermore, let sit,2 ∈ St,2 denote
the i-th element added to St,2 per RAM’s lines 5-8; i.e., St,2 =

{s1
t,2, . . . , s

αt−βt
t,2 }. Additionally, for all i = 1, . . . , αt − βt,

denote Sit,2 , {s1
t,2, . . . , s

i
t,2}, and set S0

t,2 , ∅. Next, order

the elements in each Ot so that Ot = {o1
t , . . . , o

αt−βt
t } and if

oit ∈ St,2, then oit = sit,2; i.e., order the elements so that the
common elements in Ot and St,2 appear at the same index.
Moreover, for all i = 1, . . . , αt−βt, denoteOit , {o1

t , . . . , o
i
t},

and also set O0
t , ∅. Finally, let: O1:t , (O1, . . . ,Ot); O1:0 ,

∅; S1:t,2 , (S1,2, . . . ,St,2); and S1:0,2 , ∅. Then,

f(O1:T ) =

T∑
t=1

αt−βt∑
i=1

f(oit | O1:t−1 ∪ Oi−1
t ) (25)

≤ 1

1− cf

T∑
t=1

αt−βt∑
i=1

f(oit | R1:t−1 ∪ Si−1
t,2 ) (26)

≤ 1

1− cf

T∑
t=1

αt−βt∑
i=1

f(sit,2 | R1:t−1 ∪ Si−1
t,2 ) (27)

≤ 1

(1− cf )2

T∑
t=1

αt−βt∑
i=1

f(sit,2 | S1:t−1,2 ∪ Si−1
t,2 )

(28)

=
1

(1− cf )2
f(S1,2, . . . ,ST,2). (29)

where eq. (25) holds due to eq. (18); ineq. (26) due to ineq. (4);
ineq. (27) holds since sit,2 is chosen greedily by the algorithm,
given R1:t−1 ∪Si−1

t,2 ; ineq. (28) holds for the same reasons as
ineq. (26); eq. (29) holds for the same reasons as eq. (25). �

Lemma 23. Consider the sets S1,1, . . . ,ST,1 selected by
RAM’s lines 3-4. Also, for all t = 1, . . . , T , let in Algorithm 2
be Kt = Vt \St,1 and δt = αt−βt. Finally, consider Pt such
that Pt ⊆ Kt, |Pt|≤ δt, and f(P1:T ) is maximal, that is,

P1:T ∈ arg max
P̄1⊆K1,|P̄1|≤δ1

· · · max
P̄T⊆KT ,|P̄T |≤δT

f(P̄1:T ). (30)

Then, f(M1:T ) ≥ (1− cf )f(P1:T ).

Proof of Lemma 23: The proof is the same as that of [23,
Theorem 6]. �

Corollary 24. Consider the sets S1,1, . . . ,ST,1 selected by
RAM’s lines 3-4, as well as, the sets S1,2, . . . ,ST,2 selected
by RAM’s lines 5-8. Finally, consider Kt = Vt \ St,1 and δt =
αt − βt, and Pt per eq. (30). Then,

f(S1,2, . . . ,ST,2) ≥ (1− cf )3f(P1:T ).

Proof of Corollary 24: Let Ot =Mt in ineq. (24). Then,

f(S1,2, . . . ,ST,2) ≥ (1− cf )2f(M1:T ). (31)

Using in ineq. (31) Lemma 23, the proof is complete. �

Lemma 25. Per the notation in Corollary 24, for all t =
1, . . . , T, consider Kt = Vt \ St,1, δt = αt − βt, and Pt per
eq. (30). Then, it holds true that

f(P1:T ) ≥ f?. (32)

Proof of Lemma 25: We use the notation

h(S1,1, . . . ,ST,1) ,

max
P̄1⊆V1\S1,1,|P̄1|≤δ1

· · · max
P̄T⊆VT \ST,1,|P̄T |≤δT

f(P̄1:T ). (33)



For any P̂1, . . . , P̂T such that P̂t ⊆ Vt \ St,1 and |P̂t| ≤ δt
(for all t = 1, . . . , T ), h’s definition in eq. (33) implies

h(S1,1, . . . ,ST,1) ≥ f(P̂1, . . . , P̂T ). (34)

Since ineq. (34) holds for any P̂T such that P̂T ⊆ VT \ ST,1
and |P̂T | ≤ δT , then it also holds for the P̂T that maximizes
the right-hand-side of ineq. (34), i.e.,

h(S1,1, . . . ,ST,1) ≥ max
P̄T⊆VT \ST,1,|P̄T |≤δT

f(P̂1:T−1, P̄T ).

(35)
Treating in ineq. (35) the set ST,1 as a free variable, since (35)
holds for any ST,1 ⊆ VT such that |ST,1| ≤ βT , then

min
B̄T⊆VT ,|B̄T |≤βT

h(S1,1, . . . ,ST−1,1, B̄T ) ≥

min
B̄T⊆VT ,|B̄T |≤βT

max
P̄T⊆VT \B̄T ,|P̄T |≤δT

f(P̂1:T−1, P̄T ).

(36)

Specifically, ineq. (36) holds true for the same reason the
following holds true: given a set function f1 : I 7→ R (rep-
resenting the left-hand-side of ineq. (35)) and a set function
f2 : I 7→ R (representing the right-hand-side of ineq. (35)),
where I = {S : S ⊆ VT , |S| ≤ βT }, if f1(S) ≥ f2(S)
for every S ∈ I (as ineq. (35) defines), then also the
minimum of f1 must be greater or equal to the minimum of
f2, i.e., minS∈I f1(S) ≥ minS∈I f2(S). The reason: if S?1 ∈
arg minS∈I f1(S), then f1(S?1 ) ≥ f2(S?1 ), since f1(S) ≥
f2(S) for every S ∈ I; but also f2(S?1 ) ≥ minS∈I f2(S), and,
as a result, indeed, minS∈I f1(S) ≥ minS∈I f2(S). Changing
the symbol of the dummy variable S to B̄T , we get ineq. (36).

Denote now the right-hand-side of ineq. (36) by z(P̂1:T−1).
Since δT = αT − βT , and for P̄T in ineq. (36) it is P̄T ⊆
VT \ B̄T and |P̄T |≤ δT , then it equivalently holds:

z(P̂1:T−1) =

min
B̄T⊆VT ,|B̄T |≤βT

max
ĀT⊆VT ,|ĀT |≤αT

f(P̂1:T−1, ĀT \ B̄T ). (37)

Let in ineq. (37) w(ĀT \ B̄T ) , f(P̂1:T−1, ĀT \ B̄T ); we
prove that the following holds true:

z(P̂1:T−1) ≥ max
ĀT⊆VT ,|ĀT |≤αT

min
B̄T⊆VT ,|B̄T |≤βT

w(ĀT \ B̄T ).

(38)
Particularly, for any ÂT ⊆ VT such that |ÂT | ≤ αT , and any
ŜT,1 ⊆ VT such that |ŜT,1| ≤ βT , it is

max
ĀT⊆VT ,|ĀT |≤αT

w(ĀT \ ŜT,1) ≥ w(ÂT \ ŜT,1). (39)

From ineq. (39), following the same reasoning as for the
derivation of ineq. (36) from ineq. (35), considering in
ineq. (39) the ŜT,1 to be the free variable, we get

min
B̄T⊆VT ,|B̄T |≤βT

max
ĀT⊆VT ,|ĀT |≤αT

w(ĀT \ B̄T ) ≥

min
B̄T⊆VT ,|B̄T |≤βT

w(ÂT \ B̄T ). (40)

Now, ineq. (40) implies ineq. (38). The reason: (40) holds for
any ĀT ⊆ VT such that |ĀT | ≤ αT , while the left-hand-
side of (40) is equal to z(P̂1:T−1), which is independent of

ÂT ; therefore, if we maximize the right-hand-side of (40) with
respect to ĀT , then indeed we get (38).

All in all, due to ineq. (38), ineq. (36) becomes:

min
B̄T⊆VT ,|B̄T |≤βT

h(S1,1, . . . ,ST−1,1, B̄T ) ≥

max
ĀT⊆VT ,|ĀT |≤αT

min
B̄T⊆VT ,|B̄T |≤βT

f(P̂1:T−1, ĀT \ B̄T ). (41)

The left-hand-side of ineq. (41) is a function of
S1,1, . . . ,ST−1,1; denote it as h′(S1,1, . . . ,ST−1,1). Similarly,
the right-hand-side of ineq. (41) is a function of P̂1:T−1;
denote it as f ′(P̂1:T−1). Given these notations, ineq. (41) is
equivalently written as

h′(S1,1, . . . ,ST−1,1) ≥ f ′(P̂1:T−1), (42)

which has the same form as ineq. (34). Therefore, by following
the same steps as those we used from ineq. (34) and onward,
we similarly get

min
B̄T−1⊆VT−1,|B̄T−1|≤βT−1

h′(S1,1, . . . ,ST−2,1, B̄T−1) ≥

max
ĀT−1⊆VT−1,|ĀT−1|≤αT−1

min
B̄T−1⊆VT−1,|B̄T−1|≤βT−1

f ′(P̂1:T−2, ĀT−1 \ B̄T−1), (43)

which, given the definitions of h′(·) and f ′(·), is equivalent to

min
B̄T−1⊆VT−1,|B̄T−1|≤βT−1

min
B̄T⊆VT ,|B̄T |≤βT

h(S1,1, . . . ,ST−2,1, B̄T−1, B̄T ) ≥
max

ĀT−1⊆VT−1,|ĀT−1|≤αT−1

min
B̄T−1⊆VT−1,|B̄T−1|≤βT−1

max
ĀT⊆VT ,|ĀT |≤αT

min
B̄T⊆VT ,|B̄T |≤βT

f(P̂1:T−2, ĀT−1 \ B̄T−1, ĀT \ B̄T ).

Eq. (43) has the same form as ineq. (41). Therefore, repeating
the same steps as above for another T −2 times (starting now
from (43) instead of (41)), we get

min
B̄1⊆V1,|B̄1|≤β1

· · · min
B̄T⊆VT ,|B̄T |≤βT

h(B̄1:T ) ≥

max
Ā1⊆V1,|Ā1|≤α1

min
B̄1⊆V1,|B̄1|≤β1

· · · max
ĀT⊆VT ,|ĀT |≤αT

min
B̄1⊆VT ,|B̄T |≤βT

f(Ā1 \ B̄1, . . . , ĀT \ B̄T ),
(44)

which implies ineq. (32) since the right-hand-side of ineq. (44)
is equal to the right-hand-side of ineq. (32), while for the left-
hand-side of ineq. (44) the following holds:

min
B̄1⊆V1,|B̄1|≤β1

· · · min
B̄T⊆VT ,|B̄T |≤βT

h(B̄1:T ) ≤ f(P1:T ).
�

APPENDIX B: PROOF OF PROPOSITION 2
We compute the running time of RAM’s line 3 and lines 5-8.

Line 3 needs |Vt|τf + |Vt|log(|Vt|) + |Vt|+O(log(|Vt|)) time:
it asks for |Vt| evaluations of f , and their sorting, which takes
|Vt|log(|Vt|) + |Vt|+O(log(|Vt|)) time (using, e.g., the merge
sort algorithm). Lines 5-8 need (αt − βt)[|Vt|τf + |Vt|] time:
the while loop is repeated αt−βt times, and during each loop
at most |Vt| evaluations of f are needed (line 5), plus at most
|Vt| steps for a maximal element to be found (line 6). Hence,
RAM runs at each t in (αt−βt)[|Vt|τf + |Vt|]+ |Vt|log(|Vt|)+
|Vt|+O(log(|Vt|)) = O(|Vt|(αt − βt)τf ) time.



Vt

St,1 B?t,1 St,2 B?t,2

Fig. 3. Venn diagram, where the sets St,1,St,2,B?t,1,B?t,2 are as follows:
per RAM, St,1 and St,2 are such that At = St,1 ∪ St,2. Additionally, due
to their construction, St,1 ∩ St,2 = ∅. Next, B?t,1 and B?t,2 are such that
B?t,1 = B?1:T ∩St,1, and B?2 = B?1:T ∩St,2; therefore, B?t,1 ∩B?t,2 = ∅ and
B?1:T = (B?1,1 ∪ B?1,2) ∪ · · · ∪ (B?T,1 ∪ B

?
T,2).
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We first prove ineq. (6) and then (5). We use the notation:

• S+
t,1 , St,1 \ B?t , i.e., S+

t,1 is the remaining set after the
optimal (worst-case) removal B?t ;

• S+
t,2 , St,2 \ B?t ;

• P1:T be a solution to eq. (30).

Proof of ineq. (6): For T > 1, we have:

f(A1:T \ B?1:T )

= f(S+
1,1 ∪ S

+
1,2, . . . ,S

+
T,1 ∪ S

+
T,2) (45)

≥ (1− cf )

T∑
t=1

∑
v∈S+

t,1∪S
+
t,2

f(v) (46)

≥ (1− cf )

T∑
t=1

∑
v∈St,2

f(v) (47)

≥ (1− cf )2f(S1,2, . . . ,ST,2) (48)

≥ (1− cf )5f(P1:T ) (49)

≥ (1− cf )5f?, (50)

where eq. (45) follows from the definitions of S+
t,1 and S+

t,2;
ineq. (46) follows from ineq. (45), due to Lemma 19; ineq. (47)
follows from ineq. (46), because: for all v ∈ S+

t,1 and v′ ∈
St,2 \ S+

t,2 it is f(v) ≥ f(v′), and St,2 = (St,2 \ S+
t,2) ∪

S+
t,2; ineq. (48) follows from ineq. (47) due to Corollary 21;

ineq. (49) follows from ineq. (48) due to Corollary 24; finally,
ineq. (50) follows from ineq. (49) due to Lemma 25.

For T = 1, the proof follows the same steps up to ineq. (48),
at which point f(S1,2) ≥ (1 − cf )f(P1) instead, due to
Lemma 23 (since S1,2 =M1). �

Proof of ineq. (5): For T > 1 we follow similar steps:

f(A1:T \ B?1:T )

= f(S+
1,1 ∪ S

+
1,2, . . . ,S

+
T,1 ∪ S

+
T,2) (51)

≥ (1− κf )

T∑
t=1

∑
v∈S+

t,1∪S
+
t,2

f(v) (52)

≥ (1− κf )

T∑
t=1

∑
v∈St,2

f(v) (53)

≥ (1− κf )f(S1,2, . . . ,ST,2) (54)

≥ (1− κf )4f(P1:T ) (55)

≥ (1− κf )4f?, (56)

where eq. (51) follows from the definitions of S+
t,1 and S+

t,2;
ineq. (52) follows from ineq. (51) due to Lemma 18 and the
fact that cf = κf for f being submodular; ineq. (53) follows
from ineq. (52) because for all v ∈ S+

t,1 and v′ ∈ St,2 \ S+
t,2 it

is f(v) ≥ f(v′), while St,2 = (St,2 \ S+
t,2) ∪ S+

t,2; ineq. (54)
follows from ineq. (53) because f is submodular and, as a
result, f(S) + f(S ′) ≥ f(S ∪ S ′), for any S,S ′ ⊆ V [64,
Proposition 2.1]; ineq. (55) follows from ineq. (54) due to
Corollary 24, along with the fact that since f is monotone
submodular it is cf = κf ; finally, ineq. (56) follows from
ineq. (55) due to Lemma 25.

For T = 1, the proof follows the same steps up to ineq. (54),
at which point f(S1,2) ≥ 1/κf (1 − e−κf )f(P1), due to [27,
Theorem 5.4]. �
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To prove ineq. (7), we have

f(A1:t \ B?1:t)

= f(M1:t)
f(A1:t \ B?1:t)

f(M1:t)

≥

{
1−e−κf
κf

f(A1\B?1 )
f(M1) f(P1), t = 1;

1
1+κf

f(A1:t\B?1:t)
f(M1:t)

f(P1:t), t > 1,
(57)

≥

{
1−e−κf
κf

f(A1\B?1 )
f(M1) f?1 , t = 1;

1
1+κf

f(A1:t\B?1:t)
f(M1:t)

f?t , t > 1,
(58)

where ineq. (57) holds since [27, Theorem 5.4] implies
f(M1) ≥ 1/κf (1 − e−κf )f(P1), while [27, Theorem 2.3]
implies f(M1:t) ≥ 1/(1 + κf )f(P1:t). Finally, ineq. (58) is
proved following the same steps as in Lemma 25’s proof.

The proof of ineq. (8) follows similar steps as above but it
is based instead on Lemma 23.
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It can be verified that for t = 1 eq. (7) is tight for any
βt ≤ αt for the families of functions in [27, Theorem 5.4],
and for t > 1 it is tight for the families of functions in [27,
Theorem 2.12]. Similarly, it can be verified eq. (8) is optimal
for the families of functions in [23, Theorem 8] for αt =
|Vt|1/2 and any βt ≤ αt − |Vt|1/3.
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