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Abstract

The past decade has seen an increasing use of autonomous vehicles (propelled AUVs,
ocean gliders, solar-vehicles, etc.) in marine applications. For the operation of these
vehicles, efficient methods for path planning are critical. Path planning, in the most
general sense, corresponds to a set of rules to be provided to an autonomous robot for
navigating from one configuration to another in some optimal fashion. Increasingly,
having autonomous vehicles that optimally collect/harvest external fields from highly
dynamic environments has grown in relevance. Autonomously maximizing the har-
vest in minimum time is our present path planning objective. Such optimization has
numerous impactful applications. For instance, in the case of energy optimal path
planning where long endurance and low power are crucial, it is important to be able
to optimally harvest energy (solar, wind, wave, thermal, etc.) along the way and/or
leverage the environment (winds, currents, etc.) to reduce energy expenditure. Simi-
larly, autonomous marine cleanup or collection vehicles, tasked with harvesting plastic
waste, oil spills, or seaweed fields, need to be able to plan paths that maximize the
amount of material harvested in order to optimize the cleanup or collection process.

In this work, we develop an exact partial differential equation-based methodology
that predicts harvest-time optimal paths for autonomous vehicles navigating in dy-
namic environments. The governing differential equations solve the multi-objective
optimization problem of navigating a vehicle autonomously in a highly dynamic flow
field to any destination with the goal of minimizing travel time while also maximizing
the amount harvested by the vehicle. Using Hamilton-Jacobi theory for reachability,
our methodology computes the exact set of Pareto optimal solutions to the multi-
objective path planning problem. This is completed by numerically solving a reach-
ability problem for the autonomous vehicle in an augmented state space consisting
of the vehicle’s position in physical space as well as its harvest state. Our approach
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is applicable to path planning in various environments, however we primarily present
examples of navigating in dynamic ocean flows. The following cases, in particular,
are studied. First, we validate our methodology using a benchmark case of planning
paths through a region with a harvesting field present in a halfspace, as this case
admits a semi-analytical solution that we compare to the results of our method. We
next consider a more complex unsteady environment as we solve for harvest-time op-
timal missions in a quasi-geostrophic double-gyre ocean flow field. Following this, we
provide harvest-time optimal paths to the highly relevant issue of collecting harmful
algae blooms. Our final case considers an application to next generation offshore
aquaculture technologies. In particular, we consider in this case path planning of
an offshore moving fish farm that accounts for optimizing fish growth. Overall, we
find that our exact planning equations and efficient schemes are promising to address
several pressing challenges for our planet.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Professor, Department of Mechanical Engineering
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Chapter 1

Introduction

The past decade has seen a surge of interest in the field of autonomy. Engineering

advances ranging from faster computer processors to more advanced algorithms in

fields such as controls and machine learning have truly accelerated the pace of devel-

opment of autonomous vehicles. While applications on land (e.g. self driving cars)

and air (e.g. autonomous drones) have received quite a bit of attention, autonomous

marine vehicles such as autonomous underwater vehicles (AUVs) and autonomous

surface vehicles (ASVs) have also seen a proliferation of use. These marine vehicles

have been used in numerous applications and research areas including military oper-

ations, surveillance, seafloor mapping, and environmental monitoring to name a few

(Roberts and Sutton, 2006; Griffiths, 2002).

A central task in the operation of these vehicles is in designing accurate and ef-

ficient means to navigate between specified waypoints. This problem falls under the

purview of path planning. Path planning, in its most general sense, refers to the

determination of a path for a vehicle to follow such that a specific criteria (e.g. travel

time, energy usage, safety) is optimized (Lolla et al., 2014b; Lermusiaux et al., 2016,

2017b). As technological advances have been pushed further, an additional objec-

tive to be considered in the path planning problem is taking shape – harvesting of

background environmental fields (Bhabra et al., 2020; Lermusiaux et al., 2019). In

particular, vehicles are being tasked with planning paths while additionally account-

ing for the harvesting of external fields. This has a number of areas of applicability:

23



energy constrained autonomous vehicles, increasingly equipped with energy harvest-

ing capabilities, will want to navigate intelligently to harvest renewable energy from

the environment and wind, solar, buoyant, thermal, and/or wave sources; waste col-

lection vehicles, tasked with collecting residual waste such as plastic pollution or

even oil from spills, need to plan paths while accounting for how much waste can be

harvested from the surroundings prior to reaching their destination; autonomously

moving offshore farms, a next generation offshore aquaculture concept, will want to

plan paths to optimize the amount of nutrients harvested in order to maximize fish

or algae growth.

While path planning in static environments has been studied extensively (Latombe,

2012; Leonard and Bahr, 2016), the ocean, on the other hand, is a highly dynamic

system that proves to be a more complex environment in which to plan paths. The

dynamic currents in oceans have a significant influence on the marine vehicle, with

these currents oftentimes having velocities comparable to or much larger than the

speed of the vehicle itself (Schmidt et al., 1996; Rudnick et al., 2004; Lolla et al.,

2014b). Several methods have been investigated for path planning of vehicles in these

dynamic marine environments, including graph search methods, Rapidly Exploring

Random Trees (RRTs) and PDE-based approaches (Panda et al., 2020; Li et al., 2018;

Zeng et al., 2016; Lermusiaux et al., 2016, 2017b).

The focus of this work is optimal path planning of autonomous vehicles for har-

vesting applications in highly dynamic ocean environments. In particular, we address

the multi-objective optimization problem of planning paths for autonomous vehi-

cles navigating in deterministic dynamic environments that minimize the travel time

while simultaneously maximizing the amount of material harvested by the vehicle.

We denote this as harvest-time optimal path planning. Our approach to address this

planning problem is motivated by (Lolla et al., 2014b,a; Doshi, 2021) and builds upon

Hamilton-Jacobi reachability. Furthermore, while cases from ocean applications are

emphasized and presented in this work, it is important to note that the theory we

introduce is not unique to marine applications and is in fact equally applicable to

different dynamic environments.
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1.1 Layout of Thesis

This thesis is organized as follows. We start in Chapter 2 by presenting a literature

review of both algorithms for path planning and different applications for our harvest-

time optimal path planning problem. In Chapter 3, we outline the general problem

statement that is the focus of this work as well as introduce the key notation that is

used throughout this thesis. Chapter 4 is devoted entirely to the theory behind our

path planning approach. Here, we start by reviewing the fundamentals of optimal

control, following which we review forward reachability. Next, a review is conducted

of the theoretical properties of viscosity solutions of Hamilton-Jacobi equations. We

then show how this all can be applied to compute globally optimal paths for our

harvest-time path planning problem. In Chapter 5, we present numerical details

regarding the implementation of our algorithm. A variety of applications of our path

planning methodology is illustrated in Chapter 6. We first consider a benchmark

example problem which admits a semi-analytical solution in order to validate our

algorithm. This is followed by a number of different harvesting applications in more

complex and realistic ocean flows. In Chapter 7, preliminary work is presented for

how our approach can be extended in the case of vehicles navigating in uncertain

environments. Finally, conclusions and possible avenues for future work are discussed

in Chapter 8.
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Chapter 2

Literature Review

In this chapter, we review common methods and algorithms for optimal path planning,

and we outline some different relevant applications for harvest-time optimal path

planning, with an emphasis on marine autonomy applications. We note that many of

the existing algorithms provide approximate solutions to the optimal path planning

problem and that none consider a rigorous comprehensive approach to predicting

generic harvest optimal paths in dynamic environments. This is a motivation for our

work.

2.1 Path Planning Algorithms in Marine Applica-

tions

In this section, we present a brief overview of some of the most popular approaches

applied to path planning for autonomous marine vehicles. For more details, we refer

the reader to (Panda et al., 2020; Li et al., 2018; Zeng et al., 2016; Lermusiaux et al.,

2016; Lolla, 2012) and the references cited therein.

2.1.1 Graph Search Algorithms

Some of the earliest developed algorithms for path planning were graph search schemes.

These algorithms are adapted for discrete search spaces composed of vertices along
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with edges specifying the cost of travelling between vertex neighbors. For navigating

from a start node to an end node, Dijkstra’s algorithm is one popular approach. The

original algorithm addresses the problem of finding the shortest path between two

nodes on a graph. This is done by assigning some initial distance value from each

node to the start node on the graph, and then iteratively improving on this distance

step by step by maintaining a set of visited and unvisited nodes (LaValle, 2006). The

A* algorithm can be seen as an extension of Dijkstra’s algorithm, and is another

quintessential scheme used in discrete path planning. Here, a path cost of any node

𝑥 in the graph is given in the form

𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥), (2.1)

where 𝑔(𝑥) is the cost of the path from the start node to 𝑥 and ℎ(𝑥) is a heuristic

function estimating the cost to go from 𝑥 to the goal. The A* algorithm then aims to

use this estimate of the cost of candidate paths when checking from a current node

which neighbors to consider in forming the final path (LaValle, 2006).

Graph search schemes – such as A*, Dijkstra’s algorithm, and others – have been

tried in a variety of marine path planning applications. Carroll et al. (1992) was

one of the first to do this by applying A* on a search space adapted to the ocean

current field. In Garau et al. (2005), the method from Carroll et al. (1992) is built

upon further to allow for the consideration of energy costs in determining paths in

environments consisting of eddies and currents. Kularatne et al. (2016) generate

time and energy optimal paths, while accounting for kinematic constraints on vehicle

operation, using graph search based methods. In Huynh et al. (2015), nonlinear robust

Model Predictive Control is used, where optimal paths are determined using an A*-

like algorithm. Koay and Chitre (2013) investigate the effectiveness of current-aware

energy-efficient paths, found using an A* algorithm, for AUVs. While graph search

methods in general have proven to be relatively effective in marine path planning

applications, a key challenge of this approach is that the discrete nature of these

schemes result in the consideration of only discrete state transitions that unnaturally
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Figure 2-1: An example application showing the tree growth (at three different snap-
shots) resulting from applying RRT from a start point at the center of the domain
(adapted from (LaValle et al., 1998)).

constrain the motion of a vehicle to limited directions (Zeng et al., 2016).

2.1.2 Rapidly exploring Random Trees (RRTs)

Rapidly exploring Random Trees (RRTs) is a probabilistic path planning approach.

The method is noted for its ability to efficiently search for paths in nonconvex and

high-dimensional spaces (LaValle, 2006; LaValle et al., 1998). RRT attacks the path

planning problem by incrementally building a tree from the start point. At each

step of the original algorithm, a random point in the state space is sampled and the

vertex on the current tree closest to this state is found. A new branch of the tree is

then grown from the closest vertex a certain fraction of the distance to the random

sample. This process is then repeated, as can be seen in Figure 2-1, until a path

in the tree reaches the desired destination. Numerous extensions to RRT have also

been developed including RRT* (Karaman and Frazzoli, 2011) and LQR-RRT* (Perez

et al., 2012). RRT has been studied in the context of marine path planning such as in

the case of navigating AUVs (Tan et al., 2005). It has also been employed in energy-

efficient path planning, such as in Rao and Williams (2009), where RRTs are used to

find feasible paths for gliders, following which an A* search is used to identify a path

from this collection that minimizes an energy-based metric. While RRT has proven

to be advantageous in large dimensional state space settings, it should be noted that

a key drawback is that the generated path is not globally optimal (LaValle, 2006).
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2.1.3 Evolutionary Algorithms

Evolutionary algorithms for path planning have also been developed of which the

genetic algorithm (GA) and particle swarm optimization (PSO) algorithm are two of

the most popular (Zeng et al., 2016). GA and PSO are population based schemes

to solve optimization problems. Specifically, GA aims to model Darwin’s genetic

selection and natural elimination in the process of biological evolution, while PSO

is a heuristic algorithm inspired by the predation and return of bird populations (Li

et al., 2018). Both of these approaches have been used in the context of marine

path planning. In Alvarez et al. (2004), a genetic algorithm approach on a grid is

used to find minimum energy cost paths in dynamic ocean environments. Li et al.

(2019) use PSO in the context of path optimization for AUV docking. Cao et al.

(2016) address planning for underwater gliders by using a modified 3D Dubins curve

to obtain candidate paths and then generating optimal trajectories that minimize

energy consumption using a genetic algorithm. Guo et al. (2020) use a variant of

the PSO algorithm to compute paths for unmanned surface vehicles that aim to take

full advantage of currents while avoiding collisions. It should be noted that while

evolutionary algorithms have been successfully applied, a drawback is that they may

produce suboptimal solutions within finite time (Zeng et al., 2016).

2.1.4 PDE-Based Algorithms

PDE-based schemes, that operate in continuous spaces, have also seen a proliferation

of use. The Fast Marching algorithm is one such example that can be regarded as a

continuous version of Dijkstra’s algorithm and has relatively recently been studied in

the context of underwater path planning (Petres et al., 2005). The level set method

has also proven to be a quite versatile approach to path planning. Introduced first

in Lolla et al. (2012); Lolla (2012); Lolla et al. (2014b,a), this method allows for the

ability of computing globally time optimal paths in continuous, strong and dynamic

ocean environments by solving a Hamilton-Jacobi-Bellman PDE. This was followed by

further work in extending these schemes to several important applications including
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underwater autonomous vehicles navigating in three-dimensional flow fields (Kulkarni

and Lermusiaux, 2020), path planning in uncertain flow fields (Subramani et al., 2018)

or with multiple destinations and vehicles (Ferris et al., 2018), energy-optimal path

planning with stochastic optimization (Subramani and Lermusiaux, 2016), energy-

optimal path planning using state augmentation (Doshi, 2021) and risk-optimal path

planning in stochastic environments (Subramani and Lermusiaux, 2019).

2.2 Applications of Harvest-Time Optimal Path Plan-

ning

As addressed in Chapter 1, our proposed rigorous harvest-time optimal path planning

would have broad applicability to various marine collection problems. In the following,

we delve deeper into several different scenarios and cases where a new accurate path

planning methodology would be highly desirable.

2.2.1 Energy Harvesting

As users require autonomous marine vehicles to operate for longer and longer time

periods at sea, energy consumption becomes increasingly important to track. The

energy requirements for autonomous vehicles are quite diverse, with the bulk of the

energy being used for propulsion while additional power – what is known as the "hotel"

load – is allotted for non-propulsive purposes for components such as communication

systems (Reader et al., 2002). To allow for longer operation at sea, various research

advances have been made including the design of more efficient vehicle components

and more advanced batteries (Sharkh et al., 2002). Recently, however, there has also

been increased attention to design marine vehicles that are no longer restricted to use

whatever energy was initially charged into their batteries, but that can instead harvest

energy from the environment. The ocean environment is replete with energy sources

including solar energy at the water surface, wind energy, wave energy, buoyancy

energy, and tidal energy, to name a few (Charlier and Justus, 1993). With this
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abundance of energy sources, newer marine vehicle designs have looked at ways to

collect or harvest this energy so that vehicles can operate at sea for much longer

periods of time.

A new design with good potential is the Solar powered AUV (SAUV) (Blidberg

and Ageev, 2002). Several different models have been tested and analyzed, all of

which allow for extended endurance of the vehicle by having it recharge its onboard

energy system by returning to the surface (Ageev, 1995, 2000; Jalbert et al., 2003;

Crimmins et al., 2006). Several companies have also designed their own vehicles with

energy harvesting capabilities which have started to be used in practical applications.

The C-Enduro is a long endurance autonomous surface vehicle fitted with the ability

to harvest solar, wind and wave power from its environment. Capable of enduring

missions up to 3 months of length, the autonomous vehicle has been used in nu-

merous applications ranging from environmental surveys to military data gathering

(Rees, 2013; L3 ASV, 2021; Unmanned Marine Systems, 2013). The AutoNaut is an

unmanned surface vessel (USV) whose propulsion is powered entirely by wave energy,

while all non-propulsive equipment is operated using solar power (AutoNaut Ltd,

2019). The "Wave Glider", developed by the company Liquid Robotics, is another

ocean surface robot powered entirely by renewable sources of energy. Using wave and

solar energy, the vehicle can operate for up to 12 months with no fuel, emission, or

crew (Liquid Robotics Inc., 2020).

When navigating in marine environments, these new energy harvesting marine

vehicles allow for improved energy efficiency through intelligent path planning that

optimizes energy use. The strong currents, for one, provide tremendous potential.

Autonomous vehicles can save significant energy by leveraging the external flow field

by "hitchhiking" on naturally developed currents while reducing the vehicle thrust so

that energy can be saved. Energy harvesting capabilities additionally open the door

for planning vehicle paths where energy can be efficiently gathered along the way. For

instance, in the case where solar energy can be harvested from the environment, an

autonomous vehicle can choose to navigate in regions with minimal cloud cover and

high solar radiation so as to recharge its power supply and thus increase its endurance.
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Figure 2-2: Examples of various autonomous marine vehicles equipped with energy
harvesting capabilities. (Top left) The SAUV (Bekey et al., 2006). (Top right) The
C-Enduro (Unmanned Marine Systems, 2013). (Bottom left) The Wave Glider (Cox-
worth, 2013). (Bottom right) The AutoNaut (Ocean News and Technology, 2019).

Similarly, wind powered vehicles can naturally choose to remain in regions with large

wind gusts and wave powered vehicles can navigate intelligently to go through regions

with higher wave energy.

2.2.2 Ocean Plastic Waste Cleanup

The growth in plastic production has been staggering. From the 1950s when mass

production of plastics began (global production of resins and fibers was 2 million

metric tons), there has been an approximately 8.4% compound annual growth rate

in production, resulting in approximately 380 million metric tons produced in 2015

(Gibb, 2019; Geyer et al., 2017). Cumulatively, this translates to almost 8.3 billion

metric tons of resins and fibers manufactured from 1950 through 2015 (Gibb, 2019;

Geyer et al., 2017; Ritchie and Roser, 2018). The explosive growth in plastic use of

course isn’t surprising given its widespread use in numerous applications including
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Figure 2-3: (Left) The Manta, a vessel being developed by SeaCleaners, for actively
harvesting plastic waste pollution (The SeaCleaners, n.d.). (Right) An autonomous
surface vessel called the Wasteshark, developed by Ranmarine Technology, designed
for removing floating debris, including plastics, from marine environments (RanMa-
rine Technology, 2021).

packaging, electronics, automotive design and construction, to name a few (Gibb,

2019; Andrady, 2003). The challenge, however, is that of the total plastic waste gen-

erated, it is estimated that 9% has been recycled, 12% has been incinerated and a

shocking 79% has accumulated in landfills or been released into the natural environ-

ment (Rhodes, 2018; Geyer et al., 2017; Ritchie and Roser, 2018). Of this discarded

plastic in the natural environment, a large portion ultimately ends up in our seas and

oceans (Law, 2017; Ostle et al., 2019), with one of the largest masses present in the

North Pacific Ocean – the "Great Pacific Garbage Patch" (Lebreton et al., 2018).

This growth of plastic waste in the ocean, moreover, is not slowing, with statistical

models projecting that at present rates of production and pollution, by 2050 there

will be more plastic than fish in the sea (by mass) (Rhodes, 2018). Once present in

the ocean, plastics have devastating consequences on the marine ecosystem. Ingested

plastic by wildlife can reduce stomach capacity, reduce growth and cause internal

injuries (Sigler, 2014; Plot and Georges, 2010). Plastic entanglement of species with

fish nets or other ring shaped materials is also a pressing issue, as this can lead to

strangulation and in some cases even drowning (Sigler, 2014).

Tackling the proliferation of ocean plastic pollution requires not only mitigation

efforts to reduce our overall consumption of plastic, but also active efforts to collect
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waste from ocean environments (Vegter et al., 2014; Prata et al., 2019; Borrelle et al.,

2020). Several initiatives are in development for plastic waste collection (Rojas, 2018).

The Ocean Cleanup, for instance, has developed a surface plastic collection system

consisting of a floater that traps advecting plastic (The Ocean Cleanup, 2021). The

growth of marine robots and autonomous vessels has resulted in increasing research

in their potential use too in this field of active pollution collection. SeaCleaners, a

French organization, is developing a vessel – named Manta – powered by renewable

energy and equipped with a collection system with the capability to collect up to

10,000 tonnes of plastic per year (The SeaCleaners, n.d.). Ranmarine Technology is

a company designing Wasteshark, a lightweight autonomous vessel inspired by whale

sharks. It is designed to harvest plastic, micro-plastics, alien vegetation and floating

debris, while simultaneously performing data collection including temperature and

water quality tracking (RanMarine Technology, 2021). There has additionally been

increasing amounts of research in recent years in the academic community in devel-

oping autonomous collection vessels capable of detecting, classifying and harvesting

plastic pollution (Kong et al., 2020; Flores et al., 2020). All in all, the development

of autonomous marine vessels in tackling this problem makes it evident that effec-

tive path planning that can optimize for the amount of plastic waste harvested from

the environment would be of great use. Of course, such planning would require in-

puts from accurate plastic transport modeling and ocean modeling, both of which are

making progress, e.g., Lermusiaux et al. (2019).

2.2.3 Offshore Aquaculture

To address the growing food demands of the world, offshore aquaculture use has

spread and seen increasing development (Soto and Wurmann, 2019; Garlock et al.,

2020; Subasinghe et al., 2009). Also often referred to as open water aquaculture or

open ocean aquaculture, this is an approach to growing marine species by positioning

farms in deeper waters further from land (Benetti et al., 2010; Gentry et al., 2017).

An exciting new development in this field is research into novel, next generation tech-

nology on autonomously moving fish farms. The principle idea here would be for
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Figure 2-4: (Left) An offshore fish farm operating in the Gulf of Mexico (Schwaab,
2020). (Right) A conceptual design for the Ocean Drifter, a novel system for an
offshore fish farm that continuously moves in the open ocean (Goudey, 1998).

such farms to be launched with lab-bred baby fish and then autonomously navigate

along ocean currents to ultimately arrive at a destination with fully mature animals

ready for market (Mann, 2004). Governments are actively funding research labs to

help move this idea from the drawing board to reality (Cohen, 2008; Goudey, 1998).

Furthermore, our harvest-time path planning methodology is directly applicable to

these autonomous farms in helping plan paths that not only allow to reach the des-

tination time optimally, but also optimize nutrient harvesting so as to maximize fish

growth or to minimize risks of diseases by avoiding specific water regions.

2.2.4 Additional Applications

In addition to the aforementioned applications, there are numerous other situations

where accurate optimal harvesting in dynamic flows could have applicability in the

near or long-term future as technology progresses (Doshi et al., 2019; Bhabra et al.,

2020; Hoteit et al., 2021).

Oil Spill Cleanup The ubiquitous use of oil and petroleum products has made oil

spills a pressing issue to address due to their damaging effect on the environment. In

marine environments, these spills can occur from shipping incidents or problems on

offshore rigs (Fingas, 2016; Doerffer, 2013). While numerous cleanup strategies have

been developed for containment and recovery of oil on water (Fingas, 2012; Bayat

et al., 2005), autonomous cleanup vehicles and optimal harvesting path planning can
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Figure 2-5: (Left) A ship actively monitoring oil from a spill (Scammell, 2018). Sar-
gassum seaweed off the coast of St. Martin (Leatherman, 2021).

also be of use to help address problems in the future.

Sargassum Cleanup Sargassum, a form of macroalgae, has in recent years inun-

dated coastal areas in the Caribbean, disturbing the tourism industries of affected

countries (Yong, 2019; Louime et al., 2017; Schell et al., 2015). Autonomous opti-

mal harvesting vehicles would be quite beneficial in the overall cleanup strategy by

addressing the collection of this sargassum in the ocean prior to reaching land (SOS

Carbon, 2021).
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Chapter 3

Problem Statement

In this chapter, we outline in detail the specific path planning problem that is the

central focus of this work.

3.1 Problem Parameters

Consider a vehicle assigned with the task of navigating in a physical domain Ω ⊆ R𝑑

from a start point 𝑥𝑠 ∈ R𝑑 to a defined target point 𝑥𝑓 ∈ R𝑑. The vehicle operates

in an environment with a background dynamic flow 𝑉 (𝑥, 𝑡) : Ω × [0,∞) → R𝑑.

Furthermore, as it traverses to the target, the vehicle has two controls at its disposal.

The first is the time-dependent relative speed function 𝐹 (𝑡) given by 𝐹 (𝑡) : [0,∞) →

[0, 𝐹𝑚𝑎𝑥], 𝐹𝑚𝑎𝑥 ∈ R>0. The second is the sequence of headings ℎ̂(𝑡) that it can choose

to move in, which also is in general time-dependent. We represent these headings with

a unit vector:

ℎ̂(𝑡) : [0,∞) → R𝑑 such that
⃦⃦⃦
ℎ̂(𝑡)

⃦⃦⃦
= 1, ∀𝑡. (3.1)

Using only these controls, the vehicle’s primary goal is to plan optimal paths that

optimize a user specified metric, e.g., travel time, energy usage, and here harvest and

time optimization.

In addition to its physical position in space, we consider the case where the vehicle

may have additional state variables of interest related to harvesting. For instance, in
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Figure 3-1: A schematic showing the primary components of the harvest-time optimal
path planning problem that is the focus of this work. This schematic depicts the par-
ticular case of a vehicle navigating in a 2D physical domain tasked with collecting a
tracer field (the harvesting dynamics is given by Equation (3.4)). Shown is the trajec-
tory of the vehicle through the augmented state space (𝑥, 𝑦, 𝑐) consisting the physical
position 𝑥 and harvest state 𝑐 (the amount of the tracer field harvested/collected).

the case of energy harvesting, the energy of the vehicle would be an additional state

while for the case where a vehicle may be collecting some passively advecting field,

the amount of the field collected would be an additional state to track. To allow for

complete generality, we consider the case where a vehicle is tasked with harvesting a

number 𝑑ℎ of dynamic fields, and we denote the state of the harvested fields for the

vehicle with a vector 𝑐 ∈ R𝑑ℎ . Moreover, we denote the harvest state of the vehicle

at the start point with 𝑐𝑠.

Altogether, we have an augmented vehicle state space 𝑥𝑎 = [𝑥, 𝑐]𝑇 , a subset

of R𝑑+𝑑ℎ , consisting of the physical position 𝑥 and harvest state 𝑐. Let a general

continuous trajectory of the position and harvesting states of the vehicle through the

augmented state space be given as 𝑋𝑝(𝑡) and 𝐶𝑝(𝑡). The full dynamics of the vehicle’s

state is assumed to be of the following form:

d𝑋𝑝

d𝑡
=𝑉 (𝑋𝑝(𝑡), 𝑡) + 𝐹 (𝑡) ℎ̂(𝑡), (3.2a)

d𝐶𝑝,𝑖

d𝑡
=ℋ𝑖(𝑋𝑝(𝑡),𝐶𝑝(𝑡), 𝐹 (𝑡), ℎ̂(𝑡), 𝑡), 𝑖 = 1, ..., 𝑑ℎ. (3.2b)
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Equation (3.2a) governs the motion of the vehicle through the physical space. The

vehicle, in this work, is modeled as a point particle and its trajectory is governed by

its relative motion due to its controls – the speed and heading – and advection from

the external flow field.

Equation (3.2b) corresponds to the general form of the dynamics of the harvesting

states considered in this work. In particular, the evolution of each of the harvesting

states is assumed to be given by an ODE which may additionally be coupled to

other harvesting fields or to the physical state, or may be externally forced by other

variables. The class of problems contained in this formulation is thus quite wide.

Specifically, some of the common cases considered in this work are given as follows:

Energy Harvesting In the case of path planning with energy considerations, the

harvesting state of interest would be 𝑒 – the energy of the vehicle. In this case, the

energy dynamics of the vehicle would be dictated by the first law of thermodynamics,

where the vehicle would expend energy as it uses power for various needs – most no-

tably propulsion – however it may also have the capability of collecting energy from

the environment through, for instance, solar panels. Denote the spatially varying –

and possibly dynamic – energy input field as 𝑄̇(𝑥, 𝑡) : Ω × [0,∞) → R. The work

expended by the vehicle can be assumed to be dominated by energy used for propul-

sion and would be a function of the thrust of the vehicle in the general form 𝑊̇ (𝐹 ).

Several models exist for the thrust power function including 𝑊̇ (𝑡) ∝ 𝐹 (𝑡) for the case

of constant drag-force, 𝑊̇ (𝑡) ∝ 𝐹 (𝑡)2 for linear drag, or 𝑊̇ (𝑡) ∝ 𝐹 (𝑡)3 for quadratic

drag (Subramani, 2014). Consider an arbitrary trajectory of the vehicle through the

physical space given by 𝑋𝑝(𝑡). Furthermore, let 𝐸𝑝(𝑡) denote the continuous trajec-

tory through the energy state space for the vehicle. The energy evolution would then

be governed by the following equation

d𝐸𝑝

d𝑡
= 𝑄̇(𝑋𝑝(𝑡), 𝑡) − 𝑊̇ (𝐹 (𝑡)), (3.3)
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where it is clear that the dynamics of the harvesting state – the vehicle energy – is

indeed of the form of Equation (3.2b).

Collecting a Tracer Field Consider an arbitrary tracer field in the domain given

by 𝐶𝑓𝑖𝑒𝑙𝑑(𝑥, 𝑡) : Ω× [0,∞) → R. This field’s time evolution is assumed to be governed

by its transport by advection and diffusion due to the surrounding flow field as would

be the case, for instance, with a plastic waste field. If the harvesting state of the

vehicle consisted of the amount of the background field collected, a natural model for

this collection process would be to model the amount collected at any given point

in space to be proportional to the amount of the background field present. Consider

an arbitrary trajectory of the vehicle through the physical space given by 𝑋𝑝(𝑡).

Furthermore, let 𝐶𝑝(𝑡) denote the continuous trajectory through the "collection" state

space. The collection dynamics would then be of the form

d𝐶𝑝

d𝑡
= 𝛼 · 𝐶𝑓𝑖𝑒𝑙𝑑(𝑋𝑝(𝑡), 𝑡), (3.4)

where 𝛼 ∈ R>0 is a constant of proportionality. It can be noted that Equation (3.4)

is once again of the same form as Equation (3.2b). It is important to note that the

model of the collection dynamics in Equation (3.4) does not account for the influence

of the vehicle on the field itself. This model would thus be valid in the limit where

the vehicle is so small relative to the length scales of the background field that it does

not have a noticeable influence on it.

With the dynamics of the vehicle and its harvesting state(s) specified, we next

address the specific optimal path planning problem that is the principal focus of this

work.
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3.2 Multi-Objective Harvest-Time Optimal Path Plan-

ning

The optimal path planning problem of interest in this work is a multi-objective one

involving optimizing not only the final harvested state of the vehicle but also factoring

in the time taken to traverse from the start point to the destination. Specifically, we

consider paths obtained by solving the following optimization problem:

minimize
𝐹 (·), ℎ̂(·)

[︂
𝑡𝑓 ,−𝐶𝑝,1(𝑡𝑓 ),−𝐶𝑝,2(𝑡𝑓 ), ...,−𝐶𝑝,𝑑ℎ(𝑡𝑓 )

]︂
subject to 𝑋𝑝(0) = 𝑥𝑠

𝐶𝑝(0) = 𝑐𝑠

𝑋𝑝(𝑡𝑓 ) = 𝑥𝑓

𝐶𝑝(𝑡) > 0, ∀𝑡
d𝑋𝑝

d𝑡
= 𝑉 (𝑋𝑝(𝑡), 𝑡) + 𝐹 (𝑡) ℎ̂(𝑡)

d𝐶𝑝,𝑖

d𝑡
= ℋ𝑖(𝑋𝑝(𝑡),𝐶𝑝(𝑡), 𝐹 (𝑡), ℎ̂(𝑡), 𝑡), 𝑖 = 1, ..., 𝑑ℎ

. (3.5)

The optimization problem in Equation (3.5) involves both minimizing the time taken

to arrive at the destination and maximizing the vehicle’s harvesting states at the

destination. Mathematically equivalent to this maximization is the minimization of

the negative of the final harvesting states as shown in Equation (3.5).

Multi-objective optimization is a rich field with high relevance to numerous in-

dustries such as engineering and economics (Ehrgott, 2008). The key challenge in

such an optimization problem is that, in the vast majority of cases, no globally op-

timal solution exists that simultaneously satisfies all the competing objectives. In

these cases, one looks for what are known as Pareto optimal solutions. Consider the

general multi-objective optimization problem

minimize
𝑥

[𝑓1(𝑥), 𝑓2(𝑥)..., 𝑓𝑘(𝑥)]

subject to 𝑥 ∈ 𝒮
, (3.6)
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Figure 3-2: A schematic illustrating the concept of the Pareto front in multi-objective
optimization. Shown here is a hypothetical solution to the optimization problem given
by Equation (3.5) for the case of only one harvest state (we define 𝐶𝑝,1,𝑓 ≡ 𝐶𝑝,1(𝑡𝑓 )).
Pareto solutions are those whose performance in one objective cannot be improved
without worsening the performance on another objective. Shown in this figure is a set
of feasible solutions (in orange) for the two objectives we wish to minimize. Indicated
in blue is the set of Pareto optimal solutions (the Pareto front).

where we search for the optimal decision vector 𝑥 belonging to the feasible set 𝒮. We

then have the following formal definition of Pareto optimality from Miettinen (2012):

Definition 3.2.1. A decision vector 𝑥* ∈ 𝒮 is Pareto optimal if there does not

exist another decision vector 𝑥 ∈ 𝒮 such that 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥
*) for all 𝑖 = 1, ..., 𝑘 and

𝑓𝑗(𝑥) < 𝑓𝑗(𝑥
*) for at least one index 𝑗.

In other words, a Pareto optimal solution is one which cannot be improved upon

in any objective without degrading the performance of at least one other objective.

Collectively, these Pareto optimal solutions form a set Θ𝑝 known as the Pareto front.

In the past decades, numerous algorithms have been formulated with the central goal

of searching for the Pareto front (Marler and Arora, 2004; Xiujuan and Zhongke,

2004).

In this work, we look to compute the set of Pareto optimal solutions – the Pareto

front – for the optimization problem given in Equation (3.5). That is, we aim to
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determine optimal trajectories of the vehicle through the full augmented state space

consisting of the physical and harvesting states. In the next chapters, we show how

this can be completed efficiently using Hamilton-Jacobi theory for reachability and

our efficient numerical schemes for computing their solutions.

3.3 Assumptions

We now summarize the key assumptions used throughout this work.

• In all cases, the flow field 𝑉 (𝑥, 𝑡) as well as any harvesting dynamics equations

are assumed to be deterministic and exactly known. That is, we do not consider

the impact of how uncertainties in the dynamics equations would affect the final

solution. Very preliminary results from an approach to handle uncertainties in

the environment that we can build on in future work are shown in Chapter 7.

• We consider the flow field and the path planning at scales (e.g., grid resolutions

of 100 meters and more, with ocean domains of hundreds to thousands of kilo-

meters) that are much larger than the size of the vehicles (e.g., a few meters).

Without any loss of generality, the vehicle is then modeled to behave as a point

mass that exhibits no inertia. As a result, the interaction between the flow field

and vehicle is solely kinematic.

• We search for continuous optimal trajectories of the vehicle through the full

state space.

• In all cases, the influence of the vehicle on the field it is harvesting is not

considered. In many cases, such as energy harvesting, this is not an issue (e.g.,

the vehicle has no influence on the amount of solar energy remaining after it

has harvested some). In other cases, such as for collecting tracers or pollutants

(e.g., plastic waste), this assumption is valid in the limit of the vehicle being so

small relative to the length scales of the field that it has a negligible influence

on it. We expand upon this assumption and its implications further in Chapter

6 when we consider different applications of our methodology.
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Chapter 4

Theory: Multi-Objective

Harvest-Time Optimal Path Planning

In this chapter, we present the theory behind our harvest-time optimal path planning

algorithm. We start first by diving into the fundamentals of optimal control theory

and Hamilton-Jacobi-Bellman equations, as this forms the base of our approach.

We then review Hamilton-Jacobi forward reachability, following which we make the

connection with how reachability can be used in the context of multi-objective harvest-

time optimal path planning.

In Sections 4.1 to 4.3, we review optimal control theory, the method of dynamic

programming, the concept of forward reachability and the theory of viscosity solutions

of Hamilton-Jacobi equations, respectively. The material here follows the presenta-

tions of classic papers and books in these fields, and we include derivations from

these works for completeness. In Section 4.4, we apply these concepts to formulate

a novel approach to solve our multi-objective harvest-time optimal path planning

problem. We derive the relevant PDEs that form the base of our method and prove,

in particular, how forward reachability can be used to form the full Pareto front of

optimal solutions. This section contains the main contribution of this work. We

use our methodology, presented in Section 4.4, to derive the governing equations

for exact harvest-time optimal path planning for certain applications in Section 4.5.

Specifically, we consider the case of how globally optimal paths can be computed
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for energy-time optimal path planning and in the case of harvest-time optimal path

planning when harvesting a tracer field.

4.1 Optimal Control

We start first in this section by introducing fundamental concepts from the rich field of

optimal control theory. The key idea in optimal control is to pose the control design

process as an optimization problem, where the central objective is to determine a

control signal that will cause some process to satisfy its physical constraints while

also minimizing some performance criterion (i.e. cost function) (Kirk, 2004; Tedrake,

2021).

First, we define the optimal control problem, explaining its various components

(Kirk, 2004; Brogan, 1991; Bardi and Capuzzo-Dolcetta, 2008; Evans, 2010). We

then present the powerful technique of solving these optimization problems using the

method of dynamic programming (Kirk, 2004; Bertsekas, 2000).

4.1.1 Statement of the Optimal Control Problem

We start by defining the optimal control problem, following primarily the presentation

of (Kirk, 2004). Our focus in this section is primarily on optimal control of continuous

dynamical systems, and we refer the reader to (Kirk, 2004) for information specific

to their discrete counterparts.

The Dynamical System

The first component of any optimal control problem is the dynamical system. We

consider, in particular, a system state 𝑥 ∈ R𝑛 governed by an ordinary differential

equation of the form

d𝑥

d𝑡
= 𝑓(𝑥(𝑡),𝑢(𝑡), 𝑡), 𝑥(𝑡0) = 𝑥0, 𝑡 ∈ [𝑡0, 𝑡𝑓 ], (4.1)
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where 𝑢(·), the control, is from a set U of measurable function of 𝑡 ∈ [𝑡0, 𝑡𝑓 ] with

values in 𝒰 :

U = {𝑢 : [𝑡0, 𝑡𝑓 ] → 𝒰 | 𝑢(·) is measurable}. (4.2)

𝒰 is typically referred to as the control space and is often a closed bounded set in R𝑛𝑢 ,

where 𝑛𝑢 corresponds to the number of control inputs. The system dynamics 𝑓 : R𝑛×

𝒰 ×R → R𝑛 is further assumed to be continuously differentiable in the variables 𝑥, 𝑢

and 𝑡, for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ] and all 𝑥 ∈ R𝑛, 𝑢 ∈ 𝒰 . With these smoothness assumptions

on the dynamics, we have that there is a unique solution to the initial value problem

in Equation (4.1) for any control sequence 𝑢(·) (Kurzhanski and Varaiya, 2001). We

denote such a trajectory of the system from an initial state 𝑥0 at time 𝑡0 using the

control sequence 𝑢(·) as 𝑥(𝑡; 𝑡0,𝑥0,𝑢(·)).

Remark 1. In the proceeding presentation, we will use 𝑢(·) to denote the control

function when the domain of the function can be easily inferred. In cases where

we want to explicitly highlight what segment (i.e. part of the domain) of the control

function is being evaluated, we will use the notation 𝑢(𝑠)
𝑡0≤𝑠≤𝑡𝑓

. The same convention

will be used in analyzing the state trajectory 𝑥(·).

The Performance Measure

The next key component of the optimal control problem is the performance measure

(also commomly referred to as the cost function). The performance measure is created

by a designer and is used as a quantitative metric to evaluate the performance of a

system. While numerous possible measures are available, dramatic simplifications

arise when using those that have an additive cost structure, as these often yield

recursive solutions (Tedrake, 2021). As a result of this, one of the most commonly

used cost functions or performance measures (and the one also used in this work) is

of the form (Kirk, 2004):

𝐽(𝑥0, 𝑡0, 𝑢(𝜏)
𝑡0≤𝜏≤𝑡𝑓

) = ℎ(𝑥(𝑡𝑓 ), 𝑡𝑓 ) +

∫︁ 𝑡𝑓

𝑡0

𝑔(𝑥(𝜏),𝑢(𝜏), 𝜏)𝑑𝜏. (4.3)
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In Equation (4.3), 𝐽(𝑥0, 𝑡0, 𝑢(𝜏)
𝑡0≤𝜏≤𝑡𝑓

) takes as input the start state, start time and an

admissible control sequence, and ultimately outputs a scalar. Furthermore, 𝑥(·) on

the right hand side of Equation (4.3) is implied to be 𝑥(𝑡) = 𝑥(𝑡; 𝑡0,𝑥0,𝑢(·)) – that

is, it is the state trajectory that results from starting at the initial state 𝑥(𝑡0) = 𝑥0

and using the specified control signal 𝑢(·) defined for times 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. Additionally,

the performance measure is composed of ℎ : R𝑛 ×R → R, a scalar function known as

the terminal cost, and 𝑔 : R𝑛 × 𝒰 × R → R, a scalar function known as the running

cost (also sometimes called the instantaneous cost) (Tedrake, 2021).

The Optimal Control Problem

With the dynamical system and performance measure defined, we can now present

the central objective of optimal control (Kirk, 2004):

Problem 4.1.1. Find an admissible control function 𝑢*(·) which causes the system

governed by
d𝑥

d𝑡
= 𝑓(𝑥(𝑡),𝑢(𝑡), 𝑡), 𝑥(𝑡0) = 𝑥0, 𝑡 ∈ [𝑡0, 𝑡𝑓 ],

to follow a trajectory 𝑥*(·) that minimizes the performance measure (or cost function)

𝐽(𝑥0, 𝑡0, 𝑢(𝜏)
𝑡0≤𝜏≤𝑡𝑓

) = ℎ(𝑥(𝑡𝑓 ), 𝑡𝑓 ) +

∫︁ 𝑡𝑓

𝑡0

𝑔(𝑥(𝜏),𝑢(𝜏), 𝜏)𝑑𝜏.

The resulting 𝑢*(·) is called the optimal control and 𝑥*(·) is referred to as the optimal

state trajectory

Various types of optimal control functions 𝑢*(·) exist. In particular, we have the

following definitions from (Kirk, 2004):

Definition 4.1.1. If a functional relationship of the form

𝑢*(𝑡) = 𝜋(𝑥(𝑡), 𝑡), (4.4)

can be found for the optimal control at time 𝑡, then the function 𝜋 is called the optimal

control law or the optimal policy (the terms optimal feedback control and closed-loop
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optimal control are also used often in literature).

Definition 4.1.2. If the optimal control is determined as a function of time for a

specified initial state value, that is,

𝑢*(𝑡) = 𝑒(𝑥(𝑡0), 𝑡), (4.5)

then the optimal control is said to be in open-loop form.

In essence, an optimal policy or closed-loop optimal control is able to determine the

optimal control at any time 𝑡 and for any state 𝑥. In the open-loop case, the control

is optimal only for a particular initial state value.

It is instructive to see a few examples of different optimal control problems and

how their corresponding optimization problem is formulated. The following are two

examples:

Example: Minimum-Time Problems

Consider the problem of a system at an initial state 𝑥(𝑡0) = 𝑥0 with the

goal of reaching a target set 𝒮 in minimum time. This can be formulated

as an optimal control problem using the performance measure

𝐽(𝑥0, 𝑡0, 𝑢(𝜏)
𝑡0≤𝜏≤𝑡𝑓

) =

∫︁ 𝑡𝑓

𝑡0

𝑑𝜏, (4.6)

where 𝑡𝑓 is the first instant in time when 𝑥(𝑡𝑓 ) ∈ 𝒮 (Kirk, 2004).

Example: Tracking Problems

Consider the problem of having to keep a system state 𝑥(𝑡), starting at

𝑥0 at time 𝑡0, as close as possible to a desired trajectory through the state

space 𝑟(𝑡) over the time interval [𝑡0, 𝑡𝑓 ]. This can be formulated as an

optimal control problem using the cost function

𝐽(𝑥0, 𝑡0, 𝑢(𝜏)
𝑡0≤𝜏≤𝑡𝑓

) =

∫︁ 𝑡𝑓

𝑡0

‖𝑥(𝜏) − 𝑟(𝜏)‖2𝑄(𝜏) 𝑑𝜏, (4.7)
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Figure 4-1: A schematic (adapted from (Kirk, 2004)) showing a visual representation
of the principle of optimality. If 𝑎− 𝑏− 𝑒 is the optimal path in the state space, then
the principle of optimality states that 𝑏− 𝑒 must be the optimal path from 𝑏 to 𝑒.

where ‖·‖𝑄(𝜏) is a weighted norm and 𝑄(𝑡) is a real and symmetric positive

semi-definite matrix for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ] (Kirk, 2004).

4.1.2 Dynamic Programming

Once the optimal control problem has been formulated, the next task is the most

important: solving the optimization problem for the optimal control function. Two

primary approaches exist to accomplish this. The first is a variational approach,

following from the minimum principle of Pontryagin, that leads to a nonlinear two-

point boundary value problem to be solved (Kirk, 2004). The second is the method

of dynamic programming developed by Richard Bellman (Bellman and Kalaba, 1965;

Bellman, 1966). In this section, we introduce the method of dynamic programming,

as this forms the basis of our path planning methodology.

The Principle of Optimality

Dynamic programming is a method for solving problems with a multistage decision

process. The basis of this method is Bellman’s principle of optimality which states:

"An optimal policy has the property that whatever the initial state and the initial

decision are, the remaining decisions must constitute an optimal policy with regard

to the state resulting from the first decision" (Brogan, 1991).

Figure 4-1, adapted from (Kirk, 2004), is a sketch that gives a good visual repre-

sentation of the principle of optimality. Here, trajectories through a state space are

shown with the associated cost of each segment also listed. Assume that the optimal
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path is given by segment 𝑎− 𝑏− 𝑒 which yields the minimum cost 𝐽*
𝑎𝑒 for going from

𝑎 to 𝑒 given by

𝐽*
𝑎𝑒 = 𝐽𝑎𝑏 + 𝐽𝑏𝑒.

It follows from the principle of optimality then that if this is the optimal path for

𝑎− 𝑒, then 𝑏− 𝑒 is the optimal path from 𝑏 to 𝑒. That is, there is no other possible

path, such as 𝑏− 𝑐− 𝑒, which produces a cost 𝐽𝑏𝑐𝑒 < 𝐽𝑏𝑒 (Kirk, 2004).

The principle of optimality can ultimately be used in the process of decision mak-

ing. Figure 4-2, adapted from (Kirk, 2004), provides a good illustration of this con-

cept. Consider the problem of planning an optimal trajectory through the state space

for a process starting at state 𝑏 with the requirement of reaching the terminal state 𝑓 .

The path segments resulting from all different possible decisions (i.e. controls) from 𝑏

are shown in the dashed lines connecting 𝑏 to the corresponding subsequent states (𝑐,

𝑑 and 𝑒). Assume further that the optimal trajectories from each of these intermedi-

ary states to the terminal state 𝑓 are known and have associated costs of 𝐽*
𝑐𝑓 , 𝐽*

𝑑𝑓 and

𝐽*
𝑒𝑓 . It follows then, from the principle of optimality, that if 𝑏 − 𝑐 formed the initial

segment of the optimal path for 𝑏− 𝑓 , then 𝑐− 𝑓 constitutes the terminal segment of

this path. The same reasoning applies if the optimal path were to go through state 𝑑

or state 𝑒. The optimal trajectory from 𝑏 to 𝑓 is then found by considering the cost

of each of these candidate paths

𝐶*
𝑏𝑐𝑓 = 𝐽𝑏𝑐 + 𝐽*

𝑐𝑓

𝐶*
𝑏𝑑𝑓 = 𝐽𝑏𝑑 + 𝐽*

𝑑𝑓

𝐶*
𝑏𝑒𝑓 = 𝐽𝑏𝑒 + 𝐽*

𝑒𝑓 , (4.8)

and then choosing the path with the minimum of these costs. This resulting path

furthermore determines the optimal decision (i.e. control) to take at the state 𝑏 (Kirk,

2004).

Dynamic programming ultimately builds upon this decision-making process by

applying it to sequences of decisions which in turn determine the optimal policy and
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Figure 4-2: A schematic (adapted from (Kirk, 2004)) showing how the principle opti-
mality can be used in the context of decision making for multistage design processes.

trajectory for the process (Kirk, 2004).

The Hamilton-Jacobi-Bellman Equation

We now to turn to using dynamic programming to solve the general optimal control

problem given by Problem 4.1.1. To solve this specific problem, we consider the more

general problem of finding the optimal controls to minimize the cost function

𝐽(𝑥, 𝑡, 𝑢(𝜏)
𝑡≤𝜏≤𝑡𝑓

) = ℎ(𝑥(𝑡𝑓 ), 𝑡𝑓 ) +

∫︁ 𝑡𝑓

𝑡

𝑔(𝑥(𝜏),𝑢(𝜏), 𝜏)𝑑𝜏. (4.9)

Equation (4.9) considers the problem of finding the optimal trajectory starting from

any arbitrary state 𝑥 and at any arbitrary time 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. We consider in particular

this broader problem since embedded in this larger problem is our specific optimal

control problem of interest (of computing trajectories starting from 𝑥0 at time 𝑡0).

To solve for the optimal trajectory from any 𝑥 and 𝑡 ∈ [𝑡0, 𝑡𝑓 ] in Equation (4.9),

we turn our attention to a critical component known as the value function which is

defined as (Kirk, 2004):

𝐽*(𝑥, 𝑡) = min
𝑢(𝜏)

𝑡≤𝜏≤𝑡𝑓

{︂
𝐽(𝑥, 𝑡, 𝑢(𝜏)

𝑡≤𝜏≤𝑡𝑓

)

}︂
,

= min
𝑢(𝜏)

𝑡≤𝜏≤𝑡𝑓

{︂
ℎ(𝑥(𝑡𝑓 ), 𝑡𝑓 ) +

∫︁ 𝑡𝑓

𝑡

𝑔(𝑥(𝜏),𝑢(𝜏), 𝜏)𝑑𝜏

}︂
. (4.10)
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The value function holds the minimum possible cost that can be attained for our

system of interest starting at any arbitrary state 𝑥 and time 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. As we will

see, the value function 𝐽*(𝑥, 𝑡) can be efficiently computed as a solution to a PDE,

and this solution can then be ultimately used to determine the optimal control policy

(Evans, 2010).

Consider an arbitrary 𝑥 and 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. Subdividing intervals, the value function

can be written as:

𝐽*(𝑥, 𝑡) = min
𝑢(𝜏)

𝑡≤𝜏≤𝑡𝑓

{︂∫︁ 𝑡+Δ𝑡

𝑡

𝑔(𝑥(𝜏),𝑢(𝜏), 𝜏)𝑑𝜏

+

∫︁ 𝑡𝑓

𝑡+Δ𝑡

𝑔(𝑥(𝜏),𝑢(𝜏), 𝜏)𝑑𝜏 + ℎ(𝑥(𝑡𝑓 ), 𝑡𝑓 )

}︂
. (4.11)

Using now the principle of optimality, Equation (4.11) can be equivalently expressed

as

𝐽*(𝑥, 𝑡) = min
𝑢(𝜏)

𝑡≤𝜏≤𝑡+Δ𝑡

{︂∫︁ 𝑡+Δ𝑡

𝑡

𝑔(𝑥(𝜏),𝑢(𝜏), 𝜏)𝑑𝜏 + 𝐽*(𝑥′, 𝑡+ ∆𝑡)

}︂
. (4.12)

Here, the state 𝑥′ is that which is reached at time 𝑡+ ∆𝑡 (i.e. 𝑥(𝑡+ ∆𝑡) = 𝑥′) when

starting from 𝑥(𝑡) = 𝑥 at time 𝑡 using the control 𝑢(𝜏)
𝑡≤𝜏≤𝑡+Δ𝑡

. In what follows, denote

by 𝑢 the instantaneous control at time 𝑡 (i.e. 𝑢(𝑡) = 𝑢). Now, assuming that the

value function 𝐽* is smooth enough that second order partial derivatives exist and are

bounded, we can express 𝐽*(𝑥′, 𝑡+ ∆𝑡) using a Taylor series about the point (𝑥, 𝑡):

𝐽*(𝑥′, 𝑡+ ∆𝑡) = 𝐽*(𝑥, 𝑡) +

[︂
𝜕𝐽*

𝜕𝑡

⃒⃒⃒⃒
(𝑥,𝑡)

]︂
· ∆𝑡

+

[︂
𝜕𝐽*

𝜕𝑥

⃒⃒⃒⃒
(𝑥,𝑡)

]︂𝑇
·
[︂
𝑥′ − 𝑥

]︂
+ Higher Order Terms. (4.13)

55



The dynamics equation additionally allows for the ability to express 𝑥′ as:

𝑥′ = 𝑥 + 𝑓(𝑥,𝑢, 𝑡) · ∆𝑡+ 𝒪(∆𝑡2), (4.14)

which can be substituted into Equation (4.13) to yield:

𝐽*(𝑥′, 𝑡+ ∆𝑡) = 𝐽*(𝑥, 𝑡) +

[︂
𝜕𝐽*

𝜕𝑡

⃒⃒⃒⃒
(𝑥,𝑡)

]︂
· ∆𝑡

+

[︂
𝜕𝐽*

𝜕𝑥

⃒⃒⃒⃒
(𝑥,𝑡)

]︂𝑇
·
[︂
𝑓(𝑥,𝑢, 𝑡)

]︂
· ∆𝑡

+ 𝒪(∆𝑡2). (4.15)

Furthermore, the integral

∫︁ 𝑡+Δ𝑡

𝑡

𝑔(𝑥(𝜏),𝑢(𝜏), 𝜏)𝑑𝜏, (4.16)

can be approximated using a Taylor series as well to give

∫︁ 𝑡+Δ𝑡

𝑡

𝑔(𝑥(𝜏),𝑢(𝜏), 𝜏)𝑑𝜏 = 𝑔(𝑥,𝑢, 𝑡) · ∆𝑡+ 𝒪(∆𝑡2). (4.17)

Substituting the expansions from Equation (4.15) and (4.17) into Equation (4.12),

we obtain:

𝐽*(𝑥, 𝑡) = min
𝑢(𝜏)

𝑡≤𝜏≤𝑡+Δ𝑡

{︂
𝑔(𝑥,𝑢, 𝑡) · ∆𝑡+ 𝐽*(𝑥, 𝑡) +

[︂
𝜕𝐽*

𝜕𝑡

⃒⃒⃒⃒
(𝑥,𝑡)

]︂
· ∆𝑡

+

[︂
𝜕𝐽*

𝜕𝑥

⃒⃒⃒⃒
(𝑥,𝑡)

]︂𝑇
·
[︂
𝑓(𝑥,𝑢, 𝑡)

]︂
· ∆𝑡+ 𝒪(∆𝑡2)

}︂
. (4.18)

𝐽*(𝑥, 𝑡) on the right hand side of Equation (4.18) does not depend on the controls

𝑢(·), which allows for it to be pulled out of the minimization and cancelling with the
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identical term on the left hand side:

0 = min
𝑢(𝜏)

𝑡≤𝜏≤𝑡+Δ𝑡

{︂
𝑔(𝑥,𝑢, 𝑡) · ∆𝑡+

[︂
𝜕𝐽*

𝜕𝑡

⃒⃒⃒⃒
(𝑥,𝑡)

]︂
· ∆𝑡

+

[︂
𝜕𝐽*

𝜕𝑥

⃒⃒⃒⃒
(𝑥,𝑡)

]︂𝑇
·
[︂
𝑓(𝑥,𝑢, 𝑡)

]︂
· ∆𝑡+ 𝒪(∆𝑡2)

}︂
. (4.19)

Dividing through by ∆𝑡 and taking the limit as ∆𝑡→ 0 yields:

0 =
𝜕𝐽*

𝜕𝑡

⃒⃒⃒⃒
(𝑥,𝑡)

+ min
𝑢

{︂
𝑔(𝑥,𝑢, 𝑡) +

[︂
𝜕𝐽*

𝜕𝑥

⃒⃒⃒⃒
(𝑥,𝑡)

]︂𝑇
·
[︂
𝑓(𝑥,𝑢, 𝑡)

]︂}︂
. (4.20)

In Equation (4.20), note that in the limit we are left with minimizing over the instan-

taneous control 𝑢 at time 𝑡. Dropping explicitly expressing the point of evaluation

of the partial derivatives of the value function for brevity of notation, we can express

Equation (4.20) compactly as:

𝜕𝐽*

𝜕𝑡
+ min

𝑢

{︂
𝑔(𝑥,𝑢, 𝑡) +

[︂
𝜕𝐽*

𝜕𝑥

]︂𝑇
· 𝑓(𝑥,𝑢, 𝑡)

}︂
= 0. (4.21)

Equation (4.21) is known as the Hamilton-Jacobi-Bellman (HJB) equation, and it

is the central result that we have been looking for – a differential equation that the

value function for our problem of interest must satisfy. In optimal control literature,

the Hamiltonian 𝐻 is defined to be (Evans, 2010)

𝐻

(︂
𝑥,
𝜕𝐽*

𝜕𝑥
, 𝑡

)︂
= min

𝑢

{︂
𝑔(𝑥,𝑢, 𝑡) +

[︂
𝜕𝐽*

𝜕𝑥

]︂𝑇
· 𝑓(𝑥,𝑢, 𝑡)

}︂
, (4.22)

in which case the Hamilton-Jacobi-Bellman equation is equivalently expressed as

𝜕𝐽*

𝜕𝑡
+𝐻

(︂
𝑥,
𝜕𝐽*

𝜕𝑥
, 𝑡

)︂
= 0. (4.23)

The boundary condition for the Hamilton-Jacobi-Bellman PDE can be found by con-
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sidering the value function at the final time 𝑡 = 𝑡𝑓 :

𝐽*(𝑥, 𝑡 = 𝑡𝑓 ) = ℎ(𝑥, 𝑡𝑓 ). (4.24)

That is, the value function at any state 𝑥 at the final time is intuitively given by

the terminal cost. This is due to the fact that at the final time, the minimum cost

possible at a given state is simply the terminal cost since the running cost has no

contribution. Equations (4.21) and (4.24) together form a final value problem which

can be solved for the value function 𝐽*.

Equation (4.21) furthermore encodes the optimal control policy for the system.

Specifically, the optimal closed loop control at any state and time is given by the

minimizing control in the Hamiltonian:

𝑢*(𝑥, 𝑡) = arg min
𝑢

{︂
𝑔(𝑥,𝑢, 𝑡) +

[︂
𝜕𝐽*

𝜕𝑥

]︂𝑇
· 𝑓(𝑥,𝑢, 𝑡)

}︂
. (4.25)

From Equation (4.25) it can be seen that the optimal policy will depend in general

on 𝑥, 𝑡 and 𝜕𝐽*

𝜕𝑥
.

Summary It is beneficial to take a step back and summarize the key results that

have been obtained up until now. Recall that our primary goal has been to solve

the optimization problem of determining the optimal control function 𝑢*(𝜏)
𝑡0≤𝜏≤𝑡𝑓

which

causes the system governed by

d𝑥

d𝑡
= 𝑓(𝑥(𝑡),𝑢(𝑡), 𝑡), 𝑥(𝑡0) = 𝑥0, 𝑡 ∈ [𝑡0, 𝑡𝑓 ],

to follow a trajectory 𝑥*(·) that minimizes the cost function

𝐽(𝑥0, 𝑡0, 𝑢(𝜏)
𝑡0≤𝜏≤𝑡𝑓

) = ℎ(𝑥(𝑡𝑓 ), 𝑡𝑓 ) +

∫︁ 𝑡𝑓

𝑡0

𝑔(𝑥(𝜏),𝑢(𝜏), 𝜏)𝑑𝜏.

The method of dynamic programming provides an approach to do this by solving for

the value function 𝐽*(𝑥, 𝑡). In particular, after setting the final condition 𝐽*(𝑥, 𝑡 =
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𝑡𝑓 ) = ℎ(𝑥, 𝑡𝑓 ), we solve the Hamilton-Jacobi-Bellman PDE (Equation (4.21)) for the

value function 𝐽*(𝑥, 𝑡) at any arbitrary state and at any time 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. Moreover,

at the initial state and time of interest, (𝑥0, 𝑡0), the computed value function can be

evaluated and physically corresponds to:

𝐽*(𝑥0, 𝑡0) = min
𝑢(𝜏)

𝑡0≤𝜏≤𝑡𝑓

{︂
𝐽(𝑥0, 𝑡0, 𝑢(𝜏)

𝑡0≤𝜏≤𝑡𝑓

)

}︂
,

= min
𝑢(𝜏)

𝑡0≤𝜏≤𝑡𝑓

{︂
ℎ(𝑥(𝑡𝑓 ), 𝑡𝑓 ) +

∫︁ 𝑡𝑓

𝑡0

𝑔(𝑥(𝜏),𝑢(𝜏), 𝜏)𝑑𝜏

}︂
. (4.26)

That is, the value function gives the minimum possible cost for the cost function for

our optimization problem of interest. Starting from the state 𝑥0 at time 𝑡0, the value

function 𝐽* can finally be used to find the optimal trajectory 𝑥*(·) through the state

space using the optimal closed loop control law (Equation (4.25)).

4.2 Forward Reachability

Hamilton-Jacobi reachability analysis has proven to be quite useful in numerous ap-

plications. Primarily it has been employed as a formal method for guaranteeing the

performance and safety properties of dynamical systems (Bansal et al., 2017). In

recent years, however, reachability analysis has also proved to be a versatile method

for optimal path planning in dynamic environments. Lolla et al. (2012, 2014b,a) first

introduced approaches for time optimal path planning in continuous, strong and dy-

namic ocean environments built on Hamilton-Jacobi reachability. Our method for

harvest-time optimal path planning, which builds upon (Lolla et al., 2014b), is also

based on reachability. As a result, in this section, we summarize the fundamentals

of Hamilton-Jacobi reachability as this will prove to be crucial going forward. The

material in this section follows primarily (Kurzhanski and Varaiya, 2001) and we refer

the reader to this reference for further details.

We now consider the same general dynamical system given by Equation (4.1),
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restated here for convenience:

d𝑥

d𝑡
= 𝑓(𝑥(𝑡),𝑢(𝑡), 𝑡), 𝑥(𝑡0) = 𝑥0, 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

Furthermore, we follow the same convention as before of denoting a trajectory of

the system from an initial state 𝑥0 at time 𝑡0 using the control sequence 𝑢(·) as

𝑥(𝑡; 𝑡0,𝑥0,𝑢(·)).

Reachability analysis is concerned with the determination of the set of states that

can be reached by a system with its available controls. Various sets of interest are

typically computed based on the application at hand, most notably the backward

reachable set, backward reachable tube, forward reachable set and forward reachable

tube (Chen and Tomlin, 2018). Of particular relevance in this work is the forward

reachable set. Consider a set of possible initial states of the system, 𝒳0 ⊂ R𝑛, at the

time 𝑡0. The forward reachable set 𝒳 (𝑡, 𝑡0,𝒳0) at a time 𝑡 ∈ [𝑡0, 𝑡𝑓 ] can mathematically

be expressed as:

𝒳 (𝑡, 𝑡0,𝒳0) = ∪ {𝑥(𝑡; 𝑡0,𝑥0,𝑢(·)) | 𝑢(·) ∈ U,𝑥0 ∈ 𝒳0}. (4.27)

In simple terms, the reachable set in Equation (4.27) contains all the states that the

system could be in at time 𝑡 if the initial state were drawn from the set 𝒳0. The

boundary of this set, 𝜕𝒳 (𝑡, 𝑡0,𝒳0), is denoted as the reachability front. A schematic

depicting the forward reachable set is shown in Figure 4-3.

The forward reachable set can be conveniently computed by solving an optimal

control problem (Kurzhanski and Varaiya, 2001). To formulate the problem, we first

start by defining the signed distance function. Given an initial set 𝒳0 and its boundary

𝜕𝒳0, the signed distance function 𝑑(𝑥, 𝜕𝒳0) of the state 𝑥 to the boundary is defined

as

𝑑(𝑥, 𝜕𝒳0) =

⎧⎪⎨⎪⎩−min𝑦∈𝜕𝒳0 |𝑥− 𝑦| , if 𝑥 ∈ 𝒳0

min𝑦∈𝜕𝒳0 |𝑥− 𝑦| , if 𝑥 ̸∈ 𝒳0

. (4.28)

From Equation (4.28), it can be seen that any state 𝑥 in the set 𝒳0 will have a
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Figure 4-3: A schematic showing the forward reachable set. Starting from somewhere
in the initial set 𝒳0 at the initial time 𝑡0, the forward reachable set 𝒳 (𝑡, 𝑡0,𝒳0) contains
all the states that the system could be in (using an admissible control function) at
time 𝑡.

negative distance.

In what follows, we will compute the forward reachability set at a time 𝑡 as follows.

We will first consider the dynamics of the system backwards in time. This will involve

a process of mapping the dynamics equations to a pseudo-time that allows to study

the backward evolution of the system. We will then see that this will allow us to

formulate an optimal control problem whose value function can then be used to extract

the forward reachable set.

We begin by analyzing the evolution of the system backwards in time. Consider

a prescribed control function 𝑢𝑠(𝑡) defined on 𝑡 ∈ [𝑡0, 𝑡𝑓 ] resulting in the system

defined by Equation (4.1) to follow a trajectory 𝑥(𝑡) = 𝑥(𝑡; 𝑡0,𝑥0,𝑢𝑠(·)) from 𝑥0 =

𝑥(𝑡0; 𝑡0,𝑥0,𝑢𝑠(·)) at time 𝑡 = 𝑡0 to 𝑥𝑓 = 𝑥(𝑡𝑓 ; 𝑡0,𝑥0,𝑢𝑠(·)) at time 𝑡 = 𝑡𝑓 . This

trajectory can be identically traced out by considering the dynamics backwards in

time. First, a pseudo-time variable 𝜏 can be defined in order to march backwards in

time (but forward in pseudo-time) using the following invertible mapping:

𝜏(𝑡) = 𝑡𝑓 − 𝑡, 𝑡(𝜏) = 𝑡𝑓 − 𝜏. (4.29)

The mapped pseudo-time domain correspondingly translates as follows:

𝑡 ∈ [𝑡0, 𝑡𝑓 ] → 𝜏 ∈ [𝜏0, 𝜏𝑓 ] = [0, 𝑡𝑓 − 𝑡0]. (4.30)
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Figure 4-4: A schematic depicting the mapping of the dynamics into pseudo-time in
order to equivalently analyze the system evolving backwards in time.

A state trajectory 𝑥(𝑡) in the forward time domain is furthermore related to its

counterpart 𝑥(𝜏) = 𝑥(𝑡(𝜏)) in the backward time domain. Specifically, we have that

the time derivative of the trajectory satisfies the following relation:

d𝑥

d𝜏
=

d𝑥

d𝑡
· d𝑡

d𝜏
= −d𝑥

d𝑡
. (4.31)

It follows then that the ODE

d𝑥

d𝜏
= −𝑓(𝑥(𝜏),𝑢(𝜏), 𝑡(𝜏)), 𝑥(𝜏 = 0) = 𝑥̃0, 𝜏 ∈ [𝜏0, 𝜏𝑓 ] = [0, 𝑡𝑓 − 𝑡0], (4.32)

governs the dynamics of the system backwards in time. Equation (4.32), solved using

the control function 𝑢(𝜏) = 𝑢𝑠(𝑡(𝜏)) and "initial condition" 𝑥̃0 = 𝑥𝑓 , will trace out

the exact same trajectory as before, i.e. 𝑥(𝑡; 𝑡0,𝑥0,𝑢𝑠(·)), but by marching backward

in time (forward in pseudo-time) starting at the destination state 𝑥𝑓 (Figure 4-4).

Now with the backwards dynamics defined, we return to the problem of computing

the forward reachable set 𝒳 (𝑡, 𝑡0,𝒳0) at a time 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. Consider the backwards

dynamical system, using the pseudo-time mapping 𝜏(𝑡) = 𝑡− 𝑡, given by

d𝑥

d𝜏
= −𝑓(𝑥(𝜏),𝑢(𝜏), 𝑡(𝜏)), 𝑥(𝜏 = 0) = 𝑥̃0, 𝜏 ∈ [𝜏0, 𝜏𝑓 ] = [0, 𝑡− 𝑡0]. (4.33)

Furthermore, consider the cost function, i.e. performance measure, composed of no
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running cost, i.e. 𝑔(𝑥(𝜏),𝑢(𝜏), 𝜏) = 0, and a terminal cost ℎ(𝑥(𝜏𝑓 ), 𝜏𝑓 ) = 𝑑(𝑥(𝜏𝑓 ), 𝜕𝒳0).

The corresponding value function for any arbitrary state 𝑥 and pseudo-time 𝜏 is then

given as:

𝐽*(𝑥, 𝜏) = min
𝑢(𝑠)

𝜏≤𝑠≤𝜏𝑓

{︂
ℎ(𝑥(𝜏𝑓 ), 𝜏𝑓 )

}︂
= min

𝑢(𝑠)
𝜏≤𝑠≤𝜏𝑓

{︂
𝑑(𝑥(𝜏𝑓 ), 𝜕𝒳0)

}︂
. (4.34)

The value function further satisfies the Hamilton-Jacobi-Bellman equation:

𝜕𝐽*

𝜕𝜏
+ min

𝑢

{︂[︂
𝜕𝐽*

𝜕𝑥

]︂𝑇
·
[︂
− 𝑓(𝑥,𝑢, 𝜏)

]︂}︂
= 0

𝐽*(𝑥, 𝜏 = 𝜏𝑓 ) = 𝑑(𝑥, 𝜕𝒳0). (4.35)

The solution of Equation (4.35) gives a value function in the (𝑥, 𝜏) domain. Using

the pseudo-time mapping, this can be mapped back to the (𝑥, 𝑡) domain to give

𝐽*(𝑥, 𝑡) = 𝐽*(𝑥, 𝜏(𝑡)) – the value function expressed in the standard/forward time

domain.

Let us take now a step back to get an intuitive understanding of what this value

function corresponds to. We solved for the value function 𝐽*(𝑥, 𝜏) in pseudo-time

which can be equivalently expressed in the standard time domain as 𝐽*(𝑥, 𝑡) using

the time mapping. Consider the value function at the initial pseudo-time 𝜏 = 𝜏0 and

an arbitrary state 𝑥 (𝐽*(𝑥, 𝜏 = 𝜏0)). This pseudo-time maps to a forward time of 𝑡 = 𝑡

and so is equivalently given by 𝐽*(𝑥, 𝑡 = 𝑡) if we consider the value function mapped

to the forward time domain. The value of 𝐽*(𝑥, 𝜏 = 𝜏0) – or equivalently 𝐽*(𝑥, 𝑡 = 𝑡)

– at a state 𝑥 gives the minimum signed distance (relative to the boundary 𝜕𝒳0) for

an initial condition 𝑥0 at time 𝑡 = 𝑡0 such that a control function brings the system

to 𝑥 at time 𝑡 = 𝑡. Mathematically, this can be expressed as:

𝐽*(𝑥, 𝜏 = 𝜏0) = 𝐽*(𝑥, 𝑡 = 𝑡) = min
𝑢(𝑠)

𝑡0≤𝑠≤𝑡

{︂
𝑑(𝑥0, 𝜕𝒳0) | 𝑥(𝑡; 𝑡0,𝑥0,𝑢(·)) = 𝑥

}︂
. (4.36)

Therefore, the value function effectively encodes information about where a certain

state came from at the initial time (𝑡 = 𝑡0 or 𝜏 = 𝜏𝑓 based on which direction of time
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is being considered). From this it is straightforward to see that the forward reachable

set can be computed from the value function as follows

𝒳 (𝑡, 𝑡0,𝒳0) = {𝑥 | 𝐽*(𝑥, 𝜏(𝑡)) ≤ 0}. (4.37)

That is, all states reachable at time 𝑡 = 𝑡 by initial states in the set 𝒳0 will have a

negative value for the value function. Furthermore, the forward reachability front is

given as

𝜕𝒳 (𝑡, 𝑡0,𝒳0) = {𝑥 | 𝐽*(𝑥, 𝜏(𝑡)) = 0}. (4.38)

Although our work is technically complete, it is convenient to map Equation (4.35)

back to the (𝑥, 𝑡) domain so as not to have to explicitly work in pseudo-time 𝜏 . To

do this, we first note that the minimization of the Hamiltonian in Equation (4.35)

can be equivalently expressed as a maximization as follows:

min
𝑢

{︂[︂
𝜕𝐽*

𝜕𝑥

]︂𝑇
·
[︂
− 𝑓(𝑥,𝑢, 𝜏)

]︂}︂
= −max

𝑢

{︂[︂
𝜕𝐽*

𝜕𝑥

]︂𝑇
· 𝑓(𝑥,𝑢, 𝜏)

}︂
. (4.39)

Mapping now from the (𝑥, 𝜏) domain to the (𝑥, 𝑡) domain we have the following

relation for the value function’s time derivative:

𝜕𝐽*

𝜕𝑡
=
𝜕𝐽*

𝜕𝜏
· 𝜕𝜏
𝜕𝑡

= −𝜕𝐽
*

𝜕𝜏
. (4.40)

The spatial derivatives, of course, are unchanged. Furthermore, the final-condition in

Equation (4.35) maps as follows:

𝐽*(𝑥, 𝜏 = 𝜏𝑓 ) = 𝐽*(𝑥, 𝑡 = 𝑡(𝜏𝑓 )) = 𝐽*(𝑥, 𝑡 = 𝑡0) = 𝑑(𝑥, 𝜕𝒳0). (4.41)

Putting this all together, we have that Equation (4.35) is equivalently given in the
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(𝑥, 𝑡) domain as:

𝜕𝐽*

𝜕𝑡
+ max

𝑢

{︂[︂
𝜕𝐽*

𝜕𝑥

]︂𝑇
· 𝑓(𝑥,𝑢, 𝑡)

}︂
= 0

𝐽*(𝑥, 𝑡 = 𝑡0) = 𝑑(𝑥, 𝜕𝒳0) (4.42)

Equation (4.42) is the key result to be taken from this section. It corresponds to

an initial value problem that can be solved starting from 𝑡0 to any time 𝑡 of interest.

To recap, the resulting value function 𝐽*(𝑥, 𝑡) can then be used to get the forward

reachable set for a system, starting from some initial set 𝒳0 at time 𝑡0, at the time 𝑡

as follows

𝒳 (𝑡, 𝑡0,𝒳0) = {𝑥 | 𝐽*(𝑥, 𝑡) ≤ 0}, (4.43)

with the forward reachable front given as

𝜕𝒳 (𝑡, 𝑡0,𝒳0) = {𝑥 | 𝐽*(𝑥, 𝑡) = 0}. (4.44)

Figure 4-5 provides a schematic to further enforce the physical interpretation of the

resulting value function.

The optimal controls, moreover, are given by the maximizing controls for the

Hamiltonian. Specifically, we have a control law of the following form:

𝜋*(𝑥, 𝑡) = arg max
𝑢

{︂[︂
𝜕𝐽*

𝜕𝑥

]︂𝑇
· 𝑓(𝑥,𝑢, 𝑡)

}︂
. (4.45)

It is important to note that this forms a closed loop control for our backwards dy-

namical system, an unsurprising fact as our optimal control problem was formulated

for the system evolving backwards in time. That is, this control law can be used to

determine how to bring any arbitrary state 𝑥 at some time 𝑡 > 𝑡0 back as close as

possible (using the signed distance metric) to the initial boundary 𝜕𝒳0 at time 𝑡0.
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Figure 4-5: A schematic showing the physical interpretation of the value function
solved from Equation (4.42). Shown on the left is a hypothetical value function field
𝐽*(𝑥, 𝑡 = 𝑡) at the time 𝑡 = 𝑡. At any given state 𝑥, the value function gives the
minimum possible signed distance of an initial state 𝑥0 (at time 𝑡 = 𝑡0) relative to
the boundary of the set 𝜕𝒳0 such that a trajectory exists that takes the system to
𝑥 at time 𝑡 = 𝑡. This is illustrated on the right, where the optimal trajectory that
minimizes the cost is shown in green while other suboptimal candidate trajectories
are shown in red.

4.3 Viscosity Solutions and Hamilton-Jacobi Equa-

tions

We now turn our attention to discussing some theoretical properties of the form of

the PDEs that will be key to our path planning methodology. Specifically, we look to

address the existence, uniqueness and various properties of solutions to initial value

problems of the following form:

𝜕𝑤

𝜕𝑡
+𝐻

(︂
𝜕𝑤

𝜕𝑥
,𝑥

)︂
= 0 in R𝑛 × (0,∞),

𝑤 = 𝑔 on R𝑛 × {𝑡 = 0}. (4.46)

Equation (4.46) is known as a Hamilton-Jacobi equation. 𝐻 is the Hamiltonian of

the form 𝐻 : R𝑛 × R𝑛 → R and 𝑔 : R𝑛 → R is the initial function. The unknown

function to be determined is 𝑤 : R𝑛× [0,∞) → R, where 𝜕𝑤
𝜕𝑥

∈ R𝑛 corresponds to the
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spatial gradient and 𝜕𝑤
𝜕𝑡

its temporal derivative. We also note that the results that

follow translate over Hamiltonians with a time dependence (details for this can be

found in (Bardi and Capuzzo-Dolcetta, 2008)). The material in this section closely

follows (Evans, 2010).

In proving properties on the existence and uniqueness of solutions to Equation

(4.46), it turns out to be quite difficult to demand from the start a certain level of

smoothness for the solution itself. Rather, what is much easier to do is for one to

first define a class of weak solutions (or generalized solutions). This class of weak

solutions is often defined such that not too much is asked for in terms of smoothness.

Ultimately, it turns out to be much easier to prove existence and uniqueness in this

chosen class of solutions (Evans, 2010).

Our approach to studying solutions to the Hamilton-Jacobi equation will be inti-

mately connected to the following alternate problem

𝜕𝑤𝜖

𝜕𝑡
+𝐻

(︂
𝜕𝑤𝜖

𝜕𝑥
,𝑥

)︂
= 𝜖 · ∆𝑤𝜖 in R𝑛 × (0,∞),

𝑤𝜖 = 𝑔 on R𝑛 × {𝑡 = 0}, (4.47)

where 𝜖 > 0. Equation (4.47) consists of the original Hamilton-Jacobi equation with

the addition of a viscosity term. The inclusion of this viscosity in Equation (4.47)

renders it to be a quasilinear parabolic PDE which in turn has a unique smooth

solution 𝑤𝜖 (Evans, 2010; Sethian, 1999). Of interest to us is the resulting solution

to Equation (4.46) found in the limit of 𝜖 → 0 for solutions 𝑤𝜖 to Equation (4.47)

(refer to Figure 4-6). This technique, known as the method of vanishing viscosity, we

will see will be connected the weak solutions we consider to Equation (4.46) (Evans,

2010).

We now look to define the class of weak solutions – what we will refer to as the

viscosity solution – to consider for Equation (4.46). This class of solution is char-

acterized based on its behaviour at local extrema. We have the following definition

from (Evans, 2010):

Definition 4.3.1. A bounded, uniformly continuous function 𝑤 is called a viscosity
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Figure 4-6: A schematic depicting hypothetical solutions to a Hamilton-Jacobi equa-
tion with the addition of a viscosity term (Equation (4.47)). Shown are different
solutions 𝑤𝜖 for different values of 𝜖 (in green). Depicted is the solution found by the
method of vanishing viscosity (in red) by considering the limit of 𝜖→ 0.

solution of the initial-value problem from Equation (4.46) for the Hamilton-Jacobi

equation provided:

1. 𝑤 = 𝑔 on R𝑛 × {𝑡 = 0}

2. For each smooth test function 𝑣 ∈ 𝒞∞(R𝑛 × (0,∞)):

(a) If 𝑤 − 𝑣 has a local maximum at a point (𝑥0, 𝑡0) ∈ R𝑛 × (0,∞), then

𝜕𝑣

𝜕𝑡

⃒⃒⃒⃒
(𝑥0,𝑡0)

+𝐻

(︂
𝜕𝑣

𝜕𝑥

⃒⃒⃒⃒
(𝑥0,𝑡0)

,𝑥0

)︂
≤ 0. (4.48)

(b) If 𝑤 − 𝑣 has a local minimum at a point (𝑥0, 𝑡0) ∈ R𝑛 × (0,∞), then

𝜕𝑣

𝜕𝑡

⃒⃒⃒⃒
(𝑥0,𝑡0)

+𝐻

(︂
𝜕𝑣

𝜕𝑥

⃒⃒⃒⃒
(𝑥0,𝑡0)

,𝑥0

)︂
≥ 0. (4.49)

It is important to note that, in Definition 4.3.1, the solution 𝑤 is never differentiated.

Rather, all derivatives have been moved to the smooth test function 𝑣. It is also

important to emphasize that for a candidate solution 𝑤 to be a viscosity solution,

it must satisfy the properties given by Equations (4.48) and (4.49) for all smooth

functions 𝑣 (Evans, 2010).
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With the defined class of viscosity solutions (the weak solution), we have the

following property on the consistency of a viscosity solution from (Evans, 2010):

Theorem 4.3.1. Let 𝑤 be a viscosity solution to the Hamilton-Jacobi equation given

by Equation (4.46), and suppose 𝑤 is differentiable at some point (𝑥0, 𝑡0) 𝑖𝑛 R𝑛 ×

(0,∞). Then
𝜕𝑤

𝜕𝑡

⃒⃒⃒⃒
(𝑥0,𝑡0)

+𝐻

(︂
𝜕𝑤

𝜕𝑥

⃒⃒⃒⃒
(𝑥0,𝑡0)

,𝑥0

)︂
= 0.

In other words, Theorem 4.3.1 states that if we are at a point where the viscosity

solution is differentiable, then the solution satisfies the Hamilton-Jacobi equation at

that given point. Additionally, we have the following key result on the uniqueness of

a viscosity solution from (Evans, 2010):

Theorem 4.3.2. Assume that the Hamiltonian 𝐻 satisfies the following conditions

of Lipschitz continuity:

|𝐻(𝑝,𝑥) −𝐻(𝑞,𝑥)| ≤ 𝐶 |𝑝− 𝑞|

|𝐻(𝑝,𝑥) −𝐻(𝑝,𝑦)| ≤ 𝐶 |𝑥− 𝑦| · (1 + |𝑝|), (4.50)

for 𝑥,𝑦,𝑝, 𝑞 ∈ R𝑛 and a constant 𝐶 ≥ 0. Then, there exists at most one viscosity

solution to the Hamilton-Jacobi equation given by Equation (4.46).

On top of this, several other properties can be shown to hold. The following

additional claims are taken from (Sethian, 1999):

• If 𝑤 is a smooth solution of the Hamilton-Jacobi equation, then it is a viscosity

solution.

• The solution produced by taking the limit of the smooth solutions 𝑤𝜖 as 𝜖 goes

to zero is the viscosity solution.

The last claim helps explain the reason for considering the alternate problem given by

Equation (4.47). Even though no mention of the viscous counterpart to the Hamilton-

Jacobi equation was made in Definition 4.3.1, it turns out that the unique viscosity

solution is indeed equivalent to that found by the method of vanishing viscosity.
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For many more details, as well as proofs verifying these properties, we refer the

reader to (Evans, 2010; Sethian, 1999) and the references cited therein.

4.3.1 Details on Hamilton-Jacobi-Bellman Equations

Section 4.3 has so far addressed properties of general Hamilton-Jacobi equations. In

this section, we consider some properties related to Hamiltonians that arise from

solving optimal control problems by the method of dynamic programming. That is,

we consider in this subsection some of the specific results on the properties of viscosity

solutions to Hamilton-Jacobi-Bellman equations.

We consider the optimal control problem resulting in a value function 𝑤 satisfying

the Hamilton-Jacobi-Bellman equation given by

𝜕𝑤

𝜕𝑡
+ min

𝑢

{︂
𝑔(𝑥,𝑢) +

[︂
𝜕𝑤

𝜕𝑥

]︂𝑇
· 𝑓(𝑥,𝑢)

}︂
= 0, in R𝑛 × [0, 𝑇 ),

𝑤 = 𝑔, on R𝑛 × {𝑡 = 𝑇}. (4.51)

To be consistent with the material presented in (Evans, 2010) note that the PDE in

Equation (4.51) is defined on 𝑡 ∈ [0, 𝑇 ] rather than 𝑡 ∈ [𝑡0, 𝑡𝑓 ] as we have seen earlier.

Of course, it is a straightforward procedure to map a given equation from 𝑡 ∈ [𝑡0, 𝑡𝑓 ]

to the [0, 𝑇 ] domain to be consistent with the theorems presented in what follows.

Furthermore, note that Equation (4.51) is for an autonomous system (i.e. dynamics

and running costs that do not explicitly depend on time), and all results that follow

are for this class of systems following the presentation in (Evans, 2010). These results

however can be naturally extended to non-autonomous systems (i.e. dynamics and

running costs that do explicitly depend on time) as well, and we refer the reader to

(Bardi and Capuzzo-Dolcetta, 2008) for further details.

In addition to the smoothness assumptions on the dynamics, we further assume
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that the running cost and terminal cost satisfy

|𝑔(𝑥,𝑢)| ≤ 𝐶,

|𝑔(𝑥,𝑢) − 𝑔(𝑦,𝑢)| ≤ 𝐶 · |𝑥− 𝑦| , (4.52)

and

|ℎ(𝑥)| ≤ 𝐶,

|ℎ(𝑥) − ℎ(𝑦)| ≤ 𝐶 · |𝑥− 𝑦| , (4.53)

for states 𝑥,𝑦 ∈ R𝑛, control 𝑢 ∈ 𝒰 and some constant 𝐶 > 0 (Evans, 2010). From

these inequalities, it follows that the Hamiltonian

𝐻

(︂
𝜕𝑤

𝜕𝑥
,𝑥

)︂
= min

𝑢

{︂
𝑔(𝑥,𝑢) +

[︂
𝜕𝑤

𝜕𝑥

]︂𝑇
· 𝑓(𝑥,𝑢)

}︂
,

satisfies the smoothness assumptions given by Equation (4.50) in Theorem 4.3.2

(Evans, 2010).

It is important to note that the Hamilton-Jacobi-Bellman equation is a terminal-

value problem whereas our preceeding analysis on Hamilton-Jacobi equations in the

first part of Section 4.3 has studied initial value problems. The terminal value problem

requires a new definition for the weak solution (viscosity solution). From (Evans,

2010) we have the following:

Definition 4.3.2. A bounded, uniformly continuous function 𝑤 is called a viscosity

solution of the final-value problem for the Hamilton-Jacobi-Bellman equation given by

Equation (4.51) provided:

1. 𝑤 = 𝑔 on R𝑛 × {𝑡 = 𝑇}

2. For each smooth test function 𝑣 ∈ 𝒞∞(R𝑛 × (0, 𝑇 )):
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(a) If 𝑤 − 𝑣 has a local maximum at a point (𝑥0, 𝑡0) ∈ R𝑛 × (0, 𝑇 ), then

𝜕𝑣

𝜕𝑡

⃒⃒⃒⃒
(𝑥0,𝑡0)

+𝐻

(︂
𝜕𝑣

𝜕𝑥

⃒⃒⃒⃒
(𝑥0,𝑡0)

,𝑥0

)︂
≥ 0. (4.54)

(b) If 𝑤 − 𝑣 has a local minimum at a point (𝑥0, 𝑡0) ∈ R𝑛 × (0, 𝑇 ), then

𝜕𝑣

𝜕𝑡

⃒⃒⃒⃒
(𝑥0,𝑡0)

+𝐻

(︂
𝜕𝑣

𝜕𝑥

⃒⃒⃒⃒
(𝑥0,𝑡0)

,𝑥0

)︂
≤ 0. (4.55)

Note that the key difference arising relative to the earlier definition for the initial-

value problem counterpart is that the inequalities reverse their direction in Equations

(4.54) and (4.55).

The smoothness requirements on the Hamiltonian, resulting from the assumptions

on the dynamics and cost function components, and the updated definition of the

viscosity solution result in the following key theorem on the uniqueness of solutions

to the Hamilton-Jacobi-Bellman equation (Evans, 2010):

Theorem 4.3.3. The value function 𝑤 is the unique viscosity solution for the terminal-

value problem for the Hamilton-Jacobi-Bellman equation given by Equation (4.51).

Theorem 4.3.3 therefore ensures for us that, provided that the dynamics and cost

function components (i.e. running cost and terminal cost) are sufficiently smooth,

the value function for the optimal control problem will be the unique solution to

the corresponding Hamilton-Jacobi-Bellman PDE. Additionally, following from the

smoothness assumptions on the augmented dynamics – which implies global Lipschitz

continuity in the state variable, uniformly in the control variable – we have that 𝑤(𝑥, 𝑡)

is continuous as well (Bardi and Capuzzo-Dolcetta, 2008). This continuity property

of the value function will be key for us going forward.

4.4 Harvest-Time Optimal Path Planning

In this section, we now present the main theoretical development for our new harvest-

time optimal path planning methodology. It should be noted that, to remain consis-
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tent with earlier work presented in (Lolla et al., 2014b,a; Kulkarni and Lermusiaux,

2020; Subramani et al., 2018; Subramani and Lermusiaux, 2016, 2019), going forward

we will denote the value function as 𝜑(·) rather than 𝐽*(·).

4.4.1 Review: Time Optimal Path Planning with Forward

Reachability

Before turning our attention to harvest-time optimal path planning, we first briefly

review how forward reachability can be used in the context of time optimal path

planning. For further details, we refer the reader to (Lolla et al., 2014b,a; Lermusiaux

et al., 2017b).

For time optimal path planning, we consider the problem of navigating from a

start point to a specified target through the dynamic flow field in minimal time.

Consider a vehicle in a flow field 𝑉 (𝑥, 𝑡). Starting from a point 𝑥𝑠, the vehicle’s

motion through the physical space is governed by the ODE given in Equation (3.2a)

which is restated here for convenience:

d𝑋𝑝

d𝑡
=𝑉 (𝑋𝑝(𝑡), 𝑡) + 𝐹 (𝑡) ℎ̂(𝑡), 𝑋𝑝(𝑡 = 0) = 𝑥𝑠.

The position of the vehicle at any time 𝑡, 𝑋𝑝(𝑡), is ultimately governed by the control

functions chosen for the speed 𝐹 (𝑡) given by 𝐹 (𝑡) : [0,∞) → [0, 𝐹𝑚𝑎𝑥], 𝐹𝑚𝑎𝑥 ∈ R>0

and heading:

ℎ̂(𝑡) : [0,∞) → R𝑑 such that
⃦⃦⃦
ℎ̂(𝑡)

⃦⃦⃦
= 1, ∀𝑡.

Considering an initial set 𝒳0 = {𝑥𝑠} for the system (i.e. the vehicle) at time 𝑡0 = 0,

we aim to compute the forward reachable set using Equation (4.42). Substituting the

dynamics, the evolution of the reachable set is given by

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
+ max

𝐹,ℎ̂

{︂
𝐹 ℎ̂𝑇 · 𝜕𝜑

𝜕𝑥

}︂
+ 𝑉 (𝑥, 𝑡) · 𝜕𝜑

𝜕𝑥
= 0,

𝜑(𝑥, 𝑡 = 0) = 𝜑0, (4.57)
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where 𝜑0 is the initial condition given by the signed distance function relative to the

start point. The maximization in Equation (4.57) can be performed analytically. In

particular, we have that the optimal speed and heading is given, at any point in space

and time, as

𝐹 *(𝑥, 𝑡) = 𝐹𝑚𝑎𝑥, (4.58)

and

ℎ̂*(𝑥, 𝑡) =

𝜕𝜑
𝜕𝑥

⃒⃒
(𝑥,𝑡)⃦⃦⃦

𝜕𝜑
𝜕𝑥

⃒⃒
(𝑥,𝑡)

⃦⃦⃦ , (4.59)

resulting in the following PDE governing the evolution of the forward reachable set

(Lolla et al., 2014b):

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
+ 𝐹𝑚𝑎𝑥

⃦⃦⃦⃦
𝜕𝜑

𝜕𝑥

⃦⃦⃦⃦
+ 𝑉 (𝑥, 𝑡) · 𝜕𝜑

𝜕𝑥
= 0,

𝜑(𝑥, 𝑡 = 0) = 𝜑0. (4.60)

With the dynamics of the forward reachable set determined, time optimal paths can

be computed by following the reachability front, i.e. {𝑥 : 𝜑(𝑥, 𝑡) = 0}. Specifically, the

PDE in Equation (4.60) is solved until the very first time 𝑡𝑓 such that 𝜑(𝑥𝑓 , 𝑡𝑓 ) = 0.

In other words, the equation is solved until the reachability front reaches the target,

as the very first time this happens corresponds to the minimum time of arrival.

Once the reachability front has reached the destination, it still remains to deter-

mine the optimal path to be followed by the vehicle. This information regarding the

optimal controls is encoded in the value function 𝜑(𝑥, 𝑡) and is given by Equation

(4.45). Specifically, as outlined in Section 4.2, the forward reachability framework

provides the optimal closed loop controls (or optimal policy) for the vehicle navigat-

ing backwards in time back to the start point. For this backwards system, the optimal

closed loop controls from Equations (4.58) and (4.59) can be used to trace a time-

optimal path from the destination 𝑥𝑓 at 𝑡 = 𝑡𝑓 to the start point 𝑥𝑠. Specifically, the
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optimal path 𝑋*
𝑝 (𝑡) is computed by solving the backtracking ODE given by

d𝑋*
𝑝

d𝑡
= −𝑉 (𝑋*

𝑝 (𝑡), 𝑡) − 𝐹 *(𝑋*
𝑝 (𝑡), 𝑡) · ℎ̂*(𝑋*

𝑝 (𝑡), 𝑡),

= −𝑉 (𝑋*
𝑝 (𝑡), 𝑡) − 𝐹𝑚𝑎𝑥 ·

𝜕𝜑
𝜕𝑥

⃒⃒
(𝑋*

𝑝 (𝑡),𝑡)⃦⃦⃦
𝜕𝜑
𝜕𝑥

⃒⃒
(𝑋*

𝑝 (𝑡),𝑡)

⃦⃦⃦ , (4.61)

which is solved backward in time starting from the final condition 𝑋*
𝑝 (𝑡 = 𝑡𝑓 ) = 𝑥𝑓

to the time 𝑡 = 0. Physically, it can be noted that the optimal path corresponds

to that in which the vehicle always moves on the reachability front, at its maximum

speed, and in a heading always normal to the front.

Furthermore, it should be noted that a history can be maintained of the controls

from the optimal policy used in the backtracking process. This time history of controls

forms an open-loop control law, which can be fed to the actual autonomous vehicle

at the start state in order to follow the desired optimal path (forwards in time).

Thus, while a closed-loop control law is used for the backwards dynamical system to

determine the optimal path, this is used to define an optimal open-loop control law

for the vehicle to follow forward in time.
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4.4.2 Harvest-Time Optimal Path Planning with Forward Reach-

ability

We now return to the harvesting system of interest in this work given by Equations

(3.2a) and (3.2b), restated here for convenience

d𝑋𝑝

d𝑡
=𝑉 (𝑋𝑝(𝑡), 𝑡) + 𝐹 (𝑡) ℎ̂(𝑡),

d𝐶𝑝,𝑖

d𝑡
=ℋ𝑖(𝑋𝑝(𝑡),𝐶𝑝(𝑡), 𝐹 (𝑡), ℎ̂(𝑡), 𝑡), 𝑖 = 1, ..., 𝑑ℎ.

Going forward, we will denote the joint harvesting dynamics from Equation (3.2b)

equivalently in vector form as:

d𝐶𝑝

d𝑡
= ℋ(𝑋𝑝(𝑡),𝐶𝑝(𝑡), 𝐹 (𝑡), ℎ̂(𝑡), 𝑡).

We furthermore consider the harvest-time optimal path planning problem given by

Equation (3.5) and likewise restated as follows for convenience:

minimize
𝐹 (·), ℎ̂(·)

[︂
𝑡𝑓 ,−𝐶𝑝,1(𝑡𝑓 ),−𝐶𝑝,2(𝑡𝑓 ), ...,−𝐶𝑝,𝑑ℎ(𝑡𝑓 )

]︂
subject to 𝑋𝑝(0) = 𝑥𝑠

𝐶𝑝(0) = 𝑐𝑠

𝑋𝑝(𝑡𝑓 ) = 𝑥𝑓

𝐶𝑝(𝑡) > 0, ∀𝑡
d𝑋𝑝

d𝑡
= 𝑉 (𝑋𝑝(𝑡), 𝑡) + 𝐹 (𝑡) ℎ̂(𝑡)

d𝐶𝑝

d𝑡
= ℋ(𝑋𝑝(𝑡),𝐶𝑝(𝑡), 𝐹 (𝑡), ℎ̂(𝑡), 𝑡)

.

We search for Pareto optimal solutions to this optimization problem of the form

(𝑡*𝑓 , 𝑐
*
𝑓 ), where we have denoted by 𝑐*𝑓 the final harvested state upon reaching the

destination. As we will now show, this multi-objective path planning problem can be

readily solved using the concept of forward reachability in an augmented state space.

Consider the augmented state space of the dynamical system given by Equations
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(3.2a) and (3.2b) consisting of the physical position of the vehicle and its harvest

state: 𝑥𝑎 = [𝑥, 𝑐]𝑇 ∈ R𝑑+𝑑ℎ . Letting the initial set be 𝒳0 = {𝑥𝑎
𝑠 } = {[𝑥𝑠, 𝑐𝑠]

𝑇} at

time 𝑡0 = 0, our goal is to compute the forward reachable set of the system – the

vehicle position and harvest state – using Equation (4.42). Substituting the dynamics,

the reachable set’s evolution is governed by:

𝜕𝜑(𝑥, 𝑐, 𝑡)

𝜕𝑡
+ max

𝐹,ℎ̂

{︂
𝐹 ℎ̂𝑇 · 𝜕𝜑

𝜕𝑥
+ ℋ(𝑥, 𝑐, 𝐹, ℎ̂, 𝑡)𝑇

𝜕𝜑

𝜕𝑐

}︂
+ 𝑉 (𝑥, 𝑡)𝑇 · 𝜕𝜑

𝜕𝑥
= 0,

𝜑(𝑥, 𝑐, 𝑡 = 0) = 𝜑0,

(4.63)

where 𝜑0 corresponds to the initial condition given by the signed distance function

relative to the start state 𝑥𝑎
𝑠 in the augmented space. The maximization of the

Hamiltonian in Equation (4.63), of course, will depend on the particular form of the

harvesting dynamics.

With the forward reachable set evolution defined, a time optimal path to any state

𝑥𝑎
𝑓 = [𝑥𝑓 , 𝑐𝑓 ]𝑇 can be computed in a fashion exactly analogous to that described in

Section 4.4.1. That is, we evolve the forward reachable front until the first time it

touches the target state of interest in the augmented state space. The optimal controls

can then be used to find the time optimal trajectory of the system through the state

space. This ability to compute time optimal paths, using the forward reachable set,

to any state can ultimately be extended to generate the Pareto front for the multi-

objective path planning problem given by Equation (3.5). We delve deeper into how

this can be done in the following section.

4.4.3 Computing the Pareto Front

Of central interest in this work is the determination of the family of Pareto optimal

solutions to the multi-objective optimal path planning problem given by Equation

(3.5) which can be found using the forward reachable set solved from Equation (4.63).

Consider the value function 𝜑(𝑥, 𝑐, 𝑡) which encodes the reachable set’s evolution.

We further assume that the initial reachability front 𝜑0 is defined such that 𝜑(𝑥 =
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𝑥𝑓 , 𝑐, 𝑡 = 0) > 0, ∀𝑐, that is, it is defined such that no harvesting state at the

destination is initially reachable. This of course is not a restrictive assumption in path

planning settings, where initially the start state is the only point in the augmented

space that is reachable and 𝜑0 is defined to be the signed distance function relative

to this state.

We have the following claim which will be central to the computation of the Pareto

front:

Claim 4.4.1. All Pareto optimal solutions (𝑡*, 𝑐*) to the optimization problem given

by Equation (3.5) lie in the set {(𝑡*, 𝑐*) | 𝜑(𝑥 = 𝑥𝑓 , 𝑐
*, 𝑡*) = 0}. That is, all Pareto

optimal solutions lie on the reachability front.

To verify this claim, we center our attention at the target 𝑥 = 𝑥𝑓 in the physical

space. Furthermore, consider a harvesting state 𝑐 = 𝑐 and a time 𝑡 = 𝑡. We consider

the following three cases: 𝜑(𝑥 = 𝑥𝑓 , 𝑐 = 𝑐, 𝑡 = 𝑡) > 0, 𝜑(𝑥 = 𝑥𝑓 , 𝑐 = 𝑐, 𝑡 = 𝑡) = 0

and 𝜑(𝑥 = 𝑥𝑓 , 𝑐 = 𝑐, 𝑡 = 𝑡) < 0.

Case 1 (𝜑(𝑥 = 𝑥𝑓 , 𝑐 = 𝑐, 𝑡 = 𝑡) > 0): In this case, at the specified time 𝑡, the

state [𝑥, 𝑐] = [𝑥𝑓 , 𝑐] is not reachable. Therefore, (𝑡, 𝑐) cannot be a solution to the

optimization problem.

Case 2 (𝜑(𝑥 = 𝑥𝑓 , 𝑐 = 𝑐, 𝑡 = 𝑡) = 0): In this case, at the specified time 𝑡, the state

[𝑥, 𝑐] = [𝑥𝑓 , 𝑐] is on the reachability front and so it is reachable. Therefore, (𝑡, 𝑐) can

indeed be a candidate solution to the optimal path planning problem.

Case 3 (𝜑(𝑥 = 𝑥𝑓 , 𝑐 = 𝑐, 𝑡 = 𝑡) < 0): In this case, at the specified time 𝑡, the

state [𝑥, 𝑐] = [𝑥𝑓 , 𝑐] is in the reachable set and so it is reachable. However, this state

cannot be a Pareto optimal solution to the optimal path planning problem. To see

why this is the case note that if 𝜑(𝑥 = 𝑥𝑓 , 𝑐 = 𝑐, 𝑡 = 𝑡) < 0, then, following from the

continuity of 𝜑(𝑥, 𝑐, 𝑡) (refer to Section 4.3.1) and the intermediate value theorem,

there must exist some time 𝜏 < 𝑡 such that 𝜑(𝑥 = 𝑥𝑓 , 𝑐 = 𝑐, 𝑡 = 𝜏) = 0. This

implies that a candidate solution to the multi-objective optimization problem exists
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(𝜏, 𝑐) that dominates (𝑡, 𝑐) (since such a path arrives at the destination state quicker).

Thus, (𝑡, 𝑐) cannot be a candidate Pareto optimal solution.

The property given by Claim 4.4.1 gives a straightforward way to now process

and generate the Pareto front. Consider the time 𝑡 = 𝑡 and denote the set of Pareto

optimal solutions found for times 𝑡 < 𝑡 of the form (𝑡*, 𝑐*) as Θ𝑝. At the time 𝑡,

consider the set of harvest states on the reachability front 𝒮𝑐 = {𝑐 | 𝜑(𝑥 = 𝑥𝑓 , 𝑐, 𝑡 =

𝑡) = 0}. Of this set, denote by 𝒮𝑐,𝑝, 𝒮𝑐,𝑝 ⊆ 𝒮𝑐, the set of candidate Pareto optimal

harvest states. Specifically, this set holds all harvest states 𝑐 that satisfy

𝑐 ∈ 𝒮𝑐,𝑝 =⇒ @ 𝑐 ∈ 𝒮𝑐, 𝑐 ̸= 𝑐, 𝑠.𝑡. 𝑐 ≻𝐾 𝑐, 𝐾 = R𝑑ℎ
+ , (4.64)

where we have used the generalized inequality defined using the nonnegative orthant

proper cone (Boyd et al., 2004). The subset of 𝒮𝑐,𝑝 to be added to the set of Pareto

optimal solutions is then given as those states 𝑐 that are not in the set Θ𝑝. This

procedure is then repeated for all subsequent times to ultimately form the full Pareto

front to the optimization problem.

Particular Case: One Harvesting Dimension

The procedure outlined above for computing the Pareto front has been presented

in full generality, i.e. for an arbitrary number of harvesting dimensions. In reality,

in most practical applications one, at most two, additional harvesting states can be

considered. This follows directly from Bellman’s curse of dimensionality, which results

in the numerical computation of value functions for high dimensional systems to be

prohibitively expensive (Kirk, 2004). Due to this, all cases computed in the present

work consider only a single additional harvesting dimension for a vehicle navigating

in a 2D physical domain (resulting in a 3D augmented state space). In this case,

the procedure for computing the Pareto front simplifies as follows. Consider the time

𝑡 = 𝑡 and denote the set of Pareto optimal solutions computed for times 𝑡 < 𝑡 of the

form (𝑡*, 𝑐*) as Θ𝑝. At time 𝑡, consider the set 𝒮𝑐 = {𝑐 | 𝜑(𝑥 = 𝑥𝑓 , 𝑐, 𝑡 = 𝑡) = 0}. If

this set is non-empty, the only candidate Pareto optimal harvest state is 𝑐 = max (𝒮𝑐).
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Figure 4-7: A schematic demonstrating the growth of the reachability front in the
augmented state space in the case of a 2D physical domain with a single harvesting
state. Figure (a) shows the Pareto front which can be computed by tracking the
reachability front at the destination as described in Section 4.4.3. Figure (b) shows
the contours of the reachability front at different harvest state values projected onto
the 2D physical space.

If 𝑐 ̸∈ Θ𝑝, the solution (𝑡, 𝑐) is a Pareto optimal solution and so it can be added to

Θ𝑝. This procedure is then repeated for all subsequent times in order to compute the

full set of Pareto optimal solutions.

4.4.4 Backtracking: Computing the Optimal Path

Once the Pareto front has been generated, a Pareto optimal solution can be selected

by a decision maker who can express preference for their objectives of interest, i.e.

how much to tradeoff the final harvested amounts with the time of arrival. Consider a

chosen Pareto optimal solution [𝑡*𝑓 , 𝐶
*
𝑝,1,𝑓 , 𝐶

*
𝑝,2,𝑓 , ...𝐶

*
𝑝,𝑚,𝑓 ] to the optimization problem

given by Equation (3.5), where we have used 𝐶*
𝑝,𝑖,𝑓 ≡ 𝐶𝑝,𝑖(𝑡𝑓 ) to denote the final

harvest state of the 𝑖𝑡ℎ field for the vehicle. Just as in the time-optimal path planning

case (as described in Section 4.4.1), the optimal closed-loop controls to be followed by

the system backwards in time are determined from Equation (4.45) and are given by

the maximizers to the Hamiltonian in Equation (4.63). Specifically, using the optimal
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policies for the speed 𝐹 *(𝑥, 𝑐, 𝑡) and headings ℎ̂*(𝑥, 𝑐, 𝑡), the corresponding optimal

path to be followed by the vehicle can be computed by solving the backtracking ODE

d𝑋𝑎
𝑝

d𝑡
= −𝑈 𝑎

* (𝑋𝑎
𝑝 (𝑡), 𝑡) − 𝑉 𝑎

(︀
𝑋𝑎

𝑝 (𝑡), 𝑡
)︀
, (4.65)

with the final condition 𝑋𝑎
𝑝 (𝑡 = 𝑡*𝑓 ) = [𝑥𝑓 , 𝐶

*
𝑝,1,𝑓 , 𝐶

*
𝑝,2,𝑓 , ...𝐶

*
𝑝,𝑚,𝑓 ]𝑇 and where

𝑋𝑎
𝑝 (𝑡) =

⎡⎣𝑋𝑝(𝑡)

𝐶𝑝(𝑡)

⎤⎦ , (4.66a)

𝑈 𝑎
* (𝑋𝑎

𝑝 (𝑡), 𝑡) =

⎡⎣ 𝐹 *(𝑋𝑎
𝑝 (𝑡), 𝑡) · ℎ̂*(𝑋𝑎

𝑝 (𝑡), 𝑡)

ℋ(𝑋𝑝(𝑡), 𝐶𝑝(𝑡), 𝐹
*(𝑋𝑎

𝑝 (𝑡), 𝑡), ℎ̂*(𝑋𝑎
𝑝 (𝑡), 𝑡), 𝑡)

⎤⎦ , (4.66b)

𝑉 𝑎
(︀
𝑋𝑎

𝑝 (𝑡), 𝑡
)︀

=

⎡⎣𝑉 (𝑋𝑝(𝑡), 𝑡)

0

⎤⎦ . (4.66c)

Equation (4.65) is solved backward in time from 𝑡 = 𝑡𝑓 to 𝑡 = 0 to get the optimal

trajectory of the system in the augmented state space. The optimal physical path

(i.e. in the physical space) of the vehicle is simply found by considering the compo-

nents of this trajectory corresponding to the physical space coordinates. Just as in

the time-optimal case described in Section 4.4.1, the closed-loop control law for the

backward dynamical system determines an optimal open-loop policy for the actual

vehicle to follow (forward in time). Moreover, physically, in order to minimize the

arrival time to the state of interest, these controls will always impose that the state

remain on the reachability front throughout its optimal trajectory in the augmented

state space (recall that all Pareto optimal solutions to the optimization problem lie

on the reachability front as described in Section 4.4.3). As a result, it is sufficient

to store the optimal control information, at any time 𝑡, at only those states in the

augmented space that lie on the reachability front. This, in turn, results in significant

memory savings.

Furthermore, we reiterate that each optimal path predicted using these equations

and technique is globally optimal. For a given Pareto optimal solution [𝑡*𝑓 , 𝐶
*
𝑝,1,𝑓 , 𝐶

*
𝑝,2,𝑓 , ...𝐶

*
𝑝,𝑚,𝑓 ],
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no other path exists that attains a final harvest state of 𝑐 = [𝐶*
𝑝,1,𝑓 , 𝐶

*
𝑝,2,𝑓 , ...𝐶

*
𝑝,𝑚,𝑓 ] in

a lower amount of time.

4.5 Harvest-Time Optimal Path Planning: Particu-

lar Cases

In Section 4.4, the theory for harvest-time optimal path planning was presented in

complete generality without considering a specific form of the harvesting dynamics.

We now look to show how the presented equations simplify for some special forms of

the dynamics and performance measure (cost function).

4.5.1 Energy Harvesting

In this case we consider energy-time optimal path planning. The presentation here

follows closely (Doshi, 2021) and we refer the reader to this work for further details.

In the case of energy-time optimal path planning, the harvesting dynamics are

given by Equation (3.3). Assuming a power law form for the energy usage function

(Subramani and Lermusiaux, 2016), the energy dynamics is of the form

d𝐸𝑝

d𝑡
= 𝑄̇(𝑋𝑝(𝑡), 𝑡) − 𝑘 · 𝐹 (𝑡)𝑛, (4.67)

where 𝑘 ∈ R>0 is a proportionality constant and 𝑛 ∈ N+ is a positive integer. Consid-

ering a vehicle with an initial state (initial position and energy) at 𝑥𝑎
𝑠 = [𝑥𝑠, 𝑒𝑠]

𝑇 , the

forward reachable set evolution is found by substituting the dynamics into Equation

(4.63):

𝜕𝜑(𝑥, 𝑒, 𝑡)

𝜕𝑡
+ max

𝐹,ℎ̂

{︂
𝐹 ℎ̂𝑇 · 𝜕𝜑

𝜕𝑥
− 𝑘 · 𝐹 𝑛 𝜕𝜑

𝜕𝑒

}︂
+𝑉 (𝑥, 𝑡)𝑇 · 𝜕𝜑

𝜕𝑥
+ 𝑄̇(𝑥, 𝑡) · 𝜕𝜑

𝜕𝑒
= 0,

𝜑(𝑥, 𝑒, 𝑡 = 0) = 𝜑0, (4.68)
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where 𝜑0 is the initial condition in the augmented state space given by the signed

distance function to the initial state 𝑥𝑎
𝑠 . The maximization in Equation (4.68) can

be done analytically. To do this, we first consider the optimal heading ℎ̂. At any

point in space and time, it is clear that, based on the properties of the Euclidean dot

product, that the optimal heading is given by

ℎ̂*(𝑥, 𝑒, 𝑡) =

𝜕𝜑
𝜕𝑥

⃒⃒
(𝑥,𝑒,𝑡)⃦⃦⃦

𝜕𝜑
𝜕𝑥

⃒⃒
(𝑥,𝑒,𝑡)

⃦⃦⃦ . (4.69)

Substituting this heading, we are left with

max
𝐹∈[0,𝐹𝑚𝑎𝑥]

{︂
𝐹

⃦⃦⃦⃦
𝜕𝜑

𝜕𝑥

⃦⃦⃦⃦
− 𝑘 · 𝐹 𝑛 𝜕𝜑

𝜕𝐸

}︂
⏟  ⏞  

𝑔(𝐹 )

, (4.70)

that is, a function only of 𝐹 to be maximized. Note that the optimal 𝐹 from Equation

(4.70) will vary in state space, i.e. we will obtain 𝐹 *(𝑥, 𝑒, 𝑡), due to the fact that the

gradient of 𝜑 varies in space and time. In the following, we consider a fixed point in

the state space and look to maximize the objective at that point. 𝑔(𝐹 ) moreover can

be seen to be a polynomial, and it admits an analytical solution for the optimal speed

based on different values of 𝑛 considered. In the following, we consider the maxima

of this expression for 2 cases: (i) 𝑛 ≥ 2 and (ii) 𝑛 = 1.

(i) Case 𝑛 ≥ 2

For the case of 𝑛 ≥ 2, the maximization of 𝑔(𝐹 ) is given as follows:

𝑔(𝐹 ) = 𝐹

⃦⃦⃦⃦
𝜕𝜑

𝜕𝑥

⃦⃦⃦⃦
− 𝑘 · 𝐹 𝑛 · 𝜕𝜑

𝜕𝐸
(4.71)

𝑔′(𝐹 ) =

⃦⃦⃦⃦
𝜕𝜑

𝜕𝑥

⃦⃦⃦⃦
− 𝑘 · 𝑛 · 𝜕𝜑

𝜕𝐸
· 𝐹 𝑛−1 (4.72)

𝑔′′(𝐹 ) = −𝑘 · 𝑛 · (𝑛− 1) · 𝜕𝜑
𝜕𝐸

· 𝐹 𝑛−1 (4.73)

𝑔′(𝐹 ) = 0 =⇒ 𝐹 =

(︃ ⃦⃦
𝜕𝜑
𝜕𝑥

⃦⃦
𝑘 · 𝑛 𝜕𝜑

𝜕𝐸

)︃ 1
𝑛−1

. (4.74)
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Equation (4.73) implies that the polynomial 𝑔(𝐹 ) attains a maximum in the interval

𝐹 ∈ [0, 𝐹𝑚𝑎𝑥] only if 𝜕𝜑
𝜕𝐸

> 0. In this case, the maximum occurs at 𝐹 = 𝐹 as given

in Equation (4.74). In the case where this maximum is such that 𝐹 > 𝐹𝑚𝑎𝑥, the

monotonic nature of the polynomial 𝑔(𝐹 ) will result in the maximum occurring at

𝐹 = 𝐹𝑚𝑎𝑥 when considering the extrema in the truncated domain [0, 𝐹𝑚𝑎𝑥]. In the

case where 𝜕𝜑
𝜕𝐸

≤ 0, the maximum will be at the end points of the interval which, from

Equation (4.71), can be concluded to occur at 𝐹 = 𝐹𝑚𝑎𝑥. These conditions can all be

compiled concisely to give the following for 𝐹 *, the optimal speed which maximizes

𝑔(𝐹 ):

max 𝑔(𝐹 ) = 𝑔(𝐹 *) (4.75)

where 𝐹 *(𝑥, 𝑒, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝐹𝑚𝑎𝑥 if 𝜕𝜑

𝜕𝐸
≤ 0

min

(︃
𝐹𝑚𝑎𝑥,

(︂
‖ 𝜕𝜑

𝜕𝑥‖
𝑘·𝑛 𝜕𝜑

𝜕𝐸

)︂ 1
𝑛−1

)︃
if 𝜕𝜑

𝜕𝐸
> 0.

(4.76)

(ii) Case 𝑛 = 1

In the linear energy usage model case we have that

𝑔(𝐹 ) = 𝐹

(︂⃦⃦⃦⃦
𝜕𝜑

𝜕𝑥

⃦⃦⃦⃦
− 𝑘

𝜕𝜑

𝜕𝐸

)︂
. (4.77)

Equation (4.77) is a linear function whose maximum can be trivially calculated for

𝐹 *, the optimal speed:

max 𝑔(𝐹 ) = 𝑔(𝐹 *) (4.78)

where 𝐹 *(𝑥, 𝑒, 𝑡) =

⎧⎪⎨⎪⎩𝐹𝑚𝑎𝑥 if
⃦⃦

𝜕𝜑
𝜕𝑥

⃦⃦
≥ 𝑘 · 𝜕𝜑

𝜕𝐸

0 if
⃦⃦

𝜕𝜑
𝜕𝑥

⃦⃦
< 𝑘 · 𝜕𝜑

𝜕𝐸

. (4.79)

Substituting the optimal speed 𝐹 *(𝑥, 𝑒, 𝑡) – given by either Equation (4.79) or

(4.76) based on the energy usage model – and the optimal heading, we have that the
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forward reachable set evolution is governed by the following PDE:

𝜕𝜑(𝑥, 𝑒, 𝑡)

𝜕𝑡
+ 𝐹 *(𝑥, 𝑒, 𝑡)

⃦⃦⃦⃦
𝜕𝜑

𝜕𝑥

⃦⃦⃦⃦
+𝑉 (𝑥, 𝑡)𝑇 · 𝜕𝜑

𝜕𝑥

+

[︂
𝑄̇(𝑥, 𝑡) − 𝑘 · [𝐹 *(𝑥, 𝑒, 𝑡)]𝑛

]︂
· 𝜕𝜑
𝜕𝑒

= 0 (4.80)

Once the forward solve is completed and Pareto front generated, the optimal path

corresponding to a Pareto optimal solution of the form (𝑡*𝑓 , 𝑒
*
𝑓 ) can be found by solving

the backtracking ODE. Substituting the dynamics, the backtracking ODE is of the

form

d𝑋𝑎
𝑝

d𝑡
= −𝑈 𝑎

* (𝑋𝑎
𝑝 (𝑡), 𝑡) − 𝑉 𝑎

(︀
𝑋𝑎

𝑝 (𝑡), 𝑡
)︀
, (4.81)

with the final condition 𝑋𝑎
𝑝 (𝑡 = 𝑡*𝑓 ) = [𝑥𝑓 , 𝑒

*
𝑓 ]𝑇 and where

𝑋𝑎
𝑝 (𝑡) =

⎡⎣𝑋𝑝(𝑡)

𝐸𝑝(𝑡)

⎤⎦ , (4.82a)

𝑈 𝑎
* (𝑋𝑎

𝑝 (𝑡), 𝑡) =

⎡⎣𝐹 *(𝑋𝑎
𝑝 (𝑡), 𝑡) · ℎ̂*(𝑋𝑎

𝑝 (𝑡), 𝑡)

−𝑘 · [𝐹 *(𝑋𝑎
𝑝 (𝑡), 𝑡)]𝑛

⎤⎦ , (4.82b)

𝑉 𝑎
(︀
𝑋𝑎

𝑝 (𝑡), 𝑡
)︀

=

⎡⎣𝑉 (𝑋𝑝(𝑡), 𝑡)

𝑄̇(𝑋𝑝(𝑡), 𝑡)

⎤⎦ . (4.82c)

As before, Equation (4.81) is solved backward in time for any 0 ≤ 𝑡 ≤ 𝑡𝑓 to get the

optimal trajectory of the system.
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4.5.2 Collecting a Tracer Field

In the case of harvest-time optimal path planning when harvesting a single tracer

field, the harvesting dynamics are given by Equation (3.4). Considering a vehicle

with an initial state at 𝑥𝑎
𝑠 = [𝑥𝑠, 𝑐𝑠]

𝑇 (initial position and harvest state), the forward

reachable set evolution is determined by substituting the dynamics into Equation

(4.63):

𝜕𝜑(𝑥, 𝑐, 𝑡)

𝜕𝑡
+ max

𝐹,ℎ̂

{︂
𝐹 ℎ̂𝑇 · 𝜕𝜑

𝜕𝑥

}︂
+ 𝑉 (𝑥, 𝑡)𝑇 · 𝜕𝜑

𝜕𝑥
+ 𝛼 · 𝐶𝑓𝑖𝑒𝑙𝑑(𝑥, 𝑡) ·

𝜕𝜑

𝜕𝑐
= 0,

𝜑(𝑥, 𝑐, 𝑡 = 0) = 𝜑0, (4.83)

where, as before, 𝜑0 is the initial condition in the augmented state space given by the

signed distance function to the initial state 𝑥𝑎
𝑠 . The maximization of the Hamiltonian

in Equation (4.83) can be done analytically to produce the following maximizers:

ℎ̂*(𝑥, 𝑐, 𝑡) =

𝜕𝜑
𝜕𝑥

⃒⃒
(𝑥,𝑐,𝑡)⃦⃦⃦

𝜕𝜑
𝜕𝑥

⃒⃒
(𝑥,𝑐,𝑡)

⃦⃦⃦ , (4.84)

𝐹 *(𝑥, 𝑐, 𝑡) = 𝐹𝑚𝑎𝑥. (4.85)

Substituting the maximizers into Equation (4.83), we obtain the following PDE which

governs the forward reachable set evolution:

𝜕𝜑(𝑥, 𝑐, 𝑡)

𝜕𝑡
+ 𝐹𝑚𝑎𝑥

⃦⃦⃦⃦
𝜕𝜑

𝜕𝑥

⃦⃦⃦⃦
+ 𝑉 (𝑥, 𝑡)𝑇 · 𝜕𝜑

𝜕𝑥
+ 𝛼 · 𝐶𝑓𝑖𝑒𝑙𝑑(𝑥, 𝑡) ·

𝜕𝜑

𝜕𝑐
= 0. (4.86)

Following the completion of the forward solve, the Pareto front can be gener-

ated and the optimal path corresponding to a Pareto optimal solution of the form

(𝑡*𝑓 , 𝑐
*
𝑓 ) can be found by solving the backtracking ODE. Substituting the dynamics,
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the backtracking ODE is of the form

d𝑋𝑎
𝑝

d𝑡
= −𝑈 𝑎

* (𝑋𝑎
𝑝 (𝑡), 𝑡) − 𝑉 𝑎

(︀
𝑋𝑎

𝑝 (𝑡), 𝑡
)︀
, (4.87)

with the final condition 𝑋𝑎
𝑝 (𝑡 = 𝑡*𝑓 ) = [𝑥𝑓 , 𝑐

*
𝑓 ]𝑇 and where

𝑋𝑎
𝑝 (𝑡) =

⎡⎣𝑋𝑝(𝑡)

𝐶𝑝(𝑡)

⎤⎦ , (4.88a)

𝑈 𝑎
* (𝑋𝑎

𝑝 (𝑡), 𝑡) =

⎡⎣𝐹 *(𝑋𝑎
𝑝 (𝑡), 𝑡) · ℎ̂*(𝑋𝑎

𝑝 (𝑡), 𝑡)

0

⎤⎦ , (4.88b)

𝑉 𝑎
(︀
𝑋𝑎

𝑝 (𝑡), 𝑡
)︀

=

⎡⎣ 𝑉 (𝑋𝑝(𝑡), 𝑡)

𝛼 · 𝐶𝑓𝑖𝑒𝑙𝑑(𝑋𝑝(𝑡), 𝑡)

⎤⎦ . (4.88c)

4.6 Summary

In this chapter, we have developed the theory for our optimal harvest-time path

planning methodology. We started by first reviewing concepts from optimal control.

Specifically, the standard optimal control problem was first introduced, following

which we discussed how to solve this problem using the method of dynamic program-

ming. In the case of continuous time systems, the resulting value function was shown

to satisfy the Hamilton-Jacobi-Bellman PDE.

We then proceeded to the concept of forward reachability. We saw in particular

that reachability ultimately boiled down to an optimal control problem but for the

system of interest studied backwards in time. We then discussed how our multi-

objective harvest-time optimal path planning problem could be solved with forward

reachability. In particular, we discussed how the full set of Pareto optimal solutions

could be determined using the reachability front, and how optimal paths could be

computed by solving a backtracking ODE. Following this, we derived the governing

equations for particular forms of harvesting dynamics.
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Chapter 5

Numerical Implementation and

Discussion

As outlined in Chapter 4, our optimal path governing equations and the corresponding

methodology are composed of two primary parts. The first involves the evolution of

the reachability front and corresponding Pareto front, which we now denote as the

forward solve. The second step involves, once a Pareto optimal solution is chosen,

computing the corresponding optimal path which we now denote as the backward

solve. In this chapter, we dive into the details on how to numerically solve the

corresponding partial differential equations and ordinary differential equations that

are involved in these two steps. These numerical methods, together, form our path

planning algorithm.

5.1 Forward Solve

The full PDE governing the evolution of the reachability front in the augmented state

space 𝑥, given in Equation (4.63), is of the form

𝜕𝜑

𝜕𝑡
+𝐻(∇𝜑,𝑥, 𝑡) = 0, 𝜑(𝑥, 𝑡 = 0) = 𝜑0(𝑥). (5.1)
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As discussed in Chapter 4, Equation (5.1) falls into the class of Hamilton-Jacobi equa-

tions, and the existence, uniqueness and properties of viscosity solutions to this PDE

have been extensively studied due to its broad applicability to many different fields

(Osher and Fedkiw, 2005; Evans, 2010). Here, we consider a Hamiltonian function

which, in general, takes as input the components of the gradient ∇𝜑 ∈ R𝑑 and may be

a function of space 𝑥 ∈ R𝑑 and time. Note that throughout this chapter, the gradient

of 𝜑 will be represented compactly as ∇𝜑 rather than the notation used in Chapter

4.

Remark 2. Our focus in this subsection (Section 5.1) will be in solving a general

Hamilton-Jacobi equation given by Equation (5.1) in a 𝑑-dimensional space defined

by a state variable 𝑥. It should be understood that what we present is applicable to

the Hamilton-Jacobi equations resulting from harvest-time optimal path planning if we

consider 𝑥 to be the augmented state (i.e. if we consider 𝑥 to hold the combined the

physical state and the harvest state). In this case, the dimension "𝑑" we consider in

this chapter would have to be equal to sum of the physical and harvesting dimensions

(i.e. 𝑑 in this chapter does not only correspond to the physical dimension as was done

in Chapter 4). Moreover, due to this general treatment, any use of the word "space"

or "spatial" (when considering 𝑥 and its corresponding gradient components) should

be naturally understood to correspond to the augmented space when applying these

schemes to the harvest-time optimal path planning PDEs from Chapter 4.

Several options exist for numerically discretizing and computing a viscosity solu-

tion to a given Hamilton-Jacobi equation, ranging from Finite Volume methods to

even high-order discontinuous Galerkin methods (Lomax et al., 2013; Hesthaven and

Warburton, 2007). In this work, high-order finite difference methods have been used

to resolve solutions on structured, uniform, rectangular meshes. Our present code,

in particular, has been built on top of an open source toolbox of level set methods

(Mitchell, 2008). In what follows, we start by breaking down how to numerically

solve a general Hamilton-Jacobi equation with high-order finite differences using the

method of lines. In particular, we begin by outlining appropriate ways to perform the
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spatial discretization in forming what is known as the numerical Hamiltonian. Fol-

lowing this, we address options to use for the temporal discretization. The material

presented in this section draws heavily from (Osher and Fedkiw, 2005; Shu, 2007) and

we refer the reader to these references for further details.

5.1.1 Spatial Discretization: Monotone Schemes

Consider the general Hamilton-Jacobi equation given by (5.1). The semi-discretized

version of this PDE (i.e. discretizing only space) is of the form

𝜕𝜑𝑖

𝜕𝑡
+ 𝐻̂(∇+𝜑𝑖,∇−𝜑𝑖,𝑥𝑖, 𝑡) = 0, (5.2)

where 𝐻̂ is a numerical approximation of the Hamiltonian – called a numerical Hamil-

tonian. Here, 𝜑𝑖 is the value of the discretized field 𝜑(𝑥, 𝑡) at a given node 𝑖 in the state

space. Note that we denote by 𝜑𝑖 the value of 𝜑 at the node 𝑖 – it is not a vector. Fur-

thermore, 𝑖 corresponds to a 𝑑-dimensional multi-index of the form 𝑖 = (𝑖1, 𝑖2, ..., 𝑖𝑑),

i.e. a 𝑑-tuple of non-negative integers, corresponding to a node in the discrete finite-

difference mesh, while 𝑥𝑖 is the position of the node in this discrete state space.

Finally, ∇+𝜑𝑖 ∈ R𝑑 and ∇−𝜑𝑖 ∈ R𝑑 are one-sided discrete approximations to the spa-

tial derivatives at the corresponding node in the mesh. These space derivatives can

be, moreover, discretized using either first-order one-sided differencing or higher-order

accurate ENO or WENO schemes (Osher and Fedkiw, 2005). For instance, in the 2D

case, the first-order one-sided discrete approximations of the gradient at the (𝑖, 𝑗)

node in the mesh, ∇+𝜑(𝑖,𝑗) = [(𝜑+
𝑥 )(𝑖,𝑗), (𝜑

+
𝑦 )(𝑖,𝑗)]

𝑇 and ∇−𝜑(𝑖,𝑗) = [(𝜑−
𝑥 )(𝑖,𝑗), (𝜑

−
𝑦 )(𝑖,𝑗)]

𝑇 ,

are given as

(𝜑+
𝑥 )(𝑖,𝑗) =

𝜑(𝑖+1,𝑗) − 𝜑(𝑖,𝑗)

∆𝑥
, (𝜑−

𝑥 )(𝑖,𝑗) =
𝜑(𝑖,𝑗) − 𝜑(𝑖−1,𝑗)

∆𝑥
, (5.3)

and

(𝜑+
𝑦 )(𝑖,𝑗) =

𝜑(𝑖,𝑗+1) − 𝜑(𝑖,𝑗)

∆𝑦
, (𝜑−

𝑦 )(𝑖,𝑗) =
𝜑(𝑖,𝑗) − 𝜑(𝑖,𝑗−1)

∆𝑦
, (5.4)

where ∆𝑥 and ∆𝑦 correspond to the uniform spacing of the finite difference grid.

91



The numerical Hamiltonian, 𝐻̂, is required to be consistent with the Hamiltonian

𝐻 in the sense that

𝐻̂(∇𝜑𝑖,∇𝜑𝑖,𝑥𝑖, 𝑡) = 𝐻(∇𝜑𝑖,𝑥𝑖, 𝑡). (5.5)

𝐻̂ is furthermore said to be monotone if it is monotonically non-decreasing in the

∇−𝜑𝑖 arguments and monotonically non-increasing in the ∇+𝜑𝑖 arguments (Shu,

2007). Equation (5.2), equipped with a monotone numerical Hamiltonian, is denoted

as a monotone scheme (Shu, 2007).

Example: 2D Domain

To solidify the above concepts, consider a Hamilton-Jacobi equation to be

solved on a 2D spatial domain 𝑥 ∈ R2:

𝜕𝜑

𝜕𝑡
+𝐻(𝜑𝑥, 𝜑𝑦, 𝑥, 𝑦, 𝑡) = 0, 𝜑(𝑥, 𝑦, 𝑡 = 0) = 𝜑0(𝑥, 𝑦). (5.6)

The numerical Hamiltonian, taking as input the one-sided approxima-

tions of the spatial derivatives, is of the form 𝐻̂(𝜑−
𝑥 , 𝜑

+
𝑥 , 𝜑

−
𝑦 , 𝜑

+
𝑦 , 𝑥, 𝑦, 𝑡)

and is consistent provided that 𝐻̂(𝜑𝑥, 𝜑𝑥, 𝜑𝑦, 𝜑𝑦, 𝑥, 𝑦, 𝑡) = 𝐻(𝜑𝑥, 𝜑𝑦, 𝑥, 𝑦, 𝑡).

Furthermore, the numerical Hamiltonian is monotone provided that it is

monotonically non-decreasing in the first and third arguments, and mono-

tonically non-increasing in the second and fourth arguments.

Monotone schemes are key to numerically solving Hamilton-Jacobi equations as a

result of several beneficial properties. These properties include provable convergence

of numerical solutions to the viscosity solution of the corresponding Hamilton-Jacobi

equation (Shu, 2007). Furthermore, monotone schemes can be shown to be stable in

the 𝐿∞ norm (Shu, 2007). Several different monotone schemes have been rigorously

studied and tested in various applications, and we outline some of these in what

follows. For details, we refer to (Shu, 2007; Osher and Fedkiw, 2005).

92



Lax-Friedrichs Schemes

The Lax-Friedrichs scheme is a monotone scheme that approximates the numerical

Hamiltonian as follows:

𝐻̂𝐿𝐹 (∇+𝜑𝑖,∇−𝜑𝑖,𝑥𝑖, 𝑡) = 𝐻

(︂
∇+𝜑𝑖 + ∇−𝜑𝑖

2
,𝑥𝑖, 𝑡

)︂
−

𝑑∑︁
𝑘=1

𝛼𝑘

(︂
∇+

𝑘 𝜑𝑖 −∇−
𝑘 𝜑𝑖

2

)︂
.

(5.7)

In Equation (5.7), ∇+
𝑘 𝜑𝑖 and ∇−

𝑘 𝜑𝑖 correspond to the 𝑘𝑡ℎ component of the one-sided

spatial gradient approximations at the grid point 𝑖 in the mesh. The parameters 𝛼𝑘

are dissipation coefficients that control the amount of numerical viscosity and are

given as

𝛼𝑘 = max
𝑝∈𝐼

|𝐻𝑘(𝑝,𝑥𝑖, 𝑡)|, (5.8)

where 𝐻𝑘 is the partial derivative of the Hamiltonian with respect to the 𝑘𝑡ℎ compo-

nent of the gradient ∇𝜑. The maximization in Equation (5.8) is performed over the

gradient arguments in the Hamiltonian function. The domain, 𝐼, over which this max-

imization is performed is important. In the traditional Lax-Friedrichs scheme (also

commonly referred to as the Global Lax-Friedrichs scheme), this domain is given by:

𝐼 =

[︂
min

𝑖
(∇−

1 𝜑𝑖,∇+
1 𝜑𝑖),max

𝑖
(∇−

1 𝜑𝑖,∇+
1 𝜑𝑖)

]︂
×[︂

min
𝑖

(∇−
2 𝜑𝑖,∇+

2 𝜑𝑖),max
𝑖

(∇−
2 𝜑𝑖,∇+

2 𝜑𝑖)

]︂
... (5.9)

In other words, 𝐼 corresponds to a domain of the form 𝐼 = [𝑙1, 𝑟1]× [𝑙2, 𝑟2]...× [𝑙𝑑, 𝑟𝑑] ⊂

R𝑑, where the limits of this domain are dictated by the minimum and maximum values

of the one sided derivatives over the whole discrete domain, i.e. by performing the

minimization and maximization for the values of the one-sided derivatives over all the

grid points in the mesh (Osher and Fedkiw, 2005).

The value of the dissipation coefficients is critical to the quality of the solution

obtained. Increasing 𝛼𝑘 will help with ensuring stability of the scheme, however it will

also produce a more dissipative solution. It is therefore desirable to pick as small of a

value for 𝛼𝑘 as possible without inducing oscillations or other nonphysical phenomena
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into the numerical solution.

The decision to perform the maximization in Equation (5.9) over the whole do-

main for the traditional Lax-Friedrichs scheme typically produces large values for the

dissipation coefficients and correspondingly more dissipative solutions. To address

this, various variants of the Lax-Friedrichs scheme have been developed. Some of the

key ones are given as follows:

Local Lax-Friedrichs (LLF) Scheme The LLF scheme performs the maximiza-

tion for the dissipation coefficients at each grid point using local gradient information.

Specifically, the domain 𝐼 chosen for the maximization in Equation (5.8) is no longer

globally specified but varies locally from grid point to grid point. Consider in partic-

ular the computation of the dissipation coefficient 𝛼𝑚 at some grid point 𝑗. 𝐼𝑚,𝑗 , the

domain over which to perform the maximization, is once again of the form

𝐼𝑚,𝑗 = [𝑙1, 𝑟1] × [𝑙2, 𝑟2]...× [𝑙𝑚, 𝑟𝑚] × ...× [𝑙𝑑, 𝑟𝑑] ⊂ R𝑑, (5.10)

where now all limits are set identically to the Global Lax-Friedrichs scheme as shown

in Equation (5.9) except for 𝑙𝑚 and 𝑟𝑚 which are determined locally as

𝑙𝑚 = min
(︀
∇−

𝑚𝜑𝑗 ,∇+
𝑚𝜑𝑗

)︀
, 𝑟𝑚 = max

(︀
∇−

𝑚𝜑𝑗 ,∇+
𝑚𝜑𝑗

)︀
. (5.11)

The LLF scheme can additionally be shown to be a monotone scheme and it results

in less dissipation than its global counterpart (Shu, 2007).

Local Local Lax-Friedrichs (LLLF) Scheme The LLLF Scheme extends the

LLF scheme one step further by choosing the domain 𝐼 for the maximization in

Equation (5.8) using solely local information at a given grid point. Consider once

again the computation of the dissipation coefficient 𝛼𝑚 at a grid point 𝑗. The domain

𝐼𝑚,𝑗 to perform the maximization is once again of the form 𝐼𝑚,𝑗 = [𝑙1, 𝑟1]× [𝑙2, 𝑟2]...×
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[𝑙𝑑, 𝑟𝑑] ⊂ R𝑑, where now we have:

𝑙𝑖 = min
(︀
∇−

𝑖 𝜑𝑗 ,∇+
𝑖 𝜑𝑗

)︀
, 𝑖 = 1, 2, ...𝑑,

𝑟𝑖 = max
(︀
∇−

𝑖 𝜑𝑗 ,∇+
𝑖 𝜑𝑗

)︀
, 𝑖 = 1, 2, ...𝑑. (5.12)

While LLLF uses even less numerical dissipation, often times the dissipation values it

produces is not adequate enough to avoid numerical instabilities (Osher and Fedkiw,

2005). Furthermore, LLLF is not a monotone scheme (Shu, 2007).

Additional Schemes

Several other popular schemes have also been thoroughly studied. The Roe-Fix

Scheme and Godunov Scheme, in particular, are additional tried and tested ap-

proaches to solve general Hamilton-Jacobi equations (Osher and Fedkiw, 2005). Sev-

eral monotone schemes have also been developed for Hamiltonians of specific forms.

The Osher-Sethian scheme is one such option for cases where the Hamiltonians are

of the form 𝐻(𝜑𝑥, 𝜑𝑦) = 𝑓(𝜑2
𝑥, 𝜑

2
𝑦) (shown here for the 2D case) where 𝑓 is some

monotone function of each argument (Shu, 2007).

Remark: Level Set Methods

Plenty of work has also been done to apply these techniques to solve more specific

forms of Hamilton-Jacobi equations. One such class of problems falls in the field

of dynamically evolving surfaces. Indeed, it should be noted that our problem of

tracking the evolution of the reachability front comes under this class of problems.

While several options exist for surface tracking, Eulerian methods for solving this

problem have been shown to be quite robust. These methods, known as Level Set

Methods, look to evolve a surface by representing it implicitly as the isocontour (or

level set) of some function. The surface is then evolved by solving PDEs that govern

the dynamics of this function. The PDEs governing the dynamics, moreover, are

Hamilton-Jacobi equations. Several different types of dynamics have been studied

including motions of surfaces under basic convection, motion by mean curvature and
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surfaces moving normal to themselves, to name a few. We refer interested readers to

(Osher and Fedkiw, 2005; Sethian, 1999) for further details.

5.1.2 Temporal Discretization

The previous section outlined the spatial part of the discretization of Hamilton-

Jacobi PDEs using monotone schemes. This semi-discretized system requires a time-

marching scheme as do ODE systems. Here, we evolve each discrete solution value at

all nodes in the mesh and the semi-discretized system is of the general form

d𝜑

d𝑡
= 𝑓(𝑡,𝜑), (5.13)

where 𝜑 is an augmented vector holding the discrete values of 𝜑 on the mesh. Equation

(5.13) is an ODE system resulting from discretizing the spatial derivative operators

and incorporating the boundary conditions.

Numerous options exist for performing the temporal marching (Lermusiaux, 2015).

Higher-order in time temporal schemes are of course desirable in the case where ac-

curate numerical solutions are needed. In solving Hamilton-Jacobi equations, total

variation diminishing (TVD) Runge-Kutta (RK) methods in particular have shown

to be quite promising. These TVD RK schemes effectively ensure that no spurious

oscillations arise from higher-order accurate temporal discretizations provided oscil-

lations are not produced in the basic forward Euler building block of each scheme

(Osher and Fedkiw, 2005).

Prior to introducing these schemes, it is instructive to review TVD and total

variation bounded (TVB) schemes. Consider a discrete scalar solution 𝑢 in 1D. The

total variation of this solution is defined as (Shu and Osher, 1988):

𝑇𝑉 (𝑢) =
∑︁
𝑗

|𝑢𝑗+1 − 𝑢𝑗|. (5.14)
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A scheme is said to be TVD then provided that

𝑇𝑉 (𝑢𝑛+1) ≤ 𝑇𝑉 (𝑢𝑛), (5.15)

where we have used the standard convention of superscripts denoting the value of the

discrete solution at a given time step (Shu and Osher, 1988). Furthermore, a scheme

is said to be TVB in a time interval 0 ≤ 𝑡 ≤ 𝑇 if

𝑇𝑉 (𝑢𝑛) ≤ 𝐵, (5.16)

for all 𝑛 and ∆𝑡 satisfying 0 ≤ 𝑛 · ∆𝑡 ≤ 𝑇 and some 𝐵 that depends only on

𝑇𝑉 (𝑢0) (Shu and Osher, 1988). Natural extensions exist to additionally extend these

definitions to higher dimensions, and for further information on this and other details

we refer the reader to (Shu and Osher, 1988).

We now outline some standard explicit higher-order TVD RK schemes. A key as-

sumption in these schemes is that the forward Euler discretization of Equation (5.13)

is TVD. As we will see, higher-order schemes are defined by taking simple forward

Euler steps and then taking a convex combination of the intermediary solutions. The

resulting higher-order TVD RK scheme is then TVD provided the forward Euler step

itself is TVD (Osher and Fedkiw, 2005).

First-Order TVD RK

The first-order TVD RK scheme is simply identical to a forward Euler discretization.

In particular, considering 𝜑𝑛 at time 𝑡𝑛, the solution 𝜑𝑛+1 at the next time-step,

𝑡𝑛 + ∆𝑡, is given as (Osher and Fedkiw, 2005):

𝜑𝑛+1 − 𝜑𝑛

∆𝑡
= 𝑓(𝑡𝑛,𝜑𝑛). (5.17)
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Second-Order TVD RK

The second-order accurate TVD RK scheme involves first taking a forward Euler step

to time 𝑡𝑛 + ∆𝑡:
𝜑𝑛+1 − 𝜑𝑛

∆𝑡
= 𝑓(𝑡𝑛,𝜑𝑛). (5.18)

Then, a subsequent forward Euler step is completed to evolve the solution to 𝑡𝑛+2∆𝑡:

𝜑𝑛+2 − 𝜑𝑛+1

∆𝑡
= 𝑓(𝑡𝑛+1,𝜑𝑛+1). (5.19)

This is finally followed by an averaging step given by:

𝜑𝑛+1 =
1

2
𝜑𝑛 +

1

2
𝜑𝑛+2, (5.20)

which is a second-order accurate solution for 𝜑 at time 𝑡𝑛 + ∆𝑡 (Osher and Fedkiw,

2005).

Third-Order TVD RK

The third-order accurate TVD RK scheme involves first taking a forward Euler step

to time 𝑡𝑛 + ∆𝑡:
𝜑𝑛+1 − 𝜑𝑛

∆𝑡
= 𝑓(𝑡𝑛,𝜑𝑛). (5.21)

Then, a subsequent forward Euler step is completed to evolve the solution to 𝑡𝑛+2∆𝑡:

𝜑𝑛+2 − 𝜑𝑛+1

∆𝑡
= 𝑓(𝑡𝑛+1,𝜑𝑛+1). (5.22)

An averaging step is then done to get an approximation of 𝜑 at time 𝑡𝑛 + 1
2
∆𝑡:

𝜑𝑛+ 1
2 =

3

4
𝜑𝑛 +

1

4
𝜑𝑛+2. (5.23)

An Euler step is then taken again to yield

𝜑𝑛+ 3
2 − 𝜑𝑛+ 1

2

∆𝑡
= 𝑓(𝑡𝑛+

1
2 ,𝜑𝑛+ 1

2 ). (5.24)
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which gives an approximate solution for time 𝑡𝑛 + 3
2
∆𝑡. This is followed by a final

averaging step given as

𝜑𝑛+1 =
1

3
𝜑𝑛 +

2

3
𝜑𝑛+ 2

3 , (5.25)

which is a third-order accurate approximation for the solution 𝜑 at time 𝑡𝑛 + ∆𝑡

(Osher and Fedkiw, 2005).

Higher-Order Schemes

Additional fourth-order, fifth-order (and even higher order) accuracy TVD schemes

also exist, for which we refer the interested reader to (Osher and Fedkiw, 2005; Shu

and Osher, 1988).

5.1.3 Discussion

We now outline details regarding how these schemes were used to solve some of the

specific forms of the Hamilton-Jacobi equations encountered in this work:

Energy Harvesting The PDE governing the reachability front’s evolution in the

case of energy-time optimal path planning is given by Equation (4.80). To numeri-

cally solve this Hamilton-Jacobi PDE, we used the Local Lax-Friedrichs scheme. For

computing the dissipation coefficients needed in the scheme, a closed form solution

for the maximization of the partial derivatives of the Hamiltonian is unfortunately

not available. To remain computationally efficient, in this work a simple grid search

has been used to solve the maximization problem for obtaining an estimate of the dis-

sipation parameter needed for the Local Lax-Friedrichs scheme. This has not caused

any issues and has proved to be quite effective as we show in the following examples.

Of course, we note that in the case of numerical instabilities, the artificial dissipation

can be increased with the drawback of obtaining a correspondingly more dissipative,

albeit stable, solution. We plan to investigate more robust approaches to compute

the dissipation coefficients in future works.
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Collecting a Tracer Field In the case of planning paths for harvesting a tracer

field, the reachability front satisfies the Hamilton-Jacobi PDE given by Equation

(4.86). While Lax-Friedrichs schemes could be used to solve this PDE, an alternate

approach was followed. In particular, this PDE can be noted to be effectively of the

same form as that presented in (Osher and Sethian, 1988), which describes an interface

with motion in the normal direction along with an external velocity field (Osher and

Fedkiw, 2005; Sethian, 1999). Using the normal direction front propagation PDE

(Osher and Sethian, 1988) as reference, and following (Sethian, 1999), Equation (4.86)

was discretized by treating the normal motion term 𝐹𝑚𝑎𝑥 ‖∇𝜑‖ using a Godunov

scheme, as outlined in (Osher and Fedkiw, 2005), while the passive advection term

was discretized through upwinding.

5.1.4 Additional Numerical Details

Boundary Conditions

For boundaries of the physical domain (𝑥𝑖 = 𝑥𝑖,𝑚𝑖𝑛 or 𝑥𝑖 = 𝑥𝑖,𝑚𝑎𝑥, 𝑖 = 1, ..., 𝑑𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙)

open to inlets/outlets or side walls, zero normal gradient (Neumann) boundary condi-

tions were used as described in (Lolla et al., 2014b). Islands, obstacles and forbidden

regions were furthermore treated by following the masking procedure outlined in

(Lolla et al., 2014b, 2015). Specifically, at all grid points in the physical space lying

in islands, obstacles or forbidden regions, the dynamics of the value function at those

nodes was set to
d𝜑𝑖

d𝑡
= 0, (5.26)

for the semi-discretized system. For boundaries in the harvesting domain, zero Neu-

mann boundary conditions were used at the minimum harvest value (𝑐 = 𝑐𝑖,𝑚𝑖𝑛,

𝑖 = 1, ..., 𝑑ℎ) since, by setting 𝑐𝑖,𝑚𝑖𝑛 = 0, 𝑖 = 1, ..., 𝑑ℎ, this allowed the ability to

enforce the non negativity condition 𝐶𝑝(𝑡) > 0, ∀𝑡 in Equation (3.5). At the max

harvesting state boundaries in the state space (𝑐 = 𝑐𝑖,𝑚𝑎𝑥, 𝑖 = 1, ..., 𝑑ℎ) care was

needed based on the harvesting dynamics considered. For the cases considered in this

particular work, we have the following:
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Energy Harvesting In the case of the harvesting dynamics given by Equation (3.3)

for energy harvesting, the vehicle’s "filled battery" state must be modelled for the

max harvest state boundary in the state space. This was enforced by masking along

the energy domain, analogously to the time-domain procedure described in (Lolla

et al., 2014b, 2015) for the case of islands, obstacles and forbidden regions). That is,

energy states above the filled battery state were considered to be a forbidden region

in the augmented state space. As a result of this masking procedure, any arbitrary

Dirichlet or Neumann boundary condition could be used at the 𝑐 = 𝑐𝑚𝑎𝑥 boundary

in the energy harvest dimension since the mask resulted in it having no effect on the

overall solution.

Collecting a Tracer Field For collecting a tracer field, the harvesting dynamics

were given by Equation (3.4). Here, since the vehicle could only increase its harvesting

state by collecting until its max capacity (i.e. the harvesting state could not decrease),

it was sufficient to use a zero Neumann boundary condition at the boundary of the

max harvest value in the state space.

Reinitialization

As outlined in Chapter 4, our path planning methodology is built around tracking

the evolution of the reachability front. While the exact value of the value function 𝜑

used to encode the reachable set has physical significance, ultimately the zero level set

of this value function is all that is needed to solve our multi-objective path planning

problem of interest. Due to this, it is often convenient to employ numerical "remedies"

that help with numerically evolving this zero level set. One of these techniques is

reinitialization (Lolla et al., 2012, 2014b,c).

As discussed in Chapter 4, the value function 𝜑 is initialized always as a signed

distance function from an initial set of interest. Throughout the forward evolution,

however, this function will naturally drift away from this signed distance property.

Specifically, 𝜑 can develop noisy features and steep gradients that are challenging

to handle using finite-difference schemes. As a result of this, it is recommended to
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use reinitialization, which involves occasionally resetting 𝜑 to be a signed distance

function from the 𝜑 = 0 isocontour throughout a solve. A reinitialization procedure

aims to effectively keep, at the time it is applied, the 𝜑 = 0 isocontour fixed while

adjusting all the 𝜑 < 0 and 𝜑 > 0 regions so that the updated values there form a

signed distance from the 𝜑 = 0 level set. While numerous approaches for this have

been proposed (Osher and Fedkiw, 2005), one of the more effective ones employs

solving what is known as the reinitialization equation, given as

𝜕𝜑

𝜕𝑡
+ 𝑆(𝜑0) ·

(︀
|∇𝜑| − 1

)︀
= 0, (5.27)

to steady state. In Equation (5.27), 𝑆(𝜑0) is a sign function taken as 1 wherever

𝜑0 > 0, −1 where 𝜑0 < 0 and 0 on the interface (𝜑 = 0). Furthermore, 𝜑0 corresponds

to the initial function to be reinitialized. At steady state 𝜑 no longer changes, thus

implying 𝜕𝜑
𝜕𝑡

= 0. This, in turn, reduces Equation (5.27) to 𝑆(𝜑0) ·
(︀
|∇𝜑|−1

)︀
= 0 from

which it follows that 𝜑 is indeed a signed distance function with the same isocontour

𝜑 = 0 as the original function 𝜑0 = 0 as desired.

In a full forward solve, a user can decided to perform the reinitialization proce-

dure at a certain frequency of time steps of their choice. In discretizing and solving

Equation (5.27), Godunov schemes are recommended to discretize the normal motion

terms. Additionally, low accuracy discretizations of derivatives in space and time

are also often sufficient in solving the given equation, thus making the procedure

numerically tractable.

For many more details on reinitialization, its benefits and the nuances regarding

its implementation, we refer the reader to (Osher and Fedkiw, 2005).

5.2 Backward Solve

Once the forward solve has been used to generate the Pareto front, the backtracking

equation, Equation (4.65), is solved to determine the final optimal path for a given

Pareto optimal solution. This is a system of ODEs which can be discretized and
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solved using standard explicit or implicit schemes, as outlined in (Lolla et al., 2014b;

Kulkarni and Lermusiaux, 2020).

In this work, an explicit first order time integration scheme has been used to

backtrack all optimal paths. Denoting the augmented state of the vehicle at time 𝑡

as (𝑋𝑎
𝑝 )𝑡, the discretized form of Equation (4.65) is given as

(𝑋𝑎
𝑝 )𝑡+Δ𝑡 − (𝑋𝑎

𝑝 )𝑡

∆𝑡
= −𝑈 𝑎

* (𝑡+ ∆𝑡) − 𝑉 𝑎
(︀
(𝑋𝑎

𝑝 )𝑡+Δ𝑡, 𝑡+ ∆𝑡
)︀
. (5.28)

It is important to note that Equation (5.28) is indeed explicit, as the backtracking

equation is solved backward in time starting from the final state (𝑋𝑎
𝑝 )𝑡𝑓 at the final

time 𝑡𝑓 . Therefore, at each time step, (𝑋𝑎
𝑝 )𝑡+Δ𝑡 is known whereas (𝑋𝑎

𝑝 )𝑡 is the

unknown to be computed. Throughout the backtrack, the state must remain on the

reachability front at all times, however numerical errors have a tendency to pull it off

the front. This is an issue which can be tackled by additionally projecting the state

onto the reachability front at each timestep (Lolla et al., 2014b) or ideally by using

dual schemes (Kulkarni and Lermusiaux, 2020).

5.3 Summary

In this chapter, we have presented the numerical algorithms needed to numerically

solve the PDEs and ODEs that arise in our path planning method. Specifically, we

addressed how monotone schemes can be used to find viscosity solutions to Hamilton-

Jacobi equations. The Lax-Friedrichs scheme, a particular monotone scheme, was

reviewed in detail. We then addressed relevant numerical details to solve specific forms

of Hamilton-Jacobi equations arising for different harvesting applications. Finally, we

showed how optimal paths for chosen Pareto optimal solutions can be computed by

solving the backtracking ODE using explicit time-stepping schemes.
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Chapter 6

Applications

In this chapter, we illustrate our theory and schemes on numerical cases and simula-

tions. In the first example, we consider a canonical case of a vehicle having to harvest

a field in a halfspace region prior to reaching the destination. This case admits a

semi-analytical solution which therefore makes it useful to validate our methodology.

In the second case, we consider energy-time optimal path planning for a vehicle nav-

igating in a double-gyre flow field representative of near-surface ocean circulation at

mid-latitude regions. We follow this by considering an application to path planning

for optimal harvesting of harmful algae blooms. Finally, we look at applying our

approach to a next generation approach for optimal farm fishing using autonomously

moving aquaculture farms.

In all applications that follow, when not specified, all values should be assumed

to be dimensionless.

6.1 Harvest-Time Optimal Path Planning: Halfspace

Harvest Region Benchmark Case

In this section, we consider the case of harvest-time optimal path planning in a simple

idealized case of a vehicle navigating in a steady 2D physical space. In this idealized

case, all values provided are dimensionless. We consider a simple harvesting dynamics

105



Figure 6-1: A schematic showing the parameters for the benchmark case of interest.
This case, in particular, consists of a vehicle navigating through a domain with a
steady harvest field covering a halfspace.

equation of the form of Equation (3.4), restated here for convenience,

d𝐶𝑝

d𝑡
= 𝛼 · 𝐶𝑓𝑖𝑒𝑙𝑑(𝑋𝑝(𝑡), 𝑡), (6.1)

where a vehicle is tasked with harvesting some tracer field. The harvest region covers

the halfspace defined by {(𝑥, 𝑦) | 𝑥 ≤ 0.5} and is steady. The vehicle is furthermore

tasked with navigating from a start point at position (𝑥, 𝑦) = (0.25, 0.25) to the fixed

target at (𝑥, 𝑦) = (0.75, 0.75) while travelling at a speed less than or equal to its max

of 𝐹𝑚𝑎𝑥 = 0.5. In the harvest region, the harvest field is given by a constant value

of 𝐶𝑓𝑖𝑒𝑙𝑑(𝑥, 𝑡) = 𝑐𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝑅𝑒𝑔𝑖𝑜𝑛 = 0.5, and the collection rate for the vehicle is set to

a constant value of 𝛼 = 1.0 (Figure 6-1 summarizes all these case parameters). The

vehicle starts with an initial harvest state of 0. Furthermore, we reiterate that we

aim to solve the multi-objective path planning problem, given by Equation (3.5), of

both maximizing the total amount of the field harvested while also minimizing the

time of arrival.

Semi-analytical solution The halfspace case provides a good benchmark as it

admits a semi-analytical solution that can be used to test the validity of our method-

ology. We thus start by outlining how to determine this semi-analytical solution. For
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this problem of interest, the augmented state space is given by (𝑥, 𝑦, 𝑐), where 𝑐 cor-

responds to the harvested state of the vehicle (i.e. the amount of material harvested).

Consider an initial spherical reachability front centered at (𝑥𝑐, 𝑦𝑐, 𝑐𝑐) in the augmented

state space with initial radius 𝑟0 (the initial reachable set is given by the interior of

this sphere). In this case of interest, we have that (𝑥𝑐, 𝑦𝑐, 𝑐𝑐) = (0.25, 0.25, 0) so that

the initial reachable set is given by a hemisphere (since in the augmented state space,

we consider only harvest states satisfying 𝑐 ≥ 0). Our aim, recall, is to determine

Pareto optimal paths originating from anywhere in this reachable set to the destina-

tion that minimize travel time and maximizes the final harvested state of the vehicle.

Intuitively, it is clear that any such Pareto optimal path must originate from a state

on the boundary of the reachability set – the reachability front. The unknown start

point of the path from the spherical front can be parametrized using two degrees of

freedom as:

𝑥𝑖(𝛼, 𝛽) = 𝑥𝑐 + 𝑟0 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛼)

𝑦𝑖(𝛼, 𝛽) = 𝑦𝑐 + 𝑟0 𝑠𝑖𝑛(𝛽) 𝑠𝑖𝑛(𝛼)

𝑐𝑖(𝛼, 𝛽) = 𝑐𝑐 + 𝑟0 𝑐𝑜𝑠(𝛽). (6.2)

The variables 𝛼 and 𝛽 correspond to the angular positions of the start point on the

front, where 𝛼 denotes the polar angle and 𝛽 the azimuthal angle as defined in the

standard spherical coordinate system.

We look to build now the set of Pareto optimal solutions Θ𝑝 of the form (𝑡*𝑓 , 𝑐
*
𝑓 )

– where 𝑡*𝑓 is the arrival time of the vehicle and 𝑐*𝑓 is the final harvest state of the

vehicle – as follows. We will consider a fixed 𝑐*𝑓 = 𝛾𝑐 value for the final harvest state

and then attempt to find a time-optimal path for the vehicle that attains this state.

By fixing the final harvest state, we are able to reduce the number of objectives to

formulate a single objective optimization problem involving just minimizing the travel

time. If a feasible path is found, corresponding to an arrival time of 𝑡*𝑓 = 𝛾𝑡, then

(𝑡*𝑓 , 𝑐
*
𝑓 ) = (𝛾𝑡, 𝛾𝑐) is a Pareto optimal solution belonging to the set Θ𝑝. This process

is then repeated for larger and larger 𝛾𝑐 values in order to build the full Pareto front
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for the multi-objective optimization problem.

Consider now the determination of the time-optimal path for a fixed final harvest

state value of 𝑐*𝑓 = 𝛾𝑐. The optimal path of the vehicle can be found by considering

its journey through the two main segments of the domain – in the harvesting region

and after exiting the region. Throughout its journey, as the vehicle aims to reach

in a time-optimal manner, it will travel at its max speed. The path through the

harvesting region is dictated principally by the specified final harvest state value 𝛾𝑐.

In particular, the total length of the path through this region must be given by

𝑐𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝑅𝑒𝑔𝑖𝑜𝑛 · (𝐿𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝑅𝑒𝑔𝑖𝑜𝑛/𝐹𝑚𝑎𝑥) = 𝛾𝑐,

𝐿𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝑅𝑒𝑔𝑖𝑜𝑛 =
𝛾𝑐 · 𝐹𝑚𝑎𝑥

𝑐𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝑅𝑒𝑔𝑖𝑜𝑛

. (6.3)

As we will see, this will be a straight line path in the harvest region. After exiting

the harvesting region at 𝑥 = 0.5, the vehicle no longer can harvest any material and

so it proceeds to take a time-optimal path to the destination. This will be given by

a straight line path from the point of exit to the destination. Thus, the final optimal

path is composed of two straight line paths in each region. To determine this optimal

path, denote the y-coordinate for the point of exit from the harvesting region as 𝑦𝑚.

If the start point on the reachability front is given by Equation (6.2), we have that

the total time to reach the destination is given as

𝑡𝑓 (𝛼, 𝛽, 𝑦𝑚) =

⃦⃦
[0.5, 𝑦𝑚]𝑇 − [𝑥𝑖(𝛼, 𝛽), 𝑦𝑖(𝛼, 𝛽)]𝑇

⃦⃦
+
⃦⃦

[𝑥𝑓 , 𝑦𝑓 ] − [0.5, 𝑦𝑚]𝑇
⃦⃦

𝐹𝑚𝑎𝑥

. (6.4)

The harvested state at the destination is further given as

𝑐𝑓 (𝛼, 𝛽, 𝑦𝑚) =

⃦⃦
[0.5, 𝑦𝑚]𝑇 − [𝑥𝑖(𝛼, 𝛽), 𝑦𝑖(𝛼, 𝛽)]𝑇

⃦⃦
𝐹𝑚𝑎𝑥

· 𝑐𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝑅𝑒𝑔𝑖𝑜𝑛. (6.5)

Given Equations (6.4) and (6.5), the final optimization problem to determine the
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Figure 6-2: (Left) Candidate optimal paths for the halfspace region. Shown in red
is a representative optimal path of the vehicle through the space. Shown in green
is the form of the path that will yield the minimum possible final harvest state 𝑐*𝑓
in the set of Pareto optimal solutions. (Right) The non-uniqueness of solutions for
higher values of final harvest states. After a solution from the class of "straight line"
paths (from Equation (6.6)) returns a 𝑦𝑚𝑜𝑝𝑡 > 𝑦𝑓 (such as the orange path shown),
the time optimal path is no longer unique. The true optimal path will belong to the
class of solutions that all exit at 𝑦𝑚,𝑜𝑝𝑡 = 𝑦𝑓 , but which may not have straight line
paths in the harvesting region. Shown in blue in the sub-figure are just a few of these
non-unique optimal solutions for curved paths where the vehicle travels still at its
max speed of 𝐹𝑚𝑎𝑥.

optimal path is as follows:

minimize
𝛼, 𝛽, 𝑦𝑚

𝑡𝑓 (𝛼, 𝛽, 𝑦𝑚)

subject to 𝑐𝑓 (𝛼, 𝛽, 𝑦𝑚) = 𝛾𝑐

. (6.6)

As outlined earlier, the full Pareto front for the multi-objective problem may be

constructed by solving the optimization problem given by Equation (6.6) for different

values of 𝛾𝑐.

A few subtleties must be addressed about the semi-analytical solution. Firstly,

the minimum possible final harvested state 𝑐𝑓 is given when 𝑦𝑚 = 𝑦𝑠, 𝛼 = 0, 𝛽 = 𝜋
2
.

This corresponds to the minimum possible final harvest state 𝑐*𝑓 in the set of Pareto

optimal solutions. Secondly, some attention must be paid to the case when the output

to the optimization problem in Equation (6.6) returns a solution 𝑦𝑚,𝑜𝑝𝑡 > 𝑦𝑓 . In this

case, the optimal solution would seem to indicate that the vehicle would need to exit

above the line given by 𝑦 = 𝑦𝑓 in order to harvest the requisite amount to attain
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the specified final harvest state of 𝛾𝑐. In fact, the optimal solution is not in the class

of "straight path" solutions, and the optimal path is not unique for this case. Let

the length of the first leg of the journey (in the harvesting region) of the numerically

computed path with 𝑦𝑚,𝑜𝑝𝑡 > 𝑦𝑓 (and start point (𝑥𝑖(𝛼𝑜𝑝𝑡, 𝛽𝑜𝑝𝑡), 𝑦𝑖(𝛼𝑜𝑝𝑡, 𝛽𝑜𝑝𝑡))) be given

by 𝑙1. Then, the class of optimal solutions contains the set of all paths, originating

from (𝑥𝑖(𝛼𝑜𝑝𝑡, 𝛽𝑜𝑝𝑡), 𝑦𝑖(𝛼𝑜𝑝𝑡, 𝛽𝑜𝑝𝑡)), that exit perpendicularly to the halfspace region

but have a length of 𝑙1 in the harvesting region (the path in the harvesting region

need not be straight). The set of optimal paths further contains all other paths

which originate from the within the reachable set that allow the vehicle to attain a

harvest state value of 𝛾𝑐 when exiting at (𝑥, 𝑦) = (0.5, 𝑦𝑓 ), that is, perpendicularly to

the halfspace region (these paths may not require the vehicle to travel at a constant

maximum speed of 𝐹𝑚𝑎𝑥). Thus, the true minimum time to reach, for cases when

the optimization problem given by Equation (6.6) is solved to yield 𝑦𝑚,𝑜𝑝𝑡 > 𝑦𝑓 , is

determined as follows. First, one uses the returned incorrect "straight path" solution

to find the required time to be spent in the harvest region. The travel time for this leg

of the journey is then added to the travel time of the straight line path outside of the

harvesting region for the vehicle traveling from (𝑥, 𝑦) = (0.5, 𝑦𝑓 ) to (𝑥, 𝑦) = (𝑥𝑓 , 𝑦𝑓 )

at its max speed 𝐹𝑚𝑎𝑥. This is the true minimum time to reach with the required

final harvest state value. These details are all outlined in the schematic shown in

Figure 6-2.

Numerical solution To numerically solve this benchmark path planning problem,

the augmented state space was first discretized using 200 nodes along all three coor-

dinate axes (𝑥, 𝑦 and 𝑐). For the forward solve, a second order ENO scheme was used

to compute all spatial derivatives and a second order TVD Runge-Kutta scheme was

used to integrate in time using a fixed time step size of ∆𝑡 = 5 × 10−4. An initial

reachability front radius of 𝑟0 = 0.05 was used. Furthermore, a first order explicit

scheme was used to backtrack the optimal paths corresponding to different Pareto

optimal solutions chosen.

Figures 6-3 and 6-4 show the time evolution of the reachability front from the
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Figure 6-3: Snapshots of the reachability front evolution in the augmented state state
space for the benchmark halfspace case.

forward solve. Figure 6-3 shows a 3D isometric view of the front in the augmented

state space, while Figure 6-4 depicts the contours of this front (along the harvest

axis) when projected onto the physical space. The front can be seen to grow along

the harvesting dimension in the harvest region as expected. This is representative

of the vehicle being capable of harvesting material in this region. Upon leaving the
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Figure 6-4: Snapshots of the reachability front evolution for the benchmark halfspace
case, visualized using projections of its contours onto the physical space. Specifically,
shown are projections of contours of the reachability front at different harvest state
values.

halfspace harvest region, a "waterfall" type feature develops as the front enters the

region where nothing is to be harvested.

Figure 6-5a depicts the Pareto front for this case. As can be seen, the numeri-
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(a) The Pareto front. (b) Pareto optimal paths.

Figure 6-5: Numerical and semi-analytical results for the benchmark halfspace case.
These can be seen to be almost identical for both the computed Pareto front as well
the different backtracked optimal paths (for three different solutions from the Pareto
front).

cally computed front, determined using our methodology outlined in Chapter 4, is

effectively identical to the semi-analytical solution, which was determined by solving

the optimization problem given by Equation (6.6) numerically using SciPy (Virtanen

et al., 2020). Three different Pareto optimal solutions from the Pareto front were fur-

ther selected and the corresponding optimal paths were backtracked. These solutions

were chosen for cases where the optimal path was unique (i.e. when 𝑦𝑚,𝑜𝑝𝑡 ≤ 𝑦𝑓 ). The

resulting optimal paths, shown in Figure 6-5b, can be seen to be nearly identical to

those obtained semi-analytically.
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6.2 Energy-Time Optimal Path Planning: Double-

Gyre Ocean Circulation

In this case we consider energy-time optimal path planning in a highly dynamic flow

field. The time-dependent environment of interest consists of an idealized double-

gyre flow. This flow simulates near-surface ocean circulation at mid-latitude regions,

where easterlies and trade winds in the northern hemisphere drive a cyclonic and

an anticyclonic gyre with the zonal jet in between, e.g. an idealized version of the

Gulf Stream (Lolla et al., 2014b). The fluid flow field is furthermore governed by the

non-dimensional PDEs

𝜕𝑢

𝜕𝑡
=
𝜕𝑝

𝜕𝑥
+

1

Re
∆𝑢− 𝜕(𝑢2)

𝜕𝑥
− 𝜕(𝑢𝑣)

𝜕𝑦
+ 𝑓𝑣 + 𝑎𝜏𝑥,

𝜕𝑣

𝜕𝑡
=
𝜕𝑝

𝜕𝑦
+

1

Re
∆𝑣 − 𝜕(𝑢𝑣)

𝜕𝑥
− 𝜕(𝑣2)

𝜕𝑦
− 𝑓𝑢+ 𝑎𝜏𝑦,

0 =
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
, (6.7)

which are solved numerically using our modular finite volume framework (Ueckermann

and Lermusiaux, 2012). For the case shown, a flow Reynolds number of 150 was used

with 𝑓 = 𝑓 + 𝛽𝑦, the non-dimensional Coriolis coefficient, and 𝑎 = 103, the strength

of the wind stress. In non-dimensional terms, we use 𝑓 = 0, 𝛽 = 103. The flow in the

basin is forced by an idealized steady zonal wind stress, 𝜏𝑥 = − 1
2𝜋
𝑐𝑜𝑠 2𝜋𝑦 and 𝜏𝑦 = 0.

Snapshots of the flow field at three non-dimensional times are shown in Figure 6-6. In

addition, the environment is assumed to consist of a non-dimensional, steady, input

energy flux field, 𝑄̇(𝑥, 𝑡), shown in Figure 6-7.

The autonomous surface vehicle was tasked with navigating from the start point

shown at (𝑥𝑠, 𝑦𝑠) = (0.2, 0.2) to a fixed target point (𝑥𝑓 , 𝑦𝑓 ) = (0.8, 0.8). We further-

more considered in this problem a single additional harvesting state: the vehicle’s

energy. Specifically, the vehicle was equipped with energy harvesting capabilities

with its energy dynamics governed by Equation (3.3). A cubic energy usage model of

the form 𝑊̇ (𝐹 ) = 0.1 ·𝐹 3 was used for Equation (3.3). The vehicle could additionally
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Figure 6-6: Snapshots of the flow field for the double-gyre case at three different non-
dimensional times. Shown are the start point (circle) and end point (star) as well as
the non-dimensional velocity magnitude plotted in the background.

control its heading ℎ̂ and non-dimensional speed 𝐹 , with the max possible value of

the speed set at 𝐹𝑚𝑎𝑥 = 4. The path planning problem then, we reiterate, was for the

vehicle to simultaneously minimize the travel time and maximize the energy it had

remaining upon reaching the destination, see Equation (3.5). This problem could be

representative of a long-endurance autonomous surface vehicle, equipped with solar

harvesting capabilities, navigating in a highly dynamic ocean environment with a

solar flux input field (Figure 6-7).

To numerically solve the path planning problem, the augmented (𝑥, 𝑦, 𝑒) state

space was first discretized using 75 nodes along all three coordinate axes. To evolve

the reachability front in the forward solve, a second order ENO scheme was used to

compute all spatial derivatives and a second order TVD Runge-Kutta scheme was

used to integrate in time using a fixed time step size of ∆𝑡 = 5× 10−5. Furthermore,

as in the first case, a first order explicit scheme was used to backtrack the optimal

paths corresponding to different Pareto optimal solutions.

Depicted in Figure 6-8 is the time evolution of the reachability front in the aug-

mented (𝑥, 𝑦, 𝑒) state-space. To visualize the progression of the 3D reachability front,

shown in the figure are the contours of the front at various energy values projected

onto the physical domain. It can be noted that the strong flow field has a significant

effect on the propagation of the reachability front, as evidenced by its motion at ear-

lier times where it can be seen to flow in a circular pattern as a result of the gyre (refer

to the snapshots from non-dimensional times 0.01 to 0.05). The front furthermore
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Figure 6-7: The velocity vector field at the initial time 𝑡 = 0 with the non-dimensional,
steady, input energy flux field 𝑄̇(𝑥, 𝑡) shown in the background.

can be seen to expand fastest in directions in which it is assisted by the flow field

(refer to the snapshot at non-dimensional time 0.08). When the reachability front

enters the high energy input region at the bottom right corner of the domain (refer to

the snapshots from non-dimensional times 0.12 to 0.20), the front expands along the

energy dimension, which is representative of the vehicle being able to absorb energy.

Figure 6-9a displays the set of Pareto optimal solutions of the form (𝑡*𝑓 , 𝑒
*
𝑓 ) for

this multi-objective energy-time path planning problem. The dotted red curve in the

figure was first obtained by continuously measuring the maximum energy value of the

reachability front at the destination as a function of time. This information could

then be processed using the method outlined in Section 4.4.3 to compute the Pareto

front. From this Pareto front, three different Pareto optimal solutions with increasing

energy at destination values were considered, with the corresponding optimal path

and optimal vehicle control sequence obtained by solving the backtracking Equation

(4.81). Figure 6-9b shows the optimal path through the domain obtained for these

chosen Pareto optimal solutions. Furthermore, the optimal speed function for each

path is shown in Figure 6-9c, while the time evolution of the energy state of the vehicle
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Figure 6-8: Snapshots at different times depicting the reachability front evolution in
the augmented (𝑥, 𝑦, 𝑒) state space for the double-gyre case. Shown is the projection
of the reachability front at different energy values.

for each path is shown in Figure 6-9d. Each solution can be seen to have optimal

paths that are quite similar near the start point, as they all perform a loop due to

the influence of the gyre. Following this, the optimal solution with the lower final

energy – optimal path (a) – uses a higher vehicle speed which allows for a more direct
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(a) (b)

(c) (d)

Figure 6-9: Numerical results obtained for the multi-objective energy-time path plan-
ning problem. Shown in (6-9a) is the Pareto front. Additionally, for three different
solutions from this Pareto front, we show in (6-9b) the corresponding optimal path
through the physical space (velocity magnitude is shown in the background at the
time each vehicle is at the the yellow points shown along their respective paths), in
(6-9c) the optimal vehicle speed function 𝐹 *(𝑡) and in (6-9d) the energy evolution of
the vehicle for the given optimal path.

path to the target. For the other two solutions, their higher energy at destination

values require the vehicles to use a lower speed, in order to conserve energy, as well

as navigate into the high energy input region in order to harvest energy from the

environment. Specifically, optimal path (b) can be seen to make two trips into the

energy input region, while optimal path (c) takes three. We emphasize, furthermore,
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that these computed optimal paths are globally optimal – for each (𝑡*𝑓 , 𝑒
*
𝑓 ) pair, no

other path exists that allows the vehicle to reach the destination faster while reaching

with the same energy.

6.3 Optimal Harmful Algae Bloom Collection

The material that follows in this section has been adapted from (Bhabra et al., 2020).

We now present cases to demonstrate how our methodology can be applied to a

highly relevant issue: the control of harmful algae. Harmful algae blooms (HABs) oc-

cur due to a range of reasons including rising temperatures and nutrient-rich wastew-

ater runoff (Schmale et al., 2019), leading to large colonies of micro or macro algae

growing at rapid rates. HABs have been observed in all 50 states in the U.S., in

large freshwater lakes, small inland lakes, rivers, reservoirs, and marine coastal areas

and estuaries. These HABs can create low-oxygen dead zones (Griffith and Gob-

ler, 2020; Joyce S, 2000), release toxins that are harmful to humans and animals,

displace indigenous species, alter habitats and ecosystems (Anderson, 2009; Flynn

and McGillicuddy, 2018), and lead to millions of dollars of economic losses each year

through public health effects, commercial fishery impacts, medical expenses, and lost

work days (Stauffer et al., 2019). Our optimal path planning methodology can help

in not only monitoring, but also controlling HABs by actively collecting/harvesting

these fields.

The dynamics of HAB growth is not fully understood. To enhance incomplete

models, common forecasts utilize satellite and in-situ data (Stauffer et al., 2019).

Traditional in-situ sampling methods are reactive, slow to respond, and operate with

fixed time and spatial sampling grids, leading to calls to use AUVs for improved data

collection (Robbins et al., 2006; Schofield et al., 2007; Denniston et al., 2019). These

AUVs would greatly benefit from our optimal theory.

In addition to modeling and monitoring, many control strategies for HABs have

been proposed. These include flocculation, sediment resuspension, burial, harvest-

ing, water column mixing, biological control, and genetic engineering as well as the
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targeted release of allelochemicals, biosurfactants, hydrogen peroxide, copper sulfate,

and silica (Kidwell, 2015; Anderson, 2009; Pal et al., 2020). Once areas where HABs

are likely or have begun growing are known, our optimal path planning would de-

liver control strategies in an efficient and cost-effective manner to at-risk areas and

so reduce ecological and economic damage.

In the following, we showcase our optimal harvesting as a control strategy to

tackle a simplified simulated form of HABs, using autonomous surface vehicles to

collect such dynamic algae fields time-optimally. In all cases, the algae growth and

decay is modeled along with its advection due to the environmental flow field. We

start by outlining some details regarding the methodology for this application, in-

cluding relevant information about the ocean dynamics model used as well as the

algae dynamics model. We then showcase the results obtained when applying this

approach to two cases: (i) collection of algae in an idealized double-gyre flow and

(ii) collection of fields biologically modeled in the Massachusetts (Mass.) Bay. This

work and results have also been published within the joint manuscript (Bhabra et al.,

2020), as part of a collaborative MSEAS group contribution.

6.3.1 Case Methodology Details

Dynamic Ocean Environment Modeling

Idealized Double-Gyre Simulation:

For the idealized flow case considered, the same double-gyre flow field from Section

6.2 was used. We refer the reader to this section for additional details.

Massachusetts Bay Simulation:

For the realistic simulations of Mass. Bay off the northeast US coast used in our

second case, we employ our relocatable modeling system. Specifically, our group

utilized our MIT-MSEAS modeling system (Haley and Lermusiaux, 2010; MSEAS

Group, 2013; Lermusiaux et al., 2011; Haley et al., 2015), including our hydrostatic

PE code with a nonlinear free surface, based on second-order structured finite vol-

umes, and a generalized biogeochemical model for lower trophic levels (Lermusiaux
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et al., 2004). This MSEAS software is used for fundamental research and for realistic

simulations and predictions in varied regions of the world’s ocean (Leslie et al., 2008;

Onken et al., 2008; Haley et al., 2009; Gangopadhyay et al., 2011; Ramp et al., 2011;

Colin et al., 2013; Lermusiaux et al., 2017a; Subramani et al., 2017; Kulkarni et al.,

2018; Gupta et al., 2019; Lermusiaux et al., 2019), including monitoring (Lermusiaux

et al., 2007), ecosystem prediction and environmental management (Beşiktepe et al.,

2003; Cossarini et al., 2009), and multi-disciplinary predictions and data assimilation

(Lermusiaux, 2002; Haley et al., 2020).

The Mass. Bay set-up (Haley et al., 2020) has a 333 m horizontal resolution and

100 vertical levels with optimized level depths (e.g., in deeper water, higher resolu-

tion near the surface or large vertical derivatives, while at coasts, evenly spaced to

minimize vertical CFL restrictions). The bathymetry was obtained from the 3 arc

second USGS Gulf of Maine digital elevation model (Twomey and Signell, 2013). The

sub-tidal initial and boundary conditions were downscaled from 1/12-degree Hybrid

Coordinate Ocean Model (HYCOM) analyses (Cummings and Smedstad, 2013), us-

ing our optimization for our higher resolution coastlines and bathymetry (Haley et al.,

2015). Local corrections were made using feature models and synoptic CTDs of op-

portunity. Tidal forcing was computed from the high resolution TPXO8-Atlas from

OSU (Egbert and Erofeeva, 2002, 2013), by reprocessing for our higher resolution

bathymetry/coastline and quadratic bottom drag. The atmospheric forcing consisted

of hourly analyses/forecasts of wind stresses, net heat flux, and surface freshwater

flux from the 3 km North American Mesoscale Forecast System (NAM) (National

Centers for Environmental Prediction (NCEP), 2019).

Algae Dynamics Modeling

The algae growth model we used to simulate the fields for optimal collection is a

modified version of the macroalgae growth model of Ren et al. (2014). The gen-

eral applicability of this model and its inclusion of a wide array of environmental

parameters and internal algae biological mechanisms allowed us to explore different

environmental growth conditions and simulation regimes. The Ren model provides
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algae concentrations as a function of three state variables: Carbon, Nitrogen, and

Phosphorous. The concentration of algae is then directly proportional to that of the

carbon. Algae growth is linearly correlated to carbon growth, which can only occur

under certain temperature, light, fluid flow, and internal state conditions, as modeled

by:

𝑈𝐶 = 𝐺𝑚𝑎𝑥 * 𝐶 * 𝑓(𝑇 ) * 𝑓(𝐿) * 𝑓(𝑄𝑁) * 𝑓(𝑄𝑃 ) * 𝑓(𝑉 ) . (6.8)

In Equation (6.8), 𝑈𝐶 is the carbon uptake rate, or scaled algae mass uptake rate;

𝐺𝑚𝑎𝑥 the maximum carbon uptake rate; C the carbon concentration; and 𝑓(𝑇 ), 𝑓(𝐿),

𝑓(𝑄𝑁), 𝑓(𝑄𝑃 ), and 𝑓(𝑉 ) the effects on growth rate from temperature, light, Nitrogen

quota, Phosphorous quota, and fluid velocity, respectively. The temperature and

light functions 𝑓(𝑇 ) and 𝑓(𝐼) are defined respectively as an Arrhenius relationship

comparing actual temperature to a set of biological references and a Lambert-Beer law

to describe the behavior of light-attenuating materials in the water. The Nitrogen and

Phosphorous quota functions 𝑓(𝑄𝑁) and 𝑓(𝑄𝑃 ) model the effect of internal nutrient

ratios on the growth rate of the algae. The velocity function 𝑓(𝑉 ) is a Monond-type

equation that models the dependence of algae growth on the flow field surrounding

it. Formulations for these intermediate functions are in Ren et al. (2014).

Nitrogen and phosphorous uptake rates, which dictate algae growth through 𝑓(𝑄𝑁)

and 𝑓(𝑄𝑃 ) in Equation (6.8), are:

𝑈𝑁 =
𝑓(𝑇 ) * 𝐶 * (𝑈𝑁𝐻 + 𝑈𝑁𝑂)

1 + 𝑒𝑥𝑝[(𝑄𝑁 −𝑄𝑁𝑚𝑎𝑥)/𝑄𝑁𝑜𝑓𝑓 ]
, (6.9)

𝑈𝑃 =
𝑓(𝑇 ) * 𝐶 * 𝑈𝑃𝑂

1 + 𝑒𝑥𝑝[(𝑄𝑃 −𝑄𝑃𝑚𝑎𝑥)/𝑄𝑃𝑜𝑓𝑓 ]
, (6.10)

where 𝑈𝑁 and 𝑈𝑃 are the uptake rates of nitrogen and phosphorous, respectively;

𝑈𝑁𝐻 , 𝑈𝑁𝑂, and 𝑈𝑃𝑂 the ammonium, nitrate, and phosphorus uptake rates defined by

a type-II function response to concentrations in the surrounding water; and 𝑄𝑁 , 𝑄𝑃 ,

𝑄𝑁𝑚𝑎𝑥, 𝑄𝑃𝑚𝑎𝑥, 𝑄𝑁𝑜𝑓𝑓 , and 𝑄𝑃𝑜𝑓𝑓 the nitrogen and phosphorous current quota values

𝑁/𝐶 and 𝑃/𝐶, where N and P are the stored nitrogen and phosphorus values; nitrogen

and phosphorus maximum quota values; and nitrogen and phosphorus storage switch
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transition width values, respectively.

These three uptake rate functions are used in a system of ODEs to calculate the

algae growth over time:
𝑑𝐶

𝑑𝑡
= 𝑈𝐶 − Φ𝐶 , (6.11)

𝑑𝑁

𝑑𝑡
= 𝑈𝑁 − Φ𝑁 , (6.12)

𝑑𝑃

𝑑𝑡
= 𝑈𝑃 − Φ𝑃 . (6.13)

Here, Φ𝐶,𝑁,𝑃 represent the death rate of each state variable:

Φ𝐶 = (𝑘𝑟 * 𝑓(𝑇 ) + 𝜔𝑖 + 𝜔𝑠) * 𝐶, (6.14)

Φ𝑁 = 𝑄𝑁 * Φ𝐶 − 𝜖𝑢𝑝 * (𝑈𝑁𝑂 + 𝑈𝑁𝐻), (6.15)

Φ𝑃 = 𝑄𝑃 * Φ𝐶 − 𝜖𝑢𝑝 * (𝑈𝑃 ), (6.16)

where 𝑘𝑟 is the carbon respiration coefficient; 𝜔𝑖 the algae intrinsic morality (an expo-

nential function of the difference between the environmental temperature and a trig-

ger temperature for intrinsic morality); 𝜔𝑠 the oxygen stress morality (a Monond-type

equation of the oxygen concentration below a threshold level); and 𝜖𝑢𝑝 the nutrient

uptake associated excretion coefficient.

Environmental input fields to this point ODE system is taken from our MSEAS

high resolution coupled physical-biogeochemical simulations. The fields not available

from these simulations include dissolved oxygen levels and environmental phosphorous

availability. Both of these terms are assumed here to be uniformly replete throughout

the domain. This assumption eliminates the dissolved oxygen growth death term

𝜔𝑠 in the carbon death rate term and sets 𝑈𝑃𝑂 to be uniformly equal to its maxi-

mum value 𝑈𝑃𝑂𝑚𝑎𝑥. Certain algae parameters are slightly modified to better fit algae

growth to the northeast climates, such as the Arrhenius temperature constants used in

𝑓(𝑇 ). Detritus and zooplankton fields are used as particulate inorganic and particu-

late organic light-attenuating materials for the Lambert-Beer light function 𝑓(𝐼). For

increased accuracy, the Ren model was also modified to use our instantaneous local
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flux of solar intensity accounting for cloud cover, as opposed to only seasonal fluctu-

ations. Finally, a Monond-type scaling factor (Bendoricchio et al., 1994) modifies the

carbon intrinsic morality term 𝜔𝑖 for more accurate results in our simulations.

The ODE system given by Equations (6.11), (6.12) and (6.13) describes the evo-

lution of algae at a given point. To further account for the dynamics of the algae

field in ocean contexts (from advection) this ODE can be used with the material

derivative of each nutrient field resulting in a set of advection-reaction PDEs. This

is what has been solved numerically, using the QUICK scheme in our modular finite

volume framework (Ueckermann and Lermusiaux, 2012), in the results that follow.

Optimal Algae Collection Path Planning

The ocean dynamics model and algae model can be first simulated to yield 𝒜(𝑥, 𝑡)

– the dynamic field describing the evolution of the algae concentration in the envi-

ronment. The harvesting dynamics of algae for the autonomous surface vehicle then

follows from Chapter 3 for the model of collecting an arbitrary tracer field. That is,

we can model the amount of algae collected by the vehicle at a given point to be

proportional to the amount of algae present at that location. Specifically, consider

the augmented state space given by (𝑥, 𝑦, 𝑎), where 𝑎 corresponds to the amount of

algae harvested. If we considered a given path 𝑋𝑝(𝑡) through the physical space,

resulting in a time history 𝐴𝑝(𝑡) for the vehicle’s amount of algae collected, we have

that the 𝐴𝑝(𝑡) satisfies
d𝐴𝑝

d𝑡
= 𝛼 · 𝒜(𝑋𝑝(𝑡), 𝑡), (6.17)

where 𝛼 ∈ R>0 is a constant of proportionality. Given a specified start and end

point in the domain, a Pareto front can be found for the multi-objective optimization

problem (outlined in Equation (3.5)) for the joint objectives of minimizing the time

of arrival and maximizing the amount of algae harvested.

In the following, a simpler set of results are presented. In particular, we do

not, as before, form the full Pareto front holding solutions of the form (𝑡*𝑓 , 𝑎
*
𝑓 ) –

arrival time and amount of algae harvested upon reaching the destination. Rather,
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we present results for time optimal paths where the vehicle is constrained to collect a

specified amount of algae, 𝑎𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, prior to reaching the destination. This ultimately

corresponds to a given point in the set of Pareto optimal solutions (it is the point on

the Pareto front with a final algae amount harvested upon reaching the destination

value of 𝑎*𝑓 = 𝑎𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡). Of course, if desired, the full Pareto front can be trivially

computed as well using the methodology outlined in Chapter 4 as was done in the

cases presented in Sections 6.1 and 6.2.

We additionally reiterate (following from the discussion in Chapter 3) that in the

proceeding results one key assumption is that the vehicle has a negligible influence on

the algae field it is collecting. This must be assumed as the dynamics of the vehicle

path cannot be incorporated into the external field during the solve. Therefore, the

effect of the reduction in algae from the surrounding field cannot be imposed until the

final path is computed. Fortunately, the length scales of the algal fields are typically

orders of magnitude larger than the widths of the paths traced by the autonomous

vessels, and so this assumption is then not too restrictive. Similarly, it is also common

for the duration of the vehicle’s mission to be limited (e.g. power constraints) such

that the time required by the vehicle to complete its harvesting is typically short

compared to the time-scales of the field to be harvested. In such cases, once a mission

is completed, the harvested quantities can be removed from the field to be harvested

at the right times along the vehicle path. The next path planning mission can then

use this reduced field to be harvested.

6.3.2 Results

Double-Gyre Flow Advecting a Dynamic Algae Field

In this first sub-case, we consider optimal algae collection in an idealized double-gyre

flow field (Figure 6-10). We employ our modified algae growth model (Section 6.3.1).

All relevant environmental parameters are assumed constant except for the three

nutrient fields (nitrate, ammonium, phosphorus) and the light field. The spatially

varying light field is lower intensity toward the left hand side of the domain (𝑥 < 0.5)
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Figure 6-10: Snapshots of the environment at non-dimensional times 0 and 0.14
with the unsteady velocity fields overlaid on an algae collection rate field (in units
of [units of algae]

[time] ) – high values correspond to regions where the algae concentration is
higher resulting in a higher collection rate. Start (full circle) and end (star) points of
the vehicle are shown.

and higher intensity toward the right hand side of the domain (𝑥 > 0.5) to simulate

cloud coverage impairing the growth of the initial high-concentration area (see upper

left of the two snapshots in Figure 6-10). In addition, the initial values for the three

nutrient fields are assigned high and low concentration areas throughout the domain

to simulate spatial variability in the algae growth rate.

In this sub-case, we demonstrate an optimal collection with the constraint of

having to collect at least 0.7 units of algae before reaching the destination. Figure

6-10 shows the dynamic environment at two times, with two gyres, the jet, and the

algae field dynamically evolving and transported by the flow.

Figure 6-11 shows the evolution of the 3D reachability front. As required, these

2D contours (slices of the 3D front) evolve until the level set value of 0.7 units is

reached at the target.

The final computed optimal path is in Figure 6-12. The path clearly evolves

to remain in the areas of high concentration, while simultaneously using the external

currents to its advantage in order to reach the target as fast as possible. It is important

to reiterate that this computed path is globally optimal ; no other path from the start
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Figure 6-11: Snapshots of the level set at various points in time. Since the level set
is a surface in an augmented space (2D physical space and an additional dimension
for the collected algae amount), the constant algae collection amount contours of this
surface are shown. The level set evolves until it attains a value of 0.7 units at the
target.

to the end point exists in which the vehicle can reach faster while collecting 0.7 units

of the field.

Massachusetts Bay - Harvesting Dynamic Chlorophyll Fields

For the second sub-case, we consider the Mass. Bay region. We showcase an al-

ternate control strategy to monitor harmful algal blooms: the study of chlorophyll

fields. Various studies have shown that the concentration of chlorophyll (particularly

chlorophyll-a) provides a direct measurement of algae growth in aquatic environments
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Figure 6-12: The final computed globally-optimal path for the algae collection prob-
lem with the vehicle (white circle) shown traversing it at some intermediate time.
Drawn in the background is the algae collection rate field at an intermediary time
(the time corresponding to when the vehicle is at the white point shown).

(Karki et al., 2018). This close connection between chlorophyll and algae has been

exploited in several research avenues for predicting harmful algal blooms (Baban,

1996; Schofield et al., 2007; Stauffer et al., 2019) and here motivates our collection of

dynamic chlorophyll fields.

Our high-resolution coupled physical-biogeochemical simulations are used to model

the ocean currents (Figure 6-13) as well as the chlorophyll field.

Using our theory and schemes for optimal harvesting, we plan the path of a vehicle

that travels from a start point to a destination while optimally collecting chlorophyll

along the way. Figure 6-14 shows the evolution of the level sets from the forward

solve. Here, as before, the reachability front evolves at almost a constant collected

chlorophyll value until it reaches offshore from Scituate. In this region, chlorophyll

has bloomed which results in a corresponding increase in the reachability front value

(at 3:40 GMT for instance). The front then, as before, expands until it reaches the

target point with the desired final chlorophyll field amount of 0.4 units.
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Figure 6-13: Dynamic velocity field in Mass. Bay simulated using our data-
assimilative MSEAS-PE modeling system and plotted between 11 and 13 Aug. 2019.
Colored in the background is the velocity magnitude.

Figure 6-15 shows the final optimal path. As expected, the autonomous vessel’s

optimal path takes it to high chlorophyll concentration regions offshore from Scituate

to harvest just enough of the field before starting its return journey to the target.

The vehicle reaches the end point with the desired chlorophyll amount of 0.4 units at

12 Z 12 Aug 2019.
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Figure 6-14: Evolution of the forward level set. The background represents the
concentration of Chlorophyll from our MSEAS PE-bio simulation at that time. The
contours shown represent the reachability front at various collection levels.
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Figure 6-15: The final globally-optimal path from start (full circle) to finish (star)
while collecting the required amount of Chlorophyll. A snapshot is shown at an
intermediate time (vehicle shown as the circle). Shown in the background is the
spatially varying Chlorophyll collection rate field (in units of [units of Chl]

[time] ) at the time
the vehicle is at the point shown in the circle along the optimal path – high values
correspond to regions where the concentration of Chlorophyll is higher resulting in a
higher collection rate.
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6.4 Optimal Fish Farming

In this final case, we consider an application of our methodology to offshore aqua-

culture. As discussed in Chapter 2, recent years have seen active development in the

research community regarding revolutionary new methods for offshore fish farming.

One such next generation technology consists of large, mobile, fully autonomous cages

for farming fish. These cages would be equipped with thrusters to allow it to control

itself while navigating. The key idea would then be that, after being launched with

lab-bred baby fish, these moving farms would cruise along ocean currents and ulti-

mately arrive at a specified destination with mature animals ready for market (Mann,

2004; Cohen, 2008; Goudey, 1998).

Our novel approach to harvest-time optimal path planning is directly applicable

to this application. Our presented methodology, in particular, can be used by these

autonomous moving farms to determine what paths to take in order to reach desti-

nations time-optimally while also maximizing the amount of fish growth in the farm

itself, e.g., by navigating in regions rich in nutrients to be eaten.

Key to the analysis of these moving fish farms is a model representative of the

growth dynamics of fish. Due to the complexities of marine ecosystems, various mod-

els have been proposed for different families of fish. For the results presented in this

section, we follow the model used in Gupta et al. (2019). This model couples biological

models for two main parts of the ocean ecosystem: Lower Trophic Levels (LTL) and

Higher Trophic Levels (HTL). A three-component nutrients-phytoplankton-zooplankton

(NPZ) model is used for the lower trophic levels. The NPZ model output is then cou-

pled with the outputs of the physical model for the ocean dynamics – the nonhydro-

static Navier-Stokes equations with a variable-density Boussinesq approximation – to

obtain a spatial field referred to as the habitat index, 𝐻ℎ𝑎𝑏(𝑥, 𝑡). This habitat index

encodes the favorability of a location for the fish, which in the case of Gupta et al.

(2019) was tuna. As a simple first design pass, we also consider the mass growth

of fish in the farm to be directly proportional to the habitat index. Consider the

augmented state space given by (𝑥, 𝑦,𝑚𝑡𝑢𝑛𝑎), where 𝑚𝑡𝑢𝑛𝑎 corresponds to the mass of
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tuna in the fish farm. If we consider a farm path 𝑋𝑝(𝑡) through the physical space

and the farm’s tuna mass evolution is denoted 𝑀𝑡𝑢𝑛𝑎,𝑝(𝑡), we have that the evolution

of tuna satisfies
d𝑀𝑡𝑢𝑛𝑎,𝑝

d𝑡
= 𝛼 ·𝐻ℎ𝑎𝑏(𝑋𝑝(𝑡), 𝑡), (6.18)

where 𝛼 ∈ R>0 is a constant of proportionality. We once again note that we do not

model the effect of the fish farm on the habitat index field, i.e. a reduction in the

habitat index values in regions where the fish farm has been due to the consumption

of nutrients. This assumption should not result in large inaccuracies, as in most

applications the length scale of the farm is orders of magnitude smaller than that of

the habitat index field. Furthermore, strong wave mixing around the farm structure

should allow for rapid nutrient replenishment.

For this case, we additionally consider a slightly different autonomous vehicle.

While until now autonomous surface vehicles have been considered, autonomously

moving fish farms will require the ability to be submersible. As such, we look at an

autonomous underwater vehicle for this case. Furthermore, we consider a 2D domain,

given by a vertical slice of the ocean (in what follows, 𝑥 will denote the range position

of the vehicle while 𝑦 corresponds to the vertical distance from the seafloor). Most

autonomous underwater vehicles, such as gliders, have different actuators for moving

in range and depth (Griffiths, 2002). To account for this, we use the following simple

model for the dynamics of our submersible moving fish farm in the vertical 2D domain

d𝑋𝑝

d𝑡
= 𝑉 (𝑋𝑝(𝑡), 𝑡) + 𝐹𝑥(𝑡) · 𝑒𝑥 + 𝐹𝑦(𝑡) · 𝑒𝑦, (6.19)

where 𝑉 = [𝑉𝑥, 𝑉𝑦] is the external velocity field, 𝑒𝑥 = [1, 0]𝑇 and 𝑒𝑦 = [0, 1]𝑇 . The

different actuators used to navigate along each coordinate direction result in different

relative speeds, which we denote by the constraints |𝐹𝑥| ≤ 𝐹𝑥,𝑚𝑎𝑥 and |𝐹𝑦| ≤ 𝐹𝑦,𝑚𝑎𝑥.

Given the harvesting dynamics in Equation (6.18) and vehicle dynamics in Equa-

tion (6.19), the Hamilton-Jacobi equation governing the evolution of the reachability

front can be derived analogous to what was shown in Chapter 4. Substituting the
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dynamics into the Equation (4.63) we obtain:

𝜕𝜑

𝜕𝑡
+ max

𝐹𝑥,𝐹𝑦

{︂
𝜕𝜑

𝜕𝑥

𝑇

·
(︂
𝑉 (𝑥, 𝑡) + 𝐹𝑥 · 𝑒𝑥 + 𝐹𝑦 · 𝑒𝑦

)︂
+

𝜕𝜑

𝜕𝑚𝑡𝑢𝑛𝑎

·
(︂
𝛼 ·𝐻ℎ𝑎𝑏(𝑥, 𝑡)

)︂}︂
= 0,

(6.20)

where the time dependent value function is defined on the full state and is of the form

𝜑 = 𝜑(𝑥,𝑚𝑡𝑢𝑛𝑎, 𝑡). Pulling out all terms that do not depend on the controls from the

maximization, this simplifies to

𝜕𝜑

𝜕𝑡
+ max

𝐹𝑥,𝐹𝑦

{︂
𝐹𝑥 ·

𝜕𝜑

𝜕𝑥
+ 𝐹𝑦 ·

𝜕𝜑

𝜕𝑦

}︂
+
𝜕𝜑

𝜕𝑥

𝑇

· 𝑉 (𝑥, 𝑡)

+
𝜕𝜑

𝜕𝑚𝑡𝑢𝑛𝑎

·
(︂
𝛼 ·𝐻ℎ𝑎𝑏(𝑥, 𝑡)

)︂
= 0. (6.21)

The optimal speeds 𝐹𝑥 and 𝐹𝑦 along each coordinate direction are now determined

based on the sign of the components of the spatial gradient. In the case where 𝜕𝜑
𝜕𝑥

≤ 0,

we have that 𝐹 *
𝑥 = −𝐹𝑥,𝑚𝑎𝑥, whereas when 𝜕𝜑

𝜕𝑥
> 0 we have 𝐹 *

𝑥 = 𝐹𝑥,𝑚𝑎𝑥. This holds

similarly for the speed 𝐹𝑦. Substituting the optimal speeds, we obtain the following

𝜕𝜑

𝜕𝑡
+ 𝐹𝑥

⃒⃒⃒⃒
𝜕𝜑

𝜕𝑥

⃒⃒⃒⃒
+ 𝐹𝑦 ·

⃒⃒⃒⃒
𝜕𝜑

𝜕𝑦

⃒⃒⃒⃒
+
𝜕𝜑

𝜕𝑥

𝑇

· 𝑉 (𝑥, 𝑡)

+
𝜕𝜑

𝜕𝑚𝑡𝑢𝑛𝑎

·
(︂
𝛼 ·𝐻ℎ𝑎𝑏(𝑥, 𝑡)

)︂
= 0, (6.22)

which is the Hamilton-Jacobi equation governing the evolution of the reachability

front in the augmented state space. Just as described in Chapter 4, the maximizing

speeds determine an optimal closed-loop control law for the backwards dynamical

system, which can be used to trace out the optimal path (for a chosen point on the

Pareto front) by solving the backtracking ODE.

As in Gupta et al. (2019), in the following case we consider a 2D domain with a

seamount representing an idealized sill or strait that can create an upwelling of the

nutrients and thus phytoplankton blooms. The seamount also forces the advection

of cold water upward which has a negative effect on the habitat index, thus lim-

iting the favorable habitat for tuna to very specific depths and locations. In part
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Figure 6-16: Snapshots of the environment at four different non-dimensional times.
Shown is the velocity vector field along with the habitat index in the background.
The habitat index can be seen to have high values in only a very narrow region.

due to the nonhydrostatic dynamics, we additionally have that internal waves (e.g.,

lee waves), recirculations, and other instabilities can be created downstream of the

seamount, leading to additional biogeochemical-fish responses. This domain is in-

spired by Stellwagen Bank off of Massachusetts (Lermusiaux, 2001; Beşiktepe et al.,

2003; Ueckermann and Lermusiaux, 2010). Here, flow occurs from left to right in the

positive x-direction over the seamount. For velocity, we apply a Dirichlet boundary

condition for the inlet, no-slip for the bump, free-slip at the top and bottom of the

domain, and an open boundary condition at the outlet. For the tracer fields, we

use zero-Neumann on all the boundaries. We additionally numerically solve for the

habitat index using an in-house Finite Volume solver (Ueckermann and Lermusiaux,

2012). The evolution of the habitat index and the corresponding flow is given in

Figure 6-16.

Here, the full Pareto front provides solutions of the form (𝑡*𝑓 ,𝑚
*
𝑡𝑢𝑛𝑎,𝑓 ) – arrival time

and mass of tuna in the farm upon reaching the destination. As in the previous case,

we do not showcase here the full Pareto front but rather search for a time-optimal
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Figure 6-17: Snapshots of the reachability front evolution at various non-dimensional
times in the augmented (𝑥, 𝑦,𝑚𝑡𝑢𝑛𝑎) state space. Shown are projections onto the
physical domain of contours of the reachability front at constant 𝑚𝑡𝑢𝑛𝑎 values.
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Figure 6-18: The final time optimal path for the fish farm to reach the destination
with a non-dimensional mass of fish of 𝑚𝑡𝑢𝑛𝑎 = 0.9. Shown in the background is the
habitat index field at an intermediary non-dimensional time when the vehicle is at
the yellow point shown along the path.

Figure 6-19: The time evolution of the non-dimensional mass of tuna in the fish farm
when proceeding along the optimal path.

path for the farm to reach the target while having grown a non-dimensional tuna mass

of 0.9 when starting from a initial tuna mass of 0.1. This corresponds to a specific

point on the Pareto front (the point corresponding to the non-dimensional mass of

𝑚*
𝑡𝑢𝑛𝑎,𝑓 = 0.9).

For this simulation, the augmented state space was discretized using 300 nodes

in range, 30 nodes in depth, and 50 nodes along the 𝑚𝑡𝑢𝑛𝑎 axis. For the forward

solve, a second order ENO scheme was used to compute all spatial derivatives and a

second order TVD Runge-Kutta scheme was used to integrate in time using a fixed

time step size of ∆𝑡 = 1 × 10−2. The maximum speed of the vehicle was set to non-

dimensional values of 𝐹𝑥,𝑚𝑎𝑥 = 2.0 and 𝐹𝑦,𝑚𝑎𝑥 = 0.2 along each coordinate direction.
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The vehicle was further tasked with navigating from a start point (𝑥, 𝑦) = (0, 2) to a

target (𝑥, 𝑦) = (20, 2).

Shown in Figure 6-17 is the evolution of the reachability front. The reachability

front can be seen to expand along the harvest dimension (i.e. mass of tuna dimension

in the state space) as it reaches the relatively thin zone with high values of the habitat

index. The final optimal path, computed via backtracking, is shown in Figure 6-

18. The farm can be seen, as expected, to navigate near areas of higher habitat

index in order to promote fish growth. The resulting time evolution of the non-

dimensional mass of fish in the farm, for this optimal path, is shown in Figure 6-19.

We emphasize, again, that this is the globally time optimal path for a fish farm to

reach the destination with the required 0.9 non-dimensional mass of tuna; no other

path exists that will reach the destination faster.

6.5 Summary

In this chapter, we have presented various applications of our harvest-time path plan-

ning methodology. We first considered a benchmark case involving a steady halfspace

harvest region. This case allowed for a semi-analytical solution to be easily computed,

which therefore allowed us to validate our approach. We then considered energy-time

optimal path planning in a double-gyre flow field. Here, we looked at a vehicle,

equipped with energy harvesting capabilities, to navigate in a domain with the objec-

tives of minimizing arrival time and maximizing the amount of energy remaining at

the destination. Next, we studied how our methodology could be applied to the prob-

lem of harmful algae bloom collection. Finally, we considered optimal path planning

for the case of an offshore moving fish farm – a next generation offshore aquaculture

concept.
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Chapter 7

Harvest-Time Optimal Path Planning

Under Uncertainty: Preliminary

Results

Our principle focus throughout this work has been on path planning in highly dynamic

but deterministic environments. That is, the velocity fields and harvesting fields have

been assumed to be exactly known, resulting in deterministic equations governing

the dynamics of the system in the augmented state space. In reality, rarely is the

ocean environment known perfectly. Instead, at best, probabilistic forecasts for the

environment are known and, as a result, a truly robust path planning scheme must

be able to account for this uncertainty. In this chapter, we address how our multi-

objective harvest-time optimal path planning problem can be solved in the case of

uncertain dynamic environments. As the work presented in this chapter is in progress,

we present preliminary results and discuss avenues for future developments.

7.1 Problem Statement

We start by first defining the optimal path planning problem we plan to solve in the

case of uncertain environments.

Consider a vehicle tasked with navigating in a physical domain 𝒟 ⊆ R𝑑 from a
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start point 𝑥𝑠 to a specified target point 𝑥𝑓 . Furthermore, consider a probability space

(Ω,ℬ,P), where Ω is the sample space, ℬ corresponds to the 𝜎-algebra associated

with Ω and P is the probability measure. The vehicle travels in an environment

with a background dynamic flow that is uncertain, 𝑉 (𝑥, 𝑡;𝜔), where 𝜔 ∈ Ω is a

random event. As it traverses to the target, the vehicle has two controls at its

disposal. The first is the time-dependent relative speed 𝐹 (𝑡) given by 𝐹 (𝑡) : [0,∞) →

[0, 𝐹𝑚𝑎𝑥], 𝐹𝑚𝑎𝑥 ∈ R>0. The second is the heading ℎ̂(𝑡) that it can choose to move in,

which also may be time-dependent and can be represented with a unit vector:

ℎ̂(𝑡) : [0,∞) → R𝑑 such that
⃦⃦⃦
ℎ̂(𝑡)

⃦⃦⃦
= 1, ∀𝑡. (7.1)

Using only these controls, the goal of the vehicle is to optimally solve the given path

planning problem.

As before, in addition to its physical position in space, the vehicle has additional

state variables of interest related to harvesting (denoted by 𝑐 ∈ R𝑑ℎ). Altogether,

we therefore have an augmented vehicle state space 𝑥𝑎 = [𝑥, 𝑐]𝑇 , a subset of R𝑑+𝑑ℎ ,

consisting of the physical position 𝑥 and harvest state 𝑐. For the uncertain realization

𝜔, we denote the position and harvesting states of the vehicle at time 𝑡 as 𝑋𝑝(𝑡;𝜔)

and 𝐶𝑝(𝑡;𝜔) for an arbitrary continuous trajectory through the state space. The full,

now stochastic, dynamics of the vehicle’s state is of the following form:

d𝑋𝑝(𝑡;𝜔)

d𝑡
=𝑉 (𝑋𝑝(𝑡;𝜔), 𝑡;𝜔) + 𝐹 (𝑡) ℎ̂(𝑡), (7.2a)

d𝐶𝑝,𝑖(𝑡;𝜔)

d𝑡
=ℋ𝑖(𝑋𝑝(𝑡;𝜔),𝐶𝑝(𝑡;𝜔), 𝐹 (𝑡), ℎ̂(𝑡), 𝑡;𝜔), 𝑖 = 1, ..., 𝑑ℎ. (7.2b)

Equation (7.2a) governs the motion of the vehicle through the uncertain physical

domain. Equation (7.2b) corresponds to the general form of the dynamics of the

harvesting states, which also in general will be uncertain due to the uncertainties in

the environment and possibly within the harvesting fields themselves.

In this chapter, we consider only a single additional harvesting state, i.e. 𝑑ℎ = 1.
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Figure 7-1: The stochastic harvest-time path planning problem of interest in this
chapter.

Furthermore, we look at specialized harvesting dynamics of the form:

d𝐶𝑝(𝑡;𝜔)

d𝑡
= ℋ(𝑋𝑝(𝑡;𝜔), 𝐶𝑝(𝑡;𝜔), 𝑡;𝜔). (7.3)

That is, we consider harvesting dynamics that do not depend on the vehicle controls.

It can be noted that our special case of collecting a tracer field discussed in Chapter

3 is in this class of harvesting dynamics. Specifically, in the uncertain case, Equation

(3.4) translates as follows:

d𝐶𝑝(𝑡;𝜔)

d𝑡
= 𝛼 · 𝐶𝑓𝑖𝑒𝑙𝑑(𝑋𝑝(𝑡;𝜔), 𝑡;𝜔), (7.4)

which indeed is of the form of Equation (7.3).

7.1.1 The Stochastic Harvest-Time Path Planning Problem

In this chapter, we consider the identical multi-objective optimization problem given

by Equation (3.5) but now look to account for uncertainty. Specifically, our central

aim is to determine the Pareto front for the corresponding multi-objective optimiza-

tion problem in the uncertain domain. Let Θ𝑝 denote the set of Pareto optimal
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solutions of the form (𝑡*𝑓 , 𝑐
*
𝑓 ) to the optimization problem given by Equation (3.5) for

the case of a single harvesting state governed by the simplified harvesting dynamics

that have no dependence on the vehicle controls. In the case of uncertainty in the

environment, each uncertain realization 𝜔 would yield a different Pareto front for

that given "universe". Altogether, these would then form the stochastic Pareto front

Θ𝑝(𝜔) to the uncertain multi-objective optimization problem. In this chapter, our pri-

mary aim is to efficiently compute this stochastic Pareto front to the path planning

problem which, as we will show, can be completed using Hamilton-Jacobi reachabil-

ity. In future work we plan to address how, after computing the Pareto front, one

can compute the corresponding distribution of optimal paths via backtracking (for a

chosen solution on the Pareto front) for this stochastic path planning problem.

7.2 Multi-Objective Harvest-Time Optimal Path Plan-

ning Under Uncertainty: Theory

Our approach to computing the stochastic Pareto front Θ𝑝(𝜔) is a natural extension

of the work presented in Chapter 4. Consider first the deterministic version of our

problem at hand. For the case of harvesting dynamics of the form

d𝐶𝑝

d𝑡
= ℋ(𝑋𝑝(𝑡), 𝐶𝑝(𝑡), 𝑡), (7.5)

the corresponding Hamilton-Jacobi equation describing the evolution of the forward

reachable set can be found using Equation (4.63) to yield:

𝜕𝜑(𝑥, 𝑐, 𝑡)

𝜕𝑡
+ 𝐹𝑚𝑎𝑥

⃦⃦⃦⃦
𝜕𝜑(𝑥, 𝑐, 𝑡)

𝜕𝑥

⃦⃦⃦⃦
+ ℋ(𝑥, 𝑐, 𝑡)

𝜕𝜑(𝑥, 𝑐, 𝑡)

𝜕𝑐
+

𝑉 (𝑥, 𝑡)𝑇 · 𝜕𝜑(𝑥, 𝑐, 𝑡)

𝜕𝑥
= 0,

𝜑(𝑥, 𝑐, 𝑡 = 0) = 𝜑0(𝑥, 𝑐). (7.6)
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The Pareto front in the deterministic case can then be simply computed using the

approach outlined in Section 4.4.3.

In the case of uncertainty in the environment, we have a corresponding uncer-

tain value function of the form 𝜑(𝑥, 𝑐, 𝑡;𝜔). This value function further satisfies the

following stochastic Hamilton-Jacobi PDE:

𝜕𝜑(𝑥, 𝑐, 𝑡;𝜔)

𝜕𝑡
+ 𝐹𝑚𝑎𝑥

⃦⃦⃦⃦
𝜕𝜑(𝑥, 𝑡, 𝑐;𝜔)

𝜕𝑥

⃦⃦⃦⃦
+ ℋ(𝑥, 𝑐, 𝑡;𝜔)

𝜕𝜑(𝑥, 𝑡, 𝑐;𝜔)

𝜕𝑐

+𝑉 (𝑥, 𝑡;𝜔)𝑇 · 𝜕𝜑(𝑥, 𝑡, 𝑐;𝜔)

𝜕𝑥
= 0, (7.7)

with the initial condition

𝜑(𝑥, 𝑐, 𝑡 = 0;𝜔) = 𝜑0(𝑥, 𝑐;𝜔). (7.8)

Once a solution to Equation (7.7) is found, the stochastic Pareto front Θ𝑝(𝜔) can then

be determined by applying the approach outlined in Section 4.4.3 to each stochastic

realization 𝜔. The task of solving the uncertain multi-objective path planning problem

therefore boils down to solving the above stochastic PDE (SPDE), which we now look

to address.

7.3 Numerical Methods for Stochastic PDEs

Numerically computing solutions to SPDEs has been an active area of research for

decades with several methods having been developed and refined (Xiu, 2010). Of

these, one of the most widely used technique is Monte Carlo sampling. Here, the

key principle is to generate independent realizations of the random inputs in the

SPDE according to their corresponding probability distribution. For each draw, the

resulting SPDE then turns into a deterministic PDE which can be solved using stan-

dard techniques. One can then collect an ensemble of solutions to these deterministic

PDEs for each random input realization, and use this ensemble to compute relevant

statistical information (Xiu, 2010).
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In recent years, spectral methods have also gained traction in the uncertainty

quantification community for solving SPDEs. The stochastic Galerkin and stochas-

tic collocation methods, both built upon generalized polynomial chaos (gPC), are

commonly used methods from this class of schemes (Xiu, 2010). gPC has several

shortcomings, however, which are addressed and improved upon in a recently de-

veloped approach known as the Dynamically Orthogonal (DO) method (Sapsis and

Lermusiaux, 2009; Ueckermann et al., 2013). In this chapter, we look at using the

DO methodology to solve the given stochastic harvest-time optimal PDE in Equation

(7.7), and we outline how this is done in the following section.

7.4 The Dynamically Orthogonal Equations

In this section we present the DO method for solving SPDEs. The presentation here

follows closely (Sapsis and Lermusiaux, 2009; Subramani et al., 2018), and we refer

the reader to these references for further details.

The DO method tackles the problem of solving a given SPDE by first considering

a specific form of the stochastic solution. Consider the uncertain value function

𝜑(𝑥, 𝑐, 𝑡;𝜔) in Equation (7.7). This stochastic field can be represented using the

following decomposition:

𝜑(𝑥, 𝑐, 𝑡;𝜔) = 𝜑(𝑥, 𝑐, 𝑡) +
𝑠∑︁

𝑖=1

𝑌𝑖(𝑡;𝜔) · 𝜑𝑖(𝑥, 𝑐, 𝑡). (7.9)

Equation (7.9) is a generalized dynamic Karhunen-Loeve (KL) decomposition of the

stochastic field known as a DO decomposition. Here, 𝜑 is the mean of the stochastic

field, given as 𝜑(𝑥, 𝑐, 𝑡) = E𝜔[𝜑(𝑥, 𝑐, 𝑡;𝜔)], where the expectation operator is given as:

E𝜔[𝜑(𝑥, 𝑐, 𝑡;𝜔)] =

∫︁
Ω

𝜑(𝑥, 𝑐, 𝑡;𝜔) · 𝑑P(𝜔). (7.10)

Moreover, 𝜑𝑖(𝑥, 𝑐, 𝑡) are mutually orthonormal fields referred to as DO modes. The

modes are orthonormal relative to the spatial inner product defined as (for two arbi-
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trary fields):

⟨
𝜓1(𝑥, 𝑐, 𝑡), 𝜓2(𝑥, 𝑐, 𝑡)

⟩
=

∫︁
𝜓1(𝑥, 𝑐, 𝑡) 𝜓2(𝑥, 𝑐, 𝑡) 𝑑𝑥 𝑑𝑐. (7.11)

The time-dependent random variables 𝑌𝑖(𝑡;𝜔) are stochastic processes, known as DO

stochastic coefficients, which all have zero-mean: E𝜔[𝑌𝑖(𝑡;𝜔)] = 0. The parameter 𝑠

specifies the number of modes to be retained in the decomposition. While 𝑠 can be

increased for a better representation of the original stochastic field, this comes at the

expense of increased computational cost.

The DO method looks to solve for the solution to the SPDE by deriving evolution

equations for 𝜑(𝑥, 𝑐, 𝑡), 𝑌𝑖(𝑡;𝜔) and 𝜑𝑖(𝑥, 𝑐, 𝑡), and evolving the components of the DO

decomposition instead. These evolution equations are known as the DO equations,

and they are derived directly from the original SPDE. For conciseness, we present

the final DO equations corresponding to our stochastic Hamilton-Jacobi equation of

interest without derivation (these can be readily derived by applying the procedures

presented in Sapsis and Lermusiaux (2009) and in Subramani and Lermusiaux (2016);

Subramani et al. (2018)).

7.4.1 Mean Equation

The evolution of the mean field, 𝜑, is given by the following deterministic PDE:

𝜕𝜑

𝜕𝑡
= − 𝐹𝑚𝑎𝑥 · E𝜔

[︂ ⃦⃦⃦⃦
𝜕𝜑

𝜕𝑥

⃦⃦⃦⃦ ]︂
− E𝜔[𝑉 (𝑥, 𝑡;𝜔)]𝑇 · 𝜕𝜑

𝜕𝑥

−
𝑠∑︁

𝑖=1

[︂
E𝜔[𝑌𝑖 · 𝑉 (𝑥, 𝑡;𝜔)]𝑇 · 𝜕𝜑𝑖

𝜕𝑥

]︂
− E𝜔[ℋ(𝑥, 𝑐, 𝑡;𝜔)] · 𝜕𝜑

𝜕𝑐

−
𝑠∑︁

𝑖=1

[︂
E𝜔[𝑌𝑖 · ℋ(𝑥, 𝑐, 𝑡;𝜔)] · 𝜕𝜑𝑖

𝜕𝑐

]︂
. (7.12)

In Equation (7.12), we have not explicitly listed the spatial, temporal and stochastic

arguments for the mean, modes and stochastic coefficients for brevity of notation.
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7.4.2 Modes Equations

The evolution of the modes 𝜑𝑖 is given by a set of deterministic PDEs known as the

mode equations. They are given as follows:

𝜕𝜑𝑖

𝜕𝑡
= 𝐶−1

𝑌𝑖(𝑡)𝑌𝑘(𝑡)
·
[︂
E𝜔[𝑌𝑘 ·𝑄(𝑥, 𝑐, 𝑡;𝜔)] −

⟨
E𝜔[𝑌𝑘 ·𝑄(𝑥, 𝑐, 𝑡;𝜔)], 𝜑𝑛

⟩
𝜑𝑛

]︂
, (7.13)

where 𝑄(𝑥, 𝑐, 𝑡;𝜔) is given as

𝑄(𝑥, 𝑐, 𝑡;𝜔) = − 𝐹𝑚𝑎𝑥

⃦⃦⃦⃦
𝜕𝜑

𝜕𝑥

⃦⃦⃦⃦
− 𝑉 (𝑥, 𝑡;𝜔)𝑇 · 𝜕𝜑

𝜕𝑥

−
𝑠∑︁

𝑖=1

[︂
𝑌𝑖 · 𝑉 (𝑥, 𝑡;𝜔)𝑇 · 𝜕𝜑𝑖

𝜕𝑥

]︂
−ℋ(𝑥, 𝑐, 𝑡;𝜔)

𝜕𝜑

𝜕𝑐

−
𝑠∑︁

𝑖=1

[︂
𝑌𝑖 · ℋ(𝑥, 𝑐, 𝑡;𝜔)

𝜕𝜑𝑖

𝜕𝑐

]︂
, (7.14)

and 𝐶𝑌𝑖(𝑡)𝑌𝑘(𝑡) is the covariance matrix given as 𝐶𝑌𝑖(𝑡)𝑌𝑘(𝑡) = E𝜔[𝑌𝑖(𝑡;𝜔) · 𝑌𝑗(𝑡;𝜔)]. In

Equation (7.13), Einstein notation has been used. Moreover, the inner product ⟨∙, ∙⟩

is given by Equation (7.11).

7.4.3 Stochastic Coefficients Equations

The stochastic coefficients 𝑌𝑖 evolve according to a set of stochastic ODEs. They are

given as follows:

d𝑌𝑖
d𝑡

=

⟨
𝑄(𝑥, 𝑐, 𝑡;𝜔), 𝜑𝑖

⟩
−
⟨
𝜕𝜑

𝜕𝑡
, 𝜑𝑖

⟩
. (7.15)

7.4.4 Summary

We now summarize the key results presented in this section. Our central aim has been

to solve the governing stochastic Hamilton-Jacobi equation given by Equation (7.7)

for the value function 𝜑(𝑥, 𝑐, 𝑡;𝜔) which itself is a stochastic field. The DO method

allows to solve for the evolution of the stochastic field 𝜑(𝑥, 𝑐, 𝑡;𝜔) by considering a

special decomposition given by Equation (7.9). We then compute the solution to the
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SPDE by evolving each of the components – 𝜑, 𝜑𝑖, and 𝑌𝑖 – of this decomposition, as

governed by the DO equations (7.12), (7.13) and (7.15). With the stochastic value

function computed, the stochastic Pareto front Θ𝑝(𝜔) can then be readily obtained

by sampling different random events 𝜔(𝑘) ∈ Ω, computing the corresponding value

function 𝜑(𝑥, 𝑐, 𝑡;𝜔(𝑘)) for that realization, and applying the technique described in

Section 4.4.3 to determine the Pareto front.

7.5 Numerical Implementation

The resulting DO equations given by Equations (7.12), (7.13) and (7.15) must be

numerically discretized and solved. While any sufficient numerical method could be

used, we employed finite difference schemes to discretize each equation in space (the

augmented space including physical space and the harvesting domain) and time just

as we did in the deterministic case.

For the mean equation, Equation (7.12), first order finite difference schemes were

used for all spatial derivatives. Due to the hyperbolic properties of the mean equation,

upwinding was used to discretize all convective terms and the normal motion term

(
⃦⃦

𝜕𝜑
𝜕𝑥

⃦⃦
) – we refer the reader to (Osher and Sethian, 1988; Subramani and Lermusi-

aux, 2016) for further details. The mode equation, Equation (7.13), and coefficient

equation, Equation (7.15), used central differences to approximate all spatial deriva-

tives.

Finally, for all equations, explicit time stepping was used, along with a first order

forward Euler scheme for the temporal discretization. We note that all of these choices

are preliminary and careful numerical studies is needed to validate the corresponding

implementation.

7.6 Results

In this section, we present very preliminary results obtained using our present imple-

mentation of the stochastic DO harvest-time optimal path planning equations and
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Figure 7-2: Schematic showing the case of interest.

numerical schemes.

7.6.1 Stochastic Halfspace Harvest Region Benchmark Case

As a first step in checking the validity of our approach, we considered the stochastic

version of the benchmark problem presented in Section 6.1. The domain consists of a

harvesting region that covers only one side of the physical space where the harvesting

rate is a constant. The vehicle is tasked with harvesting from this field prior to exiting

the harvesting region and proceeding to the target. Furthermore, the uncertainty in

this problem arises from two sources. The first is the magnitude of the harvesting

rate, which is assumed to be normally distributed. The second source of uncertainty

is the boundary of the harvesting region which also is normally distributed around

𝑥 = 0.5. The schematic in Figure 7-2 summarizes this case.

An augmented domain given by (𝑥, 𝑐) ∈ [0, 1]3 was considered, with the domain

discretized using 75 nodes in each coordinate dimension. Furthermore, a time step

size of ∆𝑡 = 2.5 · 10−3 was used. To keep computations tractable, only 5 modes

were used in the DO decomposition, and the solution was evolved to a final non-

dimensional time of 𝑡 = 1.7. Moreover, 1000 realizations of the stochastic coefficients

were used.

Figure 7-3 depicts the mean field, 𝜑(𝑥, 𝑐, 𝑡), at the final non-dimensional time of
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Figure 7-3: Reachability front from the mean field (𝑥 : 𝜑(𝑥, 𝑐, 𝑡𝑓 ) = 0) at the final
non-dimensional time of 𝑡𝑓 = 1.7.

𝑡 = 1.7 from the DO decomposition in Equation 7.9. Shown in the figure is the zero

contour of the field (which corresponds to the mean reachability front). Figure 7-4

depicts the first four modes 𝜑𝑖(𝑥, 𝑐, 𝑡) at the final non-dimensional time of 𝑡 = 1.7.

Finally the probability distribution of the stochastic coefficients 𝑌𝑖(𝑡;𝜔), at the final

time 𝑡 = 1.7, is shown in Figure 7-5.

As described in Section 7.2, the value function 𝜑 can be used to compute the

Pareto front for the multi-objective optimization problem. Figure 7-6 depicts the

stochastic Pareto front obtained for this given problem. Shown is the mean Pareto

front along with a shaded region covering one standard deviation. The Pareto front

as obtained from using the DO method is shown and compared to the Pareto front as

determined using standard Monte Carlo (1000 Monte Carlo realizations were used).

Good agreement can be noted between these solutions for later arrival times.

Furthermore, three different arrival times were considered, and the distribution of

the optimal harvest state at the destination for each of these arrival times is shown

in Figure 7-6. That is, each PDF depicts the distribution of Pareto optimal solutions

(the best-case max possible harvested state of the vehicle travelling using the perfect

optimal controls given the environment) for a given arrival time through this uncertain

environment. Better agreement is noted between the DO and Monte Carlo solutions

at later arrival times.
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Figure 7-4: Cross sections of the first few modes 𝜑𝑖(𝑥, 𝑐, 𝑡) at the final non-dimensional
time of 𝑡 = 1.7.

7.7 Discussion and Future Work

The stochastic best-case Pareto fronts hold important information about the envi-

ronment and how it affects the vehicle mission. For instance, a low variance implies

that the stochasticity in the background field does not significantly affect the amount

of field that a vehicle can collect. Of course, to achieve the collection predicted by

the Pareto front, the vehicle would have to choose the correct optimal control law

for the given environment. This is difficult to do since the vehicle does not know

the stochastic "draw" for the current environment. This best case Pareto front thus

becomes an important benchmark to aim for when designing optimal controllers for

the stochastic environment. In general, the concept of risk becomes the important
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Figure 7-5: The PDF of the first few stochastic coefficients 𝑌𝑖(𝑡;𝜔) at the final non-
dimensional time of 𝑡 = 1.7.

one, and this can be computed by our approach (Subramani and Lermusiaux, 2019),

with a final answer dependent on the risk profile of the user.

A key challenge encountered when using the DO method was the production of

spurious oscillations in our solutions. This can be especially noted in Figure 7-3,

where oscillations can be seen in the mean reachability front at the final time. We

have been actively investigating the possible sources of this. A few possible reasons

are as follows. The first is that the discontinuous nature of the harvesting field

considered in the case of interest may be a central reason for the production of these

oscillations. We compared the DO update to 𝜑(𝑥, 𝑐, 𝑡;𝜔) to the MC update after a

few timesteps and confirmed our suspicions, as our present numerical implementation

of the DO solution was adding spurious oscillations to 𝜑 near the sharp boundary.

Preliminary results on smoother harvesting fields have shown more promising value

function fields. A second reason for these oscillations is the relatively low number of

modes used for the cases considered, as a higher number of modes seems to reduce the

intensity of these oscillations. Additional numerical studies and careful verification
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Figure 7-6: The stochastic best case Pareto front for the case of interest. Shown is
the mean front along with a shaded region covering ±𝜎. Results obtained from the
DO method are shown and compared to those found using Monte Carlo. Shown also
are the PDFs of Pareto optimal solutions at 3 distinct times.

of our numerical implementation are needed.

In future work, we plan to test our approach in more realistic dynamic environ-

ments representative of the conditions autonomous marine vehicles would encounter

in the open ocean. Additionally, we plan to apply the DO methodology to handle

more general forms of harvesting dynamics. Furthermore, a key theoretical property

we intend to address is on viscosity solutions in the context of stochastic Hamilton-

Jacobi equations. In particular, we plan to study in detail what such a viscosity

solution would look like in the stochastic case, whether the our present DO approach

would produce this and, if not, what modifications would be needed to obtain this

solution. Finally, we also intend to study efficient techniques to backtrack the family

of optimal paths for a given Pareto optimal solution by using the stochastic value

function along with the corresponding stochastic backtracking ODE.
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Chapter 8

Conclusions and Future Work

In this final chapter, we summarize the findings of this work as well as outline avenues

for future work.

The last decade has seen staggering growth in the development and use of au-

tonomous vehicles, especially in ocean applications. Specifically, AUVs and ASVs are

becoming more commonplace in marine surveillance, sampling and prediction tasks,

to name just a few of their many areas of applicability. Recently, these vehicles have

been further fitted with tools to allow them to harvest background dynamic fields.

Our focus has been on these harvesting vehicles and addressing how to compute

optimal paths for them in marine environments.

The primary contribution of this work has been the development of exact equa-

tions and efficient numerical schemes to compute harvest-time optimal paths for au-

tonomous vehicles navigating in strong and dynamic flow fields. The method pre-

sented is based on exact PDEs which thus removes the need for heuristics. Our

methodology builds upon (Lolla et al., 2014b), which uses forward reachability to

compute time optimal paths in dynamic flows using the level set method. We extend

this approach using state augmentation to solve a higher dimensional reachability

problem in the vehicle’s spatial and harvesting coordinates. This, in turn, allows for

the ability to solve the multi-objective optimal path planning problem of minimizing

the arrival time of the vehicle while simultaneously maximizing the vehicle’s harvest

state. We have shown, in particular, how the forward reachability front’s evolution
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in the augmented state space can be used to efficiently obtain the Pareto front for

this multi-objective optimization problem. A user then has the freedom to select

any Pareto optimal solution(s) from this front and, in the backtracking process, use

the time history of the forward evolution of the reachability front to determine the

corresponding optimal path as well as the associated optimal controls, i.e., the speed

and heading function, to be used by the vehicle to navigate to the destination.

Our methodology, which has been presented for very general harvesting dynam-

ics agnostic of any specific application, has a number of areas of applicability. For

instance, it is directly applicable to newer ASVs and AUVs equipped with energy

harvesting capabilities that allow them to harvest energy from solar, wind, and wave

sources from the environment. Such vehicles can use our approach to exactly compute

the reachable regions accounting for energy harvested along the way. One can also ex-

actly compute the full Pareto front holding solutions that trade-off arrival time versus

the energy of the vehicle remaining upon reaching the destination. The exact paths

through the environment can then be computed for any Pareto optimal solution cho-

sen from this Pareto front. Additionally, our approach also can be applied to vehicles

tasked with collecting advecting tracer fields, such as plastic waste or oil from spills.

In this case, our methodology is able to determine paths through environments that

additionally optimize for how much of the given tracer is harvested prior to reaching

the destination.

Several different applications have been numerically investigated and presented.

The first was a validation case involving planning a path in an environment with

no external flow containing a harvesting field covering half the domain. This case

admitted a semi-analytical solution, thus allowing us to verify the correctness of our

methodology. Our second case involved a more complicated, unsteady, flow field. In

particular, an idealized double-gyre flow field, which is representative of ocean cir-

culation at mid-latitude regions, was studied and energy-time optimal paths from

a fixed start point to a fixed target were found. In our third case, we applied our

methodology to the highly relevant problem of harmful algae bloom collection. Fi-

nally, we investigated optimal path planning for the case of an offshore moving fish
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farm – a next generation offshore aquaculture concept.

Many possible directions for future work exist. The first is properly addressing

the effect of harvesting from the vehicle on the environment itself. In all the cases

presented in this work, we assumed the vehicle to have a negligible effect on the field

it is harvesting. In certain cases, such as energy harvesting, this is valid since the

environment can be considered to be a giant energy reservoir. In others, such as when

collecting a tracer field, this assumption breaks down in the case where the length

scales of the vehicle approach those of the background tracer field. In these cases, the

effect of the reduction in the tracer field due to the influence of the vehicle cannot be

imposed until the final path is computed. To account for the dynamical effects of the

vehicle on the harvest field in our approach, one possibility is to consider an optimal

control problem in an augmented state space consisting of the vehicle (with its harvest

states) and the environment. The dynamics of this augmented system would then

be able to account for the coupling between the vehicle’s position at a given location

and the corresponding reduction in the tracer field at that point. While theoretically

possible, such an optimal control problem may involve a large number of states (in

addition to the vehicle’s position and harvest states, it would include however many

degrees of freedom are present in the environment to parametrize the tracer field).

In some applications, such an approach may become computationally infeasible. To

account for this, there may be avenues for reduced representations of the state space

in order to decrease and adapt the overall dimensionality of the system (Feppon and

Lermusiaux, 2019; Heuss et al., 2020; Charous and Lermusiaux, 2021b,a; Ryu et al.,

2021).

A second direction for future work is building upon the preliminary results from

Chapter 7 to handle the case of path planning in uncertain environments. A stochastic

treatment of our problem would further open the door to data assimilative path

planning Lermusiaux (2007); Lermusiaux et al. (2017a,b). In this case, a vehicle, as

it traverses to the target, would be able to use measurements along the way of its state

to assimilate and predict the correct flow field (and harvest fields), and accordingly

modify its optimal path.
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A third avenue for future work is in addressing the increased computational cost

associated with considering many harvesting states. For these high-dimensional cases,

Bellman’s curse of dimensionality makes numerical solves computationally intractable.

In order to address this, there has been recent work in the space of high-dimensional

reachability on using state space decomposition (Chen et al., 2018). This approach

looks to decompose the dynamics of non-linear systems into sub-systems in lower

dimensional spaces that can be analyzed instead. Such techniques could prove to

be applicable in our method as well in order to handle a large number of harvesting

states.

A fourth and final direction for future work, following along the same lines of ad-

dressing Bellman’s curse of dimensionality, is to consider machine learning approaches

for solving high-dimensional Hamilton-Jacobi-Bellman equations. Machine learning

(deep learning in particular) has started to be actively studied in recent years for solv-

ing high-dimensional Hamilton-Jacobi-Bellman equations (Bansal and Tomlin, 2020;

Nakamura-Zimmerer et al., 2021; Nüsken and Richter, 2021), and these techniques

may prove to be highly applicable to our path planning framework.
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