
Image Compression using Sum-Product
Networks

by

Tejas K. Jayashankar

B.S., University of Illinois at Urbana-Champaign (2019)

Submitted to the Department of Electrical Engineering
and Computer Science in Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022

© 2022 Massachusetts Institute of Technology. All rights reserved.

Signature of Author: .
Department of Electrical Engineering and Computer Science

January 26, 2022

Certified by: .
Gregory W. Wornell

Sumitomo Professor of Engineering
Thesis Supervisor

Accepted by: .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Image Compression using Sum-Product Networks
by

Tejas K. Jayashankar

Submitted to the Department of Electrical Engineering and Computer Science
on January 26, 2022, in Partial Fulfillment of the

Requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

An estimated 79 zettabytes (1021 bytes) of data was generated worldwide in 2021
with even more data expected to be produced in the future. The effective storage
and communication of such large amounts of data is an important problem. Data
compression lies at the heart of the solution to this issue.

The two aspect of data compression — data modeling and coding — are typ-
ically jointly designed. As a result, it is difficult to evolve compression standards
without a complete modification of the entire architecture. Recently, a model-code
separation architecture for compression was proposed with a model-free encoder and
model-adaptive decoder. The architecture uses a data independent encoder, and it
employs a probabilistic graphical model (PGM) to model the source structure in the
decoder. Decoding is performed by running belief propagation over the graphical
models representing the modeling and coding aspects of compression.

In practical settings where we deal with naturally occurring data, e.g., CIFAR-10
images, the PGM underlying the source data is unknown. Existing structure learn-
ing algorithms for PGMs are inefficient for learning from large datasets and place
additional constraints on the graphical model structure that diminishes a PGM’s
representational power. Due to the difficulty of inference and learning in complex
PGMs, the current model-code separation architecture is limited in its use for many
real world applications.

In this thesis, we develop a new separation architecture based on recently proposed
sum-product networks (SPNs), a class of tractable probabilistic generative models,
to model the source distribution. Our architecture strikes a balance between efficient
learning of source structure and fast lossless decoding. We show that SPNs admit
efficient parameter learning via gradient descent to learn statistical structure in syn-
thetic and naturally occurring images. Furthermore, through modifications to the
SPN architecture, we describe a procedure to assimilate external beliefs about the
source and compute the marginal probabilities of all the source nodes in a single for-
ward and backward pass of the SPN architecture. By using an SPN source model in
place of a PGM, we obtain a new model-code separation architecture for compression.

Throughout this thesis, we focus on the efficient implementation of our compres-
sion architecture. We take advantage of modern deep learning frameworks and GPUs
to implement our entire architecture using parallelized tensor operations. As a re-

ii

sult, we are able to bridge the gap between traditional statistical inference algorithms
and modern deep learning models by carefully developing the SPN source-code be-
lief propagation algorithm for source decoding. The resulting algorithm can decode
grayscale sources in under 0.04 seconds.

This work applies the proposed architecture for the lossless compression of bi-
nary and grayscale images. We compare our architecture against some of the most
commonly used compression systems of today and theoretical limits.

We show that our architecture achieves a 1.7× gain in compression rate over the
state-of-the-art JBIG2 compressor on the binarized MNIST dataset. Furthermore,
our architecture does not incur a performance penalty on grayscale sources and is
still able to achieve a 1.4× gain in compression rate on the grayscale CIFAR-10 and
the Fashion MNIST datasets, as compared against some of the best universal compres-
sors. Extensive analysis on synthetic binary sources show that our architecture can
achieve near theoretical limits of compression and match the performance of baseline
separation architectures with known PGM structure.

Thesis Supervisor: Gregory W. Wornell
Title: Sumitomo Professor of Engineering

iii

Acknowledgments
I would like to my extend my thanks and utmost appreciation to the many people
that have made this thesis possible.

First and foremost, I am extremely grateful to my advisor, Professor Gregory Wor-
nell, for his guidance, support and teaching throughout my time here at MIT. From
our very first interaction before my acceptance into MIT, I knew that he was invested
in my growth as a researcher and a student. Without his support of my research
and professional goals, his constant motivation, and his broad technical knowledge,
I would not be where I am right now. I am extremely grateful for his guidance
and advice that has led to the discovery of new fields of research that I would not
have immersed myself in otherwise. Through his classes and weekly meetings, I have
added more skills to my toolkit and ventured beyond deep learning into the domains
of information theory and statistical inference.

This thesis builds upon the ideas of Dr. Ying-zong Huang, whose 2015 PhD thesis
forms the foundation of my work. Dr. Huang has been so kind in sharing his immense
knowledge within the field of compression with me and he has taken so much time
out of his schedule to guide me in the right direction. This thesis would have been
impossible without his insights and suggestions, and for that I am extremely grateful.

My passion for research was fostered by my advisor at UIUC, Professor Pierre
Moulin. I am lucky to have known Professor Moulin since 2015. His guidance shaped
me into a more inquisitive researcher and I owe my admission into MIT’s graduate
program to his support and dedication towards my excellence.

Throughout my time at MIT I have always been lucky to have the support of
my current and former labmates in the Signals, Information and Algorithms (SIA)
laboratory. I would like to thank each of them for fostering a wonderful research
environment for me at MIT — Safa Medin, Abhin Shah, Gary Lee, Toros Arikan,
Joshua Lee, Mumin Jin, Maohao Shen, Dr. Yuheng Bu, Dr. Amir Weiss, Dr. Ganesh
Ajjanagadde and Dr. Adam Yedidia.

Safa is one of my best friends at MIT and I have learned so much about deep
generative models for computational imaging through his exemplary work in the area.
Through Abhin I have gained a broader understanding about graphical models and
inference. I am grateful to Gary who gave me the opportunity to help him mentor
four UROPs in Fall 2020. Gary taught me so much about reinforcement learning and
its applications to wireless communications. My discussions with Mumin about her
research have also been beneficial to me for my growth as a researcher.

I would like to give a special shoutout to Tricia O’Donnell who has been there to
help me since my first day at MIT. Even after the pandemic started and work went
remote, Tricia has continued to offer a helping hand to me at times of need.

Having had the opportunity to be a teaching assistant for 6.438: Algorithms for
Inference in Fall 2021, has truly enriched my graduate experience at MIT. Through
my collaboration with other members of course staff — Professor Wornell, Dr. At-
ulya Yellepeddi, Jiejun Jin, Michael Truell and Romain Cosson — I gained a deeper
insight into probabilistic graphical models and statistical inference theory. I am also
immensely thankful for the hard work and curiosity of all the students in the course

iv

whose questions enabled me to solidify my understanding of the course material and
deliver a stronger thesis.

Given the applied nature of this research, I greatly benefited from my prior
research-based internships conducted in industry with these additional collaborators:
Dr. Jonathan Le Roux and Dr. Chiori Hori at MERL where I developed deep learn-
ing models for multimodal audio-visual systems; Dr. Qing He, a former SIA group
member, at Facebook AI where I worked on cutting-edge research for the development
of variable rate neural audio codecs.

I had the opportunity to hold several leadership positions during my time at MIT.
I have been involved with the EECS Graduate Student Association (GSA) as the VP
of Publications and more recently as one of the co-Presidents. Throughout my time
on the GSA, I have made so many friends in the department and I have had a great
time collaborating with the EECS Graduate Office. I would like to convey a special
thanks to everyone in the EECS Graduate Office for supporting my initiatives and
ideas for the department and moreover, for allowing me to serve as a representative
for the many graduate students in the EECS department. I would also like to thank
my fellow executive members on the Ashdown House Executive Committee (AHEC)
for helping build a safe and comfortable living environment on campus.

When the pandemic started I was welcomed in by the members of the MIT Sport
Taekwondo, where I have been a member since. I am grateful to have represented
MIT at tournaments, and I am thankful to all my teammates for bringing an extra
amount of energy into my day during our workouts.

Graduate life at MIT would not be possible without all my close friends and
family. I would like to thank Vivienne Zhang, Mark Saad, Johan Pereira, Pavani
Majety, Karthiga Mahalingam, Siddharth Muralidaran, Rushik Desai and Aniket
Patel for being there for me every day. They are my family away from home and
their constant presence in my life brings a smile to my face. I would also like to thank
all my friends at MIT of which there are so many to name.

I would also like to thank my parents and my sister. My parents have worked
very hard to support my sister and me throughout our lives. I am very grateful for
all the love and encouragement they have given me. This work is dedicated to my
grandparents who have loved me from the day I was born. I am very grateful to have
so many memories with them and their teachings live in me forever.

v

to my grandparents
for all their love and wisdom

Image Compression using Sum-Product
Networks

Contents

Abstract ii

Acknowledgments iv

1 Introduction 13
1.1 Compression Landscape . 13
1.2 Motivation . 15

1.2.1 Joint Model-Code Architectures 15
1.2.1.1 Lossless Compression: Huffman Coding 15
1.2.1.2 Lossy Compression: JPEG and JPEG-2000 15

1.2.2 Universal Data Compression 16
1.2.3 Neural Codecs . 16

1.3 Thesis Guide . 17
1.3.1 Highlight . 17
1.3.2 Organization . 18
1.3.3 Notation . 18

2 Background and Prior Work 20
2.1 Source Coding Theory . 20
2.2 Probabilistic Graphical Models . 22

2.2.1 Undirected Graphical Models 22
2.2.2 Factor Graphs . 24
2.2.3 Inference Routines . 24

2.2.3.1 Belief Propagation 24
2.2.3.2 Sampling . 26

2.3 Model-Free Coding . 28
2.3.1 Low Density parity-check (LDPC) Codes 28
2.3.2 Decoding LDPC Codes . 28

2.4 Prior Work . 30
2.5 Recent Work in Lossless Image Compression 31

3 Sum-Product Networks 33
3.1 Tractable Inference . 33
3.2 Architecture . 34
3.3 Comparison with Other Architectures 37

4

3.3.1 SPNs vs. PGMs . 37
3.3.2 SPNs vs. Arithmetic Circuits 39
3.3.3 SPNs vs. Deep Generative Models 39

3.4 Deep Generalized Convolutional Sum-Product Networks 40
3.5 Parameter Learning . 41
3.6 Parallel Marginal Computation . 42
3.7 Inference with External Beliefs . 43

4 Model-Code Separation Architecture 45
4.1 PGM-based Model-Code Separation Architecture 45

4.1.1 Encoder . 45
4.1.2 Decoder . 46

4.1.2.1 Code Graph . 46
4.1.2.2 Source Graph . 46

4.1.3 Source-Code Belief Propagation 46
4.1.4 Dealing with Large Alphabet Sources 48
4.1.5 Doping . 49
4.1.6 Overall Architecture . 50
4.1.7 Drawbacks of PGM-based Decoder 50

4.2 SPN-based Model-Code Separation Architecture 50
4.2.1 Architecture Details . 50
4.2.2 SPN Source-Code Belief Propagation 52
4.2.3 Benefits of Separation Architecture with SPNs 52

5 Lossless Image Compression 55
5.1 Belief Propagation Decoding Threshold 55
5.2 Experimental Setup . 56
5.3 Compressing Binary Sources . 57

5.3.1 Binary Ising Model . 57
5.3.1.1 Experiments . 59
5.3.1.2 Results . 60

5.3.2 Binary MNIST . 61
5.4 Compressing Grayscale Sources . 63

5.4.1 Grayscale MNIST . 63
5.4.2 Fashion MNIST . 65
5.4.3 CIFAR-10 . 67

5.5 Summary . 69

6 Conclusion 70
6.1 Review . 70
6.2 Applications and Future Work . 70
6.3 Final Remarks . 72

A Supplementary Images 73

5

List of Figures

1-1 A lossless compression system with joint model-code architecture. The
data model is used to design the data processor and the coding mech-
anism. 15

1-2 We take an image, dither each pixel using uniform noise in the inter-
val [−0.5, 0.5] and then threshold the image to two levels using the
modulo operator. The system achieves a compression rate of less than
0.125. The reconstructions from a superresolution GAN look percep-
tually similar to the input. 17

2-1 To convert an undirected graph to a factor graph, create a factor node
for each maximal clique. Nodes belonging to the same clique are con-
necting by edges of the same color. 24

2-2 The Tanner graph representing the LDPC parity-check matrix from
Example 2.1 . 29

2-3 Model-code separation for compression architectures. The data is coded
using a coding mechanism that is independent of the data model. . . 30

3-1 A normalized sum-product network over two random variables. The
leaf nodes have singular scope and can contain any tractable distribu-
tion. If the leaf distribution is an indicator, the weights along the edges
from the leaf to sum node are parameters for a categorical distribution.
If the leaf distributions are, for example, Gaussian then the SPN can
be interpreted as mixture model. 35

3-2 An SPN can represent a distribution over all sequences with an even
number of 1s with 𝒪(𝑛) edges whereas a junction tree requires a fully
connected graph with 𝒪(𝑛2) edges. 38

3-3 Example DGCSPN architecture in 1D taken from [61]. Layer 0 contains
the leaf distributions. Every product layer doubles the dilation rate,
starting with a rate of 1. The scopes are indicated by the numbers
within each node. All children of the same sum node have the same
scope. 40

3-4 The SPN from Example 3.1 with external beliefs (colored in pink)
provided by multiplying them with the leaf distribution. 44

7

4-1 The combined source-code decoder. The source and code graph share
the common nodes denoting the source symbols which is represented
by the virtual controller. 47

4-2 The combined source-code decoder with a translator introduced to
compress large alphabet sources. 49

4-3 Combined SPN source-code decoder with arrows between the controller
and SPN denoting the direction of message flow. The messages from
the code graph are fed as external beliefs to the SPN. The messages
from the source graph are accumulated from the gradients at the leaf
nodes of the SPN and are then sent to the controller. 51

5-1 Binary Ising model Ising(𝑝, 𝑞). 58
5-2 28×28 Gibbs samples images from Ising(1/2, 𝑞) for different values of 𝑞. 59
5-3 Compression performance for the Ising(𝑝, 𝑞) source family for 𝑝 = 1/2

and different values of 𝑞. The dimensions of the image were fixed to
ℎ = 𝑤 = 28 and 𝑟code = 0.04. 60

5-4 Decoding a sample from Ising(1/2, 3/4) using SPN-SEP. Intensities 𝛼𝑖

range from black=0 to white=1. Intensities denote the value of the
estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.5 and 𝑟dope = 0.04. . 61

5-5 Sample images from the grayscale MNIST dataset. Images are bina-
rized by using a mid-intensity threshold. 62

5-6 Decoding the digit 7 from the binary MNIST dataset using SPN-SEP.
Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the
value of the estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.27 and
𝑟dope = 0.04 . 63

5-7 Decoding the digit 9 from the MNIST dataset using SPN-SEP. Intensi-
ties 𝛼𝑖 range from black=0 to white=1. Intensities denote the value of
the max marginal 𝛼𝑖 ≜ max𝑠𝑖 𝑝s𝑖(𝑠𝑖). We set 𝑟code = 0.23 and 𝑟dope = 0.04 64

5-8 Samples from the Fashion MNIST dataset. Class labels are displayed
below each image. 65

5-9 Decoding an image of a shoe from the Fashion MNIST dataset using
SPN-SEP. Intensities 𝛼𝑖 range from black=0 to white=1. Intensities
denote the value of the estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code =
0.45 and 𝑟dope = 0.04 . 66

5-10 Samples from the CIFAR-10 dataset. Class labels are displayed below
each image. 67

5-11 Decoding an image of a car from the CIFAR-10 dataset using SPN-SEP.
Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the
value of the estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.85 and
𝑟dope = 0.07 . 68

A-1 Decoding a sample from Ising(1/2, 7/10) using SPN-SEP. Intensities
𝛼𝑖 range from black=0 to white=1. Intensities denote the value of the
estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.70 and 𝑟dope = 0.04. 73

8

A-2 Decoding the same sample from Figure A-1 using PGM-SEP. Intensities
𝛼𝑖 range from black=0 to white=1. Intensities denote the value of the
estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.70 and 𝑟dope = 0.04. 74

A-3 Decoding the same sample in Figure 5-4 using PGM-SEP. Intensities
𝛼𝑖 range from black=0 to white=1. Intensities denote the value of
the estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.5 and 𝑟dope =
0.04. Compared to 5-4, we see that PGM-SEP arrived at the solution
differently. PGM-SEP started decoding by growing outwards from the
doped sites whereas SPN-SEP started to look for global structure from
the first iteration. This is because BP on a PGM uses local markov
structure to decode the source pixels whereas SPN use the complete
structure of the source. 75

A-4 Decoding the digit 8 from the binary MNIST dataset using SPN-SEP.
Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the
value of the estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.3 and
𝑟dope = 0.04 . 76

A-5 Decoding the digit 5 from the binary MNIST dataset using SPN-SEP.
Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the
value of the estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.27 and
𝑟dope = 0.04 . 77

A-6 Decoding the digit 2 from the MNIST dataset using SPN-SEP. Intensi-
ties 𝛼𝑖 range from black=0 to white=1. Intensities denote the value of
the max marginal 𝛼𝑖 ≜ max𝑠𝑖 𝑝s𝑖(𝑠𝑖). We set 𝑟code = 0.23 and 𝑟dope = 0.04 78

A-7 Decoding an image of a pant from the Fashion MNIST dataset using
SPN-SEP. Intensities 𝛼𝑖 range from black=0 to white=1. Intensities
denote the value of the estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code =
0.45 and 𝑟dope = 0.04 . 79

A-8 Decoding an image of a dress from the Fashion MNIST dataset using
SPN-SEP. Intensities 𝛼𝑖 range from black=0 to white=1. Intensities
denote the value of the estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code =
0.48 and 𝑟dope = 0.04. Notice how the SPN initially drives the decoder
towards decoding the image as a pant. 80

A-9 Decoding an image of a horse from the CIFAR-10 dataset using SPN-SEP.
Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the
value of the estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.80 and
𝑟dope = 0.04. 81

A-10 Decoding an image of a boat from the CIFAR-10 dataset using SPN-SEP.
Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the
value of the estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.80 and
𝑟dope = 0.04. 82

9

List of Tables

1.1 The compression landscape can be divided into four domain based
on model specificity and the reconstruction assessment metric. Most
traditional systems fall under Domain II and III, but with the advent
of deep generative models, Domain I systems have been the focus of
current research. 14

5.1 Average compression rate of the binary MNIST images using different
compression strategies. 62

5.2 Average compression rate of grayscale MNIST images using different
compression strategies. 63

5.3 Average compression rate of Fashion MNIST images using different
compression strategies. 65

5.4 Average compression rate of grayscale CIFAR-10 images using different
compression strategies. 67

10

List of Algorithms

1 Belief propagation (BP) on a factor graph. 27

2 SPN Source-Code Belief Propagation. 54

11

Chapter 1

Introduction

The total amount of digital data that is created and consumed globally is increasing
every day. According to Statista, in 2021, 79 zettabytes (1021 bytes) of data was
generated worldwide [52]. Storing and sharing such large amounts of information
is facilitated by efficient data compression algorithms. Data compression has a long
history dating as far back as the 1800s, an era which witnessed the introduction of the
Morse code and the telegraph, some of the earliest forms of text compression. The field
has since made tremendous advances with the introduction of hundreds of compression
systems that achieve excellent performance for specific data sources [49, 51]. In recent
years, with the advent of machine learning and high-compute devices, the field of data
compression is once again at the forefront of engineering. A recent breakthrough
is the development of compression systems with model-code separation [27, 26, 34,
36]. In this thesis, we study model-code separation in compression architectures and
demonstrate that such a constraint on our system leads to novel deep learning based
architectures for modeling source structure.

1.1 Compression Landscape
The compression landscape can be divided into four domains depending on our prior
knowledge about the data and the metric for assessing the data reconstruction quality,
as shown in the Table 1.1. Along the vertical axis we can divide the systems based
on the fidelity of reconstruction.

• If the reconstruction is perfect, i.e., the decoded output is the same as the input,
the system performs lossless compression. An example of such a compression
system is the Portable Networks Graphics (PNG) standard for images [3].

• On the other hand, lossy compression systems make a trade-off between com-
pression rate and distortion to produce reconstructions that are perceptually
“close” to the input. These systems are used for compressing perceptual con-
tent such as images or video. For example, the widely used Joint Photographics
Experts Group (JPEG) image standard [56] leverages the Discrete Cosine Trans-
form (DCT) [1] to perform energy compaction by filtering out high frequencies

13

Fidelity \Model Specified Unspecified

Lossless I. Entropy Coding
(processing + RLE, Huffman)

II. Universal Entropy Coding
(LZW, CTW)

Lossy
III. Rate-Distortion Coding
(processing + quantization

+ coding)

IV. Universal Rate-Distortion
Coding

Table 1.1: The compression landscape can be divided into four domain based on
model specificity and the reconstruction assessment metric. Most traditional systems
fall under Domain II and III, but with the advent of deep generative models, Domain
I systems have been the focus of current research.

in the image. The resulting reconstruction looks perceptually similar to the
input with additional bit savings achieved by discarding bits from perceptually
irrelevant regions.

Along the horizontal axis we can divide the systems based on data model specificity.
The data model captures all prior knowledge about the data source. This knowledge
could be in the form of perceptual information or statistical information about the
source.

• If the data model is specified, then the system is typically used for compress-
ing specialized data. For example, the Joint Bi-level Image Experts Group
(JBIG/JBIG2) [23, 39] image standard was developed specifically for the com-
pression of bi-level images, particularly for faxes. The system takes advantage
of blockwise correlations in textual and halftone data by segmenting the image
into blocks. Blocks with similar structures are compressed using fewer bits.
Non-image bi-level data will not undergo significant compression using this sys-
tem as a result of the previous assumptions. In this sense, the JBIG2 data model
is specific to bi-level image data.

• If the data model is not specified, then the system is typically used for com-
pressing generic data, i.e., universal compression (see Section 2.1). Since a data
model is required for compression, these systems learn statistical structure on-
the-fly from the input data. For example, the GZIP standard that we use every
day to compress our files (usually binary encoded) is a universal compression
standard based on the Lempel-Ziv dictionary learning based source coder [59]
and Huffman encoding [28]. These models often have to learn significant struc-
ture from the data and require long input sequences for optimal performance.

14

Figure 1-1: A lossless compression system with joint model-code architecture. The
data model is used to design the data processor and the coding mechanism.

1.2 Motivation
We motivate our search for model-code separation compression architectures by look-
ing at a few examples.

1.2.1 Joint Model-Code Architectures

Almost every familiar compressor that we use nowadays employs a joint model-code
architecture in its system. We will study the drawbacks of such architectures by
considering two examples.

1.2.1.1 Lossless Compression: Huffman Coding

Consider the simple yet tremendously powerful Huffman code that falls under Domain
I. The Huffman coder learns the data model by building a binary tree that stores the
frequency of symbols that appear in the input data. The construction of the binary
tree can be interpreted as processing the data. As shown in Figure 1-1, the coding
mechanism, sometimes called the codec, also uses the data model, i.e., the frequencies
of the symbols, to efficiently compress the data by assigning smaller length binary
codes to more frequently occurring symbols and assigning larger length codes to
less frequently occurring symbols. In fact, as shown by Huffman in [28], this code
achieves entropy (see Section 2.1) and is the most optimal code choice for the given
data model. Hence, if the data model changes, the previously learned code will no
longer be optimal. Moreover, the data model and the coding mechanism must be
learned for every new instance of input data.

1.2.1.2 Lossy Compression: JPEG and JPEG-2000

An example that illustrates the drawbacks of joint model-code design is the story
of JPEG-2000 [55]. In 2000, the same group that developed JPEG introduced the
JEPG-2000 standard that uses the wavelet-transform [2] instead of the DCT. The
benefits of using the wavelet-transform include a more scalable compressed bitstream,
higher dynamic range reconstruction and progressive image transmission. However,
despite these benefits, the older JPEG standard from 1987 is still more widely used for

15

daily multimedia transmission and storage. The reason for JPEG-2000 not replacing
its predecessor is two-fold:

1. JPEG-2000 depended on a completely new codec, and, thus, JPEG coded images
could not be decompressed using the new standard.

2. JPEG-2000 requires more memory and most software developers had already
standardized their products for use with the JPEG standard.

While the second point might no longer be relevant in modern times, as we move into
a new age with wearable devices and lightweight sensors, it is important to evolve
compression standards with low-complexity codes that are highly optimized for em-
bedded deployment.

Having seen some drawbacks of joint model code design, we seek to answer the fol-
lowing question.

Can we compress an input using a lightweight encoder independent of
the data model and leverage the data model only within the decoder?

In [27, 26], Huang and Wornell showed that this is indeed possible. We revisit this
question from a slightly different angle in this thesis.

1.2.2 Universal Data Compression

Universal compression is difficult because the system must code the data without any
knowledge of the data model. The study of model-code separation is an important
step in realizing practical universal compressors. Attempts have been made to ubiq-
uitously adopt universal compression standards, but they usually end up becoming a
standard for certain types of data, either due to sub-optimal performance on certain
data types or due to compatibility issues with older standards. In this thesis, we
propose a data model learning mechanism that can be used to statistically model the
structure inherent to any data source type. Moreover, the encoding mechanism is a
simple projection operator and only relies on the input data being represented as a
bitstream.

1.2.3 Neural Codecs

Neural codecs, compression systems that use neural networks in the compression
pipeline, boast state-of-the-art results for lossless compression tasks. Such codecs
employ joint model-code design in their architecture and are often trained end-to-end
on small datasets for days. Imposing model-code separation in compression systems
that use neural data models forces the network to not only employ a deep generative
convolutional architecture for rich feature extraction but to also admit tractable in-
ference for probabilistic queries such as marginalization, sampling and most probable
explanations (MPE). In this thesis, we show that imposing model-code separation in
our system highlights the benefits of a new class of deep probabilistic models called
Sum-Product Networks (SPNs) (see Sum-Product Networks).

16

Figure 1-2: We take an image, dither each pixel using uniform noise in the interval
[−0.5, 0.5] and then threshold the image to two levels using the modulo operator. The
system achieves a compression rate of less than 0.125. The reconstructions from a
superresolution GAN look perceptually similar to the input.

1.3 Thesis Guide

1.3.1 Highlight

The inspiration for studying model-code separation stems from experiments on image
reconstruction from dither-quantized images using generative adversarial networks
(GANs) [22] and vector-quantized variational autoencoders (VQVAEs) [41]. We code
an image from the CelebA dataset using the modulo operator and then use a deep
generative network called a superresolution GAN (SRGAN) [58] to reconstruct the
image. Let s𝑛 be an image with 𝑛 = ℎ × 𝑤 pixels over an alphabet of size 𝑀 , and
let u𝑛 ∼ Uniform([−0.5, 0.5]𝑛) be noise sampled from the uniform distribution. We
compress s𝑛 into a binary image c𝑛 (alphabet size of 2) of the same spatial size,

c𝑛 = (s𝑛 + u𝑛)modulo 2, (1.1)

where the process of adding uniform noise before quantization is called dithering.
There were two key takeaways from this experiment — 1) the SRGAN was able to
produce a perceptually similar reconstruction of the input, as shown in Figure 1-2,
and 2) the coding mechanism was independent of the data model. This is an instance
of a lossy compression system with the SRGAN discriminator playing the role of the
distortion function. Ideally, to use this as a true compression system, we would like

17

to trade-off between distortion and rate to compress an image. If we are equipped
with a probabilistic interpretation for each layer of the discriminator, we can answer
any number of probabilistic queries that can help quantify the level of distortion and
rate of compression.

It is for these reasons that we revisit the model-code separation architecture for
data compression proposed by Huang and Wornell in [27, 26]. We approach it with
the goal of amalgamating statistical inference techniques such as belief propagation
(BP) (see Section 2.2.3.1) with modern deep learning architectures. The end result
is an architecture that is fast, flexible and highly parallelizable for deployment on
powerful inference engines such as GPUs. Furthermore, the architecture uses a data
model based on recent techniques in deep probabilistic modeling to learn powerful
statistical structure in source sequences.

The experiments in this thesis focus on the lossless compression of images. The
architecture is, however, general and can applied for the compression of any source
modality. Furthermore, while our efforts are focused on Domain I in Table 1.1, the
architecture can be extended for lossy compression of images similar to [34, 36].

1.3.2 Organization

This thesis is organized into six chapters. The first three chapters introduce the
necessary background and tools that are needed to understand our compression ar-
chitecture.

Important results from source coding theory, probabilistic graphical models and
a brief survey of related work are presented in Chapter 2 (Background and Prior
Work). We will build upon these concepts by introducing a recently proposed class
of deep probabilistic generative models and describe the modifications to use them
for lossless compression in Chapter 3 (Sum-Product Networks).

Chapter 4 (Model-Code Separation Architecture) describes the model-code sep-
aration compression architecture by using the concepts introduced in the previous
chapters. Chapter 5 (Lossless Image Compression) presents experiments and results
for lossless compression of images from various image datasets.

Finally, Chapter 6 (Conclusion) summarizes the work and elaborates on further
ideas for research.

Appendix A (Supplementary Images) contains supplementary images that com-
plement the results in Chapter 5 (Lossless Image Compression).

1.3.3 Notation

We write s to denote a random variable and 𝑠 to denote a scalar variable. To denote
a length 𝑛 random vector or a sequence of 𝑛 random variables we use the notation
s𝑛. We denote the 𝑖’th element of s𝑛 as s𝑖. Depending on the situation, we will write
s𝑛 as a column vector [s1 s2 . . . s𝑛]𝑇 or as a sequence (s1, s2, . . . , s𝑛). We denote by
s𝑛 and 𝑠𝑖 the non-random version of the same.

We reserve e.g., 𝐻 for a matrix and e.g., 𝒮 for a set. We use 𝐻𝑗 to denote the
vector representing the 𝑗’th row of 𝐻. We use 1 to denote the vector of all ones.

18

We sometimes use the notation x𝑟
𝑗 to denote 𝑗’th length 𝑟 vector in the block vector

x𝑘𝑟 = [x𝑟
1 x𝑟

2 . . . x𝑟
𝑘]

𝑇 .
We will use graphical models to represent probability distributions when necessary.

We denote an undirected graph by 𝒢 = (𝒱 , ℰ) where 𝒱 is the vertex/node set and ℰ
is the edge set. If a graph 𝒢 represents the distribution 𝑝s𝑛 , we set 𝒱 = {1, . . . , 𝑛}
such that node 𝑣 ∈ 𝒱 represents s𝑣. We use the shorthand s𝒱 to denote s𝑛 and s𝒱 to
denote s𝑛.

We denote indexing of a random vector s𝑛 with the index set 𝒜 by s𝑛𝒜. In the
graphical model setting we use the shorthand s𝒜. We use similar notation in the
non-random setting.

19

Chapter 2

Background and Prior Work

The model-code separation architecture for compression can be decomposed into two
sub-components — 1) the model-free code, and 2) the model-adaptive decoder. The
fundamental concepts behind the model-free code come from the field of information
theory, coding theory and communications. The development of the model-adaptive
decoder draws inspiration from statistical inference and deep learning. In this chapter
we introduce the key concepts required to understand the model-code separation
architecture for compression. We end the chapter with details of prior work in this
field and a brief survey of related works in the area of lossless image compression.

2.1 Source Coding Theory
In his seminal paper from 1948 [53], Claude Shannon showed that communications
and data compression can be viewed as statistical information theoretic problems.
He introduced two source-coding theories for lossless and lossy compression of data.
We focus on lossless compression in this thesis and start by stating the source coding
theorem.

Definition 2.1 (Entropy). Given a random variable s ∼ 𝑝s belonging to a finite
alphabet 𝒮, its entropy is defined as

𝐻𝑝(s) ≜ −
∑︁
𝑠∈𝒮

𝑝s(𝑠) log 𝑝s(𝑠). (2.1)

Theorem 2.1 (Source Coding Theorem). Given a random variable s ∼ 𝑝s belonging
to a finite alphabet 𝒮, for all uniquely decodable coding functions 𝑐 : 𝒮 → 𝒞, where 𝒞
is the code alphabet, it holds that E[𝑐(s)] ≥ 𝐻𝑝(s).

In other words, Shannon’s source coding theorem for lossless compression states that a
random variable s cannot be compressed into fewer than𝐻(s) bits without information
loss.

20

Definition 2.2 (Entropy Rate). Given a sequence of random variables represented
as a random vector s𝑛 = [s1, s2, . . . , s𝑛]𝑇 with each s𝑖 belonging to a finite alphabet 𝒮,
the entropy rate of the sequence is defined as

H𝑝(s) ≜ lim
𝑛→∞

1

𝑛
𝐻𝑝(s𝑛). (2.2)

As described in Section 1.2.1.1, the Huffman code is an example of a code which
achieves entropy since it is designed specifically for the true source distribution 𝑝s𝑛(s𝑛).
Now assume that the coder was designed for some incorrect distribution 𝑞s𝑛(s𝑛).
Clearly the Huffman coder is no longer optimal for source sequences s𝑛 ∼ 𝑝s𝑛 . Given
no knowledge about 𝑝s𝑛(s𝑛), is it possible to still design a universal code with rate 𝑟𝑢
such that every i.i.d. source with entropy 𝐻𝑝(s𝑛) < 𝑟𝑢 can be described? The answer
is yes, as we start to develop below. We will confine ourselves to a particular class of
universal codes for ease of exposition.

Definition 2.3 (Weakly Typical Sequences). Let s𝑛 = (s1, . . . , s𝑛) be a sequence
drawn from 𝑝s𝑛 over a finite alphabet 𝒮𝑛. The typical set 𝒜𝜖 ⊂ 𝒮𝑛 contains those
sequences that satisfy,

2−𝑛(𝐻𝑝(s𝑛)+𝜖) ≤ 𝑝s𝑛(s𝑛) ≤ 2−𝑛(𝐻𝑝(s𝑛)−𝜖). (2.3)

The above definition states that a typical sequence can be encoded in approximately
𝐻(s𝑛) number of bits. Thus, the typical set comprises of those sequences that are most
representative of the source distribution. The size of the typical set is approximately
|𝒜𝜖| ≈ 2𝑛𝐻𝑝(s𝑛).

If the code has a rate of 𝐻𝑞(s𝑛) = 𝑟𝑢, then the typical set of sequences represented
by this code has a size of approximately 2𝑛𝑟𝑢 . We now define the probability of error
for fixed rate block codes — codes that use the same rate for all length 𝑛 blocks in the
input data stream. The rest of the definitions in this section are adapted from [9].

Definition 2.4 (Probability of Error for Fixed Rate Block Codes). A fixed rate block
code 𝐵(2𝑛𝑟𝑢 , 𝑛) of rate 𝑟𝑢 for a source s𝑛 which has an unknown distribution 𝑝s𝑛

consists of two mappings, the encoder

𝑓𝑛 : 𝒮𝑛 → {1, 2, . . . , 2𝑛𝑟𝑢}, (2.4)

and the decoder,
𝜑𝑛 : {1, 2, . . . , 2𝑛𝑟𝑢} → 𝒮𝑛. (2.5)

The probability of error of the code with respect to 𝑝s𝑛 is

𝑃 (𝑛)
𝜖 = P{𝜑𝑛(𝑓𝑛(s𝑛)) ̸= s𝑛}. (2.6)

We are now ready to formally define a universal fixed rate block code.

Definition 2.5. A rate 𝑟𝑢 block code for a source is called universal if the functions
𝑓𝑛 and 𝜑𝑛 do not depend on the distribution 𝑝s𝑛 and if 𝑃 (𝑛)

𝜖 → 0 as 𝑛 → ∞ if
𝐻𝑝(s𝑛) < 𝑟𝑢.

21

We now describe a universal code that exploits the fact that the size of the typical
set is exponential in 𝑛.

Theorem 2.2 (Csiszár and Körner [8, 9]). There exists a sequence of universal codes
𝐵(2𝑛𝑟𝑢 , 𝑛) such that 𝑃 (𝑛)

𝜖 → 0 for every source 𝑝s𝑛 such that 𝐻𝑝(s𝑛) < 𝑟𝑢.

The encoder is very simple and it is defined by

𝑓𝑛(s𝑛) =

{︃
index of s𝑛 in 𝒟 if s𝑛 ∈ 𝒟
0 else

(2.7)

where
𝒟 = {s𝑛 : s𝑛 ∼ 𝑝s𝑛(s𝑛) with 𝐻𝑝(s𝑛) ≤ 𝑟𝑢}.

Note that every element in 𝒟 is decoded perfectly while elements with entropy larger
than 𝑟𝑢 are not. Thus, we have defined a universal coding scheme with fixed rate
codes. In practice variable rate universal codes are used for compressing generic
data. The Lempel-Ziv algorithm which is used in GZIP compressors is an example of
such a scheme (see Section 1.1).

2.2 Probabilistic Graphical Models
Probabilistic Graphical Models (PGMs) are graphical models that can be used to
compactly represent statistical structure and conditional (in)dependencies in data.
In addition to modeling data, PGMs are capable of performing various inference
tasks such as computing marginal distributions, sampling and computing moments.
PGMs have been used to solve problems across various domains of engineering and
science. For example, many traditional and modern speech recognition systems use
Hidden Markov Models (HMMs) to model parts of speech [17, 57]. The HMM can
also be used to model state evolution in linear dynamical systems and have powered
space exploration through the Kalman filter [60]. In the early 2000s, factor graphs
demonstrated powerful statistical modeling capabilities for error correcting codes and
are still used in communication systems nowadays. In more recent years, PGMs have
played an important role in modeling treatment effect in clinical machine learning
models, where some form of intervention from domain experts is vital.

2.2.1 Undirected Graphical Models

An undirected graphical model is an undirected graph 𝒢 = (𝒱 , ℰ) where each 𝑣 ∈ 𝒱
represents a random variable and the edges represent conditional dependencies. If
a family of probability distributions 𝑝s𝑛 can be represented as an undirected graph,
where s𝑛 is a random vector, then a node 𝑣 in the graph represents one component
scalar random variable s𝑣. Furthermore, for any two nodes 𝑢, 𝑣 ∈ 𝒱

(𝑢, 𝑣) /∈ ℰ ⇒ s𝑢 ⊥⊥ s𝑣 | s𝒱∖{𝑢,𝑣}, (2.8)

22

where ⊥⊥ denotes independence and | denotes conditioning.

Remark: Note that we use the term family of distributions when describing an
undirected graphical model. There could exist many distributions that have the
same factorization structure and hence the same undirected graphical representation,
but with different mass/density functions. There exists a stronger graph separation
property in undirected graphical models which we state below.

Property 2.1 (Graph Separation Property). Consider mutually disjoint subsets 𝒜,ℬ
and 𝒞 of 𝒱. Then the conditional independence relation s𝒜 ⊥⊥ sℬ | s𝒞 holds for all dis-
tributions in the family of distributions represented by the undirected graph whenever
there is no path from a node in 𝒜 to a node in ℬ that does not pass through a node
in 𝒞.

We have thus far defined undirected graphs in terms of their conditional independen-
cies via the graph separation property. We will now look at an alternate definition of
an undirected graphical model by defining functions over the maximal cliques (fully
connected subgraphs) of the graph. The definition is provided by the Hammersley-
Clifford theorem [7].

Theorem 2.3 (Hammersley-Clifford Theorem). Any strictly positive distribution 𝑝s𝑛

over 𝒮𝑛 can be represented by an undirected 𝒢 = (𝒱 , ℰ) that satisfies the factorization
over maximal cliques of the graph, cl*(𝒢),

𝑝s𝑛(s𝑛) =
1

𝑍

∏︁
𝒞∈cl*(𝒢)

𝜑𝒞(s𝑛𝒞), (2.9)

if and only if it satisfies the conditional independencies implied by the graph separation
property (Property 2.1). The functions defined over the maximal cliques are called the
clique potentials and are positive everywhere.

Notation: When a distribution is represented by an undirected graph, we will
use the equivalent notation s𝒱 to denote the random variable s𝑛. We denote the
super-variable over a subset of nodes as s𝒜 for some 𝒜 ⊂ 𝒱 . Equation 4.4 can be
equivalently expressed as

𝑝s𝒱 (s𝒱) =
1

𝑍

∏︁
𝒞∈cl*(𝒢)

𝜑𝒞(s𝒞). (2.10)

𝑍 is called the partition function. For large graphs the partition function is hard to
compute as it requires a sum (or integral if variables are continuous) over all possible
combinations of the inputs. Like undirected graphs, PGMs can be constructed over
directed graphs in which conditional dependencies are conveyed by the edge direction.
In directed graphs, the edge potentials represent conditional probability distributions.
Note that the clique potentials in undirected graphs are not necessarily distributions.

23

2.2.2 Factor Graphs

Figure 2-1: To convert an undirected graph to a factor graph, create a factor node
for each maximal clique. Nodes belonging to the same clique are connecting by edges
of the same color.

Another class of PGMs that have found extensive use in communications and
coding theory are factor graphs [33]. A factor graph is a bipartite graph consisting
of two types of nodes — variable nodes (𝒱) and factor nodes (ℱ). Variable nodes
represent random variables and factor nodes represent functions over the random
variables. The probability distribution represented by a factor graph 𝒢 = (𝒱 ,ℱ , ℰ)
is given by

𝑝s𝒱 (s𝒱) =
1

𝑍

∏︁
𝑎∈ℱ

𝑓𝑎(s𝒩 (𝑎)). (2.11)

Note that any factor graph can be converted to an undirected graph and vice versa
by creating |ℱ| cliques such that 𝜑𝑎 ≜ 𝑓𝑎, with the clique size given by |𝜓𝑎| = deg(𝑎)
and the clique itself defined by the set 𝒩 (𝑎). An example of this conversion is shown
in Figure 2-1.

Factor graphs are often used in communication systems to model a distribution
over the set of valid codewords identifiable by the system. The factors typically
represent constraints between the symbols of the codeword. The Low Density parity-
check (LDPC) code (see Section 2.3.1) is an example of such a code.

2.2.3 Inference Routines

Marginal distribution computation and sampling are two of the most important in-
ference tasks on PGMs. If a model can perform one of these tasks efficiently, it
can perform the other efficiently too, since the tasks of marginalization, sampling,
computing the partition function 𝑍 and computing moments are all equivalent.

2.2.3.1 Belief Propagation

Approximate marginals of a distribution 𝑝s𝑛 can be computed using the sum-product
or belief propagation algorithm (BP) [64]. The BP algorithm is iterative and converges

24

to the (estimated) marginals with complexity exponential in the treewidth of the
graph. We first describe the algorithm for undirected graphical models.

Let 𝒢 = (𝒱 , ℰ) be an undirected graphical model for 𝑝s𝑛 that factorizes as (2.10).
Using naïve summation, with 𝒪(|𝒮|𝑛) operations, the marginal of a node can be
computed as

𝑝s𝑖(𝑠𝑖) =
∑︁
s𝒱∖{𝑖}

1

𝑍

∏︁
𝒞∈cl*(𝒢)

𝜑𝒞(𝑠𝒞).

BP utilizes the factorization structure of the graph to compute marginals for all nodes
by passing messages along the edges of the graph. They key idea is to reuse messages
in the graph to compute marginals for all nodes in fewer operations than the naïve
method. The messages can be interpreted as local beliefs about the marginal of a
node. The two node computations of BP on an undirected graph are:

• The message from a node 𝑖 to 𝑗. For every edge (𝑖, 𝑗) ∈ ℰ compute the messages

𝑚𝑖→𝑗(𝑠𝑗) ∝
∑︁

s𝒟∖{𝑗}

𝜑𝒟(s𝒟)
∏︁

𝑘∈𝒩 (𝑖)∖{𝑗}

𝑚𝑘→𝑖(𝑠𝑖), (2.12)

where
𝒟 =

⋃︁
𝒞∈cl*(𝒢)

𝒞 s.t. (𝑖, 𝑗) ∈ 𝒞.

• The total belief computation. For each node 𝑖 ∈ 𝒱 compute the (approximate)
unnormalized marginals/beliefs by accumulating messages from all neighboring
nodes:

𝑏𝑖(𝑠𝑖) ∝
∏︁

𝑘∈𝒩 (𝑖)

𝑚𝑘→𝑖(𝑠𝑖). (2.13)

BP can also be done on factor graphs and is often more easily described since the local
factorization structure is clearly represented as factors. Since factor graphs consist
of two types of nodes, we must now compute two types of messages. Since we can
convert any undirected graph to a factor graph, the message computation described
below is equivalent to what was already presented in (2.12) and (2.13). The three
important node computations of BP on a factor graph are:

• The variable to factor message from a variable node 𝑖 to factor node 𝑎. For
every variable-factor edge (𝑖, 𝑎) ∈ ℰ compute the messages

𝑚𝑖→𝑎(𝑠𝑖) ∝
∏︁

𝑏∈𝒩 (𝑖)

𝑚𝑏→𝑖(𝑠𝑖), (2.14)

• The factor to variable message from a factor node 𝑎 to variable node 𝑖. For
every factor-variable edge (𝑎, 𝑖) ∈ ℰ compute the messages

𝑚𝑎→𝑖(𝑠𝑖) ∝
∑︁

s𝒩∖{𝑖}

𝑓𝑎(s𝒩 (𝑎))
∏︁

𝑘∈𝒩 (𝑎)∖{𝑖}

𝑚𝑘→𝑎(𝑠𝑘), (2.15)

25

• The total belief computation. For each node 𝑖 ∈ 𝒱 compute the (approximate)
unnormalized marginals/beliefs by accumulating messages from all neighboring
factor nodes:

𝑏𝑖(𝑠𝑖) ∝
∏︁

𝑎∈𝒩 (𝑖)

𝑚𝑎→𝑖(𝑠𝑖). (2.16)

We begin BP by initializing all messages proportional to a uniform distribution. The
messages can also be initialized randomly. If the algorithm is carried out iteratively,
the messages are computed for each edge according to a pre-selected order. In each
iteration of the algorithm all messages are newly computed from the previous itera-
tion’s messages until convergence. To ensure stability of the algorithm the messages
are normalized after each iteration.

The marginal estimates can be obtained from the beliefs as

𝑝s𝑖(𝑠𝑖) =
𝑏𝑖(𝑠𝑖)

‖𝑏𝑖‖1
. (2.17)

The complete BP algorithm for factor graphs is shown in Algorithm 1. The complexity
of BP is𝒪(|ℰ|𝑇 |𝑆|

max
𝒞∈cl*𝒢

|𝒞|
) for an undirected graph or equivalently𝒪(|ℰ|𝑇 |𝑆|

max
𝑎∈ℱ

deg(𝑎)
)

for a factor graph, where 𝑇 is the number of iterations.

Fact 2.1. If the graph has no loops, BP converges to the true marginals of the
distribution. If the graph has loops, BP is not guaranteed to converge, but theory
shows that the approximate beliefs are often close to the true marginals. In the
presence of loops the BP algorithm is an approximate inference procedure and it is
called loopy BP.

Fact 2.2. The treewidth of a graph is defined as one less than the size of the maximal
clique,

tw(𝒢) ≜ max
𝒞∈cl*𝒢

|𝒞| − 1. (2.18)

Hence the complexity of BP for an undirected graph can be equivalently stated as
𝒪(|ℰ|𝑇 |𝑆|tw(𝒢)+1).

Notation: We denote by m𝑖→𝑗 the vectorized version of the messages from
node 𝑖 to node 𝑗,

m𝑖→𝑗 =
[︀
𝑚𝑖→𝑗(0) . . . 𝑚𝑖→𝑗(|𝒮| − 1)

]︀𝑇
. (2.19)

This is an abuse of notation since we drop the length of the vector in the subscript
to keep the notation a bit more clean.

2.2.3.2 Sampling

Sampling is one of the most important routines in approximate inference. Given a
large number of samples from a distribution, the empirical distribution of the samples

26

Algorithm 1: Belief propagation (BP) on a factor graph.
Data: Graph 𝒢 = (𝒱 ,ℱ , ℰ) and factor potentials 𝑓𝑎 for all 𝑎 ∈ ℱ .
Result: Estimated marginals probabilities 𝑝s𝑖 for all nodes 𝑖 ∈ 𝒱

/* Initialize messages to the uniform distribution over |𝒮|. */

m𝑖→𝑗 ←
1

|𝒮|
1;

/* Started iterative BP. */
𝑇 ← 0;
repeat

𝑇 ← 𝑇 + 1;
for all variable-factor edges (𝑖, 𝑎) ∈ ℰ do

𝑚
(𝑇)
𝑖→𝑎(𝑠𝑖)←

∏︀
𝑏∈𝒩 (𝑖)

𝑚
(𝑇−1)
𝑏→𝑖 (𝑠𝑖);

end
for all factor-variable edges (𝑎, 𝑖) ∈ ℰ do

𝑚
(𝑇)
𝑎→𝑖(𝑠𝑖)←

∑︀
s𝒩∖{𝑖}

𝑓𝑎(s𝒩 (𝑎))
∏︀

𝑘∈𝒩 (𝑎)∖{𝑖}
𝑚

(𝑇−1)
𝑘→𝑎 (𝑠𝑘);

end
until convergence
/* Accumulate messages at each node to estimate marginals. */
for all variables 𝑖 ∈ 𝒱 do

𝑏𝑖(𝑠𝑖)←
∏︀

𝑎∈𝒩 (𝑖)

𝑚
(𝑇)
𝑎→𝑖(𝑠𝑖);

𝑝s𝑖(𝑠𝑖)←
𝑏𝑖(𝑠𝑖)

‖𝑏𝑖‖1
;

end
return 𝑝s𝑖 for all nodes 𝑖 ∈ 𝒱 .

converges to the true distribution, which we can use to approximate marginals. The
law of large numbers (LLN) states that the expected value of random variable over
a large number of trials approaches to the true mean of the distribution. Hence, we
can compute moments of distributions if we can sample efficiently.

In this thesis we will use the celebrated Metropolis-Hastings algorithm [24] to
sample from distributions with undirected graphical model representations. We will
use a specialized version of this algorithm called the Gibbs sampler [19] to generate
samples from PGMs. The Gibbs sampler works by first sampling a node 𝑖 using its
marginal distribution and then sampling a node 𝑗 from the conditional distribution
𝑝s𝑗 |s𝑖 using the previously sampled value of s𝑖. With 𝑖 and 𝑗 sampled, a new node 𝑘
is sampled from 𝑝s𝑗 |s{𝑖,𝑗} . This process is carried on sequentially until all nodes have
been sampled. The conditional distributions can be computed efficiently using the
belief propagation algorithm.

27

2.3 Model-Free Coding
We would like to choose a code that is model-free and also simple to implement. We
would also like a code that can not only be decoded via simple transformations but
also via statistical inference algorithms. A suitable choice is a particular family of
linear codes which we describe next.

2.3.1 Low Density parity-check (LDPC) Codes

Low Density parity-check (LDPC) codes are a family of linear codes developed by
Gallager [18] in 1963 for use in channel coding. A code is linear if it is a subspace of
some vector space F𝑛, where F is a finite-field [47]. Let the source sequence belong to
a (𝑛 − 𝑘) dimensional subspace of the vector space 𝒮𝑛 of dimension 𝑛, where 𝒮 is a
finite-field of size |𝒮|. The linear code ℒ ⊂ 𝒮𝑛 maps the source sequence to a codeword
of length 𝑛 via multiplication with a generator matrix 𝐺 ∈ 𝒮(𝑛−𝑘)×𝑛 = [𝐼𝑛−𝑘 |𝑃],

(s(𝑛−𝑘))𝑇𝐺𝑇 = (c𝑛)𝑇 = [(s(𝑛−𝑘))𝑇 (s(𝑛−𝑘))𝑇𝑃]. (2.20)

The 𝑘 additional codeword symbols are called the parity-check symbols and are used
to verify that the source sequence is correctly decoded. The linear code can be equiva-
lently described using a parity-check matrix𝐻 ∈ 𝒮𝑘×𝑛 that describes the computation
of the parity information, where 𝐻𝐺𝑇 = 0:

ℒ = {c𝑛 | (c𝑛)𝑇 = (s(𝑛−𝑘))𝑇𝐺𝑇} = {c𝑛 |𝐻c𝑛 = 0}. (2.21)

LDPC codes are sparse linear codes with minimal column and row weights in the
parity-check matrix. In this thesis, we define all codes over the binary alphabet and
use the parity-check matrix for source coding. 𝐻 projects the source sequence s𝑛 to
a codeword c𝑘 of length 𝑘 via the projection

c𝑘 = 𝐻s𝑛. (2.22)

Remark: Note that multiplication and addition in the matrix operations are also
defined over the finite-field 𝒮. Hence, in the case of binary symbols, addition is
equivalent to integer addition modulo 2.

2.3.2 Decoding LDPC Codes

Assume that each symbol in the source is binary. Given an LDPC code represented by
the parity-check matrix ℒ = 𝐶(𝐻), 𝐻 ∈ {0, 1}𝑘×𝑛, we can use maximum a posteriori
(MAP) decoding to solve (2.22) for the source sequence s𝑛. Given external beliefs

28

Figure 2-2: The Tanner graph representing the LDPC parity-check matrix from Ex-
ample 2.1

𝑝y𝑖 | s𝑖 about the observed value y𝑖 of a symbol 𝑠𝑖, the MAP estimate of the symbol is

𝑠MAP
𝑖 = argmax

𝑠𝑖∈{0,1}
𝑝s𝑖 | y𝑛(𝑠𝑖 |y𝑛) (2.23a)

= argmax
𝑠𝑖∈{0,1}

∑︁
𝑠𝑗 , 𝑗 ̸=𝑖

𝑝s𝑛 | y𝑛(s𝑛 |y𝑛)

= argmax
𝑠𝑖∈{0,1}

∑︁
𝑠𝑗 , 𝑗 ̸=𝑖

𝑝y𝑛 | s𝑛(y𝑛 | s𝑛)𝑝s𝑛(s𝑛)

= argmax
𝑠𝑖∈{0,1}

∑︁
𝑠𝑗 , 𝑗 ̸=𝑖

𝑛∏︁
𝑖=1

𝑝y𝑖 | s𝑖(𝑦𝑖 | 𝑠𝑖)1c𝑘=𝐻s𝑛 . (2.23b)

Let’s look at bit closer at the MAP decoder. We desire the maximum value of the
marginal distribution of symbol 𝑖 in (2.23a) and we show that we can rewrite the
conditional distribution as marginalization over the joint distribution that factorizes
according to (2.23b).

This resembles the factorization structure inherent to factor graphs. Thus, we can
model 𝑝y𝑛,s𝑛(y𝑛, s𝑛) as factor graph 𝒢 = (𝒱 ,ℱ , ℰ) with one factor for each external
belief and one factor for each row constraint of the LDPC parity-check matrix:

ℱ = {𝑓𝑖(𝑠𝑖) for all 𝑖 ∈ 𝒱}
⋃︁
{𝑔𝑗(s𝑛) for 𝑗 = 1, 2, . . . , 𝑘}, (2.24)

where

𝑓𝑖(𝑠𝑖) ≜ 𝑝y𝑖 | s𝑖(𝑦𝑖 | 𝑠𝑖), (2.25)

𝑔𝑗(s𝑛) ≜ 1{𝑐𝑗=𝐻𝑗s𝑛}. (2.26)

The factor graph representation of an LDPC parity-check matrix is called a Tan-
ner graph. With the Tanner graph representation, we can now easily compute the
marginals for all nodes by running BP over the factor graph.

29

Example 2.1. Consider the parity-check matrix

𝐻 =

⎛⎝1 1 0 1 0 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎞⎠ .

Assume that the input source sequence is s7 = (1, 1, 1, 1, 0, 0, 0). The factors repre-
senting the parity-check matrix constraints are

𝑔1(𝑠1, 𝑠2, 𝑠4) = 1{𝑠1⊕𝑠2⊕𝑠4=1}

𝑔2(𝑠3, 𝑠4, 𝑠6) = 1{𝑠3⊕𝑠4⊕𝑠6=0}

𝑔3(𝑠4, 𝑠5, 𝑠7) = 1{𝑠4⊕𝑠5⊕𝑠7=1}.

The Tanner graph representing 𝐻 is shown in Figure 2-2.

2.4 Prior Work

Figure 2-3: Model-code separation for compression architectures. The data is coded
using a coding mechanism that is independent of the data model.

The problem of model-code separation in lossless compression architectures was
studied in-depth by Huang and Wornell [26, 27]. The proposed architecture uses a
compression pipeline with a model-free encoder and model-adaptive decoder, as shown
in Figure 2-3. Note that the decoder must still be provided with some information
about the coding mechanism to accurately decode the source. The architecture uses
a low-complexity LDPC code for compressing binary sources. If the source symbols
are from a larger alphabet, they are converted to a binary representation via a simple
graycode transformation. The codeword is sent to the decoder which uses belief
propagation to decode the source from the codeword.

Huang and Wornell showed that this architecture works well with binary sources
and large alphabet sources for which the underlying PGM is known. However, even for
simple datasets such as MNIST the method fails since we do not know the underlying
PGM (which could be complicated).

It should be noted that structure learning algorithms for PGMs do exist [31, 15].
However, most algorithms make assumptions about the distribution of the nodes
and/or try to induce sparsity in the graph. For example, the Chow-Liu algorithm [6]

30

makes the assumption that the underlying graph is tree structured and the graphical
lasso algorithm [16] assumes that the nodes follow a Gaussian distribution by opti-
mizing for a sparse inverse covariance matrix. Other methods such as neighborhood
selection [37] try to deduce conditional independencies between the variables of the
input data to induce a sparse undirected PGM. As the data grows in complexity,
these structure learning method either don’t have sufficient representational power to
efficiently describe the source or they fail to learn quickly.

Lee [36] and Lai [34] expanded on the separation architecture architecture by using
a restricted Boltzmann machine (RBM) [48] to learn the source distribution. While
this architecture is an improvement over its predecessor, an RBM still succumbs to
the problems of structure learning as they are difficult to train on large datasets
and often work better with Gaussian variables. Moreover, this architecture is more
suitable for lossy compression.

In this thesis, we propose a novel data model based on the recently proposed
deep probabilistic generative model called the sum-product network. We describe the
sum-product network (SPN) in Chapter 3 (Sum-Product Networks) and describe our
proposed SPN source-code BP algorithm for lossless image compression in Chapter 4
(Model-Code Separation Architecture).

2.5 Recent Work in Lossless Image Compression
Recent work in lossless image compression has focused on the use of deep generative
models in the compression pipeline. Such systems use neural networks from input
to output and are also called neural image codecs. One of the first neural image
codecs that outperformed state-of-the-art lossless compression algorithms is the L3C
system [38] introduced in 2019. The architecture uses an autoencoder framework to
hierarchically compress an image into latent representations with decreasing spatial
sizes. The latent representations are then quantized and fed to a PixelCNN [40], a
state-of-the-art autoregressive model for modeling the likelihood of image sources.
Autoregressive models are used to sample an image pixel-by-pixel by exploiting the
chain rule of probability. PixelCNNs are capable of producing high resolution natural
looking images. In L3C, PixelCNNs are used to learn a joint distribution over the
latent maps that factorizes according to the chain rule. The learned distribution can
be used to run length encode (RLE) the latent maps. Additional savings are made
by compressing the distribution of each latent map above the bottommost layer using
neural networks. Results show that L3C outperforms both PNG and JPEG-2000.

Recently, a new method based on normalizing flows called integer discrete flows
(IDF) was introduced in [25]. Normalizing flows are a class of deep generative models
that learn the likelihood over image sources by transforming a complex distribution
into a tractable distribution, such as a Gaussian, by leveraging the variable trans-
formation formula of probability. Normalizing flows are invertible neural networks
that make use of specialized invertible transformations. Integer discrete flows are
constructed by stacking together multiple invertible layers with quantizer modules in
between. The IDF learns a tractable distribution over quantized latent maps that can

31

be used to run length encode discrete bottleneck features. The images are losslessly
reconstructed by decoding the latent maps and then recovering the input using the
invertible layers. IDF demonstrates state-of-the-art results and it even outperforms
L3C on various benchmarks.

In this thesis we do not directly compare our compression architecture against
neural codecs. This is due to two related reasons — 1) the codecs considered in this
section were trained on color images and hence to test them on new datasets would
require a complete retraining of the architecture, and 2) training a neural codec on
each of our experimental datasets would take at least a day each which is a much
longer training time than our proposed architecture. Nerual codecs might also require
vastly different structures for different data sources.

As discussed in Section 1.2.3, neural codecs are designed with joint model-code
design and fall prey to the various drawbacks of such architectures. We hope that the
work in this thesis will inspire future work in model-code separation within neural
codecs.

32

Chapter 3

Sum-Product Networks

Probabilistic graphical models (Section 2.2) are powerful inference engines that can
answer many probabilistic queries through marginalization via BP and sampling.
However, the computational cost of exact inference is often very expensive for models
representing complex distributions. Moreover, structure learning in graphical models
is hard and is still an active field of research. In this section we introduce a new class
of probabilistic generative models called sum-product networks (SPNs). We explain
how SPNs solve the high complexity issue that we face with PGMs and show that
by architectural modifications an SPN can be viewed as deep probabilistic graphical
model.

3.1 Tractable Inference
Definition 3.1 (Tractable Model). A tractable model is a probabilistic model in
which exact inference requires a polynomial number of operations. Hence, inference
can be performed with a tractable cost in both memory and time.

A classical example of a tractable model is a tree structured PGM where each
marginal can be exactly computed using the BP algorithm with𝒪(𝑛𝑇 |𝒮|2) complexity
(see Section 2.2.3.1). When the graph has loops, BP inference is no longer exact and
we instead have to resort to the junction tree algorithm [31, Chapter 10] to perform
exact inference. The junction tree algorithm transforms the loopy graph into a tree
structured graph with alphabet size per node upper bounded by |𝒮|tw(𝒢)+1 resulting
in a total inference cost of 𝒪(𝑛𝑇 |𝑆|2tw(𝒢)+2). Clearly the cost of exact inference can
grow exponentially large for graphs with complex structures (i.e., large treewidths).
Since exact inference is expensive on loopy graphs, approximate inference techniques
such as loopy BP, variational approximations and MCMC [31, Chapters 11-12] are
used to estimate probabilistic queries.

Consider the MNIST dataset of handwritten digits. To obtain probabilistic queries
on an image from this dataset using the techniques discussed so far in this thesis, we
would need to learn a PGM to represent the images. Structure learning in PGMs
with discrete variables is not straightforward and moreover structure learning uses
inference as a subroutine [31, Chapter 20]. While we could use an algorithm such

33

as Graphical lasso [16] we are constrained to use the PGM as a Gaussian graphical
model in this case, which is not ideal.

Sum-product networks, as we start to discuss next, help overcome many of these
issues. They are probabilistic models that admit exact and tractable inference with
complexity linear in the size of the model.

3.2 Architecture
A sum-product network is a deep probabilistic model introduced by Poon and Domin-
gos [44]. A sum-product network represents a joint probability distribution over a set
of random variables represented by a random vector s𝑛. We state the formal definition
below.

Definition 3.2 (Sum-Product Network). A sum-product network (SPN) Φ is a rooted
directed acyclic graph (DAG) whose leaves are tractable probability distributions and
whose internal nodes are sums and products. Each outgoing edge (𝑖, 𝑗) from a sum
node is associated with a non-negative weight 𝑤𝑖,𝑗. The value of an SPN Φ(s𝑛) is the
value of its root.

Definition 3.3 (Scope). The scope of a node 𝑢 is the set of variables that are de-
scendants of 𝑢. The scope of a leaf node is the set of variables represented by the
node.

Definition 3.4 (Evaluation of Sum-Product Network). Let Φ be an SPN and let s𝑛

be a source sequence whose likelihood we desire. The evaluation of the SPN proceeds
from the leaves to the root with the following rules:

1. If 𝑢 is a leaf node of the DAG, it is associated with a probability distribution
𝜓𝑢. The output of the node is 𝜓𝑢(s𝑛sc(𝑢)). Examples of leaf distributions are
indicator distributions, categorical distributions and Gaussian distributions. If
the leaf distribution is Gaussian and the scope of 𝑢 is sc(𝑢) = {1, 3, 4}, then
𝜓𝑢(s𝑛sc(𝑢)) = 𝑁(s𝑛sc(𝑢);𝜇𝑢,Σ𝑢) where 𝜇𝑢 is a 3-dimensional vector.

2. If 𝑢 is a product node, the output is the product of its children’s values,

Φ𝑢(s𝑛) =
∏︁

𝑣∈ch(𝑢)

Φ𝑣(s𝑛). (3.1)

3. If 𝑢 is a sum node, the output is the weighted sum of it children’s values,

Φ𝑢(s𝑛) =
∑︁

𝑣∈ch(𝑢)

𝑤𝑢,𝑣Φ𝑣(s𝑛). (3.2)

If we are provided with partial observations of the input sequence s𝑛𝒜, 𝒜 ⊂ {1, . . . , 𝑛}
we can still compute the marginal probabilities of the input. The only modification
that we need to make in the evaluation of the SPN is to marginalize out unobserved

34

Figure 3-1: A normalized sum-product network over two random variables. The leaf
nodes have singular scope and can contain any tractable distribution. If the leaf
distribution is an indicator, the weights along the edges from the leaf to sum node are
parameters for a categorical distribution. If the leaf distributions are, for example,
Gaussian then the SPN can be interpreted as mixture model.

values in the leaf distribution, i.e., s𝑛sc(𝑢)∖𝒜. Hence, the new leaf node evaluation step
is

𝜓𝑢(s𝑛sc(𝑢)⋂︀𝒜) =
∑︁

s𝑛sc(𝑢)∖𝒜

𝜓𝑢(s𝑛sc(𝑢)∖𝒜, s
𝑛
sc(𝑢)

⋂︀
𝒜). (3.3)

The definitions above provide us with a routine to evaluate the SPN. However, they
don’t tell us when an SPN correctly computes all the marginals of the distribution it
models. This necessitates the following definitions from [44].

Definition 3.5 (Valid Sum-Product Network). An SPN Φ that models some distri-
bution 𝑝s𝑛 is valid if and only if Φ(s𝑛𝒜) = 𝑍𝑝s𝑛𝒜(s

𝑛
𝒜) for all 𝒜 ⊂ {1, . . . , 𝑛}. In other

words the SPN is valid if it always correctly computes the unnormalized marginal
probabilities.

Definition 3.6 (Completeness). An SPN is complete if all children of a sum node
have identical scopes.

Definition 3.7 (Decomposability). An SPN is decomposable if all children of the
same product node have pairwise disjoint scopes.

Clearly, a valid SPN is desirable. The next property tells us how we can construct
valid SPNs.

Property 3.1. If an SPN is complete and decomposable it is valid.

Imposing completeness and decomposability in an SPN architecture is very easy as
we will see in Section 3.4. We can, in fact, make one more modification to the SPN
architecture to ensure that it always outputs normalized probabilities.

35

Definition 3.8 (Normalized Sum-Product Network). A normalized sum-product net-
work is an SPN wherein the weights at every sum node add up to one. Such an SPN
always outputs normalized probabilities.

Example 3.1. Consider the SPN in Figure 3-1 defined over binary random variables
s1 and s2. We model the leaf distributions as indicators,

𝜓1(𝑠1) = 1{𝑠1=1} ≜ 𝑠1

𝜓2(𝑠1) = 1{𝑠1=0} ≜ 𝑠1

𝜓3(𝑠2) = 1{𝑠2=1} ≜ 𝑠2

𝜓4(𝑠2) = 1{𝑠2=0} ≜ 𝑠2

It is straightforward to verify that this SPN is complete and decomposable. Hence,
this SPN is valid. The distribution represented by this SPN can be written out in
network polynomial form as

Φ(𝑠1, 𝑠2) = 0.5(0.6𝑠1 + 0.4𝑠1)(0.3𝑠2 + 0.7𝑠2)

+ 0.2(0.6𝑠1 + 0.4𝑠1)(0.2𝑠2 + 0.8𝑠2)

+ 0.3(0.9𝑠1 + 0.1𝑠1)(0.2𝑠2 + 0.8𝑠2).

Let’s compute the marginal probabilities of some queries.

1. If 𝑠1 = 1 and 𝑠2 = 0,

𝑝s1,s2(1, 0) = Φ(1, 0)

= 0.5× 0.6× 0.7 + 0.2× 0.6× 0.8 + 0.3× 0.9× 0.8

= 0.522.

2. If 𝑠1 = 1 and 𝑠2 = 1,

𝑝s1,s2(1, 1) = Φ(1, 0)

= 0.5× 0.6× 0.3 + 0.2× 0.6× 0.2 + 0.3× 0.9× 0.2

= 0.1679̄.

3. If 𝑠1 = 1, we must first marginalize out s2 from every leaf distribution according
to (3.3). Only the leaf distributions involving s2 are modified:

𝜓3 = 0 + 1 = 1,

𝜓4 = 0 + 1 = 1.

36

The network polynomial with these marginalized leaf distributions is

𝑝s1(1) = Φ(𝑠1) = 0.5 · 0.6(0.3 + 0.7)

+ 0.2 · 0.6(0.2 + 0.8)

+ 0.3 · 0.9(0.2 + 0.8)

= 𝑝s1,s2(1, 1) + 𝑝s1,s2(1, 0). (3.4)

Notice that in order to marginalize out s2 all we needed to do was to set the
leaf “distribution” to be a constant function that always evaluates to 1.

The result in (3.4) is extremely useful in computing marginals and we state it as a
property below.

Property 3.2. If all leaves in an SPN involving s𝑖 have singular scope, we can
marginalize out s𝑖 by setting the leaf distribution functions involving this random
variable to always evaluate to unity.

3.3 Comparison with Other Architectures
SPNs bear resemblance to many other probabilistic and generative models. We look
at a few related architectures and comment on the similarities and differences.

3.3.1 SPNs vs. PGMs

As stated in Section 3.1, exact inference is computationally expensive with PGMs that
have high treewidth. Poon and Domingos [44] showed that via a simple algorithm,
every junction tree (and hence every PGM) can be converted to an SPN and vice
versa. Thus, the computation complexity of an SPN is similar to a junction tree. In
general, a PGM has fewer edges than the corresponding SPN for the same distribution.
So what is the benefit of using an SPN?

• The key feature of an SPN is that it encodes all possible inference
queries whereas a PGM gives us the unnnormalized probability of a full source
sequence. As we saw in Example 3.1, all marginals in an SPN can be com-
puted in a single forward pass from leaves to nodes with complexity linear in
the number of edges in the underlying DAG. While a naïve conversion from an
undirected graph to an SPN would introduce possibly exponential number of
edges, we can group together recurring computation by merging the computa-
tion subgraphs within the SPN DAG. This is akin to reusing messages in the BP
algorithm. The sum and product operations represented as a DAG can be im-
plemented very efficiently using parallel processors/GPUs. This allows SPNs to
perform fast inference on high-treewidth graphs which would otherwise require
approximate inference with PGMs.

37

Figure 3-2: An SPN can represent a distribution over all sequences with an even
number of 1s with 𝒪(𝑛) edges whereas a junction tree requires a fully connected
graph with 𝒪(𝑛2) edges.

• Computation of the partition function is tractable in an SPN. The lim-
iting factor of PGMs is the computation of the partition function. With SPNs
we circumvent the need for approximate inference algorithms to compute the
partition function since it can be evaluated by marginalizing out all variables,
i.e., setting all leaf distribution functions to one.

• SPNs can represent non-factorizable high treewidth models more
compactly. Poon and Domingos [44] showed that an SPN can compactly
represent the uniform distribution over all length 𝑛 sequences with an even
number of 1s whereas a PGM would require a fully connected graph to repre-
sent the same distribution, as shown in Figure 3-2. A fully connected polygon
has 𝑛(𝑛−3)/2+𝑛 edges. Hence, the number of edges in the PGM representation
grows as 𝒪(𝑛2) whereas the number of edges grow as 𝒪(𝑛) in the SPN.

• Context-specific independencies can help reduce the size of the SPN.
Context-specific independencies, independence relations that induce a different
factorization structure in a distribution based on the value of random vari-
able, create large cliques in a graphical model representation [50]. SPNs can
compactly represent contextual-independencies with fast inference times by co-
alescing nodes and edges together. For example, in Figure 3-2, if the PGM had
two cliques connected to each with a separator set of {s1, s2}, the upper portion
of the SPN involving s1 and s2 would be shared between the SPN representation
of both the cliques.

• PGMs learned from data are often intractable unless the model size is
kept small. SPNs on the other hand can learn from large amounts of data with

38

fast learning algorithms. SPNs can be made very deep and can be implemented
very efficiently using tensorized operations. Moreover parameter learning is very
efficient and hence the same SPN architecture can be used to model different
sources of data.

• PGMs convey factorization structure whereas SPNs do not. The fac-
torization structure of the distribution is lost in an SPN. This is a tradeoff that
is made for faster inference.

• PGMs encode conditional independencies whereas SPNs do not. To
bridge the gap between SPNs and PGMs, a new class of models called sum-
product graphical models [14] was proposed to model independencies in the
distribution while allowing for fast inference at the same time.

3.3.2 SPNs vs. Arithmetic Circuits

SPNs with indicator leaves are related to arithmetic circuits. An arithmetic circuit
[10] uses the distributive law to express a distribution as a network polynomial (see
Example 3.1). They are generally used to compile a directed graphical model over
discrete variables into a network polynomial for faster inference. Unlike SPNs, where
weights are present along the edges going into a sum node, an arithmetic circuit
only includes weights in the leaves. An arithmetic circuit is a standard tool used to
efficiently represent a polynomial. SPNs are more general because the leaf distribution
need not be an indicator but rather any tractable distribution. Moreover, SPNs can be
made quite deep and have weights along sum nodes to model complex distributions.

3.3.3 SPNs vs. Deep Generative Models

SPNs are closely related to deep generative models. The main difference between deep
generative models and SPNs is that the latter has a probabilistic interpretation at each
layer. Deep generative models use non-linear activations in their architecture and do
not need to obey the architectural constraints of a valid SPN. Most deep generative
models only output the likelihood of complete data whereas SPNs can answer marginal
queries of incomplete data. SPNs have also been used as discriminative models [20, 45]
to classify images into classes but deep neural networks (DNNs) still boast state-of-
the-art results in this task.

Like normalizing flows [46] and autoregressive models [41, 29], SPNs can be trained
via gradient descent to minimize the negative log-likelihood of data. They can also
be trained using unsupervised learning methods such as the expectation-maximization
(EM) algorithm [14].

Deep SPNs can be efficiently implemented on GPUs using convolutions [5, 61]. In
fact, deeper sum-product networks with more layers and fewer sums and products per
layer can model distributions better than shallow networks [12]. Random Tensorized
SPN (RAT-SPN) [43] which use multiple copies of random grouping of the input
variables have demonstrated that SPNs can capture rich structure about the source
distribution even with randomized source connections.

39

There is long way to go before SPNs reach the performance of current generative
models for image synthesis tasks and researchers are actively trying to bridge the gap
between these models.

3.4 Deep Generalized Convolutional Sum-Product Net-
works

Figure 3-3: Example DGCSPN architecture in 1D taken from [61]. Layer 0 contains
the leaf distributions. Every product layer doubles the dilation rate, starting with a
rate of 1. The scopes are indicated by the numbers within each node. All children of
the same sum node have the same scope.

As discussed in Section 3.3.3, SPNs can be implemented on GPUs using convo-
lutions very efficiently. In this thesis we modify the deep generalized convolutional
SPN (DGCSPN) proposed in [61] for lossless compression of images. The architectural
details of DGCSPNs is summarized next.

• All leaf nodes have singular scope, i.e., they correspond to a single symbol in
the input source.

• Sum layers and product layers are stacked in an alternating fashion as shown
in Figure 3-3.

• Log-probabilities are propagated to avoid underflow issues.

40

• A sum node is implemented in the log-domain using the log-sum exponential
trick.

Φ̃𝑢(s𝑛) = log

⎛⎝ ∑︁
𝑣∈ch(𝑢)

exp
(︁
�̃�𝑢,𝑣 + Φ̃𝑣(s𝑛)− 𝑐

)︁⎞⎠+ log 𝑐, (3.5)

where �̃� = log 𝑎 and 𝑐 is some positive constant.

• 𝑆 output channels are created at every sum node by adding 𝑃 input channels,
each having the same scope, from the previous product layer. For example, in
Figure 3-3, 𝑃 = 4 channels in Layer 1 are summed up twice to produce 𝑆 = 2
output channels in Layer 2.

• Product layers are implemented as convolutions with increasing dilation rates
at every subsequent layer. The convolutional patches overlap in every layer
since the stride chosen is one. To ensure that the decomposability property
is satisfied by the SPN, subsequent product layers must use a dilation factor
that is twice that of the previous product to layer. A dilation factor of 𝑘 in a
convolution adds 𝑘− 1 zeros between each element of the kernel. This is shown
in Figure 3-3 by the increasing distance between inputs to product nodes as the
layer increases.

• Like the sum nodes, 𝑃 output channels are created at every product node by
multiplying 𝑆 instances/channels of a sum node with disjoint scopes from the
previous sum layer. Padding nodes, which are set to 0 in the log domain, are
used to ensure that GPU-optimized convolutions can be used correctly.

We modify the DGCSPN architecture to use indicator leaves instead of Gaussian
leaves since this will allow us to compute marginal probabilities easily for use with BP
on Tanner graphs. The implementation available online1 only supports 2-dimensional
signals. We modified the architecture so that it can support 1-dimensional convolu-
tions for learning non-image sources. A routine for computing the MPE of a partially
observed source was already implemented for Gaussian leaf distributions. We gener-
alize this to other leaf distributions and implement a routine to compute all unary
marginals in parallel as we describe in Section 3.6.

3.5 Parameter Learning
Parameter learning in SPNs can done via gradient descent or the expectation-maximization
(EM) algorithm [13, Section 3.3.2]. Since we implement DGCSPNs using PyTorch
[42], a deep learning framework, we use gradient descent for learning the parameters
of our model. We only use indicator leaves in our experiments. Thus, the only weights
that we need to learn are the weights along edges emanating from a sum node.

1We use the PyTorch implementation available at https://github.com/deeprob-org/deeprob-kit.

41

https://github.com/deeprob-org/deeprob-kit

For numerical stability we propagating log-probabilities in the SPN. The opti-
mization problem of the learning procedure is the minimization of the negative log-
likelihood of the data,

argmin
s𝑛

− log Φ(s𝑛). (3.6)

To perform gradient descent we need the derivative of the log-probability with respect
to the edge weight 𝑤𝑖,𝑗 from a sum node 𝑖 to a product node 𝑗:

𝜕

𝜕𝑤𝑖,𝑗

log Φ(s𝑛) =
1

Φ(s𝑛)
𝜕Φ(s𝑛)
𝜕𝑤𝑖,𝑗

(3.7)

=
1

Φ(s𝑛)
𝜕Φ(s𝑛)
𝜕Φ𝑖(s𝑛)

𝜕Φ𝑖(s𝑛)
𝜕𝑤𝑖,𝑗

(3.8)

=
1

Φ(s𝑛)
𝜕Φ(s𝑛)
𝜕Φ𝑖(s𝑛)

Φ𝑗(s𝑛). (3.9)

Thus, the parameters can now be updated as

𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 − 𝜂
𝜕

𝜕𝑤𝑖,𝑗

, (3.10)

where 𝜂 is the learning rate. Gradient computation is very easy in PyTorch using
the optimized autograd function. What’s more valuable is that we can use these
gradients to compute the marginals of all the leaf node variables in a single forward
and backward pass of the network.

3.6 Parallel Marginal Computation
We now describe a procedure to compute the marginals of all the variables in a single
forward and backward pass of an SPN with singular scope indicator leaves. Darwiche
[11] showed that in an arithmetic circuit, the posterior marginal of a leaf variable can
be computed using gradients. Though arithmetic circuits use indicator leaves, the
same formula gives us the leaf distribution assignment probability in a general SPN.
The formula is,

𝑝[s𝑖]𝑘 | s𝑛𝒜([𝑠𝑖]𝑘 | s
𝑛
𝒜) =

1

Φ(s𝑛𝒜)
𝜕Φ(s𝑛𝒜)
𝜕𝜓𝑘

, (3.11)

where [s𝑖]𝑘 represents the 𝑘’th leaf distribution instance that involves s𝑖. For ex-
ample, in Figure 3-1, there are two leaf distributions for s𝑖 — 𝜓1 and 𝜓2. Thus,
𝑝[s1]2 | s𝑛𝒜([𝑠1]2 | s

𝑛
𝒜) is the assignment probability of leaf distribution 𝜓2 given the ob-

served data s𝑛𝒜. For example, if the leaves are Gaussian, the probabilities can be
interpreted as being similar to the soft mixture assignment probabilities, 𝑝z, in Gaus-
sian Mixture Models (GMMs):

𝑝x(𝑥) =
∑︁
𝑖

𝑝x|z(𝑥|𝑧)𝑝z(𝑧) (3.12)

42

where 𝑧 ∈ 𝒵 represents the number of clusters in the GMM. When the leaf distribu-
tions are indicators then (3.11) is equivalent to the categorical marginal probability
of the discrete random variable s𝑖:

𝑝[s𝑖]𝑘 | s𝑛𝒜([𝑠𝑖]𝑘 | s
𝑛
𝒜) = 𝑝s𝑖 | s𝑛𝒜(𝑘 | s

𝑛
𝒜). (3.13)

Since we propagate log-probabilities in the network we need to relate the gradients
in the log-domain to (3.11).

𝜕 log Φ(s𝑛𝒜)
𝜕 log𝜓𝑘

=
𝜕 log Φ(s𝑛𝒜)
𝜕Φ(s𝑛𝒜)

𝜕Φ(s𝑛𝒜)
𝜕 log𝜓𝑘

=
1

Φ(s𝑛𝒜)
𝜕Φ(s𝑛𝒜)
𝜕 log𝜓𝑘

𝜓𝑘

𝜓𝑘

=
1

Φ(s𝑛𝒜)
𝜕Φ(s𝑛𝒜)
𝜕 log𝜓𝑘

𝜕 log𝜓𝑘

𝜕𝜓𝑘

𝜓𝑘

=
1

Φ(s𝑛𝒜)
𝜕Φ(s𝑛𝒜)
𝜕𝜓𝑘

𝜓𝑘 (3.14a)

= 𝑝[s𝑖]𝑘 | s𝑛𝒜([𝑠𝑖]𝑘 | s
𝑛
𝒜) since 𝜓𝑘 = 1. (3.14b)

Note that in (3.14a) we have used the fact s𝑖 is unobserved and hence was marginal-
ized out in the forward pass of the SPN. From Property 3.2, we know that all leaf
distributions containing s𝑖 in their scope must be set to 1 in order to marginalize out
s𝑖.

Thus, with a single forward pass and backward pass through the SPN we can
compute all desired marginals for the provided evidence.

3.7 Inference with External Beliefs
In order to use an SPN along with existing BP algorithms the architecture must
be capable of using externals beliefs about the input source to answer probabilistic
queries. In a PGM, external beliefs 𝑏𝑖 at a node s𝑖 are incorporated by scaling the
node potential 𝜑𝑖 by the value of the external belief,

𝜑′
𝑖(𝑠𝑖) = 𝑏𝑖(𝑠𝑖)𝜑𝑖(𝑠𝑖). (3.15)

These external beliefs could come from some external graph that encodes other sta-
tistical properties about the source. The external belief is treated as an independent
factor in the joint distribution. SPNs can consume external beliefs in a similar man-
ner by multiplying the external belief distribution with the leaf distributions. Figure
3-4 illustrates this augmentation by modifying the SPN from Example 3.1.

Assume that the SPN has indicator leaves. Let the external belief to the 𝑘’th
leaf distribution that has s𝑖 in its scope be 𝜓𝑒

𝑘. It is straightforward to verify that
the posterior marginal formula must now be modified to remove the effect of scaling
the leaf distribution when doing a forward pass through the model. Hence, (3.13)

43

Figure 3-4: The SPN from Example 3.1 with external beliefs (colored in pink) pro-
vided by multiplying them with the leaf distribution.

becomes,

𝑝s𝑖 | s𝑛𝒜(𝑘 | s
𝑛
𝒜) =

1

𝜓𝑒
𝑘Φ(s

𝑛
𝒜)

𝜕Φ(s𝑛𝒜)
𝜕𝜓𝑘

. (3.16)

We are now equipped with all the machinery to use SPNs for developing lossless
compression architectures with model-code separation baked into the design.

44

Chapter 4

Model-Code Separation Architecture

Equipped with all the tools underlying the model-code separation architecture for
lossless compression, we are now ready to describe its operation. We first describe its
operation when given the PGM representation of the source and we then show how
we can replace the PGM with an SPN to compress natural looking images from large
datasets.

4.1 PGM-based Model-Code Separation Architecture
In this section, we describe the model-code separation architecture proposed by Huang
and Wornell [27, 26] that uses a PGM as the data model. The architecture follows
the design of Figure 2-3 with the encoder given no prior knowledge about the source.
Though we could use a universal compression standard such as GZIP, the compression
rate might be suboptimal since the system requires long input source sequences to
learn the correct statistics.

In this architecture the decoder can be made as powerful as needed. In particular,
we assume that the decoder is aware of the source structure in the form of a source
graph, a PGM representing the statistical structure in the input signal. This suggests
that the ideal code would be one that lends itself to optimal decoding using belief
propagation. A suitable choice is the family of LDPC codes which we know can be
represented as factor graphs (see Section 2.3.1).

We begin our discussion with the compression of binary sequences of length 𝑛,
s𝑛 ∈ 𝒮𝑛 where 𝒮 = {0, 1}.

4.1.1 Encoder

The encoder compresses the source via a simple projection with an LDPC parity-check
matrix. Given a source sequence of length 𝑛 and a target compression rate of 𝑟code =
𝑘/𝑛, the encoder generates a random LDPC parity-check matrix 𝐻 ∈ {0, 1}𝑘×𝑛. The
compressed sequence is obtained as

c𝑘 = 𝐻s𝑛. (4.1)

45

4.1.2 Decoder

Since 𝐻 is a tall matrix, the compressed sequence c𝑘 corresponds to many possible
source sequences. If we decode s𝑛 using BP on the Tanner graph of 𝐻, the decoded
output might not satisfy the statistical structure inherent to the source. The source
graph captures this structure and we can run BP over this graph by providing the
beliefs from the Tanner graph as external node potentials. This process is carried out
iteratively until the source is decoded correctly.

4.1.2.1 Code Graph

The matrix 𝐻 enforces 𝑘 constraints which can be represented by a factor graph as
demonstrated in Example 2.1. The resulting factor graph 𝒢code = (𝒱 ,ℱ , ℰ) has 𝑘
factor nodes, ℱ = {1, . . . , 𝑘} and 𝑛 variable nodes, 𝒱 = {1, . . . , 𝑛}. The constraint
represented by factor node 𝑎 corresponds to row 𝑎 of the LDPC matrix:

𝑐𝑎 =
𝑛∑︁

𝑖=1

𝐻𝑎,𝑖𝑠𝑖. (4.2)

The factor graph represents a uniform distribution over all codewords that satisfy the
parity-check equations,

𝑝𝑐s𝒱 (s𝒱) =
1

𝑍𝑐

∏︁
𝑎∈ℱ

𝑓𝑎(s𝒩 (𝑎)) =
1

𝑍𝑐

∏︁
𝑎∈ℱ

1{𝑐𝑎=
∑︀𝑛

𝑖=1 𝐻𝑎,𝑖𝑠𝑖}. (4.3)

This factor graph is called the code graph.

4.1.2.2 Source Graph

Suppose the data model is available to us in the form of an undirected PGM with 𝑛
nodes, one for each symbol in the source sequence,

𝑝𝑠s𝒱 (s𝒱) =
1

𝑍𝑠

∏︁
𝒞∈cl(𝒢)

𝜑𝒞(s𝒞). (4.4)

This graph is called the source graph. We can now easily run BP on this source graph
by taking in external beliefs from the code graph which we describe next.

4.1.3 Source-Code Belief Propagation

The source graph and code graph are combined into a single graph as shown in Figure
4-1. The combined graph represents the distribution,

𝑝comb
s𝒱 (s𝒱) = 𝑝𝑠s𝒱 (s𝒱)𝑝

𝑐
s𝒱 (s𝒱). (4.5)

The decoder runs BP on the combined graph to compute approximate marginals of
the source sequence that satisfies both the source constraints and the code constraints.

46

Figure 4-1: The combined source-code decoder. The source and code graph share
the common nodes denoting the source symbols which is represented by the virtual
controller.

Only the nodes representing the source symbols interact with the graphs on either
side of the virtual controller. Assume that the source graph only has unary node
potentials and pairwise potentials along edges. BP can be carried out efficiently
using the following rules:

• Begin by initializing all messages in both graphs to 1/|𝒮|. The controller accu-
mulates the messages from the shared variables nodes of one graph and sends
it to the other. Let the message at node 𝑢 being sent from the code graph to
source graph be m𝑐→𝑠

𝑢→𝑢 and let the message in the other direction be m𝑠→𝑐
𝑢→𝑢.

• If 𝑢 is a node in the code graph, accumulate the messages from the controller,
m𝑠→𝑐

𝑢→𝑢, by treating them as additional factor nodes,

𝑔𝑢(𝑠𝑢) ≜ 𝑚𝑠→𝑐
𝑢→𝑢(𝑠𝑢). (4.6)

• Using the updated node potentials, run BP on the code graph and compute
the marginal of s𝑢 by accumulating messages from all neighbors of 𝑢 except the
controller node. Send this message to the controller and call it m𝑐→𝑠

𝑢→𝑢.

• If 𝑢 is a node in the source graph, accumulate the messages from the controller,
m𝑐→𝑠

𝑢→𝑢, by multiplying them with the node potentials of the source graph,

𝜑′
𝑢(𝑠𝑢) = 𝜑𝑢(𝑠𝑢)𝑚

𝑐→𝑠
𝑢→𝑢(𝑠𝑢). (4.7)

• Using the updated node potentials, run BP on the source graph and compute
the marginal of s𝑢 by accumulating messages from all neighbors of 𝑢 except the
controller node. Send this message to the controller and call it m𝑠→𝑐

𝑢→𝑢.

47

• Compute the unnormalized beliefs at every node by taking the product of the
beliefs from both graphs.

𝑏𝑢(𝑠𝑢) = 𝑚𝑐→𝑠
𝑢→𝑢(𝑠𝑢)𝑚

𝑠→𝑐
𝑢→𝑢(𝑠𝑢). (4.8)

Repeat the above steps until the unnormalized beliefs converge. The decompressed
output can be recovered as

𝑠𝑢 = argmax
𝑠∈𝒮

𝑏𝑢(𝑠). (4.9)

4.1.4 Dealing with Large Alphabet Sources

We have so far described a model-code separation compression architecture that can
compress binary sources. To handle non-binary sources a translator module is in-
troduced in the architecture. Consider a source sequence s𝑛 of length 𝑛 where each
symbol is drawn from an alphabet 𝒮 of size |𝒮| =𝑀 . The objective of the translator
is to translate the symbols into a representation that can be used by the architecture.
Specifically, the code graph of the architecture that uses LDPC codes is constrained
to use a bit-level representation of the source sequence.

We choose to use a graycode representation of the source sequence as done in [26].
Assume that 𝑀 = 2𝐵 for some non-negative integer 𝐵. The graycoded representation
of a source symbol 𝑠𝑖 is a length 𝐵 = log2 |𝒮| sequence of binary digits

z𝐵𝑖 = (𝑧𝑖,1, 𝑧𝑖,2, . . . , 𝑧𝑖,𝐵) ≜ 𝑡|𝒮|→2(𝑠𝑖), (4.10)

where 𝑡|𝒮|→2 : 𝒮 → {0, 1}𝐵 is the translator function that maps symbols over 𝒮 to 𝐵-
tuple strings over {0, 1}. We define another translator function 𝑇|𝒮|→2 : (𝒮 → R+)→
({0, 1} → R+)𝐵 that maps messages over 𝒮, m(|𝒮|), to messages over {0, 1}, m(2),

𝑇|𝒮|→2(m(|𝒮|)) = (m(2)
1 , . . . ,m(2)

𝐵) = m(2), (4.11)

where each message m(2)
𝑖 is a 2-dimensional message over the alphabet {0, 1}. Assum-

ing that the messages are normalized probabilities, for 𝜔 ∈ {1, . . . , 𝐵} and 𝛽 ∈ {0, 1}

𝑇|𝒮|→2(m(|𝒮|))𝜔(𝛽) = 𝑚(2)
𝜔 (𝛽) ≜

∑︁
𝑠∈𝒮

𝑚(|𝒮|)(𝑠)1{𝑡|𝒮|→2=𝛽}. (4.12)

The translation functions can be defined in the reverse direction in a similar manner.

𝑡2→|𝒮|(z𝐵𝑖) ≜
𝐵∑︁
𝑗=1

2𝐵−𝑗𝑧𝑖,𝑗, (4.13)

and for 𝑠 ∈ 𝒮

𝑇2→|𝒮|(m(2))(𝑠) =
𝐵∏︁

𝜔=1

𝑚(2)
𝜔 (𝑡|𝒮|→2(𝑠)𝜔). (4.14)

48

Figure 4-2: The combined source-code decoder with a translator introduced to com-
press large alphabet sources.

The translation equations state that m|𝒮| is a product of the marginals m(2)
1 , . . .m(2)

𝐵

appropriately indexed at the indices specified by 𝑡|𝒮|→2.

Fact 4.1. The graycode representation of a large alphabet symbol is heavily used in
lossless compression, specifically in run length encoding (RLE). The graycode trans-
formation constrains large alphabet symbols with similar values to have bit represen-
tations with only a few bit flips. Consider the integer 3 with binary representation 011
and the integer 4 with binary representation 100. Though these numbers are similar,
especially in the context of intensity of pixels, the binary representations are hard to
compress due to three bit-flips. On the other hand, the graycode representations 010
and 110 for 3 and 4 respectively only differ by a single bit flip. Hence, graycodes are
beneficial when using codes that leverage the differences in neighboring values.

If 𝑧 is an integer and bin(𝑧) is its binary representation, the graycode representa-
tion is obtained by the following transformation

gray(𝑧) = xor(rightshift(bin(𝑧), 1), bin(𝑧)). (4.15)

4.1.5 Doping

Often the decoder does not converge without some non-trivial initialization of the
messages. To ensure that decoding converges, we transmit a subset of the input
source symbols uncompressed. This process is called doping and is analyzed in more
detail in [26]. Doping acts as a seed for the decoding algorithm and helps in reducing
the solution set of possible source sequence corresponding to a codeword. The overall
compression rate of the architecture is

𝑟total = 𝑟code + 𝑟dope, (4.16)

where 𝑟code is defined in Section 4.1.1.

49

4.1.6 Overall Architecture

The overall model-code separation architecture for lossless compression of sources
with arbitrary alphabet size is shown in Figure 4-2. The decoding algorithm follows
the same procedure described in Section 4.1.3 with an extra step to translate the
messages according to equations (4.12) and (4.14) in the controller.

4.1.7 Drawbacks of PGM-based Decoder

The main drawback of the current PGM based source-code decoder is highlighted
in the difficulty of learning a PGM for an arbitrary source, as discussed in Section
2.4. As detailed in [26, Chapter 10], the current model is able to perform efficient
decoding of sources with known graphical model structure. However, the model fails
to decode simple images such as handwritten digits from the MNIST dataset since
the true PGM is unknown. There have been advances in structure learning for PGMs
but most work has concentrated on learning continuous models such as Gaussian
graphical models. It is for this reason that we would like to replace the current PGM
source graph with a flexible and powerful SPN.

4.2 SPN-based Model-Code Separation Architecture
We immediately see the benefits of using a model-code separation architecture when
switching over to an SPN source model:

• Since we are only swapping out the PGM, the encoder stays unchanged!

• The PGM nodes representing the source symbols only interact with the con-
troller. As long as we have a mechanism for the SPN to accept beliefs from the
code graph and use these beliefs to return beliefs to the controller for translation
(if required), we can use the source-code BP algorithm for decoding.

• We already have the required machinery. An SPN can easily accept external
beliefs as described in Section 3.7 and moreover all marginals which need to be
sent to the code graph can be computed in parallel as described in Section 3.6!

4.2.1 Architecture Details

We use a deep generalized convolutional SPN (DGCSPN) (see Section 3.4) in place of
a PGM in our architecture. We experimented with other SPN architectures such as
the random tensorized SPN (RAT-SPN) [43] and found that the DGCSPN admitted
efficient parameter learning using gradient descent. For an input source s𝑛 with
𝑠𝑖 ∈ 𝒮, we assign one indicator leaf with singular scope for each source symbol,

𝜓𝑖(𝑠) ≜ 1{𝑠𝑖=𝑠}. (4.17)

Each sum and product node outputs 𝑆 and 𝑃 output channels respectively, with 𝑆
typically equal to 𝑃 (see Section 3.4 for more details). Common channel sizes are

50

Figure 4-3: Combined SPN source-code decoder with arrows between the controller
and SPN denoting the direction of message flow. The messages from the code graph
are fed as external beliefs to the SPN. The messages from the source graph are
accumulated from the gradients at the leaf nodes of the SPN and are then sent to the
controller.

32, 64 and 128 depending on the dataset being used. All models are trained using
the Adam optimizer [30] with a learning rate between 0.01 and 0.1 depending on the
source data.

We replace the PGM in Figure 4-2 by an SPN as shown in Figure 4-3. Note
the arrow directions between the controller and the SPN, specifically how the code
graph messages are consumed by the SPN. The messages from the code graph are
external beliefs to the SPN and hence they are multiplied with the leaf distributions
as described in Section 3.7.

The messages sent from the code graph to the controller are over the alphabet
{0, 1}. Hence, we need to translate the message before providing it to the SPN as
external beliefs. For a node 𝑢 representing source symbol s𝑢, the external belief
provided to the SPN is

𝜓𝑒
𝑢(𝑠𝑢) ≜ 𝑇2→|𝒮|(m𝑐→𝑠

𝑢→𝑢)(𝑠𝑢). (4.18)

In order to compute the messages from the SPN to the code graph, we require the
marginals of all the leaf nodes of the SPN. Recall that in order to compute the
marginal of a node s𝑖, all other leaf distributions must be fixed to unity according to

51

Property 3.2, i.e., for all 𝑗 ̸= 𝑖, 𝜓𝑗 = 1. Since we want the marginals of all the nodes
in parallel, we set 𝜓𝑖 = 1 for all 𝑖 ∈ {1, . . . , 𝑛}.

The marginals are accumulated at the leaf distribution nodes, hence the arrow
points from the leaf distribution to the controller. In fact, the external beliefs though
represented as nodes in Figure 4-3 should be interpreted as virtual connections. The
marginals from the SPN are sent to the controller for translation. The code graph
can now use the translated messages for code graph BP.

4.2.2 SPN Source-Code Belief Propagation

We call the decoding algorithm that runs BP with the SPN source model and the
code graph as SPN source-code belief propagation. The entire algorithm is presented
in Algorithm 2.

4.2.3 Benefits of Separation Architecture with SPNs

Having described the separation architecture, we are now ready to describe its bene-
fits.

1. Model-free coding : The model-code separation architecture only requires the
source sequence to have a bit-level representation in order to compress it. More-
over, by using an LDPC parity-check matrix, the code has low complexity and
is agnostic of the source modality.

2. Model-adaptive decoding : Since the encoder has no knowledge of the source, the
decoder requires knowledge about the source to accurately decode the source
sequence, of which there can be many for a given codeword. The source data
model can be swapped out easily in the decoder, for example, when our knowl-
edge of the source changes. As the next chapter will demonstrate, SPNs can
learn powerful statistical structure from large datasets and can losslessly com-
press natural images, a task which proved tough for PGMs due to their simple
structure.

3. Data model complexity : By using an SPN as a source model, we are able to rep-
resent complex distributions using deep DAGs implemented efficiently through
convolutions. Parameter learning is very easy with SPNs and hence we can
use the same SPN architecture with different parameters to model a variety of
complex distributions.

4. Modularity : The encoder, source graph, code graph and translator are all dis-
joint components. Hence, a change to one of these will not require significant
changes to other components. For example, if we decide to use a code other
than an LDPC code, all we need to do is to switch out the parity-check matrix
in the encoder. The code graph can easily be updated to model different coding
constraints by updating the factor nodes.

52

5. Fast Decoding : SPNs can compute all marginals in parallel. Even though an
SPN has an underlying DAG much larger than that of a typical PGM, inference
is extremely fast and most importantly tractable. On the other hand, BP on
large PGMs is extremely slow. The SPN-based architecture can be efficiently
implemented on fast inference engines such as GPUs with SPN-based archi-
tectures demonstrating decoding times under 0.05 seconds, much faster than a
PGM-based architecture implemented on a GPU.

53

Algorithm 2: SPN Source-Code Belief Propagation.
Data: Source SPN Φ, code graph 𝒢 = (𝒱 ,ℱ , ℰ), doped symbols s𝑛𝒟.
Result: Decoded source sequence ŝ𝑛.

/* Initialize messages between source and code graphs. */

m𝑠→𝑐 ← 1

|𝒮|
1; m𝑐→𝑠 ← 1

2
1;

/* Start iterative decoding. */
𝑇 ← 0;
repeat

𝑇 ← 𝑇 + 1;
/* Code Graph Belief-Propagation. */
1. Receive beliefs sent to the controller from the SPN and translate them
for code graph BP,

𝑇|𝒮|→2(m𝑠→𝑐).

2. Assimilate the beliefs from SPN as extra factor nodes and run BP on
code graph.
3. Return new beliefs to the controller,

m𝑐→𝑠;

/* Parallel Marginal Computation in SPN. */
1. Set all leaf node distributions to unity,

𝜓𝑢 = 1 for all 𝑢.

2. Receive beliefs sent to the controller from the code graph, translate
them for inclusion as external beliefs,

𝜓𝑒
𝑢 ≜ 𝑇2→|𝒮|(m𝑐→𝑠).

3. Run a forward pass of the SPN from leaves to root.
4. Compute all marginals in parallel according to (3.16). Replace doped
sites with indicator distributions. Send to the controller as new messages,

m𝑠→𝑐.

/* Compute unnormalized probabilities over S */

𝑏𝑢 ←m𝑠→𝑐
𝑢→𝑢𝑡2→|𝒮|(m𝑐→𝑠

𝑢→𝑢) for all 𝑢;

until unnormalized probabilities converge
/* Get decoded source sequence */

𝑠𝑢 = argmax𝑠∈𝒮 𝑏𝑢(𝑠).

return ŝ𝑛.
54

Chapter 5

Lossless Image Compression

In this chapter we apply our proposed SPN-based model-code separation architecture
of Chapter 4 to compress binary and grayscale images. We call the class of systems
that use a PGM-based decoder PGM-SEP and our proposed class of systems that use an
SPN-based decoder SPN-SEP. Our experiments show that SPN-SEP does an excellent
job compressing images and can match the decoding rate of PGM-SEP for sources where
the true PGM is known. On datasets where the underlying PGM is unknown, we show
that SPN-SEP outperforms other baseline universal and data-specific compressors.

5.1 Belief Propagation Decoding Threshold
We seek to characterize the utilizable rate of a code in the model-code separation
architecture. Let 𝐻 be a parity-check matrix of size 𝑘×𝑛 having Λ𝑖 columns of weight
𝑖 and 𝑃𝑗 rows of weight 𝑗. Associated with this matrix are two degree distributions
encoded by the generating functions,

Λ(𝑥) ≜
∑︁
𝑖

Λ𝑖𝑥
𝑖, (5.1a)

𝑃 (𝑥) ≜
∑︁
𝑗

𝑃𝑗𝑥
𝑗. (5.1b)

We can also define the normalized edge distributions,

𝜆(𝑥) ≜
Λ′(𝑥)

Λ′(1)
, (5.2a)

𝜌(𝑥) ≜
𝑃 ′(𝑥)

𝑃 ′(1)
. (5.2b)

The LDPC code that we use in our architecture has degree distributions Λ(𝑥) = 𝑥3

and 𝑃 (𝑥) = (𝑛− ⌊𝑛 frac(𝜌)⌋)𝑥⌊𝜌⌋ + ⌊𝑛 frac(𝜌)⌋𝑥⌊𝜌⌋, where 𝜌 is the average sum of the
row weights. Using the latter quantities we now define the BP decoding threshold as
in [26, Chapter 5] to characterize the decoding capabilities of the chosen code.

55

Definition 5.1. Given a code with 𝜆(𝑥) and 𝜌(𝑥), let 𝑓(𝜖, 𝑥) = 𝜖𝜆(1−𝜌(1−𝑥)). The
BP decoding threshold,

𝜖BP ≜ sup{𝜖 : 𝑓(𝜖, 𝑥)− 𝑥 < 0, ∀𝑥 ∈ (0, 1]}, (5.3)

is the largest fraction of symbols that can be correctly decoding by BP with this code.

For more details about the decoding threshold and its relation to other channel thresh-
olds please refer to [47, Chapter 3] and [26, Chapter 5].

5.2 Experimental Setup
In this chapter we use our proposed model to compress binary and grayscale images.
To do so, we train an SPN on a dataset of source sequences and use the trained model
for SPN source-code belief propagation. To compute the average compression rate
for each parameter value of the source, we use a test set size of 1000 samples. This is
a 50× increment in test set size compared to [26] to ensure that we report the most
accurate compression rates.

We implement SPN-SEP in PyTorch using tensor operations1. The source SPNs
are trained on 1-2 × NVIDIA RTX 3090 GPUs. To make fair comparisons against
PGM-SEP, whenever the PGM representation of the source is known, we use our own
GPU-based implementation of PGM-SEP. We summarize the various models that we
use in our comparisons below.

• SPN-SEP-prot: An instance of the proposed model-code separation architecture
that uses an SPN to model the source. An off-the-shelf library of binary LDPC
codes is used. The doping rate is fixed to 𝑟dope = 0.04 across all experiments.
The total rate of the system is 𝑟total = 𝑟*code + 𝑟dope where, 𝑟*code is the minimum
coding rate for which decoding convergences within 100 iterations to the correct
result.

• SPN-SEP-thresh: The rate returned by SPN-SEP-prot does not accurately de-
scribe the total utilizable rate of the code. For each minimal rate LDPC code
found, we can associate with it a BP decoding threshold, (see Section 5.1) 𝜖BP,
which is less than 𝑟*code. The gap between 𝑟*code and 𝜖BP is not due to the
chosen architecture but is associated with the decoding performance of the
LDPC code. For example, there might be a certain parity-check matrix that
results in faster decoding than the one currently chosen. The total threshold
rate 𝑟*total = 𝜖BP + 𝑟dope is denoted by SPN-SEP-thresh and can be interpreted
as the expected total rate with the best code chosen.

• PGM-SEP-prot: An instance of the baseline model-code separation architecture
proposed by Huang and Wornell [27, 26] that uses a PGM to model the source.

1Our implementation is available at https://github.com/tkj516/deepgen_compress

56

https://github.com/tkj516/deepgen_compress

• PGM-SEP-thresh: An instance of the baseline model-code separation architec-
ture that uses a PGM to model the source where the expected total rate is
reported for the best code.

• GZIP2 : A universal compressor that uses Lempel-Ziv coding [59] based on dic-
tionary learning from a bitstream. The source sequence is flattened into a binary
bitstream before passing it to the compressor. The output length is the com-
pressed file size minus the compressed file size of empty data to account for
headers.

• BZ23: A universal compressor that uses the Burrows-Wheeler [4] algorithm and
Huffman coding [28]. The source sequence is flattened into a binary bitstream
before passing it to the compressor, as is done for GZIP.

• JBIG24: This state-of-the-art bi-level image compressor [39] based on 2D context
dictionaries. We operate the encoder in lossless mode. The output length is the
compressed file size minus the compressed file size of a 1-bit image to account
for headers.

5.3 Compressing Binary Sources
We now report experimental results for the compression of binary sources.

5.3.1 Binary Ising Model

The homogenous 2D Ising model Ising(𝑝, 𝑞) defined over an 𝑛 = ℎ×𝑤 grid of binary
random variables is defined by the distribution

𝑝s𝑛(s𝑛) = 𝑝s𝒱 (s𝒱) =
1

𝑍

∏︁
𝑖∈𝒱

𝜑(𝑠𝑖)
∏︁

(𝑖,𝑗)∈ℰ

𝜓(𝑠𝑖, 𝑠𝑗), (5.4)

where 𝒢 = (𝒱 , ℰ) is an undirected graph representing the distribution as shown in
Figure 5-1 and

𝜑(𝑠𝑖) ≜ 𝑝𝑠𝑖(1− 𝑝)(1−𝑠𝑖), (5.5a)

𝜓(𝑠𝑖, 𝑠𝑗) ≜ 𝑞
1{𝑠𝑖=𝑠𝑗}(1− 𝑞)1−1{𝑠𝑖=𝑠𝑗} . (5.5b)

The source graph has singleton node potentials and pairwise edge potentials. The
singleton potentials encode priors beliefs about the value of a node. A value closer to
one represents a prior belief that the value of the node is more likely to be one. The
value of the edge potentials quantify the amount of correlation between neighboring

2GZIP is available as the module gzip in Python.
3BZ2 is available as the module bz2 in Python.
4JBIG2 is found at https://github.com/agl/jbig2enc

57

https://github.com/agl/jbig2enc

Figure 5-1: Binary Ising model Ising(𝑝, 𝑞).

nodes. A higher value of 𝑞 conveys that neighboring nodes have an affinity to take
on similar values and vice versa.

We are interested in symmetric Ising models where 𝑝 = 1/2, i.e., a node has an
equally likely chance of taking on the value zero or one. We can generate samples
from this Ising model by the Gibbs sampling procedure (see Section 2.2.3.2). We use
an extremely fast and optimized variant of the Gibbs sampler called the chromatic
Gibbs sampler [21] that we implement in Python. At around 𝑞 =

√
2/2, there is a

phase transition and we start to observe long-range correlations as seen in Figures
5-2d and 5-2e .

Using 𝑝 = 1/2, the distribution of the Ising model simplifies as

𝑝s𝒱 (s𝒱) =
2−𝑛

𝑍

∏︁
(𝑖,𝑗)∈ℰ

𝜓(𝑠𝑖, 𝑠𝑗)

=
2−𝑛

𝑍
𝑞#SE(s𝒱)(1− 𝑞)#DE(s𝒱)

∝ exp

{︂
#DE(s𝒱) log

(︂
1− 𝑞
𝑞

)︂}︂
= exp {−2𝜃#DE(s𝒱)}
≜ 𝜋(s𝒱 ; 𝜃),

where 𝜃 = tanh−1(2𝑞 − 1) and #DE(s𝒱) is the number of edges in the graph that
connect two nodes with different values.

58

(a) 𝑞 = 0.5 (b) 𝑞 = 0.6 (c) 𝑞 = 0.7 (d) 𝑞 = 0.8 (e) 𝑞 = 0.9

Figure 5-2: 28× 28 Gibbs samples images from Ising(1/2, 𝑞) for different values of 𝑞.

The finite entropy rate of the model can be computed as

𝐻ℎ,𝑤 ≜
1

𝑁
H(s𝒱)

= − 1

𝑁

𝑁∑︁
𝑗=1

𝑝s𝒱 (s
(𝑗)
𝒱)× {log 𝜋(s(𝑗)𝒱 ; 𝜃)− log𝑍}

= −𝜃E{−2#DE(s𝒱)}
𝑁

+
log𝑍

𝑁
,

where we have averaged over 𝑁 samples from the distribution. We also report the
asymptotic entropy rate (2.2) which can be obtained by taking ℎ,𝑤 →∞.

5.3.1.1 Experiments

In our experiments we used ℎ = 𝑤 = 28. We collected 200,000 samples from the
Ising(1/2, 𝑞) model using a chromatic Gibbs sampler, for each value of the param-
eter 𝑞 = 0.50 + 0.05𝑡 where 𝑡 ∈ {0, . . . , 9}. Since we know the factorization of the
distribution, the baseline systems PGM-SEP-prot and PGM-SEP-thresh are fully spec-
ified and can be used for comparisons.

To use our proposed system, we trained a separate DGCSPN (see Section 3.4) for
each value of the parameter 𝑞. We used the same architecture and hyperparameters
for all SPNs. Each sum and product node uses the same the number of output
channels, 𝑆 = 𝑃 = 32. All indicator leaves have an alphabet size of 2 . All models
were trained using the Adam optimizer with a learning rate of 0.01. We used a 70-20-
10 train-validation-test split of the data and trained the model on a single NVIDIA
3090 GPU for 100 epochs. In most cases, early stopping was activated and the model
was done training within 30 epochs.

We used a fixed doping rate of 𝑟dope = 0.04 across all experiments.

Fact 5.1. Early stopping is a technique used in neural network training where the
learning algorithm decides to terminate training when the decrease in validation loss
is not significant anymore.

59

Figure 5-3: Compression performance for the Ising(𝑝, 𝑞) source family for 𝑝 = 1/2
and different values of 𝑞. The dimensions of the image were fixed to ℎ = 𝑤 = 28 and
𝑟code = 0.04.

5.3.1.2 Results

The compression rate averaged over 1000 samples for each value of 𝑞 using dif-
ferent compression architectures is shown in Figure 5-3. Both SPN-SEP-prot and
SPN-SEP-thresh achieved nearly identical performance to the respective baseline sys-
tems PGM-SEP-prot and PGM-SEP-thresh. Moreover, SPN-SEP-thresh outperformed
the state-of-the-art bi-level compressor JBIG2 across all rates too. This demonstrates
the powerful generative capabilities of SPNs and its ability to learn strong statistical
structure from a large dataset of source samples. SPN-SEP-prot and SPN-SEP-thresh
also outperformed the universal compressors GZIP and BZ2 by a large margin, with
the latter two systems demonstrating favorable results only in the low entropy regime
(large 𝑞).

The average decoding runtime of SPN-SEP on a single GPU was 0.04 seconds in
comparison to PGM-SEP which was around 0.1 seconds. While this may seem negligi-
ble, it is actually quite remarkable given that the SPN has thousands of parameters
to specify the underlying DAG in comparison to the much fewer parameters required
to specify the Ising model PGM.

Notice that the data was compressed better once we cross the phase transition
value of 𝑞. This shows that better compression is achievable for sources with repetitive
structures, i.e., lower entropy. Both PGM-SEP-thresh and SPN-SEP-thresh achieve
rates close to the finite entropy of the model. JBIG2 is consistently outperformed by

60

(a) 𝑡 = 0 (b) 𝑡 = 1 (c) 𝑡 = 2 (d) 𝑡 = 3

(e) 𝑡 = 4 (f) 𝑡 = 5 (g) 𝑡 = 6 (h) 𝑡 = 7

Figure 5-4: Decoding a sample from Ising(1/2, 3/4) using SPN-SEP. Intensities 𝛼𝑖

range from black=0 to white=1. Intensities denote the value of the estimated marginal
𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.5 and 𝑟dope = 0.04.

SPN-SEP-thresh, with similar performance only in the extremely low and extremely
high end of the entropy spectrum.

The entire decoding process on a sample drawn from Ising(1/2, 3/4) using SPN-SEP
is shown in Figure 5-4. The SPN source-code BP algorithm is seeded with the initial
doping bits at time 𝑡 = 0. In just a single iteration, the algorithm starts to infer
the general structure of the source from the doping bits. By the third iteration, the
algorithm has decoded most of the long-range correlations within the source. The last
three iterations correct decoding errors at edges within the image. It is difficult to
decode the small scattered black and white patterns within the regions with large cor-
relations with just the SPN. This is where the code graph comes into play to enforce
the parity-check constraints and steer the decoder towards the correct solution.

We observed that when using a total decoding rate close to the finite entropy,
both SPN-SEP and PGM-SEP took around the same number of iterations. At rates
higher than the most optimal rate, SPN-SEP was able to recover the image in fewer
iterations than PGM-SEP. Comparative decoding visuals using PGM-SEP can be found
in Appendix A (Supplementary Images).

5.3.2 Binary MNIST

We transition towards natural datasets by first compressing binary MNIST images.
The MNIST dataset [35] consists of 60,000 grayscale images of handwritten digits
between 0 and 9, examples of which are shown in Figure 5-5. All the images have a
shape of 28× 28. Unlike the 2D Ising model, we don’t know the statistical structure
of MNIST digits and hence the PGM structure should be learned in order to use

61

Figure 5-5: Sample images from the grayscale MNIST dataset. Images are binarized
by using a mid-intensity threshold.

PGM-SEP. Structure learning is hard for PGMs when using large datasets. However,
SPN-SEP can be easily used for compression since learning an SPN is extremely fast.

We used the same DGCSPN architecture from Section 5.3.1.1 to learn the source
distribution for binary MNIST. Since MNIST images are grayscale, we thresholded
the images at the mid-intensity level. We continued to use a 70-20-10 train test
validation split for training. The DGCSPN trains extremely fast with early stopping
activated in epoch 30. We used a single GPU and a batch size of 128 to train the
model.

Dataset/Compressor BZ2 GZIP JBIG2 SPN-SEP-prot SPN-SEP-thresh
Binary MNIST 0.78 0.59 0.34 0.24 0.20

Table 5.1: Average compression rate of the binary MNIST images using different
compression strategies.

We compared our architecture against the universal compressors GZIP and BZ2,
and the bi-level compressor JBIG2. Since the image is already binary, we flatten the
image and pass it to the universal compressors for encoding. As shown in Table 5.1,
both SPN-SEP-prot and SPN-SEP-thresh were able to achieve much better compres-
sion rates than BZ2, GZIP and JBIG2. This shows that the SPN is not only able able
to learn strong statistical structure from the data but also an efficient structure. This
is conveyed by the nearly 1.7× gain in compression rate by SPN-SEP over JBIG2. The
difference in rates between SPN-SEP-prot and SPN-SEP-thresh indicates that via
code optimization it is possible to achieve a considerable increase in compression.

Figure 5-6 shows the decoding steps involved in decoding the digit 7. Within
two iterations the decoder was able to leverage the structure learned by the SPN to
decode the digit as a 7. Notice that the decoded image at 𝑡 = 2, is a perceptually
accurate image of the digit 7. The code graph came into play towards the end by
enforcing the parity-check constraints to produce the horizontal line. More decoding
visuals can be found in Appendix A.

62

(a) 𝑡 = 0 (b) 𝑡 = 1 (c) 𝑡 = 2 (d) 𝑡 = 3

(e) 𝑡 = 4 (f) 𝑡 = 5 (g) 𝑡 = 6 (h) 𝑡 = 7

Figure 5-6: Decoding the digit 7 from the binary MNIST dataset using SPN-SEP.
Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the value of the
estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.27 and 𝑟dope = 0.04

5.4 Compressing Grayscale Sources
Having compressed binary source we now use our architecture to compress grayscale
sources.

5.4.1 Grayscale MNIST

We now compress the MNIST dataset without binarization. We trained a DGCSPN
with a slightly different architecture. The leaf distributions are now indicators with
an alphabet size of 256. The sum nodes and product nodes have 𝑆 = 𝑃 = 64 output
channels. The model was trained on 2 × NVIDIA RTX 3090 GPUs with a batch size
of 128. We decreased the learning rate to 0.01 since the model is much larger than
the one used in Section 5.3.2.

We ran multiple trials to find the best doping rate and we concluded that 𝑟dope =
0.04 still works well for decoding. To speed up decoding we parallelized the SPN
source-code decoding algorithm to use two GPUs. In practice we could continue to
use one GPU but it adds extra strain on the GPU memory. Despite the model being
almost twice as large as before, the decoding algorithm still runs under 0.1 seconds
for decoding grayscale images.

Dataset/Compressor BZ2 GZIP SPN-SEP-prot SPN-SEP-thresh
MNIST 0.27 0.22 0.23 0.20

Table 5.2: Average compression rate of grayscale MNIST images using different com-
pression strategies.

63

(a) 𝑡 = 0 (b) 𝑡 = 1 (c) 𝑡 = 2 (d) 𝑡 = 3

(e) 𝑡 = 4 (f) 𝑡 = 5 (g) 𝑡 = 6 (h) 𝑡 = 7

(i) 𝑡 = 8 (j) 𝑡 = 9

Figure 5-7: Decoding the digit 9 from the MNIST dataset using SPN-SEP. Intensities
𝛼𝑖 range from black=0 to white=1. Intensities denote the value of the max marginal
𝛼𝑖 ≜ max𝑠𝑖 𝑝s𝑖(𝑠𝑖). We set 𝑟code = 0.23 and 𝑟dope = 0.04

We compared our architecture against GZIP and BZ2. Since the images are not
binary anymore we get the binary representation for each pixel and then flatten the
input image into a single bitstream. As shown in Table 5.2, we were able to achieve
compression rates better than BZ2. GZIP did a good job compressing MNIST images
and our SPN-SEP-prot architecture had decoding performance on par with GZIP. If
we optimize for the best code it is possible to achieve even lower compression rates
as indicated by a compression rate of 0.20 in the last column of Table 5.2.

We would like to comment that GZIP and BZ2 are not necessarily compressing the
inputs any better than the binary MNIST images. The large decrease in bitrate is
a result of the 8-bit encoding of pixels which leads to long runs of 0s and 1s that
can be easily compressed. While we could have indeed converted our binary MNIST
images to 8-bits per pixel representations, doing so would also increase the size of the
transmitted codeword which makes the system sub-optimal. Visuals of the decoding
process are shown in Figures 5-7 with additional samples included in Appendix A.

64

5.4.2 Fashion MNIST

In 2017, the Fashion MNIST dataset [62] was released as a drop-in replacement for
the MNIST dataset for the purposes of machine learning benchmarking. The dataset
consists of grayscale images of clothing articles from 10 classes. Example images from
the dataset are shown in Figure 5-10. We employed the same DGCSPN architecture
from Section 5.4.1. The model was trained with a learning rate of 0.1 on 2 × NVIDIA
RTX 3090 GPUs. The model trained within an hour. We continued to use a doping
rate of 0.04.

(a) T-shirt/top (b) Trouser (c) Pullover (d) Dress (e) Coat

(f) Sandal (g) Shirt (h) Sneaker (i) Bag (j) Ankle boot

Figure 5-8: Samples from the Fashion MNIST dataset. Class labels are displayed
below each image.

Dataset/Compressor BZ2 GZIP SPN-SEP-prot SPN-SEP-thresh
Fashion MNIST 0.66 0.57 0.53 0.46

Table 5.3: Average compression rate of Fashion MNIST images using different com-
pression strategies.

As shown in Table 5.3, we were able to achieve compression rates better than BZ2
and GZIP. Figure 5-9 shows the steps involved in decoding a shoe. Notice how the
decoder was able to infer a plausible shape in the very first iteration of decoding. The
overall structure was inferred within the first five iterations. The remaining iterations
served to reconstruct the correct intensity value for each pixel by ensuring constraint
satisfaction via code graph BP. This shows that the SPN has efficiently learned the
discerning features between different classes of the dataset even though it was trained
as a generative model.

The articles of clothing have subtle intensity variations and different textures.
Thus, to encode such variations the code requires more bits and hence the compression

65

rate on Fashion MNIST images is almost twice that of MNIST images. Considerable
compression can still be performed since the clothing articles have unique shapes.

(a) 𝑡 = 0 (b) 𝑡 = 1 (c) 𝑡 = 2 (d) 𝑡 = 3

(e) 𝑡 = 4 (f) 𝑡 = 5 (g) 𝑡 = 6 (h) 𝑡 = 7

(i) 𝑡 = 8 (j) 𝑡 = 9 (k) 𝑡 = 10 (l) 𝑡 = 11

(m) 𝑡 = 12

Figure 5-9: Decoding an image of a shoe from the Fashion MNIST dataset using
SPN-SEP. Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the value
of the estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.45 and 𝑟dope = 0.04

66

5.4.3 CIFAR-10

We finally test our compression system on the CIFAR-10 dataset [32]. The dataset
consists of 32 × 32 RGB images classified into 10 classes. There are 60,000 images
with 6000 images per class. We convert the images to grayscale for the purposes of
our experiments.

(a) Airplane (b) Automobile (c) Bird (d) Cat (e) Deer

(f) Dog (g) Frog (h) Horse (i) Ship (j) Truck

Figure 5-10: Samples from the CIFAR-10 dataset. Class labels are displayed below
each image.

To determine a baseline that we would like to outperform, we first compressed 1000
test images using the universal compressors GZIP and BZ2. Not much compression was
attained, with GZIP obtaining a compression rate of 0.93 and BZ2 unable to compress
the images at all as shown in Table 5.4. Thus, if we can attain better rates than the
universal compressors, we might be able to conclude that the SPN is able to learn
and exploit source structure for decoding.

Dataset/Compressor BZ2 GZIP SPN-SEP-prot SPN-SEP-thresh
CIFAR-10 1.01 0.93 0.86 0.78

Table 5.4: Average compression rate of grayscale CIFAR-10 images using different
compression strategies.

We trained a DGCSPN with 64 output channels at each sum and product node.
Through several rounds of hyperparameter tuning we found that a learning rate of
0.01 and a batch size of 32 provided the best training results. As shown in Table 5.4,
both SPN-SEP-prot and SPN-SEP-thresh beat the baseline universal compressors.
This suggests that the SPN has learned a more efficient representation of the source
structure than what was learned on-the-fly by GZIP and BZ2. This demonstrates
that universal compressors could benefit from decoders that can incorporate various

67

(a) 𝑡 = 0 (b) 𝑡 = 1 (c) 𝑡 = 2 (d) 𝑡 = 3

(e) 𝑡 = 4 (f) 𝑡 = 5 (g) 𝑡 = 6 (h) 𝑡 = 7

(i) 𝑡 = 8 (j) 𝑡 = 9 (k) 𝑡 = 10 (l) 𝑡 = 11

(m) 𝑡 = 12 (n) 𝑡 = 13 (o) 𝑡 = 14 (p) 𝑡 = 15

Figure 5-11: Decoding an image of a car from the CIFAR-10 dataset using SPN-SEP.
Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the value of the
estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.85 and 𝑟dope = 0.07

different data models while leaving the encoder untouched. The large difference in
rate between SPN-SEP-prot and SPN-SEP-thresh suggests that code optimization
could play an important role in making the system more robust.

We continued to use 𝑟dope = 0.04 for decoding. We found that increasing the dop-
ing rate did not lead to a significant reduction in coding rate 𝑟code. This is a promising
feature since we’d like to dope as few bits as necessary for practical applications.

Figures 5-11 shows the steps involved in decoding an image of a car. In general,
at the best decoding rate, it took more than 20 iterations of SPN source-code BP to
decode the image, with an average decoding time of 0.07 seconds. Notice how the

68

reconstruction looks blocky in the beginning and then starts to resolve itself in later
iterations. This suggests that the SPN source-code decoding process could be used
for progressive image reconstruction.

Furthermore, note how the rectangular patch in the top left of the image was
perfectly reconstructed. The last few iterations actually served to reconstruct this
patch perfectly. Often we might not be interested in reconstructing perceptually
irrelevant regions. Based on the nearly perfect reconstruction of the car in the first few
iterations, this suggests that this architecture could also be used for lossy compression
along the lines of [34] and [36].

5.5 Summary
The results from this chapter demonstrate the use of our proposed SPN-based model-
code separation architecture, SPN-SEP, in decoding binary and grayscale images.
Through various experiments we show that our architecture can be used not only
to compress simple binary source such as Ising models with high compression rate,
but also grayscale images with complex structure such as those from the CIFAR-10
dataset. The working of the SPN source-code BP algorithm is explained through
numerous visual examples compiled in this chapter and Appendix A (Supplementary
Images).

69

Chapter 6

Conclusion

6.1 Review
In this thesis, we propose a model-code separation architecture for lossless compres-
sion that uses a sum-product network (SPN) to model the source data. The architec-
ture uses a model-free encoder based on LDPC codes and a model-adaptive decoder
utilizing the SPN source-code belief propagation as described in Section 4.1.3. We
build upon the architecture proposed by Huang and Wornell [27, 26] by using a pow-
erful SPN instead of a PGM for modeling the data. The resulting architecture admits
extremely fast lossless decoding on GPUs.

We develop the theory underlying our system in Chapters 2 and 3 before proceed-
ing onto the system description in Chapter 4. Through experiments on different image
datasets and comparisons against baselines models in Chapter 5 we demonstrate the
effectiveness of our architecture in compressing binary and grayscale images.

6.2 Applications and Future Work
The results from previous chapters demonstrate that sum-product networks perform
an excellent job at modeling the source distribution of signals. Moreover, lossless
compression using the SPN source-code BP algorithm is fast, efficient and robust.
We now comment on some additional applications of sum-product networks and the
model-code separation architecture.

1. Lossy Compression: Lai [34] and Lee [36] showed that the PGM-based model-
code separation architecture could be extended for the purposes of lossy image
compression. In this extension, an extra quantizer module is introduced in the
controller. The quantization of messages leads to loss in information (distortion)
as measured by the mean-squared error reconstruction loss. By trading off
between rate and distortion by varying the amount of quantization, a lossy
compression architecture is realized. Our proposed SPN-based architecture can
be extended using an SPN with Gaussian leaf distributions along similar lines
for lossy compression.

70

2. Autoencoders : An autoencoder is a type of neural network that is used to learn
compact representations of unlabeled data. Autoencoders are generative mod-
els that have two modules — the encoder and decoder. The encoder reduces
the dimensionality of the input and the decoder reconstructs the input. The
network is trained with reconstruction loss functions such as the mean-square
error. Our proposed architecture can be used as a “true” autoencoder to per-
fectly reconstruct the input data. Given an input source sequence, a plausible
autoencoder architecture could encode the source using an LDPC code and it
could use the SPN source-code BP algorithm to decode the source. In addition
to this we would require the autoencoder to be capable of sampling new data.
This can be done as long we are able to sample codewords that correspond to
source sequences with high probability. One idea is to use build on the LDPC
code sampling method proposed in [65].

3. Conditional SPNs and RGB Image Decoding : In this thesis we extensively study
binary and grayscale lossless image compression. The same methods when used
on color images might not yield good results. The reasoning behind this hy-
pothesis is that there is a strong correlation between the different color channels
of an RGB image. In probability terms, given a channel of the image, the con-
ditional distribution of another channel given the observed channel should be
highly compressible. Image coding standards such as PNG and JPEG take ad-
vantage of this fact during compression. Recently there has been interest in
conditional SPNs [54]. If conditional distributions can be learned efficiently
then it is possible take advantage of these distributions during SPN source-code
BP to compress color images.

4. Compression for Lightweight Sensors : If self-driving cars are indeed the future
of travel, it will require numerous sensors to work together in harmony. It is
vital that these sensors transmit sensory inputs to the central controller quickly
and efficiently. There has been recent interest in the use of lightweight sensors
to reconstruct complex scenes, an example of which is the oversampled binary
image sensor [63]. This sensor quantizes the photon count at each pixel using a
binary quantizer. Since the sensor is taking binary measurements, the imaging
devices using many sensors in combination to reconstruct a complex scene from
multiple measurements. Oversampled binary image sensors have been shown
to produce images with large resolutions and higher dynamic range. It might
be possible to leverage our model-code separation architecture to effectively
compress the sensor measurements for storage and transmission, which is one
of the limiting factors of oversampled image sensor architectures. This idea can
be extended to signals from other modalities too.

5. Alternative Coding Mechanisms : In this thesis we use LDPC codes to compress
source sequences. It would be interesting to experiment with other codes and
conduct a comprehensive study on the dependence of our architecture on the
coding mechanism.

71

6. Probabilistic Discriminator in GANs : Thus far, GANs have not been widely
used for compressing images due to their inability to trade-off distortion, in the
form of the discriminator, with rate. The idea behind this thesis was inspired
by experiments on perceptual decoding of images using dither-quantized binary
images (see Section 1.2). The results of this thesis show that an SPN can be
used as a probabilistic decoder for compression. Hence, a possible next step
is to experiment with SPNs as discriminators in GANs and leverage an SPN’s
probabilistic interpretation to use GANs for lossy compression.

7. Modular Neural Codecs: Current state-of-the-art neural image codecs such as
L3C [38] and IDF [25] are trained end-to-end (see Section 1.2.3). Hence, a change
to the coding mechanism requires a complete change to the architecture. Our
model-code separation architecture using SPNs could inspire future work in
lightweight and modular design of neural codecs. IDF can achieve an impressive
42% compression rate on color CIFAR-10 images beating all other compression
strategies. If SPNs can be made more powerful by combining techniques from
normalizing flows, autoregressive models and variational autoencoders it might
be possible to model even more complex structure than what they currently
can.

6.3 Final Remarks
Statista estimates that 181 zettabytes of data will be consumed in the year 2025
[52], more than double of what is being consumed now. This demands an increase in
storage capacity across all physical devices. We currently have smartphones with 1 TB
of storage, something that we would not have foreseen 10 years back. However, there
is a limit on the amount of storage that can be realized on devices. We ultimately
need better compression algorithms to meet the ever increasing appetite for big data.

Each year we encounter new modalities of data that we would like to store with
each new source of data having some inherent structure in it. It is not practical
to establish a new compression standard for every source of data. While it is def-
initely a unique and rewarding opportunity to develop compression techniques for
new sources of data, engineers and scientist should also address the twin questions of
flexibility and modular design. Current systems still use joint model-code design in
their architecture. As we have seen, such systems are often immutable, inflexible and
non-reusable. This is especially important in neural codecs where it is infeasible to
retrain complex deep architectures every time we encounter novel data.

In this thesis we propose an architecture that starts to address some of these issues.
We provide the basic tools and insights that can hopefully inspire the next generation
of compression algorithms. We make use of modern AI and machine learning tools
to develop a compression model rooted in information theory, source coding and
statistical inference. As these fields advance, compression systems will undoubtedly
too, ushering a new age of technology defined by modular and adaptive compression
systems.

72

Appendix A

Supplementary Images

(a) 𝑡 = 0 (b) 𝑡 = 2 (c) 𝑡 = 4 (d) 𝑡 = 6

(e) 𝑡 = 8 (f) 𝑡 = 10 (g) 𝑡 = 12 (h) 𝑡 = 14

(i) 𝑡 = 4

Figure A-1: Decoding a sample from Ising(1/2, 7/10) using SPN-SEP. Intensities
𝛼𝑖 range from black=0 to white=1. Intensities denote the value of the estimated
marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.70 and 𝑟dope = 0.04.

73

(a) 𝑡 = 0 (b) 𝑡 = 2 (c) 𝑡 = 4 (d) 𝑡 = 6

(e) 𝑡 = 8 (f) 𝑡 = 10 (g) 𝑡 = 12 (h) 𝑡 = 14

(i) 𝑡 = 16 (j) 𝑡 = 18 (k) 𝑡 = 20 (l) 𝑡 = 22

Figure A-2: Decoding the same sample from Figure A-1 using PGM-SEP. Intensities
𝛼𝑖 range from black=0 to white=1. Intensities denote the value of the estimated
marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.70 and 𝑟dope = 0.04.

74

(a) 𝑡 = 0 (b) 𝑡 = 1 (c) 𝑡 = 2 (d) 𝑡 = 3

(e) 𝑡 = 4 (f) 𝑡 = 5 (g) 𝑡 = 6 (h) 𝑡 = 7

(i) 𝑡 = 8 (j) 𝑡 = 9 (k) 𝑡 = 10 (l) 𝑡 = 11

(m) 𝑡 = 12 (n) 𝑡 = 13

Figure A-3: Decoding the same sample in Figure 5-4 using PGM-SEP. Intensities
𝛼𝑖 range from black=0 to white=1. Intensities denote the value of the estimated
marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.5 and 𝑟dope = 0.04. Compared to 5-4, we
see that PGM-SEP arrived at the solution differently. PGM-SEP started decoding by
growing outwards from the doped sites whereas SPN-SEP started to look for global
structure from the first iteration. This is because BP on a PGM uses local markov
structure to decode the source pixels whereas SPN use the complete structure of the
source.

75

(a) 𝑡 = 0 (b) 𝑡 = 1 (c) 𝑡 = 2 (d) 𝑡 = 3

(e) 𝑡 = 4 (f) 𝑡 = 5 (g) 𝑡 = 6 (h) 𝑡 = 7

(i) 𝑡 = 8

Figure A-4: Decoding the digit 8 from the binary MNIST dataset using SPN-SEP.
Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the value of the
estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.3 and 𝑟dope = 0.04

76

(a) 𝑡 = 0 (b) 𝑡 = 1 (c) 𝑡 = 2 (d) 𝑡 = 3

(e) 𝑡 = 4 (f) 𝑡 = 5 (g) 𝑡 = 6 (h) 𝑡 = 7

(i) 𝑡 = 8 (j) 𝑡 = 9 (k) 𝑡 = 10 (l) 𝑡 = 11

(m) 𝑡 = 12

Figure A-5: Decoding the digit 5 from the binary MNIST dataset using SPN-SEP.
Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the value of the
estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.27 and 𝑟dope = 0.04

77

(a) 𝑡 = 0 (b) 𝑡 = 1 (c) 𝑡 = 2 (d) 𝑡 = 3

(e) 𝑡 = 4 (f) 𝑡 = 5 (g) 𝑡 = 6

Figure A-6: Decoding the digit 2 from the MNIST dataset using SPN-SEP. Intensities
𝛼𝑖 range from black=0 to white=1. Intensities denote the value of the max marginal
𝛼𝑖 ≜ max𝑠𝑖 𝑝s𝑖(𝑠𝑖). We set 𝑟code = 0.23 and 𝑟dope = 0.04

78

(a) 𝑡 = 0 (b) 𝑡 = 1 (c) 𝑡 = 2 (d) 𝑡 = 3

(e) 𝑡 = 4 (f) 𝑡 = 5 (g) 𝑡 = 6 (h) 𝑡 = 7

(i) 𝑡 = 8 (j) 𝑡 = 9 (k) 𝑡 = 10 (l) 𝑡 = 11

(m) 𝑡 = 12

Figure A-7: Decoding an image of a pant from the Fashion MNIST dataset using
SPN-SEP. Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the value
of the estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.45 and 𝑟dope = 0.04

79

(a) 𝑡 = 0 (b) 𝑡 = 1 (c) 𝑡 = 2 (d) 𝑡 = 3

(e) 𝑡 = 4 (f) 𝑡 = 5 (g) 𝑡 = 6 (h) 𝑡 = 7

Figure A-8: Decoding an image of a dress from the Fashion MNIST dataset using
SPN-SEP. Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the value
of the estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.48 and 𝑟dope = 0.04. Notice
how the SPN initially drives the decoder towards decoding the image as a pant.

80

(a) 𝑡 = 0 (b) 𝑡 = 2 (c) 𝑡 = 4 (d) 𝑡 = 6

(e) 𝑡 = 8 (f) 𝑡 = 10 (g) 𝑡 = 12 (h) 𝑡 = 14

(i) 𝑡 = 16 (j) 𝑡 = 18 (k) 𝑡 = 20 (l) 𝑡 = 22

(m) 𝑡 = 24 (n) 𝑡 = 26 (o) 𝑡 = 28

Figure A-9: Decoding an image of a horse from the CIFAR-10 dataset using SPN-SEP.
Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the value of the
estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.80 and 𝑟dope = 0.04.

81

(a) 𝑡 = 0 (b) 𝑡 = 5 (c) 𝑡 = 10 (d) 𝑡 = 15

(e) 𝑡 = 20 (f) 𝑡 = 25 (g) 𝑡 = 30 (h) 𝑡 = 35

(i) 𝑡 = 40 (j) 𝑡 = 45 (k) 𝑡 = 50 (l) 𝑡 = 55

(m) 𝑡 = 60 (n) 𝑡 = 65 (o) 𝑡 = 70 (p) 𝑡 = 74

Figure A-10: Decoding an image of a boat from the CIFAR-10 dataset using SPN-SEP.
Intensities 𝛼𝑖 range from black=0 to white=1. Intensities denote the value of the
estimated marginal 𝑝s𝑖(1) ≜ 𝛼𝑖. We set 𝑟code = 0.80 and 𝑟dope = 0.04.

82

Bibliography

[1] N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine transform. IEEE
Transactions on Computers, C-23(1):90–93, 1974.

[2] Marc Antonini, Michel Barlaud, Pierre Mathieu, and Ingrid Daubechies. Im-
age coding using wavelet transform. IEEE Transactions on image processing,
1(2):205–220, 1992.

[3] Thomas Boutell and T Lane. PNG (portable network graphics) specification
version 1.0. Network Working Group, pages 1–102, 1997.

[4] Michael Burrows and David Wheeler. A block-sorting lossless data compression
algorithm. In Digital SRC Research Report. Citeseer, 1994.

[5] Cory J Butz, Jhonatan S Oliveira, André E dos Santos, and André L Teixeira.
Deep convolutional sum-product networks. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pages 3248–3255, 2019.

[6] CKCN Chow and Cong Liu. Approximating discrete probability distributions
with dependence trees. IEEE transactions on Information Theory, 14(3):462–
467, 1968.

[7] Peter Clifford. Markov random fields in statistics. Disorder in physical systems:
A volume in honour of John M. Hammersley, pages 19–32, 1990.

[8] Imre Csiszár and János Körner. Information theory: coding theorems for discrete
memoryless systems. Cambridge University Press, 2011.

[9] Imre Csiszár and Paul C Shields. Information theory and statistics: A tutorial.
2004.

[10] Adnan Darwiche. A logical approach to factoring belief networks. KR, 2:409–420,
2002.

[11] Adnan Darwiche. A differential approach to inference in Bayesian networks.
Journal of the ACM (JACM), 50(3):280–305, 2003.

[12] Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks.
Advances in neural information processing systems, 24:666–674, 2011.

83

[13] Mattia Desana. Sum-Product Graphical Models: a Graphical Model Perspective
on Sum-Product Networks. PhD thesis, 2018.

[14] Mattia Desana and Christoph Schnörr. Sum-product graphical models. Machine
Learning, 109(1):135–173, 2020.

[15] Mathias Drton and Marloes H Maathuis. Structure learning in graphical model-
ing. Annual Review of Statistics and Its Application, 4:365–393, 2017.

[16] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covari-
ance estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[17] Mark Gales and Steve Young. The application of hidden Markov models in
speech recognition. 2008.

[18] Robert Gallager. Low-density parity-check codes. IRE Transactions on infor-
mation theory, 8(1):21–28, 1962.

[19] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. IEEE Transactions on pattern analysis
and machine intelligence, (6):721–741, 1984.

[20] Robert Gens and Pedro Domingos. Discriminative learning of sum-product net-
works. Advances in Neural Information Processing Systems, 25:3239–3247, 2012.

[21] Joseph Gonzalez, Yucheng Low, Arthur Gretton, and Carlos Guestrin. Parallel
Gibbs sampling: From colored fields to thin junction trees. In Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics,
pages 324–332. JMLR Workshop and Conference Proceedings, 2011.

[22] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversar-
ial nets. Advances in neural information processing systems, 27, 2014.

[23] Horst Hampel, Ronald B Arps, Christos Chamzas, David Dellert, Donald L
Duttweiler, Toshiaki Endoh, William Equitz, Fumitaka Ono, Richard Pasco,
Istvan Sebestyen, et al. Technical features of the JBIG standard for progressive
bi-level image compression. Signal Processing: Image Communication, 4(2):103–
111, 1992.

[24] W Keith Hastings. Monte Carlo sampling methods using Markov chains and
their applications. 1970.

[25] Emiel Hoogeboom, Jorn WT Peters, Rianne van den Berg, and Max Welling.
Integer discrete flows and lossless compression. arXiv preprint arXiv:1905.07376,
2019.

[26] Ying-zong Huang. Model-code separation architectures for compression based on
message-passing. PhD thesis, Massachusetts Institute of Technology, 2015.

84

[27] Ying-zong Huang and Gregory W Wornell. A class of compression systems with
model-free encoding. In 2014 Information Theory and Applications Workshop
(ITA), pages 1–7. IEEE, 2014.

[28] David A. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[29] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman
Casagrande, Edward Lockhart, Florian Stimberg, Aaron Oord, Sander Diele-
man, and Koray Kavukcuoglu. Efficient neural audio synthesis. In International
Conference on Machine Learning, pages 2410–2419. PMLR, 2018.

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[31] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[32] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[33] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and the
sum-product algorithm. IEEE Transactions on information theory, 47(2):498–
519, 2001.

[34] Wai Lok Lai et al. A probabilistic graphical model based data compression archi-
tecture for Gaussian sources. PhD thesis, Massachusetts Institute of Technology,
2016.

[35] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[36] Joshua Ka-Wing Lee. A model-adaptive universal data compression architecture
with applications to image compression. PhD thesis, Massachusetts Institute of
Technology, 2017.

[37] Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable
selection with the lasso. The annals of statistics, 34(3):1436–1462, 2006.

[38] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and
Luc Van Gool. Practical full resolution learned lossless image compression. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pages 10629–10638, 2019.

[39] F. Ono, W. Rucklidge, R. Arps, and C. Constantinescu. JBIG2-the ultimate bi-
level image coding standard. In Proceedings 2000 International Conference on
Image Processing (Cat. No.00CH37101), volume 1, pages 140–143 vol.1, 2000.

85

[40] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex
Graves, and Koray Kavukcuoglu. Conditional image generation with PixelCNN
decoders. arXiv preprint arXiv:1606.05328, 2016.

[41] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete
representation learning. arXiv preprint arXiv:1711.00937, 2017.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. PyTorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[43] Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting
Shao, Martin Trapp, Kristian Kersting, and Zoubin Ghahramani. Random sum-
product networks: A simple and effective approach to probabilistic deep learning.
In Uncertainty in Artificial Intelligence, pages 334–344. PMLR, 2020.

[44] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep archi-
tecture. In 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops), pages 689–690. IEEE, 2011.

[45] Abdullah Rashwan, Pascal Poupart, and Chen Zhitang. Discriminative training
of sum-product networks by extended Baum-Welch. In International Conference
on Probabilistic Graphical Models, pages 356–367. PMLR, 2018.

[46] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing
flows. In International conference on machine learning, pages 1530–1538. PMLR,
2015.

[47] Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge
university press, 2008.

[48] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted Boltzmann
machines for collaborative filtering. In Proceedings of the 24th international
conference on Machine learning, pages 791–798, 2007.

[49] David Salomon and Giovanni Motta. Handbook of data compression. Springer,
2010.

[50] Raquel Sánchez-Cauce, Iago París, and Francisco Javier Díez. Sum-product
networks: A survey. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2021.

[51] Khalid Sayood. Introduction to data compression. Morgan Kaufmann, 2017.

86

[52] Arne von See. Total data volume worldwide 2010-2025, Jun 2021.

[53] C. E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27(3):379–423, 1948.

[54] Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz,
Thomas Liebig, and Kristian Kersting. Conditional sum-product networks: Im-
posing structure on deep probabilistic architectures. In International Conference
on Probabilistic Graphical Models, pages 401–412. PMLR, 2020.

[55] A. Skodras, C. Christopoulos, and T. Ebrahimi. The JPEG 2000 still image
compression standard. IEEE Signal Processing Magazine, 18(5):36–58, 2001.

[56] G.K. Wallace. The JPEG still picture compression standard. IEEE Transactions
on Consumer Electronics, 38(1):xviii–xxxiv, 1992.

[57] Dong Wang, Xiaodong Wang, and Shaohe Lv. An overview of end-to-end auto-
matic speech recognition. Symmetry, 11(8):1018, 2019.

[58] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
and Chen Change Loy. ESRGAN: Enhanced super-resolution generative adver-
sarial networks. In Proceedings of the European conference on computer vision
(ECCV) workshops, pages 0–0, 2018.

[59] Welch. A technique for high-performance data compression. Computer, 17(6):8–
19, 1984.

[60] Greg Welch, Gary Bishop, et al. An introduction to the Kalman filter. 1995.

[61] Jos Wolfshaar and Andrzej Pronobis. Deep generalized convolutional sum-
product networks. In International Conference on Probabilistic Graphical Models,
pages 533–544. PMLR, 2020.

[62] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms, 2017.

[63] Feng Yang, Yue M Lu, Luciano Sbaiz, and Martin Vetterli. Bits from photons:
Oversampled image acquisition using binary Poisson statistics. IEEE Transac-
tions on image processing, 21(4):1421–1436, 2011.

[64] Jonathan S Yedidia, William T Freeman, Yair Weiss, et al. Understanding belief
propagation and its generalizations. Exploring artificial intelligence in the new
millennium, 8:236–239, 2003.

[65] Xuhong Zhang et al. A sampling technique based on LDPC codes. PhD thesis,
Massachusetts Institute of Technology, 2015.

87

	Abstract
	Acknowledgments
	Introduction
	Compression Landscape
	Motivation
	Joint Model-Code Architectures
	Lossless Compression: Huffman Coding
	Lossy Compression: JPEG and JPEG-2000

	Universal Data Compression
	Neural Codecs

	Thesis Guide
	Highlight
	Organization
	Notation

	Background and Prior Work
	Source Coding Theory
	Probabilistic Graphical Models
	Undirected Graphical Models
	Factor Graphs
	Inference Routines
	Belief Propagation
	Sampling

	Model-Free Coding
	Low Density parity-check (LDPC) Codes
	Decoding LDPC Codes

	Prior Work
	Recent Work in Lossless Image Compression

	Sum-Product Networks
	Tractable Inference
	Architecture
	Comparison with Other Architectures
	SPNs vs. PGMs
	SPNs vs. Arithmetic Circuits
	SPNs vs. Deep Generative Models

	Deep Generalized Convolutional Sum-Product Networks
	Parameter Learning
	Parallel Marginal Computation
	Inference with External Beliefs

	Model-Code Separation Architecture
	PGM-based Model-Code Separation Architecture
	Encoder
	Decoder
	Code Graph
	Source Graph

	Source-Code Belief Propagation
	Dealing with Large Alphabet Sources
	Doping
	Overall Architecture
	Drawbacks of PGM-based Decoder

	SPN-based Model-Code Separation Architecture
	Architecture Details
	SPN Source-Code Belief Propagation
	Benefits of Separation Architecture with SPNs

	Lossless Image Compression
	Belief Propagation Decoding Threshold
	Experimental Setup
	Compressing Binary Sources
	Binary Ising Model
	Experiments
	Results

	Binary MNIST

	Compressing Grayscale Sources
	Grayscale MNIST
	Fashion MNIST
	CIFAR-10

	Summary

	Conclusion
	Review
	Applications and Future Work
	Final Remarks

	Supplementary Images

