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Unified Automatic Control of Vehicular Systems
with Reinforcement Learning

Zhongxia Yan, Member, IEEE, Abdul Rahman Kreidieh, Member, IEEE, Eugene Vinitsky, Member, IEEE,
Alexandre M. Bayen, Senior Member, IEEE, and Cathy Wu, Member, IEEE

Abstract—Emerging vehicular systems with increasing propor-
tions of automated components present opportunities for optimal
control to mitigate congestion and increase efficiency. There has
been a recent interest in applying deep reinforcement learning
(DRL) to these nonlinear dynamical systems for the automatic
design of effective control strategies. Despite conceptual advan-
tages of DRL being model-free, studies typically nonetheless rely
on training setups that are painstakingly specialized to specific
vehicular systems. This is a key challenge to efficient analysis of
diverse vehicular and mobility systems. To this end, this article
contributes a streamlined methodology for vehicular microsim-
ulation and discovers high performance control strategies with
minimal manual design. A variable-agent, multi-task approach
is presented for optimization of vehicular Partially Observed
Markov Decision Processes. The methodology is experimentally
validated on mixed autonomy traffic systems, where fractions of
vehicles are automated; empirical improvement, typically 15-60%
over a human driving baseline, is observed in all configurations
of six diverse open or closed traffic systems. The study reveals
numerous emergent behaviors resembling wave mitigation, traffic
signaling, and ramp metering. Finally, the emergent behaviors are
analyzed to produce interpretable control strategies, which are
validated against the learned control strategies.

Note to Practitioners: Abstract—As vehicular systems such
as real-world traffic systems and robotic warehouses become
increasingly automated, optimizing vehicle movements sees an
increasing potential to reduce congestion and increase efficiency.
For many vehicular systems, simulations of varying fidelity are
commonly used for analysis and optimization without the need
to deploy real vehicles. This article describes a unified and
practical approach for optimal control of vehicles in arbitrary
simulated vehicular systems while permitting partial automation,
where the behavior of fractions of vehicles at given times can be
modelled but not controlled. As illustrated by the diverse traffic
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systems considered in this article, the presented methodology
emphasizes ease of application within any simulated vehicular
system while minimizing manual efforts by the practitioner. The
control inputs consist of local information around each automated
vehicle, while the control outputs are commands for longitudinal
acceleration and lateral lane change. Experimental results are
presented for relatively small simulated traffic systems, though
the methodology can be adapted to larger vehicular systems
with minor modifications. Experimentally optimized behaviors
provide insights to the practitioner which may assist in designing
simplified and interpretable control strategies. Implementation in
real-world systems depends on two requirements: 1) a reliable
fallback mechanism for ensuring safety of vehicles, and 2)
sufficient fidelity of the simulator for simulated behaviors to
transfer. These requirements are under active research for traffic
systems and may be practical in some robotic settings. To
facilitate robust transfer of policies from simulated to real-world
systems, future extensions of this work may inject additional
randomization into simulation while reducing the unmodeled
stochasticity of targeted real-world systems as much as possible.

Primary and Secondary Keywords Index Terms—Primary
Topics: mobile traffic control, automated vehicles, reinforcement
learning Secondary Topic Keywords: mixed autonomy, multi-
agent systems
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I. INTRODUCTION

A developing trend in mobility systems today is the
full or partial adoption of automated control of mobile

vehicles in traditionally human-operated roles [1]. This trend
can be observed in systems ranging from real-world traffic
systems [2] to warehouses employing mobile robots for stor-
age, sorting, or delivery [3]. Increasing autonomy in these
systems increases the potential to algorithmically control and
coordinate automated vehicles (AVs) to increase efficiency,
reduce congestion, or optimize other objectives like fuel usage
throughout the system.

For the near future, while AV adoption remains fractional,
automated control in real-world traffic systems would neces-
sarily interact with human control, creating mixed autonomy
traffic. While any control may be underactuated in the mixed
autonomy setting, such control may still induce desired be-
haviors, as demonstrated by several recent works on reducing
congestion in simulated, mixed autonomy circular [4] or
highway traffic systems [5].

In many cases, mixed or full automation must solve an
underlying mixed discrete and continuous optimization prob-
lem, which may be difficult to even formulate due to complex
and stochastic dynamics, let alone solve practically. For many
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Fig. 1. An exemplary vehicular system with an overview of our methodology. a) At each time t, all vehicles have assigned routes towards assigned
destinations; a fraction of vehicles are automated (red) while the rest are uncontrolled (black). We would like to control the AVs towards maximizing a desired
objective. b) We define the set of neighboring vehicles that each AV may sense. c) Based on each automated vehicle’s observed surrounding, a learned control
policy dictates the action of each AV towards optimization of the objective. Uncontrolled vehicles follow some default policy. d) Position and speeds of all
vehicles are updated, and the process repeats at time t+ 1.

such complex systems, simulation decouples modeling of the
system from further analysis and optimization efforts. For this
reason, researchers and practitioners construct simulations of
varying fidelity for many real-world systems.

In this study, we demonstrate the generality and ease of ap-
plicability of a unified model-free deep reinforcement learning
(DRL)-based methodology for optimizing behaviors in diverse
mixed autonomy traffic systems in simulation. In contrast
to planning and search algorithms, model-free reinforcement
learning is applicable to both continuous and discrete domains
and only requires the ability to simulate forward trajectories
from a set of initial states; moreover, learned DRL policies
may execute more efficiently in real-time and at scale.

We acknowledge that a sizeable gap exists between simu-
lation and reality, especially in real-world traffic systems with
many stochastic actors with human-intent. While preliminary
Sim2Real policy transfer has been done in miniature physical
traffic systems [6], we do not expect Sim2Real policy trans-
fer to be feasible for real-world traffic systems in the near
future [7]. Nevertheless, we attempt to derive insights and
interpretable controllers from the learned policies. Toward this
end, previous works have designed simulated automation and
control strategies for industrial warehouse vehicles [8], metro
train regulation [9], airport surface management [10], container
loading [11], and even pedestrian control [12]. Moreover,
we argue that near-future Sim2Real extensions of our work
are feasible for fully automated robotic systems, which may
require movement and coordination of automated vehicular
robots with assigned routes [3]. These settings are suitable
due to 1) existence of higher fidelity simulators, 2) little or no
need to simulate human intent, and 3) existence of collision
avoidance mechanisms.

This work follows a series of our previous works applying
DRL to mixed autonomy traffic [4], [13]–[17]. While each pre-
vious work often focuses on a single traffic system and applies
significant amounts of system-specific handcrafting (indeed,
DRL-based methods in various applications are known to be
notoriously hard to tune to good performance), this work

presents a simplified and unified DRL methodology for a
superset of open and closed traffic systems, with a focus on
ease of applicability. The code introduced in this work is a
lightweight revision of the Flow Framework [4], completely
rewritten to offer researchers and practitioners more control
in designing the traffic system while minimizing the amount
of DRL design choices and hyperparameters. Additionally, we
interpret the behaviors of DRL-controlled AVs, some of which
resemble those designed by traffic engineering experts, and
design simple controllers inspired by the learned DRL policies.
While our previous works may offer deeper insights into the
performance of DRL in particular traffic systems, this work
emphasizes the ease of applicability of model-free DRL to
general vehicular systems with mixed or full autonomy.

In summary, the contributions of our present work are:
1) We present a unified variable-agent, multi-task DRL

methodology and showcase the generality, effectiveness,
and ease of usage for optimizing mixed autonomy traffic
in simulated vehicular systems.

2) To shed light on the performant behaviors discovered
automatically via DRL, we manually extract and bench-
mark simple controllers inspired by the behaviors.

3) We characterize the robustness of each trained policy
across a range of vehicle densities.

4) We introduce a lightweight codebase with heavy empha-
sis on ease of usage and simplified design choices for
researchers and practitioners.

Code, models, and videos of results are available on Github.
The rest of this article is organized as such: Section II details

related work, Section III introduces relevant DRL concepts,
Section IV defines relevant vehicular systems, Section V de-
tails the DRL methodology, Section VI discusses experimental
setup, and Section VII provides experimental results.

II. RELATED WORK

Traffic control. Due to the ubiquity and costs of congestion
in traffic, much work has been devoted to traffic control for
reducing congestion and increasing efficiency [18]. In urban

https://github.com/mit-wu-lab/automatic_vehicular_control
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traffic networks, composed of many intersections, traffic signal
control strategies have been widely studied and sometimes
deployed for isolated or coordinated intersections, including
fixed-time [19] or adaptive [20]. In freeway traffic networks
[21], ramp metering control methods like ALINEA [22] are
deployed to counter congestion due to reduction in road
capacity, and cooperative adaptive cruise control (CACC)
[23] methods are proposed to mitigate congestion due to
perturbations in traffic flow. While works in CACC and our
study both concern vehicular control of traffic, we aim to
automatically discover optimal traffic behavior rather than
manually prescribing desired speeds for vehicles to follow.

Isolated autonomy. The US DARPA challenges in au-
tonomous driving spurred much research in components nec-
essary for the deployment of automated vehicles in the real-
world [24]. These developments, along with developments
in advanced driver assistance systems (ADAS) like adaptive
cruise control (ACC) [25], focus on the safety, comfort,
“human-ness,” and performance of an individually automated
vehicle rather than the traffic system as a whole [26].

Mixed and full autonomy. Unlike isolated autonomy,
mixed and full autonomy are often studied as traffic control
techniques aimed to optimize local or system-wide objectives.
CACC methods [23] are often studied under mixed and full
autonomy settings with varying penetration rates of CACC ve-
hicles. Mixed and full autonomy control of intersections have
been studied by [27] and [28]–[30], respectively. However,
the former analyzes the performance of a fixed first-come-
first-serve protocol while the latter abstracts away intersection
dynamics into a polling-system of two queues. As discussed in
more detail in [4], two prominent challenges in studying mixed
autonomy in particular are the high uncertainty in system
dynamics, due to modeling human behavior, and the lack of
a known optimal behavior. As we show in this work and our
previous works, DRL may be a suitable methodology which
addresses both challenges. Throughout this work, we assume
that all control decisions are supported by ideal vehicular
communication, and we defer to [31], [32] for a discussions
realistic, non-ideal communication in vehicular systems.

Model-free reinforcement learning. Derived from opti-
mal control and machine learning, model-free reinforcement
learning (RL) is a methodology for optimizing sequential
decision making [33], [34]. Model-free RL decouples optimal
control from system modeling with Markov Decision Process
as the interface. Addressing the challenges of mixed autonomy,
model-free RL does not need to model the dynamics of the un-
derlying system and does not require knowledge of an optimal
behavior. Recently, model-free DRL, combining model-free
RL with deep neural networks, has demonstrated improved
performance for traffic signal control [35], ramp metering
[36], and multi-robot navigation [37]. Other applications of
model-free DRL to automation include optimal parameters
for computer numerical control (CNC) machining [38] and
optimal scheduling in manufacturing [39], [40]. However, as
model-free DRL algorithms are primarily simulation-based,
deployment in real-world settings suffers from several diffi-
culties [7]; in this article, we briefly acknowledge the gap
between simulation and deployment.

Model-free DRL for mixed autonomy traffic. This work
generalizes our previous works on applications of model-free
DRL to mixed autonomy traffic systems based on the Flow
framework [4], [5], [13]–[17], [41]. While each previous work
demonstrates that DRL overcomes long-standing classical con-
trol challenges in traffic control, including complex dynamics
models, long horizons, partial observations, and non-standard
noise, these work often included artificial encouragement and
handcrafting to guide the DRL policy in their specific traffic
system.

For reward shaping, [41] and [4] penalize acceleration and
deceleration to encourage convergence to a constant speed
in ring-like traffic systems while [13]–[15] penalize deviation
from tuned desired speed hyperparameters in figure-eight and
highway ramp traffic systems. On the other hand, [5] and [16]
restricts control over AVs to selected segments of a highway
bottleneck system to encourage ramp metering-like behavior.
In both cases, reward shaping and selective control of vehicles
not only require cumbersome tuning the researcher or practi-
tioner, but are constrained by human intuition which may be
suboptimal in more complex systems. Moreover, [4], [5], [13]–
[16], [41] all use actor-critic algorithms ranging from TRPO
[42] to TD3 [43] which require extensive hyperparameter
tuning for training neural networks for both the policy and
a value function critic; in contrast, this work shows that the
TRPO algorithm with only a policy neural network and with-
out a value function network suffices for all considered traffic
systems, eliminating much of the hyperparameter tuning.

Overall, this work shows that a unified DRL methodol-
ogy achieves similar or better efficiency without resorting
to system-specific hand-designing to ease optimization. We
believe that the ability to easily discover performant behaviors
in any system without hand-holding is key towards broader
applicability of DRL in general vehicular systems.

III. PRELIMINARIES

A. Markov Decision Process (MDP)

Markov Decision Process (MDP) is a framework for mod-
eling sequential decisions. We model each decision process
in this paper as a finite-horizon discounted MDP, defined by
M = (S,A, T, r, ρ0, γ,H) consisting of state space S, action
space A, stochastic transition function T (s, a, s′) = p(s′|s, a)
for s, s′ ∈ S and a ∈ A, reward function r(s, a, s′) ∈ R, initial
state distribution ρ0, discount factor γ ∈ [0, 1], and horizon
H ∈ Z+. Given this MDP definition, reinforcement learning
and optimal control aim towards the following objective

max
a0...aH−1∈A

Es0∼ρ0,st+1∼T (st,at,·)

[
H−1∑
t=0

γtr(st, at, st+1)

]
(1)

which maximizes the expected cumulative reward by selecting
optimal actions a0 . . . aH−1 ∈ A.

While the vehicular control decision processes that we
consider in this paper may instead be considered as infinite-
horizon MDPs, which maximizes the expected cumulative
reward for H → ∞, practical methods often optimize over
a large finite H as a proxy for H →∞.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. , NO. , MONTH 2022 4

B. Policy-based Model-free Deep Reinforcement Learning

Policy-based model-free DRL algorithms define a policy
πθ(a|s) which gives the probability of taking action a ∈ A at
state s ∈ S . The policy is parameterized by θ (e.g. weights
in a linear function or neural network), which is optimized so
that the policy maximizes the expected cumulative reward

max
θ

Es0∼ρ0,at∼πθ(·|st)
st+1∼T (st,at,·)

[
H−1∑
t=0

γtr(st, at, st+1)

]
(2)

The REINFORCE policy gradient algorithm [44] maximizes
the expected cumulative reward of policy πθ in Equation 2 by
sampling trajectory (s0, a0 . . . , sH−1, aH−1, sH) and optimiz-
ing the following objective

argmax
θ

H−1∑
t=0

H−1∑
t′=t

γt
′−tr(st′ , at′ , st′+1) (3)

via gradient descent on θ. At each update step

θ ← θ + α

H−1∑
t=0

∇θ log πθ(·|st)|at
H−1∑
t′=t

γt
′−tr(st′ , at′ , st′+1)

(4)
where α is the learning rate.

Like REINFORCE, the Trust Region Policy Optimization
(TRPO) algorithm [42] also collects a trajectory and optimizes
the objective in Equation 3. However, to encourage training
stability, TRPO constrains the update step of θ so that the
policy does not change too quickly:

θ ← argmax
θ′

H−1∑
t=0

πθ′(at|st)
πθ(at|st)

H−1∑
t′=t

γt
′−tr(st′ , at′ , st′+1)

subject to
1

H

H−1∑
t=0

DKL(πθ(·|s)‖πθ′(·|s)) ≤ δkl

(5)

where δkl is the upper bound of the mean KL divergence
between the updated policy πθ′ and the original policy πθ,
preventing θ′ from deviating too far from θ. In practice, TRPO
eliminates the need to tune the learning rate α, which is a
sensitive hyperparameter while δkl is a standard constant.

We note that unlike our previous works [4], [16], we solely
learn a policy and do not additionally learn a value function.
Many actor-critic and value-based algorithms learn a value
function or Q-value function to fit the cumulative reward at
a given state or a given state-action, respectively. While these
algorithms demonstrate improved performance in certain ap-
plications, properly learning a value function requires selection
of the optimizer (e.g. ADAM [45], RMSprop [46]), tuning of
the learning rate, tuning of the smoothing hyperparameter λ for
generalized advantage estimation [47], tuning of the hyperpa-
rameter for value clipping, and other potentially difficult algo-
rithmic choices. In multi-vehicle domains in particular, fitting
the value function to the system objective likely requires the
value function to operate over the entire state at a given time,
which is difficult and inflexible to encode, while we specify
in Sections V-B and V-C that our policy-based methodology
only requires local observability.

IV. AUTOMATED VEHICULAR SYSTEMS

We describe the general types of simulated vehicular sys-
tems compatible with our methodology for automatic vehicle
control. Overall, we focus on microscopic simulations which
consider the interactions of individual vehicles rather than
aggregate behavior of traffic flow. We require the ability
to repeatedly run simulations for a duration from a set of
initial simulation states. Each simulation evolves the posi-
tions and velocities of the vehicles through time following
defined physical rules. We assume that every vehicle in the
system follows its own route, which is assigned by some
fixed algorithm given the origin and destination; we do not
consider decision-making for route assignment in this work. In
closed systems, vehicles circulate within the system endlessly,
following assigned routes. In open systems, vehicles enter the
systems (inflow) at their origins and exit the systems (outflow)
at their destinations. Within each system, a fraction or all of the
vehicles are automated and can be controlled in some manner,
while the rest of the vehicles follow modeled default behavior;
each system must have one or more automated vehicles. We
assume that a central objective exists and can be quantified for
the system; for example, the objective could be a function of
vehicle speeds, system throughput, fuel consumption, or safety
in the system. Note that even for system objectives purely
based on speeds or throughput, attempting to control each
individual vehicle towards the maximum speed possible could
often be suboptimal due to negative, congestion-inducing
effects on surrounding vehicles.

We briefly describe two such automated vehicular systems:

1) Traffic Systems: Mixed autonomy traffic systems where
fractions of all vehicles are automated are studied in [4], [5],
[13]–[17], [41]. The acceleration and lane change (if applica-
ble) decisions of AVs may be controlled. Uncontrolled vehicles
follow default behavior dictated by well-studied car-following
models, such as the Intelligent Driver Model (IDM) [48].

2) Robotic Warehouse Systems: A warehouse management
system for hundreds of cooperatively controlled mobile robots
with origins and destinations is studied in [3]. In this system,
routing and movement of robots comprise a challenging joint
control task which is often decoupled into dynamic route
assignment followed by movement planning. Dynamic route
assignment is addressed by [8], [49] and other methods, while
our methodology for automated vehicle control applies to
the movement planning problem. Acceleration of the robots
may be controlled. Strategies resembling mixed autonomy
may reduce the computational complexity: control may be
restricted to the set of robots making critical decisions at
a given time while non-critical robots can follow default
behaviors (e.g. move at the maximum speed possible).

Other examples of such systems include metro train regu-
lation [9] and airport surface management [10].

In this article, we validate the methodology on traffic
systems. In practice, each system may support a variety of
vehicle densities. Therefore, we desire policies which gener-
alize across multiple configurations of vehicle density.
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V. DEEP REINFORCEMENT LEARNING METHODOLOGY

We prescribe a unified DRL methodology for automatic
control of vehicular systems. An important contribution of this
work is to minimize the DRL-related design choices that a
researcher or practitioner has to make. Here we describe the
common components of the DRL methodology necessary for
all vehicular systems.

A. MDP Definition

We naturally model a vehicular system in microscopic
simulation as a MDP. At each time step t, the state st is
composed of the positions, velocities, and other metadata of
all vehicles in the road network. The action at is the tuple
of per-AV actions of all AVs in the road network at step t.
The reward function r(st, at, st+1) is specified so that the
cumulative reward is the objective. A key distinction from
our previous works is that the reward function does not need
to be manually shaped by the researcher or practitioner to
encourage behaviors attaining higher objective values. The
stochastic transition function T is not explicitly defined, but
st+1 ∼ T (st, at, ·) can be sampled from the microscopic
simulator, which applies the actions for all vehicles over a
simulation step duration δ. In simulations which do not protect
against vehicle collisions, we introduce a collision penalty
−λcollisionncollision to the reward function r(st, at, st+1) where
ncollision is the number of collided vehicles in st+1 and λcollision
is large enough to discourage the AVs from collision-inducing
behaviors.

B. Partial Observability

In practice, as the state s could be large or difficult to
reason about, DRL methods often approximate the policy with
πθ(·|s) ≈ πθ(·|o) [42], where the observation o = z(s) ∈ O
possesses only a subset of the information of the state s, z
is the observation function, and O is the observation space.
Together, (M,O, z) actually defines a partially observable
MDP (POMDP) [50]. Partial observability is natural in real-
world decision processes since obtaining a local observation
may be more feasible than the full state. For example, an
AV may more easily observe nearby vehicles than faraway
vehicles, and information regarding faraway vehicles may not
help the decision algorithm much anyways. Guided by these
principles, we design the observation function for systems with
a single AV to include only the entities most relevant to the
AV’s decision; systems with multiple AVs will be considered
next. The observation function is one of the few design choices
made by the researcher or practitioner for the methodology
presented within this work.

C. Multi-agent Policy Decomposition

In vehicular systems with multiple AVs, we apply multi-
agent policy decomposition with each AV as an agent. A
MDP with multiple action dimensions could naturally be
formulated as a decentralized partially observable MDP (Dec-
POMDP) [51]. In this case, we refer to the action space of the
original MDP as the joint action space, which factorizes into

the product of M agent action spaces in the Dec-POMDP
framework. The policy πθ(a|s) decomposes into per-agent
policies πθ(ai|oi) such that πθ(a|s) =

∏M
i=1 πθ(a

i|oi), where
ai ∈ Ai, the action space of agent i ∈ {1, · · · ,M}, and
oi = z(s, i) ∈ Oi, the observation space for agent i. We
have o1 ∪ · · · ∪ oM ⊆ s and A1 × · · · × AM = A. z is a
defined observation function which maps state s to observation
oi for agent i. Without multi-agent policy decomposition, the
combinatorial nature of A poses an intractable problem to
learning algorithms. Like in single-AV systems, z must be
designed by the researcher or practitioner.

D. Per-AV Action Space

The longitudinal per-AV action space can often be naturally
formulated as a continuous acceleration space Ailongitudinal =
[−cdecel, caccel] for each AV i. However, in systems where
multiple AVs interact, we prescribe a discrete bang-off-bang
acceleration space Ailongitudinal = {−cdecel, 0, caccel}, which we
find to empirically improve coordination between multiple
AVs despite forgoing fine-grained control. For systems which
require AVs to make lateral (lane change) decisions, the lateral
action space is the set of lane indices Ailateral = {1, . . . , L}
to travel in, where L is the number of lanes. Therefore
Ai = Ailongitudinal × Ailateral for systems permitting AV lane
change and Ai = Ailongitudinal otherwise.

E. Per-AV Policy Architecture

We define the per-AV policy πθ(ai|oi) as a neural network
with three fully-connected layers with a hidden size of 64. If
there are multiple AVs, we share the policy parameter θ across
all vehicles in the traffic network to share experiences between
AVs [52]. For systems requiring joint action for each AV (i.e.
Ai = Ailongitudinal×Ailateral), the policy is a neural network with
multiple heads, one for each factor of the joint action.

F. Reward Centering and Normalization

To reduce variance of policy gradients [53], we apply reward
centering and normalization to the original reward before
calculating the objective for policy gradient

rnorm(st, at, st+1) =
r(st, at, st+1)− µ̂r

σ̂R
(6)

where µ̂r is the running mean of r and σ̂R̂ is the running
standard deviation of the running cumulative reward, which is
updated according to R̂← γR̂+ r(st, at, st+1).

G. Multi-task Learning over Configurations

As we consider multiple configurations with varying vehi-
cle densities for each vehicular system, training a separate
policy for each configuration would be cumbersome and
inefficient. Thus, we discretize the density configuration space
into equally-spaced density configurations and learn a single
multi-task policy over this configuration set. During training,
we initialize separate environments for each configuration
in the configuration set. At each training step, our policy
gradient algorithm receives trajectories from all environments
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and batches the gradient update due to these trajectories.
Multi-task learning allows a single trained policy to generalize
across a range of configurations, avoiding the costs of training
a separate policy for each configuration.

H. Derived Policies

We extract the behaviors discovered by DRL policies by
hand-designing simple rule-based policies with one or two
optimized parameters. We denote these policies as the Derived
policies because they are grounded in the DRL policies’
behaviors. The purpose of constructing Derived policies is
two-fold: 1) the Derived policies offers a comparison between
the DRL policy and a gold-standard policy which shares the
similar behavior 2) the Derived policies are easily interpretable
and may be analyzed further for practical deployment. The
steps we take to construct a Derived policy are as follows:

1) Given a traffic system, train a performant DRL policy
over a desired range of density configurations.

2) For each density configuration, examine the behavior of
the DRL policy through videos and time-space diagrams,
noting common behaviors shared across multiple density
configurations.

3) Formulate these behaviors into an interpretable rule-
based parameterized policy across density configura-
tions.

4) For each density configuration independently, obtain the
optimal parameters of derived policy with exhaustive
grid search, which is feasible and straightforward for
low-dimensional parameter spaces.

To ease the hand-design process, we permit Derived policies
to use information from any part of the state, contrasting
with DRL policies which must arrive at decisions based on
observed information only and must generalize well across
all density configurations. When possible, we identify optimal
parameter values that may be shared across ranges of densities
configurations.

I. Complexity Analysis

We analyze the computational complexity of our method-
ology for vehicular systems with M AVs. Our methodology
decomposes the action space A into the product of agent
action spaces Ai and restrict state space S into corresponding
agent observation spaces Oi. For our analysis, we make
the assumption that the design of observation function z
preserves sufficient observability for decision making and that
the decisions of other AVs do not induce non-stationarity. The
former assumption may be realistic if observation functions
are designed to exclude distant and non-causal facets of the
state which may have little impact on the current decision.
The latter assumption may be realistic if the policy changes
slowly across updates, if individual acceleration actions have
small effects on the state, and if the AV penetration rate is
low. These assumptions factors the joint control problem to
M independent control problems, each with state space Oi
and action space Ai.

The TRPO algorithm leveraged by our methodology is a
variation of the Natural Policy Gradient (NPG) algorithm [54],

[55], so we proceed to invoke the computational complexity
of NPG at training time. As proved by [55], NPG obtains
an ε-optimal policy in tabular RL settings with no more
than 2

(1−γ)2ε gradient update steps, and each update step
in the tabular case takes O(|Oi||Ai|) time. In our work,
we leverage functional approximation with a neural network,
enabling tractable parameter updates though losing optimality
guarantees of the tabular case. Updating the parameters of the
neural network with a forward and backward pass of the neural
network takes f(|o|, |a|) time in general, where o ∈ Oi and
a ∈ Ai are individual observation and action vectors, respec-
tively. In practice, rather than defining an ε and taking 2

(1−γ)2ε
gradient update steps, we take a total of G gradient update
steps sufficient for the training performance to converge while
batching over B sampled trajectories for each gradient update,
horizon H simulation steps per trajectory, and M agents at
every simulation step, for a total training time complexity
of O(GBHMf(|o|, |a|)). When executing an already trained
model to generate a trajectories for H simulation steps, the
execution time complexity is O(HMf(|o|, |a|)).

The f(|o|, |a|) = O(|o| + |a|) computations introduced
by small fully-connected networks such as ours may be
small in practice compared to other factors such as inter-
process communication overheads and the simulation time of
the system itself, which is O(GBHN) at training time and
O(HN) at execution time, where N ≥M is the total number
of vehicles in the system. However, if more computationally
intensive convolutional, recurrent, or attention-based neural
networks are necessary, the neural network computation time
may increase significantly, requiring either more parallelism
in the forms of GPUs or more efficient feature engineering
and architecture design to reduce computational cost.

Mixed autonomy (M < N ) directly reduces computational
complexity compared to full autonomy (M = N ) by reducing
M , while also indirectly reducing the complexity by lowering
non-stationarity present in the system, permitting the usage of
smaller G, B, and H factors; in other words, in full autonomy
systems the outcome of an AV’s decision is more likely to be
affected by decisions made by other AVs, where all nearby
vehicles are AVs. Nevertheless, mixed autonomy control may
sacrifice some degree of optimality compared to full autonomy,
due to underactuation.

VI. EXPERIMENTAL SETUP

We describe the general simulation, training, and evaluation
setups of our experiments. We provide reference ranges here
and reserve full details for the code.

A. Vehicular Systems

We construct six diverse mixed autonomy traffic systems
in the SUMO microscopic simulator [56] to demonstrate the
generality of our unified methodology. Three systems are open
and three systems are closed. While we do not incorporate
any traffic control element, such as traffic light or ramp
meter, future work may easily incorporate these traffic control
elements as needed in conjunction with mixed autonomy
control.
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Fig. 2. Experimental Traffic Systems. In clockwise order from the top left: Single Ring, Double Ring, Figure Eight, Intersection, Highway Ramp, and
Highway Bottleneck. Each traffic system is independently drawn to scale. Single Ring, Double Ring, and Figure Eight are closed systems with 22, 44, and
14 vehicles respectively. Intersection, Highway Ramp, and Highway Bottleneck are open systems with variable numbers of vehicles. Within each system, we
designate one AV as the ego AV (red) without loss of generality and color other vehicles according to their type and whether they are observed by the ego
AV. Each AV typically observes the speed, relative position, and type (AV or uncontrolled) of itself and its observed vehicles.

Common to all systems, all vehicles are 5m in length and
uncontrolled vehicles follow the IDM with a Gaussian acceler-
ation noise of 0.2m/s2. A randomized initialization is obtained
by simulating H0 warmup steps starting from an arbitrary
set of vehicle positions; the next H steps are measured for
performance. We use full SUMO safety checks, which prevent
vehicles from entering most collisions situations. For each
system, we consider multiple configurations of traffic densities.

In closed systems, we define the objective to be the to-
tal cumulative distance traveled by all vehicles, which is
proportional to the average speed over all vehicles over all
timesteps. We use a simulation step size of δ = 0.1s for all
closed systems and terminate the simulation immediately if
an occasional collision occurs despite the safety check. The
density configuration is varied by scaling the traffic network
geometries while holding the number of vehicles constant.

In open systems, we designate the objective to be the
throughput (outflow per hour) of the system. We use a simula-
tion step size of δ = 0.5s and do not terminate the simulation
if two vehicles collide: only the collided vehicles are removed
from the simulation and do not count towards the outflow.
Each density configuration corresponds to a target inflow rate
(vehicles per hour), which controls the number of vehicles in
the system. If a vehicle is not able to inflow due to congestion
in an inflow lane, the vehicle is dropped from simulation.
Unlike in closed systems, the number of vehicles in open
systems is not constant and depends on the inflow rate.

As we already examine each traffic system under multiple
traffic density configurations, we do not perform additional
ablation on the effect of the AV penetration rate and instead
choose to fix a penetration rate for each system. We refer
readers to several previous works for ablations on the effect
of penetration rate [14], [16]. While all of our systems
contain under 50 vehicles at any given time, our methodology

naturally extends to much larger systems if two conditions
hold: 1) the objective (e.g. throughput) can be decomposed
into local objectives (e.g. local throughput), and 2) the total
number of decisions, which can be reduced via pruning, is not
exorbitantly high.

We name and describe each traffic system, along with
our constructed observation function. To encourage AVs to
develop generalizable behaviors based on local information,
we do not allow AVs to observe the underlying traffic density
configuration parameter. All traffic systems and corresponding
observation spaces are visualized in Figure 2.

1) Single Ring (Closed): The Single Ring system consists
of 22 vehicles in a single-lane ring network with circumference
C ∈ [230, 270] m; each C corresponds to a density configu-
ration. We designate one vehicle as AV while leaving the 21
other vehicles uncontrolled. The AV’s observation function z
consists of the AV’s speed and the offset and speed of the
leading vehicle. We consider two differing objectives:

a) Global: The objective is the cumulative distance
traveled by all vehicles in the simulation. The reward function
r(s, a, s′) is therefore the average speed of all vehicles in s′.

b) Greedy: The objective is the cumulative distance
traveled by the AV. The reward function r(s, a, s′) is therefore
the AV’s speed in s′.

2) Double Ring (Closed): The Double Ring system consists
of 44 vehicles in a two-lanes ring network with circumference
C ∈ [240, 260] m. The SUMO simulator does not account
for the exact geometry of the road and instead simulates
the inner lane and outer lane to be the same length. We
designate one vehicle in the outer lane as the AV, leaving the
43 other vehicles uncontrolled. In addition to controlling its
own acceleration, the AV is allowed to change lane; no other
vehicle is allowed to change lane. The observation function z
includes the speed and lane index of the AV and the speeds
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and offsets of the leading and following vehicles in both lanes.
Like the Single Ring, we consider two cases corresponding to
the {Global,Greedy} reward functions.

3) Figure Eight (Closed): The Figure Eight system consists
of 14 vehicles in a closed single-lane two-way intersection
network. Each direction (westbound or northbound) of the
two-way intersection consists of length R ∈ [25, 35] m
straightaways before and after the intersection; each R cor-
responds to a density configuration. The two directions are
connected by 270◦ circular arcs. We designate one vehicle
as AV, leaving others uncontrolled. The AV’s observation
function z consists of the distance from the intersection and
speed for every vehicle, reflecting the symmetry of the two
loops. The reward function r(s, a, s′) is the average speed of
all vehicles in s′.

4) Highway Bottleneck (Open): The Highway Bottleneck
system simulates a straight highway with four 100m-long in-
flow lanes which merge into two 100m-long lanes then merge
into a single 50m-long lane, from which vehicles outflow. All
four inflow lanes share a per-lane target inflow rate of F ; so
the total target inflow rate is 4F ∈ [1700, 2600] vehs/hr. At the
first merge (four lanes to two lanes), the top two lanes merge
together and the bottom two lanes merge together. No vehicle
may change lane. We designate 20% of the vehicles as AVs.
Let the merge lane be the lane which merges with the AV’s
lane. The observation function for each AV is the speed and
the distance to the next merge of the AV, the offset and speed
of closest following AV on the merge lane, and the offset and
speed of closest following uncontrolled vehicle on the merge
lane.

5) Highway Ramp (Open): The Highway Ramp system
simulates a straight single-lane highway with an on-ramp. The
single-lane highway proceeds for 400m when it meets a 100m
on-ramp to form 100m of a two-lane merging region. The two-
lanes merge into a single lane at the end of the 100m merging
region, and the single-lane highway continues for another 30m.
The highway sees a target inflow rate F ∈ [1500, 2500] vehs/hr
while the ramp sees a target inflow rate of 300 vehs/hr. No
vehicle may change lane. We designate 10% of the highway
vehicles as AVs, leaving the rest uncontrolled, including all
ramp vehicles. The observation function for each AV is the
speed of the AV, the offsets and speeds of the leading and
following vehicles on the highway, and the offset and speed
of the following vehicle on the ramp.

6) Intersection (Open): The Intersection system simulates
a single-lane intersection with inflows and outflows in each
cardinal direction. The intersection only permits straight traffic
and does not permit turns. Along each direction, the inter-
section is situated between two 100m long road segments.
We consider configurations of pairs of horizontal and vertical
target inflow rates FH , FV ∈ [400, 1000] vehs/hr; configura-
tions with FH + FV < 1400 vehs/hr are excluded due to
trivially low inflow. We designate 33% of the vehicles as AV.
The observation function for each AV includes the position
and speed of the heads and tails of the closest chains to the
intersection, where we define each chain to be an AV and any
uncontrolled vehicles that it immediately leads. The rationale
behind this design is that each AV may provide control to all

tailing uncontrolled vehicles.

B. Baseline Policies
For each system, we define the Baseline policy to follow

the SUMO IDM behavior for all AVs. As collisions may
frequent occur in the Figure Eight and Intersection systems
under the Baseline policy, the vertical directions are given
priority over the horizontal directions, which must slow to
a near-stop before proceeding.

For the Single Ring, Highway Bottleneck, and Intersection
systems, we adjust DRL algorithms from prior works [4], [5],
[17] to train policies within our respective traffic systems,
which are similar but may differ somewhat in construction
from the those from the prior works. For these algorithms, we
use the exact same training and evaluation setup as described
below for our own methodology when applicable to ensure
fairness of comparison.

C. Training
For each system, we train a policy for up to G = 200

gradient update steps with the TRPO algorithm. We perform
each gradient step with the batched data from 40 ≤ B ≤ 45
collected trajectories, divided among equally-spaced configu-
rations. For each trajectory, we use H0 ≤ 100

δ warmup steps
and horizon H = 1000

δ ; warmup steps provide randomness
in the MDP initialization. Unlike typical model-free DRL
setups which may sweep over many DRL algorithms each
with many hyperparameters involved in training the policy or
value function, the only tuned hyperparameter in this article is
the discount factor γ ∈ [0.9, 0.9999], where 1− γ is searched
in log-space. Training each policy takes less than 3 hours on
an Intel Xeon Platinum CPU machine with 48 cores. Though
training is stochastic, we do not observe significant variations
in learned behavior and performance between runs. For sys-
tems much larger than ones considered in this work, TRPO
may result in slow training and high memory consumption and
may be replaced with REINFORCE.

D. Evaluation
For each system, we select the checkpoint with the best

average objective value on the batched training trajectories to
evaluate. To evaluate the checkpoint on each configuration of
each system, we sample 10 trajectories with different initial
seeds. To allow traffic dynamics to achieve steady state, we use
longer H0 ≤ 500

δ warmup steps, sufficient to allow congestion
to fully build up under the Baseline policy. We then run the
policy for H1 ≤ 1500

δ steps to allow traffic dynamics to achieve
steady state under the evaluated policy, before measuring the
objective value (speed or outflow) on a last H ≤ 1000

δ steps.
The choice of H0, H1, and H are not significant as long as H0

and H1 are each long enough for traffic dynamics to achieve
steady state.

VII. EXPERIMENTAL RESULTS

We present both numerical performance comparisons with
the Baseline policy as well as a behavioral dissection, visu-
alized via time-space diagrams, for representative configura-
tions of each traffic system studied. We measure numerical
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Fig. 3. Single Ring C = 250 m Time-space Diagram. We plot the
trajectories of vehicles under the Baseline policy (before time 0s) and the
learned Global policy (on and after time 0s). Bold indicates the AV controlled
by the DRL policy. Arrows indicate progression of vehicles. The DRL policy
controls the AV to eliminate the backward propagating waves formed under
the Baseline policy.

performances after sufficient duration has passed for vehicle
dynamics to achieve steady state. In all systems, we demon-
strate that DRL discovers interesting and sometimes surprising
behaviors which significantly outperform the Baseline. To shed
light on the performant behaviors discovered automatically
via DRL, we extract DRL behavior into rule-based Derived
policies and offer numerical performance comparisons. For all
speed and outflow results, we compute the means and standard
deviations across 10 trajectories with different seeds; the
standard deviation may sometimes be small for the Baseline
and Derived policies. We reserve experiments demonstrating
robustness of Derived policies to different car following model
parameters for Appendix A.

A. Single Ring

Due to the linear string instability of IDM [57], the Baseline
policy quickly results in a stop-and-go waves which propagate
in the opposite direction of traffic [58] under all density
configurations. Under both the Greedy and Global policies, the
AV learns to mitigate stop-and-go waves in every configuration
by converging to a constant speed. We illustrate the Baseline
and Global behaviors in Figure 3.

Mimicking this behavior, we design a Derived policy with
a single, optimized target speed vtarget per circumference con-
figuration. Figure 4 compares the average speeds among the
DRL, Derived, and Baseline policies. The DRL policies nearly
matches the Derived policies despite seeing local observations
only, without knowledge of the true circumference configura-
tion. Our results here are similar to Wu 2021 [4] (Figure 4)
with one important difference: the prior work utilizes an addi-
tional acceleration penalty to encourage convergent behavior
in speed while we show that a simple speed-based objective
alone is sufficient for DRL to discover convergent behavior.
In addition, [4] only considers a global objective, while we
consider both global and greedy objectives.
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Fig. 4. Single Ring Average Speed. We compare the average speed over all
22 vehicles over horizon H under the Baseline, DRL, and Derived policies,
with the shaped deep reinforcement learning policy Wu 2021 [4] as additional
comparison. Our DRL and Derived policies see significantly better average
speeds than those of the Baseline policy. We display the Derived performance
as points instead of a single line because the optimal speed parameter vtarget
are not shared for any of the density configurations. We show that our
unified methodology produces similar performances to Wu 2021 without hand-
designed acceleration penalties which encourage convergence to a constant
speed.

Algorithm 1 Single Ring Derived Policy
procedure DERIVED(s) . State s

C ← get circumference from s
vtarget ← tuned target speed parameter for C
v ← get speed of the AV from s
return Equalize(vtarget, v)

procedure EQUALIZE(vtarget, vcurrent)
if vcurrent < vtarget then return 0.75caccel
else if vcurrent > vtarget then return −0.75cdecel
else return 0

B. Double Ring

Under the Baseline policy, each lane in the Double Ring
exhibits identical behavior to the Single Ring. However, equip-
ping the AV with the ability to change lane results in differing
behaviors when maximizing the Greedy or Global objective
with DRL. The Greedy policy learns to stay and converge to a
constant speed within its own (outer) lane while disregarding
the vehicle movement in the inner lane completely. On the
other hand, the Global policy learns to mitigate the stop-
and-go waves within both lanes simultaneously by converging
to a constant speed within its own lane while flashing the
turn signal to regulate the speed of the inner lane without
physically changing lane. The behaviors are shown in Figure 5
and compared numerically in Figure 6. We note that the
AV under the Greedy policy also frequently flickers its turn
signal, as seen in Figure 5; further investigation is required to
differentiate the signal patterns of the two policies, which leads
to significant differences in performance outcomes. Though
this particular Global behavior exploits a flaw in the SUMO
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(a) Global Policy

(b) Greedy Policy

Fig. 5. Double Ring C = 250 m Time-space Diagrams. We plot the
trajectories of vehicles under the Baseline policy (before time 0s) and the
learned Global or Greedy policies (on and after time 0s). Bold indicates the
AV controlled by the DRL policy. Arrows indicate progressions of vehicles
in the outer and inner lanes. In both Global and Greedy, the DRL-controlled
AV eliminates the backward propagating waves that form under the Baseline
policy within its own lane. Turn signal flickering (blue vertical strips) by the
Global policy strategically mitigates the waves that form in the other lane,
while that of the Greedy policy does not.

simulation, we note that a naturalistic human driver may also
slow down if a leading vehicle in another lane attempts to
change lane into the space ahead. We construct the Derived
policy in an identical manner to the Single Ring, without lane
change. However, our Derived policy lacks the strategic turn
signal behavior of Global.

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

Al
l V

eh
icl

e 
Sp

ee
d 

(m
/s

)

Baseline
Ours (DRL, Global)
Ours (DRL, Greedy)
Ours (Derived)

85 86 87 88 89 90 91 92
Density (veh/km)

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

AV
 S

pe
ed

 (m
/s

)

Fig. 6. Double Ring Average and AV Speed. Over horizon H , we compare
the average speed over all 44 vehicles (top) and AV speed (bottom) under the
Baseline, DRL, and Derived policies. The Global policy sees the best average
speed in almost all cases, due to mitigation of stop-and-go waves in both
lanes. The Derived and Greedy policies may see better AV speed than Global
due to better mitigation of waves within the AV’s own lane.

C. Figure Eight

Fig. 7. Figure Eight R = 30 m Time-space Diagram. We plot the
trajectories of vehicles under the Baseline policy (before time 0s) and the
learned DRL policy (on and after time 0s). Bold indicates the AV controlled
by the DRL policy. Arrows indicate progressions of vehicles approaching the
intersection from the upper and lower loop. The AV guides a snaking behavior
that eliminates alternation of single vehicles at the intersection.

As the intersection is unsignalized, the Figure Eight system
under the Baseline policy sees vehicles alternating to pass the
intersection one by one, similar to the behavior at a stop-
sign. As shown in Figure 7, the DRL policy instead learns to
slow down to gather the rest of the vehicles as followers, then
increases the speed while the other vehicles follow to “snake”
around the Figure Eight. This behavior allows the speed of all
vehicles to be faster than the average Baseline speed, as shown
in Figure 8. Using the same approach as the Single Ring, we
design the Derived policy by applying exhaustive search to
find an optimal target speed vtarget. We find that DRL achieves
close to the tuned target speed for all configurations.
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Fig. 8. Figure Eight Average Speed. We compare the average speed over all
14 vehicles over horizon H under the Baseline, DRL, and Derived policies.
The DRL policy nearly matches the Derived policy, despite needing to infer
the target speed from solely the observations.

Algorithm 2 Figure Eight Derived Policy
procedure DERIVED(s) . State s

R← get radius from s
x← total distance of the figure eight
xlast ← distance from the last follower to the AV
if xlast <

x
2 then

vtarget ← tuned target speed for R
else . Slow initial speed to gather followers

vtarget ← 0.5m/s
v ← get speed of the AV from s
return Equalize(vtarget, v)

While [15] reports similar DRL behavior in the Figure Eight
systems, it shapes the reward function to explicitly encourages
convergence towards a handpicked target speed. On the other
hand, our present work demonstrates that simply optimizing
for the end objective suffices without any handcrafting by the
researcher or practitioner.

D. Highway Bottleneck

The Highway Bottleneck under the Baseline policy sees two
distinct behaviors: at low target inflow rates F < 2200 vehs/hr,
vehicles from the two merging lanes may weave together
without slowing down; at high target inflow rates F ≥
2200 vehs/hr, a capacity drop phenomenon [59] occurs, and
vehicles from the two merging lanes slow down to a near stop
before the merge, taking turns to continue onto the merged
lane. We observe that the behavior (Figure 9) of the trained
DRL policy is similar to Baseline for F < 2200 vehs/hr;
however, AVs learn to reduce alternation at merge points for
F ≥ 2200 vehs/hr, achieving higher throughput by letting a
group of vehicles pass at once (Figure 10).

We consider the DRL method introduced by Vinitsky
2018 [5] as an additional baseline in Figure 10. While this
prior work reduces the control space of the policy to up-
stream segments of the highway bottlenecks to encourage

(a) F = 2000 vehs/hr

(b) F = 2400 vehs/hr

Fig. 9. Highway Bottleneck Time-space Diagrams. We plot the trajectories
of vehicles under the Baseline policy (before time 0s) and the learned DRL
policy (on and after time 0s). Blue, orange, green, and red lines indicate
vehicles originating on lanes 1, 2, 3, and 4, respectively, and correspond to
colored arrows indicating progressions of vehicles. Bold indicates the AVs
controlled by the DRL policy. For F < 2200 vehs/hr, DRL sees the same
efficient behavior as the Baseline. For F ≥ 2200 vehs/hr, Baseline degrades
significantly into an inefficient alternation, DRL reduces alternation by letting
groups of vehicles pass the downstream bottleneck at once.

ramp metering behaviors, our methodology does not impose
artificial restrictions to guide the policy. To train Vinitsky
2018, we augment the original method described by [5]
with the RMSprop optimizer [46], which we find to improve
performance over the ADAM optimizer [45] used by [5]. Our
DRL policy performs similarly on average to Vinitsky 2018,
with better performance for lower F and worse performance
for higher F . These trade-offs in performance suggests that an
interesting topic of future research may study the advantages
and limitations of an unified methodology for segment-based
control of mixed autonomy traffic.

For additional comparison, we design a Derived policy with
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Fig. 10. Highway Bottleneck Outflow. We compare the outflow over horizon
H under the Baseline, DRL, and Derived policies, with the shaped deep
reinforcement learning method Vinitsky 2018 [5] as additional comparison.
Our DRL policy sees similar performance to Derived under most target
inflow rates, though the former learns to mitigate the transition region
(F = 2200 vehs/hr) better than the latter. Both policies are significantly better
than Baseline at high target inflow rates. We visualize Derived as a piecewise
function because Derived reverts to Baseline for F ≤ 2100 vehs/hr and the
optimal threshold parameters x1, x2 are shared for all F ≥ 2200 vehs/hr.
With better performance for F ≤ 2200 and worse performance for F ≥
2300, our DRL policy performs similarly on average to Vinitsky 2018,
which artificially restricts control of AVs to segments of the traffic system
to encourage ramp metering-like behavior.

tuned threshold parameters x1 and x2 which attempts to reduce
alternation in a similar way to our policy if F > 2200 vehs/hr,
otherwise mimicking Baseline behavior. Essentially, AV i
stops near the merge point if the following vehicle on the
adjacent lane is uncontrolled and also near the merge point.
This encourages AV i to wait until the vehicle on the adjacent
lane is an AV before continuing. The Derived policy suffers
more at F = 2200 vehs/hr from the capacity drop but
otherwise performs similarly to the DRL policy.

Algorithm 3 Highway Bottleneck Derived Policy
procedure DERIVED(s, i) . State s, AV index i

F ← get target inflow rate from s
if F ≤ 2200 then

return Uncontrolled(s, i)
Let j be the vehicle following i in the adjacent lane
x1, x2 ← tuned thresholds parameters
di, dj ← distances to the merge point for i, j
stop ← j is uncontrolled and di < x1 and dj < x2
return −cdecel if stop else caccel

procedure UNCONTROLLED(s, i)
return IDM acceleration for vehicle i based on s

E. Highway Ramp

In the Highway Ramp system under the Baseline policy,
the ramp vehicles merging onto the highway force the highway
vehicles to slow down, causing stop-and-go waves to propagate
backward along the highway. The DRL policy learns to control

Fig. 11. Highway Ramp Time-space Diagrams. We plot the trajectories
of vehicles under the Baseline policy (before time 0s) and the learned DRL
policy (on and after time 0s). Bold indicates the AVs controlled by the DRL
policy. Colored arrows indicate progressions of highway and ramp vehicles
approaching the merge. While vehicles slow down at the merge point in
Baseline, DRL learns to regulate the upstream speed of the highway vehicles
so that vehicles at the merge point do not slow down.

1800 1850 1900 1950 2000 2050 2100 2150 2200
Highway Target Inflow (veh/hr)

1450

1500

1550

1600

1650

1700

1750

Ou
tfl

ow
 (v

eh
/h

r)

Baseline
Ours (DRL)
Ours (Derived)

Fig. 12. Highway Ramp Outflow. We compare the outflow over horizon H
under the Baseline, DRL, and Derived policies. Derived and DRL perform
similarly for all target inflow rates; unlike the Derived policy, the DRL policy
is not informed of the congestion ahead of each AV and faces a more difficult
task. We display Derived as a single curve because the same target speed
parameter vtarget is optimal for all F considered.

AVs to hold highway vehicles back (Figure 11) to allow
merging at a higher speed (Figure 12). The traffic system is
similar to the one studied in [14], though we directly use the
outflow as the objective while the prior work designs a reward
function to encourage the speed of highway vehicle towards a
manually specified vdes.

Observing the AV behavior under the DRL policy, we
construct the Derived policy to similarly hold back highway
vehicles distant from the merge point towards a tuned speed
parameter vtarget to allow for higher speed at the merge point.
If the highway ahead is congested, vtarget is temporarily set to
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0 to allow congestion to ease. The Derived policy performs
similarly to the DRL policy but requires more information on
the congestion in front of the AV, which is provided as nleaders.

Algorithm 4 Highway Ramp Derived Policy
procedure DERIVED(s, i) . State s, AV index i

di ← distance to the merge point for AV i
if di ≤ 400 then

return Uncontrolled(s, i)
vtarget ← tuned speed parameter
vi ← speed of AV i
nleaders ← number of vehicles in front of i
if nleaders > 20 then . Congested ahead

vtarget ← 0 . Wait for congestion to clear
return Equalize(vtarget, vi)

F. Intersection

The Baseline Intersection system suffers severely from
vehicles alternating to pass the intersection. DRL-controlled
AVs not only learn to alternate less frequently, but they also
learn to synchronize with AVs on opposite lanes (Figure 13).
These learned behaviors resemble those of an adaptive traffic
signal, greatly improving intersection throughput over the
Baseline policy (Figure 14). Therefore, we design the Derived
policy to follow a traffic signal-like behavior parameterized by
horizontal and vertical phase tH and tV , which are tuned for
each density configuration, with no yellow time. The AV addi-
tionally yields to any uncontrolled vehicles currently crossing
the intersection. Though tH and tV are tuned independently
for each configuration, we find that the Derived policy suf-
fers from occasional lapses into alternation. In an additional
comparison to Yan 2021 [17], we demonstrate that our present
learning rate-free TRPO-based methodology offers significant
advantages over a REINFORCE-based methodology, which
obtains worse performance even with careful tuning of the
learning rate.

Algorithm 5 Intersection Derived Policy
procedure DERIVED(s, i) . State s, AV index i

`i, di ← lane, distance to intersection of AV i
if di ≥ 15 then

return Uncontrolled(s, i)
tH , tV ← tuned phase parameters
t← current simulation step mod (tH + tV )
phase ← horizontal if t < tH else vertical
if `i does not match phase then

return −cdecel
else if uncontrolled vehicles are crossing then

return −cdecel
else return caccel

VIII. CONCLUSION

This article introduces a unified and straightforward
methodology for optimizing vehicular systems with mixed

Fig. 13. Intersection Time-space Diagrams. We plot the trajectories of
vehicles under the Baseline policy (before time 0s) and the learned DRL policy
(on and after time 0s). Bold indicates the AVs controlled by the DRL policy.
Colored arrows indicate progressions of vehicles on all lanes approaching the
intersection. We see that the DRL policy develops an efficient traffic-signal-
like behavior for grouping multiple vehicles and synchronizing the opposite
lanes, whereas vehicles sees a stop-sign-like behavior under the Baseline
policy.
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Fig. 14. Intersection Outflow. We compare the outflow over horizon
H under the Baseline, DRL, and Derived policies, with the deep re-
inforcement learning method Yan 2021 [17] as additional comparison.
Note that performance is measured on all combinations of (FH , FV ) ∈
{400, 550, 700, 850, 1000} vehs/hr such that the total target inflow rate
F = 2(FH + FV ) satisfies 2800 vehs/hr ≤ F ≤ 4000 vehs/hr. Though
Derived attempts to mimic the traffic signal behavior of our DRL policy with
tuned horizontal and vertical phases, we find it difficult to achieve DRL-level
performance with handcrafting. This suggests that the DRL controller is both
performant and robust across configurations of FH and FV . Our DRL policy
significantly outperforms Yan 2021 for all densities of traffic.

or full autonomy. While we demonstrate the generality and
effectiveness of our methodology on several mixed autonomy
traffic systems, the same methodology could be adapted to
other vehicular robotic systems [3]. While our previous works
applying DRL to mixed autonomy traffic often require ex-
tensive hyperparameter tuning and reward shaping, we show
that the methodology presented in this work requires minimal
hand-design and hyperparameter tuning. The performance and
robustness of trained policies are characterized by comparisons
with tuned rule-based policies. Finally, we provide future
researchers and practitioners a lightweight framework which
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may be easily adapted to other systems and domains. While
our earlier works based on the Flow framework [4], [13]–[16]
were restricted by reliance on the general-use and heavyweight
RLLib library [60], the unified methodology presented in this
work is the result of our new lightweight framework which
allowed more flexible research into the efficacy of various
methodological components.

Further Sim2Real research and engineering are likely re-
quired for deployment in physical systems. In particular, future
research may inject additional randomization and stochasticity
in various aspects of the simulation to facilitate the learning
of robust policies for Sim2Real transfer, while the design of
the real-world system could be adjusted to reduce modeling
error as much as possible. We argue that near-future Sim2Real
extensions of our work are feasible for automated systems with
existence of high fidelity simulators and safety mechanisms,
as long as human intent does not need to be simulated; these
criteria are likely satisfied already in industrial robotic settings.
As real-world deployment may benefit greatly from inter-
pretability of trained policies, an impactful direction of future
research may design an automatic method for distillation of
trained DRL policies into Derived policies with interpretable
behavioral building blocks, which could be shared across
multiple systems. For example, convergence to fixed speed is a
behavioral building block shared across DRL and Derived poli-
cies in Single Ring, Double Ring, and Figure Eight; waiting for
a desired condition is another behavioral building block shared
across Figure Eight, Highway Bottleneck, Highway Ramp, and
Intersection.

Open directions of research in vehicular systems and traffic
systems include 1) application of our methodology to vehicular
systems beyond traffic systems, 2) application to richer traffic
systems with other maneuvers such as turning and other
control elements such as traffic signals, 3) optimizing for non-
efficiency objectives, such as fuel or comfort, 4) optimizing
the behavior of heterogeneous vehicles with different physi-
cal properties, 5) systems with non-stationary traffic regimes
(e.g. natural variation of inflow rates), and 6) scaling up to
larger systems by leveraging decomposition techniques. Due
to multi-task training over many density configurations, we
believe that our methodology already naturally handles non-
stationary traffic regimes in particular, while the other open
directions of research require further investigation.

APPENDIX
ROBUSTNESS OF DERIVED POLICIES UNDER RANGES OF

CAR FOLLOWING MODEL PARAMETERS

As uncontrolled vehicles in our simulated traffic systems
follow the IDM [48] car following model, which models
human driving with a set of behavioral parameters, simulation
dynamics may differ under differing IDM parameters. To
probe the robustness of our Derived policies in the context of
other car following parameters, we consider the Highway Bot-
tleneck at a total target inflow of F = 2600 vehs/hr. Here, we
identify the default IDM parameters as maximum acceleration
a = 2.6 m/s2, comfortable deceleration b = 4.5 m/s2, desired
velocity v0 = 30 m/s, minimum spacing s0 = 2.5 m, desired

time headway τ = 1 s, and exponent δ = 4. In Table I, we
document the effect of reasonable changes in IDM parameters
on the performance of the Derived and Baseline policies from
Section VII-D, holding the parameter of the Derived policy
constant.

Derived outperforms the Baseline for all parameter combi-
nations, and the performance of both policies are positively
correlated with δ and v0 and negatively correlated with τ and
s0. The performance of Derived is positively correlated with
(a, b) while that of the Baseline is uncorrelated. In general,
IDM parameter values modeling aggressive driving tend to
improve the performance relative to those modeling conserva-
tive driving. Larger acceleration and deceleration parameters
(a, b), higher desired velocity v0, smaller minimum spacing s0
between vehicles, and smaller desired time headway τ all in-
tuitively correspond to more aggressive driving, while smaller
exponent δ increases the aggressiveness of accelerations when
the vehicle speed is near v0. The only exception is the lack
of correlation between Baseline performance and reasonable
ranges of (a, b), suggesting that the inefficient alternation of
vehicles at the bottleneck is not due to insufficient maximum
acceleration a.

TABLE I
HIGHWAY BOTTLENECK OUTFLOW (VEHS/HR) UNDER DIFFERENT IDM

PARAMETERS AT TOTAL TARGET INFLOW F = 2600 M/S. EACH
PARAMETER TABLE HOLDS ALL OTHER PARAMETERS AT THE DEFAULT

VALUE. IN ALL CASES, MEANS AND STANDARD DEVIATIONS ARE
COMPUTED OVER 10 INDEPENDENTLY SAMPLED TRAJECTORIES.

(a, b) (1, 1.5) (2, 3) (2.6, 4.5) (Default)

Baseline 1476 ± 3 1476 ± 2 1476 ± 2
Derived 1619 ± 27 1779 ± 24 1787 ± 26

τ 0.5 0.75 1 (Default) 1.25

Baseline 1696 ± 222 1540 ± 1 1476 ± 2 1456 ± 3
Derived 2040 ± 30 1953 ± 19 1787 ± 26 1632 ± 15

v0 15 20 25 30 (Default)

Baseline 1463 ± 3 1474 ± 2 1475 ± 3 1476 ± 2
Derived 1679 ± 13 1750 ± 31 1782 ± 20 1787 ± 26

s0 2 2.5 (Default) 3

Baseline 1514 ± 2 1476 ± 2 1440 ± 1
Derived 1843 ± 28 1787 ± 26 1736 ± 17

δ 2 3 4 (Default) 5

Baseline 1458 ± 2 1473 ± 2 1476 ± 2 1478 ± 2
Derived 1724 ± 17 1773 ± 26 1787 ± 26 1791 ± 24
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