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RESULTS ON BROWN-GITLER TYPE SPECTRA

hy

PAUL GREGORY GOERSS

Submitted to the Department of Mathematics
on May , 1983, in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy in
Mathematics

ABSTRACT

Specialized Brown-Gitler spectra are constructed. The first
collection, By(k), is suitable for studying orientable manifolds; the
second collection, Bp(4k+3) is suitable for studying Spin manifolds.
For any CW complex Z, By(k),Z and Bp (4k+3),Z are computed in a range;
the images of Bi(K),Z — Hy(Zs Z3) and By(4k+3),Z — bo,Z is discussed.
In particular, m,B1(k) and m,Bo(4k+3) are computed in a range. Odd
primary analogues are produced.

Then, we turn to the study of the structure of ordinary Brown-
Gitler spectra. Applying these results and work of R. L. Cohen [14],
we show that for primes p &gt; 3 hghj € Exta(Zp, Zp) is an infinite cycle
in the Adams Spectral Sequence and represents an element nj € T,S0. If
p &gt; 5, n; can be chosen to be of order p. Finally, we use the Adams-
Novikov Spectral Sequence to produce more elements in m, SO.

Thesis Supervisor: Dr. Franklin P. Peterson

Title: Professor of Mathematics
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Introduction

Brown-Gitler spectra have had two applications. The

first is to the study of manifolds and the second is to stable

homotopy theory, particularly to stable homotopy groups of

spheres. This thesis is divided into two parts. In the first

ne produce Brown-Gitler type spectra suited for the study of

oriented and Spin manifolds. This is the bulk of the work.

In the second part, which is joint work with Ralph Cohen, we

finish the program begun by him and completely determine, for

orimes greater than three, all secondary cohomology operations

that can detect stable maps of spheres. A central element in

our discussion will be sty of the structure of odd primary

Brown-Gitler spectra.

Let us examine these results a bit more closely. Brown

and Gitler's original result was this: There exists a collection

of spectra Bk) oo that filters the Eilenberg-MacLane spectrum

KZ, and so that the associated generalized homology theories

B(k), filter ordinary homology H,( y Z,) in a particularly

nice way. To say that we have Brown-Gitler type spectra suitable

for studying orientable manifolds is to say this: There exists

a collection of spectra {By (kK) Jog that filters the Eilenberg-

MacLane spectrum KZ, and so that By(k), , k &gt; 1 , filters

4, ( ; Z,) in a nice way. z, is the completion of the integers
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at 2 . Similarly, to say that we have Brown-Gitler type spectra

suitable for studying Spin manifolds is to say that we have a

collection of spectra {B,(4k+3)}, 9 so that B,(4k+3) filters

real connective K-theory. This last homology theory is called

bo ; it is a direct summand of Spin bordism completed at 2

The exact statements of these theorems and their connection

to the study of manifolds will be found in the next section.

In the final chapter we - the author and Ralph Cohen -

produce for each odd prime an infinite family of elements in

the stable homotopy groups of spheres detected by secondary

cohomology operations. The key to our construction is a

Temma which studies the homotopy theory of Brown-Gitler spectra.

Here is the 2-primary result.

Lemma: Let k &gt; 1 be an integer

vo
i dg

“m

(
~~

"
x

. ]
cL 2

be the diadic expansion of k .
.

3

and

J

K

nN

F YY

Jo

some J

. Then B(k)

is a wedge summand of
J J

32° 1) B(2°2) ....B(2
J 4

In effect this lemma says that the only "indecomposable"

Brown-Gitler spectra are the B(2J) . There is an odd primary

analogue.

Apply this lemma and results of R. Cohen we then show that

ny p&gt;3, J &gt; 2
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hah € Ext,( Z,, Z,)

is an infinite cycle in the Adams Spectral Sequence and represents

an element in the stable homotopy groups of spheres. Here A is

the mod p Steenrod algebra.

A more detailed outline is given in the introduction to

Chapter III.

The author wishes to thank Frank Peterson for many helpful

conversations; in particular he heard far more convoluted attempts

to prove the theorems of Chapter III. Ralph Cohen, too, is due

thanks for his suggestions and insights; a chance remark of his

is responsible for the first two chapters of this work. Mark

Mahowald, Haynes Miller, Doug Ravenel, and Don Shimamoto all

spent some time with the authors over these problems and deserve

thanks. Finally, many thanks to Anne Clee and Maggie Sullivan

for typing this lengthy manuscript.
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INTRODUCTION: CHAPTERS I AND II

When Brown-Gitler spectra first appeared in 1973 [6], surely

they were an answer to this question: Can we define, for all smooth

manifolds, higher order characteristic classes? Given the amount of

geometric information inherent in primary characteristic classes -

Stiefel-Whitney classes - the existence of even a secondary character-

istic class would presumably supply topological data.

The existence of Brown-Gitler spectra implies, in effect,

that no such higher characteristic classes exist. The negative answer

has proved to be of interest, however; Brown-Gitler spectra have since

found application in the study of manifolds ([10], [11], [16]), loop

space theory ([9], [14], [15]) and stable homotopy theory ([14], [12],

[20]). The question we address here is this: Do there exist Brown-

Gitler type spectra suited for studying oriented manifolds? or Spin

manifolds? or complex manifolds?

The purpose of the first two chapters of this work is to

produce Brown-Gitler spectra for oriented and Spin manifolds. The com-

plex case is beyond our methods. In the oriented case we give a complete

discussion; the Spin case is less amenable to total analysis.

To begin, let us point out what is remarkable about the

original Brown-Gitler spectra. To this end, we discuss manifolds for a

moment. Fix an integer n and let M be a closed, differentiable n-

manifold. Then, let T(v) denote the Thom spectrum of the stable normal

bundle of M. We will make it a convention that the Thom class ue HoT (v)
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and that cohomology has Zz, coefficients. Then, u may be thought of as

a map

(Vv) — KZ.,

where KZ, is the Eilenberg-MaclLane spectrum. Then, in cohomology, we

have a map

where A is the mod-2

x A = H*KZ., — H*T(v)

Steenrod Algebra. Let ker(M) = kernel of u* and

Jet

1 KE

where the intersection is taken over all n-manifolds. Brown and

Peterson [7] computed I,

L, = Alx(Sq") : 1 - 14

That is, I is the left ideal in A generated by v(Sq") for i

greater than the greatest integer less than or equal to n/2. x is the

canonical anti-automorphism of the Steenrod Algebra.

This, then, is Brown and Gitier's original construction:

Theorem: There exist spectra B(k), k &gt; 0, so that

1) H*B(k) = A/L, = A/Ax(S') : i &gt; Kk}

2) Let B(k) be the homology theory based on the spectrum B(k),

and let 1 : B(k) — KZ, be the generator of H*B(k). Then, for any CW
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i. : B(k).Z(k)g —HyZ

is surjective for gq &lt; 2k+1.

Let us examine 2) where Z = M is a manifold of dimension 2k or

2k+1. Then the fundamental class [M] € HM is in the image of 1,. Since

T(v) is the Spanier-Whitehead dual of MU {disjoint basepoint}, we can

conclude that there is a lifting

3(k)

 ou
T(v) —=— KZ,

[) implies that this could not.occur if H*B(k) were a smaller

quotient of A.

et us now state the results of

NOYK. lat

S10-

Ny
= N ker(M)

where the intersection is taken over all

Dy (7]

30 = atsq', x(sa') ¢ i

the first two chapters of this

orientable n-manifolds M. Then

ig
mx]

if n = 4k+1, Hes or 4k+3. Note that 152; = Lan: This is because
+(562K = y(sa®%)sql,
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Theorem I: There exist spectra B, (2k+1) so that
_ 1 iy | _ SO

(1) H*B, (2k+1) = A/A{Sq , x(Sq ) : 1 &gt; 2k} = A/T ge

(2) Let 1 : B, (2k+1) — KZ classify a generator of

(8, (2k+1) 3 5 ). Then, for any CW complex

de
B. (2k+1 A

ig surjective for any CW complex Z and gq &lt; 4k+3.

zs = lim Z/2nZ is the integers completed at 2.

The existence of spectra B, (2k+1) satisfying property 1) of

Theorem I was first noted by Mahowald [19] and elaborated by Shimamoto

[31]. The method was this: Let $3&lt;3&gt; be the three-connected cover of

the three sphere, 53, Then, if n is the generator of m,B0, there is

an induced bundle vy

3 3
2.2

3&gt; — Psd IM, 2:2 50
y J &amp;N

The last composition exists because BO is an infinite loop space.

Mahowald asserts the existence of a filtration

T: ENS! m&gt;0

of 22s3&lt;3&gt; . Then there is a bundle

. 23 2:3 Y
lop Fy 27S7&lt;3&gt; € @757&lt;3&gt; — BO

The 2-completion of the Thom spectrum of Yor is B, (2k+1). Concurrently

with the work described here, D. Shimamoto [31] demonstrated that B, (2k+1)
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also satisfy property 2) of Theorem I. This is enough to produce a

homotopy equivalence

3,(2k+1) &gt; B (2k+1)

This is proved in Section 2 of Chapter 2.

Referring to Theorem I, note that if T(v) is the Thom spectrum

of the normal bundle of an orientable n-manifold, n &lt; 4k+3, there is a

factoring

B.(2k+1)

tof KZ

where 1i is any generator of HO(T (Vv); Z,). 1 is a choice for the ZJ

oriented Thom class of T(v).

(7|4

Let us now describe iis Let 2k = 2” 2t+1). Then, again by

S 55-1 _ s-1 1

ag = Asa’, x(sa? BE) gq (201) gg2" (28 gly (sq)

&lt;j &lt;S,i&gt;2k}

We have the following result.

Theorem II: Let 2k = 25(2t+1). Then there exist spectra B, (2k) so that
_ SO

1) H*B, (2k) : Alyy

2) Let 1 : B, (2k+1) —

A°(B,(2k)3 Z3) then
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is surjective for any CW complex Z and q &lt; 4k-1.

3) Let z € Hp (X53 Z3) . There are s primary obstructions, s-1

secondary obstructions, and possibly higher obstructions to z being in

the image of

bo Z;12k) 4, — Ha 75

let us examine 3). The primary obstructions will vanish for

Mle Hap (M3 5.

where [M] is the fundamental class of a zy oriented 4k manifold. If

s = 1, that is, 2k = 4t+2, then there are no higher obstructions and we

have a factoring

or 2. (2k)

Sod
T(v) = kz,

If s &gt;1, and M = pk, all the secondary obstructions vanish

modulo indeterminary on

2k 2k
Zz.

R

Je say nothing, at this time, about other manifolds, or higher

obstructions.

Let us now turn to Spin manifolds. If the first and second

Stiefel-Whitney classes of the normal bundle of a manifold M vanish,

then M has a Spin structure; that is, we have a factoring
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_BSpin

7 !
M—— 30

v classifies the normal bundle and V induces a map

] T(v) — MSpin

where MSpin is the Thom spectrum of the universal Spin bundle. Completed

at 2, MSpin splits as a wedge of indecomposable spectra; in particular,

after completion, there is a projection onto a wedge summand (see [34])

Spin —%—s bo

which is an isomorphism on H?. bo is the 2-completion of the represent-

ing spectrum for connective real K-theory. bo has been extensively

studied ([17], [19]). We are interested in the composite

jeg : T(v) — bo.

We know that H*bo = A/A{Sq', Sq°} and that

n= 0,4 mod 8, n&gt;0

me * | 2 n=1,2 mod 8, n&gt;0
0 otherwise

Let 1 H*bo be the Steenrod Algebra generator. Then, there

are maps iz, : bo — KZ5 , unique up to a homotopy equivalence of KZ5 ,
J

so that we have a commutative diagram
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1. 4j
4] a

1 Ch
bo x(sq™) 43

KZ &gt;) KZ,

~Ri

a3 induces, for every CW complex, a map

{
\

»
t Yo &gt; on L sorserande Hy a: (23 Z5)

Theorem III: There exist spectra B,(4k+3) and maps I

so that

1) H*B,(4k+3) = A/MSq', Sa, x(Sq') i &gt; 4k}

2) For any CW complex Z, 1, : B, (4k+3) Z —bo,Z is onto

7

&lt;er(i(15)

for q &lt; 8k+7.

Remark: Given that H*B, (4k+3) is as in Theorem III, part 1), the image

of 1, in III, part 2) can be no larger than nN ker(i,:)x The result
j&gt;k

asserts that the image of 1, is as large as possible.

John Jones and Mark Mahowald have produced spectra B, (4k+3)

so that H&lt;B,(4k+3) = A/A(Sq', Sq°, x(Sa') : 1 &gt; 4k}. At this point, I

have no knowledge of whether or not they have an analogue of Theorem III,

art 2)

There are odd primary analogues of our theorems, just as there

are odd primary analogues of the original Brown-Gitler Spectra ([14]).



~15-

For instance, the methods used to prove Theorems I and III give the

following result.

Theorem IV: Let p &gt; 3 be any odd prime and Tet Ay be the mod-p Steenrod

Algebra. Then there exist p-complete spectra B, (pk+1) so that
~ Ty

1) H*(B,(pk+1), Z,) = AA(8,x(p'),i &gt; kl.

2) Let 1 : B,(pk+l) — KZ classify a generator of

10(8, (pk+1); 7; ). Then

pF.
. #YB, (pk+1) —_— Hq (Z3 z,

is surjective for any CW complex and n &lt; 2p(k+1) -

Presumably, there is an odd primary analogue of Theorem II;

however, the proof of Theorem II is grueling. One should not undertake

an odd primes version unless one sees a need.

One remark should be made. In each of the theorems above, a

spectrum B is constructed along with a map 1 : B — 3 where 3 is the

representing spectrum of a homology theory derived from a cohordism

theory. Then we asserted that

3.7 —_— A * /

was surjective in a range. More is true: we will actually compute B,Z

in a range and give a good characterization of the kernel of 1,. In

particular, we may compute mB in a range. (The computation of mB (2k+1)

is accomplished also by Shimamoto [31].) The statement of these results

is complicated and we leave it until we have proofs in hand.
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In Chapter I, we prove Theorems I, III, and IV. In Chapter II,

we prove Theorem II, characterize the homotopy type of the spectra

B, (2k+1), and discuss some applications to manifolds. Each chapter

begins with a detailed outline of the proofs to be presented. Hopefully,

these outlines will provide some form to the intricacies of our tech-

niques.

A11 spectra will be completed at a prime p - usually p = 2.

See Bousfield [3] and note that—-the 2-completion of KZ is KZ3. This

is essential; a cornerstone of our proofs are the results of Section I.3

and these theorems do not apply to spectra such as KZ or even KZ 2) -

KZ localized at two.

Finally, we are working the stable category; the framework for

this setting is provided by Adams [2]. Often, however, we will wish to

restrict ourselves to spectra; that is collections of spaces X = {Xs}

with homotopy equivalences

V{. — Xs

For a discussion of these spectra, one should turn to May [22].

The reader should note that if we refer to a spectrum X and then use

the notation X., we are referring to the jth space in the Q-spectrum X.
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chapter {

CONSTRUCTION OF B, (2k+] }, B,(4k+3) » AND B, (pk+1)

In this first chapter, we use the techniques of Brown and

Gitler to produce the spectra we want. We concentrate our attention on

B,(2k+1) and B, (4k+3). The modifications needed to produce B, (pk+1),
p &gt; 3, are slight and I outline them in a final section.

Outline of the Proof

The proof of the existence of the spaces B, (2k+1) and B, (4k+3)

is technical. For that reason, we supply, in this section, a careful

outline, providing definitions and statements of lemmas, but postpone

the lengthy proofs. This is done for two other reasons: to provide a

roadmap through the subsequent sections and to furnish, if not motivation,

at least a framework for the technical arguments that follow.

Our argument parallels that of Brown and Gitler [6], and is

sbviously indebted to their paper. We refer freely to it.

The thrust of the argument is to produce a tower of spectra

7!
+

3

retin x._-Pe a A

3 i]
© Fr

A
3)

(1.1)

so that Pq. 3 Xq — Xg-1 is a fibration with fiber Far Additionally,

we want a good hold on the homology theory induced by the spectrum xq:

Xy will be KZ3 or bo depending on whether we are constructing By (2k+1)

or B,(4k+3). Then we will set B, (2k+1) (or B,, (4k+3)) equal to lim Xq-
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Fo will be a product (that is, wedge) of Eilenberg-MaclLane

spectra.

As usual in such constructions, the first step is to determine

what F_ should be. As a start, note that if Xq existed, then the fact

that

i

:, Zs Xq = Xq-1

is a fibration allows us to produce a map €q : Xa-1 Sama Fa of degree

one. Here and later we will refer to a map of spectra f : X — 5 as

being of degree n. When dealing with Q-spectra this is often more

convenient. Let 8q be the composition

\ r 9

Aw]
= ev
} S|

Then we would have a sequence

~~

v

a

» FF —_— SE—

S
“1-1 9. Fl —r on (1.2)

Each Sq is of degree one. Our first step is to produce (1.2). Then,

inductively, we produce Sq and, hence, (1.1).

We are trying to realize, as the cohomology of a

certain modules over the Steenrod Algebra. Set

M 2k+1) = A/A{Sq), x(Sq') : i &gt; 2k}

and

Mm,(4k+3) = A/ALSq', Sq°, «(sq') : i &gt; ak}.
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We require that the cohomology of (1.2) be a resolution of

sorts of M, (2k+1) or M, (4k+3) as required. That is, apply cohomology

to (1.2) and obtain

&gt; H*F — H* r
1 a-1

—_— ——“a — H* Fo IR H*F5 iil M  &gt; 0

(1.3)

where M = M, (2k+1) or M,(4k+3). m, at this point, is only algebraically

defined; it is the quotient map from H*KZ or H*bo to M. We ask that

(1.3) be a long exact sequence; that is an acyclic resolution of M by

nodules over the Steenrod Algebra.

We first produce an algebraic resolution of M then produce

spectra and maps which give in cohomology (that is, realize) this alge-

braic resolution.

Such resolutions require a bookkeeping device; here that

device will be the A algebra of Bousfield, Curtis, et.al. [4]. Let us

~ecapitulate their results.

Let A be the Z, bi-graded algebra generated by elements As

(i &gt; 0) of grading (1,1). The unit has grading (0,0). We have rela-

£10ns

S-1

Aids = ) 25-(3-21)] Arshios (1.4)

In dealing with this algebra, one has certain conventions. First, if

[= (qs ces i) is an n-tuple of non-negative integers, we write

A. = M, cos Mo It is then natural to say that Ap has length n.

Secondly, we call Ay admissible if 21; &gt; Tay It is a result of [4]

1
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that admissible monomials in the As form a Z, vector space basis for A.

Finally, we say dimi, = dpi, + i

A has a very specific and rigid structure, and is replete with

interesting ideals and sub-algebras. We detail a few in the following

result.

Lemma 1.5: 1) Let A, be the Teft ideal generated by A;, 0 &lt;i &lt;k.

Then an additive basis for Ay is given by all admissible monomials

hy with i, &lt; k.

2) Let A be the left ideal generated by Ay. 4, 1 &gt;1.

Then an additive basis for R is all admissible monomials Aj eee A

with 1 odd.

3) Let NA be the sub Z, vector space of A generated by

elements M, ‘ee MoM with i, odd and 1 = -1 mod 4. If A; is

an element of A and of length greater than one and As € A, then

AA. € A.

of 1.4.

The proof of 1.5 is in Section 2. It is an easy consequence

(See Lemma 2.10.)

Let us see how this algebra was important in Brown and Gitler's

work. Define A(g,k) to be monomials of length gq in AA, And let us

now, for strict accuracy, consider the Z, dual A*(q,k). Then there

exist maps SH so that the following is an acyclic resolution.

—&gt; Ap *qg,k) — Aa *(g-1,k) — ...

s¥
Ag A%(1,K) — A Ts A/ALx(Sq') : i &gt; k} — 0

3

(7.6)
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5 is complicated; see Lemma 2.13. If A; is one of the obvious
*_ :

generators of the dual vector space A*(1,k), then 8125 = w(sg't Ty.

*B(k) ¥ A/Ax(Sq") : i &gt; k} = M(K)

Notice that since A &amp; A*(g,k) is free over the Steenrod Algebra,

we may find spectra Iq 80 that L is a product of Eilenberg Maclane

spectra, mel ~ A(qg,k) as a ZZ, vector space, and HI = A a A*(q.k).

Further, we can find maps 39 : 19-1 — Ig which, in cohomology, give

5. Thus, we have a sequence of spectra

Teint. SEE
8 8

[FI q+ +L. — 1 = KZ (. .7)

(1.7) realizes (1.6). Notice that, because of our remarks around (1.2),

we should ask that Sq be of degree one. This is Brown and Gitler's

first step.

We turn to the problem of resolving M, (2k+1). Let A(qg,2k+1)

be the monomials of length q in R/R Nn Mot

Lemma 1.8: There exist maps s, so that

Ag A*(q,2k+1) — A B A*(g-1, 2k+1) — ...

s*
Am A*(1, 2k+1) — A/ASQ' —T— M. (2k+1) —&gt; O

is an acyclic resolution of M.(2k+1) by modules over the Steenrod

Algebra.

This is Theorem 2.11 of Section 2. From 2.13 we see that

*_ _ 2] _ ~

51% _1 x(Sg“Y). We may now produce spectra Fy so that F_ = KZ;
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and Fa (g &gt; 1) is a produce of Eilenberg-MacLane spectra with

meFy = A(q, 2k+1) and H*F = A’ A*(q, 2k+1). Further, we may produce

maps § : Fon — Fa (of degree one) so that

S
— F &lt;3 F —

a1 . on Er—
01

- re F = KZ, (1 .3)

realizes the resolution of (1.8).

Now consider M,(4k+3) = A/A(Sq', Sq“, x(Sq') : i &gt; 4k}. Let

A(q, 4k+3) be all monomials of length q in A/ANMg.q+ Refer to 1.5,

*

Lemma 1.10: There exist maps 84 so that

3

—_— A 4,oT q
A 5. k+3) S*

2,4k+3
y

A*

’ (q-
ASq!

q |8 A*( oe
] Ja
° - ces

A/A S 1q , Sq°q-}is

A _(4k+3) — 0

is an acyclic resolution of M, (4k+3) by modules over the Steenrod

Algebra.

This, too, is proved in Section 2. We may produce spectra so

that Fy (gq &gt; 2) is a product of Eilenberg-MacLane spectra with

mF, = B(q, 4k+3) and H*F = Ag N*(q, 4k+3). F, should be a product

of Eilenberg-Maclane spaces of type KZ5 and

iv
n

T
1

7J

J

n=4j-1, j &gt;

otherwise

k+1
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Fo = bo. We will be able to produce maps 3 : Fa-1 — Fa of degree

one so that

- 8 21 irs wy ———t
_ DO

realizes 1.10. &amp;, is a product of maps iE 30 —— Zs,

1.11)

of degree 4j

so that

tps
4] KZ

| J43
KZ. x(Sq™) KZ,

commutes. 1 is the Steenrod Algebra generator of H*bo or H*KZ,, . Thus

3 is only determined up to a homotopy equivalence of F,. We make a

more careful choice in Section 3.

The fact that we have used the symbol Hg in 1.6 through 1.11

is meant to be suggestive. There are obvious projection maps

:

1
CA a A*(q, 2k+1) — A a A*(q, 2k+1)  aq &gt; i

ns A — A/ASq) = H*KZ,

x

44 : A a A*(q, 4k+3) —— A a 1*(q, 4k+3) q &gt; 2

SL Am A*(1, 4k+3) — A/ASq' &amp;@ (1. 4x+3)

A — A/ALSq', Sq°} = H¥bo1
4

h h h x 0% *
These maps have the property that §qHq = Ha-1%g Since we are producing
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maps into Eilenberg-MaclLane spectra, we have maps Hq : Fo mmr I, (see

1.7) and a diagram:

To
Ho M,

I —— I,
io]

—

—

a 0 O

 x om»

a-1a Hq,
Ya-1 1

"4
— =

rr —

(1.12)

Thus we get maps of resolutions 1.9 or 1.11 to the resolution 1.7. The

existence of 1.12 is important: we wish to use it to play off the

results of Brown and Gitler.

Now we return to the original problem: that of constructing

the tower (1.1). To do this, we wish to inductively produce the maps

eq : Xq-1 — Fa defined prior to (1.2). This is in general quite

difficult, if not impossible. The approach that works for these Brown-

Gitler type spectra is to dualize the problem. That is, we apply a

functor x to 1.9 or 1.11.and obtain a sequence of spectra

d d

. Kg —2&gt; Kg q — +r = Ko = K,

Here Ka = x(Fg) is a product of Eilenberg-MacLane spectra if

g&gt;1, and K_ = x(KZ,) or x(bo).

Then, inductively, we produce spaces Gq-1 and maps eq : Kg —

8q-1" Finally, Xq_1 = x(6gy_1) and eq = x(eg)- So we must describe x.

This functor y is essentially the Pontrjagin duality of

Brown and Gomenetz [5], and has the property that, for a spectrum X and

a CW complex Z one can compute X,Z from x(X)*Z. The functor of [5],

however, is only defined for spectra X so that m X is finite for each n.
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Since KZ = mo DO = Zs is uncountable, we need to extend their

results siightly.

So saying, let s” be the category of two complete spectra;

see Bousfield [3]. The x-dual category of s” is a bit more difficult

to describe. Let M(2™) be the Z/2"Z Moore Spectrum, that is

H(M(2"); Z) = 72/2"7Z concentrated in grading zero. Then we have

canonical maps M(2") — 3 and mM(2™) —_— M2" hy, the latter induces

z/2"z — 7,2" 7 in homology. Then we have a commutative diagram

ua") —— ("th

'
dD

Yi
S

Thus, for any spectrum Y we have a map of degree one

qm YA M(2") — AY,

We define a category 5% by saying that Y is an object in s* if and only

if this map is a homotopy equivalence.

Some examples: if for each n mY is a finite group consisting

only of two torsion, then Y is an object in both s™ and 5. KZ, and

bo are objects in s”, and KZ5~ = 1im KzZ/2"Z is an object in s°. Zp

is the Prouffer group and may be identified with the two torsion in R/Z,

the real numbers modulo the integers.

If G is an abelian group, Let Gt

5° Yom(G: kK/7ZZ,

denote the character group:

(7) = ZZ, .
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In Section 3 we prove the following result.

Theorem 1.13: There exist contravariant functors yx

FR satisfying:

1) X(KZ,) = KZ, and yx : [KZ,, KZ,] — [KZ,, KZ,] is
the canonical anti-automorphism of the Steenrod Algebra.

2) For a spectrum Y, let vd be the cohomology theory based on

Y. Then, for each Y € s” (or s ) and any finite CW complex Z there is

a natural isomorphism

3 : (x(Y), 7)b — y97.

5, is natural in Y.

3) There is a natural equivalence between xy and the identity

functor of s” (or s ) to itself.

4) x induces a group isomorphism: x : [X.Y], a [x (X) sx (VD 1g

KY is the maps of degree q.

5) max (Y) = (m_gN" and the isomorphism is natural in Y.

Note: 1.13.2 is the reason this theorem applies to the problem at hand.

We now restate the main theorem of Brown and Gitler's work.

tet the following be the y-dual of the resolution 1.7, which realized

1.6"

—

d d, d,
Lh Ly LL, = LL = KZ,

Each L is a product of Eilenberg-Maclane spectra of type KZ,

Theorem 1.14: There exist spectra R and maps (of degree one)

o
hr lL, — Eq_1 so that:
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1) Fo 7 Lo 7 Kip and e, = dy.
2) Ee A Eq Ls Ly is the fibration induced from the

contractible path fibration over Eq-1 by eq
e p

_q, “9-1,3) L Eq-1 Lo-1 18 d.-
4) e, : La, 2k — Ey, 2k+] is zero.

This is in [6]. We should remark that 3) and 4) together imply

that dg : Lo, 2k — La-1,2k+7 is zero. This can be proved directly

and is a key point in the proof of 1.14.

Theorem 1.14 gives a diagram

i ——

| i
L. L,

Eq+1 —

Apply the functor x to obtain a diagram

r
oa

de  _— (a+
(1.15)

- ‘q+1

Assume each Pq is a fibration. Then B(k) = Jim Y_

We then wish to show that, for any CW complex Z

2 A &lt;),, z —_— H, -

is surjective for n &lt; 2k+1. First suppose Z is a finite complex. Then,

since Yo = KZ, it is sufficient to show that (Y)nZ — (Yq-1)nZ is

surjective for all q and n &lt; 2k+1. By 1.13.2 it is equivalent to show

"at



wl Dw

Nn n—_ 7Zg-12 eh?
is injective. But this follows from 1.14.2 and 1.14.4. To pass to

general CW complexes, we take a direct limit over finite subcomplexes.

Now, we wish to apply 1.13 to prove our theorems. In what

follows, let Ey and Lg be those spaces used to construct B(2k+1) (if

we are working to B, (2k+1)) or B(4k+3) (for B, (4k+3)).

Apply x to 1.12 to obtain a new diagram:

1
9 r ————

“q-1 + 8 =

4
1.

d i

J Kg-1 “nw

d-
—————

d.
1

bo
u

0

K
3

In Section 4 we will prove the following result.

Theorem 1.16: There exist spectra Gy and maps 2 : Kq — Gq-1 of

degree one and 2q : Eq — 6G of degree zero so that

1) G, = o&gt; e; : d, and fo = Ug
2) Gq-1 — 6, 4. Kq js the fibration induced by e; from

the contractible path fibration over Got

3) The following diagram commutes:

i p ©
9, q_, q . -

Ta-1 q q “q-1
2ron, l% p lve. J q-1

9, 9¢ 9.59-1 8 Kq Gy-1
Nok SO. Pal sd

q q-1 q-1 q
5) If we are working toward B,(2k+1)

1 N3.442 G-1,4k+3 is null-homotopic for q &gt; 1
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If we are working toward B,(4k+3)

D

1 8k+6 tp 6-1 .8k+7 is null-homotopic for gq &gt; 2.

Just as before, we can now construct B,(2k+1) or B,(4k+3).

‘ec XK, = x(G,). Then there is a tower

i.
J

 -
¥ 17)

—

We assume each Pq is a fibration and set B, (2k+1) or B, (4k+3)

equal to Jim X . Since x, = KZ5 or bo, as desired, we have canonical

ma
. 3

|

R 2k+1) —— KZ5 and B,(4k+3) — bo

Notice, too that 1.16.3 implies that there is a map from 1.17

to 1.15 for B(2k+1) (or B(4k+3)) and, thus, we have canonical maps

3 2k+1) — B(2k+1) and B,(4k+3) — B(4k+3)

To compute H*B,(2k+1) or H*B,(4k+3), we first let

a pad

be the exclusion of the fiber. Then 1.16.4 implies that €qig-1 = Sq of

1.9 or 1.11. Then standard techniques (see Proposition 5.1) say that

PD 1 2k+1) = M.(2k+1) and H*B,(4k+3) = MN SAK 3)
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Finally, to discuss the homology theories By (2k+1), and

B, (4k+3) we argue exactly as we did between 1.14 and 1.16.

We should note that for n &lt; 4k+1 (say we are discussing

3 a )

Paw : (Xg)nZe F (Xg-1)nZ

is not just surjective, but split surjective and the splitting is

natural in Z This is a consequence of 1.16.5. A detailed discussion

is given in Section 5.

Section 2 discusses resolutions, Section 3 discusses Pontrjagin

duality and some lemmas. Sections 4 and 5 are devoted to the proof of

1.16 and Theorems I and III of the Introduction. In Section 6, we

compute mBq (2k+1) and mB, (4k+3) in a range.

In Section 7, we discuss changes need for odd primes.

Naturally, the notation Lemma 2.14.3 refers to statement 3 of

Lemma 14 found in Section 2.

2. Resolution of M,(2k+1) and M,(4k+3)

In this section we provide the proofs of Lemmas 1.8 and 1.10.

We could mimic the techniques of Brown and Gitler, but another technique

actually seems to be more illuminating. This is true for two reasons.

First, it makes explicit the relationship between a certain weight

function (2.2) on the dual Steenrod Algebra and the homology of Brown-

Gitler spectra. This relationship has been noted empirically before -
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see [14]. Secondly, these new techniques give an elegant description

of the A algebra, a description that seems worth recording.

For some pages, then, we will work with comodules over the

dual Steenrod Algebra rather than with modules over the Steenrod

Algebra. Recall the dual Steenrod Algebra is a polynomial algebra

A* = Z, REP Coos —

where Zs has grading 21.1. The zc; are the Hopf algebra conjugate of

Milnor's &amp;. [24]. There is a coproduct map ¢ : A* — A* @ A* which is

a map of algebras, defined on generators as

D Zz J |
a - \&amp; 1)

let M be a left module over the Steenrod Algebra and M* =

Hom (M; Z,) be its dual. The left action of A on M can be transformed

into a right action via xy: form € Mand a € A, set ma = x(a)m. This

gives a map

Ma A— M

The Z, dual of this map gives the (conjugate) comodule map on

Vike-

1;

w(7

vk V% oe} 1%

A* —— A* g A* is such a map.

A* has a weight function w defined on it as follows. Set

y= 2171 and w(xy) = w(x) + w(y)
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Now HKZ = Z, (£5, ty. ...] C A% as comodules; thus H,KZj

has, as a Z, -basis, all monomials of A* of even weight. H,bo =

Z, [2], 2, Cys ...] € A* as comodules; therefore, H,bo has, as a Zy-

basis, all monomials x € A so that w(x) = 0 mod 4.

Let M(k) = A/Ax(Sa'), 1 &gt; kJ, M(2k+1) = A/A(SQ') 1 &gt; 2k},

and M, (4k+3) = A/A{Sq, sq? w(sq") i &gt; 4k}. We characterize the duals

of these modules.

Lemma 2.2: 1) M(k)* c A* as comodules and has a Z,- basis consisting

of all monomials of weight &lt; k.

2) My(2k+1)* C HKZ7 as comodules and has a Z, basis

consisting of all monomials of weight &lt; 2k in He KZ

3) M, (4k+3)* C H,bo as comodules and has a Z, basis

-onsisting of all monomials of weight &lt; 4k in H_bo.

Proof: I will do 1). The technique is suggestive of things to come.

Let A(1,k) be monomials of length one in AA See Section 1. Define

a vector space map ¢; : A* —— A(1,k) by 6 (23) = Ajo j &gt; k+1 and

dy of all other monomials is zero. Then define a map 3, A* —-

A* a A(1,k) by the composition

3. 2 Ax YU, Ax gp AX dad, A* a A(1,k).

Using 2.1, we compute that ker(3,) = all monomials of weight &lt; k. To
finish, we show that A a A*(1,k) — A Ls M(k) —— 0 is exact. To

this end, let Sa; € A be the dual of 3 € A* where Eq is the Milnor

generator. x(z)) = 3 We compute that



We

* -—

RAs; = x(sa;)

But it is known [25] that Sq. = Sq J

3, 1s the idea that makes all that follows work; perhaps the

reader should take some care over the proof of this lemma.

jiven

Let us return to the A algebra of Section 1. The relations

there (1.4) can be restated as follows: See [4]

(RA =k mtn-k-1"2m+k-1 =0 (m&gt;1,n&gt;0) (2.3)

A can be given the structure of a differential (bi-) graded

algebra by requiring

_ oN

A LOM ok=17k-1 rn 4)

Recall that if I = (iq, ..., i) is a g-tuple of non-negative

integers, we write A; ... A; = A,. The symbols I = (i,, ..., i ) of
i 1 I 1 q

length q can be ordered lexigraphically from the right; that is, (1.1.2) -

(1,1,1) and (0,2,1) &gt; (1,1,1), for example. The ordering on the I's

gives an ordering on the Ap's: Ay &gt; Ag if and only if I &gt; J.

M is admissible if 21 2 144 forRecall that A- = A... ...,

avery

Lemma 2.5: 1) For any A; not admissible, A; = JA. with J admissible

3

2) If I = (iy, ...s i.) then 33

Jigar) J admissible and Iga &lt;
Proof: See [6]. This is an easy application of the relation (1.4)
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and the differential &amp; in A which reads, in admissible form

1)
a"107d . A

J

We now turn to the resolutions of Section 1. In particular,
*

ne now define the Z,-duals of the map Sq"

Denote by A(q) = A(g,0) all monomials of length q in A. In

2.2 we defined $1 and 34. Let us make some further definitions. Let

A* g A* — A(2) be defined by the requirements thatbo

i Jy
bo(Ty ® oy) = Ay qAy

and 5 applied to all other monomials is zero.

Define 9, * A* 8 A(g-1) — A* &amp; A(q) by the formula

&gt; (a a i;) = 3,(a) A +a
~

Lemma 2.6: 1) Give A* a A(g) the comodule structure A* a A(q) 18id,

A* a A* g@ A(q). Then 3° q &gt;1, is a comodule map.

9 od = 0.2) q q-1
Proof: 1) follows from the definitions. For 2), the following diagram

implies that 3, ° 0. = 0

A
px Ly px og AX 1, a+ g A* g A

ideo ideeIAx —&gt; A* g A(1) —= A* g A(2)

‘
| 2.. }

A, (2a &amp; b) = y(a) @ b + a » Y(b). Then
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32-12 ® Ap) = 3q(01(2)2 + aan My)

\ ~ fa). + 9;(a)ar, +97(a)er, + a m OW = 0

Note: The relations (2.3) and differential (2.4) in A are

the requirement that 2.7 commute. For instance:

forced by

2
J id ® ¢,)(1 ® 2M = 0

and

: n,my_ ¢(N(id &amp; 05) © A(T 8 2925) = 20) Ayna1Pomek-1

Thus we could deduce (2.3).

Let A CA be the left ideal generated Ao? Cees Apq

Lemma 2.8: 1) A Zy- basis for A is given by all admissible-monomials

in Ay Ass «ons A; SO that i &lt; k.
i, q

2) My is closed under 3.

Proof: In [6], but easily follows from 2.5.

From 2.8 it follows that the maps 3 : A* ga A(g-1) — A* a A(q)

restrict to maps 3g : A* Bg Ay (9-1) — A* g ny (a). Aq) is monomials of

length gq in Ay» Thus we get new maps

), AF a A{g-1,k) — A* 8 A(g.k)

. * - “

3 18 the Z,- dual of 8q in 1.6. For all k, 34%g-1 = 0.

The main idea of this section is contained in the following

rasult.
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. 0

Theorem 2.9: 0 —&gt; M(k)* — A* —— A* g A(1,k) — ..

—

0
s A* @ A(q-T1,k) —3 A* &amp; A(q.k) —

is an acyclic resolution of M(k)* by comodules over the dual Steenrod

Algebra. i is the inclusion of 2.2.

Proof: We need only show that it is acyclic; that is 1) hers, = M(k)*

and 2) the complexisexactat A* a Ak,g). In A*, if J = (Ji5 «vv» Jp)
J _ J Ip

let ¢° = Cy +r Cu

NE 1d ve

1) This is the content of the proof of L amma

J J
Jy _ 72 r

0-2) = 27% oo Tal B Ag) TILA BA

2.2.

a

Note

A=

that

with i &lt;w(d). wd) = wc’) =, +23, +... + 27715.

(2) Let z =) a; B Aq be an element of A* 8 A(q,.k) and suppose

dq+12 = 0. Assume Ar is admissible for each I. We first write z in a

form amenable to induction. Set

7
—
a

J
S .

Yc mA +t ]b BA b « nx

where i) L &lt; I and ii) if L = I, then the monomial of highest weight in

by has weight less the w(d,) for all s. Then I is maximal and w(dq) =

w(J,) = ,.. = w(J) is maximal among the monomial coefficients of A,.

Set w(Jd.) = w.

If J. = (Jqs «veo A then set fd.) = {Jos ++

f(J.)
_ S :

yo-Z = )E BA (Ap 7 20k BA

We have
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with N &lt; (w-1, I). This follows from 2.5. (w-1, I) cannot be admissible

or 3,(z) #0. If1I-= (qs —- ig) set t = i; - 2w+1 &gt; 0 and, for each

s, set (J) = (t, J.) Then

q(J) dg
3.(¢ R Any) =z al tld BA

g(J,)
and L &lt; I. Setting y = )t 8 Agpys We have

0

and z + 3 = ) a 8) with L &lt;TandifL =T then the monomial of

highest in ay is less than W. Now one works by induction to show that z

is in the image of 9" This completes the proof of 2.9.

The resolution of 2.9 is the Z,- dual of 1.6. We give an

explicit formula for 5, in Lemma 2.13.

We turn to the proofs of Lemmas 1.5, 1.8, and 1.10.

Lemma 2.10: 1) LetAC A be the left ideal generated by A,. ;» 1 &gt; 1.

Then A is closed under 3 and an additive basis for A is all admissible

monomials As = As » ...s As With i_ odd.
iy i q

2) AN A is closed under 3.

a

3) Let A be the sub Z, -vector space of A generated by

elements A. 5 ...5 A: With i odd and i_ = -1 mod 4. The monomial
iy iq q-1 q

A25-124-1 e § whether or not it is admissible. If As € A and AM is of

length greater than one, then AA € I for all i.

4) I and AN A, are closed under 3.
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Proof: We work with the relations 1.4 and differential 2.4.

1) Let A; € A. Then, if AA._;is not admissible

\
_ s-1 ;

‘25-1 7 ! (25-25+2i+1) Mash2i-1-s

When s is odd, s-1 is even and, thus, the coefficient of Mirsh24-1-5 is

zero. Similarly,

_ 2]

Mpi.1 = 2 C8) Agri

( = 0 when k is odd.

2) Follows from 1) and 2.8.2.
_ s-1

3) Ap5.10ai-1 TL (oscaisaj-1) 2j-14sMai-1-s"
If s =1,3 mod 4, s-1 is even and the coefficient of

Mp5 1+sMi-1-5 is zero. If s = 2 mod 4, the coefficient of
: 4t+1, _ .

Ao5-1+sMai-1-5 is of the form (gp1) = 0. The second claim follows from

this and 1).

The

1 + i

=v (4 43y = =
8) gs LCF) Mj-k-1k-1° (7) = 0 unless k = 0 mod 4.

result follows from 1), 3), and 2.8.2,

Recall that Ag, 2k+1) is the vector space of monomials of length

AA N Ayps1- 2-10.71 and 2 allows us to construct comodule maps

]
i

. A* a A (q-1,2k+1) — A* B A™(q,2k+1)

so that the following diagram commutes.
pe)

Ax g A(g-1,2k+1) == A* g R(q,2k+1)

3 lL
AMg-1,2k+1) —— A* @ A(q,2k+1)
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The verticle maps are inclusions. The techniques of Theorem 2.9 allow us

to prove the following result.

Theorem 2.11:
9.

0 — M(2k+1)* == 72, (24, Cys oon] — A* &amp; R(1,2k+1)
Nn 0 NN

—— A* @ A(q-1, 2k+1) —3— A* @ A(q,2k+1) — ...

is an acyclic resolution of M(2k+1)* by comodules over the dual Steenrod

Algebra. 1 is the inclusion map.

This is the Z, dual of 1.8.

Similarly, recall that A(q,4k+3) is the vector space of

nonomials of length q in A/ANMaar 2.10.3 and 4 allow us to construct

comodule maps

J. A* @ T(qg-1,k) —— A* a 7(q,k) Ie
2

wet

dp Z, [2], Tos e..] &amp; A(1,k) — A*

Zz. (3, 2, Co «oo 1 ~— Z, 24, Co 393) a A(1,k)

so that all the obvious diagrams commute; for instance, the folowing

commutes.

Z,
o ——

6, tg, oo] 8 T(1,8k+3) 5 Ax m K(2,4k+3)

99 f
Arg A(1.4k+3) —2— A* @ A(2,4k+3)

The verticle maps are inclusions. The techniques of 2.9 allow us to prove

the following result.
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Theorem 2.12: 0 —— My(4k+3)* —— Z,, [£7 25, zg --.]

9 2 ~ % =
—_— Zyl zy Zo ...] 8 A(1,4k+3) —— A* g A(2,4k+3) — ...

J B®

3
—  A* a T(g-1,4k+3) -3— A* a T(q,4k+3) — .

is an acyclic resolution of M,(4k+3)* by comodules over the dual

Steenrod Algebra.

This is the Z, -dual of 1.10.

Let us examine the Z, -duals of the maps 9" These are A-module

1 aps

S,

WT
3,

: AR A(a,.k) Aah g-1 k)

. A a A*(q, 2k+1) — A ® A*(q-1, 2k+1)

and so on. Let A. the ZZ,- dual of &gt;

Lemma 2.13: 5, : Aa A*(q,k) —— A a A*(g-1,k) is the A-module map

determined by

* — son i+], —

5g Xp = 1 Ap(Ag2y) x(sq'™)

The sum is over i &gt;-1 where A_;}, is interpreted as oA;.
i i

: T n _ :

Proof: 3q(%12 cies Go 8 Ag) 1a Apt y a BA with L # I if and only

if i, =14,=...=14 =0. If i, =0 also, then A; is a summand of 3);.

Thus, we have

Sqr) = TO)(5rT,

Here the sum is over i &gt; -1 (with the convention above) and over J so
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that the grading of AjAg equals the grading of Ae As in 2.2, we may

identify (27) as x(sq' 1).
2.13 follows.

his lemma determines all maps labelled 8 For instance

Am T(2.k)* — A/ASa! &amp; To*(1 k7

is given by

* - 21 —

531) = 2 Mg 1rg3-1) x(577) Ryg5.9

and

3 . A/ASq' @ T(1,k) — A/ALSG', $2)

is given by

* _ 44

81 (A 2i-1) = x(Sq ).

[t is instructive to compute that this is well-defined:

Sq
» ((5a*1) = v(satisql) = x(5q2sa?Ty+y(sq'sa?h

rim A
1-1) sq? + v(sq™hy)sq! = 0wo

wad in A/ALSq, Sa°}.

3. Pontrjagin Duality

In this section, we extend the Pontrjagin Duality functor of

Brown and Comenetz [5] so that we may apply it to the spectra that we

are considering. After this theoretical discussion, we make our first

application: we apply Pontrjagin duality to sequences of spectra realizing
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2.9, 2.11 and 2.12. Then we discuss the unstable properties of these

dualized sequences. The primary results are 3.11 and 3.12.

Let s be the full subcategory of the homotopy category of CW

spectra so that Y is an object in s if and only if mY is finite for each

integer n.

If G is an abelian group let Gt be its character group; that

is, its Pontrjagin dual. Gt = Hom(Gy; IR/Z) where IR/Z is the real numbers

modulo the integers.

In [5] Brown and Comenetz defined a functor yx whose properties
*

we delineate here. If Y is a spectrum let Y, and Y denote the (reduced)

homology and cohomology theories based on Y.

Theorem 3.71: There is a contravariant functor y : s —— s satisfying

1) x(KZ,) = KZ, for all primes p.

2) For each Y € s there is a natural equivalence

t
St x(Y,) -_

|

Sy is natural in Y

3) There is a natural equivalence between yx x and the

identity functor.

4) x : [X,Y], — [x(Y), x(X)] is a group isomorphism.

5) x: [KZ,, KZ, ] —_— [KZ,, KZ,] is the canonical
anti-automorphism of the Steenrod Algebra.

§) mw x(Y) = (nm VV”

We record the following result, also from [5].
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Lemma 3.2: If F— E —&gt; B is a fibration, then x(B) —&gt; x(E) —&gt; x(F)

is a fibration.

The restriction of x to s arises in this manner: Hom( ; IR/Z)

is a functor which maps compact abelian groups to discrete groups and visa

versa. This is done by keeping track of the topology on IR/Z. Given an

arbitrary spectrum E, there is no canonical choice for a topology on E*.

If mY is finite for each gq, however, there is such a choice of a topology.

Let X be an arbitrary CW complex and let {x} be the directed set of

finite subcomplexes of X. Then v(x.) is finite for each o and, thus,

compact in the discrete topology. Then, because Jim is exact on compact

groups

Qy = 14 qY'X Lim Y7X,

The requirement that this be a homeomorphism gives Y9X a unique

topology. In addition if we give x(Y)gX the discrete topology, then the

equivalence of 3.1.2 is a homeomorphism.

Clearly, this would not work, say, for E = KZ. It can be

axtended to spectra such as KZ, and bo; however. For instance, since

KZ; = ]im KZ and since H*(X; Z  ) is compact
2 " 5

(0 Z5) = Lim W(X 2)

and, by the above argument, this gives H*(X; z, ) a unique compact topolo-

gy. Note that mqKZy is compact for each gq.

Let us extend x. s” will be the full subcategory of the

homotopy category of CW spectra so that Y is in s” if and only if
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1) mo is a finitely generated 1, module for each g

2) Y is 2-complete.

By the last, I mean this: Let M(2") is the Z/2"Z Moore space and

define inclusions Y = Y.S° ido Y.M(2™) where ¢ is the inclusion of

the bottom cell. 2) is the requirement that the induced map

Y — Jim Y.M(2") be a homotopy equivalence. For Y an object in s”,

Tq Y. M(2™) is finite for each q; therefore (Y.M(2"))*X acquires a

unique compact topology and

Y*X = Tim (Y.M(2"))*X

We require that this equivalence be a homeomorphism.

KZ and bo are objects in s”.

s™ is a category of compact cohomology theories. We define a

dual category of discrete cohomology theories. Let Z _ = lim z/2"7.

Then (z5)" = Zo Z can be thought of as 2-torsion in R/Z. lets

be the full subcategory of the homotopy category of CW spectra so that Y

is an object in s~ if and only if

1) mqY is a finite direct sum of quotients of

2) Y is 2-pro-complete.

77

ny id. 0 _By 2) we mean this: define maps of degree 1, Y.M(2") 18:0, YAS

Y where ¥ is projection onto the top cell. By 2-pro-complete we mean that

the induced map

1.m Y. M21) —

is an equivalence. For each X we give (Y.M(2M)) *x the discrete topology.
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Thus Y*X has the discrete topology.

KZ = lim KZ n is an object in s and should be the x dual

yf "I

Definition 3.3.1) For Y in s” define x(Y) = lim x(Y.M(2™)). We assume

the induced maps (YA M(2™)) RR W(Y. M2") are inclusions. We make ¥

a functor as follows. If X, Y are in s” and f : X — Y then there are

commutative diagrams

vy

—

DCM n, f.id | ¢(2M) 219, v m2)

Fo 1)A

and 3.4 for n projects commutatively to 3.4 for n-1. Let fo = f.id

XM(2M) — Y.M(2M). Then Jim f. =f, by our assumptions. Set

-

»

x(f) = lim x(f,)-

3.3.2) For Y in s* define x(Y) = lim w(Y.M(2M)). We assume

the induced maps LC (YM(2"TY) — x(YM(2™)) are fibrations. x may be

axtended, as in 1), to a functor.

Let us remark immediately that it follows from 3.1.6 and the

oroperties of ( yt that

YY) = (r_ 1)"

in both cases. For instance

FLU 0)

Z q&lt;0,q9=0,4mod38
2

Zz, qQ&lt;0,Qq=6,7mod38
0 otherwise
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The following result implies that x carries objects of s™ to object of

5s” and vice versa.

Lemma 3.5: 1) For Y in ss”, there are degree one equivalences and a

commutative diagram

(MEY = x(vM2")
¥ " ¥

(NAME) = (rm)

These equivalences are natural in Y,

'3..3)

» - co . -*

2) For ¥ in s there are equivalences and a commutative

d;  ”" am

(VME) Sy (vam2™Ty)
: 3 }

(Y)M2M) = y(Y M(2™)

These equivalences are natural in Y.

Proof: I will do 1). First suppose that To! is a finite for each gq.

Then, notice that the two definitions of x(Y) (3.1 and 3.3.1) coincide.

Since [Y,Y] — [x(Y)s x(Y)] is a group map and x(id) = id, x(2"-id) =

2M.id. Thus we have a degree one equivalence, natural in Y

 (Y) M2") — x (Y.M(2M)

and the appropriate diagram commutes (3.6).

Therefore, we have a diagram, for each gq
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K(YAM(29) M2") — x (Y M23Ty.m2")

(rM(29)) M(2™) ne (M29) 2M)
5. 7)

assuming all horizontal maps are inclusions, we can conclude the existence

of an equivalence x(Y.M(2"))«—x(Y)M2"). One need now check that

3.6 commutes. But 3.7 for n maps commutatively to 3.7 for n+l. To see

that the induced equivalences are natural in Y, notice that 3.7 is

natural in Y

he following is implied immediately by the definitions.

Lemma 3.8. 1) There is a natural equivalence between x-x and the identity

functor of s™ (or s) and itself.

2) There is a group isomorphism [X,Y] —=— [x(Y), x(X)].

Proof: 2) follows from 1) and the fact that yx is additive; that is if

f and g : X —=Y are maps, then x(f+g) = x(f) + x(q).

Finally, we wish to prove the following result.

Lemma 3.9. 1) For Y € s™ and for any CW complex Z there is an equiva-

lence, natural in Y and Z

y : x(Y)z Zr 9

2) For Y €s° and any finite CW complex Z there is an equiva-

lence, natural in Y and Z

(N57 = vz
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Proof: 1) Sy is the isomorphism

(= (Tin (EM)2)FJimxr")iz
aa M4 7 = v9= Jim (v.M(2")— Jim

The second isomorphism exists because ( )t carries direct

limits of discrete groups to inverse limits of compact groups.

2) Because Z is a finite CW complex, x(Y~m(2") 2 is finite;

therefore, we have an isomorphism

(¥).Z % Jim x(Y.M(2"Y)2

x(Y) Z has a unique compact topology determined by this equivalence.

Then S, is the isomorphism

(N37 = (Lim (v1) 2)" = Tim x(v.1(2")Z
-

- 1im(Y M2") 92 = Y92

This completes the proof of Theorem 1.13 and of our abstract

discussion of Pontrjagin duality. We now make our first application.

Let the following realize the resolution given in 2.9 for

M{ 2k+ ):

J ® J ——

8 $

CoD eeIeT=TS
and let the following realize the resolution given in 2.11 for M, (2k+1):

5

LF e— lL —
S

1 —
Fa F = KZ
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Assume that 3g in both cases, is of degree one.

Note that we have maps wu, : Fo —_— I, so that we have a

commutative diagram:

0
« 9

Fl Foot
WlqQ 8 q-1

Lg—4 lg-1

Apply x to obtain a diagram

“a
Lq-1 s a

HY]

a9
&gt; K_ 9, k —

a-1 a a

— -—

4, L = KZ
0 2

qd! bo
LK=KT

Now, we want to record that dg : Lo ak+2 — Lo-1,8k+3 and

4 : Ka, 4k+2 me Ka-1,4k+3 are null-homotopic, but we need something
stronger. So we make a definition. For the moment, Tet us work in the

topological category, instead of the homotopy category. Suppose (in the

topological category) we have a commutative diagram

X
I

————, Y
A

I
A

v 9
©

-

Suppose further that we have null-homotopies F of f and G of g

so that we have a diagram:

axid

+
\ X

u

(x ] —«¥
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Then we say that f and g are concurrently null-homotopic. The

use of such things will become clear in the proof of Theorems 4.8 and

1.9

Lemma 3.11: For g &gt; 1, d. and d' are concurrently null-homotopic:

“1 Ak+2 Le Ly. ak+3
u

| d’ | q-1
&lt;¥,ak+2 —3

q g-1.,4k+3

Because all the spaces concerned are Eilenberg-MacLane spaces,

this is essentially the homology calculation done by Brown and Gitler [6].

Before filling in the proof, though, let us record a similar lemma for

the bo case.

Let the following realize the resolution given in 2.9 for

M(4k+3)

d
~q 1 —

q-]
3
1=«az,

And let the following realize the resolution givenin 2.12 for M, (4k+3).

§ $1
 ~~ F — z — 1 r = po

q-1 J

Q
J

»

o&gt;

Actually, let us be a little careful about the construction of

bo —&gt; F.. This is a map

!
 D0 —&gt; X KZL3

J
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where Ty; makes the following diagram commute.

JO u_ KZ;
|

¥ 43 ¥
KZ, x(Sq™) KZ,

1

(1 = generator of H*)

a5 is unique only up to homotopy equivalence of KZ5 . We want to fix

a particular Tas To that end, pick Tg bo — KZ . Then Tg; will

be the unique map that makes the following diagram commute.

a
*

\KZ5 —_—

~9 0

v | 43

KZ
J

Here the horizontal maps are multiplications of ring spectra. Then form

54 + bo —&gt; F., now assumed to be of degree one.

Now, we have maps u, : | ~~ — [_ so that we have commutative

diagrams

A Fa-1
sq Jig-1

8
a_ [o-1

Apply x to obtain

a d
1 _

Ao Le ym Ly = KE
so boa
9K — a. — Ko —&gt; Kk = x(bo)
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Then we have

Lemma 3.12: For gq &gt; 2, d, and d; are concurrently null-homotopic

L~q,3k+5
d,

"a-1,8k+7

| Yg-
K 5
g-1,8k+1

Yad
Kq.8k+5

d’
9

Note: Ky .n —_ Ko ,n+1 = x(b0) 11 is not zero unless n &lt; 4k+3. And, if

n &lt; 4k+3, Ky 0 is contractible.

I will prove 3.11. 3.12 is exactly the same

ProofofLemma3.11:Tobegin,wenotethreefacts.First,forallgq,

Ka and Ly are products of Eilenberg-MaclLane Spectra; second, for q &gt; 1,

Ug : Ly — Ka has a section s : Kq — Lg so that Hq°S = id; and

third, dg : Lg, ak+2 — La-1,8k+3 is null-homotopic (see Theorem 1.14).

These facts imply that dg : Kq,4k+2 — Kg-1,4k+3 1s null-

homotopic. We wish to show that there exists a null-homotopy of dq

with the following property: if we define D' to be the composition

DO! &gt;

o

sxid D’
Kg aksr X 1 &gt; Loa? X17 Laor aks

u
—q-1, K

a-] JAk+2

+her.

Yd &lt;Q (u xid) = Uj_q ° J.
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It is clear that we may do this. For the author's sake, if

for no other reason, let us belabor the point.

The following remark should clear up the issue. If g : KZ,

L, is a map (of any degree) so that Ug o g is null-homotopic, we may

assume the following composition is the one-point map (nq o g(x) =

basepoint for each x)

u

K(Zys 1) == Lg apes = Kg,ak43

If, in addition, g : K(Z,; n) — Lo, ak+3 is null-homotopic, we wish to

find a null-homotopy G so that Ug © G is also the one point map. Let Ja

Ky Then there is a 1iftingbe the fiber of u_ : L_ —a

J A
~

J
J

~~ ” ¥

KZ, —I— L,

Now one checks that there exists such a lifting so that

g : K(Z, 3 n) — Lg, ak+2 being null-homotopic implies that

gd : K(Z, 3 n) — Jq,4k+3 is null-homotopic. The remark, and the lemma,

follows.

Note: Jj gp43 = KZ 5 4k+2) and if

1 a "J
 t= Sa... Sad :kzZ, — KZ,

is a Steenrod Square with i, odd, then u, ° Sql is null-homotopic and

the 1ifting of Sq. to KZ _ is the composition



-54-

I i,-1 i,
36° = Sq co. Sad kz, — KE, — KZ

= = 2

Note that excess (I') = excess 1) -1

4. A Sequence of Spectra

In this section we prove Theorem 1.16. As a preliminary we

need some information on infinite loop spaces.

Let C_ be May's "little «-cubes” operad. For a CW complex X

let CX = ni C_(K) Xs Xn as described by May [21]. Letn : X —

CX be the natural inclusion and p : C_(C_X) —&gt; C_X be the map given

by the operad action. For details see [21]. Recall that a C_ space is a

pair (X,£) where £ : CX — X is a map such that the following diagrams

commute.

x —2
SN.

!
4 iN

~N

A X
+
-y

-
-

ha.

NY

LX ——

x
SX —

CX
0

&amp;

By commute, we mean "commute in the topological category."

Let Y be an Q-spectrum. Each Yo is an infinite loop space and

therefore has a canonical C_ structure.

Let X be another Q-spectrum. A map f X, — BN| C map

if the diagram
ph
.

Pw
nf

v £€

CY, mineBoo LI

2

(4.1)
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commutes. If f' : Xi —_— v. is another C_ map then the commutative

diagram

ofKi, -

K
| }

J 4.7 )

is a commutative diagram of C_ maps if 4.1 for f maps to 4.1 for f'.

This will happen if and only if the vertical maps i and j are C_ maps.

The following is our principal result on the structure of C_ maps.

Lemma4.3: 1) Let X and Y be Q-spectra so that X is a product of

cjlenberg-MaclLane spectra. If f : Xg —_ Yo is a C_ map, then there

exists a map of spectra F : X — Y that induces f.

2) Ifi:X— X" and f © Y—Y' are maps of Q-spectra

and f and f' are C_ maps so that

IR

j

a

commutes, then this diagram is induced by a diagram of spectra.

proof: May's work [21] or Lada's work [13] gives a spectrum BY and a

map BY, ——&gt; Y so that m8Yn —— mo! for g &gt; -n. Note that (BY), = Y-

If j:Y—Y' is a map of spectra, then there exists a map Bj : BY —

BY. so that

3]
BY ——

to|!
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commutes. Similarly, since X is a product of Eilenberg-MaclLane spaces,

we may use this construction to find a space BX, and a map

so that mo = moBXy for q &gt; -k. This, too, is natural. If

- — Yo is a C_ map then, there exists a map

3 BX —— BY

inducing f. This, in turn, is natural. F, then is the composition

 ~~
BBX _Bf | BY, — Y

2) follows because the appropriate diagrams commute.

We also need the following result, culled from R. Cohen [14].

Lemma 4.4: let F 1, ££ B be a fibration of spectra and suppose

the induced map B _, — F_ is zero. If f : X — E 1s a C, map so

that pf = 0, then there exists a C_ map p' : Ye er Fy so that ip' =p

We now recall in detail the results of Brown and Gitler. Let

the following sequence be the x-dual of the realization of 2.9 for M(K)

(refer to 3.11):

—_—)

d

 SL — Ly
d
— = xz,

Then we have from Brown and Gitler [6]
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Theorem 4.5: There is a sequence of spectra Ee gq &gt; 0 and maps

PL, Eq of degree 1 satisfying

1) E, = Lo = KZ and e; = d,

2) Ea a Eq a Lg is the fibration induced by e from

the contractible path fibration over Eq-1"
e P

-1 i

3) Lg A gq; + Lyoq 15 dg

4) eg, : La,2k — Eq-1,2k+1 18 zero.

5) Let Iq : E, — Eg be the composition of the maps

Then the sequence

XZ, E]
j P

Ja, SI

is exact.

Theorem 4.6: eq is uniquely determined (up to homotopy) by 4.5.3 and

4.5.4,

Proof: This is from Brown and Peterson 97

Lemma 4.7: let g€ [KZ,, L = (KZ, , KZ,] = A. Then g is in the

image of dy : [KZ,, L,] — [KZ,, L, if and only, for every CW complex

X, the induced map g : HAY — pek+ly is zero.

Proof: This is from Brown and Gitler [6].

Consider the diagram of spectra from 3.11

d dy
lg Tee TL = KE,

aq | d! gor ol d [95
 Kk LK — = —K = KZ

q-1 0 &gt;
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The top is the y-dual of the resolution realizing 2.9 for

M(2k+1), the bottom is the x-dual of the resolution realizing 2.11 for

M, (2k+1). Our main result is this:

Theorem 4.8: There are spectra € and maps ey : Kg il G,

and &amp;, : Eq men G, of degree zero so that

1) 6g = Ko = KZ and ey = dys 2, = ug.
2) Gy —— G, — Kg is the fibration induced by e from

the contractible path fibration over Ga-1"

3) Both these diagrams commute:

i

i P e
~ J 9 9

"q-1 . tq bq 0 ja-1
u uml Let Ve

aq gq 9G,-1 8, Kg Kq Gat
e' P 1

4) Kg Hs Gy-1 SHE Kg-1 1s dj-

5) For q&gt; 1, e Kq,ak+2 So By-1,8k+3 is zero, and e_ and

8) are concurrently null-homotopic.

Ae postpone the proof, for a moment, so that we may state a

similar theorem for the bo case. Consider the diagram of spectra from

3 12.

d

9 Fq-1 rn LL

a4
aL, -  a. —— —

Mo
K, = x(bo)

4

}
¢.

d!
1,
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The top is the x-dual of the resolution realizing 2.9 for

M(4k+3), the bottom is the y-dual of the resolution realizing 2.12 for

M, (4k+3). The main result in this direction is this.

Theorem 4.9: There are spectra Gq and maps e, PK

1 and La : Eq — G4 of degree o so that

1) G, = Ko = x(bo) and ey = dys fo = Uy

2) 6,1 —— 6, 31k, is the fibration induced by e! from

the contractible path fibration over Ga-1

3) Both these diagrams commute:

1 P

“g-1 = Sa — q
TT “of

6-1 a Gq Hes Ke
e' P

4) Kye, a-t, qq 15 48
5) For q &gt; 2, eq : Kq,8k+6 — Bg_1,8k+7 is zero, and e, and

e! are concurrently null-homotopic.

[ will prove 4.8. The proof of 4.9 proceeds verbatim.

Proof of 4.8: We proceed by induction on gq.

q=1: EN and %, are determined by 1); Gy and 29 by 2) and 3).

3) follows and 4) is a tautology. 5) follows from 3.171.

3
]

qg &gt; 1: Now suppose that, for all p &lt; q, we have constructed

2. and satisfying 1) - 5). Then we have a diagram
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| d
rq+] n L -

} : |
oo laa

K + "5
g+1 -lr x a

q Gq-1

I Y ? G .
q | ~~ J- l 0) g 0 qi : E 1LI a 1 1 .-

Then we have a diagram

-q J

¥ +

Ky — 6G, — 6,4

As in [6], we may use the facts that Pq-18qdq+1 = d.d0s7 = 0,

4.5.5, 4.5.4 and 4.7 to conclude that €qdg+1 2 Loe1 — Ea-1 T1ifts to a

nap ¢ : La — Ly so that Jqdq? = €qda+1-

Let s : Kg+1 — Lg be any section of Ug : Ugs1S = identity.

Then I claim that ¢' = Uy 4s is a 1ift of edq+1 to Ky (¢' K+ —

 .,

“irst, €qdg+1 = €qdq+1 JL

2.1 €dg+1°

Second, Jqdquq 0s = 2q-13q9748

1 ,-18q%+1S

Now note that the following diagram need not commute:

1941
Tq]

9

v

a+ ms K
Uq
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Consider ¢ Uger * ui¢ : Loe — Ky. Since (ups (Kz, , Li] —

[KZ, : Ky Js is surjective, there exists a map a : Let —&gt; Ly so that

U0 = Ug + Ugo. Set ¢" = ¢ + a. Then "Ug = uso’.

And, ¢" is still a lifting of 2qdq+1 to Ly This 1s because

Jq-191 = 0. Which is exactly the point: apply 3) in 4.8 for p &lt; g to

conclude that €qdq+1 and @qdg+1 are concurrently null-homotopic. So, we

may conclude that there exist maps f and f' so that the following dia-

grams commute:

E
 8

 7 IP,
7 San,

a+1 =

fq a
Py bet|

~ f!
K —-—r K K —_—tl dq 9 q+1 8

b
-Q

 7

Now, because d+ : Lott, 4k+2 ~~ Ly,ak+3 and 4 : Kat, 4k+2
Kq ak+3 are concurrently null-homotopic (3.11), there exist maps y and

y' so that the following diagrams commute

Lot1,8k+2 —

a Et JAk+3 _
=, 4k+3 —_—g+1,4k+2

Los, ak+2 — Eqo1,ak43

loca lier
Kae1.4kt2 — Sqo1.4ke3

7q-1,4k+3
b

Gq ak+3

(4.10)

I claim that this last diagram (4.10) is a diagram of C_ maps. Again,

let s : Kgs1 — Lau be any section of Ugt1” Then s induces a C_ map

St Kot ake La+1,ak+2 which is a section of (the unstable) Ue
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y' = u =Y q+1° Aye

y is a C_ map by Lemma 4.4; therefore y' is a C_ map.

Now, apply Lemma 4.3 to conclude that there exist maps g,g'

so that the following diagram commutes.

i"“q+1 ps Eq-1
a4] g 1%

t 1 G
Ka+1 g-1

First note that the map

9 : Lot — tq

has the properties that d+ = py (f - ig) = Pf and that

i 79 La+1 Jaki? TO Ea 8k+3

is zero. Thus, by 4.6, f - i g = ep Set atl = f' o- 1,9’ : K+ —

8g Property 2) of Theorem 4.8 defines Gat and 3) defines Lat” 3)

is satisfied. 4) follows because

)
ed 2g = Pf = get) =p fos J+1

and 5) follows from the definition of eq

This completes the induction step. The theorem follows

Remark: The two principle ingredients in this proof are the facts that
u

|) for q &gt; 2, there is a section of u, : L 9, &lt;

and
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2) for q &gt; 1, that do and dit are concurrently null-

homotopic

Jd +]

q+1,4k+2
d!

q+1Rg+1,4k+2

Lg, 4k+3

Kg. 4k+3
So, there is no obstacle to applying these techniques to proving

Theorem 4.9; therefore we consider 4.9 to be proved.

3 Construction of B, (2k+1) and B, (4k+3)
In this section, we prove our main theorems.

Let me first describe how to produce a spectrum B, (2k+1) SO

hat

1) H¥B,(2k+1) = AALS, X(Sq'), 1 &gt; 2K.

2) If 1 : B, (2k+1) — KZ classifies a generator of

10 (B, (2k+1), 223) then 1, : B, (2k+1) RC Hp (Xs Z3) is onto for n &lt; 4k+3.

3) If B(2k+1) is the z, -Brown-Gitler Spectrum, then there

a map B,(2k+1) — B(2k+1) inducing the obvious quotient in cohomology.

Reaching from Theorem 4.8, we have constructed, for every q,

A diagram

i -
} 4

tg-1

We take the x-dual of this diagram. Y= (Eq) Xq = (Gg)
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lg = x(Lg) and Fa = x(K,) Then we have a diagram

nL -
0-

Y
q-1

D
 gq ¥

1 £

a ja-1

i+ oe 4 Jay Jap ay
q q q--

Notice that, for every q &gt; 0, Ig is a product of Eilenberg-

MacLane spaces of type KZ, , for every q &gt; 1, Fa is a produce of Eilenberg-

MaclLane spaces of type KZ, , and Fo = KZ . In fact, if

3, = €q ° 1gu1 Fa-1 — Fy

*

then, in cohomology, 5, : Ag A(q,k) — A a A (g-1,k) (8, : Ag

A (1,k) — A/ASq)) is the map of 2.11. Assume p_ is a fibration for

each ag.

Define B, (2k+1) = lim Xa
Then, of course, we have a map

3 (2k+1) = Jim X, — Jim Y_ = B(2k+1)

proposition 5.1: HB, (2k+1) = A/A(Sq', x(Sq'), 1 &gt;

Proof: Since we are working with mod 2 cohomology

2k}

=n 2k+1) = i *Lim H*x_
We will show that

wt * L
i j* 8]
9 HX —d HET —— H*F,
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is exact where ig = (py ° tes Pgiy © Pg)* Thus we have a sequence

0 — A/ALSG', x(Sq') 1 &gt; 2K} —&gt; H¥K —&gt; usT_

for every q. Thus Tim HX, = A/A{Sq, v(Sq'), i &gt; 2k}. The sequence is

exact at H*Xq- (The reader is advised to draw diagrams.)

We prove this by induction. This is true for gq = 1. Suppose
*

it is true for gq - 1. If 14V = 0, then there exists a w so that Pg =v,

* * xk _ }

Then e 11,qw= 0 (because €q-17g-1 = 0); therefore

kx LR x x = 0
9g-11g-1" - 19-2%g-1"g-1" -

*

So there exists x € H*F so that 8X = TqoqW- Then

x * * d . *
a (w - EqX) = pW =V an iq - EX) = 0

So exactness at H*X, follows from exactness at H*X _,. The sequence is

axact at H*KZ; .
*

Let v € H*KZ,, and suppose qv = 0. Let s be the least integer
*

so that Jv =0. Ifs=1, vis in the image of 57. If s #1, then
Jk _* ] kk _ kk x

Jg_qVv = &amp;gW for some w. Since 1. 1Jg_7 = 0s 1g 13g qv = OW = 0. Thus
* * * ] ]

there exists x, so that 6. x = w. Then, 0 =e 8 Xx =J _4V. This

contradicts the choice of s, and completes the proof.

Theorem 5.2: Let Z be any CW complex. Then consider the following

sequence

0 ————

(Pp, )u
(Fg)2— (X),Z — (Xqoq)pZ — 0
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This sequence is split short exact for n &lt; 4k+1 and short exact

for n = 4k+2. If n &lt;4k+1, the splitting is natural in Z. If n = 4k+3,

(Pq) is surjective.
Proof: We first prove the result for finite CW complexes Z. By the

properties of Pontrjagin duality (3.9) and of cohomology, we need only

examine the sequence

LZ ,G Hess
a _1°n] RG [Z ,Gq,nd [Z ,Kqn % [Z ,G

qg- 1 n+

Since ey Kan — Ga-1,n+1 is zero for n &lt; 4k+2, Theorem 4,

that for every connected finite CW complex Z

J —- [2,641 pd —&gt; [2.64 pn] —* [Z:Kq nd] -— 0

8.2 mplies

is naturally split short exact for n &lt; 4k+2. Thus, using the suspension

isomorphism

7, ~L Gg 1 (rz, Bg ,nt1-

(for example) we have proved the theorem for finite CW complexes.

For arbitrary CW complexes Z, let {Zz} be the directed system

of finite subcomplexes of Z. Then, for any homology theory K,, K,Z =

1im K,Z . Since lim is an exact functor and because the splittings were
— o —_—

natural. the result follows for any CW complex.

Remark: We can only say that

) — LZs 8,7 axspd = [Zs 6g apipd = [Zs Ky aged — 0
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is split for connected CW complexes because Gy A+? is not a connected

space. Tol, ak+2 is a group but it does not follow that

 284,ak+2 = To8q-1,4k+2 X Tog,ak+2

let me now describe how to produce the spectrum B,, (4k+3).

Recall that for every integer j we chose (in Section 3) map

43 so that the following diagram commutes

i.
4] KZ;

| 1} 4; |
(Z, x(sq9™) KZ,

——

43 induces, for every CW complex Z, a map (145) : bo, Z — Hp-a3(Z5 Z)

Then B,, (4k+3) has the properties that
1) H*B,(4k+3) = A/A(Sq', Sa°, x(Sq'), i &gt; 4k}.

2) There is a map B,, (4k+3) 25bo so that B,, (4k+3) “£5 bo LN

KZ, classifies the generator of H*B, (4k+3) and that the map

wet B,(8k+3)7~~ bo,

is onto the subgroup 0 ker(1,,)« for n &lt; 8k+7 and any CW complex Z.
j&gt;k

3) If B(4k+3) is the z, Brown-Gitler Spectrum, then there

iS a map 3,(4k+3) — B(4k+3) inducing the obvious quotient in cohomology.

Reading from Theorem 4.9, we have constructed, for every q,

a diagram
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: E — =i, F
q-1 ~~ q qa

; | }

Gg — 8g — Kg — G_;

We take the y-dual of this diagram. Yq = (Eg) Xq = x(Gg)

= x(L,) and F_ = X (Kg) Then we have a diagram

p i €

fa-1 ta 19 fq-1
| p | i | ce. +

 A

For every q &gt; 2, Fa is a product of Eilenberg-MaclLane spaces of

type KZ, , so that H*Fy = A 8 N*(q.k); Fy is a product of Eilenberg-

MacLane spaces of type KZ, so that H*F, = A/ASq’ a A*(1,k), and Fs = bo.
7 *

If 5, = €q © 1g-1° Fa-1 — Fa? then 3a is the map of 2.12.

Define B,(4k+3) = Jim Xq (assuming Pq is a fibration for each

1)

Then we have a map

3,(4k+3) = Jim X, — Jim Y= B(4k+3)

We have the following

Proposition 5.3: H*B,(4k+3) = A/ASq , Sq°, x(sq'), i &gt; 4k}

Theorem 5.4: 1) 8; + Fy, —= Fy is the map X ih
Thus we have a fibration sequence

X14—bo—xXKZ;
«

: bo — lla

: KZ5 ‘
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2) Let Z be any CW complex. Then consider the following

sequence.

1 Pd
~

N
(P_)x

(Fp — (XZ —= (X,_),Z — 0

For q &gt; 2, this sequence is naturally split short exact for

8k+5, short exact for n = 8k+6. If n = 8k+7, (Pg) s is surjective.

Lemma 5.3 and Theorem 5.4 are directly comparable to 5.1 and

3 2 Theorem 5.4.2 says that, in particular, for any CW complex Z

B,(4k+3) Zsas} (X; )Z

is onto for n &lt; 8k+7. 5.4.1 then implies that the image of

, A
\

{[ — bo:

is Nn her (7). Thus the maae J

Dg 2
- Ak+3),Z — h0 2 NN &lt; 8k+7

is Nn her(i,.),.
i&gt; 43

This completes the proof of Theorems 1 and 2 of the introduc-

tion.
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6. mB (2k+1) and my.Bo (4k+3)
As the first and simplest application of our structure theorems

(5.2 and 5.4), I will show how to compute m,B.(2k+1) and m,B,(4k+3) in a

range.

The first of these is easy. Recall that i C A is the left

ideal generated by Aoi 1 and that Morel = AMA» ces Aoi} C A is the

left ideal generated by Ais i &lt; 2k. Furthermore, A is bigraded with each

A; having bigrading (1,1). Let (A/R n Aypsq)y, De all elements of

AJA ND Mori of bigrading (n,r), r &gt; 0.

Corollary 6.1:

ToBq (2k+1) = Zs

 rm. 8, (2k+1) = (A/A 0 Aore1)n 1 &lt;n &lt; 4k+

Proof: Set Z = 50 in Theorem 5  9?

Remark: Let B(2k+1) be the Z, Brown-Gitler Spectrum and M(2) the mod-2

Moore space. Then, we will, in Chapter II, Section 2, see that

&gt;
W (2k+1).M(2) = B(2k+1)

From this we will be able to conclude that

Theorem 5.2 only gives us a set isomorphism between these groups.

Now let us consider B, (4k+3). Let A' C€ A be the left ideal
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generated by admissible monomials Ai-145-1" Recall (Lemma 2.10.3) that

a Z, basis for A' is given by all admissible monomials Ais wees Aq with

q&gt;2, and 1-1 = 1 mod 2, and i, = -1 mod 4. Then, Theorem 5.5 tells

us that

m.By(4k+3) = m Xo x (A'/A' 0 Agia) Nn w pl Wt5

X is the first stage in the tower whose inverse limit is

B, (4k+3). We have a fibration sequence

X14
(. — bo —— X KZ;

j&gt;k

Let us compute 7, X; and, thus, m4Bo (4k+3). Recall that

T “0

4

=)
Zz, nzl2 (8)

n=0,4 (8)

{

| 0 otherwise

Let By be the generator m,bo.

The following is an obvious first step

Lemma 6.2: 1)

for j &gt; 1.

Ig : bo — K77 J
induces multiplication by 2% in homotopy

2) Tgi4a bo — KZ,

homotopy for j &gt;O.

Proof: We show 1) for j = 1 and 2) for j = 0, then use Bott periodicity

to extend the results. In the Adams Spectral Sequence converging to

a 143

mebo, B, is on the three Tine and 8, is on the four line. See [17].
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Therefore, i, induces multiplication by 2X with k &gt; 3 and ig induces

multiplication by 2% with 2 &gt; 4. We wish to show these inequalities

are strict.

let i= X i,.:bo—
j&gt;0 4

oJ
X x(Sq ) + KZ, — X
50&gt;2

Then we have commutative diagram of fibration sequences

ho —» XKZj
Lo
E, — KZ, XKZ,

Xq is the first stage of the tower whose inverse limit is

B, (3) = 59, E, is the first stage in an Adams Resolution for s°. Thus

we have a map

3 i fy or Ey

Let v generate m,S° = Zg. Then fou # 0. Thus mX; = Z _ with s &lt; 3.
2

Let o generate mw s® = Zz... Then f,o # 0. Thus mX;, = Z with t &lt; 4.
7 16 71 ot —

So, ig induces multiplication by 8 and ig induces multiplication by 16.

Let 84 s8 —&gt; bo be a generator of mgbo = Z, . Then we have a map

b : 58 bo 8, bo,.bo —

so that b, : m 5° bo —&gt; bo is an isomorphism for n &gt; 8. This is the

Bott periodicity map [31]. Iterates produces maps

N 2 583 “bo —_—— YO
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and

= nd = nd

8g54+4 = PxBg and Bgsig = DiBg

(up to units in Z3). Finally, using the ring spectrum properties of

bo, and our choices of ia; (see Section 3, before 3.12), we see that the

following commute

Abo.b0 ———— bo

ile| (hig) [8344
KZ KZ; — KZ
KZ 2

\bo.bo —

J Cy

J (nig)aig
0

|'8j+8
ILS

The result follows.

Lemma 6.3: Let X. be the fiber of X 1i,. : bo — XKZ; .
- j&gt;k 4 2

 Tr20 for n iad

~~ Ak +7

Z, 43

Z,
Z, 43+3 n=

otherwise

and for n &gt; 4k+3
8j+1, 8j+2

 mT X,
n

Then

Let an generate me ky n &gt; 4k+3 and let n generate m,S°. Then
_ 2 = oAj+2 ya a

nagie1 = %gj+2° and n O41 2 Ogi+3 (up to a unit in Z3).
Proof: The first statement follows from 6.2. We need to prove the

composition results. We consider all k at once, and let XK = X for

B,(4k+3). Then
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K ~ k+1
max = TX

for n &gt; 4(k+1) + 3. The isomorphism is induced by the obvious map. In

TX, Noy = Qo and 2 = Beas. This is because the inclusion

wed
)

is a homotopy isomorphism for dimensions less than six.

Now for any product of Eilenberg-MacLane spaces, let

204d: XKZy — XKZ

be 29 times the identity. Then we have a commutative diagram

 =» 5% po — x kz,

5) [ok 2% iq]
GK — bo —— Xx KZ,

HK is the =! iterate of the Bott periodicity map.

] 0 2k .

Let ¢, : To-8k A — mx be the induced map. Then
ak

Duty = Ogyips Pulp = Oyun ANA dug = 27 cag),3. THUS Nagy3= agp»
2 = a.08k, = o4k+2

n Ogio = 4.2 Ogp +3 2 Cg +3” The result follows.

Corollary 6.4. For n ~
~ dk +7

T
- ) (4k+3) = m,bo

For 4k+3 &lt;n &lt; 8k+5,
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7B, (4k+3) z

,

Z 43 x (A*/A' Nn Mis3'n n= 8j-1

z, x (A'/A ND Mss) n= 8j+1, 8j+2

Z 433 (MAO Agus) n= 8343
(A'/A ND LTE otherwise

Let a generate the cyclic summand of mB, (4k+3) that does not arise from

the A-algebra and let n generate m, SO. Then Nog 341 = 0g 542 and nag 41 =
43+2

Proof: In Theorem 5.4,
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7. The Construction of By(pk+1)

In this section we outline the changes needed to construct the

odd primary analogue of the spectra B, (2k+1)3 that is we will prove

Theorem IV of the introduction. The techniques are the same and are

modelled on Brown and Gitler [6] and we refer often to the R. L. Cohen's

construction of odd primary Brown-Gitler Spectra ([14], Chapter I). Fix

a prime p &gt; 3. The following is Cohen's result. Cohomology has Z,

coefficients.

Theorem 7.1: There exist spectra B(pk+1) so that

1) H*B(pk+1) = A/ALx(g%p') : i &gt; ky &amp; = 0, 1}

2) If B(pk+l) — KZ, is the generator of HOB(pk+1), then,

for every CW complex Z,

B(pk+1 ).Z — H 2

is surjective for n &lt; 2p(k+1)

Note: Cohen calls the spectra B(pk+1) by the name B(k). However, his

work implies the existence of spectra B(pk) with

4 * Jy ok) = A/A{x (gp) : i + — kK]

and

B(pk) Z — H .

onto for n &lt; 2p(k+1) - 3. Then B(pk) would be analogous to B(2k) and
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B(pk+1) analogous to B(2k+1). This is the reason I have chosen the

notation in Theorem 7.1. See also 7.4 below.

We wish to prove the following result.

Theorem 7.2: There exist spectra B, (pk+1) so that

1) HB, (pk+1) = A/ALB, x(PT) : 1 &gt; K)

2) If B, (pk+1) — KZ, is a generator of HO (By (pk+1) 3 zg) ,

then, for every CW complex Z.

3. (pk+1)2—H,(23 Z7)

is onto for n &lt; 2p(k+1) - |

3) There is a map B,(pk+1) — B(pk+1) inducing the obvious

quotient in homology.

The first step is to provide resolutions of various modules

over the Steenrod Algebra. Our tool, as before, in the odd primary A

algebra of [4]. We recall these results.

The p-primary A algebra is a differential bigraded Z, algebra

with generators An-1 (n &gt; 1) of bigrading (2n(p-1)-1,1) and Ho (n &gt; 0)

of biagrading (2n(p+1),1). Relations in A are completely determined by

YMAk _k-1" -
i” n+m-k-1"pm+k-1 = 0

k Hntm-k=12 * :

TM) pk-1 + 20 Anamk Hnam-k-12 m-k-1"pm+k-1 ~ 0

(Mu p(m+1)+k-1 ~ 0
k/Hn+m-k-1"n-k-T"0 (m+1)+k=1 =

n&gt;0,m&gt;1

n&gt;0,m&gt;1

n&gt;0,m&gt;0

n &gt;0,m&gt;0

and the differential is given by
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- n

M_1 = 202 ork

n
= 10 Meet LG okaBn-1 = LOM koh k

As with the 2-primary case, one has certain conventions for

this algebra. We write v, to mean either Ag OF Hp and, if I = (iq&gt; Cees

i) is a sequence of integers with i &gt; -1, then we write

Les VU.

if t,= =I, thenv =u _,. v. is admissible if

r
| nt] te} Vy = A
Une FO Vv, = ’

i Hy
. i r

p(i,+1) &gt;

Admissible monomials form an additive basis for A. The relations and

differential may be expressed in terms of this basis. See Cohen [14].

We delineate a few ideals in A.

Lemma 7.3.1) Let Ak = Mu_1s Ags Ms «ees Wy _osA 135 this is the Teft

ideal generated by H_qs +e Me-1 Then, an additive basis for Ak is

send vi admissible with 1 &lt; k-2 if vy, = Mi or i, &lt; k-1 if Vi

A
1

2) Let A+ = Mu_qs Ayo Hos von Meo 2M? Then, an

additive basis for Doge is Vi “omy Vig admissible with 1 &lt; k-1.
3) Let A = MA Ays «evs Apa ...}. Then an additive basis

J

for A is Vv 45 «.., Vs admissible with Vs = )
J a ]
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4) Ake Moke and A are closed under the differential.

Proof: 1) and 2) are in R. Cohen [14]. All the results are easy

consequences of the relations as given in [14] and the differential as

given above.

Recall that the dual dual mod p Steenrod Algebra is as an

31 gebra-

*~~4 Ele, es «oes ) RZ (ty, oon)

This is an exterior algebra on symbols e; tensor a polynomial algebra

on generator ts. e; and t. are the Hopf algebra conjugates Milnor's T;

are £. respectively. See [29]. e; has grading 2p1-1 and t. has grading

2(p'-1). The (conjugate) coproduct structure of A* is given by the

formulas

_ pV
p(t) =] tym th,

pYbles) =) es;rt: s+1ae

A* has a weight function w: given by the requirements that

a(t.) = wie) = pl, wie) = 1, and w(xy) = w(x) + w(y).

If KZ, is Eilenberg-MaclLane Spectrum of the integers completed

p, then HLKZ] C A* (as a comodule) and is given by

 AZL = Eleqs ey, on) BZ, [tgs ...]

That is, an additive basis for H_KZZ is all x € A* so that w(x) = 0

mod ~
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We are concerned with three cyclic quotients of the Steenrod

Algebra. Set

M(pk) = A/ALx(8P') : pi + - JK

M(pk+1) = A/ALx(BSPT) : 4 &gt; k, &amp; = 0,1}

1. (pk+1) =pk+1) = A/A{B, x(P') : i  c

If M is a module over the Steenrod Algebra we give M* - the

Z, dual - the conjugate comodule structure.

Lemma 7.4: 1) M(pk)* € A* as a comodule and has an additive basis

consisting of monomials x € A* with w(x) &lt; pk.

2) M(pk+1)* C A* as a comodule and has an additive basis of

consisting monomials x € A* with w(x) &lt; pk+I.

3) M, (pk+1)* C H KZ] and has an additive oasis

monomials x € HKZ | with w(x) &lt; pk.

Proof: 1) for instance, proceeds as follows. Let A(1) be monomials of

length one in A. Define a Z, vector space map ¢ : A* — A(1) by requir-

ing that o(t]) = Apo1e tle,ty) = Hn and that ¢ applied to all other

monomials is zero. Then let A(1,pk) be monomials of length 1 in MAok

and define a map , : A* — A* gp (1,pk) by the composition

3. + A* Ls Ax gp A* — A* g A(T) — A* 8 A(1,pk)

One now checks that the kernel of 3, is all monomials x € A* with w(x) &lt;

pk and that the following sequence is exact.
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Ar A*(1,pk) — A — M(pk) — 0

The others (2 and 3) are proved in a similar manner.

Now, let A{q,pk) be monomials of length g in ADs and let

A(q,pk+1) be monomials of length q in MA eqs and Tet A(q.pk+1) be

monomials of length gq in A/A N Aok+1

Theorem 7.5: There exist comodule maps 3 so that
0 0

1) 0 —&gt; M(pk)* — A* —— A* g A(1,pk) —— ...
3

— A* » A(g-T,pk) == A* a A(q,pk)

is a resolution of M(pk)* by comodules over the dual Steenrod Algebra.
d

2) 0 —&gt; M(pk+1)* —&gt; A% 1 A% g A(1,pk+1) —&gt; ...

a
. A* g Ala-1.pk+1) 4 A* » A(q.pk) — ...

is a resolution of M(pk+1)* by comodules over the dual Steenrod Algebra.
3d

3) 0 — My (pkt1)* — H KZ px og R(1,pk+1) — ...
A 3 A

— A* g A(g-1,pk+1) —— A* @ A(g,pk) — ...

is a resolution of M; (Pk+1)* by comodules over the dual Steerod Algebra.

Note: 1) and 2) are in [14]. The methods of Section 2 suffice. One

should refer to [14], Chapter I. Clearly, there is a map from resolution

3) to resolution 2) inducing the inclusion M,(pk+1)* C M*(pk+1).

Lemma 7.6: Let
*

X be the Z dual of
x

v , then S, is given oy:
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*_ - 1+], = - i+1y =

SqV1 = ) vi (Avg) x(P ) V3 + ) vps) x (gp ) V3

Here Vy is the Z_ dual of vy, both sums are over i &gt; -1, and A_;v; = dv;

After producing these resolutions (7.5 and 7.6) the next step

in our program is to extend Pontrjagin duality [5] to p-complete spectra.

However, the reader sensitive to generalizations will have realized that

there is nothing special about the prime 2 is our discussion is Section

3. We could just have easily used an arbitrary prime p. We need say no

more.

Now, let Ia be a spectrum so that Iq is a product of Eilenberg-

MacLane spaces of type KZ, and H*I = A 8 A*(q,pk+1). I; = KZ, .

Similarly, let Fo (q &gt; 1) be a spectrum so that Fa is a product of

Eilenberg-MacLane spaces so that H*F = AR A*(q,pk+1). Fo = KZ . Then

there exist maps Sq : Fad —_ Fa and 5 : L-1 — Iq (gq &gt;1) so that
Sq is the map of 7.6. And, there exist maps on : Fa wee I, so that Wo

is the obvious quotient. Then we have a commutative diagram

0
E &lt;a

q
JV)a) §
I

q-1 "00 o &lt;

0
q-1

19-1 —

1

n
1, ~—

F
0

0,

J

Let x be the Pontrjagin duality functor. Set L = x(Ig) and

K, = x(Fg)- If d, = (8) and We = X(wg)s then we have a diagram

R

Tq -q-1

gq —_—K 1 .

=

J
Ww.

&gt; “5 — KZZ

Wy
L

Kg = KZ
)
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Referring to Section 3 for definitions and techniques of proof, we record

the following result.

Lemma 7.7: Let j = 2p(k+1) - 1, then we have a diagram (q &gt; 1).

Lg,i-1 7 Lg-1.3

"a 9, |"
Kg, 3-1 Kq-1 sd

Then d, : La.3-1 te La-1.] and Ka, 3-1 — Ka-1,; are
concurrently null-homotopic.

The fact that dy : La,5-1 —&gt; Lo-1,j is null-nomotopic is in

[14]. See the next result.

From R. Cohen's work we cull the following easy, +

Theorem 7.8: There is a sequence of spectra Eg, q

degree 1) e L — E-1 satisfying

1) E, = Lo = KZ, and e; = dy
2) Eq LR Eq —3 Lg is the fibration induced by e_ from

the contractible path fibration over Eq-1°
e p -1

3) Lg thn Eq-1 PH Lyoq 1s dg
4) e, La, 5-1 sre Ea-1.3 is null-homotopic (Jj = 2p(k+1) - 1)

5) Let Iq : E, = Eq be the composition of the map ig: Eq RR

. Then the sequence
»

y

is ax3ct.

WZ \ £,] RRR LKZ|
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We also have the following from [14].

Theorem 7.9: eq is uniquely determined by 7.8.3 and 7.8.4.

So, now, referring to [14] for any other necessary lemmas, we

can now prove the main result.

Theorem 7.10: There are spectra Cy and maps e, : Kg —

1 and 2, : Eg — Gy of degree zero so that

1) Bo 7 Ko 7 Kops and ey = dys 2, = WwW.
2) Gyo1 4a. Gq —9, Kg is the fibration induced by e, from

the contractible path fibration over Gg-1

of degree

3) The following diagram commutes:

] P e
dg qa, 9a,

jal Ly fa-1fot, fa, Pan [ee
9, —4a, 9,CE Gg Kg Gq-1

e p -1
Kg PH Gg-1 = Kg-1 1s

5) eq Ka,3-1 — 6-13 is null-homotopic (j = 2p(k+1) - 1).

We can, with 7.10, construct By (pk+1).

Referring to 7.8, let LT X(Eg)- Recall that Ig = x(Lg)

Then there is a tower

Ke

p
9 Y,_: meme

, PD _
a — Y, = KZ
L

(7.11)
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We assume each is a fibration and set B(pk+1) = lim Y .e each p, n and set B(pk+1) = Jim 2

This is Cohen's construction. So, referring to 7.10, let xq = x(Gg)-

Recall that F, = x(K,)- Then there is a tower

Pq,
Kao — ea &amp; 2

r
Py
— X, = KZ,-

nN (7.12)

Assume each Pq is a fibration and that i is the inclusion of

the fiber. Then, set B, (pk+1) = Lim X,- Obviously, 7.10.3 insures that

there is a map from tower 7.12 to tower 7.11. Thus we have an induced

map B, (pk+1) — B(pk+1).

We now record our last two results. This will complete the proof

of 7.2 and, thus. of Theorem IV of the introduction.

Proposition 7.13: H*B,(pk+1) = A/AL8, x(P') : i {rs,

See Proposition 5.1

Theorem 7.14: Let Z be any CW complex. Consider the following sequence

of homology theories (q &gt; 1).

(F
i p .

1) aL —, (Xq)nZ Se (Xg-1)nZ

"hen:

1) This sequence is split short exact for n &lt; 2p(k+1) - 3.

The splittings are natural in Z.

2) The sequence is short exact for n = 2p(k+1)

3) If n= 2p(k+1) - 1, Pa. is surjective.

7
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This completes the proof of Theorem 7.2.

Clearly one can use 7.14 to compute mB, (pk+1) in a range -
- 0 . Fal ”~ ~~ Pa

set Z = S°. Define (A/A DN Aok+17n to be the elements of A/A N Ake of

bigrading (s,n) where s &gt; 0.

Corollary 7.15: For n &lt; 2p(k+1) - 3

a
1 q (pk+1) = (R78 0 nq), +
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Chapter II

The Construction of B, (2k)

The next five sections are devoted to the construction and

analysis of the spectra B. (2k) promised by Theorem II of the Introduction.

The techniques are substantially different from those of Chapter I. It

is true, however, that we depend heavily on the results of Chapter I and

an important step in this new chapter is a characterization and exploita-

tion of the homotopy type of B, (2k+1). We begin - in Section 1 - with

an outline of our ideas and proofs, but leave long proofs and a welter

of details to the later sections. The final section discusses the appli-

cation of B, (2k) to the study of 4k manifolds. We will often refer to

results in Chapter I and will do so by number; the symbol I.4.3 refers

to Lemma 3 of Section 4 of Chapter I.

1. Qutline of the Proof

As we mentioned, our approach to the construction of the

spectra B, (2k) differs from that of Brown and Gitler. To explain a bit,

let B(n) be the nth Z, -Brown-Gitler spectrum. Then, the work of Brown

and Peterson [9] implies that there is a cofibration sequence

30-1) —&gt; B(n) 1"B[5] Pot

¥ 1)

which induces, in cohomology, the seauefncs

 J) vi

n

5] x(q), M(n) — M(n-1) — 0.
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Recall that H*B(n) = M(n) = A/ATY(Sq) : 1 &gt;n}. The maps p and j are

in no sense unique; in fact, if p : B(n-1) — B(n) is any map that

induces, in cohomology, a non-zero map H*B(n) — H*B(n-1), then the

cofiber of p is 185]. See [9]. Similarly, one would hope that, given

a suitable choice of NI there existed an p so that (1.1) was a cofibra-

tion sequence. And, in fact, this is the case - at least for n even.

This, then, is our method. Fix k &gt; 1. We produce a spectrum

&gt;(k) and a map

] 8. (2k+1) — Te lek)

and define B, (2k) to be the spectrum so that

~

J
2%) —&gt; By (2k+1) —K 72K Tok) 1.2 }

is a cofibration sequence. Then there will be a short exact sequence in

cohomology

io
— HEC(K) —K— My (2k+1) —&gt; HAB, (2k) = M,(2k) — 0 (1.3)

H*B (2k+1) M, (2k+1) = A/ALSq, v(Sq") : i &gt; 2k}. Producing C(k) and a

map Jy with the right homological properties is relatively easy, but that

is not sufficient. Because we wish to discuss the homology theory B, (2k) 4s

weneed a good hold on the homotopy theoretic properties of Jp This

requires a little more work.

To begin: (1.3) tells us what H*C(k) should be. Recall that

My (2k+T) has a Z, basis consisting of elements (5q%sq!) where (23,1)

is admissible and 2j &gt; 2k. Furthermore, if 2k = 2°(2t+1), then
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Mi(2k) = M,(2°(2t+1)) =
s i

A/AISq, x(Sq° (ta) Sq” (2841541y, x(sq¥) = 3 &gt; 2k, 1 &gt; 1)

Thus M, (2k) has a Z, basis of elements

i) x(5a“3sql) with (2§,1) admissible and 2j &lt; 2.

HH) x(sa2 (QE) gq? (tg236TyLien(25.1)admissible
and 4] &lt; 21 (2t+1)

The following is an immediate consequence of this  awe

Lemma 1.4: Let N(k) be the kernel of the projection M,(2k+1) — M, (2k).

Then, as modules over the Steenrod Algebra

NK) =X My (2171 (2641) - 1) x. XM (241) B x,
1&lt;i&lt;s

where x is a class of grading (2° + 2S-1 +... + 21) (2t+1) + 1.

0, j &gt; 0). The map from N(k) — M; (2k+1) is given by sending

J(Sq X

;
v(5q2s(2t+1) 5¢° (2t+1)g TyY ——

Lemma 1.4 now informs us what C(k) should be; in fact, define C(k) to be

(x) = v 70g 21-1 2ee1) = 1) v 73D (2441)

Here a(i) = (2571 +... + 21)(2t+1). Then H*2?K c(i) = N(k).

The next step in the proof is to produce the map J

B, (2k+1) — yoktl C(k). Because we are working in the stable category,

we need only produce maps
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fio By(2k+1) — Pe21ote)-1)ss &gt;

and

Fo Ba(2ke1) — 7PM (2p)

b(i) = a(i) + 2k+1.

Producing maps between Brown-Gitler spectra is, in theory, easy.

Recall that B(n) is defined to be the inverse limit of a tower of fibra-

tions (e_ of degree one; that is ¢ is amap Y _; — ZI.)

-

! —_—

‘a-1
Pp.

. »

’

2,
3)

Cy

I is a product of Eilenberg-MacLane spectra of type KZ, ;

H*1 = AR A*(g,n); and, if i : Iq — Yq is the inclusion of the fiber,
*

then £4 0 Tg-1 = Sq where, in cohomology, Sq : Ar A*(q,n) — AR

A*(q-1,n) is the map of 1.2.13 (cf. 1.2.9).

Similarly B,(2n+1) is the inverse limit of

Fibrations £2 of degree one)

wh

blm— —-—

 ©

K —_
aq-1

' ts ¥ =
- 0 KZ5

cower of

CC! A)

 0

Fg is a product of Eilenberg-MacLane spectra of type KZ, ; H*F =

Ar A(q,2n+1) and, if i, : F Xq is the inclusion of the fiber, then

€ o 14-1 = Sa where, in cohomology, 5 : Ag A*(q,2n+1) rn

Am A*(q-1,2n+1) is the map of I.2.13 (cf. 1.2.11).
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Suppose we wish to construct a map g : By (2n+1) — PB (m)

realizing a certain map g* : M(m) — Mi (2n+1). First, construct a

map of resolutions
* *

8 5
— A 8 A*(q,m) —9 ... — Ag A*(1,m) A, A — M(m)

ar * * *Ja he 9 gs 19 Io
Am A*(q,2n+1) —L .. — A @ A%(1,2n+1) —— A/ASq! — My (2n+1)

(1.7)

Then, because we are constructing maps into Eilenberg-Maclane

spectra we may realize this with maps of spectra

p——

4
0

 “4

1% 8
[, «=

Tel Toe

195-1
“— ri

q-1

 9

g 9| 1 8 O

The verticle maps are of degree p, the horizontal maps are of degree one.

The results of Section 2 will imply the following result.

Theorem 1.8: If 4n+l-p &lt; 2n+1, then there exist maps a, 2 Xa nr: ’q

of degree p so that 9, = 4g, and the following diagram commutes

-
|

Hl
g
“q

— { _q
q-1

|3g-1
| €

Yo — Yq
\

l Ny
'q |

F
3

Iq

J
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g* : M(m) — M;(2n+1).

In a similar way one may produce maps B, (2n+1) — 178, (2m+1)

for 4n+1-p &lt; 4m+3, and maps B(n) — 1°8, (2m+1) for 2n-p &lt; 4m+3, and

maps B(n) — PB (m) for 2n-p &lt; 2m+1.

We have taken this approach to constructing maps between Brown-

Gitler spectra precisely because we will need to specify the maps

a, : Am A*(q,m) — Ar A*(g,2n+1)

(for example). If one is not worried about gg then one can produce many

maps § : B,(2n+1) — TPB (m) realizing, in cohomology, a given map

g* : M(m) — M, (2n+1). The techniques of Brown and Peterson [9] suffice.

See Section 2.

Let us use 1.8 to produce quite a number of maps

There is a projection map

M(2n) = A/ALx(Sq): 1 &gt; 2nt —&gt; A/A{SQ', x(Sq'): 1 &gt; 2n} = M.(2n+1)

* * ~

If we set 8 A — A/ASq and By : AR A*(g,2m) — A @ A*(qg,2m+1) to

be the canonical projections, then 1.2.13 assures us that (1.7) commutes;

. * kk *x * ] }

that is, 8484 = Ba-1%q" Thus 1.8 gives us the following.

Corollary 1.9: There exists a map i, B.(2n+1) — B(2n) inducing the

projection M(2n) — M; (2n+1).

Call i, the canonical inclusion B,(2n+1) — B(2n).

Corollary 1.9 has an immediate consequence. There are maps of

of degree one, Sq! : M;(2n+1) — M(2n+1) and Sq! : M.(2n-1) — M(2n)
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both of which, of course, send the Steenrod Algebra generator to Sq’.

We will prove the following result in Section 2. It is also consequence

of 1.8

Corollary 1.10: 1) There exists a map dope B(2n+1) — 1By(2n+1)

inducing, in cohomology, Sq : M; (2n+1) — M(2n+1).

2) There exists a map do B(2n) — }B4(2n-1)

inducing, in cohomology, Sq! : M, (2n-1) — M(2n).

emma

Now, consider the map «(5a2M) : M(n) —

iS found in Section 3.

&gt;

led
a

There exist maps (of degree zk)

Y
=

n 2 gq.,n) — A a A*(qg,2n)

M(2n). The next result

. * k * *

50 that J = %-1%q and

1) oy = (54°™) : A — A
*__ —

2) For gq&gt;1, aM = Tx(sqP {190 AJ with p(I,J) an integer

depending on I and J and so that

a) p(I,d) &gt; 2n-dimX;

b) if A, € A, then p(I,d) &gt; 2n - dim

n ; .

Corollary 1.12: There exists a map h, : B(2n) — Y“"'B(n) inducing,
2in cohomology, x(Sq M : M(n) — M(2n).

The strength of Lemma 1.11 lies in the following results.
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Theorem 1.13: Let B(2n-1) be the spectrum so that

h
3'2n-1) — B(2n) —2% 723(n)

is a cofibration sequence. Then B(2n-1) = B(2n-1)

Theorem 1.14: Let ihn 3 B,(2n+1) — B(2n) be as in 1.9. Then, let

B,(2n+1) be the spectrum so that

h, «i
3.(2n-1) — B, (2n+1) —20—20, y(n)

is a cofibration sequence. Then B,(2n-1) =z B,(2n-1)

We now define the map Jy : B, (2k+1) RR 12K ek). Define

f. = ¢ oh °o ...©hy,oi, : Bi(2k+1)—
TT ater) 2" (24) 2k © 2k TT |
Pg(23T(2e41)=1)fors&gt;151. b(i) = (2° +... + 21) (2641) + 0.

Define f, = doggy © piso © vee ea. © hoy ° io : B, (2k+1) —

 P(g. (2641) b(1) = (25% - 2)(2t+1) + 1. Finally, set

3 C= VF: By (2k+1) — T2KFIe(i)

The following is an immediate consequence of our definitions and 1.14.

Theorem 1.15: Let B,(2k) be the spectrum so that

J
2k) —&gt; By (2k+1) —K T2RF (py

is a cofibration sequence. Then

1) H*B,(2k) = M,(2k)
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2) There is a map B, (2k) — KZ so that for an CW complex Z

9 WY, — 4H 7 7 AY

D

is onto for * &lt; 4k-1.

Here is how we will prove 1.13, 1.14, and 1.15. For instance,

consider Theorem 1.14. From 1.8 and the discussion before 1.9 and from

- — . n °

1.11 we have maps % o Bq : X — Ya of degree 2n and maps % Bq

Fl — In of degree 2n so that the following diagram commutes.

CC —— 4
; i

%0°%q  ,%a°%
 a

X Sq, z
1 Tg
%_ 40 oJq-17Pqz1 |%°Fg
n gq 'n/ —_—
1-1 "1

Lim a 08, = hy °i,. Let W be the spectrum so that
a_°B

Wo — Xs SCEN Y,

is a cofibration sequence. and let J_ be the spectrum so that

b -

a_°f
9 9g, i

is a cofibration sequence. Then we have a tower

dT
Pu |
r

q
J

1

a————_—
i a

— aos i

ec!
8]

-r

Then using Pontrjagin duality, what we know about B, (2k+1) and

B(n), and the form of a” in 1.11 we will show that
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€ +

(Wy _1)aZ =&gt; (3)42

is zero for * &lt; 4n-1. Further, (wy) 4Z — H,(Z; Z3) will be surjective

for * &lt; 4n-1. Thus, H*B, (2n-1) = M, (2n-1) and

=(2n-1),7— H,(Z; Z3)

will be surjective for *

Section 2.

bill

~ dn-1. Then 1.14 follows from results in

Nf course, 1.15.2 skirts the issue. We are really interested

in £! 2 naaqn

Section 5 addresses this question. We sketch the results here.

We defined maps f. : By (2k+1) — 120g (21-1 (2441) - 1) and

f. : B, (2k+1) — 12g. (2141) above. Let 1 : B, (2n+1) — KZ class-

ify a generator of HO(B, (2041); Z3) . And Tet Sq, y KZ, RR bz;

be the unique map so that of, = Sg;el. Note that the composition

z; 9 Pz — 20g, is (sq? t+) sa? (2041) se?)epniary
Sq; induces, for every CW complex, a map Sq. : Ha (23 Z3) —

Hareb(i) (23 Z3). The following is fairly clear.

Proposition 1.16: If x € Hy (23 z3) js in the image of

nd
x 2k)4I—&gt;Hy,(Zs tg

chen x € N her Sa...
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We will show the following result.

Proposition 1.17: Let M be a closed orientable manifold and let

[M] € Hp (M3 Z5) be a choice for the fundamental class of M. Then

™] € Nn her Sa...

and

We also consider secondary obstructions. Let Xg = vib yz;

let Sa = VSq, : KZ; — Xq- Then W, is the spectrum so that

UN T, KZ — { l

)

is a cofibration sequence. An Adam relation calculation shows that

=Sq. 2171 (2t4+1) yo oie
i 72) yz5 x(Sq 3 ) 7b(3)+2 t+) 7

is zero in 4*KZ; (2 &lt;i&lt; s). Thus there exists a

bo: We. — Uz,

c(i) = [25 1 +20 4 21-1 (2441) and a diagram

cud {  rn 0 i sed)

I"
KIL; — Kg

cohomology class

(1.18)

i-1
The composition across the top is (Sq (2t+1),

If Xx € N her Sq:x H,(Z3 Z3) , then we may define a secondary

homology operation ¥. on x as follows. Pick y € (W)4Z so that my = x.

Then set ?. (x) € H,Z to be y.,(y). ¥. (x) has indeterminacy

(sa? ety yg, 729
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Note that 1.17 implies that ¢,[M] is defined for all oriented

manifolds M and all i, 2 &lt;i &lt; s.

Theorem 1.19: There exist a choice for bs (1.18) so that if

Xx € N her Sq. C Hap (23 Z3) , then x is in the image of

3 (X; zy2K)gyZ—Hyp

only if ¥,(x) is zero modulo indeterminacy.

Proposition 1.20: Let [cp2k7 € Hy (TPZ; Z3) be a choice for the

fundamental class. Then, for all, v, [TP?K] = 0 modulo indeterminacy.

We refer the reader to Section 5 for proofs.

The upshot is this: if 2k = 25(2t+1) and x € Hp (23 Z3) then

there are s primary obstructions and s-1 secondary obstructions and

(possibly) higher obstructions to x being in the image of B, (2k) 4) I —

Hay (23 Z3). This can be refined if s = 1,

Theorem 1.21: B, (4k+2),Z — H,(Z; 73) is onto the kernel of Sq., for

k &lt; 8k+4. For * &lt; 8k+4 ker Sq,, = H,(Z: Z3)
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2. The Homotopy Type of B,(2k+1)

In this section, we give a complete characterization of the

homotopy type of B, (2k+1). In the process, we display a strong connection

between the spectra B(2k+1) and the stable homotopy theory of manifolds.

The concepts here are all in Brown and Peterson [9].

The first idea centers on the B, (2k+1)-cohomotogy of the Thom

spectrum of the stable normal bundle of a closed, differentiable,

orientable manifold M. Let T(v) denote the Thom spectrum-of the normal

bundle. We assume that the Thom class pu € H°T(v). It is well-known

that T(v) is the Spanier-Whitehead dual of Mm (+ = disjoint basepoint).

Thus, if M is an n-manifold

PT) = [T(v), YIP =m YH = ya

for any spectrum Y.

Recall that B.(2k+1) was the inverse limit of a tower of

fFibraciuns

—————

Pp
. . —X. Xo _q

“ql

USE v= X, = KZ3

a
c

~~
’

\ =B® 1)

Each Pq is the fibration induced by £4 from the contractible

path fibration over Fo €q is of degree one, and if i : Fa — Xq is

the inclusion of the fiber, then €q o 1g-1 is, in cohomology, the map

ar
4+ = A @ A*(q,2k+1) —3 A r A*(qg-1
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of Section I.2. Fy is a product of Eilenberg-MacLane spaces of type KZ, .

Our first result is this.

Theorem 2.2: Let M be an n-manifold and v € HPT(v) be a cohomology class

so that

1) n-p &lt; 4k+ 3

2) v is the reduction of an integral cohomology class.

Then, there is an induced map v : T(v) — IPkz; = IPX, and any 1ifting

p : p
of v to) Xq-1 Tifts to ) Xq

Proof: By Theorem 1.5.2

+ yX -—Kg) p-pM — q-1/n-p

is surjective for n-p &lt; 4k+3. Thus, by Spanier-Whitehead duality

TV) — (X,_1PTO)

is surjective. The result follows

We now wish to associate to B, (2k+1) a particular 4k+1 manifold.

Let MSO be the Thom spectrum of the universal bundle over BSO - the

classifying space for oriented bundles. Then HO (MSO; Z5) = 73

Choose a generator for this group:

SQ — KZ

Lemma 2.3: For n = 4k+1, 4k+2, or 4k+3 there exists an orientable n-

manifold Q,» so that for any orientation of the normal bundle of g
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g »

3 T(v) — MSO

the following sequence is exact

0 — A(SQ', x(Sq): i &gt; 2k} — A/ASq) HAE, patio)

Proof: According to Brown and Peterson [7], for each a € A/ASq' so that

a maps to a non-zero element of A/ALSq, v(Sq') i &gt; 2k}, there exists

an n-manifold M(a) so that for any orientation

T(m(q)) 9, Mso

of the normal bundle of M(a), (ug)*a # O. Then

2, = # Mla)
7

where # denotes the connected sum. The result follows.

So let Hy € H*T(v) be the Thom class of the normal bundle of

Q- Then Mo is the reduction of an integral class; in fact nog (above)

factors u_ : T(v) — KZ, through KZ . Q is of dimension less than

or equal to 4k+3; therefore, 2.2 implies that there is a factoring

B-(2k+1)

yd ¥
T(v) = KZ,

There are many choices for g, but, for each choice §* is an injection.
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Theorem 2.4: Let T(v) be the Thom spectrum of Quis and let pog : T(V) —

KZ be an orientation of the Thom class of T(v). If 9q-1 is any lifting

of weg to Xg-1° then eq X31 —~+ 5, is the unique map so that

(eg, © iq) = 5, and e.g, = 0.

Recall that 10-1 : Fo-1 Xq-1 is the inclusion of the fiber.

Proof: 49-1 = 0 by Theorem 2.2. In the proof of 1.5.1 we demonstrated

that the following sequence is exact:

0 —&gt; M,(2k+1) — H*X
a-1

‘a1,-1
H*F

q-1

The map 901 : H¥X,_q — H*T(v) factors through M,(2k+1) and, hence,

splits the above exact sequence. Therefore

* *

(and, hence, eq) is uniquely determined by the conditions that
k

* = : * =(eg ° 9g-1) 0 and (egiqo1) §,

2.4 completely characterizes the maps 2g and, hence, the

spectrum B,(2k+1). We now discuss manifolds adapted to a homology class.

The triple (Q&gt; Vs, B, (2k+1)) is a key example; here Q is as in 2.3 and

vy € H*B, (2k+1) is the Steenrod Algebra generator.

Definition 2.5: Suppose W is a spectrum so that there exists a manifold

of dimension n and a map vy : T(vy) — W (not necessarily of degree zero).

Suppose v € HPW. Then (M, v, W) is adapted to B, (2k+1) if

1) v* : H¥W — H*T (vy) is injective

2) n-p &lt; 4k+3
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and

3) v is the reduction of an integral class.

Theorem 2.6: Suppose (W, v, M) is adapted to By (2k+1). There there is

an induced map v : W — Pons. Any lifting of v to PX, 1 1ifts to

p) Xqr
Proof: Suppose V is a lifting of v to IX qo1- Then we have a diagram

7

-p ie ~a+1
JL Xa-1

7 v

rv) == Ww —~ 7Pkz;

We wish to know whether eq = 0. But, by 2.2 qv Y = 0. Since

Fa is a product of Eilenberg-MacLane spectra of type KZ, and because

v* + HW — H*T(v) is injective, we conclude that eV = 0.

Corollary 2.7: B, (2k+1) is the unique two-complete spectrum so that

1) HB (2k+1) = A/MSa', x(Sa'): &gt;

2) For any CW complex Z,

i3
- 2k+1)7— H (Z; Z5)

is surjective for n &lt; 4k+3

Note: Corollary 2.8 implies that the spectra constructed by Shimamoto

[32] are homotopy equivalent to the spectra B, (2k+1); at least, after

they are completed at two.
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Corollary 2.8.1) There is a map f : B, (2k-1) — B, (2k+1) inducing the

quotient M, (2k+1) — M, (2k-1).

2) Let B(k) be the cofiber of f; that is 13

cofibration sequence

2 2-1) ——B, (2k+1) —&gt; T2KB(k)

Then B(k) is homotopy equivalent to B(k).

Proof: 1) Follows from 2.3 and 2.6. 2) follows from 2.3 and the

analogue of 2.6 found in Brown and Peterson [9]. Note that if T(v) is

the Thom spectrum of Qur+1 then the composition

"(v) —&gt; B. (2k+1) — T2KB(K)

shows that (Qe u, B(k)) is adapted to B(k). wu is the Steenrod

Algebra generator of H*B(k) = M(k). This completes the proof

Note that one could use 2.6 and its analogue in [9] to produce

a plethora of maps between Brown-Gitler spectra, but any map produced

by this method is in no sense unique or nicely characterized. We devote

the next section to tightening our methods.
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3. Maps Between Brown-Gitler Spectra.

The outline of the construction of the spectra B, (2k) given

in section 1 indicated that we would construct some very specific

maps between Brown-Gitler type spectra. We do that in this section,

producing all the maps claimed and, at the end, prove the algebraic

Lemma 1.11.

The situation is this. Let B(n) stand for B(n) or B,(n)

as the case may be, and let HB(n) = M(n) . Suppose we wish to

construct a map gq : B(n) — B(m) realizing a certain map

gy . M(m) a M(n) . The methods of 2.6 will give us one; however,

suppose further that we have a map of resolutions (cf. I 2)

 —_— A f 2 (q.m) a, vey m———
x

*Iq .
x Ts~ ARQ A (g,n) —

AQ AT(1,m) —

~%

AA (l,m) —~

x

3+)

A — M(m)
9 |g
A ——— M(n)

where A =A or A and A =A or A/A Sq! depending on whether

M(n) = M(n) or M, (m) . Because we are constructing maps into

Eilenberg-MaclLane spectra we may realize this resolution with maps

of spectra

In

n
d

~~ gna-1

Ga” S

magq-1
te

.

ltr

§

in0
91 Ig

¥ g

Jn 1 ‘in
Jy
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Where, of course Ja = Ig or Fa depending whether B(n) = B(n)

or By (n) . The verticle maps of degree p , the horizonal maps

of degree one. The main result is the following. Let
n _

Wy = Xq or Ys (for B;(n) or B(n)).

Theorem 3.1. Under conditions stated below, there exist

ry . n m a Samaps 9g ° We ee Wy of degree p so that 99 = 9g and the
following diagram commutes

i
J

1

i

—9. ug
i _—

Ip [5
i "2 - W, —

€
n q n

%-1 5
€

q mLe Ja

2?)

The conditions we demand are:

1) 2n-p &lt; 2m+l if

2) 2n-p &lt; 4m'+3 if

3) 4n'+l-p &lt; 2m+1 if

4) 4n'+1-p &lt; 4m'+3 if

B(n) = B(n) and B(m) = B(m)

B(n) = B(n) and B(m) = B,(2n'+1)

B(n) = B,(2n'+1) and B(m) = B(m)

B(n) = B,(2n'+1) and B{(m) = B,(2m'+1)

Proof. We will do 3. The rest are similar, citing results

from orown and Peterson [9]. Write We = Y , J = Ig , Wen # Xq
n'+l _ _ - _ . _ ” _

and Iq = Fa . We have specified 9g = 9p ° 9 = KZ, —+ KZ, = Ys

Because we demand that (3.2) commute, we have defined a4

Proceeding inductively, suppose (gq &gt; 1) 9, : Xq — Y, is

defined. Then we show that the following diagram commutes.
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£
=

£ +1

=f

h Calg
1

J9q+1

Then, (3.2) will define Ig+1

Let A = I+] Eat] - €q+] Yq . We wish to show that A = 0

Since on is a product of Eilenberg-MacLane spaces of type KZ, ,

it 1s enough to show that A =

Recall (I.5.1) that
x

* Iq *
) —— M.(2n'+1) ——— H Xq Sommer. {i Fa ‘3.I 3)

is exact. Let T(v) be the Thom spectra of the normal bundle of

Qi (2.3) and let fq : T(v) — Xq be any 1ifting of any

orientation of T(v) : f : T(v) — KZ, = Xg . Then since
* *

fq : HX, rma HT(v) factors through M,(2n'+1) , fq splits
* *

(3.3). So to show that A = 0 we need only show that io =0
* *

and fA =0 .
q

But At, = Iq+1 Sq - J 94 = 0.

And, Iq+1Eq+1 q = 0 by 2.2; €q+19g%q = 0 by the analogue

of 2.2 for B(m) . Recall that 9q is a map of degree p . Thus
*

Ag, = 0. So, we may conclude that A = 0 and, thus, that A =0

This completes the proof of 3.1
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Let 8 : AR A (q.2k) —— ABA (q 2k+1) and

A—— A/A sq! be the quotients. Clearly 5g” = 8 5
qq q-17q

34 can be realized by a map (of degree zero) Bg : Fa — 1

The following is an immediate consequence of 3.1.

*

By

Corollary 3.4. There exist maps Bn {
"3

——— =

1) [5 = By ° KZ, — K 77

2) The following diagram commutes

By|
[,

£

Xp —— Fe

E Fo-1 J*
£

—_— 9,Ya-1 1,

 eeeee|

. — . — » Lx .

3) If Top = 1jm Bq : B, (2k+1) —— B(2k) the iy is the

quotient M(2k) —— M, (2k+1)

We extract the following from Brown and Peterson [9]

Proposition 3.5. There exists a manifold Pon of dimension

2n so that if T(v) dis the Thom spectrum of the normal bundle of

Po, » then there is a map of degree zero vy, : T(v) —B(n)

that is injective in cohomology.

The methods 2.3 would suffice to prove 3.5.
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Corollary 3.6. There is a map of degree one bop B(2k) -

'B,(2k-1) inducing, in cohomology, Sq’: My(2k-1) — M(2K) .

Proof. Let CF be the cofiber of io : B, (2k+1) rn

Then, Tet v € nice be the element which maps, under

B(2k)

x *

°F —— H B/ 2k)

to Sq'e M(2k) . Then, (Pg,.v* or) 's adapted to Bq(2k-1) . The

result follows from 2.6

there

"he next result was first noticed by Mahowald [19].

Corollary 3.7. Let M(2) be the

is a homotopy equivalence

77 100re spectrum. Then

3 (2k+1) M(2) ——— B(2k+1)

There is a cofiber sequence

in

3
Pok+1

2k+1) — B.(2k+1) —— B(2k+l1) ———— IB, (2k+1)

* 1 ;
= : M.(2k+]) ——cohomology Port Sq ‘ A 2k+1)

proof. B(1) = M(2) . A cohomology calculation shows that the

following composition is a cohomology isomorphism and, thus, a

homotopy equivalence.

3 (2k+1).M(2) ———— B(2k).B(1) — B(2k+1) .
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m is the multiplication given by the work of [9]. The results

follow.

As an aside, but as a corollary to 3.7, we have the following

result. See [31]. Recall that (A™/A™ nN Mors) is the z,

vector space of symbols A, ... A; in AT/ATN PT with

A

Theorem 3.8. mB, (2k+1) = (AN/A° 0 Mra) for 1 &lt;n &lt; 4k+2

Proof. For n &lt; 4k+2 this is 1.6.1. An argument similar to

1.6.1 shows that Taken B,(2k+1) = (A\/1° Nn Mors1) ao as sets

Similarly, we can conclude that

Ty +pB(2k+T) = (A Nope) apso as sets

Thus from 3.7 and the choice of the inclusion By (2k+1) —— B(2k+1)

we see that Ta 2B7 (2k+T) injects into Tp aoB(2k+T) and that

the image of Ta 0B(2k+1) —&gt; Ty oB(2k+1) is of order 2.

The result follows.

We now need only construct the map h,, : B(2k) — 2KB (Kk)

inducing «(5q°%) : M(k) —— M(2k) in cohomology. Let tq be

the maps of Lemma 1.11 or Lemma 3.10 below. Then 3.1 immediately

implies the following. ve is the KE stage for B(k)
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Corollary 3.9. There exist maps of degree 2k ;
2k k — 2k k %

Iq a Iq and ag ° Yq a Yq so that oy

is as in 3.10 and

2
gy

— 2k

1) ag = aq = x(Sq ) KZ, — KZ,

2) The following diagram commutes

dl

Sq
K
]

——

2 I;

a
3

&lt;4

2k €
{ rm}q-1 ?

og-1

2K
fo

“gq

Y
q-1

cq |
n

5) If h, = lima, : B(2k) — z°B(k) , then

1 = x(Sa%%) : M(k) — M(2K)

This leaves the construction of % , accomplished with

the following argument. To lighten notation we write A = A

and understand that we are working in the dual vector space.

Remember that A (Ag) = Ady)

_smma 3.10. There exist maps (of degree 2k)

*

YX

h * % *
so that aSq = a;-1%4

Ag AT(q.K) — A 8 A (q,2k)

Ald
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* Zky oA son1) aq = x(Sq )

2) For gq&gt;1, oN Ap = sx(saPtT+9))a, with p(I,J) an

integer so that p(I,J) &gt; 2k-dim Ap and, if AJ e A

Gitler

2j +

then p(I,d) &gt; 2k-dim Aq »

We need two lemmas on the A-al gebra. Both are in Brown and

61]

Lemma 3.11. Let Ay e pr. If Ash 7 0 in AA, , then

dimI&gt;2k

Secondly, recall that the elements A, € A are ordered

'exigraphically from the right.

Lemma 3.12. For any AM not admissible, Aq = ZX 3

J admissible and Ap &lt;A If I= (T9000) then

3A; = IA; with J = (J3s.. 2341) » J admissible, and

with

Jq+1 &lt; i

Dy

Proof of 3.10. We work by induction on 4
*

1). We may define a, by

ta is defined

x i=j J
Ay A = Zok-2; )x(Sq Por +i-

Then 2k-2j &lt; i-j implies J &gt; 2k-i . If 2k+i-j is odd,
*

then j &gt;2k-i . Suppose aq has been defined and satisfies 2)
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“nen,

 10S = OAKS any
= 2p) X(SaPsq Ta
= D(a) WsaPsa a

+ Ear) QTd ox(sqP* TH =3sqd 5

(p = p(L,J))

The first sum is over p and i so that 2i+2 &lt;p. By Lemma 3.11

24 +dimL&gt; k so i+1 &gt; 2k -dimL-i=2k-dim A

in the other hand

J 2&lt;1-jimpliesJj &gt; p-i &gt; 2k -dimL - i = 2k - dim 1

[¥ \; € 4 , then J &gt;p-i&gt;2k - dim I
- ° - * * .

Here is the point: write %Sq+1r] in the form

* * _ Ss. t Ss. t
A8q+1r1 = % x(Sq7Sq My + Z X(Sq Sq JA;

with J &gt;M ., Obviously, 2x (Sq°Sqt) (the coefficient of Ay or

Ag) should be indexed to J or M . I drop it to ease notation.

Sq5sqt is admissible. Now, I claim that, using only the fact that

et A =0, d c AQ A (q+, 2K) that34% q+1 = s can produce a Ww q+l, so tha

(t as in the coefficent of Au)

w=2 X(Sq5)_1Ay

end that 1) Ag_qAy 1s admissible

8 w=2x(58°SqE)Ay+£X(Sq'sqd)A.with J &gt; M

iii) If Jj dis as in ii), then j &gt;2k - dim I or

jo2k-dimIifAeA

-
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Since for t (all J and M) we have t &gt;2k - dim I

eo . ~ . * * —

(or t &gt;2k -dim I if Ay or Ag € A) and since 8q0q+T v=20

we may proceed inductively to produce

ve ABA (g+1,2K)

so that W = 2 x(Sq” )Ay p' &gt; 2k - dimI or p' &gt; 2k - dimI if
~ * LK kx * CL

An € A and so that Sq+1 W = %Sa+1r . Then, we set A+1M = W

So, I must produce w . Write M= (m, M') and write the
. * *

coefficient of Ay in %Sa+1M as

a._b«(Sa"Sq”) + = «(5q%sqt)

Nith s &lt; a for ail -

Jeo

_ * x * _ * * *

x(sa™ 'sq®sq%)n,, + ¥ a-A- with T &gt; M' and

a. &amp; a

This a consequence of Lemma 3.12. Thus, we are forced to conclude

that slg? is not admissible; that is 2a &gt; m+1 , or 2a - &gt;Mm

Thus Ao1™M is an admissible monomial in A . Let us examine
* b

Sq] x(Sq JA au1 ’

st { b = a b
&gt;q+1 X.3q JA 1m x{Sq Sq ) Ay

i+1. b
tA (Ag) x(Sa ST) A

Ay &gt; Ay Again, see Lemma 3.12. Since b &gt; 2k - dim I (ov

b&gt; 2k - dim I if Ay € A) if sq 13g” is admissible, condition

iii) as above is satisfied. Suppose 591 ¥15qP is not admissible. Then
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i b b-2-1 b+i+1-2¢ 2sq' sq =X (551000) Sq q

-irst, we have that 1i+1-22 &lt; b-2-1 ar

Then, because AA; #0 in A/A, we must have (Lemma 3.11)

&gt;
eb ag wlll aim |9

 mw

| &gt; 4k-i-dim J = 4k-dim M-a+]

Thus, combining these two inequaiities

X(3q

2 &gt; 4k - (a+b+dim M) + 3

. deb . * i+1

Since x(Sq Sq ) Ay is a summand of % x(Sq YA where
i+1 : *

2% is a summand of 841M we see that

a+b+dim M = i+l1+dim L + 2k = dim I +1+2k

n-S.

a &gt;2k-dimI+/

We may now proceed algorithmically to produce w satisfying i) - iii)
*

above and, thus, inductively, to define Ger]

This completes the proof of 3.6. Therefore, we have constructed

the maps of section 1
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4. The Construction of B, (2k)

In this section, we produce the spectra B. (2k) and prove

Theorems 1.13, 1.14, 1.15, and 1.21, and Propositions 1.16.

Recall that we defined a map

3 i. 8. (2k+1) — Kc(k)

in section 1. Then we defined B. (2k) to be the spectrum so

that the following is a cofibration sequence.

3
J

IK) —— Ba (2k+1) —Ko p2KF] C( k)

As noted, the following is ‘mmed aie

Proposition 4.1. H'B(2k) = M,(2k)

The bulk of this section will be devoted to the discussion of

the homology theory B, (2k) 4 . This is intricate and we take some

come care. The method is this: First we produce a tower whose

inverse limit is C(k) . Then, second, we produce a map from the

tower for B, (2k+1) to the tower for C(k) ; the inverse limit

of this map is Jy . This will allow us to produce a tower whose

inverse limit in B, (2k) . Then, third, we will use the Pontrjagin

duality of Section I.3 and what we know about the maps we have

constructed to examine each stage of the tower for B, (2k) .

CN

The first step is to construct the tower whose inverse limit

C(k) . Recall that 2k = 2°(2t+1) and that
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ck) = vse(271(241)1)v22M(atsn)

Here af(i) = (25-1 +... + 21 (2t+1) . For even we have a tower

whose inverse limit is B,(2n+1) :

n+l yon ~~
~N-

=
1

-2n+1

)n+l 211+]
-

{

’n+1

(1 2?)

1

Then, of course, set

a(1)y2t+1i) 2 New) ali) x2

and

: ; -1

= zai) FZ (2t+1)-1 p21) Zt]

Then, we have a tower whose inverse limit in C(k)

-

-
-

sre pe CL A i! a yp(d) KZ;

(4.3)

1

Let Xq = xe! and Fa = Fok] in (4.2). Then, our next step is

to produce maps of degree 2k+1

i

X — X and
1 i, : Fo — F,

so that 1) is the following diagram commutes
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&lt; 1 3-

| _— Xq —_— Xg-1

iq | s Io-1 3g
! 1 ! € I

T= Xg = Xq_ —F,

~~

-

] -

2 » {;1

and 2) 14m J, = 3p + By(2ke1) — 25Hek)

Recall that Jj, 1s a wedge of maps

WH]) —— 20g (21712841) -1) i&gt;

and

F 3,(2k+1) — 2M. (241)

where b(i) = a(i) +2k +1. For i&gt; Ta f. is the composition

re

J.
i h

oral) “2K, Bak) -2K» 12Kg(K) —s ...

— sp)1-1open)2s5P0)g(27T(2t41))

where ¢ = ¢ i-1 of Corollary 3.6 and the unlabelled maps
2 (2t+1)

are of the form hon of 3.9. Tok is as in 3.4.

Similarly fy is the composition

Tok Nok 2k
2k+1) = B(2k) == z°"B(k) — ...

2) -Tg(2t41) 2 (Mg (2441)

b= bors of Corollary 3.7 and the unlabelled maps are of the form

No, -

Let us first examine the maps ¢_ (n either even or odd). It

is an easy argument to show that there exists a commutative diagram
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€

— Yo Yoi I,

[4 9 RR 9
€

rg Rod —

(£. @ t3)

so that 1jm bq = op 2

So now let

B(n) — IB. (n) (2B, (n-1) if n is even)

afay n) =3 ro — yf

and

_ } 2n n

a(qg,2n) = a, I. — I,

Then Tim a(g,2n) = hy, -

X —92

See Corollary 3.9. Let

and

. 2k .

3, : Fo — I be as in Corollary 3.4.

Ne now define a map of degree b(i)

F (1
i-13 2! (2t+1)

.q) X, —_— X

to be the composition f(i,q) = Foon, (2641) 0... 5a(q,2K) °F, ]
5, is as in (4.5) for ¢ . (2 N21) — 18, (217 V(2t41)-1)

a 2T=l ots)

Similarly we can define a map of degree b(1)

f(1.q9) : Xa —_— yeti

to be the composition f(1,q) = 5ooa(a, (2t+1))o...0G(q,2k)°F,
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bq is as in (4.5) for Popeq B(2t+1) —— IB, (2t+1) :

Then we can define fq = VF(i,q) : Xq RU Xq . Tq is of degree

2k+1 and Tim F, = V im F(1,0) = 3, : By(2k+1) — 12 e(k)

Let us define maps of degree b(i)

i-1217 (241)
(7,9) ° Fq i Fo

to be the composition f(i,q) = 64°0a,2" (2t41))e...oa(q, 2k) °B
bq is as in (4.5) for ¢ io]

2 (2t+1)

Then set Iq = Vf(i,q) : Fo et

(4.4) now commutes.

Now let us define Wy to be the spectrum so

8 Jg !
Xq Xq

diagram promised

is a cofibration sequence. Simirlarly, define J to be the

spectrum so that

J
6 J

=F, ——F,
is a cofibration sequence. Note that Jq is not a product of

Eilenberg MaclLane spectra. We may conclude that there is a tower

9 W_ _

1

Tom

—————————————

5
J

=

LJ

‘A .6)



-lg4

Further, we may assume that Pq Wg — Wo-1 is a fibration

induced form the contractible path fibration over J, by €,

im
oi Ww = B.(2k"

9 : Wo sm KZ5 induces a canonical choice for a generator of

HO(B. (2K); Z5) ; namely,
9,

3. (2k) —— UW, 0, KZ5

We have completed the first two steps in our discussion of

B (2K) « ; the third step is to discuss the induced homology theories

(W)y -

The

Recall that 2k = 23(2t+1)

first result is thi -

Ny

‘et / De any Sly cJIMbilex.

Theorem 4.7. 1) If s&gt;1 and gq &gt; 1 , the sequence

J ) 7 gx A 7 Pax 7( a’'n (Wedn (Ho)

is split short exact for n &lt; 4k-3 , short exact for n = 4k-2

and if n = 4k-1 , Pq is surjective.

2) If s=1 and q &gt; 1, the sequence

Lp Pq

(dg) 2 Hs (Wg) Z — (Hyp)2

is split short exact for n &lt; 4k-2 , short exact for n = 4k-1

and if n = 4k , J is surjective. The splittings are natural

in  yr
’
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3) If n&lt;dk-1, 6g, : (Wy) Z——H (Z52Z5)

is surjective. If n = 4k , then (89) is onto N Sq. CHp (Z5 Z5) :

4.7 implies 1.15, 1.16, and 1.21 of the outline in section 1.

As usual when we wish to prove results such as 4.7 we employ the

Pontrjagin duality functor x of I.3. The key lemma is the

following. Let a, be as in 3.10 and By as in 3.4. o, = a(2k,q)

'S

Lemma 4.8. For

null -homotopic.

Nu &gt; 1 /
1

’

e

K
Cag) ogo Siti X k ak

We postpone the proof, not because it is difficult, but because

it involves a sequence of ideas from Brown and Comenetz which have

not been employed yet. Lemma 4.8 follows from 3.10 and 4.8 explains

the form of 3.10.

Proofof4.7.LetK_=x(F),G= ,Ko= x(F)| ros 0 et a ¥( q) 6 xg) Kg x(Fg) and
6 = x(Xg) . And let eq = x(gq) and 8, = x(eq) . We prove 1)

and 2) first. Let n be as in the hypotheses of 4.7.1 or 4.7.2.

Consider the diagram:

 1 4

. K
7.1

0on

‘gsn-1 (3g) n-1 -_
| x(q)

Kq.n-2k-1 Kaan-

e
| q

Ga-1,.n eqets x (HW) n

I

bi (5)
X\J

: simmer SmitCI Ga-1.n+1

G1 n+1 is null-homotopic by Theorem 1.4 8.
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part 5. x(3g) : Kg. n-2k-1 -A bt Kan is null-homotopic by the

construction of Iq and lemma 4.8. We claim that ey ° Ka, n-2k-1

Gy n-2k is also null homotopic.
Let us first show that the claim implies 4.7.1 and 4.7.2.

X(dg)p-1 may be considered to be the pull-back by x(3q) of the

contractible path fibration over Kan . Similarly, (Wop may

be considered to be the pull back by X(3g) of the contractible

path fibration over Got,n+] . Thus assuming the claim we

_

conclude that

2
9

:ox(3.) ; ——a'n-1 XW)a’'n

is null-homotopic. Then the results follow from an argument exactly

like that in 1.5.2. Let us now demonstrate our claim.

Let c(i) = 271 (2t41)-1 if 3 &gt; 1 and let c(1) =

he nN

: Kg n-2k-1 Bq-1,n-2k
c(i) , yec(i)

X Kg n-2k-a(i)-1 X84 n-2k-a(1)is the map Xe 3

Lyy Too 1, n-2k-a(i) &lt; 2k-a(i)-1 = 2 (2t+1)-1 . Thus

c(i) c(i)
Kq.n-2k-a(i)-1 ~~ Bq,n-2k-a(i)

is null-homotopic by 1.4.8 part 5.

For i =1, n-2k-a(i) &lt; 2k-a(1) = 2(2t+1) . Thus

(1) (1)CG nt2k-a(1)-1 Gg. n-2k-a(1)
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is null-homotopic; again by 1.4.8. The claim follows.

We now remark that 4.7.3 follows froma simple excess plus

dimension argument. This completes the proof of 4.7.

0 .rove Lemma 4.8, we need information about the induced map

x(a 8B.
*

: Hx(F,) — Hy
lr

X(Fg) and x(15) are both products of Eilenberg-MacLane spectra;

therefore homological information will suffice. The necessary

results are in Brown and Comenetz.

Let M be a (left) module over the Steenrod Algebra. Let

Hom, (M,A) be the group of Steenrod Algebra maps from M to A

Give Hom, (M,A) the structure of a left module over the Steenrod

Algebra by the formula

2d {(m) = ¢(m)x(a)

nem, ¢ € Hom, (M,A) and a
—

a A
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Proposition 4.9: 1) If Y ds a spectrum so that mo¥ is

finite for each n and mY = 0 for n&lt; n, is some integer, then

. "(Y) % Homy(H YA)

2) If ff: X—&gt;Y 1s a map of spectra

so that mK and mY are finite for each n and mY =mKX = 0

for n &lt; n, where n, is some integer, then

(fF) = Homy (LA)

This is in Brown and Comenetz [5].

Proposition 4.10: Let M and N be free modules over the

Steenrod Algebra M with basis {m, } and N with basis {ns}

Suppose f : M &gt; N ids a Steenrod Algebra map given by fm) = agin;

with a 5 € A. Then Hom, (M,A) and Hom, (NLA) are free over the

Steenrod Algebra with dual bases {m,} and {n.} respectively and

Hom, (f,A) (ny) = x(a, 5)m.

This is Brown and Gitler [6]
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4.8 follows immediately for 4.9, 4.10, and 3.10.

To close this section we remark that one can easily adapt the

arguments of this section to prove the following two theorems.

Theorem 4.11: Let B(2k-1) be the spectrum so that

h
3(2k-1) — B(2k) —2K 72Kg(k)

is a cofibration sequence. Then

1) HB(2k-1) = A/ALX(Sq') : i &gt; 2k-1}

2) For any CW complex Z , B(2k-1) 7 — HZ is onto for

n 4 { —

From 4.11 and an anologue of 2.7 for the original Brown-Gitler

spectra we conclude that B(2k-1) = B(2k-1) . This is Theorem 1.13.

Ne also have the following

Theorem 4.12: Let B,(2k-1) be the spectra so that

Naklak 2k
'2k-1) —— Ba. (2k+1) =——=—— £°"B(k)

is a cofibration sequence. Then

1) HBy(2k-1) = A/ASQ', x(Sq') : i &gt; 2-2}

2) For any CW complex Z , the composition B. (2k-1),Z eee

1, (Z3 Z5) is onto for n &lt; 4k-1

From 4.12 and 2.7 we conclude that B,(2k-1) = B,(2k-1) . This

ig Theorem 1.14
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5. Secondary Obstructions and Applications to Manifolds.

In this section we produce the secondary homology operations

of 1.19 and prove the stated theorem. Then, we show that these

operations are defined whenever [M] € Hoy is the fundamental

class of a closed orientable 4k manifold. Finally, we discuss

the case M = cp2K .

Let Sq, = x(sq? (21) ga2'(2t41)g 1, € A and let

5q. : KZ —— KZ5 be the unique map of degree b(i) =

(25 + 4 21y (2t+1)+1 so the following commutes:

A Sq; A

} Sq; }
KZ, —— KZ,

*

The verticle maps are the Steenrod Algebra generator of H KZ7

The Adem relation

Hots), 25(2t+1)+1.2°71(2841) 21=T(2¢41)
- )Sa; = x(Sq Sa ...Sq ) 2&lt;i&lt;S

-—
-- 0

- * A

in H KZ,

guarantees that we have a diagram

of 1 ~ \ Ps :
- i d(1&gt;(1) “wz, 2 Xy ==&gt; Wy —— % ( kz,

” Fr
 ys - 1)

7.2% XqK Zn

i-1 A
so that the composition across the is x(5q° (2t+1), € HKzZ,

Wy . Xq are as in section 4; Xo = VY (1) Z, and o is the



17°3

inclusion. Sq = V Sq; , and n is the inclusion of the fiber

and is of degree 1

1 +) =

Let eq Wy — J;

(25 +... +2" + 21-1 (2441)

be the map of degree one of section 4. Our

first result is this.

SO

Proposition 5.2: There exists a map Vy : J — d(i)-Ty z,

that ye, : Wy —— 4kz, is a choice for .

Proof. We have a diagram in which theorems are cofibration

sequences.

A Sq ‘

Ny — KZ, —— X5
zo

of

z)
al 3 Mt

 —_— FF, — —— ‘A

In cohomology this induces a diagram

I Meo oil
AR A (1.2k+1) «—— A 8 A (1,277 (2t41)-1)

 b
HF

bx
HX.

[f

J Ce

(eqs1/
 x

x so 0* bi) 40
x. EHX, = 0H KZ, 7 then

- J.
*

€
Mu
“Wy
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i-1
2t+1) _sq x(sq® (Bly=

We are asking whether or not there is a class y € HJ, SO
i-1 ;

that €,Y maps to v(Sq° (2t+1))y, under HH, —r HXq . If

\ RENRLLL 21,27 (241) -1) CHF+1)-

, i-1 «

then (£7) A = (Sa® (2841), . We need only show that fA =20

-
-

-
- (1.1) = ¢q00(1,27 (2t+1))°...00(1,2K)o8

The definition of f(1,i) ids in section 4, just after 4.5.

For dimensional reasons one can conclude that

*

bod = Xoo eng n (1,2 (2tn))
YT 2E4])

(: 7}

"he formula for afl .2n, given at the beginning of the proof of 3.10

mp] fac

(a(1,2" (2t41))o...o0(1,2k))" X 5 = (Sq
2 (2t+1)

oS=1 (2t+1)\5YA2k

SJ nce Da hop=0,it
*

follows f(1,i) A» =¢ MS roves 5.2.

Ae use this result to observe that there is a diagram

: ~ 1 €q ' A

In J I
£1 y

Wy rns Jy weit KZ

5.3

K Z.,
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where A =} 5-1 ce AR A(T 21 ete) 1) - HF,
2 (2t+1)-1
i-1/h.

yeqno = x (Sq° (2t+1), We make a choice for y ; then

5.1 set vy. = ye; . This diagram is the secondary homology operation ¥.

Theorem 5.4. Let Z be a CW complex.

Aq, (Z3 Z,) then x is in the image o1

11 x € Nker Sq.C

y ( 2k) 4, 2 — Ha (23 Z,

only if V¥.(x) dis zero modulo indeterminacy for 1 ,2&lt;1&lt;s

The proof of 5.1 requires the following preliminary.

EM = X(FE™Y) and kz, = X(KZ,)

Recall

that

= - . pent] . :

Lemma 5.5. X(eq) =e; =dg : Ki ney K( Z,,;4n+4) is

completely determined as follows.

ee = XK( Z,s An+2-23) with J &gt; n and the composition

K( Z,; 4n+2-2j)cK&amp;N]“1 K(Z, 3 4n+1)
23 BNTemed) = Rane7RUAps Ant

is zero unless j =n. If j =n, this composition is the composite

2n+2
(7; 2042) 2 K( Z,; 4n+h) — K( Z,_340+4)

The last map is the canonical inclug  Nn

roof. From 1.2.13 we have a diagram (eq = 81)
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S A

ean] 1 K z,

I
2 1 ke,

— —* 1 —

where 8 is given in cohomology 641 = 2x (547 Tp . Then,

by Pontrjagin duality, we have a diagram

{mel 91 (z,

{|
antl 9

K —_— K Z,.,

where d, is given in cohomology by Ta = 5q2d*2
1 1723+1

4.9 and 4.10. Lemma 5.5 follows.

See

Proof of 5.4. We take the Ponrjagin dual of diagram 5.3.

Set Ky; = x (Fy) Gy = x(KZ,) 5 Ky = x(Fy) and Gy = (Xj)

We have (2n = 207 1(2t+1))

Sg ak

K( Z,3 2k-2n)

\ x (37)
K1,2k-1 ~ Kq,4k

e,]

X(V.) J

X31) 41-1
e|

— X(Wq)gq,— Gy of TT
— 80. ak+1
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x(q) is null-homotopic by Lemma 4.8; ey Ki aw Go. a+]

is null-homotopic e; : Ky, 2k-1 sinmsiiinsel Gy, 2k is determined by 5.5.

5.4 can be rephrased in this dualized context to read:

Let Z be a finite CW complex and x € x (Wo) *¥z . Then x

not in the kernel of

T

71 IY SN (TI7

(W, as in 4.6) if and only if x is not in the union of the images

17

(ex(¥:)) 4 : HZ ieee x (uy) *z (2 ~
_s—

¢ 8)

Thus 5.4 holds if and only if the union of the images of

(eyx(w3)) « equals the image of eq, in x (Uy) *z .

Choose a null-homotopy of Xx(j;) . Because Ky 5 ; 1s

a product of Eilenberg-MacLane spaces, we may assume that the

induced null-homotopy on the composition

( Zys 2k-2m) EE gy 2h, Ky,ak
's that induced by the 1ifting x(y;) . Then we have a diagram

&lt;( Z,:

e

x) x3) —

ame
\ v(}) ,

AN 5
Ky ake1 © Kp ,2k-1 — x(Wglygy
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The verticle maps are homotopy equivalences. Let

K(Zo3 P) — Ky gy1 X K1,2k-1

be the inclusion of any factor. Then, because ey : K1.4k — Gp,ak+T

is null-homotopic, because of 4.10, and because x(Jq) is the pull-back

by x(34) of the contractible path fibration over Ky ak &gt; We see

that e,r is null-homotopic unless r = x(A) = xO 54 )
27 (2t+1)1

2 &amp; 1
1

rr 3

Therefore, 5.4 is true when Z is a finite CW complex.

For general Z , use a limit argument as at the end of 1.5.2.

This completes the proof of 5.4.

We now specialize to the case when Z = M , an orientable

closed manifold of dimension 4k . The next result implies

that if M is an orientable manifold of dimension 8n+4 and

T(v) 1s the Thom spectrum of the normal bundle of M , then

there is a factoring

3, (4n+2)

~~
T(v) 4 (Z,

1 is a choice for the Thom class ue Ho(T(v); Z,)

Proposition 5.6. Let M be an orientable manifold of

dimension 4k . Then Sq., : HM —_— Hak-b(i)M is zero for

all 1 ~ J
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Proof. By Pontrjagin duality we have a map of degree b(i)

r

\ Sa } : KZ,, — &lt; 7
oN

and we are asking whether or not %(Sq:) 4 : yAk-b(1) oy. Zy,,) —_—
S i

HM; Z,,) is zero. Let Sq = Sq? (2841) | sq? (2t+1) . Then

we have a diagram

2 ] ;

\! Jn
qm; Z,,)

is defined by this diagram. Note that £5q! = x(Sa;) . If

x € Hay then sq(x) = 2 . Now, if ye nk)(uyLye)5

then we will show that Sq'y € yHk-b(i)-1y is the reduction of an

integral class of finite order; there exists a class z € yik-b(1)+11y. 7)

so that the coefficient map

yAk=b(1)+1 Z) udk=-b(1)+1,,

carries z to Sqly and z is of finite order. Since Hm; Z) =7 ,

0S=1+1 1 5S=1+1
(z) = 0 ; this shows that (Say) = 0 and, thus that

(Sq; 4 =0
Consider the diagram of groups

 SH
- ZZ —7

on
Iv i

Z, — n+ Z n
| 2 , 2

) : J
J, — Z, X27,
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This induces a diagram

_ Cc

PM; z |) ———HWmz ) —— Wms Zz)
2 i 2 1 Zoo

| 8 Ig Sq

HP: Z2) —— WPT (Ms Z,) —— WP; Z,)

8 and B are the connecting homomorphisms in the appropriate

long exact coefficient sequence. p is an integer. Let

y € HP (M; Z_) = Tim HP (mM; Zz 0) . Choose n so that there
2 2 '

exist z' € HP(M;Z" mapping to y . Set z = Bz in
2

HP (my z) . Then z reduces to Sq'y and z is of order

less than or equal to n+l

This completes the proof of 5.6

Proposition 5.6 implies that the secondary homology operation

¢¥. are defined on the fundamental class [M] HK (Ms Z,) . We

have the following partial result.

Proposition 5.7. If [cp?ky &amp; HK (cp2k, Z,) is the fundamental

class, then v. [cP2K] is zero modulo indeterminacy for all i

2 &lt;

Proof. We compute the indeterminacy. This is the image of

X \ Su

where

(1 " 2k
2 (2) Hagp(i)-1(CP7 5 Zp) —Hyp _q(4)CP

21-1 opal) (2k = 25(2t+1))d(i) = Thus
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4k-b(1)-1 = 27(2t+1) and Tet n = 4k-d(i) = 21 "1(26+1) . There

is a factoring

2KA, (CF Zz:
r™
Nod

as u, cp
~_N 1

39 \ / (Sa),
 Vv
y_cp2k

Cx is the coefficient map. Ci 1s surjective. If we show that

sah), : Hp 2k

is an isomorphism, we will be done. This is equivalent, by Pontrjagin

duality to showing that

Ny N~p2k y2ncp2k

is an isomorphism. This is clearly true
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Chapter III Secondary Cohomology Operations that Detect Homotopy Classes.

This chapter is joint work with Raiph Cohen.

A basic problem in homotopy theory is to determine which

order stable cohomology operations can act trivially on the cohomology

of a two-cell complex, sk U, pk HH] . The attaching map lies in the

wh stable stem, m S° . This problem is equivalent to determining

which elements of Ext&gt;( Zs Z,) survive to E_ in the Adams Spectral

Sequence. Here A is the mod p Steenrod Algebra.

th
S—

For s = 1 this problem is the Hopf invariant one problem and

was solved by Adams for p = 2 [1] and by Liulevicius [18] and

Shimada and Yamanoshita [30] for p &gt; 2 . In this chapter we give a

complete answer to this question for s =2 and p &gt;

Our main result is the following

3

Theorem I: For all primes p &gt; 3 and integers Jj &gt; 2 , the

element hgh; E Exty( Z, Z,) is an infinite cycle in the Adams

Spectral Sequence. Furthermore if p&gt;5 or p=3 and J is

odd, hohy represents an element nj € m s° of order p , where

n = 2(pd+1) (p-1)-2 .

5

Said differently, we will prove that there exists a stable map
*

s" — 5° so that in H (s° U_ p+] : Z,) the secondary
j

cohomology operation 2, j determined by the Adem relation involving
J 9

plpP acts nontrivially.

Now for each prime p &gt; 3 there are four other maps known to be

detected by secondary cohomology operations:
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vt-YE

5%: §9 — 8°

3.  —_—= sO

a, gAp=-5 NY

R s¥ _, 0

t= 4p(p°-1) - 2(p-1) - 2

These classes are detected by a s 91 » b, , and Ki respectively in

Ext Z,, Z,) . (The notation is that of [23, Section 10]). Prior

to Theorem I, all other information has been negative. In fact, the

results of Miller, Ravenel, and Wilson [23], Toda [33], and Ravenel [28]

all tell us that certain classes in Ext Z,, Z,) are not infinite

cycles. Combining our results with theirs we obtain the following.

Corollary II: For p &gt; 5 , the only classes in Ext Zs Z,)
 ess 2 .

that are infinite cycles are ag» 91 » by , Ky , and hh » J &gt; 1

It is an easy consequence of the results of [23] to produce maps

of spheres detected by secondary Brown-Peterson cohomology operations.

That is, we shall prove the following.

Theorem III: For p

ion-zero elements

ie or nD &lt; oF and J odd , there are

2
3 € Ext (BP,,BP,)

pd 1/k BP,BP
I &lt;k &lt; po! -1 , that are infinite cycles in the Adams-Novikov

Spectral Sequence, and they detect non-trivial homotopy classes of

order p . As a special case, B . detects n. .
J=1 3-14 Jpv /p

Remark: In the notation of [23] 8 :
WIT
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Bs. =B + 3 c.B
ol pd 1"a(1) /b(i)

where

C. € Z,

a(i) = [p"/pr11pd2
b(1) - k-pd ~14pd 21 -1

 jf A

1 &lt;i &lt; max{2|p?* &lt; pd 1p" 3 .

Let us make some remarks on the situation at the primes 2 and 3

At p =2 the ny family is detected oy hshg and was shown to

exist by Mahowald [19]. 2; # 0 ; in fact, using the computations of

Carlson [12], one can show that one can modify the nj so that

2n; a nf; # 0 . These elements of Mahowald formed the first known

infinite family of homotopy classes detected by secondary operations.

The work of Ralph Cohen [14] and this work were motivated by the

desire to apply Mahowald's techniques to odd primes.

At both the primes 2 and 3 there remains one infinite family

of elements in Extal Z,, Z,) whose Adams Spectral Sequence behavior

is not yet understood. At p = 2 this is the Arf invariant family

ns in bidegree (2,29%T and at the prime 3 this is the analagous

family b, = &lt;hj,h.h,&gt; in bidegree (2,209 (p-1)) . For p&gt;5

Ravenel showed that for j &gt; 0 , oF is not an infinite cycle.

The proof of Theorem I breaks into two steps. First, in sections

1, 2, and 3, we provide a proof of the following.

Theorem 1.1: For all primes p &gt; 3 and integers Jj &gt; 1 ,

element hoh; € Ext Zs Z,) is an infinite cycle in the Adams

Spectral Sequence and represents and element n; € m,SY

the
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This result claims nothing about tne order of nj The proof

of 1.1 is long and is broken into three steps. In section 1 we

reduce the proof to a lemma. This lemma is proved in section 3

after we recall some results of Ralph Cohen [14] in section 2.

In section 4 we show that for p&gt;5 or p=3 and J odd nj

can be modified to yield an element nj of order p represented by

nhs . Finally, in section 5 we prove Theorem III.
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1. Reduction to a Lemma.

res

in

A
x
au

rhis section we will prove, modulo a lemma, the following

Theorem 1.1: For all primes p &gt; 3 and integers j &gt; | , the

element hh; e Ext ( Zs Z,) is an infinite cycle in the Adams

spectral sequence. Here A = Ay is the mod p Steenrod algebra.

We begin by fixing some notation that will be used throughout

the paper. If f : X~&gt;Y ds a map of spectra, let M(f) be the

mapping cone

MOF) = Y U. c(X)

So in particular M(p) is the mod p Moore spectrum

M(p) = SPU D
wr

Fix a prime p &gt; 3 and an integer j &gt; 1 . Recall that

2 :

ons e Ext ( Z,, Z,) corresponds to an Adem relation

J
plpP pa |

a
| 0] I -

0

with a; € A . This relation in turn induces a secondary cohomology

operation ¢, ; in the usual way. See, for example [1, 18, or 14.IV.3].

Set n = 2(p%+1) (p-1)-2 . In [14.1V] a map

=: up) » -

-

3

was constructed and was shown to satisfy the following properties.
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* -_— °

Lemma 1.2. a. In H (M(z5)) 29.3%) =o, with zero
* —_—

indeterminacy. Here % and co, are the generators of H (M(z5))

in dimensions 0 and n respectively.
. 3

b. There is an element hobs. € Ext ( Z,s Zp)

that is an infinite cycle in the Adams spectral sequence and is

represented by the composition

=]

where i is the inclusion of the bottom cell

Lemma 1.2. a. is Theorem IV.c of [14] and 1.2.b is Theorem IV.b

of 141.

We will recall the construction of 3 in the next section. For

now we will use its existence to reduce the proof of Theorem 1.1 to a

lemma. In order to state this lemma we need to recall some basic

information concerning Adams resolutions. For a thorough treatment

see [2].

let X be a spectrum. Then an Adams resolution for X 3 a

sequence of spectra

1

r

x2

&lt;. .
._

J

)

£

\

‘

X
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so that 1) Kg is a wedge of suspensions of Eilenberg-MaclLane Spectra

of type KZ, &gt;
~ * *

2) jo tH Kg — H Xs is surjective, and
ig Js. . .

3) X. — Xe 1 a Ke_1 is a cofibration sequence.

{If Y is another spectrum, let [YZ], be homotopy classes of

maps ty — 7. Applying the functor [Y, ], we get a spectral

sequence, the Adams Spectral Sequence. If Y and X are connected

and X is p-complete, then the Adams spectral sequence converges to
* * *

[Y,X], and is well known, E, = Ext, (H X,HY) .

Suppose f 1 Y —— X is a map and that there is a i rting

and that there is no lifting of f to Xs +1 . Then, f is said to

be on the s-line of the Adams Spectral Sequence.

at
» +

—". r

I

 ad { g=-1

= 3-1

te Vv
NE]

————— Jv = Y
1

J

be an Adams resolution for Y . If f : Y —— X is on the s-line,

there exist maps f_. : Y6 — Xs+q so the following diagram commutes:

‘s+q
q | stg

"5-1
Ks +q-T
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For our purposes we will need a minimal resolution for X = s® . This

is a resolution

J ean F
g=1

3s
C1

—

J
{,

[Yo
&lt;,

J

satisfying 1)-3) in the definition of Adams Resolutions but including

the additional requirement that

* *

HK, —&gt; HE,
*

carry the Steenrod Algebra generators of H Kg bijectively to a
*

minimal set of Steenrod Algebra generators for H E. . Then, it is

standard that there is an isomorphism

If Leds
by S 1.59)

We list results of A. Liulevicius [18]. The notation is that of [23].

Lemma 1.4. a. Extp( Zs Z,) = Z, concentrated in graded zero

9

-~

a

1 i . .

Exty( Z,, Z,) has Z, basis a, in grading 1 and
of grading 2p" (p-1), i&gt;0

h.

2 .

Ext Zs Z,) has Z, basis

hh &lt;1 of grading 2(p-1)(p +p?)

&gt; 0 of grading 2(p-1){p' Te2p’)

of grading 2(p-1)(2p' *l4p')
 32&gt; 0 of grading 2(p-1)pJ+I

J
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2

a
rr

3
I

&gt; 0 of grading 2(p-1)p'

of grading 2

of grading 4(p-1)+]

We can now state the lemma that will allow us to construct an

element nj € m (S°) represented by hh; and thereby prove

Theorem 1.1. Let

&gt;
~~ . A(p) —  J)

J

1
a

«4d
~

be the maps of 1.2. Then 1.2 and 1.4a. imply there is a diagram

of 1liftings.

—

3
;.

“2 Ko
pa a [iret

-n-1 n-1 t3 ~0
n= an=Twep)233

2

|e

ba| 3)

Here E4 ’ E, , and Ky are as above, and Ca and [3 are 1iftings

of C5 and &lt;3 respectively. These exist because m Ke = m_1Ke = 0

for s = 0,1 and because mo 1X9 =0 .

lemma 1.6: Let hh; € T+Ko under the isomorphism (1.3). Then
*

LF is a generator for H K, over the Steenrod Algebra and
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. =F _ n.n-1

(3, Zo) hah =o, € Hz 'M(p) &gt;

Proof: This follows from 1.2.

Here is our main mma

Lemma 1.7: In diagram 1.5, there exist liftings [2 and C3

so that Tq has order p in m_

The proof of this lemma is the content of sections 2 and 3. Assuming

1.7 we can now prove Theorem 1.1.

Proof of 1.1: Let ¢ : 2" Imp) —— 3S" be projection onto

the top cell. Then, combining 1.4.c and 1.6, we have a commutative

diagram in which the rows are cofibration sequences:

a=
Y

Za

t"TM(p) gn XP gh

"&gt; hh LC

—t IE,

h h.
Because Lq has order p , the composite gh L.J, Ky — IE,

is null-homotopic. Therefore there is a lifting

oT

Y
&gt;

7hohs i
sh 0.J, K,
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This implies that ho; is an infinite cycle and is represented by
fi i,°7

the composition ns . sn 2, E, 12, sO

We are therefore reduced to proving Lemma 1.7. To do this we'll

need to recall the construction of the map Cs from [14]. We do this

in section 2. In section 3 we will prove 1.7 and thereby complete

the proof of Theorem 1.1.
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2. Construction of 3

In this section we recall some results of the first author [14]

and prove a curious lemma about the structure of Brown-Gitler spectra.

We begin by recalling an outline of the construction of the map

=: Inp) —

bundle

Let £(V,) = Cok)’

|

1 k) be the Thom space of the k-plane

Co (K)xy RS — Cy(K)/1T,

where Cs (k) is the configuration space Co(k) = LCSTRRN c (RZ)K

such that x; 7 Xs if 1 #3}. t(V,) is a Snaith stable wedge

summand of a%s3 . That is, there is an equivalence of suspension

spectra

—
0 ple

4

’

o
——

~

V atv)

See [32] and [9] for a discussion of this splitting.

In [14.11] it was shown that

HEV) = AALX(BSPT): pive &gt; kb  od ol 4

where Hy is a class of dimension 2k(p-1) and x is the canonical

antiautomorphism of the Steenrod Algebra. In particular then

Foy 31 ply. +o Ld-1HEV" ) = A/AX(B7PT): i&gt; 9 2
—

— = 0,1} A 1:

in

Nt..re u is a class of dimension 2(pd+1) (p-1)
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One of the thrusts of [14] was to deduce that tv 7,0) was

homotopy equivalent to (pd) -- the pd] - p-primary Brown-Gitler

spectrum. Much follows from this -- 2.2 below for instance.

Set s = _2pd-2p+1 . An easy calculation shows that as a spectrum

we have the following:

, 203 (p-1)-1 S +1 ~
i) H 5 tv, +p) Z, generated

pil pI po
aj = x(BP P ...PPP'8)(v) where v is the Steenrod Algebra

*_S J+1
generator of H I t(V, +p) , and

j-1  _Jj-2 2 }

1) If a. = x(8PP oP" ply(v) e wESe(v I)
-

then Bor; = a.

Lemma 2.1. There exists a map ¢ : stv IT, ) wrt 5
*

so that in H M(g) :

an

J
a) pP (04) = La and all other primary operations are zero

Ty - Here I, is the generator of HoM(q) .

5) Ty (c.) = Zo, modulo indeterminacy, where Ty
5-1 © J j-1

the secondary cohomology operation corresponding to

2,2p9 (p-1)5:q€ Ext, (z,,Z.)

Lemma 2.2.a. is Theorem IV.2.1 of [14] and 2.1.b. is Theorem

[V.3.4. of [14] . [3 will factor through g

SO

Lemma 2.2. There is a map zs

that in H M(%)

)

oo up) —— Sev, IH)
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3) Play) = (-1)J250

3) Pla.) = %o

where oc; and ,

respectively

n-T.n-generate H"™'g" Mp) and HE Tp)

Lemma 2.2.a. is Lemma IV.5.2 of [14] and 2.2.b is Theorem IV.1.1

of [14]. The map Ts : 2" Imp) —— 5° was defined to be the

composition

rr
ey

wv

wn 3 -

Mp) —— Sev ITT) —T D +p) a

Standard composition methods allow us to combine 2.1 with 2.2 to
*

conclude that in H M(z;) . 0 5(zg) = Io, modulo indeterminacy.

The indeterminacy is then computed to be zero. See section IV.5

of (141.

In order prove lemma 1.7 (and therefore Theorem 1.1) we will

need to know that the identity map of tv I) has stable

order p . To do this we will show that ev I) is a stable

wedge summand of tv 3% ~ t(V,) . This will be sufficient since

bv) = 2P"2(M(p)) .

Recall Snaith's stable equivalence

220883 = yy~ tV (Vv)

Let m be the composition of spectra maps
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 1 tv I atv) £  (afsPxafsd)
* w 2.3 J+1

37 —— (VT)

) 2

Here * is the H-space multiplication of Q°5~

Lemma 2.3. There is a map d : t(v 3) —_— tv "ev )

so that mod is a self-homotopy equivalence of tv) . That is,

J+1 . J+1
t(v, rn) is a wedge summand of t(V, )At(V))

Proof: Let A

d is the composition

La

-

ia

?
}

3
——— DF

3
~

~
wd

2 2.3
3 be the diagonal map.

0) — 20%s3 A, 2(afs3xa?sd)
J+1LVST)At)

We make a homology calculation. At primes D
3

2D

2:3 _

1.257 = E(a,sa5,...)8 Z [by.b,...]

as a Hopf algebra. The multiplication is induced by m and the

comultiplication by A . a. has dimension 2p'-1 and b. has

dimension 2p'-2 .

its

" .

As remarked above H tv I, )

generator is the dual of »O
}oF

is a cyclic A module and

“af

1.3 [7 LPHkgk
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J J *
So, (med),0f "= 681 since HUt(v IT) ds oyetic, (med)”
is an isomorphism. Since we are completed at p , this implies

that med is a homotopy equivalence.

By previous remarks and results of [14,11], m is induced by

the Cartan diagonal in the Steenrod Algebra:

1 00 IT) = AAT) 1d -1

- MALX(8p) rite &gt; oTIRA/AL (851) i &gt; 1)

= Wre(y 3H
=H t(v ITT)

Thus, me HSE (v tL) — H(ZS EV) ev) is an isomorphism
for k &gt; 2p9 (p-1)-4 . Let G be the composition

~~

a
S, ry J+] m_, S.oy J+] g27E(V TN) Atv) tv.) SN

and let 1 be the composition

0 -n-1 [SN j+1 d S J+
2 'M(p) —— I t(V)" 4p) — 2 t(V, +p) ~t (Vp)

Then, the above remarks, 2.1 and 2.2, imply the following result.

* pd * *
Lemma 2.4.a) In HM(G) ,P" (0) =Zma, and T_ (og.) =m a.

Lemma ¢.%.a 0 J b, 0 J

nodulo indeterminacy. All other primary operations are zero on G

bh) tn HM@ , Pln'ay = (-1)32 50

2! m a .
a

_—
— LO

and
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ZT. . = Gonc) Ti

This completes our recapitulation of results for [14]. We

night remark, in closing, that 2.3 is true in much greater generality.

Ni th i, &gt;

“han

{ £ a" then write the p-adic expansion of OK

DK
mp
—

ol J
Zo, + ~ 3" % + »

-
}

mn
m

1 2,7 2 and 12&gt;c, &gt; p-l for each j

Levy, ) is a wedge summand of

2

(VT) nes at VT) a (E (VT) a (YT)

~

The methods of 2.3 suffice. One can observe also that similar

splittings at the prime p = 2 exist.
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3. The Proof of Lemma 1.7.

This section is devoted to showing that there exist maps

z, and 5 so that z, is of order p and so that we have

a commutative diagram

”~

3

v

 tf Ts np) _

7 \ 32

"a
ad

J
7

As shown in section 1, this will complete a proof of Theorem 1.1.

Our goal is to produce spaces Yq and Ts , and

 Vv , and G, , so that we have a commutative diagram

l=] Vv
S ie ——— v_ i (3.1)

v _ b G b

SM Imep) Y— To At(V,) 1 E,

Then z, will be f,ov and 5 will be Gov . As the

notation suggests, Yq and Ty will be first stages in Adams

resolutions for certain spaces Y and T

For any spectrum Z , let p : Z —&gt; Z be p-times the

identity. In order to show Za has order p we will use a

null-homotopy of Gyep : T, tv) — E, (recall

t(v.) = 52P"2M(p)) to build a lifting f, and a diagram



-

+

=15%5  tr

A

Lo

ly,

rr f

sn=1 Vv, ty —E—v, sg,

{Recall that Eq 3, E, _2, Ko is a cofibration sequence).

This lifting f s» Will be sufficiently explicit so that we will

be able to conclude that Lov is zero in cohomology. Thus,

since 27K, is a wedge of Eilenberg-MaclLane spaces, we will

have that fiov is null-homotopic. It then follows that

Cy = flov is of order p .

The task is now three-fold.

(1) Define T , Yq , and the maps fy and Ga.
3

(2) Construct maps Vv and f/

(3) Construct and analyze f.

We begin with Step (1). Let T = ev 7) . Then, since
*

HT dis cyclic over the Steenrod Algebra, let T Hn SZ
*

classify the Steenrod Algebra generator of H T . Let the

following be a cofibration sequence

ro ——T —% Z,

T, is the first stage of an Adams resolution for T . Since,

for any spectrum Z , KZ AL is a wedge of Eilenberg-MaclLane

spectra of type KZ, , we have a cofibration sequence
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WAl t
TAt(V)) rm TAt(V,) a) KZ ~t(V,)

and Ty~t(Vp) is the first stage of an Adams resolution for Tat(vy)

Lemma 2.4.a givesus a map G : Tat(Vp) — 5% on the 1-line

of the Adams Spectral Sequence converging to [Tat (vy), s°7 . So,

by our remarks in section 1, we have a map Gy : Ty AE(V) —_—

so that the following diagram commutes

rN

=
-

(VV) —
i

. a =
“9

Ce

4,0,
} G

TAt(V))
0

I
\ qT 2)

This is Ty and Gy . Let us now define Y .

Observe that HIT.t(V) = 0 for gq &gt; 2p3(p-1) and, if

q = 2p (p-1)-1 , HOT.8(1) 2 Z, . Let Y be the 209 (p-1) -2

skeleton of Tat (Vp) . Then, we may assume that there is a

cofibration sequence

I = uvT t(V,)
-i.
”

FA

where k = 2pd (p-1)-2 .
*

Since i is surjective in cohomology, we can form a

commutative diagram of cofibration sequences



-157-

t
 &gt; LK Z_At(V: p ( p)

- at v Waid by

and Ys will be the first stage of an Adams resolution for YY

From (3.2) we get a diagram

G.

(
l

—

TeV) —— "7

Cr G
Atv) - to

Lemma 2.4.a implies that any lifting of Goi : Y —— 50

E, lifts to E, . Therefore, by our remarks on Adams resolutions,

we may find a map f, : Y. —— E, so that the following diagram

commutes

f
1 Eq

13
6

This completes Step 1 of our proof. We begin Step 2, the

construction of v and v. Let u : 2" mp) — Tat(V)

be the map of 2.4.b and let un be the composition
Cc it

sh = 2" Tuip) 2 T £(V,)
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Lemma 3.4. There is a map { : sh vy making the

following diagram commute:

¥y

“&gt;

']

oo

S1i-1 HH TAt(V)

Proof: Referring to the cofibration sequence (3.3) we have

a composition

~x | Hu , —v.TAt(V))

Since n = 2p (p-1)+2(p-1)-2 and

The result now follows.

K =

 + |

S 0 _

pd(p-1)-2 , vouemy ,(s°) =0.

_.emna 3.4 implies that we have a diagram

=  HB  em -
t

z At (VKZ, t( 0)

2 In(p) —2— Tat(v,) Held stk z (vy)

For dimensional reasons (w.id)eu 1s null-homotopic, and,

thus, there exists 1iftings v of {i and v of u so that

the following diagram commutes:
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sn-1 vo Y.

+ —_— ¥

 2M Inep) Ve Tyt(V)

[f 3 : 2" TM(p) ——— 5% and C3 : sn! —— 5% are the

maps of Lemma 1.2, then our definitions and construction imply that

the following result holds.

lemma 3.5. zy = fiov : ST —— E, is a lifting of

Fr Zo = Gyov : 2 Tu(p) —— E, is a lifting of 3 , and we

have a commutative diagram

g
Sid 3 E.

 Jd z. 3
 Mp) —2— E,

This completes Step 2 of our proof. We begin Step 3, the

construction and study of gr . To this end we study Ys more

closely, produce a space X, , and a cofibration sequence

AV) —— Vy — sk k= 2p3(p-1)-2’ sy

Let us define X and Xq Recall that T = sev 7)

Then HIT = 0 for q &gt; 2(pI-2) (p-1)-2 and, if q = 2(pd-2) (p-1)-2 .
p= pd? p pl

then HIT = Z, , generated by x(gP p ... PP Pw
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J 21) -Here, w 1s the generator of HT . Let X be the 2(p“-2)(p-1)-3

skeleton of T . Then we may assume we have a cofibration sequence

L or 2p) (p-m)-2

In fact, we have a diagram in which both rows and columns are

cofibration sequences

At(V) rn —

1
At(V)) Te —
2*M(p) Jk+1 Xp

~

bs
3

\ “1 3)

Notice that X — T LN 5 tx Zz, is surjective in
x

cohomology. (w is the Steenrod Algebra generator of HT .)

Thus, we have a diagram of cofibration sequences

X —

T _

—

KZ
J

LP

w t
—_— LK,

X is the first stage of an Adams Resolution for X . Referring

to (3.6) we have a commutative diagram

Xyt(Vp) — &gt; T (VY)
J y
XAt (Vp) —_— —=&gt; Tv)

tery _ oh Uy
LX Z.~t(V)) —_5L KZ ~t(V) = LK Z,~t(V)

% 7)



“g
- wt l=

Combining these remarks, we note that the following lemma holds.

Lemma 3.8. There is a commutative diagram in which both

rows and columns are cofibrations:

X (Vp) —_

J
(At(V) ——

K

y
\

to = ty |
* KZ (V) —— SKZ t(V) —

K = 2p% (p-1)-2 and * = point.

This brings us to the construction of f . We refer to

the diagram:

ria
t

a

1

»

’
1
Py. —

f,
—— —

 ND

J 43
1

Tob) =P Toat(v) —— E,

Lemma 3.9. There exists an element ¢ € m2 1K, (k = 20% (p-1)-2)

Y. — Eq factors as a compositionso that f.op :

- op : Y, —L gk _¢ Ty — TC

Remark: p is as in (3.8). We will set fs = ¢op

Before proving (3.9), let us show that (3.9) implies that Lemma 1.7

nolas.
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3

Corollary 3.10. Let Cay = fiov : gn-1 —_— E, .

has order p .

Then

_ _ ;

Proof: We ask whether S" 1 PP, 3" 1 3, Eq is

All-homotopic. This composition may be written

n-1 Vv v. Pp. v. fi
a c

"3

vhich, in turn, by (3.9), may be written

sn-1 _v Vy —Ls sk —¢,zk, —_—
J

E ~

Since n-1 = 20d (p-1)+2(p-1)-3 and k = 2p9 (p-1)-2 EY

zero in cohomology. Thus, ¢opov is null-homotopic.

1S

This completes the proof of (3 10)

Thus proving Lemma 1.7 and therefore Theorem 1.1 has been

reduced to proving (3.9).

Pr f (3.9): Let p : (vy) —_ t(V,) be p times

the identity. Since tv) = 22P=2M(p) this map is null-homotopic

(remember p &gt;3). Now if Z is any spectrum let c(Z) be the

cone on Z . Let

 Nn c(t(Vy)) — t(V)

axvend p . The composition
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H, : c(Yq) — c(Ty~t{Vy)) = Tyac(t(V)))
G

dah roa) os,

is a null homotopy of i, oF &gt;pD {3 ny Sy — Y

When restricted to

2(Xyat(V)) € c(¥y)

factors through the map (refer to (3.7))

H,
: f

_ ih 1 :

Define ¢: Yu c(X, (Vy) — E; to be the union of

fyep on Y, and H, on c(Xy~t(V))) . Observe that

y U c(Xyat(V,)) = SK {Refer to (3.8).)

We then have a commutative diagram with ¢ oo = r™
P

y 9) 2X At(V)) 9 Es
113

y H
c(Y,) I "

Thus i300 is null-homotopic since it factors through c(Y,)

Hence there is a lifting ©
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—

T

Y 2
7 = ¥

s¥ 2,

This completes the proof of (3.9) and, therefore, Step 3 of our

proof of Lemma 1.7.
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4. hh; detects a map of order op

The goal of this section is to show that, not only is hh

an infinite cycle in the Adams Spectral Sequence (Theorem 1.1),

but it represents an element nj € m $° of order p . This

follows from the following result.

Theorem 4.1. Let p be a prime greater than 3 or let

3 and j be odd. Then there exists a mapJ
—t

[a SP —— 2 Mp) (n= 2(p+1) (p-1)-2)

* a—

so that in H M(a) , b9,3(%) = Io, &gt; where

and c, € HS" are the generators.

5 € Hos" M(p)

Observe that Theorem 4.1 and Theorem 1.1 imply Theorem 1 of

the introduction by letting nj be the composition

n.
AF eT) 8 &lt;0

where &amp; pinches to the top cell of =I M( Dp)

Fix a prime p and integer J conforming to the hypotheses

of Theorem 4.1.

The proof of 4.1 proceeds in three steps:

1) We produce a map ny : z"™M(p) —— M(p) so that in

*M(n = d = i thH M(n;) y dg ,3(0) = Io, an bg ,5(07) = Zo,,y With zero

indeterminacy. Here 0; generates the appropriate cohomology group.
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2) We produce a map TI 2"™(p) — M(p) so that in
* :1 _

HM(es) 8) (0) = (-1)777220, and @, joy) = Zo ,q with zero

indeterminacy.

3) Then we set Yj = €; + (-1)327, : r™M(p) —— M(p) .
.

. - - J

Then in H M(v;) , 2, 3%] = 0 and 2, .5(07) = (1+(-1) 2)Z0, 41

with zero indeterminacy.

From this we will argue, in an analogous manner to our proof

of Theorem 1.1, that there exists a map n; 2 gn*1 — M(p)

satisfying Theorem 4.1.

Remark: Consider the map Y; of Step 3. If Jj is even
* :

= i = ~1)J =

and p = 3 , then, in H M(v) , 25,5091) (1+(-1) 2)20, 41 0

Thus our proof breaks down. This explains the hypotheses of

Theorem 4.1 and of Theorem 1 of the introduction.

Step 1 of our program is easy. Let fs : SM ——5 5% pe

the map given by Theorem 1.1. Set A; = fis~id : s" M(p) — sO.M(p)

+

emma 4.2. In H M(A;) , 25,359) = Io, and blog) = Zo,4;
Nith zero indeterminacy

roof: A; is represented by hah in the E, term of the

Adams Spectral Sequence. The result now follows
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Step 2 is only a bit harder. For this we must combine and

interpret some of the results of Section 2.

Let U = Sev I, ) be the spectrum of Section 2. Then

Lemma 2.3 implies that the identity map of U has order bp

Thus the map

has a section VY :

identity of U .

N S #

J — &gt;

UZ 'M(p) —— U..3 t

J. “"M(p) so that (1.8)°¥ is the

Recall that HU is cyclic over the Steenrod Algebra with

generator v , so we ay Sousider elements a; 2 (pF p78

pla) (v) and os = (BPP ... PY (v) in HU .
Now, let g : U —— s° be the map of 2.1.

to be the composition

3 YU yy u M(p) gaid | M(p)

Then Lemma 2.1 and a calculation of the cohomological

properties of ¥ imply that the following result holds.

* pd pd
Lemma 4.3. In H M(g) , P (o,) = -L0; and P (07) 2 Ia,

We can now define £5 . Let £: 2" up) —— U be the

map of 2.2. Then in H M(E) we saw that P! (as) = (-1)%250

and P'(a;) = zo, . We define £5 to be the self map of the

Moore spectrum given by the composition
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—

J

’

&gt;
1M(p) —&amp;—(p) g su —9 M(p)

* i} _ yd
Lemma 4.4. In H M(E;) , 29,3 (9%) = (=1)Y "2 Lo, and

b, (0,) = Lo, both with zero indeterminacy.

roof This follows “rom 4.3 and ) 2.

de now begin Step 3

define vy, =e. + (-1)9245 : ( ) M (opD)
v

Corollary 4.5. In i { :

i

-d

_ _ J :

Ba, 315] = 0 and 25.3(07) = (1 + (-1) 2))(Zop,q) both with

zero indeterminacy.

Proof: This follows from 4.2 and 4.4,

We are now ready to complete the

Proof of Theorem 4.1 ot

be C. &gt;

proof of Theorem 4.1.

&lt;0

?

be the minimal Adams resolution for S° given in Section 1. Then
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)(pM) -(pMEy «M(p) -E,) &gt;(pMEx

{5 ~ M(p)

is an Adams resolution of M(p) . mos (Ko ~ M(p)) = Z,

generated by an element that represents hah; € Exts (H*M(p), Z,)
7

where under the homomorphism

5
© EA Ls

* * ~

Sx(hghs) = hh . (Recall that &amp; : M(p) ~ gs! is the pinch map.)

de now essentially repeat the argument given to prove Theorem

1.1 in order to prove Theorem 4.1. Namely, by Corollary 4.5 there

exists a diagram of 1liftings

¥3.3 Tn Me
Fo. M(p)5 n Ry

~~ re Vv
5 c—— 2™M(p) — M(p)

Vv,
J

Furthermore, by 4.5 there exists a commutative diagram of cofibration

sequences



17

|
3 —  "™M(p) ——

n+ntl 0p A+]
)

7
 3.3

Y.
j.2

(a VERT
| +(-1) 2)h gh; | 5,3

E, ~ M(p) &gt; E, « M(p) ~ K, M(p) "Ey ~ M(p)

Because p _ 3 , the identity map of M(p) is of order

Therefore the composition gh ern sh -— LE3 A M(p)
: Yiar

Wg

0

Thus “here exists a iitcing

on_ Es&gt; M(p)

 _— |
—

y
y+!

(1+(-1)2)RRy
‘»  M(p)

— EB, ~ M(p) &gt; M(p)
M2

nj is represented by (1 + (-1)32)Rh&gt; in Ext, (HM(p), Z)

Now set ny = rg jo where gq € Z, is the multiplication

inverse of 1 + (-1)92 in z, .

Define n; to be the composition fred

This completes the proof of Theorem 4.1 and therefore of

Theorem 1 in the introduction.
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5. More infinite families in m.5

We now turn to Theorem 3 of the introduction. Let p be an

odd prime and J be any positive integer if p&gt;5 or if p = 3

let J be odd. Theorem 1 yields a map

-

¥
J

N55 n= 2(p° + 1) {(p-1)-2

of order p represented by hah; in the Adams spectral sequence.

Consider the following diagram

N
ou

’
Ea

2ilp=1)- : -

p=!) TM(p) -— Bry Tu(p) &gt; g°

NE 2i(p-1) i s2i(p-1)

Here o : 22(0=Tyin) + M(p) is a map of Moore spectra which makes

the diagram commute

)M(p
) —&amp; ‘

Dp2(p-

| &lt;2(p-1)
S a

 ny

where a, € Top-3(S°) is the generator. o' is the composition of

a with itself i times. n; is a lifting of n which exists

hecause n. has order p (see 4.1)
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. 0 _ i-1

Define ny ;€ To+2i (p-1) (3 ) by ny4= Tea ens . Observe
that . = nN. .

N35 = Ni9
By postpoining the detinition of PB . to 5.3, we

 od 7k
can state

Theorem 5.2: n5.1 is essential for 1 &lt;i &lt; p’-1 and is

detected by a non-zero element 8 5, 5-1 in the Adams Novikov
ov/oY -1

spectral sequence.

We begin the proof by recalling the results of Miller,

Ravenel, and Wilson [23] concerning the Adams-Novikov spectral

sequence based on the Brown-Peterson spectrum BP,

Theorem 5.3: For D nd

0 _ .

(1) Extpp pp(BP.sBPL) = Z, , concentrated in degree zero.

1 .
(2) [26] Ext (BP, ,BP,) is generated by classses «a

BP,BP x2 * . sp"/n+1
‘for m&gt;0,p Js &gt;1) of order p" and degree 2sp"(p-1) .

(3) [23] Ext, ap(BPxsBP,) is a direct sum of cyclic subgroups
*

generated by classes 8 for m&gt;0, pfs&gt;1.,7
sp /(j,i+1)

)

i 0 , and subject to

(a) j &lt;p" if Ss =

(b) p'li&lt; a__; » where a, =1 and a, = pf + pf a1, k &gt; J

and

(Cc) a sq Jm=i-1 &gt; J it
=

ij
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8 has order pit! and degree 2(p%-1) sp" - 2(p-1)3 .
sp /(J,i+1)

Nota (1) We wrice

J
3

3 = 8

sp™/ (3,141) sp™/j

J J

sp /n+1
Ae

m
ind

(2) Novikov showed in [26] that «a o
sp /n+]

detects an element of rder n+l in w (s°) contained
25M (p-1) -1

In “lie image of =]

Lemma 5.4: Let ny ST" —5% bea map of order

detected by hah . Tren n; is recresented, in the Adams

Novikov Spectral Sequence, by an element

"

3.4 sq =B sq i

pda pdt pel
j 27-1where a(i) = (pH p+1)pd=?

b(i) = pd=21-1_;

+ J ~
Fo a(i)/e(i) Cs € Z,

and 1 &lt;i&lt;[j/2]-

Proof: There is a map of ring spectra ¢ : BP —— KZ, ‘

This gives a map of Adams-type spectral sequences, and thus a map

D =xtgp pp(BP+sBP) — Ext,( Z,s Z,

In (23] it was shown that o,(8 : ; ) =
pd! pdt

0.0 — 1,n+1

hh,J

cX

Since
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J
2,n+2 5 [5]

generated by B )
210s

ale Ba(i)/b(i) , the result follows.

definition 5.5 e+
-

ne

3 sf

pV mn
] x Cs B./=a(i)/b(i,k)

where C., is an iN d 1 and

(i)
25 sos= (pH per) pd-&amp;i-!

3(ik) = k - pl. C.27 2]

and T &lt;i &lt; max- gp” 3  Wd
K |

Proof of Theorem 5.2: The cofibration sequence

S° 5S 3 M(p) $ S| induces a short exact sequence in

Brown-Peterson homology:

J &gt; BP, 2PBP./(p) &gt;

where BP, = BP,(S°) = m,BP = Zoy[v;1 where dim v, = 2(p'-1) .

This is induces a long exact sequence in Ext :
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S XD coyS |&gt; Extpp gp(BPx:BPy) &gt; Extpp gp(BPxsBPy)
*

§
Xin ap(BP4oBPL/(p)) » Ext®t! (BP,BP,) + ...
=X gp BP\CF 2b x 3P.57

and J, is induced by a map of spectral sequences [35]. Theorem

5.3 and this long exact sequence imply that Extyp pp(BP+BP./p))
*

is a Z-vector spaces generated by elements a. and B m
J A

where 1a = a and 6,8 = B
sp/n+] sa sp/ sp/

Define B . = BR +3 C: Bg. :
ST TT i "a(1)/b(i.k)

Lemma 5.4 then implies that n of 5.1) is represented by a

class of the form

RB. + +ca , Where ce Z

pd/nd-1 pla P

(Note: Since ay represents an element in mw M(p) in the
IY +1

image of 7 . 30 M(p) , n. can be chosen so that c =0 .)

Now J; 20-1) (p-T)y(p) + M(p) induces multiplication

by vil in BP,.(M(p)) = BP,/(p) . Therefore the element

nj 1° WidPong : S +2(1-1)(p-1) z= M(p) is represented by
J

3 t + co

pd /pd-i 53+
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by the construction of the g's . (See [23].) Thus nj, is

represented by B ii
pY/pY-+
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