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RESULTS ON BROWN-GITLER TYPE SPECTRA

by

PAUL GREGORY GOERSS

Submitted to the Department of Mathematics
on May , 1983, in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in
Mathematics

ABSTRACT

Specialized Brown-Gitler spectra are constructed. The first
collection, By(k), is suitable for studying orientable manifolds; the
second collection, Bp(4k+3) is suitable for studying Spin manifolds.

For any CW complex Z, By(k),Z and Bp(4k+3),Z are computed in a range;
the images of By(k),Z — H.(Z3; Z3) and Bp(4k+3),Z — bo,Z is discussed.
In particular, w*B1?k) and m,Bp(4k+3) are computed in a range. 0Odd
primary analogues are produced.

Then, we turn to the study of the structure of ordinary Brown-
Gitler spectra. Applying these results and work of R. L. Cohen [14],
we show that for primes p > 3 hgh; € Extp(Zy, :zp) is an infinite cycle
in the Adams Spectral Sequence ana represents an element nj € S0, If
p > 5, nj can be chosen to be of order p. Finally, we use the Adams-
Novikov gpectraT Sequence to produce more elements in w*SO.

Thesis Supervisor: Dr. Franklin P. Peterson

Title: Professor of Mathematics
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Introduction

Brown-Gitler spectra have had two applications. The
first is to the study of manifolds and the second is to stable
homotopy theory, particularly to stable homotopy groups of
spheres. This thesis is divided into two parts. In the first
we produce Brown-Gitler type spectra suited for the study of
oriented and Spin manifolds. This is the bulk of the work.
In the second part, which is joint work with Ralph Cohen, we
finish the program begun by him and completely determine, for
primes greater than three, all secondary cohomology operations
that can detect stable maps of spheres. A central element in
our discussion will be sty of the structure of odd primary
Brown-Gitler spectra.

Let us examine these results a bit more closely. Brown
and Gitler's original result was this: There exists a collection
of spectra {B(k)}k>0 that filters the Eilenberg-MacLane spectrum
K Zé and so that t;é associated generalized homology theories
B(k), filter ordinary homology H( ;Z,) in a particularly
nice way. To say that we have Brown-Gitler type spectra suitable
for studying orientable manifolds is to say this: There exists
a collection of spectra {B1(k)}k>0 that filters the Eilenberg-
MacLane spectrum KKZ; and so that B](k)* s k>1, filters

~

Hy( ;222) in a nice way. Z; is the completion of the integers
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at 2 . Similarly, to say that we have Brown-Gitler type spectra
suitable for studying Spin manifolds is to say that we have a
collection of spectra {Bz(4k+3)}k>o so that 82(4k+3)* filters
real connective K-theory. This Iagé homology theory is called
bo ; it is a direct summand of Spin bordism completed at 2 .

The exact statements of these theorems and their connection
to the study of manifolds will be found in the next section.

In the final chapter we - the author and Ralph Cohen -
produce for each odd prime an infinite family of elements in
the stable homotopy groups of spheres detected by secondary
cohomology operations. The key to our construction is a
lemma which studies the homotopy theory of Brown-Gitler spectra.
Here is the 2-primary result.

Lemma: Let k > 1 be an integer and k # ) some J.
Let

J

j J
1 + 2 + .. 4+ 2n

k =2
be the diadic expansion of k . Jj; >, > ... > jn . Then B(k)
is a wedge summand of

B2 1).8(2°2) .. B2 ™

In effect this lemma says that the only "indecomposable"
Brown-Gitler spectra are the B(Zj) . There is an odd primary
analogue.

Apply this l1emma and results of R. Cohen we then show that

for p>3,3>2



=
hohJ ExtA( Ep, Zp)

is an infinite cycle in the Adams Spectral Sequence and represents
an element in the stable homotopy groups of spheres. Here A s
the mod p Steenrod algebra.

A more detailed outline is given in the introduction to
Chapter III.

The author wishes to thank Frank Peterson for many helpful
conversations; in particular he heard far more convoluted attempts
to prove the theorems of Chapter III. Ralph Cohen, too, is due
thanks for his suggestions and insights; a chance remark of his
is responsible for the first two chapters of this work. Mark
Mahowald, Haynes Miller, Doug Ravenel, and Don Shimamoto all
spent some time with the authors over these problems and deserve
thanks. Finally, many thanks to Anne Clee and Maggie Sullivan

for typing this lengthy manuscript.
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INTRODUCTION: CHAPTERS I AND IT

When Brown-Gitler spectra first appeared in 1973 [6], surely
they were an answer to this question: Can we define, for all smooth
manifolds, higher order characteristic classes? Given the amount of
geometric information inherent in primary characteristic classes -
Stiefel-Whitney classes - the existence of even a secondary character-
istic class would presumably supply topological data.

The existence of Brown-Gitler spectra implies, in effect,
that no such higher characteristic classes exist. The negative answer
has proved to be of interest, however; Brown-Gitler spectra have since
found application in the study of manifolds ([10], [11], [16]), loop
space theory ([9], [147, [15]) and stable homotopy theory ([14], [12],
[20]). The question we address here is this: Do there exist Brown-
Gitler type spectra suited for studying oriented manifolds? or Spin
manifolds? or complex manifolds?

The purpose of the first two chapters of this work is to
produce Brown-Gitler spectra for oriented and Spin manifolds. The com-
plex case is beyond our methods. In the oriented case we give a complete
discussion; the Spin case is less amenable to total analysis.

To begin, let us point out what is remarkable about the
original Brown-Gitler spectra. To this end, we discuss manifolds for a
moment. Fix an integer n and let M be a closed, differentiable n-
manifold. Then, let T(v) denote the Thom spectrum of the stable nofma]

bundle of M. We will make it a convention that the Thom class pe H°T(v)
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and that cohomology has:Z2 coefficients. Then, u may be thought of as

a map

o T(\)) —_ KEZ

where KEZ is the Eilenberg-MaclLane spectrum. Then, in cohomology, we

have a map
u* : A= l-I*KZ'Z2 — H*T(v)

where A is the mod-2 Steenrod Algebra. Let ker(M) = kernel of p* and

set
In = N ker(M)

where the intersection is taken over all n-manifolds. Brown and

Peterson [7] computed In:
= Ty .4 n
L, = A{x(Sq’) :1 > [2]}

That is, In is the left ideal in A generated by X(Sq1) for i
greater than the greatest integer less than or equal to n/2. x is the
canonical anti-automorphism of the Steenrod Algebra.

This, then, is Brown and Gitier's original construction:

Theorem: There exist spectra B(k), k > 0, so that

1) HB(k) = A/L,, = A/Ax(Sq') : 1 > k)

2) Let B(k) be the homology theory based on the spectrum B(k),
and let 1 : B(k) — KZ, be the generator of H*B(k). Then, for any CW
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1e 2 B(k)qZ — HqZ

is surjective for gq < 2k+1.

Let us examine 2) where Z = M is a manifold of dimension 2k or
2k+1. Then the fundamental class [M] € H,M is in the image of 1,. Since
T(v) is the Spanier-Whitehead dual of M U {disjoint basepoint}, we can
conclude that there is a lifting

B(k)
A
T(v) & KZ,

1) implies that this could not.occur if H*B(k) were a smaller

quotient of A.

Let us now state the results of the first two chapters of this

work. Let
1§° = N ker(M)
where the intersection is taken over all orientable n-manifolds M. Then
by [7]
159 = Agsq', x(Sa') ¢ 1 > [3D)
50

. _ | SO _ o
if n = 4k+1, 4k+2, or 4k+3. Note that I4k+1 I4k+2' This is because
(502 Ty = x(sa®)sq.
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Theorem I: There exist spectra B](2k+1) so that
» 1 iy .o - S0
(1) H*B,(2k+1) = A/A(SG', X(Sq') : i > 2k} = A/I,) 4
(2) Let 1 : 81(2k+1) — KZZ’Z‘ classify a generator of

H0(81(2k+1); ZE ). Then, for any CW complex
T4 % B](2k+1)qZ Y Hq(Z; Zz)
is surjective for any CW complex Z and g < 4k+3.

ZZ§ = 1im Z/2nZ is the integers completed at 2.
The existence of spectra §}(2k+1) satisfying property 1) of
Theorem I was first noted by Mahowald [19] and elaborated by Shimamoto

3<3> be the three-connected cover of

[31]. The method was this: Let S
the three sphere, 53. Then, if n is the generator of n]BO, there is
an induced bundle ¥y

22
vt 92833 —, g3 I, 272 59, g .

The last composition exists because BO is an infinite Toop space.

Mahowald asserts the existence of a filtration
2.3
{Fmﬂ S <3} m>0

of 9253<3> . Then there is a bundle

2.3 2.3

F, 2°57<3> ¢ 0°57°<3> —L» BO .

Yok * T2

The 2-completion of the Thom spectrum of Yok is E}(2k+1). Concurrently
with the work described here, D. Shimamoto [31] demonstrated that E&(2k+1)
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also satisfy property 2) of Theorem I. This is enough to produce a

homotopy equivalence
B (2k+1) — B, (2k+1) .

This is proved in Section 2 of Chapter 2.
Referring to Theorem I, note that if T(v) is the Thom spectrum
of the normal bundie of an orientable n-manifold, n < 4k+3, there is a
factoring
B, (2k+T)

|

T(v) - KZ

~

where 1I is any generator of HO(T(\)); Eg). 1l is a choice for the Z3
oriented Thom class of T(v).

Let us now describe IZE. Let 2k = 25(2t+]). Then, again by
(71,

S s-1 s-1
2°(2t+1) qu (2t-1)" 2 (2t+1)5q]),

x(sq') :
T4 3 <8, 4 Bkl

150 = Asa', x(Sq .Sq

We have the following result.

Theorem II: Let 2k = 25(2t+1). Then there exist spectra BT(Zk) so that
. o)
1) H*B](Ek) =2 A/I4k
2) Let 1 : B1(Zk+1) S KZ§ classify a generator of

HO(B]'(zk); Zj3) then
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is surjective for any CW complex Z and q < 4k-1.
3) let z e H4k(X; ZE). There are s primary obstructions, s-1
secondary obstructions, and possibly higher obstructions to z being in

the image of

by, § 81(2k)4kZ — H4k(Z; ZZé‘)

Let us examine 3). The primary obstructions will vanish for

where [M] is the fundamental class of a Z§ oriented 4k manifold. If

s = 1, that is, 2k = 4t+2, then there are no higher obstructions and we

B, (2K)
A

T(v) & Kz,

have a factoring

2k

If s >1, and M = CP®", all the secondary obstructions vanish

modulo indeterminary on

2k

- rep2k .

We say nothing, at this time, about other manifolds, or higher
obstructions.

Let us now turn to Spin manifolds. If the first and second
Stiefel-Whitney classes of the normal bundle of a manifold M vanish,

then M has a Spin structure; that is, we have a factoring
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BSpin

e

MY, BO

v classifies the normal bundle and V induces a map
g : T(v) — MSpin

where MSpin is the Thom spectrum of the universal Spin bundle. Completed
at 2, MSpin splits as a wedge of indecomposable spectra; in particular,

after completion, there is a projection onto a wedge summand (see [34])

MSpin = bo.

which is an isomorphism on HO. bo is the 2-completion of the represent-
ing spectrum for connective real K-theory. bo has been extensively
studied ([17], [19]). We are interested in the composite

jeg : T(v) — bo.

A/ALSq', Sq°} and that

zZ, n = 0,4 mod 8, n>0

We know that H*bo

=
o
o
[
N
N
ot
i

152 mod 8, n>0

0 otherwise

Let 1 H*bo be the Steenrod Algebra generator. Then, there
are maps ig, : bo — KZE , unique up to a homotopy equivalence of KZZé‘ "
J

so that we have a commutative diagram



1, 4]

bo uc Kz
11 5 |1
x(Sa™) 43

K, Kz,

i4j induces, for every CW complex, a map

(143,)* . bqu — Hq_4j(Z; ZZZ)

Theorem III: There exist spectra Bz(4k+3) and maps 1 : Bz(4k+3) — bo

so that
1) H*B,(4k+3) = A/A(SQ', Sq°, x(Sq') 1 > 4k}
2) For any CW complex Z, 1, : 82(4k+3)q2 ——+boq2 is onto
N ker(i,.)
for g < 8k+7.

Remark: Given that H*Bz(4k+3) is as in Theorem III, part 1), the image
of 1, in III, part 2) can be no Targer than N ker(i4j)*. The result
asserts that the image of 1, is as large as g;§51b1e.

John Jones and Mark Mahowald have produced spectra §é(4k+3)
so that H¥E,(4k#3) = A/A(Sq', Sq°, x(Sa') : 1 > 4k}. At this point, I
have no knowledge of whether or not they have an analogue of Theorem III,
part 2).

There are odd primary analogues of our theorems, just as there

are odd primary analogues of the original Brown-Gitler Spectra ([14]).
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For instance, the methods used to prove Theorems I and III give the

following result.

Theorem IV: Let p > 3 be any odd prime and let Ap be the mod-p Steenrod
Algebra. Then there exist p-complete spectra Bl(pk+1) so that
| ~ iy .
1) H*(B,(pk+1), zzp) = AR 18, x(p'), i > kl.
2) Let 1 : B1(pk+1) — KZE classify a generator of
HO(B, (pk+1)3 Zy). Then

1o 3 B](pk+'l)qz _ Hq(Z; ZZB)
is surjective for any CW complex and n < 2p(k+1) - 1.

Presumably, there is an odd primary analogue of Theorem II;
however, the proof of Theorem II is grueling. One should not undertake
an odd primes version unless one sees a need.

One remark should be made. In each of the theorems above, a
spectrum B is constructed along with a map 1 : B — ¥ where i is the
representing spectrum of a homology theory derived from a cohordism

theory. Then we asserted that

1e § Byl — JL L

was surjective in a range. More is true: we will actually compute B.Z

in a range and give a good characterization of the kernel of 1,. In
particular, we may compute m,B in a range. (The computation of w*B1(2k+1)
is accomplished also by Shimamoto [31].) The statement of these results

is complicated and we leave it until we have proofs in hand.
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In Chapter I, we prove Theorems I, III, and IV. In Chapter II,
we prove Theorem II, characterize the homotopy type of the spectra
B1(2k+1), and discuss some applications to manifolds. Each chapter
begins with a detailed outline of the proofs to be presented. Hopefully,
these outlines will provide some form to the intricacies of our tech-
niques.

A11 spectra will be completed at a prime p - usually p = 2.

See Bousfield [3] and note that-the 2-completion of KZ is KZZ’Z‘. This
is essential; a cornerstone of our proofs are the results of Secfion [.3
and these theorems do not apply to spectra such as KZ or even KZZ(Z) -
KZ Tlocalized at two.

Finally, we are working the stable category; the framework for
this setting is provided by Adams [2]. Often, however, we will wish to
restrict ourselves to  spectra; that is collections of spaces X = {Xi}

with homotopy equivalences

~

For a discussion of these spectra, one should turn to May [22].

The reader should note that if we refer to a spectrum X and then use

th

the notation Xi’ we are referring to the i space in the Q-spectrum X.
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Chapter I

CONSTRUCTION OF B1(2k+1), 32(4k+3), AND Bl(pk+])

In this first chapter, we use the techniques of Brown and
Gitler to produce the spectra we want. We concentrate our attention on
81(2k+1) and Bz(4k+3). The modifications needed to produce B](pk+1),

p > 3, are slight and I outline them in a final section.

1. Outline of the Proof

The proof of the existence of the spaces B](2k+1) and Bz(4k+3)
is technical. For that reason, we supply, in this section, a careful
outline, providing definitions and statements of lemmas, but postpone
the lengthy proofs. This is done for two other reasons: to provide a
roadmap through the subsequent sections and to furnish, if not motivation,
at least a framework for the technical arguments that follow.

Qur argument parallels that of Brown and Gitler [6], and is
obviously indebted to their paper. We refer freely to it.

The thrust of the argument is to produce a tower of spectra

‘ * Xq r Xgp T Xy —> Xq X,
iqT 12T 11T (1.1)
R Fy Fy
s0 that pq : Xq — Xq_] is a fibration with fiber Fq. Additionally,

we want a good hold on the homology theory induced by the spectrum Xq.
Xy will be KZ5 or bo depending on whether we are constructing B1(2k+1)
or Bz(4k+3). Then we will set B](2k+1) (or Bz(4k+3)) equal to Tim X _.

g, 9



-18-

Fq will be a product (that is, wedge) of Eilenberg-MaclLane
spectra.

As usual in such constructions, the first step is to determine
what Fq should be. As a start, note that if Xq existed, then the fact
that

9 ,
Fo =2 X Kae1

is a fibration allows us to produce a map Eq ¢ X SN Fq of degree

g-1
one. Here and later we will refer to a map of spectra f : X — 1Y as
being of degree n. When dealing with Q-spectra this is often more

convenient. Let &, be the composition

q
dq = Eq o 1q-1 : Fq-} —— Fq
Then we would have a sequence
$ 8
1 ; q
FO F-i LY Fq_-i L3 Fq T ees (].2)

Each Sq is of degree one. Our first step is to produce (1.2). Then,
inductively, we produce €q and, hence, (1.1).
We are trying to realize, as the cohomology of a spectrum,

certain modules over the Steenrod Algebra. Set

A/ALSa', x(Sq') : 1 > 2k}

1]

M1(2k+1)

and

2

M,(4k+3) = A/A(Sq’, Sq°, w(sq') ¢ i > 4k},
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We require that the cohomology of (1.2) be a resolution of
sorts of M1(2k+1) or M2(4k+3), as required. That is, apply cohomology
to (1.2) and obtain

6* 6*
L HYF o WAy —— L~ HYFy Lo fprp, T M — 0

(1.3)
where M = M1(2k+1) or M2(4k+3). m, at this point, is only algebraically
defined; it is the quotient map from H*KEZ or H*bo to M. We ask that
(1.3) be a long exact sequence; that is an acyclic resolution of M by
modules over the Steenrod Algebra.

We first produce an algebraic resolution of M then produce
spectra and maps which give in cohomology (that is, realize) this alge-
braic resolution.

Such resolutions require a bookkeeping device; here that
device will be the A algebra of Bousfield, Curtis, et.al. [4]. Let us
recapitulate their results.

Let A be the 222 bi-graded algebra generated by elements )\1.

(i > 0) of grading (1,i). The unit has grading (0,0). We have rela-
tions

S-1
}\i;\j = Z [25-(;]-21)] l1'+s}‘j-s (1.4)

In dealing with this algebra, one has certain conventions. First, if
I = (11, "y in) is an n-tuple of non-negative integers, we write

A Ae ... A: . It is then natural to say that XI has length n.

T ™ i
1 n
Secondly, we call Ay admissible if 21j > ij+1' It is a result of [4]
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that admissible monomials in the ,\]. form a 22 vector space basis for A.
Finally, we say damll =1 % iy + ...t e

A has a very specific and rigid structure, and is replete with
interesting ideals and sub-algebras. We detail a few in the following

result.

Lemma 1.5: 1) Let Ak

Then an additive basis for Ay is given by all admissible monomials

be the left ideal generated by li’ 0 <i<k.

ki] & Ain with Ty % K.

2) Llet Rl be the left ideal generated by A,; ;5 1 > 1.
Then an additive basis for & is all admissible monomials Ai “en li

1 n

with i odd.

3) Let N be the sub Z, vector space of A generated by
elements Ai] g Xin-TAin with i, odd and i = -1mod 4. If ), is
an element of &t and of length greater than one and AJ € A, then

AJAI =

The proof of 1.5 is in Section 2. It is an easy consequence
of 1.4. (See Lemma 2.10.)

Let us see how this algebra was important in Brown and Gitler's
work. Define A(g.k) to be monomials of length q in A/A . And et us
now, for strict accuracy, consider the Zz dual A*(g,k). Then there

exist maps Ga so that the following is an acyclic resolution.

.—> Ar *(g,k) — Aa *(g-1,k) — ...
*

8 .
A @ 1%(1,k) —= A T A/Ax(Sq') : i > k} — 0
(1.6)
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* oo
6q is complicated; see Lemma 2.13. If kj is one of the obvious

generators of the dual vector space A*(1,k), then 5?15 = X(qu+])-

H*B(k) = A/Alx(Sq') : i > Kk} = M(k) .

Notice that since A & A*(g,k) is free over the Steenrod Algebra,
we may find spectra Iq‘so that Iq is a product of Eilenberg Maclane
spectra, ”*Iq =~ A(qg,k) as a 2'22 vector space, and H*Iq = A ® A*(g.k).
Further, we can find maps §_ : I

q " "g-1
*
Gq. Thus, we have a sequence of spectra

—_ Iq which, in cohomology, give

&

g = [ w==]

I =KZ

1 0 2 (1.7)

q-1

(1.7) realizes (1.6). Notice that, because of our remarks around (1.2),
we should ask that Sq be of degree one. This is Brown and Gitler's
first step.

We turn to the problem of resolving M](2k+1). Let K(q,2k+1)

be the monomials of length q in R/R N Mots 1

Lemma 1.8: There exist maps 6; so that

. — A B R*(q,2k+1) — A & N*(g-1, 2k+1) — ...

(S*
. — A A*(1, 2k+1) — A/ASql T My (2k+1) — O

is an acyclic resolution of M](2k+1) by modules over the Steenrod

Algebra.

This is Theorem 2.11 of Section 2. From 2.13 we see that

p - _ 2 J—
°1k2j-1 x(Sg™~). We may now produce spectra Fq so that F = KZj
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and Fq (g > 1) is a produce of Eilenberg-MaclLane spectra with

TeFq = A(q, 2k+1) and H*F = A @ A*(q, 2k+1). Further, we may produce
maps 8, : Fq_]-——+ Fq (of degree one) so that

%

- F = KZ, (1.9)

$
...+—-Fq<—-q—Fq_.|-c——-...+——F.| o 5

realizes the resolution of (1.8).
Now consider M,(4k+3) = A/A(Sq', Sq°, x(Sq') @ 1 > 4k}. Let
(g, 4k+3) be all monomials of length q in A/A N Mgys3+ Refer to 1.5,

Lemma 1.10: There exist maps 6; so that

6*
.. — A B T*(q, 4k+3) 24— A @ T*(g-1, 4k+3) — ...

8 8 1

. — A B T*(2,8k+3) — A/ASq' & T*(1,4k+3) — A/A Sq', T LN

M2(4k+3) — ()

is an acyclic resolution of M2(4k+3) by modules over the Steenrod
Algebra. _

This, too, is prdved in Section 2. We may produce spectra so
that Fq (g > 2) is a product of Eilenberg-MacLane spectra with
”*Fq = R(q, 4k+3) and H*Fq = A & N*(q, 4k+3). F should be a product

of Eilenberg-MaclLane spaces of type KZE and

25 n=4j-1, j > k+l
1TnF1 =
0 otherwise
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F0 = bo. We will be able to produce maps Gq : Fq-] — Fq of degree
one so that
%

8
.+—Fq«———qu_1+~—-...4-——F1+—Fo=bo (1.11)

realizes 1.10. 61 is a product of maps 1'43. : bo — KZZ§ of degree 4j

so that

i,
bo —2l k7

Y i

43
Kz, ¥39°), ¢z,

commutes. 1 is the Steenrod Algebra generator of H*bo or H*KZZ2 . Thus
i4j is only determined up to a homotopy equivalence of F]. We make a
more careful choice in Section 3.

The fact that we have used the symbol “q in 1.6 through 1.11

is meant to be suggestive. There are obvious projection maps
:Aa A*(q; 2k+1) — A & A*(g, 2k+1) q>1
we i A— A/ASq' = HAKZ,

: A g A*(g, 4k+3) —— A B T*(q, 4k+3) q>2
wy ¢ A AX(1, 4ke3) — A/ASq! @ T¥(1, 4k+3)

uy o A —— A/A(Sq, Sq°} = H¥bo

* * * *
U

These maps have the property that Sq q = uq-16q' Since we are producing



Pl

maps into Eilenberg-MaclLane spectra, we have maps u_ : F_—— I_ (see

q q q
1.7) and a diagram:
Fo— F — .——+Fq_-l—-—>Fq = PP
o | g (1.12)
IO — 11 — . Iq-] — Iq —r

Thus we get maps of resolutions 1.9 or 1.11 to the resolution 1.7. The
existence of 1.12 is important: we wish to use it to play off the
results of Brown and Gitler.

Now we return to the original problem: that of constructing
the tower (1.1). To do this, we wish to inductively produce the maps
e X

g "g-1
difficult, if not impossible. The approach that works for these Brown-

—~—+-Fq defined prior to (1.2). This is in general quite

Gitler type spectra is to dualize the problem. That is, we apply a
functor x to 1.9 or 1.11. and obtain a sequence of spectra
d d

: L s 9
.———qu——q-*Kq_] Ky = K, -

Here Kq = X(Fq) is a product of Eilenberg-MaclLane spectra if

q>1, and K = x(KZ,) or x(bo).

Then, inductively, we produce spaces G and maps e_ : K

—_—
g-1 q q

Finally, Xq_q = X(Gq_1) and £_ = x(eq). So we must describe y.

q
This functor y is essentially the Pontrjagin duality of

Brown and Gomenetz [5], and has the property that, for a spectrum X and

a CW complex Z one can compute X,Z from x(X)*Z. The functor of [5],

however, is only defined for spectra X so that an is finite for each n.
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Since TTOKZZE = m,bo = 1, is uncountable, we need to extend their
results slightly.

So saying, let s” be the category of two complete spectra;
see Bousfield [3]. The x-dual category of s* is a bit more difficult
to describe. Let M(Zn) be the ZZ/ZnE Moore Spectrum, that is
H(M(En); Z) = 7Z/2"Z concentrated in grading zero. Then we have

1 n+1

canonical maps M(Z") — S and M(Zn) — M(2

n+1

); the latter induces

ZZ/ZnZZ — 7Z/2" 'Z in homology. Then we have a commutative diagram

M(2") —— m(2™h

S'l - Sl

Thus, for any spectrum Y we have a map of degree one
lim ¥ M(2") — ¥

We define a category s by saying that Y is an object in s* if and only
if this map is a homotopy equivalence.

Some examples: if for each n nnY is a finite group consisting
only of two torsion, then Y is an object in both s™ and s, KZé‘ and
bo are objects in s*, and KZ7 = = 1im KzZ/2"Z is an object in s . Zy
is the Prouffer group and may be identified with the two torsion in R/Z,
the real numbers modulo the integers.

If G is an abelian group, Let Gt denote the character group:

T

G- = Hom(Gy; R/Z).

P e
(Z3)" = Zy=.
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In Section 3 we prove the following result.

e o]

Theorem 1.13: There exist contravariant functors y : s — s and

=]

X ¢ 8 —> s satisfying:

1) x(KEZ) = KZ’Z2 and y : [KZZ, KZZZ] —_— [KZZZ, KZZJ is
the canonical anti-automorphism of the Steenrod Algebra.

2) For a spectrum Y, Jet Y9 be the cohomology theory based on
Y. Then, for each Y € s~ (or s ) and any finite CW complex Z there is

a natural isomorphism
S, = (x(Y) Z)t _—_
¥ q

Sy is natural in Y.

3) There is a natural equivalence between xy and the identity
functor of s* (or s*) to itself. _

4) v induces a group isomorphism: ¥ : [X,Y]q — [X(X),X(Y)]q.
[X,Y]q is the maps of degree g.

5) wqx(Y) = (w_qY)t and the isomorphism is natural in Y.

Note: 1.13.2 is the reason this theorem applies to the problem at hand.
We now restate the main theorem of Brown and Gitler's work.
Let the following be the y-dual of the resolution 1.7, which realized

1.6:

2 ] Lo= KZQ

_q,
— 1k Lo-1

Each Lq is a product of Eilenberg-Maclane spectra of type Kzz.

Theorem 1.14: There exist spectra Eq and maps (of degree one)

&y * Lq = Eq_] so that:
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1) E = L, = KZ, ande]=d

0 1°

i P
2) E B Eq —4, Lq is the fibration induced from the

g-1
contractible path fibration over Eq_1 by e .

q
e Poo ‘
3) L —4. Eq-1 A Loy Ts d

4) eq : Lq,2k —_— Eq,2k+1 is zero.

This is in [6]. We should remark that 3) and 4) together imply
that dq z Lq,2k — Lq-1,2k+1 is zero. This can be provgd directly
and is a key point in the proof of 1.14.

Theorem 1.14 gives a diagram

E0 -+ i] - Tz > hea ot Tq — EQ+]-——~+...
L1 L2 Lq
Apply the functor x to obtain a diagram
Y0 11 < Y2 < Yq - Yq+]
| T T (1.15)
11 b3 Lost

Assume each pq is a fibration. Then B(k) = ljm_Yq .
We then wish to show that, for any CW complex Z

B(k)n L = HnZ

is surjective for n < 2k+1. First suppose Z is a finite complex. Then,
since Yo = KZQ, it is sufficient to show that (Yq)nz-——+ (Yq-])nz is
surjective for all q and n < 2k+1. By 1.13.2 it is equivalent to show

that
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i L

q-1 q
is injective. But this follows from 1.14.2 and 1.14.4. To pass to
general CW complexes, we take a direct 1imit over finite subcomplexes.
Now, we wish to apply 1.13 to prove our theorems. In what
follows, let Eq and Lq be those spaces used to construct B(2k+1) (if
we are working to 81(2k+1)) or B(4k+3) (for 82(4k+3)).
Apply x to 1.12 to obtain a new diagram:
d

d
1
—_— Lq —q-—av Lq_.[ —_— —_— |_0
uql d l d, lu°
—_— Kq ﬁ—» qu.l _ " —_— KO

In Section 4 we will prove the following result.

Theorem 1.16: There exist spectra Gq and maps eé : Kq---—---> Gq_] of

degree one and zq . Eq —-+-Gq of degree zero so that

1) G =K., ei = d1 and Lo = Uy -

0 ,iO

P
2) G —9+-Gq 4, Kq 1s the fibration induced by e; from

q-1
the contractible path fibration over Gq-]“

3) The following diagram commutes:

1 p e
R e N
liq']i lgq D luqe' lgq"
G 9,6 Lk I-¢
. q-1 q q q-1
4) X ‘e, g Pal s
q q-1 g-1 q’

5) If we are working toward 81(2k+1)

ey Kq,ake2 — Bqo1,ake3 18 null-homotopic for q > 1.
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If we are working toward Bz(4k+3)

eé g Kq,8k+6 iy Gq-1,8k+7 is null-homotopic for g > 2.
Just as before, we can now construct B1(2k+1) or Bz(4k+3).

Let XCI = X(Gq)- Then there is a tower

> X

q > Iq_] —_— . — IO

£q (1.17)
Fo Fy

We assume each Pq is a fibration and set B](2k+1) or Bz(4k+3)

equal to }im X . Since X, = KZ3 or bo, as desired, we have canonical
q 0 2

maps
B1(2k+1) —— KZZE and Bz(4k+3) — bo .

Notice, too that 1.16.3 implies that there is a map from 1.17

to 1.15 for B(2k+1) (or B(4k+3)) and, thus, we have canonical maps
81(2k+1) —— B(2k+1) and B2(4k+3) — B(4k+3) .

To compute H*B1(2k+]) or H*Bz(4k+3), we first let

be the exclusion of the fiber. Then 1.16.4 implies that Eqiq-1 = Gq of

7.9 or 1.11. Then standard techniques (see Proposition 5.1) say that

H*B1(2k+1) = M](2k+1) and H*82(4k+3) = M2(4k+3) ,
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Finally, to discuss the homology theories BI(2k+1)* and
82(4k+3)*, we argue exactly as we did between 1.14 and 1.16.
We should note that for n < 4k+1 (say we are discussing

B](2k+1))

p. (Xq)nZ — (Xq_1)n2

Qs

is not just surjective, but split surjective and the splitting is
natural in Z This is a consequence of 1.16.5. A detailed discussion
is given in Section 5.

Section 2 discusses resolutions, Section 3 discusses Pontrjagin
duality and some lemmas. Sections 4 and 5 are devoted to the proof of
1.16 and Theorems I and III of the Introduction. In Section 6, we
compute m,B,(2k+1) and W*Bz(4k+3) in a range.

‘ In Section 7, we discuss changes need for odd primes.

Naturally, the notation Lemma 2.14.3 refers to statement 3 of

Lemma 14 found in Section 2.

2. PResolution of M](2k+1) and M2(4k+3)

In this section we provide the proofs of Lemmas 1.8 and 1.10.
We could mimic the techniques of Brown and Gitler, but another technique
actually seems to be more illuminating. This is true for two reasons.
First, it makes explicit the relationship between a certain weight
function (2.2) on the dual Steenrod Algebra and the homology of Brown-

Gitler spectra. This relationship has been noted empirically before -
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see [14]. Secondly, these new techniques give an elegant description
of the A algebra, a description that seems worth recording.

For some pages, then, we will work with comodules over the
dual Steenrod Algebra rather than with modules over the Steenrod

Algebra. Recall the dual Steenrod Algebra is a polynomial algebra
A* = Zz[c_p]: st -"]

where Z; has grading 21-1. The ¢y are the Hopf algebra conjugate of
Milnor's 51 [24]. There is a coproduct map ¢ : A* — A* @ A* which is
a map of algebras, defined on generators as

J

Wey) = Tzgm i (2.1)

let M be a left module over the Steenrod Algebra and M* =
Hom(Mﬁ 222) be its dual. The left action of A on M can be transformed
into a right action via x: form&€ M and a € A, set ma = x(a)m. This

gives a map
Mg A—M

The 222 dual of this map gives the (conjugate) comodule map on

M* .

y : A* — A* g A* is such a map.

A* has a weight function w defined on it as follows. Set

i-1

w(zs) = 2 and w(xy) = w(x) + w(y).
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Now HKZj = Z, (25, T,, ...] C A% as comodules; thus HKZ;

has, as a Z, -basis, all monomials of A* of even weight. H,bo =
Z, [z?, gg, T3 .+.] € A* as comodules; therefore, H,bo has, as a Z,-
basis, all monomials x € A so that w(x) = 0 mod 4.

Let M(k) = A/Alx(Sq"), i > K}, M, (2k+1) = A/A(SG') i > 2k},
and M, (4k+3) = A/ALSq', sq%, x(Sa') i > 4k}. We characterize the duals

of these modules.

Lemma 2.2: 1) M(k)* c A* as comodules and has a Zy- basis consisting

of all monomials of weight < k.

2) M1(2k+1)* C H*KZZ’Z; as comodules and has a Z, basis
consisting of all monomials of weight < 2k in H*Kﬂé.
33 M2(4k+3)* C Hybo as comodules and has a Z, basis

consisting of all monomials of weight < 4k in H,bo.

Proof: I will do 1). The technique is suggestive of things to come.
Let A(1,k) be monomials of length one in A/A, . See Section 1. Define
a vector space map ¢ : A* —— A(T1,k) by ¢-|(t;‘]j) = qu Jj > k+1 and
1 of all other monomials is zero. Then define a map 31 : A* —
A* g A(1,k) by the composition

3 0 Ax L px g px 100, e a(14b).

Using 2.7, we compute that ker('a]) = all monomials of weight < k. To
2

finish, we show that A @ A*(1,k) — A i B9 M(k) —— 0 is exact. To

this end, Tet Sq,i € A be the dual of g:’l € A* where 5] is the Milnor

generator. X(g}) = g}. We compute that
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* —
a];\j_] - X(SqJ) .
But it s known [25] that Sq = Sq9 .

3 is the idea that makes all that follows work; perhaps the
reader should take some care over the proof of this lemma.
Let us return to the A algebra of Section 1. The relations

given there (1.4) can be restated as follows: See [4]

n -

A can be given the structure of a differential (bi-) graded

algebra by requiring
_ N
Mot = LA k1Pt (2.4)

Recall that if I = (11, o iq) is a g-tuple of non-negative

integers, we write A; ... A, = A;. The symbols I = (i,, ..., i) of
iy 1 I 1 q

length q can be ordered lexigraphically from the right; that is, (1,1.2) >
(1,1,1) and (0,2,1) > (1,1,1), for example. The ordering on the I's

gives an ordering on the AI's: Ay > Ay if and only if I > J.

Recall that AI = A, for

g9 eees Ay 1S admissible if 21j > i

41
q J

every Jj.

Th, with J admissible

Lemma 2.5: 1) For any A; not admissible, A, 3

and A, < A

J I’

2) If 1= (iT’ e 1q) then 3x

= Iy with 0= (§qa oons

Jq+]), J admissible and igs1 < 1g°
Proof: See [6]. This is an easy application of the relation (1.4)
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and the differential & in A which reads, in admissible form

= y(h-d
ax, = F ) Aeity-1
We now turn to the resolutions of Section 1. In particular,
we now define the ZZz-duals of the map G;.
Denote by A(g) = A(q,0) all monomials of length g in A. In
2.2 we defined ¢1 and 81. Let us make some further definitions. Let

9o : A* B A* — A(2) be defined by the requirements that

) 1 LY
8p(21 8 27) = X495
and s applied to all other monomials is zero.

Define aq : A* g A(g-1) — A* & A(q) by the formula

aq(a a AI) = al(a) Aptaa Mg -

Lemma 2.6: 1) Give A* @ A(q) the comodule structure A* g A(q) ymid,
A* a A* & A{q). Then aq, q > 1, is a comodule map.

2) 9 0.

q° %17
Proof: 1) follows from the definitions. For 2), the following diagram
implies that 82 o 8T = 0.

A
A L ax g A —— A* g A¥ g A*

1, e | 1480,

ax L ak g (1) —2+ A% @ A(2)

(2.7)

A1(a a b) = y(a) 8 b + a r y(b). Then
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aqaq_l(a 8 Ap) = aq(a](a)xI +a’ )

= 3,9 (a)ag + dar(a)on; *a7(a)an; + a @ 32)\1 =0 .
Note: The relations (2.3) and differential (2.4) in A are forced by

the requirement that 2.7 commute. For instance:

9y © (id » ¢1)(1 ® c?cg) =0
and

i n_my _ n
(id @ 9p) = 831 @ 2355) = 20 a1 omek-1

Thus we could deduce (2.3).

Let A, S A be the Teft ideal generated A, ..., A _q-

Lemma 2.8: 1) A ZZZ- basis for Ak is given by all admissible-monomials
in A, Ai, T Kiq so that iq < k.
2) A is closed under 2.

Proof: In [6], but easily follows from 2.5.

From 2.8 it follows that the maps aq : A* g A(g-1) — A* a A(q)

restrict to maps 5& : A* m Ak(q-l) — A* @ Ak(q). Ak(q) is monomials of

length q in Ay Thus we get new maps

aq : A* @ A(g-1,k) — A* B A(q.k) .

3 15 the Z,-dual of s* in 1.6. For all k, 5.3 . = 0.

q q q-1
The main idea of this section is contained in the following

result.
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. 3
Theorem 2.9: 0 —= M(K)* —— A* —— A* g A(1,k) — ...

9
... — A* B A(g-1,k) —4s A% @ A(q.k) — ...

is an acyclic resolution of M(k)* by comodules over the dual Steenrod
Algebra. i is the inclusion of 2.2.

Proof: e need only show that it is acyclic; that is 1) helr'a.I = M(k)*
and 2) the complex is exact at A* a A(k,q). In A*, if J = (jT’ cees jr)’

J J
Tet Y = §11 . crr .
1) This is the content of the proof of Lemma 2.2. Note that
we have
Jy _ jZ jr
39(2%) = 577 wes Ty B gy Las By a; € A*

wel) = gy +2d, 4+ 2

]

with i < w(J). w(J) "

(2) Letz =) a; B A be an element of A* & A(g.k) and suppose

3 1% = 0. Assume AI is admissible for each I. We first write z in a

g+
form amenable to induction. Set

Js
z=)c @At )b B b e A*

where i) L < I and ii) if L = I, then the monomial of highest weight in

b, has weight less the w(Js) for all s. Then I is maximal and w(J1) =

L
w(Jz) = ,,, = W(Js) is maximal among the monomial coefficients of Ay

Set w(JS) = w.
It JS = (j'l’ s 9 JY') then set f(JS) = (32’ R j ). We have

r
£(a,)

0= 38492 = JE B A, _1hp LGy B Ay Cy € A*
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with N < (w-1, I). This follows from 2.5. (w-1, I) cannot be admissible
or an(z) 0. If1I-= (1], - iq) set t = i, - 2+1 > 0 and, for each
s, set g(JS) = (t, JS). Then

q(Jy) J

- S
3, (¢ “f(I))'c A +]d B} d €A

q

g(J)
and L < I. Setting y = )z S g kf(I)’ we have

8q+1(z + aqy) =0

and z + B = ) a) & ) with L <1 and if L = I then the monomial of
highest in ai is less than W. Now one works by induction to show that z

is in the image of Bq. This completes the proof of 2.9.

The resolution of 2.9 is the Zz-dual of 1.6. We give an
explicit formula for 6; in Lemma 2.13.

We turn to the proofs of Lemmas 1.5, 1.8, and 1.10.

lemma 2.10: 1) LetAc A be the left ideal generated by Apsqe T2 1.

Then A is closed under 5 and an additive basis for 2 is all admissible

monomials AI = xiT, Fa % Ai with Tq odd.

2) AN By is closed under 3.

3) Let I be the sub Zz -vector space of A generated by
elements Ail, vees Ay with iq_] odd and iq = -1 mod 4. The monomial
ij-1A4i-1 € T whether or not it is admissible. If A; € N and A is of

length greater than one, then MM € T for all 1.

4) A and AN A, are closed under 3.
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Proof: We work with the relations 1.4 and differential 2.4.

1) Let li € A. Then, if Ay 1 is not admissible

2i-
Ads 1 =3 (e o300 A
4911 25-23+21+17 A+s"2§-1-5

When s is odd, s-1 is even and, thus, the coefficient of l1+sA2j~1-s is

zero. Similarly,

_ 2]
5.1 = L CR) Apgopariet

and (zlf) = 0 when k is odd.
2) Follows from 1) and 2.8.2.
3) 23 1 41 1 z (25 41143 1) l23-1+sk4i-]-s'
If s = 1,3 mod 4, s-1 is even and the coefficient of
is zero. If s = 2 mod 4, the coefficient of

is of the form (2&f}) = 0. The second claim follows from

A25-T+sMi-1-5
A25-1+sM41-1-s
this and 1).

(ﬁ?) = 0 unless k = 0 mod 4.

= 7 ¢4
4 g5 7L O0) Aggoeatkar
The result follows from 1), 3), and 2.8.2.

Recall that A(q, 2k+1) is the vector space of monomials of length

q in A/R N Mot 2.10.1 and 2 allows us to construct comodule maps

aq + A* 8 A" (g-1,2k+1) — A* B A"(qg,2k+1)

so that the following diagram commutes.

N 9
A* a A(g-1,2k+1) “9 Ax g R(q,2k+1)

)
A* @ A(g-1,2k+1) —— A* @ A(q,2k+1)
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The verticle maps are inclusions. The techniques of Theorem 2.9 allow us

to prove the following result.

&
Theorem 2.11: 0 —— M(2k+1)* e Z, [;%, Zos eoo] — A* @ A(7,2k+1)
~ 8 ~
. — A* @ A(g-1, 2k+1) —3— A* @ A(q,2k+1) — ...

is an acyclic resolution of M(2k+1)* by comodules over the dual Steenrod

Algebra. i is the inclusion map.

This 1is the 222 dual of 1.8.
Similarly, recall that 7(q,4k+3) is the vector space of
monomials of length q in A/A N A4k+3' 2.10.3 and 4 allow us to construct

comodule maps

3 A* @ T(q-1,k) — A* & 1(q,k) q>3

3y Z, [z;?, Tos ...] & A(1,k) — A* & A(2,k)

8] . ZZZI:Z?; C%: 52 ces ]——9' ZZZI:Q%: Cz s:s] EI(1,k)

so that all the obvious diagrams commute; for instance, the following
commutes.

3 -
Z,[c2, ¢, ...] & (1,4k3) <= A* @ T(2,4k+3)

3
A*a A(1,8k+3) —2— A* @ A(2,4k+3)

The verticle maps are inclusions. The techniques of 2.9 allow us to prove

the following result.
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i 4 2
Theorem 2.12: 0 —— M, (4k+3)* —— Z, [t], 25, Ty ---]

5 5
o 7,028, ¢, ... 8 T(1,8k3) E— A% @ T(2,4k43) —

9
. — A* @ T(q-1,8k+3) -3 A* @ T(q,4k+3) — ..

is an acyclic resolution of M2(4k+3)* by comodules over the dual

Steenrod Algebra.

This is the 222 ~-dual of 1.10.
Let us examine the ZZZ-dua]s of the maps aq. These are A-module

maps

6;:A3A*(q,k) — A 8 A%g-1, k)

5; . A @ A*(q, 2k+1) — A @ A*(g-1, 2k+1)

and so on. Let II the Z,- dual of A;.

Lemma 2.13: 6; : Am A*(gq,k) —— A & A*(g-1,k) is the A-module map

determined by
= i
Gq AI y (?\ )\J) x(Sg" ") A J .

The sum is over i > -1 where X_;X; is interpreted as 3);.

i i

y 1 n
Proof: aq(g}, cees Ly

@ Ay) =1ax +7a &x withl #1 if and only
1t i2 = 13 = ,.. = 1n =0. If i] = 0 also, then AI is a summand of BAJ.

Thus, we have

S = T RO e T

Here the sum is over i > -1 (with the convention above) and over J so
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that the grading of AiAJ equals the grading of AI' As in 2.2, we may
identify (§;+1)* as X(Sqi+1).
2.13 follows.

This lemma determines all maps labelled 6:. For instance
* - 1
62 : Aa A(2,k)* —— A/ASq & A*(1,k)
is given by

W o 24,
8(31) = 1 T O 92g5-0) x(Sa77) %5,

3

and

*

57+ A/ASq! @ T(1,k) —> A/ALSq', S¢°}

is given by

id _ 44
51()\ 41_'[) = X(SCI )
It is instructive to compute that this is well-defined:

. . -
(597 1sq") = x(5q%sq* 1) + x(5q'sq*)

1 .. 44
Sq'x(Sq")

w(sq¥17Y) sq? + x(sq¥) sq' =0 in A/AfSq', Sq°}.

3. Pontrjagin Duality

In this section, we extend the Pontrjagin Duality functor of
Brown and Comenetz [5] so that we may apply it to the spectra that we
are considering. After this theoretical discussion, we make our first

application: we apply Pontrjagin duality to sequences of spectra realizing
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2.9, 2.171 and 2.12. Then we discuss the unstable properties of these
dualized sequences. The primary results are 3.11 and 3.12.

Let s be the full subcategory of the homotopy category of CW
spectra so that Y is an object in s if and only if ﬂnY is finite for each
integer n.

If G is an abelian group let Gt be its character group; that

t. Hom(G; R/Z) where R/Z is the real numbers

is, its Pontrjagin dual. G
modulo the integers.

In [5] Brown and Comenetz defined a functor y whose properties
we delineate here. If Y is a spectrum let Y, and Y* denote the (reduced)

homology and cohomology theories based on Y.

Theorem 3.1: There is a contravariant functor x : s —— s satisfying

1) X(Kﬂp) = KZZp for all primes p.

2) For each Y € s there is a natural equivalence

g, 1 X(Yq)t — ¥
SY is natural in Y.

3) There is a natural equivalence between yx x and the
identity functor.

4) x : [X,Y]q —— [x(Y), x(X)] is a group isomorphism.

5 x : [KZZZ, KZZz] —_— [KZZZ, KZZZ] is the canonical
anti-automorphism of the Steenrod Algebra.

6) mx(¥) = (r_°

We record the following result, also from [5].
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Lemma 3.2: If F— E — B is a fibration, then y(B) — x(E) — x(F)

is a fibration.

The restriction of x to s arises in this manner: Hom{ ; RR/Z)
is a functor which maps compact abelian groups to discrete groups and visa
versa. This is done by keeping track of the topology on IR/Z. Given an
arbitrary spectrum E, there is no canonical choice for a topology on E*.

If ﬂqY is finite for each q, however, there is such a choice of a topoloagy.
Let X be an arbitrary CW complex and let {Xa} be the directed set of
finite subcomplexes of X. Then Yq(xd) is finite for each a and, thus,
compact in the discrete topology. Then, because ]im is exact on compact

groups
Qy = 13 q
YX !1m Y Xu .

The requirement that this be a homeomorphism gives Y3x a unique
topology. In addition if we give x(Y)qX the discrete topology, then the
equivalence of 3.1.2 is a homeomorphism.

Clearly, this would not work, say, for E = KZ. It can be
extended to spectra such as KZZE and bo; however. For instance, since

KZZ2 = 1im KZZzn and since H*(X; ZZz‘n) is compact

H*(X; ZZ5

5) = Lim HX(X; Z_)

2
and, by the above argument, this gives H*(X; ZZE) a unique compact topolo-
gy. Note that TrqKZZ2 is compact for each q.

Let us extend x. s” will be the full subcategory of the

homotopy category of CW spectra so that Y is in s” if and only if
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1) qu is a finitely generated ZZ§ module for each g
2) Y is 2-complete.

By the last, I mean this: Let M(2") is the Z/2"Z Moore space and

define inclusions Y = Y.S° id~g | YAM(ZH) where ¢ is the inclusion of

the bottom cell. 2) is the requirement that the induced map

Y — lim YAM(Zn) be a homotopy equivalence. For Y an object in s”,

i Y. M(2") is finite for each q: therefore (Y.M(2"))*X acquires a

unique compact topology and

Y*X E lim (Y.M(2"))*X .

We require that this equivalence be a homeomorphism.

KZ§ and bo are objects in s”.

~

s” is a category of compact cohomology theories. We define a

dual category of discrete cohomology theories. Let Z _ = 1im z/2"z.

2
Then (z3)t = z s Z _ can be thought of as 2-torsion in R/Z. Lets"

2

2 2
be the full subcategory of the homotopy category of CW spectra so that Y
is an object in s~ if and only if

1) = Y is a finite direct sum of quotients of Z _

g 2

2) Y is 2-pro-complete.

By 2) we mean this: define maps of degree 1, YAM(Zn) idny, v.5° =
Y where y is projection onto the top cell. By 2-pro-complete we mean that

the induced map

Tim Y.M(2™) — ¥

—t

is an equivalence. For each X we give (YAM(Zn))*X the discrete topology.
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Thus Y*X has the discrete topology.
KZ , = 1im KZ s an object in s~ and should be the y dual

2 2
of KZ5 -

Definition 3.3.1) For Y in s~ define x(Y) = lim X(YAM(ZH)). We assume

the induced maps x(Y.M(2")) — X(YAM(2n+1)) are inclusions. We make x
a functor ds follows. If X, Y are in s” and f : X — Y then there are

commutative diagrams

f

e I §

5 | e (3.4)
x.m(2My f23d v mie"

and 3.4 for n projects commutatively to 3.4 for n-1. Let fn = f.id :
XAM(2")-———+ YAM(En). Then Jim f = f, by our assumptions. Set
x(F) = lim x(f,).

3.3.2) For Y in s” define y(Y) = lim_X(YAM(Zn)). We assume
the induced maps X(YAM(2n+1)) —_— X(YAM(Zn)) are fibrations. x may be

extended, as in 1), to a functor.

Let us remark immediately that it follows from 3.1.6 and the

properties of ( )t that
mox(¥) = (m_ )"
q -q

in both cases. For instance

0,4 mod 8

Z q<o0,q
2
wqx(bo) =31 Z, 9<0,93=6,7 mod 8

0 otherwise



46~

The following result implies that yx carries objects of s” to object of

m -
s and vice versa.

Lemma 3.5: 1) For Y in s”, there are degree one equivalences and a
commutative diagram

x(NMEY == x(Y.M2")
(3.6)

~

x(V)M2"Ty =y (rm2™Ty)

These equivalences are natural in Y.
2) For Y in s there are equivalences and a commutative

diagram
(V)M = y (v

(MR = x(Y M(Z“))

These equivalences are natural in Y.

Proof: I will do 1). First suppose that w_Y is a finite for each q.

q
Then, notice that the two definitions of x(Y) (3.1 and 3.3.1) coincide.

Since [Y,Y] — [x(Y)» x(Y)] is a group map and x(id) = id, x(2"+id) =

2".id. Thus we have a degree one equivalence, natural in Y.
x(Y)M(2") — x(v.M(2"))

and the appropriate diagram commutes (3.6).

Therefore, we have a diagram, for each g
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X(YAM(29).M(2")) — x(YM(29T).m(2"))
(3.7,
x(YAM(29) ). M(2") —— (VM2 1)) m(2M)

assuming all horizontal maps are inclusions, we can conclude the existence
of an equivalence x(Y.M(2")) «— x(Y)M(2™). One need now check that

3.6 commutes. But 3.7 for n maps commutatively to 3.7 for n+l. To see
that the induced equivalences are natural in Y, notice that 3.7 is

natural in Y.
The following is implied immediately by the definitions.

Lemma 3.8. 1) There is a natural equivalence between yx-x and the identity
functor of s™ (or s*) and itself.

2) There is a group isomorphism [X,Y] —=— [x(Y), x(X)].
Proof: 2) follows from 1) and the fact that x is additive; that is if

fand g : X —= Y are maps, then x(f+g) = x(f) + x(qg).
Finally, we wish to prove the following result.

Lemma 3.9. 1) For Y € s and for any CW complex Z there is an equiva-

Tence, natural in Y and Z
. t, = q
SY .X(Y)qZ-——-*YZ.

2) ForY e s” and any finite CW complex Z there is an equiva-

lence, natural in Y and Z

; t, = q
Sy # x(V)gZ — ¥z .
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Proof: 1) SY is the isomorphism

X()eZ = (Lin x(r4(2") 2)* = Jim x(¥.M(2") Z

n

—— Jim (YME@")%z =29 .

The second isomorphism exists because ( )t carries direct
Timits of discrete groups to inverse limits of compact groups.
2) Because Z is a finite CW complex, x(YAM(Zn)qZ is finite;

therefore, we have an isomorphism
Z % Jim y(Y.M(2Y) Z
><(Y)q Jim x(Y.M( ))q

X(Y)qz has a unique compact topology determined by this equivalence.

Then Sy is the isomorphism

1

X(V)EZ = (Lim x(YH(2")2)° = Tim x(¥.:(2") 7z

Tim(vM(2")) %2 = Y9z,

mn

This completes the proof of Theorem 1.13 and of our abstract
discussion of Pontrjagin duality. We now make our first application.
Let the following realize the resolution given in 2.9 for

M(2k+1):

§ )
| SRR
.«——Iq«——q~1q_]+—...+——11«—10-xzzz

and let the following realize the resolution given in 2.11 for MT(2k+]):
54

8
.<—-—Fq+£—Fq_]+,———...+—-F.|+———FO=KZZZ
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Assume that Sq, in both cases, is of degree one.

Note that we have maps pq s Fq — Iq so that we have a

commutative diagram:

da d1
— L ol g e L L = K
"] gra-l l d! uol
——-+Kq£—+Kq_]——+...—»K1——>KO=Kzzzm.

Now, we want to record that dq : Lq,4k+2 _'"ﬁ'Lq-1,4k+3 and

dy * Kq,ake2 7 Kg-1,4k43

stronger. So we make a definition. For the moment, let us work in the

are null-homotopic, but we need something

topological category, instead of the homotopy category. Suppose (in the

topological category) we have a commutative diagram

Y
g
y

f
U
9 .

< —><

Suppose further that we have null-homotopies F of f and G of g

so that we have a diagram:
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Then we say that f and g are concurrently null-homotopic. The

use of such things will become clear in the proof of Theorems 4.8 and

Lemma 3.11: For g> 1, d

and dé are concurrently null-homotopic:

E— q
d
Lq,4k+2 Lq,4k+3
Uy i d' Ug-1
Kq»4k+2 —4 Kq1,8K+3

Because all the spaces concerned are Eilenberg-MacLane spaces,
this is essentially the homology calculation done by Brown and Gitler [6].
Before filling in the proof, though, let us record a similar lemma for
the bo case.

Let the following realize the resolution given in 2.9 for

M(4k+3)

3 " 0 KZZZ

—
H

S
.+—qu— Iy
And let the following realize the resolution givenin 2.12 for M2(4k+3).

bo .

LRI

§
+——Fq<~£— F

=
-
1]

-1~
Actually, let us be a little careful about the construction of
6q ¢ bo — F1. This is a map

X

:bo———*XKZZE
j>k

14j
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where 143‘ makes the following diagram commute.

i,
bo —H - k73

G

4j
K222 x(Sq ™), KZ, (1 = generator of H*)

14.]' is unique only up to homotopy equivalence of KZZ§ . We want to fix
a particular 1'43.. To that end, pick ig BO % KEE . Then 14,]' will

be the unique map that makes the following diagram commute.

Abo e i
34 43
*

Here the horizontal maps are multiplications of ring spectra. Then form

51 : bo — F1, now assumed to be of degree one.

Now, we have maps “q : Fq —— Ic| so that we have commutative

diagrams

q
P fg-1
“ql l“q-l
q

I

q q-1

Apply x to obtain

C— K S K . — K —1 K = x(bo)



Then we have

Lemma 3.12: For g > 2, dq and da are concurrently null-homotopic

d
q

L —_—

q,8k+6 Lq-'l,8k+7
ql

u
g-
-1

d! 1
" Koa1,8Kk+1

Kq,8Kk+6 q

Note: K B — Ko,n+l = x(bo) .y is not zero unless n < 4k+3. And, if
n < 4k+3, K1 0 is contractible.

I will prove 3.11. 3.12 is exactly the same.

Proof of Lemma 3.11: To begin, we note three facts. First, for all q,

Kq and L_ are products of Eilenberg-MacLane Spectra; second, for g > 1,

q
Ug Lq il Kq has a section s : Kq — Lq so that HqoS = id; and
third, dq P Lo ake2 T Lg-1,8k43 is null-homotopic (see Theorem 1.14).

These facts imply that dq i Kq,4k+2 — Kq-1,4k+3 is null-

homotopic. We wish to show that there exists a null-homotopy of dq

D: L X I —1L

q,4k+2 q-1,4k+3

with the following property: if we define D' to be the composition

(- sxid D! u =]
D"+ Kq,aks2 X 1 " Lgakee ¥ T = Lgot,ak43 Kg-1,4k+2

then

D' o (uqxid) = U o D.

g-1
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It is clear that we may do this. For the author's sake, if
for no other reason, let us belabor the point.

The following remark should clear up the issue. If g : KZZ —
Lq is a map (of any degree) so that uq o g is null-homotopic, we may
assume the following composition is the one-point map (uq o g(x) =

basepoint for each x)

K(Z,3 n) R K

q.,4k+3 q,4k+3

If, in addition, g : KCZZ; n) — Lq,4k+3 is null-homotopic, we wish to

find a null-homotopy G so that u, o G is also the one point map. Let J

q

be the fiber of uq - Lq i Kq. Then there is a 1ifting

AT
2 et Lq

q

KZ

Now one checks that there exists such a 1ifting so that
g : K(Z.2 s h) ——a'Lq,4k+2 being null-homotopic implies that

g : K(ZZZ; n) — Jq,4k+3 is null-homotopic. The remark, and the lemma,

follows.

ote: Jy are3 = K(sz; 4k+2) and if

I 11 i.
Sqg- =Sq ' ...SqY : KZ, — KZ,
is a Steenrod Square with i] odd, then U, ° SqI is null-homotopic and

the 1ifting of SqI to KZ _ 1is the composition
2
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i.=1 .

I 1
sq! =5q | . sq Y : KZ, — KZ, — KZ

oo

2

Note that excess (I') = excess (I) -1.

4. A Sequence of Spectra

In this section we prove Theorem 1.16. As a preliminary we
need some information on infinite loop spaces.
Let C_ be May's "Tittle «~-cubes" operad. For a CW complex X

let C_X = ¢ (K) X X as described by May [21]. Lletn : X —

AL

k>0 K

C_X be the natural inclusion and u : C_(C_X) — C_X be the map given

by the operad action. For details see [21]. Recall that a C, space is a

pair (X,£) where £ : C_X — X is a map such that the following diagrams

commute.
X —— C_X € C X —— C_X
\
id\ lg CE B
Ny CX —=— X

By commute, we mean "commute in the topological category."

Let Y be an Q-spectrum. Each Yn is an infinite loop space and
therefore has a canonical C_ structure.

Let X be another Q-spectrum. A map f : xk — Yn is a C_ map

if the diagram

C_X, —=— X
el [f (a.1)
Y —= Y
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. commutes. If f' : Xé —— Yé is another C_ map then the commutative

diagram

Xk n
i |3 (4.2)
o
% ——F Yn
is a commutative diagram of C_ maps if 4.1 for f maps to 4.1 for ¥

This will happen if and only if the vertical maps i and j are C_ maps.

The following is our principal result on the structure of C_ maps.

Lemma 4.3: 1) Let X and Y be Q-spectra so that X is a product of
Eilenberg-MacLane spectra. If f : Xk —_— Yn is a C_ map, then there
exists a map of spectra F : X — Y that induces f.

2) Ifi:X— X" and f : Y — Y' are maps of Q-spectra

and f and f' are C_ maps so that

commutes, then this diagram is induced by a diagram of spectra.

Proof: May's work [21] or Lada's work [13] gives a spectrum BYn and a

map BYn — Y so that “q q
If j : Y — Y' is a map of spectra, then there exists a map Bj : BYn
BYE so that
BY —— Y
B l“ l:;

BYn et

BYn ~ > 1Y forg > -n. Note that (BYn)n =Y.

n

—_
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commutes. Similarly, since X is a product of Eilenberg-MacLane spaces,

we may use this construction to find a space Bxk and a map

X w—F BXk

so that nqx - anXk for q > -k. This, too, is natural. If

F 4 Xk e Yn is a C_ map then, there exists a map

Bf : BX

vk BY

k
inducing f. This, in turn, is natural. F, then is the composition

-'-3-5—->an — Y.

F:X— BXk

2) follows because the appropriate diagrams commute.
We also need the following result, culled from R. Cohen [14].

Lemma 4.4: Let F o E L2 B be a fibration of spectra and suppose
the induced map B _; — F_ is zero. If f : X —E is a C_ map so
that pf = 0, then there exists a C_ map p' : Yk —_— Fn so that ip' = p.
We now recall in detail the results of Brown and Gitler. Let
the following sequence be the y-dual of the realization of 2.9 for M(K)
(refer to 3.11):
d d

" q N j
Lq A Lq__'i 3 .o 2 L-l L

"

KZ

Then we have from Brown and Gitler [6]
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Theorem 4.5: There is a sequence of spectra Eq, g > 0 and maps

e L — Eq_1 of degree 1 satisfying

q q

13 &, = |1. KZZZP and e, = d,

2) Eq 9 Eq 9, L, is the fibration induced by e  from
the contractible path f1brat10n over Eq-l'

3) L -—9—>Eq]—q—>Lq.|1sdq.

4) eq : Lq,2k — Eq-1,2k+1 is zero.

5) Let jq : E0 — Eq be the composition of the maps

.lp : Ep_-l —_— Ep -

Then the sequence
J P
Jx Qs

is exact.

Theorem 4.6: eq is uniquely determined (up to homotopy) by 4.5.3 and
4.5.4,

Proof: This is from Brown and Peterson [9].

Lemma 4.7: Let g € [KZZZ . LO] = [K222 , KZZZJ = A. Then g is in the
image of d] : [KZZZ, L1] — [KZZZ, Lo] if and only, for every CW complex .

2k+1

X, the induced map g : HIX — H X is zero.

Proof: This is from Brown and Gitler [6].

Consider the diagram of spectra from 3.1i

d d.l
Uq l ' l q 1 ”11 d! l“o
— K K 5 K K = KZ
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The top is the yx-dual of the resolution realizing 2.9 for
M(2k+1), the bottom is the yx-dual of the resolution realizing 2.11 for

M1(2k+1). Qur main result is this:

Theorem 4.8: There are spectra Gq and maps eé 3 Kq s Gq_1 of degree 1

and &_ Eq -—»-Gq of degree zero so that

q

1) 6, = 1I_<0 = Kzzzmand ey = dys 2 = ug.

2) Gy 9., g » K, 1s the fibration induced by e, from
the contractible path fibration over Gq_].

3) Both these diagrams commute:

1q Pq Eﬂ_+
2 Eqo g £ ” L EE«]
u
A I
8q-1 % q q %q-1
4) Kq Gq_1 Kq_] is dq
§) Forgq=>1, ea ; Kq,4k+2 — Gq-1,4k+3 is zero, and e and

ea are concurrently null-homotopic.

We postpone the proof, for a moment, so that we may state a

similar theorem for the bo case. Consider the diagram of spectra from

3.12.
d d
.—+Lq—cl—>Lq_1—+...—->L.l——>L0=KZZZ
uql d' l l q lu"
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The top is the x-dual of the resolution realizing 2.9 for
M(4k+3), the bottom is the yx-dual of the resolution realizing 2.12 for

M2(4k+3). The main result in this direction is this.

Theorem 4.9: There are spectra G_ and maps e, : K — Gq_1 of degree

q q q
and g fd
1 lq Eq — Gq of degree o so that
1) G, = 50 = y(bo) and eq = dis &, = U,
2) Gg-1 e Gq .4 B K is the fibration induced by eé from

the contractible path fibration over Gq_].

3) Both these diagrams commute:

1q Pq e
> L 9

; Eg-1 gEq b q qu
A A A L

G q > 3 ! > G

g=1 q %q K q-1

e’ P 1

4) Kq - Gq-1 R Ll Kq~1 is dq
5) Forgq> 2, eq t Kq,8k+6 — Gq-1,8k+7 is zero, and eq and

eé are concurrently null-homotopic.
I will prove 4.8. The proof of 4.9 proceeds verbatim.

Proof of 4.8: We proceed by induction on q.

t

q=1: ey and %, are determined by 1); G1 and 29 by 2) and 3).
3) follows and 4) is a tautology. 5) follows from 3.11.
g > 1 : Now suppose that, for all p < g, we have constructed

Gq, e& and Qq satisfying 1) - 5). Then we have a diagram



d 2
g+l g

ra+1 a T~ fa-l

l luq l 1
d! e' q-
g+1

Kqﬂ Kq Gq-1

Let jq=1‘l 0120 " e 1q_] EO"—'*E -!OY' Go__'+Gq_-[

Then we have a diagram

1

As in [6], we may use the facts that pq~]eqdq+] = dqdq+1 =0,

4.5.5, 4.5.4 and 4.7 to conclude that eqdq+1 : Lq+1 — Eq_] 1ifts to a
map ¢ : Lq+] — L1 so that jqdq¢ = eqdq+].
let s : KQ+] — Lq+] be any section of uq+1 : uq+]s = identity.
Then I claim that ¢' = u1¢s is a 1ift of eédq+] to K1. (¢ : Kq+1 —
K1).
First, eédé+] = eqdq+] uq+1s
= 2q-1 eqdq+1s

Second, Jqd]u1¢s = Qq_]Jqd1¢S

= zq_]eqdq+1s

Now note that the following diagram need not commute:

Bl

1
5

L
uq+1l
K 1 N K1

g+l
+

q
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Consider ¢ Ut tugd s L —+ K.. Since (u1)* i [K222 s L1]* —

g+1 1

[KZ? § K1]* is surjective, there exists amap o : L —_— L] so that

q+1
uqe = ¢ Ug+] + uyd. Set ¢ = ¢+ oa. Then ¢qu+1 = ugo'.
And, ¢" is still a 1ifting of eqdq+] to L]. This is because

jq_1d] = 0. Which is exactly the point: apply 3) in 4.8 for p < q to

conclude that eqdq+] and eq g+1 are concurrently null-homotopic. So, we

may conclude that there exist maps f and f' so that the following dia-

grams commute:

. s e AL
Ao l 9 l g UQ+1L o l q
+
bt — L Kq+1 Gq+1 “ Kg+1 g
Now, because dq+1 : Lq+1,4k+2 — Lq,4k+3 and dq : Kq+1,4k+2 -

Kq ak+3 2re concurrently null-homotopic (3.11), there exist maps y and

v' so that the following diagrams commute

Eq-1.4k+3 G4-1.6k+3
e 3 |

Lat1,ake2 — Eq,ake3 Kgr1,ake2 — Bq,4k+3
o
La+1,4k+2 Eq-1.4Kk43
luqﬂ lﬂ,q_] (4.70)

Kbt ,aks2 " Cqo1,ak+3

I claim that this last diagram (4.10) is a diagram of C_ maps. Again,

let s : Kq+1 i Lq+1 be any section of Ugt1 Then s induces a C_ map

which is a section of (the unstable) u

¢ Kq+'|,4k+2 - Lq+1,4k+2 q+1*
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Yy = Yuq+15 = Q’q—'IYS
y is a C_ map by Lemma 4.4; therefore y' is a C_ map.
Now, apply Lemma 4.3 to conclude that there exist maps g,g'

so that the following diagram commutes.

First note that the map

f- 408 ¢ Loy ]

has the properties that d =p (f - iqg) = p_f and that

g+l q q

If - iqg : Lq+1,4k+2 — Eq,4k+3
is zero. Thus, by 4.6, f - iqg = eq+]. Set eq+1 = f' - iqg' ~ Kq+] —
Gq. Property 2) of Theorem 4.8 defines Gq+1 and 3) defines £q+1' 3)

is satisfied. 4) follows because

= f'-":f’:'
Pqeq = Pqlf" = 1g8") = Pgf" = dguy

and 5) follows from the definition of ea.

This completes the induction step. The theorem follows.

Remark: The two principle ingredients in this proof are the facts that
u
1) for g > 2, there is a section of ug Lq+] —3. Kq

and
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2) for g > 1, that d and da+1 are concurrently null-

q+1
homotopic

.SIH.LL

L lq,4k+3

lq+],4k+2

d'+1
K K
q+1,4k+2 g,4k+3

So, there is no obstacle to applying these techniques to proving

Theorem 4.9; therefore we consider 4.9 to be proved.

5. Construction of B}(2k+1) and B, (4k+3)

In this section, we prove our main theorems.

Let me first describe how to produce a spectrum B1(2k+1) S0

that

1) H¥B, (2k+1) = A/ALSa', x(Sa'), 1 > 2Kl

2) If1 : B1(2k+1) — KE§ classifies a generator of
HO(B](ZKH),E’Z‘) then 1, : B.l(2k+1) —_— Hn(x; ZZ’Z‘) is onto for n < 4k+3.

3) If B(2k+1) is the Z, -Brown-Gitler Spectrum, then there
is a map B](2k+1)-——+ B(2k+1) inducing the obvious quotient in cohomology.
Reaching from Theorem 4.8, we have constructed, for every g,

a diagram

We take the x-dual of this diagram. Yq = X(Eq), Xq = (Gq),
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Iq = X(Lq) and Fq = X(K ). Then we have a diagram
p 1 €
~9a X
Iq ) Iq Iq lq |
+_£l 1 €
Vo1 et L, Y

Notice that, for every q > 0, Iq is a product of Eilenberg-
MaclLane spaces of type K222 , for every g > 1, Fq is a produce of Eilenberg-

MacLane spaces of type K222 , and Fo = KZZ’Z‘ « In faet, 1F

then, in cohomology, 6; : A e A™(q,k) — A 8 A7(g-1,k) (5? : AR
K°(1,k) — A/ASQ') is the map of 2.11. Assume Py 1s a fibration for
each q.

Define B (2k+1) llﬂ.x

Then, of course, we have a map

B](2k+1) = llm_xq — lim_Yq = B(2k+1)

Proposition 5.1:  H*B,(2k+1) = A/ASG, x(Sq'), i > 2k},

Proof: Since we are working with mod 2 cohomology

n

4By (2k+1) = 1im H*X,

We will show that
i* i* 61
HEF 3, HeX Al H¥KZ5 «——  H*F,
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*

is exact where jq

(p] & gaa P ° pq)*. Thus we have a sequence

g-1

0 — A/A{Sq] > X(Sq1) T o Bk} = H*Xq — H*Fq

for every q. Thus 1im H*Xq = A/A{SqT, X(Sqi), i > 2k}. The sequence is
exact at H*Xq. (The reader is advised to draw diagrams.)

We prove this by induction. This is true for q = 1. Suppose
it is true for g - 1. If i:v = (0, then there exists a w so that p;w = V.

* %k
Then €q-11

*
g-1" = 0 (because e;_]iq_] = 0); therefore

* * * * *

Sq1ige1? = Tqu2fqiq = 0 -

So there exists x € H*FCI so that 6;x = iq_1w. Then

(W= e x) = pow= d i w-ex) =0
pq W= egX) = pqw =V an 1q-1 W-egx)=0.

So exactness at H*Xq follows from exactness at H*Xq_]. The sequence is
exact at H*KZ; .
*
Let v € H*KZZ and suppose qu = 0. Let s be the least integer

so that j;v =0. Ifs=1, v is in the image of aT. If s # 1, then

Sk * . Kk K _ g

Jg_qv = ggW for some w. Since i . 3.4 =0, i _4Jg_qv = 6w =0. Thus
* * * - -

there exists x, so that 6S+]x = w. Then, 0 = €¢ 65+1x = Je_1¥s This

contradicts the choice of s, and completes the proof.

Theorem 5.2: Let Z be any CW complex. Then consider the following

sequence

(P
0 — (F) 2 — (X )2 —a= (Xqo1)p — 0
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This sequence is split short exact for n < 4k+1 and short exact
for n = 4k+2. If n < 4k+1, the splitting is natural in Z. If n = 4k+3,
(pq)* is surjective.

Proof: We first prove the result for finite CW complexes Z. By the
properties of Pontrjagin duality (3.9) and of cohomology, we need only

examine the sequence

e*
e T [Zqu_'I :n] —% [Zqu’n] - [Z’Kq,ﬂ] j""' [Z’Gq-],nﬂ]

Since eq : Kq,n — Gq_],n+]

that for every connected finite CW complex Z

is zero for n < 4k+2, Theorem 4.8.2 implies

f ~% [Z,G ] — [Zan,n] I [Zqu’n] et ]

gq-1,n
is naturally split short exact for n < 4k+2. Thus, using the suspension

isomorphism

[Z, 6 ] = [52, Gy q]

(for example) we have proved the theorem for finite CW complexes.

For arbitrary CW complexes Z, let {Za} be the directed system
of finite subcomplexes of Z. Then, for any homology theory K,, K,Z =
Tim K*Za. Since 1im is an exact functor and because the splittings were

natural, the result follows for any CW complex.

Remark: We can only say that

0 — 12, Gy arapd > [Z: Bg usp] = 12 Kg gpap] — 0
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is split for connected CW complexes because Gq AKk+2 is not a connected
space. ﬂqu,4k+2 is a group but it does not follow that

ToBq,ak+2 = Molg-1,4k+2 X ToKq,ak+2

Let me now describe how to produce the spectrum Bz(4k+3).

Recall that for every integer j we chose (in Section 3) map

14j so that the following diagram commutes
1,
bo —l—s K25
1l l1
x(sq™9)
KZZ KZZ
Ty induces, for every CW complex Z, a map (14j)* : bonZ — Hn_4j(Z;ZZ§ )

Then B2(4k+3) has the properties that
1) H*B,(4k+3) = A/A(Sq', Sa%, x(Sq'), 1 > 4k}.
2) There is a map B,(4k+3) 2 bo so that B,(4k+3) — bo 4,

KZZ2 classifies the generator of H*Bz(4k+3) and that the map
we  B,(4k+3) 7 —— bo,

is onto the subgroup N ker(i4j)* for n < 8k+7 and any CW complex Z.
j>k
3) If B(4k+3) is the 222 Brown-Gitler Spectrum, then there

is a map Bz(4k+3) — B(4k+3) inducing the obvious quotient in cohomology.

Reading from Theorem 4.9, we have constructed, for every g,

a diagram



We take the y-dual of this diagram. Yq = x(Eq), Xq = x(Gq),
I = = . i
q x(Lq) and Fq x(Kq) Then we have a diagram
9
ICH Iq lq
Loy e
Yg-1 Yq Iq
For every g > 2, Fq is a product of Eilenberg-MaclLane spaces of
type KZZ2 » SO that H"‘Fq = A a T*(q,.k); Fy is a product of Eilenberg-
MacLane spaces of type KZZ so that H"‘F1 = A/ASq] g A*(1,k), and F0 = bo.
*
f = o 1 2 F ’ i . .
I Sq €q © Tg-1 Fq_.1 — Fy then 6q is the map of 2.12
Define 82(4k+3) = lim Xq (assuming pq is a fibration for each

q).

Then we have a map

Bz(4k+3) = lim xq — Jim Yq = B(4k+3) .

We have the following.

Proposition 5.3: H*BZ(4k+3) = A/A{Sq1, qu, x(Sql), i > 4k}

Theorem 5.4: 1) &, : F, — F; is the map ji(k Tgs bo — j)>(k KZ3 .
Thus we have a fibration sequence
%3 s
bo —2, X Kz
>k

~
.

5 2

1
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2) Let Z be any CW complex. Then consider the following

sequence.
) (D, b
0 — (Fq)nZ — (Xq)nZ —9 (Xq-1)nz — 0

For g > 2, this sequence is naturally split short exact for

n < 8k+5, short exact for n = 8k+6. If n = 8k+7, (pq)* is surjective.

Lemma 5.3 and Theorem 5.4 are directly comparable to 5.1 and

5.2. Theorem 5.4.2 says that, in particular, for any CW complex Z
82(4k+3)n2 — (XI)nZ
is onto for n < 8k+7. 5.4.1 then implies that the image of
(X1)nZ — bonZ
is N her(i4j)*. Thus the image of
wy @ By(4k+3) 7 —bo 7 , n < 8k+7

is i:j her(14j)*.
This completes the proof of Theorems 1 and 2 of the introduc-

tion.



~70-=

6. m.By(2k+1) and m,B,(4k+3)

As the first and simplest application of our structure theorems
(5.2 and 5.4), I will show how to compute n*B1(2k+1) and W*Bz(4k+3) in a
range.

The first of these is easy. Recall that i C A is the left
ideal generated by Aos_1 and that Mors1 = A{AO, vees Ao} € A s the
left ideal generated by Ay i < 2k. Furthermore, A is bigraded with each
A; having bigrading (i,1). Let (A/A n A2k+1)n be all elements of
AL N Mo of bigrading (n.r), r > 0.

Corollary 6.1:

ﬂ081(2k+1) = E§
ﬂn31(2k+1) = (A/A 0 A2k+1)n 1 < n < 4k+1 .

Proof: Set Z = S° in Theorem 5.2.

Remark: Let B(2k+1) be theﬂ2 Brown-Gitler Spectrum and M(2) the mod-2

Moore space. Then, we will, in Chapter II, Section 2, see that
B](2k+1)AM(2) = B(2k+1)
From this we will be able to conclude that
TayegBy (2k41) 2 (AR 0 Aoy ) gy -

Theorem 5.2 only gives us a set isomorphism between these groups.

Now let us consider Bz(4k+3). Let A' C A be the left ideal
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generated by admissible monomials A Recall (Lemma 2.10.3) that

2i-1%43-1°
a'ZZ basis for A' is given by all admissible monomials li’ woncn Aq with

q>2, and iq“] 1 mod 2, and iq = -1 mod 4. Then, Theorem 5.5 tells

us that

ﬂn82(4k+3) = m Xy X (A'"/A' N A n < 8k+5

4k+3)n

X] is the first stage in the tower whose inverse limit is

Bz(4k+3). We have a fibration sequence

X, .
bo —Hd . x Kz2.

X
N

1

Let us compute m.X, and, thus, ﬂ*82(4k+3). Recall that

Zé n=0,4 (8)
'nnbo ={Z, n= 1,2 (8)
0 otherwise

Let Bn be the generator WnbO.

The following is an obvious first step.

Lemma 6.2: 1) 18j : bo — KEZ induces multiplication by 243 in homotopy
for j > 1.

2) : bo — KZ3 induces multiplication by p43+3 in

18j+4 -
homotopy for j > O.
Proof: We show 1) for j = 1 and 2) for j = 0, then use Bott periodicity
to extend the results. In the Adams Spectral Sequence converging to

kb0, By is on the three line and B84 is on the four line. See [17].
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Therefore, 14 induces multiplication by Zk

with k > 3 and ig induces
multiplication by 2% with o > 4. We wish to show these inequalities

are strict.

Let i = X i,. : bo — X KZ;S
j>0 4] _ J 2
2J
Sg= X x(Sq~ ) : K222 — X KZ,
J>0 J

Then we have commutative diagram of fibration sequences

X, — bo —‘#xmg
P

S
E, Kzzz—% XKZ,

)(.I is the first stage of the tower whose inverse limit is
82(3) = 59, E is the first stage in an Adams Resolution for s%. Thus

we have a map

f£:8%9 —x. —E

1 1
Let v generate SO =7Z_. Then fou # 0. Thus m X, = Z with s < 3.
3 8 * 371 25 —
Let o generate T s®=7,.. Then f,o # 0. Thus m,X; = Z . with t < 4.
7 16 * 771 ot
So, i4 induces multiplication by 8 and 18 induces multiplication by 16.

Let B4 : 58 —> bo be a generator of ﬁ8b0 = ZQ. Then we have a map

b : S .bo —— bo.bo — bo

so that b, : nnssAbo — bo is an isomorphism for n > 8. This is the

Bott periodicity map [31]. Iterates produces maps

bJ . s83 bo —» bo
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and
_ nd I
Bgs+q = DxBy and Bg; o = Difg .

(up to units in ZZé‘). Finally, using the ring spectrum properties of
bo, and our choices of 143’ (see Section 3, before 3.12), we see that the

following commute

Abo.bo ——— bo Abo.b0 ————— bo

j L . i .
l(A‘S)A‘4 l’8j+4 1(A18)A18 l]8j+8

AKZy KZy — KT AKZy KZy — KZ

g J

The result follows.

Lemma 6.3: Let X1 be the fiber of X 1‘43' : bo — XKZ’Z‘ . Then

j>k
m X, = 7w bo for n < 4k+2
nl n —
22 43 n=8j-1
ZZ2 n = 8j+1, 8j+2
and for n > 4k+3 useS =
222 4j+3 n = 8j+3
0 otherwise

Let o generate ?Tnx1 » n > 4k+3 and let n generate TT-ISO. Then
= 2 = oAj+2
Mgyl T Oggeps AN MGy T 27T Togyyg
Proof: The first statement follows from 6.2. We need to prove the

composition results. We consider all k at once, and Tet X? = X1 for

(up to a unit in ZZE).

82(4k+3). Then
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for n > 4(k+1) + 3. The isomorphism is induced by the obvious map. In

n*x?, noy = oy and n2a1 = 4-a3. This is because the inclusion

- x?

is a homotopy isomorphism for dimensions less than six.

Now for any product of Eilenberg-MaclLane spaces, let
Jig - n N
2Y1id .XKZZ2 ——-+XKZZ2
be 2j times the identity. Then we have a commutative diagram

X0 —s 8K bo — X Kz
1 K .4k 2
¢l lb 2 idl

x§k~—> bo —— X KzZ,

k h

iterate of the Bott periodicity map.

. 0 2k
Let ¢, @ m g Xy —> ™ X]

b* is the k©

be the induced map. Then

= o8k, _
= 27 0gp,ge Thus nag, 3 = Ogpios

The result follows.

k07 = Ggyiys $alp = Ogyyp ANd du0g
LAk _ ks
= 4.2y o = 2

2
N Ogy+2 *OgK+3”

Corollary 6.4. For n < 4k+2

ﬂn82(4k+3) = ﬂnbo .

For 4k+3 < n < 8k+5,
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Z 45 * (W/B 0 Ags)y 1= 831

2
222 x (A'/A N A4k+3)n 8j+1, 8j+2

=
1}

ﬂn52(4k+3) E

=3
1]

Z ggeax (M/00 Dgps), 8j+3

(A'/A N A4k+3)n otherwise

Let o generate the cyclic summand of wn82(4k+3) that does not arise from

0 _ 2
the A-algebra and let n generate wls . Then Nogs41 = Og342 and n Ogi41 "
43j+2
Proof: In Theorem 5.4, set Z = s® and then apply Lemma 6.3.

2
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7. The Construction of 51(Ek+1)

In this section we outline the changes needed to construct the
odd primary analogue of the spectra B1(Zk+1); that is we will prove
Theorem IV of the introduction. The techniques are the same and are
modelled on Brown and Gitler [6] and we refer often to the R. L. Cohen's
construction of odd primary Brown-Gitler Spectra ([14]., Chapter I). Fix
a prime p > 3. The following is Cohen's result. Cohomology has Z

p
coefficients.

Theorem 7.1: There exist spectra B(pk+1) so that
1) H*B(pk+1) = A/A(x(g%p') : 1 > k, e = 0, 1}
2) If B(pk+l) — K.ZZp is the generator of HOB(pk+1), then,

for every CW complex Z,
B(pk+1)nZ — HnZ
is surjective for n < 2p(k+1) - 1.

Note: Cohen calls the spectra B{(pk+1) by the name B(k). However, his

work implies the existence of spectra B(pk) with
H*B(pk) = A/A{x(8%p') : 1 + & > k}
and
B(pk)nZ — H Z

onto for n < 2p(k+1) - 3. Then B(pk) would be analogous to B(2k) and
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B(pk+1) analogous to B(2k+1). This is the reason I have chosen the
notation in Theorem 7.1. See also 7.4 below.

We wish to prove the following result.

Theorem 7.2: There exist spectra B](pk+1) so that
1) H*By(pk+1) = A/A(B, x(P') : 1 >k}
2) 1f By(pk+1) — KZj 1is a generator of HO (B, (pk+1) 3 z;) »

then, for every CW complex Z,
By (pk+1) Z — H_(Z; Zp)

is onto for n < 2p(k+1) - 1.

3) There is a map B1(pk+1) —— B(pk+1) inducing the obvious
quotient in homology.

The first step is to provide resolutions of various modules
over the Steenrod Algebra. Our tool, as before, in the odd primary A
algebra of [4]. We recall these results.

The p-primary A algebra is a differential bigraded zzp algebra
with generators A 4 (n > 1) of bigrading (2n(p-1)-1,1) and_un_] (n >0)

of bigrading (2n(p+1),1). Relations in A are completely determined by

n s
LG pmek-1pmek-1 = © n>0,m>1

n n _
L ¥pamok-1pmek-1 ¥ 20 nemgotMpmek-1 =0 2 0em 2

n —
E(k)un+m-k-'l>‘p(rn+'|)+|<.1 =0 n>0,m>0

n —
z(k)un+m—k-1“p(m+])+k-1 =0 n>0,m>0

and the differential is given by
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. o
Mo = L0 ko 1rk-1

_ n n
I 1170 L L N I 419 RS

As with the 2-primary case, one has certain conventions for
this algebra. We write v, to mean either An or u and, if I = (11, I

iq) is a sequence of integers with in > =1, then we write

\)I-\)i 9 eoey \)i .

q
If in = -1, then Vi T H_g- Vg is admissible if
n
i + 2 V. = A.
p(in+1).i n+1 i i
i + V. T U
n+1 1 L9

Admissible monomials form an additive basis for A. The relations and
differential may be expressed in terms of this basis. See Cohen [14].

We delineate a few ideals in A.

Lemma 7.3.1) Let Apk = A{p_], Ao’ Us eens pk_z,lk_1}; this is the left
ideal generated by u_y, ..., A _q. Then, an additive basis for Apk is

Vi oo aees Vs admissible with 1q < k-2 if Vi T H; o or 1q < k-1 if vy T

" q a g q
As o
'q
2) Llet Aoks1 = Mu_1s Ags Hgs =evs s _q}. Then, an
additive basis for Apk+1 is vi], i 8 viq admissible with Ty < k-1.

3) Llet A = A{AO, Ays wees Ao ...}. Then an additive basis

for A is vi s wees Vs admissible with Vi = xi .
1 q q q
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4) Apk’ Apk+1’ and A are closed under the differential.
Proof: 1) and 2) are in R. Cohen [14]. A1l the results are easy
consequences of the relations as given in [14] and the differential as

given above.

Recall that the dual dual mod p Steenrod Algebra is as an

algebra;
A*==E(e0,e1,..., ) B Zp[t1,...].

This is an exterior algebra on symbols e; tensor a polynomial algebra
on generator ti‘ e; and ti are the Hopf algebra conjugates Milnor's T4
are &, respectively. See [29]. ey has grading 2p1-1 and t; has grading

2(p1-1). The (conjugate) coproduct structure of A* is given by the

formulas
_ J
p(ts) =) ty Bty
J
A* has a weight function w: agiven by the requirements that
w(ts) = wle.) = p', wie)) = 1, and w(xy) = w(x) + w(y).

If KHG is Eilenberg-MacLane Spectrum of the integers completed

at p, then H*KZZE C A* (as a comodule) and is given by

H*Kla = E(e1,ez, ve.) B Ep[t1,...].

That is, an additive basis for H*KZZS is all x € A* so that w(x) = 0

mod p.
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We are concerned with three cyclic quotients of the Steenrod

Algebra. Set

M(pk) = A/Alx(B5P') : pi + & > pk}
M(pk+1) = A/Alx(g%P1) : i > k, € = 0,1}
My (pk#1) = A/ALB, x(PT) : i > k} .

If M is a module over the Steenrod Algebra we give M* - the

Zp dual - the conjugate comodule structure.

Lemma 7.4: 1) M(pk)* € A* as a comodule and has an additive basis
consisting of monomials x € A* with w(x) < pk.

2) M(pk+1)* € A* as a comodule and has an additive basis of
consisting monomials x € A* with w(x) < pk+l.

3) M.I(pkﬂ)* c H*KZZB and has an additive basis consisting of
monomials X € H*KZZp with w(x) < pk.
Proof: 1) for instance, proceeds as follows. Let A(1) be monomials of
length one in A. Define a ZZp vector space map ¢ : A* — A(1) by requir-
ing that ¢(tq) = Ao ¢(eotq) = Hooq and that ¢ applied to all other
monomials is zero. Then let A(1,pk) be monomials of length 1 in A/Apk

and define a map , : A* — A* » (1,pk) by the composition

3, 1 Ax L Ax g A* — A% g A(1) — A* & A(T,pk) .

1

One now checks that the kernel of 3, is all monomials x € A* with w(x) <

pk and that the following sequence is exact.
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A g A*(1,pk) — A — M(pk) — 0 .
The others (2 and 3) are proved in a similar manner.

Now, let A(q,pk) be monomials of length g in A/Apk, and let
A(q,pk+1) be monomials of length q in A/ﬂpk+1’ and let A(q,pk+1) be

monomials of length q in A/A N Apk+1'

Theorem 7.5: There exist comodule maps aq so that
3 ]
1) 0 —> M(pk)* —> A* —— A* 8 A(1,pk) —— ...
]

— A* ® A(q-1,0k) == A* & A(q,pk) —

is a resolution of M(pk)* by comodules over the dual Steenrod Algebra.
9
2) 0 —» M(pk+1)* — Ax —— A% @ A(1,pk+1) — ...

3
— A* g Alg-1,pk+1) L= A* » A(q,pk) — ...

is a resolution of M(pk+1)* by comodules over the dual Steenrod Algebra.
]
A A% g R(1,pk+1) — ...
~ p a ~
— A* g A(q-1,pk+1) == A* & A(q,pk) — ...

3) 0 — M (pkt1)* — H,KZ

is a resolution of MT(pk+1)* by comodules over the dual Steerod Algebra.

Note: 1) and 2) are in [14]. The methods of Section 2 suffice. One
should refer to [14], Chapter I. Clearly, there is a map from resolution

3) to resolution 2) inducing the inclusion M](pk+1)* C M*(pk+1).

*
Lemma 7.6: Let 6; be the ZZp dual of aq, then {Sq is given by:
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i+1) i+ 5

L - - -
dqu =) vl(livd) x(P vy * ) vI(uivJ) v (RBP g

Here \-)I is the ZZp dual of v;, both sums are over T>-1,and A_qv; = dvy.

After producing these resolutions (7.5 and 7.6) the next step
in our program is to extend Pontrjagin duality [5] to p-complete spectra.
However, the reader sensitive to generalizations will have realized that
there is nothing special about the prime 2 is our discussion is Section
3. We could just have easily used an arbitrary prime p. We need say no
more.

Now, let Iq be a spectrum so that Iq is a product of Eilenberg-
MacLane spaces of type KZP and H*Iq = A 8 A*(q,pk+1). IcJ = KZZp .
Similarly, let Fq (g > 1) be a spectrum so that Fq is a product of

Eilenberg-MacLane spaces so that H*Fq = A p A*(q,pk+1). F0 = KZZS . Then

tiere exist maps Bq ; Fq_1 — Fq and dq ¢ Iq_] — Iq (g >1) so tha:
éq is the map of 7.6. And, there exist maps ah - Fq 3 Iq so that wq

is the obvious quotient. Then we have a commutative diagram

1
q Fq-1 Fy ™ Fo
af o e SIC
I, Iy -ee- 1 I,
Let x be the Pontrjagin duality functor. Set Lq = x(Iq) and
Kq = X(Fq)- If dq = X(Sq) and L x(wq), then we have a diagram
d
...——+Lq~3—+Lq_1—>.... Ly — L, = KZ
wad l lw‘ lwo
L—k Sk . — K, — K_ = KZ

_'I a8 0 e
q q 1 0 D
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Referring to Section 3 for definitions and techniques of proof, we record

the following result.

Lemma 7.7: Let j = 2p(k+1) - 1, then we have a diagram (q > 1).

Then d, : L

LT E
concurrently null-homotopic.

. is null-homotopic is in

[14]. See the next result.

From R. Cohen's work we cull the following result.

Theorem 7.8: There is a sequence of spectra Eq, q > 0, and maps (of

degree 1) e * L, — Eq_1 satisfying

1) E0q= %0 = KZ, pand e; = d
2) Eq-1 4 Eq 9> Lq is the fibration induced by e, from
the contractible p:th fibra;ion over Eq_1.
3) Ly~ Eq U = Lgo1 15 4.
4) e, La,i-1 — Eq-1,j is null-homotopic (j = 2p(k+1) - 1)
5) Let jq t B, = Eq be the composition of the map 15 : Es-1 —

Es. Then the sequence

is exact.
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We also have the following from [14].
Theorem 7.9: eq is uniquely determined by 7.8.3 and 7.8.4,

So, now, referring to [14] for any other necessary lemmas, we

can now prove the main result.

Theorem 7.10: There are spectra Gq and maps e& : Kq s Gq_1 of degree

1 and 2q 3 Eq —t Gq of degree zero so that

1) G =i:(0=KZZp0° ande]=d-i,20=w

0 0’

1 P
4. Gq —4, Kq is the fibration induced by e' from

2) G
) q

g-1
the contractible path fibration over Gq_1.

3) The following diagram commutes:

i p e
Eq-1 = 5 %= bq Eq-1
L . £ lw 12 _
l g-1 i, q Py 9o |01

e p

5) ey Kq,j-] —

] is dq.
Gq-] j is null-homotopic (j = 2p(k+1) - 1).

We can, with 7.10, construct B](pk+1).

Referring to 7.8, let Y_ = X(Eq)- Recall that Iq = x(L_).

q q

Then there is a tower

Y = Kﬂﬁ (7.11)
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W is a fibrati d +1) = 1im Y _.
e assume each Py 1 a 1b‘ tion and set B(pk+1) = ]im 8
This is Cohen's construction. So, referring to 7.10, let Xq = X(Gq)-

Recall that F_ = X(Kq)- Then there is a tower

q
p P
X A X L . — X, X =kZ
1S _Tq q--i -T‘l o} p
1q | i (7.12)
Fq F]

Assume each pq is a fibration and that iq is the inclusion of

the fiber. Then, set By(pk+1) = Jim X,. Obviously, 7.10.3 insures that

1
there is a map from tower 7.12 to tower 7.11. Thus we have an induced
map B1(pk+1) — B(pk+1).

We now record our last two results. This will complete the proof

of 7.2 and, thus, of Theorem IV of the introduction.

Proposition 7.13: H*B, (pk+1) = A/A(B, x(P') @ 1 > kI.

See Proposition 5.1

Theorem 7.14: Let Z be any CW complex. Consider the following sequence

of homology theories (q > 1).

L™ Pas
(FgdnZ 25 (X)) Z =2 (%, )7

Then:

1) This sequence is split short exact for n < 2p(k+1) - 3.
The splittings are natural in Z.

2) The sequence is short exact for n = 2p(k+1) - 2.

3) If n=2p(k+1) - 1, pq* is surjective.
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This completes the proof of Theorem 7.2.
Clearly one can use 7.14 to compute w*B](pk+1) in a range -

=0 5 A PN
set Z =S". Define (A/A N Apk+1)n to be the elements of A/L N Apk of

+1

-bigrading (s,n) where s > 0.

Corollary 7.15: For n < 2p(k+1) - 3

~

By (Pke1) = (/R0 )
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Chapter II

The Construction of B1(2k)

The next five sections are devoted to the construction and
analysis of the spectra B1(2k) promised by Theorem II of the Introduction.
The techniques are substantially different from those of Chapter I. It
is true, however, that we depend heavily on the results of Chapter I and
an important step in this new chapter is a characterization and exploita-
tion of the homotopy type of B](2k+1). We begin - in Section 1 - with
an outline of our ideas and proofs, but leave long proofs and a welter
of details to the later sections. The final section discusses the appli-
cation of B](Zk) to the study of 4k manifolds. We will often refer to
results in Chapter I and will do so by number; the symbol 1.4.3 refers

to Lemma 3 of Section 4 of Chapter I.

1. OQutline of the Proof

As we mentioned, our approach to the construction of the
spectra B1(2k) differs from that of Brown and Gitler. To explain a bit,

th

let B(n) be the n ZZZ-Brown-Git1er spectrum. Then, the work of Brown

and Peterson [9] implies that there is a cofibration sequence
jn Nprh
B(n-1) — B(n) — ] B[?] (1.1)
which induces, in cohomology, the sequence

| J— M[%] x(sa"), M(n) — M(n-1) — Q.
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Recall that H*B(n) = M(n) = A/A{x(Sqi) : i >n}. The maps p and j are
in no sense unique; in fact, if p : B{(n-1) — B(n) is any map that
induces, in cohomology, a non-zero map H*B(n) — H*B(n-1), then the
cofiber of p is ZnB[gi. See [9]. Similarly, one would hope that, given
a suitable choice of jn’ there existed an p so that (1.1) was a cofibra-
tion sequence. And, in fact, this is the case - at least for n even.
This, then, is our method. Fix k > 1. We produce a spectrum

C(k) and a map

2k+1

B, (2k+1) — (k)

N

and define B](Zk) to be the spectrum so that

i
By (2k) —> By (2k+1) e N

C(k) (1.2}

is a cofibration sequence. Then there will be a short exact sequence 1in

cohomology
*

J
0 — H*C(K) —X— My (2k+1) — H4B, (2K) = My (2k) — 0 (1.3)

5B, (2k+1) = My (2k+1) = A/A(Sq', x(Sq') : 1 > 2k}. Producing C(k) and a
map jk with the right homological properties is relatively easy, but that
is not sufficient. Because we wish to discuss the homology theory Bl(Zk)*,
weneed a good hold on the homotopy theoretic properties of jk. This
requires a little more work.

To begin: (1.3) tells us what H*C(k) should be. Recall that
M](2k+1) has a Z, basis consisting of elements X(SquSqI) where (2j,I)

is admissible and 2j > 2k. Furthermore, if 2k = 25(2t+1), then
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M, (2k) = M1(25(2t+1)) =

S i .
AIALSG, x(sq 1) g2 (2t ey L sqdy 1 g s 2k, i > 11 .

Thus M1(2k) has a ZZ2 basis of elements

i) x(sq%9sql) with (2,1) admissible and 2j < 2k.

s i
27 (2t+1) o qu (2t+1)Sq

1) x(Sq 235qTy with (23.1) admissible

and 4j 5_21(2t+1).

The following is an immediate consequence of this fact.

Lemma 1.4: Let N(k) be the kernel of the projection M](2k+1) — M1(2k).

Then, as modules over the Steenrod Algebra

N(K) = X Mﬁ2“1wu4)-1)axixmﬂzuq)ax

1<i<s |

where x is a class of grading (2S + 25'1 + ... 4 21)(2t+1) + 1. (qux

]

0, j > 0). The map from N(k) ——&-M1(2k+1) is given by sending

i
x; — X(Sq2s(2t+1) . qu (2t+])sq1) )

’

Lemma 1.4 now informs us what C(k) should be; in fact, define C(k) to be

ctk) = v 1208 @1 T2ty - 1) v 120, (2141)

2k+1

Here a(i) = (2571 + ... + 21y(2t+1). Then H*2%¥* (k) = N(K).

The next step in the proof is to produce the map jk i

2k+1

B](2k+1) — ) C(k). Because we are working in the stable category,

we need only produce maps
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£y 0 By (2k)) — PP @ T2ty - ) s> 05

and
f o 81(2k+1) — {bms](zm)

b(i) = a(i) + 2k+1.
Producing maps between Brown-Gitler spectra is, in theory, easy.
Recall that B(n) is defined to be the inverse 1limit of a tower of fibra-

tions (Eq of degree one; that is eq 1S @ map Yq‘] — EIq)

et et g = e R By = T = R
qu e1l (1.5)
Iq I-l
Iq is a product of Eilenberg-MaclLane spectra of type KZZZ;
H*Iq = A B A*(q,n); and, if 1Q ¥ Iq — Yq is the inclusion of the fiber,
then eq ° iq*] = 6q where, in cohomology, 6; : A g A*(g,n) — A B

A*(g-1,n) is the map of 1.2.13 (cf. 1.2.9).
Similarly 81(2n+1) is the inverse limit of a tower of

fibrations (eq of degree one)

.—->Xq—~;>Xq_1—~+...—~+X1—-;>X0 E
ql ‘1 (1.6)
Fq F]
Fq is a product of Eilenberg-MacLane spectra of type Kﬁé 3 H*F_ =

q

A r A(q,2n+1) and, if ig @ Fq — X, is the inclusion of the fiber, then

B = 6q where, in cohomology, 6; :Anm K*(q,2n+1) —

q° q-1
A a A*(q-1,2n+1) is the map of I.2.13 (cf. 1.2.11).
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Suppose we wish to construct a map g : B1(Zn+1) — ZPB(m)
realizing a certain map g* : M(m) — M1(2n+1). First, construct a

map of resolutions

* *
. s 8
— A 8 A*(g,m) —9, ... — A g A*(1,m) - A — M(m)
* *
g lg g g*
|% 5 1 g %]

— A g A*(q.2n+1) —9 ... — A & A*(1,2n+1) —— A/ASq' — M, (2n+1)

(1.7)

Then, because we are constructing maps into Eilenberg-MaclLane

spectra we may realize this with maps of spectra

8 8

g 1 ~

Lo Fy Fau1 < o+ Fp o KZ;
[%a lgq‘1 [ 5, [%
" —£ I = 1= K&,

The verticle maps are of degree p, the horizontal maps are of degree one.

The results of Section 2 will imply the following result.

Theorem 1.8: If 4n+1-p < 2n+1, then there exist maps éq : Xq S Yq

of degree p so that §0 = gy and the following diagram commutes

: ty T ¥ Fo
lgq lgq lgq-l 9
i >
i

Using this result, we may define g = lim g_ : B1(2n+1) ——

q
EpB(m). The condition that §0 = g, implies that we have realized



P

g* : M(m) — M1(2n+1).

In a similar way one may produce maps B1(2n+1) —_ Zp81(2m+1)
for 4n+1-p < 4m+3, and maps B(n) — ZPB1(2m+1) for 2n-p < 4m+3, and
maps B(n) — ZpB(m) for 2n-p < 2m+1.

We have taken this approach to constructing maps between Brown-

Gitler spectra precisely because we will need to specify the maps
gy ¢ A @ A*(q.m) — Am fx(q,2n+1)

(for example). If one is not worried about g;, then one can produce many
maps § : B}(2n+1) — ZPB(m) realizing, in cohomology, a given map
g* : M(m) — M1(2n+]). The techniques of Brown and Peterson [9] suffice.
See Section 2.

Let us use 1.8 to produce quite a number of maps.

There is a projection map

M(2n) = A/Ax(Sq'): 1 > 2n} — A/A(SQ', x(Sq'): 1 > 2n} = M (2n+1)

1 and B; : A e A*(q.2m) — A B A*(g,2m+1) to

be the canonical projections, then I.2.13 assures us that (1.7) commutes;

If we set 5;= A — A/ASq

*

q—16;‘ Thus 1.8 gives us the following.

that ig, 6.6, =
d 1S, qu - B

Corollary 1.9: There exists a map i, : 81(2n+1) — B(2n) inducing the

_projection M(2n) — M, (2n+1).

call 12n the canonical inclusion B1(2n+1) — B(2n).

Corollary 1.9 has an immediate consequence. There are maps of

1

of degree one, Sq1 7 M1(2n+1) — M(2n+1) and Sq : M1(2n-1) — M(2n)



o
both of which, of course, send the Steenrod Algebra generator to Sq].
We will prove the following result in Section 2. It is also consequence

of 1.8.

Corollary 1.10: 1) There exists a map Pops1 B(2n+1) — ZB](2n+1)

1

inducing, in cohomology, Sq : M1(2n+1) — M(2n+1).

2) There exists a map o B(2n) — ZB](Zn-l)

1

inducing, in cohomology, Sq : M](2n—]) — M(2n).

Now, consider the map X(qun) : M(n) — M(2n). The next result

is found in Section 3.

Lemma 1.11: There exist maps (of degree 2k)

*

a : A& A*(q,n) — A & A*(q.2n)

q
* * * *
so that Sqaq = aq_16q and
1) 0[;= x(qun) :A— A

2) Forg>1, u:TI = ZX(qu(I’J)) Kb with p(I,J) an integer
depending on I and J and so that
a) p(I1,d) 3_2n-diMXI

b) if A, € A, then p(I,J) > 2n - dimk

J I’

Corollary 1.12: There exists a map th : B(2n) — Zan(n) inducing,

in cohomology, x(qun) : M(n) — M(2n).

The strength of Lemma 1.11 lies in the following results.
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Theorem 1.13: Let B(2n-1) be the spectrum so that

h
B(2n-1) — B(2n) -2 72"g(n)
is a cofibration sequence. Then B(2n-1) = B(2n-1)

Theorem 1.14: Let i2n 3 81(2n+1) — B(2n) be as in 1.9. Then, let

E}(2n+1) be the spectrum so that

h, =i
B (2n-1) — B, (2n+1) 20, §Mp(n)

is a cofibration sequence. Then E&(Zn-1) E Bl(Zn-]).

2k+1
)

We now define the map jk 1 B1(2k+1) — C(k). Define

f. =0 ) " B ey
T Tol-Tomr)y 21 (2t+1)

zb('l)B_[(ZJ-'[(Zt_H) - 1) for s > 1> 1. b(i) = (25 ¥ wwa F 21)(2t+]) + 1.

h . oh : 81(2k+1) T

2k ° T2k

Define f ¢h o h 2k+1) —

17 Poes] T Mgpap P oems e ok ° Tox 7 Byl
Mg, (2641) b(1) = (2571 - 2)(2t+1) + 1. Finally, set

2k+1

= Vf 1 By(2k+1) — 7 e(k)

Ik
The following is an immediate consequence of our definitions and 1.14.

Theorem 1.15: Let B1(2k) be the spectrum so that

B, (2k) — By (2k+1) ke, 52k 10

is a cofibration sequence. Then

1) H*B1(2k) = MT(Zk)
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2) There is a map 81(2k) — KZZ’Z‘ so that for an CW complex Z

is onto for * < 4k-1.
Here is how we will prove 1.13, 1.14, and 1.15. For instance,

consider Theorem 1.714. From 1.8 and the discussion before 1.9 and from

1.11 we have maps a_ o Eﬁ s X — Y1 of degree 2n and maps aqo Bq :

q q q
Fq = Ig of degree 2n so that the following diagram commutes.
. , S,
F X X F
q q _ q-1 3 q
l%"Bq laq"Bq l“qJ q:1 luq"Sq
n n n q n
Iq 'q Yg-1 Iq
llﬂ-aq°3q = hy°io,. Let wq be the spectrum so that
@ 8
W 4 9.,y
q Xq g

is a cofibration sequence, and let Jq be the spectrum so that

o _°B
q g
Jq Fq Iq

is a cofibration sequence. Then we have a tower

ool = > Wy — W — K25
1Eq lEq
I 9

Then using Pontrjagin duality, what we know about 81(2k+1) and

B(n), and the form of aé in 1.11 we will show that
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B
(g _1)Z — (3)4Z

is zero for * < 4n-1. Further, (wo)*z — H,(Z; ZZ’Z‘) will be surjective

for * < 4n-1. Thus, H*'E](Zn-n = M1(2n-]) and

By(2n-1),7 — H,(Z; Z5)

will be surjective for * < 4n-1. Then 1.14 follows from results in
Section 2.
Of course, 1.15.2 skirts the issue. We are really interested

in the image
B1(2k) 4, Z — Hg (X5 Z3) .

Section 5 addresses this question. We sketch the results here.

- We defined maps f, : 81(2k+1) — Zb(i)B1(21'](2t+1) - 1) and
fi 1 BT(ZH]) — zb(”Bj(Zt-ﬂ) above. Llet 1 : B](2n+1) — KZZE class-
ify a generator of H°(B1(2n+1); ZZé‘) . And let Sqi P KZy, — b(1')KZZ§
be the unique map so that 'l<9f1. = Sqic’]' Note that the composition

5. . . S i
kz; | th)KZZ’Z‘ . Zb(1)KZZ is X(qu (2t+1) qu (Zt”)qu)eH*Kzzg.
Sq1. induces, for every CW complex, a map Sqi* ; H4k(Z; Z’é) —

H4k-b(1’)(2; Z3). The following is fairly clear.

Proposition 1.16: If x € H4k(Z; ZZE) is in the image of

31(2k)4kz i H4k(Z; Z3)

then x € N her Sqi*.
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We will show the following result.

Proposition 1.17: Let M be a closed orientable manifold and let

[M] € H4k(M; ZZ’Z‘) be a choice for the fundamental class of M. Then
[M] € N her Sqi*.

We also consider secondary obstructions. Let Xé = vzb(‘)ng
and let Sq = VSqi - KZE — Xé. Then wo is the spectrum so that

i ~ 1
NO — KZZ2 —

is a cofibration sequence. An Adam relation calculation shows that

i-1
%, o)y, sd (2e1)

i el
" b(j)+2' ' (2t+1)
Kz ——+ ) Kz,

is zero in ﬁ*KZE (2 <1 <s). Thus there exists a cohomology class
; c(i)
TP — ¥ KZ, (1.18)
. S i i-1 :
(c(i) = (22 + ... +2 + 2 ')(2t+1)) and a diagram

Ib(1)-]KZ§ — Z-lx; N— 1 (Z("I)KZ

i-1
The composition across the top is x(Sq? (2¢¥1)),

If x € N her Sq., € W, 1723 ZE), then we may define a secondary
homology operation Wi on x as follows. Pick y € (w])*z so that my = x.
Then set Wi(x) € HeZ to be v, (y). ¥.:(x) has indeterminacy
X(Sq21-1(2t+1))*H*(z; ZZE) '
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Note that 1.17 implies that Wi[M] is defined for all oriented

manifolds M and all i, 2 < i < s.

Theorem 1.19: There exist a choice for wi (1.18) so that if
X € N her Sq.. g_H4k(Z; 2@) , then x is in the image of
B(Zk)4kz — H4k(X; ZE)

only if Wi(x) is zero modulo indeterminacy.

Proposition 1.20: Let [mPZk] = H4k(EP2k; 25) be a choice for the

fundamental class. Then, for all, Wi[EPZk] = 0 modulo indeterminacy.

We refer the reader to Section 5 for proofs.

The upshot is this: 1if 2k = 2°(2t+1) and x € W, (Z; Z5) then
there are s primary obstructions and s-1 secondary obstructions and
(possibly) higher obstructions to x being in the image of B](Zk)4k I —

H, (Z3 Zé). This can be refined if s = 1.

ak!

Theorem 1.21: B1(4k+2)*2 — H,(Z; ZE) is onto the kernel of Sq,, for

* < 8k+4. For * < 8k+d ker Sqq, = H*(Z;'ZE).
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2. The Homotopy Type of 81(2k+1)

In this section, we give a complete characterization of the
homotopy type of B](2k+1). In the process, we display a strong connection
between the spectra 81(2k+1) and the stable homotopy theory of manifolds.
The concepts here are all in Brown and Peterson [9].

The first idea centers.on the B1(2k+1)-c0homology of the Thom
spectrum of the stable normal bundle of a closed, differentiable,
orientable manifold M. Let T(v) denote the Thom spectrum-of the normal
bundle. We assume that the Thom class u € HOT(v). It is well-known
that T(v) is the Spanier-Whitehead dual of M (+ = disjoint basepoint).

Thus, if M is an n-manifold

Bt P . ”
YPT() = [T0), YIP = m Y =y i

for any spectrum Y.
Recall that B](2k+1) was the inverse 1imit of a tower of

fibrations

p
q - e
R e RS PR Ry WS -
qu 151 (2.1)
B Fl

Each pq is the fibration induced by Eq from the contractible

path fibration over F gq is of degree one, and if iq : F— X _ s

q’ q q
the inclusion of the fiber, then €q ° 1q-1 is, in cohomology, the map
*

8
H*Fq = A g A*(q,2k+1) —9 An A*(g-1,2k+1) .
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of Section I.2. Fq is a product of Eilenberg-MaclLane spaces of type KZZ.

OQur first result is this.

Theorem 2.2: Let M be an n-manifold and v € HPT(V) be a cohomology class
so that

1) n-p < 4k+3

2) v is the reduction of an integral cohomology class.
Then, there is an induced map v : T(v) — ZPKZE = ZPXO and any lifting
of v to prq_1 Tifts to prq.
Proof: By Theorem 1.5.2

+ +

(Xgdop™ — (XgodpopM

q'n-p
is surjective for n-p < 4k+3. Thus, by Spanier-Whitehead duality
p p
(R IPTOV) — (X, )PT()

is surjective. The result follows.

We now wish to associate to B](2k+1) a particular 4k+1 manifold.

Let MSO be the Thom spectrum of the universal bundle over BSO - the

classifying space for oriented bundles. Then HO(MSO; 22’2‘) = zzg "

Choose a generator for this group:

U : MSQ — KZE

Lemma 2.3: For n = 4k+1, 4k+2, or 4k+3 there exists an orientable n-

manifold Qn, so that for any orientation of the normal bundle of g
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g : T{v) — MSO
the following sequence is exact:

0 — A{Sq1, x(Sqi): T » 2R} i A/ASq-I {ug)*, H*T (v)

1 so that

Proof: According to Brown and Peterson [7], for each a € A/ASq
o maps to a non-zero element of A/A{Sq‘, X(Sq1): i > 2k}, there exists

an n-manifold M(a) so that for any orientation
T(V(q)) 9 Mso
of the normal bundle of M(a), (ug)*a # 0. Then

Gy = # (@)

where # denotes the connected sum. The result follows.

So let M, € H*T(v) be the Thom class of the normal bundle of
Qn. Then My is the reduction of an integral class; in fact peg (above)
factors o T(v) — KEZ through KZZé‘ . Qn is of dimension less than

or equal to 4k+3; therefore, 2.2 implies that there is a factoring

B, (2k+1)

1{

l

T(v) 2% KZ,

There are many choices for g, but, for each choice §* is an injection.
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Theorem 2.4: Let T(v) be the Thom spectrum of Q4k+1 and let pog : T(v) —
KZ5 be an orientation of the Thom class of T(v). If 9q-1 is any lifting
then ¢ : X

of pog to X — F_ is the unique map so that

g1 q " "g-1 q
(sq o 1q-1) = Gq and €q9q-1 ~ 0. l
Recall that g1t Fq_] ¥ Xq_.I is the inclusion of the fiber.

Proof: quq-l = 0 by Theorem 2.2. In the proof of I.5.1 we demonstrated
that the following sequence is exact:
i*
0 — My(2kH1) — H¥X a1, HYF oy

*
q-1
splits the above exact sequence. Therefore

The map g - H*Xq_] —> H*T(v) factors through M](2k+1) and, hence,

*
eq ¢ HFg — WX

(and, hence, eq) is uniquely determined by the conditions that
*

o * = d i * =4 ,
(sq gq_]) 0 an (eq1q_1) q

2.4 completely characterizes the maps eq and, hence, the
spectrum B1(2k+1). We now discuss manifolds adapted to a homology class.
The triple (Qn’ V, 81(2k+1)) is a key example; here Qn is as in 2.3 and

v E H*BT(2k+]) is the Steenrod Algebra generator.

Definition 2.5: Suppose W is a spectrum so that there exists a manifold

of dimension n and a map vy : T(vM) — W (not necessarily of degree zero).
Suppose v € HPW. Then (M, v, W) is adapted to B, (2k+1) if

1) v* : H*W ——+-H*T(vM) is injective

2) n-p < 4k+3
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and

3) v is the reduction of an integral class.

Theorem 2.6: Suppose (W, v, M) is adapted to B](2k+1). There there is
an induced map v : W — ZPKZQ. Any 1ifting of v to prq-1 1ifts to
Px
Z q'
Proof: Suppose V is a 1ifting of v to prq-l' Then we have a diagram
£
P 9, yatle
P
T(v) X w —% TPxz;
We wish to know whether qu = 0. But, by 2.2 quY = 0. Since
F_is a product of Eilenberg-MaclLane spectra of type K222 and because

q

v* : H*W — H*T(v) is injective, we conclude that eqv = 0.

Corollary 2.7: 81(2k+1) is the unique two-complete spectrum so that

1) H*B,(2k+1) = A/ACSa', x(Sa'): i > 2k

2) For any CW complex Z,
Bi(2k+1) 7 — H_(Z3 Z3)
is surjective for n g_4k+3.

Note: Corollary 2.8 implies that the spectra constructed by Shimamoto
[32] are homotopy equivalent to the spectra B1(2k+1); at least, after

they are completed at two.
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Corollary 2.8.1) There is amap f : B1(2k-1) — 81(2k+1) inducing the

quotient M](2k+1) e M](Zk—1).
2) Let B(k) be the cofiber of f; that is, there is a

cofibration sequence
By (2k-1) - B, (2Kk+1) — 725 (k)

Then B(k) is homotopy equivalent to B(k).
Proof: 1) Follows from 2.3 and 2.6. 2) follows from 2.3 and the
analogue of 2.6 found in Brown and Peterson [9]. Note that if T(v) is

the Thom spectrum of Q4k+1 then the composition

T(v) — B,(2k+1) — EZkﬁ(k)

N

shows that (Q4k+1’ u, B(k)) is adapted to B(k). u is the Steenrod

Algebra generator of H*B(k) = M(k). This completes the proof.

Note that one could use 2.6 and its analogue in [9] to produce
a plethora of maps between Brown-Gitler spectra, but any map produced
by this method is in no sense unique or nicely characterized. We devote

the next section to tightening our methods.
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3. Maps Between Brown-G#t]er Spectra.

The outline of the construction of the spectra B](Zk) given
in section 1 indicated that we would construct some very specific
maps between Brown-Gitler type spectra. We do that in this section,
producing all the maps claimed and, at the end, prove the algebraic
Lemma 1.11.

The situation is this. Let é(n) stand for B(n) or B](n) 5
as the case may be, and let H*E(n) = ﬁ(n) . Suppose we wish to
construct a map ¢ : g(n) — g(m) realizing a certain map

% ~ ~
g : M(m) — M(n) . The methods of 2.6 will give us one; however,

suppose further that we have a map of resolutions (cf. I.2)

*
~ ) ~ ~
. — AR A*(q,m) L S —— 1 A*(l,m) > A M(m)
* * * *
,l,zq o 99} . 19 j g
.— AR A (gn) X~ ... ——AGA(1.m) - A > M(n)

where A=A or A and A=A or A/A Sq] depending on whether
M(n) = M(n) or MT(m) . Because we are constructing maps into

Eilenberg-MaclLane spectra we may realize this resolution with maps

of spectra
) 4n 8q e — gn +Eg_ 4n
: q g-1 1 0
gp l' gp_'[ lg] J/go
§ o]
) m.,qg m m_ "1 m
Jq < Jq_] JT — JO



-106-

Where, of course Jg = Iq or Fq depending whether E(n) = B(n)

or B](n) . The verticle maps of degree p , the horizonal maps
of degree one. The main result is the following. Let
n _
wq Xq or Yq (for B1(n) or B(n)).
Theorem 3.1. Under conditions stated below, there exist
T | m
maps 9y wq e wq
following diagram commutes

of degree p so that §6 =gy and the

i €
n q_, yn .y 9., 4n
Jq Wq wq_1 Jq
Jgp ng lgq_1 lgq (32
i €
m q . q_, jgM
Jq wq NQ-1 Jq

The conditions we demand are:

1) 2n-p < 2m+] i g(n) = B(n) and E(m) = B(m)
2) 2n-p < 4m'+3 if E(n) = B(n) and E(m) = B](Zm'+1)
3) 4n'+1-p < 2m+l  if  B(n) = B,(2n'+1) and B(m) = B(m)
4) 4n'+1-p < 4m'+3 if  B(n) = B,(2n'+1) and B(m) = B,(2m'+1)

Proof. We will do 3. The rest are similar, citing results

. m m 2n'+1
. = s = I . -
from Brovn and Peterson [9]. Write wq Yq Jq q ww Xq
and Jgn . Fq . We have specified 9 = 95 ¢ X0 = KZZ — KZZ = YO .

Because we demand that (3.2) commute, we have defined 5}

Proceeding inductively, suppose (q > 1) aa - Xq — Yq is

defined. Then we show that the following diagram commutes.
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€+]

q +1
gq J o] ng
+
Yq L . Iq+1

Then, (3.2) will define §§+] .

let A= gq+] Cqt1 ~ €qt1 Yq We wish to show that A = 0 ,

Since Iq+1 is a product of Eilenberg-MacLane spaces of type KJZZ

it is enough to show that A* =0 .

Recall (I.5.1) that

*

i
0 —— M, (2n'+1) ——»H*qu—>H*F (3.3)

q

is exact. Let T(v) be the Thom spectra of the normal bundle of
Q4k+1 (2.3) and let fq : T(v) — XE be any 1ifting of any
orientation of T(v) : f : T(v) — KZ, = Xy . Then since

£ - H*x — H*T(v) factors through M1(2n'+1) , f; splits

q q
*® *
(3.3). So to show that A =0 we need only show that i*A =0

* q
and fA =20
q
And, 9q+18g+1 q ° C by 2.2; sq+]gqfq = 0 by the analogue

of 2.2 for B(m) . Recall that g

q is a map of degree p . Thus

]

*
qu =0 . So, we may conclude that A =0 and, thus, that A =0 .

This completes the proof of 3.1.
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Let s; : AR A(q.2k) — A 8 A (q 2k+1) and

* ‘ 1 . * % * *
By : A —— A/A Sq' be the quotients. Clearly & g8 =8 .6

4 qq q-17q .
Bq can be realized by a map (of degree zero) Bq : Fq _— Iq .

The following is an immediate consequehce oF 3,1

Corollary 3.4. There exist maps éb D X, —Y

1) By =8y : KZ,—>KZ,

2) The following diagram commutes

£
F > > . .
q Xq Xq-1 Fq
Bq J JBq qu-l Jeq
E
I Y N I Y
q q Yq~1 Iq

- 3 _ l* -
3) If o = Tim Bq : 81(2k+1) — B(2k) the 1 is the

2k
quotient M(2k) — M](2k+1)

We extract the following from Brown and Peterson [9].

Proposition 3.5. There exists a manifold P2n of dimension

2n so that if T(v) is the Thom spectrum of the normal bundle of
Pon > then there is a map of degree zero Yon T(v) —— B(n)

that is injective in cohomology.

The methods 2.3 would suffice to prove 3.5.
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Corollary 3.6. There is a map of degree one ¢2k : B(2k) ——
EBT(Zk-1) inducing, in cohomology, Sq]: M1(2k-1) — M(2k) .

Proof. Let CF be the cofiber of iZk - BT(2k+]) — B(2k) .

Then, Tet v € H]CF be the element which maps, under

* *
H CF —— H B(2k)

1

to Sq € M(2k) . Then, (P4n,v,CF) is adapted to B](Zk-1) . The

result follows from 2.6.
The next result was first noticed by Mahowald [19].

Corollary 3.7. Let M(2) be the 22 Moore spectrum. Then

there is a homotopy equivalence

81(2k+1)AM(2) —— B(2k+1)

There is a cofiber sequence

o]
B (2k+1) —— By (2k+1) —— B(2k+1) Z2k+ | 2B (2k+1)

1.

*
In cohomology ¢,p.q = Sq M1(2k+1) —— B(2k+1) .

Proof. B(1) = M(2) . A cohomology calculation shows that the

following composition is a cohomology isomorphism and, thus, a

homotopy equivalence.

12kﬂid
B1(2k+1)AM(2) —==—— B(2k).B(1) — B(2k+1) .
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m 1is the multiplication given by the work of [9]. The results

follow.

As an aside, but as a corollary to 3.7, we have the following
result. See [31]. Recall that (A™/A" N A2k+1)n is the Z,

vector space of symbols Ai s Az 1N ATAT O A

. 1T 2k+1  WIth

i .q

Theorem 3.8. wnB1(2k+1) 2 (/A0 A2k+1)n for 1 < n < 4k+2 .

Progf. For n < 4k+2 this is I.6.1. An argument similar to
1.6.1 shows that m, ., 81(2k+1) = (AN N A2k+1)4k+2 as sets.

Similarly, we can conclude that

w4k+28(2k+1) = (A/A2k+1)4k+2 as sets.

Thus from 3.7 and the choice of the inclusion 81(2k+1)-ﬂ~—+ B(2k+1)
we see that w4k+281(2k+1) injects into w4k+28(2k+1) and that
the image of w4k+231(2k+1)-————+ w4k+28(2k+1) is of order 2.

The result follows.

We now need only construct the map h2k : B(2k) — ZZkB(k)
*
inducing X(Sq2k) : M(k) —— M(2k) 1in cohomology. Let % be
the maps of Lemma 1.11 or Lemma 3.10 below. Then 3.1 immediately

implies the following. YE is the kED-stage for B(k) .
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Corollary 3.9. There exist maps of degree 2k ;

g 2k k - 2k k
aq : Iq _— Iq and uq : Yq — Y
is as in 3.10 and
R v R T Sp— g
0~ % ~ X : 2 2

2) The following diagram commutes

2k 2 2k ©gq 2k
q q q-1 q
o
q

LRk

K
I - Y
q

!

> Yo-1 q

3) If by = ino

h: = x(sa%%) : M(k) — M(2k) .

*
so that o

- lima. : B(2k) — z2XB(K) , then

This leaves the construction of aq , accomplished with

the following argument. To lighten notation we write Xi

and understand that we are working in the dual vector space.

Remember that Ai(xd) = AI(AJ) .

Lemma 3.10. There exist maps (of degree 2k)

* * *
Gg AR A (q,k) — AR A (q,2k)

*

* *
so that aqéq = aq_16q and

A

I
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*

1) a0=x(5q2k): A —s A

2) For q>1, a; Ap = Ex(qu(I’J))AJ with p(I,Jd) an
integer so that p(I,J) > 2k-dim AI and, if A\j €A,

then p(I,d) > 2k-dim Ap -

We need two lemmas on the A-algebra. Both are in Brown and

Gitler [6].

Lemma 3.11. Let AI epr. If AjAI #0 1in A/Ak , then

2j +dim I > 2k

Secondly, recall that the elements AI € A are ordered

lexigraphically from the right.

Lemma 3.12. For any AI not admissible, KI = ZXJ with

J admissible and Ay < Apo If I= (11,...,i ) then

q
g = Iy with J = (j1,...,jq#1) , J admissible, and

*
Proof of 3.10. We work by induction on q . oy is defined
*
by 1). We may define a; by

*

=y 1-d J
Ay = Zlogpy XOT My 4

Then 2k-2j < i-j implies J > 2k-i . If 2k+i-j is odd,

*

then j >2k-i . Suppose uq has been defined and satisfies 2) .
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Then,
* % ~ i+], *
aq6q+1AI = T (A AL)X(Sq )anL
i+
= 2 (A2 ) x(SaPsq’ i Ay (p = p(L,9))
= ZA (A )x(SqPSqm) A
pHi+l-Je J
+ ZAI(A AL)(p aJ)X(Sq Sq )AJ

The first sum is over p and i so that 2i+2 < p . By Lemma 3.11

2i +dimL > k so i+1 > 2k -dimL - i

2k - dim I .

On the other hand
p-2j<i-j implies j > p-i>2k -dimL - 9§ =2k - dim I

If A€ , then j>p-i>2k-diml.

Here is the point: write aq6q+1 ; in the form

* * & t s. t
aq6q+1ll = % x(Sq7Sq My *+ L x(Sq7°Sq )AJ

with J >M ., Obviously, = x(SqSSqt) (the coefficient of Ay or
AJ) should be indexed to J or M . I drop it to ease notation.
SqSSqt is admissible. Now, I claim that, using only the fact that
6 o 6 =0, I can produce a we A g A*(q+1,2k) so that

q% g1
(t as in the coefficent of AM)

= 2 X(Sq) g 1Ay

and that 1) Ag_4Ay is admissible

*

. s i J ,
ii) 6q+] w = I X(Sq Sqt)kM + I X(Sq1SqJ)AJ with J>M.
iii) If Jj dis as in ii), then j > 2k - dim I or

j>2k - dim I if Adeﬁ



-114-

Since for t (all J and M) we have t > 2k - dim I

* *

(or t>2k -dimI if A, or A € A) and since 6q6q+1 v =0

M
we may proceed inductively to produce

e Ad A (qH,2k)

so that W = £ x(SqP )y P'>2k -dimI or p'>2k - dimI if

-~

o * * *
Ay € A and so that & Then, we set a g+ I = W .

N g+ %0q+1 M
So, I must produce w . Write M= (m, M') and write the

=

coefficient of hM in o 6 as

q q+1 I

x(5a%5q°) + = x(5q°sq%)

with s < a for all s .
Now .,
* % *
q 15q6q+1 I 6qaq6q+1l1
5 X(Sqm+]

Sq Sqt)AM, + I aTAT with T > M' and

ar e A .

This a consequence of Lemma 3.12. Thus, we are forced to conclude

m+1

that Sq sq® is not admissible; that is 2a > m+l , or 2a - 2 >m.

Thus is an admissible monomial in A . Let us examine

Aa-1AM
* b
6q+1 x(Sq )kahlkM :

* _ ae b

Sq41 X{Sq )A = x(5675q7) 2y

1+1.. b

+ 3 ka_lkM(AiAd)x(Sq Sq )XJ

> A Again, see Lemma 3.12. Since b > 2k - dim I (or

1+1qu is admissible, condition
iii) as above is satisfied. Suppose Sq1+15qb is not admissible. Then

Ay >

b > 2k - dim I if A, €4) if Sq
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i+1. b b-2-1 b+i+1-2._2

Sq =2 (547-04) SO Sq

S5q

First, we have that i+1-22 < b-2-1 or

2 > i-b+2 .
Then, because AAy # 0 din A/A2k we must have (Lemma 3.11)
21 > 4k - dim J
or
i > 4k-i-dim J = 4k-dim M-a+1 .

Thus, combining these two inequalities
2 > 4k - (atb+tdim M) + 3 .

N .
Since X(Sanqb)AM is a summand of a x(Sq1+1)

q
i+])k is a summand of 6* A, we see that
L q+1”1

kL where

X(Sq
a+b+dim M = i+l+dim L + 2k = dim I +1+2k

Thus,
£ >2k-dimI + 2

We may now proceed algorithmically to produce w satisfying i) - iii)

*
above and, thus, inductively, to define %q+]
This completes the proof of 3.6. Therefore, we have constructed

the maps of section 1.
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4. The Construction of B](Zk) :

In this section, we produce the spectra B1(2k) and prove
Theorems 1.13, 1.14, 1.15, and 1.21, and Propositions 1.16.

Recall that we defined a map
Bt By(2ke1) — 2% e(k)

in section 1. Then we defined 81(2k) to be the spectrum so

that the f011ow1ng-1s a cofibration sequence.

2k+1

By (2k) —— Bq(2k+1) kg (k) .

As noted, the following is immediate.

*
Proposition 4.1. H B(2k) = M](Zk) R

The bulk of this section will be devoted to the discussion of
the homology theory 81(2k)* . This is intricate and we take some
come care. The method is this: First we produce a tower whose
inverse limit is C(k) . Then, second, we produce a map from the
tower for Bl(2k+]) to the tower for C(k) ; the inverse limit
of this map is jk . This will allow us to produce a tower whose
inverse 1imit in B](Zk) . Then, third, we will use the Pontrjagin
duality of Section 1.3 and what we know about the maps we have
constructed to examine each stage of the tower for B](2k) .

The first step is to construct the tower whose inverse limit

is C(k) . Recall that 2k = 2%(2t+1) and that
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(k) = vza(1)31(21'1(2t+1)w1) v 228Mg(2¢47) .

Here a(i) = (25'] + ...+ 21)(2t+1) . For even n , we have a tower

whose inverse limit is 81(2n+1) -

2n+1 . 2n+1 2n+1 2n+1

- - Xq xq_] _+ - 00 —._)- X'l _-* XO
eq J €1 J (4.2)
2n+1 2n+1
Then, of course, set
' ; i-1
X =y Za(1) XZ (2t+1)-1 g Za(])x2t+1
q i q q
and
. -1
' a(i) 2 (2t+1)-1 a(1)2t+1
Fq VI Fq Vv I Fq

Then, we have a tower whose inverse limit in C(k)

' yed(3) g
e R . Tl &
Eq . € j. (4.3)
E, Fy
Let Xq = X§k+1 and Fq = F§k+1 in (4.2). Then, our next step is

to produce maps of degree 2k+1

so that 1) is the following diagram commutes
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£
9,
Fqa ™ Xq 7 %q1 Fq

W e [
t 1 ] €

9,
Fa ™ Xq ™ %g-1 F

(4.4)

’

Pl TEY & 2k+1
and 2) 1jm Jq = 3 ¢ B1(2k+1) e c(k) .

Recall that jk is a wedge of maps

fi 0 By(2k+1) — Zb(1)81(2i'1(2t+1)-1) i

and

£l 1 By(2k+1) — (Vg (2t41)

where b(i) =a(i) +2k+1 . For i>1, f.

j is the composition

fo: B (2k+1) B(Zk) 2K, 72Kg(k) —
L — zb(1)'15(z“‘(zt+1)) 0 5P (27T(2t41))
where ¢ = ¢ i-]( of Corollary 3.6 and the unlabelled maps
2t+1)
are of the form hzn of 3.9. i2k is as in 3.4.

Similarly f] is the composition

fy ¢ (2k+1) B(2k) K, 52Kp(k) —
zb(‘)“‘s(2t+l)-49—+ Zb(])B1(2t+1) .

¢ = ¢2t+1 of Coroilary 3.7 and the unlabelled maps are of the form
h2n ;
Let us first examine the maps o (n either even or odd). It

is an easy argument to show that there exists a commutative diagram
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I > > L
q Yq Yq-1 I
J¢q J¢q J¢q_, J¢q (4.5)
£
. -
FCI —_ Xq-—+ Xq-] Fq
so that 1jm Eq = 9, B(n) — ZB](n) (ZB](n-'I) if n is even) .
So now let
a(g,2n) = a_ : an ey YN
q q q
and
a(g.,2n) = o IZn —s
q q q
Then Tim a{g,2n) = h2n . See Corollary 3.9. Let
- 2k
Bq Xq Yq
and
2k .
sq F —— Iq be as in Corollary 3.4.

We now define a map of degree b(i)

21“](2t+1)

f(i.q) : Xq-——~+ Xq

to be the composition T(i,q) = qua(q,21(2t+1))°...°€(q,2k)°8q

9, isas in (4.5) for ¢ . , B(2' "1 (2t+1)) — 2B, (277N (2t41)-1) .

21 Vot+1)
Similarly we can define a map of degree b(1)
= 2t+1
(1, : —_—
(1,q) Xq Xq

to be the composition F(1,q) = $q°5(q, (2t+1))°...°a(q,2k)oﬁq .
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¢q is as in (4.5) for Porpq B(2t+1) — 281(2t+1) ;
Then we can define ?é = VF(i.,q) : X —— X . ?E is of degree

q q
e EL o e 2K+
2k+1 and 1jm fq =V 1jm f(i,q) = J B1(2k+1) — T c(k) .

Let us define maps of degree b(i)

-1
fi.q) : Fg— 2 (20D

to be the composition f(i,q) = ¢qoa(q,2i(2t+1))o...oa(q,Zk)qu :

¢_ is as in (4.5) for ¢ i1
q 2" (2t+1)

1
Then set j_ = Vf(i,q) : F,L —— Fq . The diagram promised

q q

(4.4) now commutes.

Now let us define wq to be the spectrum so that

is a cofibration sequence. Simirlarly, define Jq to be the

spectrum so that

is a cofibration sequence. Note that Jq is not a product of

Eilenberg MaclLane spectra. We may conclude that there is a tower

p

q_, 5 5
wq wq_'l B SEOEI w-l wo
€ J(el (4.6)
J J

q 1
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Further, we may assume that pq x wq iy wq_]

induced form the contractible path fibration over Jq by €

is a fibration

q -

n

13m W, = Bq(2K)

q

"8_0 : wo —_ KZZE induces a canonical choice for a generator of

HO(B](Zk); 5) ; namely,

%

%(ZK) 'WO > KZ5

We have completed the first two steps in our discussion of
B1(2k)* ; the third step is to discuss the induced homology theories
() -

Recall that 2k = 2°(2t+1) . Let Z be any CW complex.

The first result is this.

Theorem 4.7. 1) If s>1 and q > 1, the sequence
| . P.*
(3g)Z —4 (W) Z — (Hy_1) 2

is split short exact for n < 4k-3 , short exact for n = 4k-2 ,

and if n=4k-1 , p is surjective.

q*
2) If s=1 and g > 1, the sequence

1% Pox
(Jg) 2 M () Z — (Uy_q) 2

is split short exact for n < 4k-2 , short exact for n = 4k-1 ,

and if n =4k , p is surjective. The splittings are natural

q*
in Z .
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3) If n < 4k-1, 90* : (wD)nZ —_— Hn(Z;ZZé‘)
is surjective. If n = 4k , then (60)* is onto N Sq:, E~H4k(z; 23) .
i
4.7 implies 1.15, 1.16, and 1.21 of the outline in section 1.
As usual when we wish to prove results such as 4.7 we emplioy the
Pontrjagin duality functor x of I.3. The key lemma is the

following. Let o be as in 3.10 and Bq as in 3.4. o = a(2k,q) .

. k
Lemma 4.8. For q > 1. x(aqsq) : X(Iq)Zk-l ————*'X(Fq)4k

is null-homotopic.

We postpone the proof, not because it is difficult, but because
it involves a sequence of ideas from Brown and Comenetz which have
not been employed yet. Lemma 4.8 follows from 3.10 and 4.8 explains

the form of 3.10.

q = X(Xq) ’ Kq

6y = x(X;) . And Tet e =x(e) and e, = x(ej) . We prove 1)

and 2) first. Let n be as in the hypotheses of 4.7.1 or 4.7.2.

1
Proof of 4.7. Llet Kq = X(Fq) . B = x(Fq) , and

Consider the diagram:

(6) ; (3.)
T (3 —— K Blo’ |y

Kq,n-1 q,n-2k-1 q.n

e

q -
: x(3,)
g-1,n q’'n g,n-2k Gq—l,n+]

is null-homotopic by Theorem 1.4.8,
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part 5. x(jq) : Kq,n-Zk—T — Kq,n is null-homotopic by the

1 ]
construction of Iq and lemma 4.8. We claim that e Kq,n-Zk—1

—_ G is also null homotopic.

q,n-2k
Let us first show that the claim implies 4.7.1 and 4.7.2.

)((Jq)n_1 may be considered to be the pull-back by x(jq) of the

contractible path fibration over K Similarly, (wq)n may

g,n °
be considered to be the pull back by X(jﬁ) of the contractible

path fibration over G Thus assuming the claim we

g-1,n+1 °
conclude that

g+ X(9g)yqy — x(Hy),

is null-homotopic. Then the results follow from an argument exactly
1ike that in I.5.2. Let us now demonstrate our claim.

Let (i) = 27" 1(2t+1)-1 if 35> 1 and let c(1) = 2t+1 .

Then
8 ¢+ Kg,n-2xk-1 84-1,n-2k
. , c(1i) , yge(i)
is the map Xeq : § Kq,n-Zk—a(i)-1 ?Gq,n-Zk—a(i)

For i > 1, n-2k-a(i) < 2k-a(i)-1 = 2'(2t+1)-1 . Thus

. c(i) c(i)
e ¢ Kgintok-a(i)-1 7 Cq,n-2k-a(i)

is null-homotopic by I1.4.8 part 5.
For i =1, n-2k-a(i) < 2k-a(1) = 2(2t+1) . Thus

e KC(T)

(1
q q,n-2k-a(1)-1 G :

%
q,n-2k-a(1)
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is null-homotopic; again by 1.4.8. The claim follows.
We now remark that 4.7.3 follows froma simple excess plus

dimension argument. This completes the proof of 4.7.

To prove Lemma 4.8, we need information about the induced map

oy

* * *
x(aqaq) : H X(Fq) — H X(Iq

x(Fq) and x(I:) are both products of Eilenberg-MacLane spectra;
therefore homological information will suffice. The necessary
results are in Brown and Comenetz.

Let M be a (left) module over the Steenrod Algebra. Let
HomA(M,A) be fhe group of Steenrod Algebra maps from M to A .
Give HomA(M,A) the structure of a left module over the Steenrod

Algebra by the formula
ap(m) = ¢(m)x(a)

meM, ¢ € HomA(M,A) and a €A.
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Proposition 4.9: 1) If Y 1is a spectrum so that WZY is

finite for each n and nnY =0 for n< No is some integer, then

*
HomA(H Y,A)

e

H*X(Y)

2) If f: X—Y 1is a map of spectra
so that wnX and wnY are finite for each n and ﬂnY = ﬂnX =0
for n < o where o is some integer, then

x(f)" = Homy (" ,A)

This is in Brown and Comenetz [5].

Proposition 4.10: Let M and N be free modules over the

Steenrod Algebra M with basis {mi} and N with basis {ni} .

Suppose f : M-+ N is a Steenrod Algebra map given by f(mi) = Zaijnj

with 3 5 € A . Then HomA(M,A) and HomA(N,A) are free over the

Steenrod Algebra with dual bases {ﬁﬁ} and {ﬁ}} respectively and
HomA(f,A)(nj) = ZX(aij)mi

This is Brown and Gitler [6].
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4.8 follows immediately for 4.9, 4.10, and 3.10.
To close this section we remark that one can easily adapt the

arguments of this section to prove the following two theorems.

Theorem 4.11: Let B(2k-1) be the spectrum so that

hoy
—_—

B(2k-1) — B(2k) 22K (k)

is a cofibration sequence. Then

1) HB(2k-1) = A/ALX(Sq') = 1 > 2k-1} .

2) For any CW complex Z , §(2k-1)n2 — H,Z s onto for
n < 4k-1 .

From 4.11 and an anologue of 2.7 for the original Brown-Gitler

spectra we conclude that B(2k-1) = B(2k-1) . This is Theorem 1.13.

We also have the following.

Theorem 4.12: Let E}(Zk-]) be the spectra so that
- Moklak 2k
B](Zk-1) —_— B1(Zk+1) = 2°B(k)
is a cofibration sequence. Then
1) #'Bj(2k-1) = A/AlSq’, w(sqh) ¢ 0> 2k-21 .
2) For any CW complex Z , the composition B1(2k—1)n2 —_—
Hn(Z; Zé‘) is onto for n < 4k-1 .

From 4.12 and 2.7 we conclude that ﬁi(Zk-T) & B1(2k-1) . This

is Theorem 1.14.

r
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5. Secondary Obstructions and Applications to Manifolds.

In this section we produce the secondary homology operations
of 1.19 and prove the stated theorem. Then, we show that these
operations are defined whenever [M] € H4kM is the fundamental

class of a closed orientable 4k manifold. Finally, we discuss

the case M = CPZk "

25(2t+1) q2"(2t+1)

Let Sc;,I = X(Sq .S Sq1) € A and let

Sqi :

(2% % ... % 21)(2t+1)+] so the following commutes:

KZ5 — KZ3 be the unique map of degree b(i) =

A Sq; A
Ry — 8y
b osq

*
The verticle maps are the Steenrod Algebra generator of H KEZ’é .

The Adem relation

s(2t+])+1sq25_1(2t+]) 21'1(2t+1))

x(Sq = x(5q2 .Sq

i=1 )
Z (2t+1))sq1_ 2<i<Ss

- * i
0 in H K222
guarantees that we have a diagram

. - Y. .
Zb(1)-1Kzz g,y M LWO i Zdh)KZZ

0 2
(5.1)
~ Sq ]
i-1 G
so that the composition across the is }((Sq2 (Ztﬂ)) € H KZZZ .

W, X‘ are as in section 4; X' =Y Zh(i)K ZZA and o 1is the
0> "0 0 2
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inclusion. Sq =V Sq1. » and n 1is the inclusion of the fiber
i ,

and is of degree 1.
d(i) = (25 +...+ 21 4+ 21 Ty (oten)

Let € wo — J] be the map of degree one of section 4. Our

first result is this.

Proposition 5.2: There exists amap y : J; — Zd(i)"]KZZ

2
so that yeq : wo——-+ Zd(T)KZZ2 is a choice for bs

Proof. We have a diagram in which theorems are cofibration

sequences.

~ S
Wy — KZ, 2.y

0
) = i I
dy ==+ by - Fy

In cohomology this induces a diagram

AR AT(1,2k+1) «—— A @ AT(1,27" T (2t41)-1)

Loy
* J1 * 1 *

HF1‘ HF.I« HJ1
1 % *
| | o &
* * 1 *
HXO HXO« HWO

A

* ' s g p* b(i)
If x; €H Xy % @H KZ, , then
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i-1
2 (2t+1))x_ -0

*
Sq x(Sq i

We are asking whether or not there is a class y & H*J.1 S0

i-1
2 (2t+1))x1

that €qY maps to x(Sq under H*NO —— H*XO . If

A=A
21=T(2¢+1) -1

e A g A (1,27 (2t41)-1) CHF,

i-1
2 (2t+]))x1 . We need only show that £ = 0 .

then (51)*A = ¥(Sq

£ = £(1,i) = ¢1°u(1,21(2t+]))°...°a(1,Zk)°8-|

The definition of f(1,i) ids in section 4, just after 4.5.

For dimensional reasons one can conclude that

* —
o1h = X

2" (2t41) €AB (L2 (2e) (i 22)

The formuia for a(1,2n)* given at the beginning of the proof of 3.10

implies

. N -1
(a(1,2" (2t+41))o...0a(1,2k)) " X 4 2> (et”))TZk

27 (2t+1)

x(Sq

— *
Since B; Ao = 0, it follows f(1,i) A =0 . This proves 5.2.

We use this result to observe that there is a diagram
|€'| 1 A

zb(‘)'lkzg O, Xg — Fy —> KZ

2
in | I (5.3)

=1

! .

KZ,
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~

where A\ = X’i_] € AR A*(Tszi_](2t+1)-1) E.H*F
2 (2t+1)-1

21T (2¢47 )|

1

yeqno = x(Sq We make a choice for y ; then in

5.1 set w1 = yey - This diagram is the secondary homology operation ?} ;

Theorem 5.4. Let Z be a CW complex. If xEﬁker‘Sqi*g

H4k(Z; 222) then x 1is in the image of

only if @Q(x) is zero modulo indeterminacy for i , 2 <i<s.

The proof of 5.1 requires the following preliminary. Recall

that K%nﬂ = X(F12n+1) and KZ,, = x(KZZE)

= - . y2ntl ] .
Lemma 5.5. X(e]) S 8 = d] Pk s, T K( sz,4n+4) is

completely determined as follows.

2n+1

KT,4n+3

= XK( 22; 4n+2-23) with j > n and the composition

d..
. i 2n+1] 1 .
K( Zz, 4n+2-2j) < I(1 Ant3 T K( Z, s 4n+4)

is zero unless j = n . If j =n , this composition is the composite
S 2n+2
K(ZZ 2n+2) 2o K( Z,; 4n+4) —— K( Z,,34n+4) .

The last map is the canonical inclusion

Proof. From 1.2.13 we have a diagram (e1 = 61)
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5 .
Ff”” el pa,

o

§

2n+1 1

F K22
S i 3 _

where 61 is given in cohomology 611 = EX(SQZJ+2)7\2j+1 . Then,

by Pontrjagin duality, we have a diagram

- ; : * _ e 2j42
where cLI is given in cohomology by H1A2j+1 = Sq . See

4.9 and 4.10. Lemma 5.5 follows.

Proof of 5.4. We take the Ponrjagin dual of diagram 5.3.
~ 1 1 1 1
Set K, = x(F]) , Gy = X(KZZ) . Ky = X(F]) and Gy = x(XD)
We have (2n = 2'71(2t+1))

K( ZZ; 2k-2n)

X(y.) X()
1/ \ x(dp)

4
X3 gy — Ky k1 — K9,k
ey &) i
Gy g — X(Wg) gy > 8 o — G, ak+1
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x(3;) 1is null-homotopic by Lemma 4.8; ey :

Ky,ak 7 Co,4k+1
is null-homotopic ey : K],Zk-] — GO,Zk is determined by 5.5.
5.4 can be rephrased in this dualized context to read:
Let Z be a finite CW complex and x € x(wo)4kz . Then x is

not in the kernel of

x(Hg) 7 —— x(u;) ¥z

(w1 as in 4.6) if and only if x 1is not in the union of the images
of

(ex(y))y = H'Z — x(u) ™z . (2 <1 <s)

Thus 5.4 holds if and only if the union of the images of
(e1X(wi))* equals the image of ej, in X(w0)4k2 .

Choose a null-homotopy of X(j;) . Because K;,Zk-l is
a product of Eilenberg-MacLane spaces, we may assume that the

induced null-homotopy on the composition

' x(3y)
. X{A) 1

is that induced by the Tifting x(wi) . Then we have a diagram

&

X(w1) X(J'|) X(wo)q_k
K( Zys 2k-2n) =
x ()

1
Ky ake1 * Kq,2x-1 — x{Mglgy
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The verticle maps are homotopy equivalences. Let

P K(Zy p) —— Ky gp % K122k—1

be the inclusion of any factor. Then, because e] : K — G

1,4k 0,4k+1
is null-homotopic, because of 4.10, and because x(J1) is the pull-back
by x(j]) of the contractible path fibration over I(1 ax > We see

that e;r is null-homotopic unless r = x(}) = x(% ;_; )
2 (2t+1)-1

2451 XH .
Therefore, 5.4 is true when Z is a finite CW complex.
For general Z , use a limit argument as at the end of I.5.2.

This completes the proof of 5.4.

We now specialize to the case when Z =M , an orientable
closed manifold of dimension 4k . The next result implies
that if M 1is an orientable manifold of dimension 8n+4 and
T(v) s the Thom spectrum of the normal bundle of M , then

there is a factoring

81(4n+2)

e

Tt} st K z;

u is a choice for the Thom class ue HO(T(\)); 22;) .

Proposition 5.6. Let M be an orientable manifold of

dimension 4k . Then Sq., : HyM—— H4k-b(1)M is zero for
all 1 <i<5S.
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Proof. By Pontrjagin duality we have a map of degree b(i)

X(SCH) - KZZZOO — KZIZm
' . _ . ydk-b(i) /.
and we are asking whether or not x(Sqi)* : H (M,Alzm) —_—

25(2t41) 21 (2t41)

Then

H4k(M;222m) is zero. Let Sq = Sq .Sq

we have a diagram

. 1 :
H4k-b(1)(M; sz) —Sq.__> H4k-b(1)+1(M§ ZZ) —-——-§—g.—>. H4k(M3 Zz)
f incl

H¥ s Z,,)

f is defined by this diagram. Note that qu] = X(Sqi) . If

4k-a(i)+1,, S~ 1+

X €H , then Sg(x) = X Now, if y € Hak-b(i)(M; Z

1 4k-b(i)-1M

p
is the reduction of an
4k-b(i)+1

then we will show that Sq y € H

integral class of finite order; there exists a class z € H (M; Z)

so that the coefficient map

HAk=b(1)+1 . 7y Ak-b(1)+1y

carries z to Sq]y and z is of finite order. Since H4k(M; Z) =17 ,
25~i+1 1 25-1+1
(z) = 0 ; this shows that (Sq'y) = 0 and, thus that
X(Sqi)*y =0.
Consider the diagram of groups
n
_’5_2_+ 7 — T
o
: i I
Z, — I —Z
n+1 n
2 2

I : i
Z, — 7., X2, 7
2 %es e
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This induces a diagram
" S p
WPM;z ) ———HP(M;Z ) —=H M2, )
2 ' 2 1 =

B and Bl are the connecting homomorphisms in the appropriate

long exact coefficient sequence. p 1is an integer. Let

y € HP(m; zém) = Tim HP(M; zén) . Choose n so that there

exist z' € Hp(M; Zén) mapping to y . Set z = Bz' in

Hp+](M; Z) . Then z reduces to Sq]y and z is of order
n+1

less than or equal to 2 v

This completes the proof of 5.6.

Proposition 5.6 implies that the secondary homology operation
¥, are defined on the fundamental class [M] € H4k(Wh Zé) . We

have the following partial result.

Proposition 5.7. If [CPZk] € H4k(CP2k; Z%) is the fundamental
Zk]

class, then Wi[CP is zero modulo indeterminacy for all i ,

2 <1< s.

Proof. We compute the indeterminacy. This is the image of

2i'1(2t+1)) 2K

: 2k, o~
x(Sa w7t Mgep(4)-1(0P3 Zp) = Mgy g(4)CP

where d(i) = (25 + ... + 2171 (2t+1) . (2k = 25(2t+1)) . Thus
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4k-b(i)-1 = 21(2t+]) and Tet n = 4k-d(i) = 21'](2t+1) . There

is a factoring

i H CP

x(Sq&\/ /x(Sq ™
anp

Cx is the coefficient map. Cx 17s surjective. If we show that

H2n(CP

2k 2k

ny .
x(Sq7) 4 : HanP

e HnCP
is an isomorphism, we will be done. This is equivalent, by Pontrjagin
duality to showing that

n ., ,n., 2k 2k

Sq HcPX — & 2Nep

is an isomorphism. This is clearly true.
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Chapter III Secondary Cohomology Operations that Detect Homotopy Classes.

This chapter is joint work with Raiph Cohen.
A basic problem in homotopy theory is to determine which SEE
order stable cohomology operations can act trivially on the cohomology

k k+m+1

of a two-cell complex, S U, D . The attaching map lies in the

mEn stable stem, meO . This problem is equivalent to determining
which elements of Exts( Zp,:Zp) survive to E_ in the Adams Spectral
Sequence. Here A 1is the mod p Steenrod Algebra.

For s =1 this problem is the Hopf invariant one problem and
was solved by Adams for p =2 [1] and by Liulevicius [18] and
Shimada and Yamanoshita [30] for p > 2 . In this chapter we give a

complete answer to this question for s =2 and p > 5.

OQur main result is the following

Theorem I: For all primes p > 3 and integers j > 2 , the.
element hohj € ExtA( Zp, Zp) is an infinite cycle in the Adams
Spectral Sequence. Furthermore if p>5 or p=3 and Jj is
odd, hohj represents an element nj = wnSO of order p , where

n = 2(pj+l)(p-1)-2 .

Said differently, we will prove that there exists a stable map

*

ng : s" —— 5% so that in H (S° Y. gt
J

determined by the Adem relation involving

: Zp) the secondary

cohomology operation @ .
i 0,J
P]Pp acts nontrivially.
Now for each prime p > 3 there are four other maps known to be

detected by secondary cohomology operations:
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p": §% — s° o : WD .0
g+ sPPN2__, 0 : st .

where
2
q = 4p(p _'[) - 2(p_'|) - P

These classes are detected by a% > 97 > b, and k1 respectively in

0
Extf( Zp, Zp) . (The notation is that of [23, Section 10]). Prior

to Theorem I, all other information has been negative. In fact, the

results of Miller, Ravenel, and Wilson [23], Toda [33], and Ravenel [28]

all tell us that certain classes in Extﬁ( Zp, Z_) are not infinite

P
cycles. Combining our results with theirs we obtain the following.

Corollary II: For p > 5 , the only classes in Exti( Zp, le)

o g 2 .
that are infinite cycles are ag 5 9y » bD . k1 , and hohj s 32>71 ,

It is an easy consequence of the results of [23] to produce maps
of spheres detected by secondary Brown-Peterson cohomology operations.

That is, we shall prove the following.

Theorem ITI: For p>5 or p=3 and j odd , there are

non-zero elements

~

2
B € ExtBP*BP(BP*?BP*)

i1k

1 <k < p‘j"1 -1 , that are infinite cycles in the Adams-Novikov

Spectral Sequence, and they detect non-trivial homotopy classes of

order p . As a special case, B detects n. .

SRR J

Remark: In the notation of [23] é j']/k may be written
D



-139-

~

=R . + I c.PR c. € Z

Wher: P9/ pI 71k Va(i)/b(4) ! P
a(i) = [p""*141/ps13p? 21 ]
b(i) = k_pi-1+pj-21'-'|

and

1 < f_max{ﬂlpZQ < pj'1/pj']-k} .

Let us make some remarks on the situation at the primes 2 and 3 .

At p =2 the ny family is detected by h1.hj and was shown to
exist by Mahowald [19]. an # 0 3 in fact, using the computations of
Carlson [12], one can show that one can modify the nj SO that
2ny = n§_1 # 0 . These elements of Mahowald formed the first known
infinite family of homotopy classes detected by secondary operations.
The work of Ralph Cohen [14] and this work were motivated by the
desire to apply Mahowald's techniques to odd primes.

At both the primes 2 and 3 there remains one infinite family

of elements in Extg(izp, Z_) whose Adams Spectral Sequence behavior

is not yet understood. At pp = 2 this is the Arf invariant family
h? in bidegree (2,2j+1) and at the prime 3 this is the analagous
family bj = <hj,hj,hj> in bidegree (2,2pj+1(p-1)) . For p>5
Ravenel showed that for j >0 , bj is not an infinite cycle.

The proof of Theorem I breaks into two steps. First, in sections

1, 2, and 3, we provide a proof of the following.

Theorem 1.1: For all primes p > 3 and integers j > 1 , the
element hohj € Exti(‘zp, Ep) is an infinite cycle in the Adams

Spectral Sequence and represents and element Ny & W*SO :
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This result claims nothing about tne order of aj . The proof
of 1.1 is long and is broken into three steps. In section 1 we
reduce the proof to a lemma. This lemma is proved in section 3
after we recall some results of Ralph Cohen [14] in section 2.

In section 4 we show that for p>5 or p=3 and j odd aj
can be modified to yield an element N3 of order p represented by

hohj . Finally, in section 5 we prove Theorem III.
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1. Reduction to a Lemma.

In this section we will prove, modulo a Temma, the following

result.

Theorem 1.1: For all primes p > 3 and integers j > 1 , the
element hohj € Exti( Zp, le) is an infinite cycle in the Adams

spectral sequence. Here A = Ap is the mod p Steenrod algebra.

We begin by fixing some notation that will be used throughout
the paper. If f: X =Y 1is a map of spectra, let M(f) be the

mapping cone
M(f) = Y Ve c(X) .

So in particular M(p) 1is the mod p Moore spectrum

M(p) = $° o ! .

Fix a prime p > 3 and an integer j > 1 . Recall that

2
hoh' € ExtA( zZ

P . Zp) corresponds to an Adem relation

p 0

i 3- i
PP+ 3 aipp =0
i=0

ol

with a; € A . This relation in turn induces a secondary cohomology

operation @D in the usual way. See, for example [1, 18, or 14.IV.3].

|
Set n = 2(p’+1)(p-1)-2 . In [14.1V] a map

T 0 2Np) + 8

was constructed and was shown to satisfy the following properties.
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* — ]
Lemma 1.2, a. In H (M(;j)) @o,j(ao) = o, with zero

* —
indeterminacy. Here % and o, are the generators of H (M(cj))

in dimensions 0 and n vrespectively.

3

b. There is an element hobj-l € ExtA( ZZp, Z.)

P
that is an infinite cycle in the Adams spectral sequence and is

represented by the composition

Sn'] : zn-‘l M(p) — SO

55

where 1 1is the inclusion of the bottom cell.

Lemma 1.2. a. 1is Theorem IV.c of [14] and 1.2.b 1is Theorem IV.b
of [14].

We will recall the construction of E& in the next section. For
now we will use its existence to reduce the proof of Theorem 1.1 to a
lemma. In order to state this lemma we need to recall some basic
information concerning Adams resolutions. For a thorough treatment
see [2].

Let X be a spectrum. Then an Adams resolution for X is a

sequence of spectra

S % v A =
Xg —Sr Ky ——rus o> Ky —> Ky —X = X

Jg.1 33 J

s-1



.

so that 1) KS is a wedge of suspensions of Eilenberg-MaclLane Spectra

of type KZZp >
l* * * - - -
2) jg = H Ks — H Xs is surjective, and
i

d
3) X S, ) os-1, KS

) -1 1 s a cofibration sequence.

If Y idis another spectrum, let [Y,Z]q be homotopy classes of
maps TIY — Z . Applying the functor [Y, 1, we get a spectral
sequence, the Adams Spectral Sequence. If Y and X are connected
and X is p-complete, then the Adams spectral sequence converges to

[Y,X], and is well known, E, = Ext;(H*X,H*Y) .

2
Suppose f : Y —— X 1is a map and that there is a lifting

.FI

>4 m><

.F
Y —m7MM

and that there is no lifting of f to Xs+1 . Then, f 1is said to

be on the s-line of the Adams Spectral Sequence.

1q 1'T
Le-t aee —LYq qu"-l A"Y-I AIO = Y
q-1 Lo

be an Adams resolution for Y . If f: Y —— X 1is on the s-line,
there exist maps fs : Yq —_— Xs+q so the following diagram commutes:

Y ——-—->Xs+q
- | |t

v ls1

g-1 s+q-1 s
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For our purposes we will need a minimal resolution for X = s® . This

is a resolution

s _ <0
’Es S_]—-——+.——+E1—+E0—-S
Js o J
s-1 K1 Ko

satisfying 1)-3) in the definition of Adams Resolutions but including
the additional requirement that

ok
J

* *
g ¢ H KS — H ES

*
carry the Steenrod Algebra generators of H KS bijectively to a
*
minimal set of Steenrod Algebra generators for H ES . Then, it is

standard that there is an isomorphism

K F Exty( Z,,7,) . (1.3)

We list results of A. Liulevicius [18]. The notation is that of [23].

lemma 1.4. a. Ext2(Z ,Z.) 2 Z_  concentrated in graded zero.
A* Tp? Tp P

1 . . .
b. Extyl( Zp,ZZp) -has Zp basis a, in grading 1 and hy
of grading 2p' (p-1), i >0 .

2

c. ExtA

(Z ,Zp) has Zp basis

P

h.h. i< j-1 of grading Z(D-1)(p1+pj)

9 i>0 of grading 2(p-1)(p]+]+2pi)
ks i>0 of grading 2(p-1)(291+1+Pi)
ah, >0 of grading 2(p-1)pd+1
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b, i>0 of grading 2(p-1)pi+]
352, of grading 2
a, of grading 4(p-1)+1 .

We can now state the Temma that will allow us to construct an
element n; = ﬂn(So) represented by hohj and thereby prove

Theorem 1.1. Let

Z, : " m(p) — s°

be the maps of 1.2. Then 1.2 and 1.4a. imply there is a diagram

of Tiftings.

(1.58)

. on-1
Cj ¢85

Here E3 5 E2 , and Kz are as above, and Z3 and Eé are liftings
of T,

J
for s =0,1 and because m K, =0 .

and E& respectively. These exist because “nKs =7 1K =0

n-1's

Lemma 1.6: Let hohj € w*Kz under the isomorphism (1.3). Then

*
hohj is a generator for H K over the Steenrod Algebra and
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e Sl _ n.n-1
(35 25) hoh‘,j =0, €HZT Mp) .

Proof: This follows from 1.2.
Here is our main lemma.

Lemma 1.7: In diagram 1.5, there exist 1iftings Eé and Z3

so that T3 has order p in w_ ,E

n-1-3

The proof of this lemma is the content of sections 2 and 3. Assuming

1.7 we can now prove Theorem 1.1.

Proof of 1.1: Let & : Zn']M(p) —— S" be projection onto

the top cell. Then, combining 1.4.c and 1.6, we have a commutative

diagram in which the rows are cofibration sequences:

sn-] . Zn'1M(p) , gN X P, N
o %] o]
E3 — E2 K2 ZE3
f hoh.
Because Zc3 has order p , the composite S s K2 - ZE3

is null-homotopic. Therefore there is a lifting
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This implies that hohj is an infinite cycle and is represented by

fi i 01
the composition n; . gf 2, E2 N 5%

We are therefore reduced to proving Lemma 1.7. To do this we'll
need to recall the construction of the map E& from [14]. We do this
in section 2. In section 3 we will prove 1.7 and thereby complete

the proof of Theorem 1.1.
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2. Construction of z; .

In this section we recall some results of the first author [14]
and prove a curious lemma about the structure of Brown-Gitler spectra.

We begin by recalling an outline of the construction of the map

T4 & Zn"1M(p) ——

3
_ + 1(k)
Let t(Vk) = Cz(k) ng S be the Thom space of the k-plane
k
bundle Vk 2
k
CZ(k)kaIR —_ Cz(k)/zk

where Cz(k) is the configuration space Cz(k) = {(x1,...,xk) = (]Rz)I<

such that X; 7 X; if 1 # 3} . t(Vk) is a Snaith stable wedge

summand of 9283 . That is, there is an equivalence of suspension

spectra

1°08sS — v (v

) .
= k>l ’

See [32] and [9] for a discussion of this splitting.
In [14.11] it was shown that

- ,
HE(V) ) = A/ALX(B5PT): pitve > Kk} @y

where u, is a class of dimension 2k(p-1) and x is the canonical

antiautomorphism of the Steenrod Algebra. In particular then

. . N
He(v 370 = AMAGCe®D): 1> 0T e =011 w

where u is a class of dimension 2(pj+1)(p—1) ]
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One of the thrusts of [14] was to deduce that t(VpJ+1+p) was

homotopy equivalent to B(pJ'T) -- the pJ'] - p-primary Brown-Gitler
spectrum. Much follows from this -- 2.2 below for instance.

Set s = —2p3-2p+1 . An easy calculation shows that as a spectrum

we have the following:

e

J .
i) HEP (p‘1)‘1zst(vp3+]+ ) Zp generated by

p
P97 e o
aj = x(gP P ...PFP'B)(v) where v is the Steenrod Algebra

*_s J+1
ToE(V . d
generator of H I t( 5 +p) an

j=1 3 = ;
iy - p p 1 & S J+1
ii) If o5 ¥ (8P P ..P ) v)yeH t(Vp +p) ,

then Buj = aj .

3+l
PP

Lemma 2.1. There exists a map g : Zst(V

) — §°

*
so that in H M(g) :

J
a) pP (co) = Zaj and all other primary operations are zero

on a, . Here o, is the generator of HoM(q) .

b) T (o) = ij modulo indeterminacy, where Ty is

bj_1 0

j-1
the secondary cohomology operation corresponding to

b € Ext, (zp,zp) .

j-1
Lemma 2.2.a. is Theorem IV.2.1 of [14] and 2.1.b. is Theorem
IV.3.4. of [14] . E& will factor through g .

Lemma 2.2. There is a map & : Zn'1M(p) —_— Zst(vp3+]+ )

p
*
so that in H M(E)
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] - J
a) P (aj) = (-1) ZEGn_1
b) Pl(a.) = o
J n
where o, and o generate H"'1Zn']M(p) and H"Zn'1M(p)
respectively.

Lemma 2.2.a. is Lemma IV.5.2 of [14] and 2.2.b is Theorem IV.1.1
of [14]. The map E& : Zn'1M(p) — S° was defined to be the
composition
0

) s §

T, @ Zn“]M(p)-————+ ESt(V 3+l
T P 9

+p

Standard composition methods allow us to combine 2.1 with 2.2 to
conclude that in H*M(Es) . @O,j(co) = Io, modulo indeterminacy.
The indeterminacy is then computed to be zero. See section IV.5
of [14].

In order prove lemma 1.7 (and therefore Theorem 1.1) we will
need to know that the identity map of t(ij+] ) has stable

+p

order p . To do this we will show that t(VpJ+1 ) is a stable

+p
wedge summand of t(VpJ+]) ~ t(Vp) . This will be sufficient since
t(v,) = 2P"2(n(p))

Recall Snaith's stable equivalence

150253 =~ v (v

) .
k>1 - K

Let m be the composition of spectra maps
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m : t(ij+1)At(Vp) .= - zm(QZSZXQZSS)

il o 2.3 J+1
— 7 QS —+t(vp +D)'

Here * 1is the H-space multiplication of 9253 ;

Lemma 2.3. There is a map d : t(ij+]) -—ﬁ-t(ij+T)At(Vp)

so that med 1is a self-homotopy equivalence of t(VpJ+]) . That is,
J#1

1:(\J'p +p

) is a wedge summand of t(VDj+T)At(Vp) :
Proof: Let A : 9253 —_— 9283x9253 be the diagonal map.

d is the composition

d: (v I*

gl 20253 A 5™(0%s%xa?sd)

31
——+t(Vp )At(vp) .

We make a homology calculation. At primes p > 3,

2.3

HQ°S” = E(ao,ai,...)ﬁ Zp[b1,b2...]

as a Hopf algebra. The multiplication is induced by m and the
comultiplication by A . a; has dimension 2p1-1 and bi has
dimension 2p1-2 i

As remarked above H*t(vpjH ) s a cyclic A module and

+p
j+1
its generator is the dual of b? . Now

J J J
AP Tl = T (PTHT)pPHT-kg K
1 M 1
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J J .
po+l _  p+1 . * J+1
So, (mod)*b1 = b3 . Since H t(Vp +p

is an isomorphism. Since we are completed at p , this implies

] 45 pyclics (mod)*

that med 1is a homotopy equivalence.

By previous remarks and results of [14,I1], m s induced by

the Cartan diagonal in the Steenrod Algebra:

1

ok J+1 e iy . . J-1
m : H t(Vp +p) A/JA{x(Bp') : 1 >p ' '}

+ MAx(8%") ite > pI haA/ALx(8%T) ¢ 1> 1)

n

%* j.[.‘[
H t(Vp )At(Vp) .

Thus, m: szst(ij+lp) — H(Zst(vpj+1)At(Vp)) is an isomorphism

for k > ij(p-1)-4 . Let G be the composition

. oS Jj+1 m S J+ q 0
62 EE(V T )at(Vy) —— TE(V ) —— S
and let U be the composition
— . n-1 T .5 J+ d s Jj+1
us: I 'M(p) —— I t(vp +p) — I t(vp +p)At(vp) .

Then, the above remarks, 2.1 and 2.2, imply the following result.

* pj * *
Lemma 2.4.a) In HM(G) , PF (o) =Ima, and T, (0.) = m a.
_— ) J bj 0 A

modulo indeterminacy. Al1 other primary operations are zero on Oy -

b) In HME , Plmiay = (<1092 50, | and
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¢) ty.p = Gen
This completes our recapitulation of results for [14]. We

might remark, in closing, that 2.3 is true in much greater generality.

If k# p1 > then write the p-adic expansion of pk

i I n
pk = CiP HCop T+ ... P m > 2

with 1, > 1, >...> i, and 1>c,>p-1 foreach j .

J

Then t(Vpk) is a wedge summand of

t(Vp‘])A...At(vpi1)A...A(t(vp‘n)ﬁ...ﬂt(vp*n)) .
\.____,\,______/ \_.._“r—/

C C

1 n

The methods of 2.3 suffice. One can observe also that similar

splittings at the prime p = 2 exist.
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3. The Proof of Lemma 1.7.

This section is devoted to showing that there exist maps
t; and Eé so that z, 1is of order p and so that we have

a commutative diagram

Sn"] i zn"'.lm(p)

JERAN

0

E3 —_— E2 — 5
As shown in section 1, this will complete a proof of Theorem 1.1.
Qur goal is to produce spaces Y1 and Tl , and v ,

v , and G-I » S0 that we have a commutative diagram

n-1 v 1
g -t Es {3.1)
- g
ep) Y- Tab(v) —— E,

Then C3 will be flov and Eé will be G1ov . As the
notation suggests, Y1 and T1 will be first stages in Adams
resolutions for certain spaces Y and T .

For any spectrum Z , let p : Z — Z be p-times the
identity. In order to show Za has order p we will use a
null-homotopy of Gy°p : T, t(Vp) — E, (recall
tv,) = z2P"2M(p)) to build a Tifting f; and a diagram
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(Recall that E

3 E2 K2 is a cofibration sequence).
This 1ifting f , will be sufficiently explicit so that we will
be able to conclude that ;1ov is zero in cohomology. Thus,

since 2'1

K2 is a wedge of Eilenberg-MaclLane spaces, we will
have that $]ov is null-homotopic. It then follows that
Cy = f]°v is of order p .

The task is now three-fold.

(1) Define T] . YT , and the maps f] and G] .
(2) Construct maps v and Vv

(3) Construct and analyze F] ;

We begin with Step (1). Let T = Est(ij+]) . Then, since

H*T is cyclic over the Steenrod Algebra, let T ¥ i Ztk Zp
classify the Steenrod Algebra generator of H*T . Let the

following be a cofibration sequence

T

R W
: T ,thzzp

T1 is the first stage of an Adams resolution for T . Since,

for any spectrum Z , KﬁZpAZ is a wedge of Eilenberg-MaclLane

spectra of type KZ_ , we have a cofibration sequence

P
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t

1
At(V i L. .
Tyat(V) ——> Tab(V)) = TR Zat (V)

and T]At(Vp) is the first stage of an Adams resolution for TAt(Vp) ‘
Lemma 2.4.a givesus a map G : TAt(Vp) —— 5S° on the 1-Tine

of the Adams Spectral Sequence converging to [TAt(Vp), s°1 . So,

by our remarks in section 1, we have a map G.I : T1gt(Vp)-——-+ E2

so that the following diagram commutes

G
1
1 i 101, (3.2)
G ¢

bl ] —— s°
This is T1 and G1 . Let us now define Y .
Observe that HIT.t(V) = 0 for q > 2pY(p-1) and, if
g = 2p9(p-1)-1 , HqT,\t(Vp) = Z, . let Y be the 209 (p-1)-2
skeleton of TAt(Vp) . Then, we may assume that there is a

cofibration sequence

-

Y __%;_+ T t(vp) _,ﬂL_+-sk+1

where k = 2pJ(p-1)-2 .

*
Since 1 s surjective in cohomology, we can form a

commutative diagram of cofibration sequences
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t
¥ > Y = LK ALY
11 . I "
w.id, .t

and Y1 will be the first stage of an Adams resolution for Y .
From (3.2) we get a diagram

G
1
Y1 et TlAt(Vp) — b

| l

i G

Y ———— Tat(V) ——— S

P

0

Lemma 2.4.a implies that any 1ifting of Gei : Y —— s°

to
E1 1ifts to E2 . Therefore, by our remarks on Adams resolutions,
we may find a map f] : Y] —_ E3 so that the following diagram

commutes

Gy
TRtV ) ==,

This completes Step 1 of our proof. We begin Step 2, the
construction of v and v . Let u : Zn'1M(P) o TAt(Vp)
be the map of 2.4.b and let u be the composition
11 =, 0Ty —E T tvy) -
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Sn-]

Lemma 3.4. There is a map { : —— Y making the

following diagram commute:

Y
H i

gn-1 1 TaE(V)

Proof: Referring to the cofibration sequence (3.3) we have

a composition

g1 2, TAE(V) g gHF]

Since n = 2pd(p-1)+2(p-1)-2 and k = 2pd(p-1)-2 , pouems (%) = 0.

The result now follows.

Lemma 3.4 implies that we have a diagram

-1 _H vy LY V)

\ |

2"Im(p) —H—s Tat(V,) _waid sty Z (V)

For dimensional reasons (w.id)ey is null-homotopic, and,
thus, there exists 1iftings v of {I and v of . so that

the following diagram commutes:
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n-1 \

S i

)

2" M(p) Lo Tyt )

If T o 2" M(p) —— s° and 5 s"1 5 5% are the

maps of Lemma 1.2, then our definitions and construction imply that
the following result holds. .
Lenma 3.5. Ty = fiov : s —— £, is a Tifting of

, Eé = G]oV'; z"'TM(p) — E, s a 1ifting of E& , and we

55

have a commutative diagram

G

| 5

s"IM(p) —2— E

3

2

This completes Step 2 of our proof. We begin Step 3, the
construction and study of f1 . To this end we study Y1 more

closely, produce a space X1 , and a cofibration sequence

. , ok = 2p9(p-1)-
Let us define X and Xq - Recall that T = Est(VpJ+1) .
Then H%T =0 for q > 2(pj-2)(p-1)-g and, if q = Z(pj—Z)(p-1)-2 5
q pd=1 pi-2 p ol
then H'T = Z_ , generated by x(g8P P ve. PP Pw .

P
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Here, w 1s the generator of H*T . Let X be the 2(pJ-2)(p-1)-3

skeleton of T . Then we may assume we have a cofibration sequence

X s T s2(p?-2) (p-1)-2

In fact, we have a diagram in which both rows and columns are

cofibration sequences

Xat(V) .Y > K
| {1 !
Tab(V)) —Tat(V) — (3.6)

! ! }

ZkM(p) Sk+1 Xp Sk+1

Notice that X T L >—EtK.Zp is surjective in
*
cohomology. (w 1is the Steenrod Algebra generator of H T .)

Thus, we have a diagram of cofibration sequences

X X » stk z
p
] } |
N t
Ty T — BV z,

X1 is the first stage of an Adams Resolution for X . Referring

to (3.6) we have a commutative diagram

X'l At(vp) —_— Y-I ————— T-I At(vp)

J ! y

XAt(Vp) e Y > TAt(Vp) (3'7)
y l

t = t t
Z (V) = . ~ = A
nK . ( p) - 5 KZZp t(Vp) ) KZZp t(Vp) )
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Combining these remarks, we note that the following lemma holds.

Lemma 3.8. There is a commutative diagram in which both

rows and columns are cofibrations:

K
Kt (V) Y, .S
! | |
Xnb(V ) . Y , gk
| | |

t = t %*
z szAt(vp) —_— Kzzp,‘t(vp) —

k = 2pd(p-1)-2 and * = point.
This brings us to the construction of %1 . We refer to

the diagram:

. e _ 3L K2
T3 l
il f
sl N 1 N
s Y E,
} ) . Jis
1

Lemma 3.9. There exists an element ¢ € wkz']Kz (k = ij(p-1)-2)

so that flop 2 Y.l ———+-E3 factors as a composition

fop : Y, —B sk ¢, 5Ty

—__.).E

2

Remark: o is as in (3.8). We will set fy = ¢op .
Before proving (3.9), Tet us show that (3.9) implies that Lemma 1.7
holds.
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Corollary 3.10. Let Ty = f]°v : Sn'] —_— E3 . Then
Z3 has order p .
n-1 _p -1 °3 .
Proof: We ask whether S S —_— E3 is
null-homotopic. This composition may be written
f
n-1 v o P . 1
which, in turn, by (3.9), may be written
sh=1 ¥,y o, sk &, 5T g3,

1 2

Since n-1 = ij(p-1)+2(p-1)-3 and k = ij(p-l)-Z s DoV is

zero in cohomology. Thus, ¢epev s null-homotopic.

This completes the proof of (3.10).

Thus proving Lemma 1.7 and therefore Theorem 1.1 has been

reduced to proving (3.9).

Proof of (3.9): Let p : t(Vp) —_— t(VD) be p times

2p-2

the identity. Since t(Vp) = 7 M(p) this map is null-homotopic

(remember p > 3 ). Now if Z is any spectrum let c¢(Z) be the

coneon Z . Let
h 3 c(t(Vp)) — t(Vp)

extend p . The composition
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Hy + c(Y)) — c(TjAt(Vp)) = T-IAC(t(Vp))_

G

PN Tyat (V) kP

2

is a null homotopy of izof op . (13 : E

e Ez) .

3
When restricted to

c(Xy~t(V))) € e(¥y) -

H, factors through the map (refer to (3.7))

; f
. _ i.h 1 )
Define ¢ : Y,V c(X] t(Vp)) — E; to be the union of

f1op on Y] and H, on c(X1At(Vp)) . Observe that

Y, Y c(X]At(Vp)) = gk . (Refer to (3.8).)
We then have a commutative diagram with ¢ op = f]op

k

Y, —— ST = Y

¢
1Y c(X1At(Vp))-————+ Eq

|

C(Y1) it By

1

Thus 13o$' is null-homotopic since it factors through c(Yj) .

Hence there is a 1lifting ¢ :
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This completes the proof of (3.9) and, therefore, Step 3 of our

proof of Lemma 1.7.
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4. Dobd detects a map of order p .

The goal of this section is to show that, not only is hohj
an infinite cycle in the Adams Spectral Sequence (Theorem 1.1),
but it represents an element n; € wnSO of order p . This

J
follows from the following result.

Theorem 4.1. Let p be a prime greater than 3 or let

p=3 and j be odd. Then there exists a map

ny St —— M) (n = 2(pd+1) (p-1)-2)
so that in H*M("') ¢ (o) = Xo where o_ € HOZ']M( )
93/ 2 9,35'\% n? 0 B

and o € H'S" are the generators.

Observe that Theorem 4.1 and Theorem 1.1 imply Theorem 1 of
the introduction by letting nj be the composition

=y
ng s 3, 5 Twp) —2— s°

1

where & pinches to the top cell of 2'1M(p) .

Fix a prime p and integer Jj conforming to the hypotheses
of Theorem 4.1.
The proof of 4.1 proceeds in three steps:
1) We produce a map ﬁj z Z"M(p) — M(p) so that in
+* -~
H M(T]J) s ¢0,j(00)

o, and ¢o,j(c1) = L0471 with zero
indeterminacy. Here cj generates the appropriate cohomology group.

n
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2) MWe produce a map ey 2™(p) — M(p) so that in
* - (_1yd-1 _ .
H M(ej) Qo,j(co) (-1) ZZon and @0’j(a1) 0,41 with zero

indeterminacy.

3) Then we set Y5 = €5 + (-1)j2ﬁj . T™(p) —— M(p) .

« .
. - = J
Then in H M(Yj) , © (co) =0 and ®o,j(c1) = (1+(-1) 2)20n+1

0,J
with zero indeterminacy.

From this we will argue, in an analogous manner to our proof

Sn+1

of Theorem 1.1, that there exists a map n. : —— M(p)

J
satisfying Theorem 4.1.

Remark: Consider the map Y; of Step 3. If Jj 1is even
" .
- ; = J =
Thus our proof breaks down. This explains the hypotheses of

Theorem 4.1 and of Theorem 1 of the introduction.

n 0]

Step 1 of our program is easy. Let ﬁj ¥ &

the map given by Theorem 1.1. Set fi; = fi;aid : s".M(p) — s%.M(p) .

— §

be

*
Lemma 4.2. In H M(ﬁj) . ®o,j(°o) = Io, and @o,j(01) = I¢41

with zero indeterminacy.

Proof: ﬁj is represented by hohj in the E2 term of the

Adams Spectral Sequence. The result now follows.
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Step 2 is only a bit harder. For this we must combine and
interpret some of the results of Section 2.

Let U = Zst(VpJ+] ) be the spectrum of Section 2. Then

*p
Lemma 2.3 implies that the identity map of U has order p .

Thus the map
) -1 0
1 ~ 68 : UZ 'M(p) —— ULS

has a section ¥ : U —— UAZ'TM(p) so that (1.8)°¥ 1ds the
identity of U .

*
Recall that H U 1is cyclic over the Steenrod Algebra with
j-1  _j-2
generator v , so we may consider elements aj = x(BPp pP
J-1
Ple)(v) and oy = x (8PP

Now, let g : U—— S° be the map of 2.1. Set g

... PY(v) in H'U .

to be the composition

g zU S ump) L wep) .

Then Lemma 2.1 and a calculation of the cohomological

properties of ¥ 1imply that the following result holds.

Lemma 4.3. In H M(g) , P (00) = —Zaj and P (c]) = Ta.

We can now define ej . Let % : En-lM(p) —— U be the

map of 2.2. Then in H*M(E) we saw that P](aj) = (~1)‘]220n_1

and P1(aj) = Io . We define €5 to be the self map of the

Moore spectrum given by the composition

i
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e, + I™(p) —5— U —9 M(p) .

« .
- = B J-]
Lemma 4.4. In H M(gj) . @o,j(oo) (-1)Y" "2 Lo, and

%, j(o]) = Io, both with zero indeterminacy.
Proof: This follows from 4.3 and 2.2.

We now begin Step 3.

Define v, = e; + (-1)9285 : =™(p) — M(p) .

Corollary 4.5. 1In H*(yj)

= . J ;
@033(00) =0 and ¢0’j(o1) = (1 + (-1) 2))(Zo,,q) both with

zero indeterminacy.

Proof: This follows from 4.2 and 4.4.

We are now ready to complete the proof of Theorem 4.1.

Proof of Theorem 4.1: Let

...+E3+E2—>E]—>S°

)

Ko

be the minimal Adams resolution for S° given in Section 1. Then
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Ey ~ M(p) ~ E5 & M(p) > E; ~ M(p) ~ M(p)

4
K2 ~ M(p)
is an Adams resolution of M(p) . wnﬂ(K2 ~ M(p)) = Zp
generated by an element that represents hohj € Extﬁ (H*M(p), Zz)

p
where under the homomorphism

* *
6u i Exty (WHp), Zy) > xty (W (sh,z,) * Ext)(Z,.2,)

1

S,(hh.) =hh, . (Recall that & : M(p) ~S is the pinch map.)

We now essentially repeat the argument given to prove Theorem
1.1 in order to prove Theorem 4.1. Namely, by Corollary 4.5 there

exists a diagram of Tiftings

Furthermore, by 4.5 there exists a commutative diagram of cofibration

sequences
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" e £™M(p) —— ™! p g+

— _ J’ -
Y5,3 5.2 (1+(-1) 2)h0hj ZYj,B
E3 ~ M(p) » E, . M(p) ~ K, . M(p) + LE; ~ M(p)

Because p _ 3 , the identity map of M(p) 1is of order p .

Therefore the composition Sn+1 — Sn+] — IE5 M(p)

p scas
.3
Thus there exists a 1ifting
gl _ - K, M(p)
J —
(1+(-1) 2)hohj
Define N to be the composition Sn+1 — E5 & M(p) - M(p) .
g
. oy ; *
ny 1s represented by (1 + (-1) 2)h0hj in Exty (H M(p), Zp) .
Now set ﬁ& = Z‘1q i where g € Zp is the multiplication

inverse of 1 + (-1)92 in ZO .

T

This completes the proof of Theorem 4.1 and therefore of

Theorem 1 in the introduction.
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5. More infinite families in m,S° .

We now turn to Theorem 3 of the introduction. Let p be an
odd prime and Jj be any positive integer if p>5 or if p =3

let j be odd. Theorem 1 yields a map

ng :

g S"s%,n- 2(p% + 1) (p-1)-2

of order p represented by hohj in the Adams spectral sequence.

Consider the following diagram

.

: 1
2 P-DTypy — 2 " Tu(p) » <°

gn + 2i(p-1) S21‘(p-—1)
N

Here a : 22(9'1)M(p) ~ M(p) 1s a map of Moore spectra which makes

the diagram commute

2200 Uy(p) —2 s m(p)

8
Sz(p'1) , 51
(6]
]
where oy € ﬂzp_3(S°) is the generator. o' is the composition of
o with itself i times. ﬁ& is a 1ifting of N which exists

because Ny has order p (see 4.1).
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.

. 0 _ i-1
Define ny ;€ Wn+21(p-l)(s ) by Ny § = mea  eny . Observe
that nj = nj’] . )
By postpoining the definition of 8 , to 5.3, we can state

pJ /k

Theorem 5.2: 5.1 is essential for 1 < i gqu-I and is

detected by a non-zero element 8 .

1 in the Adams Novikov
pJ/pJ -1

spectral sequence.

We begin the proof by recalling the results of Miller,
Ravenel, and Wilson [23] concerning the Adams-Novikov spectral

sequence based on the Brown-Peterson spectrum BP.

Theorem 5.3: For p > 3

(1) ExtgP*BP(BP*,BP*) = Zp » concentrated in degree zero.

1

(2) [26] Extgp BP(BP*,BP*) is generated by classses a
* sp /n+l

(for m>0, pf s >1) of order p" and degree 2sp™(p-1) .

{3y [23] ExtgP BP(BP*,BP*) is a direct sum of cyclic subgroups
*
generated by classes 8 for m>0, pfs>1,3>1,

sp /(J,1+1)

i >0 , and subject to

and
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1

has order p1+ and degree 2(p2-1)spm - 2(p-1)j .

B
spT/(§,i+1)

Note: (1) We write pnu m =a . and
sp /n+l sp

;
B =B
sp/(3.i+1)  sp'/d
(2) Novikov showed in [26] that «a n
sp /n+l

1

detects an element of rder pn+ in (SO) contained

o™
25p"(p-1) -1

in the image of J .

Lemma 5.4: Let ”j < 80 g0

detected by hohj . Tren n; is recresented, in the Adams

be a map of order p

Novikov Spectral Sequence, by an element

~

B ;. . =B . . + Y c. B_s. . c. € Z
pd 1/p3 1_1 pd ]/pg 1_] i Fa(i)/b(i) i p

2i+1 Jj=2i-1

(p™" " /p+lip
b(1) = p? 7771

where a(i)

and 1 <i<[j/s2] -1

Proof: There is a map of ring spectra & : BP —— K Zp ’

This gives a map of Adams-type spectral sequences, and thus a map

Oy ExtBP*BP(BP*,BP) e ExtA( zp, zp)

In [23] it was shown that &,(R 3-1
p

0,n - 1,n+1 _
ExtBP*BP(BP*,BP) EXtBP*BP(BP*’BP*) =0 and

/pj'1-1) = hohj . Since
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[1]

2’n+2(BP*,BP*) = (Zp) 2

Extgp gp

generated by B 1

. and B_;. .y s the result follows.
j-1 a(i)/b(i)
pT /pT -1

Definition 5.5: Define

.= B s
ik Ptk

* Z¢5 Ba(4)/b(i,k)

where c1. is an in 5.4 and

a(i) = (p?1*/pe1)pd=21-1

b(i,k) = k - pI1 4+ pI=8i-1

and 1 < i gmax{llng‘ < pJ"}/pJ'] - k} .

Proof of Theorem 5.2: The cofibration sequence

SO%SO T M(p) i S1 induces a short exact sequence in

Brown-Peterson homology:
0 + BP,*PBP,/(p) ~ 0

where BP, = BP,(S°) = m,BP = Z(,)[v;1 where dim v, = 2(p'-1) .

This is induces a long exact sequence in Ext :
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.i
S XD 5 *
. > ExtBP*BP(BP*,BP*) > EXtBP*BP(BP*’BP*) -+

S S s+1
Ext (BP4,BP,/(p)) — Ext (BP,BP,) - ...
BP,BP
BP,BP

and 8, 1is induced by a map of spectral sequences [35]. Theorem

5.3 and this long exact sequence imply that ExtéP*BP(BP*BP*/p))

is a Z_-vector spaces generated by elements ao. and B

p m

sp /]

where 1i,a = o and 6.8 = B .
sp/n+l sp™ sp/i  sp"/j

Define B .

z.‘B-._ + ¥
ok Pk

St Ba(i)/b(i,k) °

Lemma 5.4 then implies that n., (of 5.1) is represented by a

J
class of the form
8'. .+ co , Where c€ Z .
pY/p-1 pi+1 P
(Note: Since o . represents an element in wM(p) 1in the

pJ+1

image of i : S° - M(p) , ﬁ& can be chosen so that ¢ =0 .)

Now o1 : p20I-D(p-T)y

i-1
by Vi

p) > M(p) induces multiplication

in BP.(M(p)) = BP./(p) . Therefore the element

F!- - a'l-.lo'ﬁ_ .S +2(1—'I)(p—'|) - Z_]M(p)

5.1 5 is represented by

pd/pd-i

B + co

pi+i
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by the construction of the R's . (See [23].) Thus Ny, is
represented by B 3,
pT/p -1
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