"AND TREE" COMPUTER DATA STRUCTURES FOR
SUPERVISORY CONTROL OF MANIPULATION

by

PHILIP A, HARDIN
S.B., Massachusetts Institute of Technology

(1965)

M.S,, Massachusetts Institute of Technology
(1966)

MECH,E,, Massachusetts Institute of Technology
(1969)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF
PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF
TECHNOLOGY

October, 1970 L t.e. Teb 187))

Signature of Author.. “1“_NS|gnature redacted

8 oW 2 0 A TT TS 70 8000000008000 00e0 460
Department of Mechanidzl Engineering, October 13, 1970

e Signature redacted
Certlfled bYO ssssesssboavan e s doebdend gy T T T T T e 0000000000
A Thesis Supervisor

’ Signature redacted

ACCBpted by............-.l..-..'.l.(-.""r'r.'s-‘-flry...,.._........
Chairman, Departmental Committee
Archives on Graduate Students

“p.SS_ INST, TECy

FEB 25 1971

LiiinaRieES .

AOR SHAUTOUATZ ATAU A4TUTMOD vYddal aea”
ROTTAJUTIMAM 90 JOATWOD YHOZIVAATUZ

5
RS E ,

AR
afJaaudaszanM .2

ATURAN
wolomdosT 1o esuzizer
(Eoed]

wgolondsel io efuunn?tﬁ?sqaaudasaaw g 0 M
(oo0€L)
veologdssT Yo sturizenl e33eeudoseesM .4, HIdM
(Roer)

TRENALIAJUT JAITAAY W1 QaTTIMEUZ
SHT A07 2THAMIAIUOEA THT 70
10 f0TJ0U 40 HAxDEQ
YH9020J 114
eds 38
0 ATUTITEHI ZTTH2UHDABZAM
YOUJORHIAT
(irpi do¥ 5 1) over vedosso

WaEvia BN WEREE AL A & ':- \%t.f&i! -%@o-tﬂl‘.ﬂdﬁ o bTDJEnXi&
O%el ! 18do3s0 grirsemigsd i inedasi 1o 3nsw3taqel

E e & RUR R R A h""\‘?ﬁatl\l}}ﬁ‘la' u‘k“-“‘?’i"; .. oYi R N ‘“J L’ﬁll‘tj1 9
ToRivIsqihe 2izedl

L T A I N :h!

9933 famod En!:rsﬂj"rsqaﬂ ‘ltmn‘umid
2suebuid stsubsil) mo o —

B I S T N Y u‘{d bﬁj’ QEDJ}".

.

TYE s 83

"AND TREE" Computer Data Structures for

Supervisory (Control of Manipulation

by

Philip A, Hardin

Submitted to the Department of Mechanical Engineering in
partial fulfillment of the requirements of the degree
of Doctor of Philosophy, October, 1970,

ABSTRACT

Remote manipulators, originally designed for handling
radioactive materials, have been proposed for use on unmanned
space vehicles. A pure time delay in the transmission of ra-
dio signals, present because of distance or other reasons,
makes remote manipulation task completion more difficult, A
supervisory controlled computer-manipulator overcomes this
problem and has many other potential uses,

This thesis describes a supervisory controlled manipu-
lation system which can accomplish complex manipulation tasks.
The system, which presumably knows the initial positions of
all objects involved in the task (the initial state of the
task), is given an operator's description of the desired final
goal state of the objects in the task, It uses this descrip-
tion to generate a set of sub-tasks, each of which describes
moving one object to a final position designated by the goal
state description.

The system is divided into two parts, The upper level
is an AND TREE which orders the sub-tasks so their combined
solution results in the solution of the complete task, The
lower level consists of

1. a procedure to generate the state spaces which
describe a sub-task, and

Z., a set of shortest path algorithms which find a
path through the state spaces and therefore find
the solution of the sub-task,

The system was implemented on a digital computer,
and the manipulator jaws and object of the task site were
simulated by a two dimensional computer model, Six exam-
ple tasks, solved by the system are presented: two in
step by step detail, In addition, there are included: de-
tailed descriptions of task types for which the system will
find solutions (if they exist!); the additional abilities
the system would have to possess to solve more complex
tasks; the economic advantages of this system as compared
to others that have been proposed; and documentation of
the system as implemented.

Thesis Supervisor: Thomas B. Sheridan
Title: Professor of Mechanical Engineering

ACKNOWLEDGEMENTS

I deeply appreciate the advice, guidance, and en-
couragement provided by my thesis committee: Professor
Thomas B. Sheridan especially for his patience and support;
Professor Joseph Weizenbaum especially for his helpful ideas;
and Professor Daniel E. Whitney especially for his construc-
tive advice.

I also thank Professor Marvin L. Minsky and other members
of Project MAC's Artificial Intelligence Group for their
assistance in using their PDP-10 computer; Jane Browning
for the excellent typing; and my wife, Jane, for editing,
drawing the figures, and preliminary typing.

The work of this thesis was supported by the National

Aeronautics and Space Administration Grant NGL-22-009-002.

ABSTRACT » &

TABLE OF CONTENTS

ACKNOWLEDGEMENTS s 4 & % s % s & & & & '®

CHAPTER I,

CHAPTER 11,

CHAPTER III.

INTRODUCTIONG 5 5 @ & & »

Background. D T S T

Requirements of a Supervisory

ManiptlatoT'y o & » »
Similar Works & 4 & o & ®

Discussion of the Problem

Controlled

L] . L] .

Preview of the System Proposed in This

TheSiS * 8 & * ° 8

Preview of the Remainder of This

BASIS FOR THIS SYSTEM , .

Characteristics of an AND

The TASK TREE , o o » o &

SHORTEST PATH ALGORITHMS,

Flooding Algorithm, , , ,
A= Algorithm. s s 8 e 8

Two Stack Diamond ., . . .

TREE «

22

23
25

27
37

39
39

50

54
55
81

83

CHAPTER 1V,

CHAPTER V,

CHAPTER VI,

CHAPTER VII,

CHAPTER VIII.

IMPLEMENTATION OF ALGORITHMS FOR THE

PURPOSES OF THIS WORK , « &« & s & @ »
Restrictions on the Examples and Demon-

strations and Definitions
Some Basic Manipulation Situations , . . .
Generation of a State Space for an

Object of Any Shape . « ¢ « ¢« o « . o
Moving an Object from its Initial Position

to a. Findl POoSition ., o« v o « « & s =
Discovering Which Objects are in the Way .,
Finding the Order in Which to Move

Several Objects to Final Positions, .,

CAPABILITY OF THIS SYSTEM TO
FIND SOLUTIONS« « o & o o o o o s o &
Tasks for Which This System is Not
Assured of Finding Solutions.
Tasks for Which This System Will Find

Solutions L] . . . L] L] L] L] . L] L] L] L L]
SELF-DIAGNOSIS OF FAILURE., o ¢« & o« s o o o
ECONOMIC ADVANTAGES OF THE SYSTEM.

EXAMPLES OF TASKS SOLVED BY THE

DEMONSTRATION SYSTEM « o o o o o o o o o o

87

87

25

101

107

113

113

117

117

123

129

132

137

CHAPTER IX.

CHAPTER X,

APPENDICES

REFERENCES

BIOGRAPHY

Two Examples Presented in Detail ., , , .

Four Examples Briefly Presented,

SPECIFIC PROBLEMS FOR FUTURE WORK, ., . .

What ds a2 "Handle"?, . .

Variable Quantization of

a Space

Not Enough Out of the Way Places

Pushing or Carrying More

One Object . , . .
Finding Connected Out of
Use of an N Level Method

Problem Solutions,

CONCLUSIONS., . . + .+ .« &

L L] L] . Ll - . L] . L L] L]

Than
the Way

to Find

Places,

.138

L2

2T
177
182

.184

<187

.190

«193

n225

.228

Chapter I Introduction

Background

Manipulators allow man to extend the range of the
environment he can affect into those that are very distant
or very dangerous, without the hardship or hazard that would
be attendant i1f he were physically present.

The first remote manipulators (master-slave manipu-
lators) were built after World War II at Argonne National
Laboratory when ways were needed to conduct experiments with
radioactive materials,g* These manipulators did not increase
man's strength or precision, but skilled operators could per-
form delicate and complex tasks with them, These early
manipulators had mechanical linkages with steel tapes and
pulleys; the recent manipulators have been built using servo
motors and electrical linkages.,

There has been much improvement in these manipulator
systems, now called Teleoperator Systems, since the first
ones were built, They have become quite intricate, and pro-
posals have been made for systems that include stereo T,V,
(for eyes) and full duplication of the operator's arm

14

motions, '

Proposals for their use have extended from

* Superscripts indicate references

9
radioactive materials experiments, to use in outer space,
to aids for the physically handicapped,

These systems have several drawbacks when their use
is extended to fields for which they were not specifically
designed, For example, they only duplicate an operator’'s
motions, For repetitive tasks this constraint may limit
their usefulness,

As another example, consider the slave hand being a
long distance from the master controller, In this situation
there is a pure transmission delay of the electrical signal,
For example, if the master end is on Earth, and the slave is
on the moon, any motion of the master end will require nearly
three seconds to be confirmed because of the distance the
signals must travel, If systems are to cope with emergencies
that require action in less than round trip signal time, they
must have some method to handle emergencies locally,

Ferrell/ has shown that manipulation tasks executed by
a man using a master-slave manipulator with no force feed-
back can be completed in the presence of a pure time delay,
and that the time to complete the task is linearly propor-
tional to the delay. A manipulation task can be accomplished
in a reasonable length of time with a five or ten second time

delay (Ferrell used delays of this order), but attempting any

10

but the simplest tasks with a five minute delay would require
very long completion times. Delays of five minutes or more
are typical for communications with the near planets,

To overcome the difficulty of operating under condi-
tions of long delay times, manipulators which have intelli-

7
58 Johnsen,13 and

gence have been proposed by Sheridan,2
others, The machine proposed by Sheridan would be operated
in a supervisory manner; the operator would give it instruc-
tions and would periodically check on its progress,

Several researchers have worked on systems that are
supervisory controlled, McCandlish16 found, in the case of
his experiment, that his subjects performed worse on a given
simple task when using a supervisory controlled system than
when they were in continuous control of the task. In later
interviews the subjects disclosed that they had fairly well
memorized the entire task, and could perform it reasonably
well in an open-loop mode., Their impressions were that they
worked much harder on the task when continuously controlling
it; they "relaxed" and made unnecessary errors when operating
in supervisory mode. Also, they were curious enough about
the system's performance when operating in supervisory mode
to increase the value of their task penalty function by re-

questing extra feedback to verify the system's performance,

11

2 has also investigated the use of supervisory

Barber
controlled manipulation systems. He devised a compiler sys-
tem to enable an operator to symbolically input commands to
a computer controlled manipulator, An example of a command
is "Move left 200 units or until touch [something]." The
system also has the facility to receive several commands as
a set, accept a set name, and execute the entire set, Barber
gives as an example a command set that would cause the manipu-
lator to search a plane area (using its touch sensors), and
if it finds a block, to move it to a specified position in
the plane,

Unfortunately, Barber reported that he had many diffi-
culties with the hardware in his system, which prevented him
from doing any more than testing the basic aspects of his
system, Also, it was found that to have a flexible and
easily utilized software system, the computer program would
have to have major changes made in it, Barber did outline
the improvements that were needed, but they were never imple-
mented and no extensive experiments were performed with
the equipment,

Barber's ideal system overcomes most of the problems
of manipulation with long time delays, The operator can

specify the manipulator motions before their use, and, with

12

artful use of the conditional statements, avoid or prepare
for emergencies or slight errors in the on-site manipulator's
performance,

But Barber's system does have one drawback, The
operator must explicitly, and in detail, specify all actions
the manipulator is to make, It is true he must do this only
once, but specifying all the motions and conditional actions
of even a relatively simple task can be a laborious under-
taking, It would be better for the operator to specify what
he wanted done rather than how to do it,

Whitney31 developed a supervisory controlled system
for manipulation that allows the operator to specify only
what is to be done; the computer, using optimal control tech-
niques, figures out how to perform the task.

Whitney's approach is to define a set of atomic
manipulator primitives: for example, move left one unit,
move up one unit, open, grasp, etc,; and to digitize the
physical space in which the task is to be performed. The
digitized model of the space (that includes the objects)
and the manipulator primitives are combined to form a

state space that describes the task,

The state of a physical space is determined by the

location, temperature, or other variables of interest that

13

describe the space or the objects within it. A specific
state, then, corresponds to a particular condition of the
physical space.

The term state space is used in the same sense as in

control theory.30 Specifically, a state space is a space in

which there is one dimension for each degree of freedom
(that is, for each variable of interest), of the physical
space, In manipulation tasks, typical degrees of freedom
are the variables which describe the manipulator jaw coordi-
nates and the coordinates of the object or objects to be
moved, In a state space, each variable is allowed to assume
values over the range of interest, The volume of the state
space is the product of the range of the allowed values of
all variables, For example, if in a digitized space, the
variables of interest are A, B, C, ... , Q; and A is allowed
to assume "a'" discrete values, B is allowed to assume '"b"
values, etc,, then there will be asb.c. ,,, *q points in
the state space,

The goal of a manipulation task is defined as a
desired state of the task space. The solution of a manipu-
lation task is a path through the state space from the cur-

rent state to the desired state,

14

State spaces are designed so that the difference between
neighboring states is a single, simple feature. Neighboring
states of a state space describing a manipulation task differ
by a feature alterable by a single atomic manipulator primi-
tive; one can move from state to state and alter the environ-
ment by the application of a string of manipulator primi-
tives., Hence, a path from a current state to a goal state
is an ordered set of manipulator primitives which, when
executed in the physical space, will accomplish the desired
task, Whitney's method reduces the entire problem of find-
ing solutions to manipulation tasks to generating a state
space and finding a path through the state space,

As an aid in understanding the concepts presented
above, consider the following example, summarized from

51 Figure 1 shows a one dimensional line with a

Whitney.
set of manipulator jaws and a block., The jaws can move
along the line and open and close, If it is assumed that

the object will not be moved, the state vector necessary

to describe changes in the space is

where Xj=X coordinate of jaws =1, ..., 5

0 if the jaws are open
and H=

l if the jaws are closed.

15

X 2
Fhysical space from whltney31 d-[bﬂ = gstate vector
Oéjed‘ J‘d ws
R &
1 1 L L_l_l M o
1 T 1 T 1 i X
Figure 1
H
2 2
b & 2 + +
closed
b 4 1y i 1,
O o 4
open 5 - 3 3 3
} } } 4 } =X§
2 2 Fo 4 5

State sp%?e and allowable transition of Figure 1, from
Whitney.

Nodees represent states, edges represent possible
transitions.

Numbers along edges represent cost of transition.,
Arrows show path from S= [{}to [%]

Figure 2

16

The relevant atomic commands for this task are open
jaws, close jaws, move jaws one unit right, and move jaws
one unit left, The state space for figure 1, with allowable
transitions, is shown in figure 2, The possible states are
indicated by the nodes (points). The edges (lines) connect-
ing the nodes indicate the possible transitions from state
to state., The jaws cannot move while closed from Xj=1 or
Xj=3 to Xj=2 because they will collide with the object., The
numbers along the transition lines represent the cost of
making the transition. The charge is one unit for opening
or closing the jaws, two units for moving with the jaws
closed, and three units for moving with the jaws open.

Now let us investigate solving a simple task, moving
the jaws from their present position, state Ej , to X=1,
closed, or to state [i} . The shortest path algorithm finds

the path to the goal as the sequence of states (in the form

5] 4] 3 3
230 Yl @0 82= Il & Sg u g u '

l"z— -l'-\ 1
-0 » Sﬁ= 0 » al'ld S'?= [l} 2

Translating, the jaws are moved from X=5 to X=3 closed,

opened at X=3, moved to X=1 open, and then closed, which

17

solves the given task., The arrows on the transition lines in
figure 2 show the path in the state space,
To plan tasks which move the block, the state vector

must be extended to include the block's X coordinate,

j xj and H as before

o Xo=X coordinate of object = 1,...,5

and the open and close motions of the jaws at X=2 must be
interpreted as release and grasp, respectively, By extend-
ing the state space to three dimensions, any task to move
the object can be solved using the principles we have
discussed, The complete task is thoroughly examined by
Whitney.

To summarize, Whitney showed that the solution of a
manipulation task can be found as a path through a state
space. This path describes a string of manipulator primi-
tives which, when executed in sequence, results in accomplish-
ing the requested task.

As a demonstration of his theory, Whitney implemented
a version of the state space system on a PDP-8 computer5

that controlled a three degree of freedom manipulator

(X,Y, open-close jaws), The manipulator system moved one

18

unit square blocks in response to task requests input from
a teletype.

The state space method provides a solution technique
for manipulation problems. But it has a realistic limit on
the complexity of tasks it can solve, Because the state
space description must be contained in a computer or some
storage medium accessible by a computer, the size (number
of nodes) of the state space is limited, From experience,
this 1limit on task complexity has been set so that the state
space describes moving one object,

In an attempt to overcome this limitation, Whitney
proposed a method that could find the solution to a task
that required moving two or more objects, The operator speci-
fies all the relevant sub-tasks (sub-task means a task in
which one object will be moved) of which he expects one per-
mutation to be optimum, and the system forms an OR TREE of all
possible permutations, It evaluates all these combinations
to find the cheapest chain of sub-tasks that accomplishes
the task., The system finds the cost and solution of each sub-
task using the the state space method.

One disadvantage of this method is that the operator
must specify all sub-tasks the system is to consider., In

many cases, this includes sub-tasks in which the operator

19

has no interest, except that they must be solved before
the complete task is solved, In these cases, the operator
is helping the system find the solution by specifying, in part,
how the task is to be solved.

As an example, consider the task shown in figure 3,
The operator is interested in moving A to X. But, in addi-
tion, he must specify that B should be moved, and where it is
to be moved to, in this case, the area L, Let us say the
area L contains three distinct positions, Ll' L,, and Ly
The OR TREE which the system computes is shown in figure 4,
The costs are all different as the jaws move B to different
places, then return to move A, The system has to compute
seven paths, and remember and compare their costs, Of
course, a 7-dimensional state space could solve it auto-
matically, without the operator giving any hints at all,
but seven dimensions are out of proportion for such a
simple problem.

In summary, the OR TREE of concatenated paths is
one system to move several objects to several places, but
it has the disadvantages of

1) in some cases the operator must specify, in part,

how the task is to be solved by specifying all

the sub-tasks that need to be solved for the

20

S
N
bl
\ object 7o J9%s
Q be moved
o A
g -]
5
.
ONEEN

)

Bz iturn Yo)

move. A to

Semi-infinite Area +o move B o

wa //s

Tasks:s move A to X

Operator must tell the system to move B, and give
the system an area where it can be moved,

Hatched objects are immovable,

Figure 3

21

OR TREE to solve task shown in figure 3,

Total cost = co

Af X o Total cost = Cq+Cp

—

A £ X —e Total cost = C3+Cl+

44X -+ Total cost = CS+C6

C's are costs

Figure 4

22

system to find the solution to the requested
task, and
2) the system must compute a large number of paths,
This proposed OR TREE system of Whitney's will be discussed

further in Chapter VII.

The Requirements of a Supervisory Controlled Manipulator

For a supervisory controlled manipulator to solve
manipulation tasks, there is a minimal amount of information
it must be given about the task, and there are certain
abilities the system must possess, These are summarized below,

Input:

1) It must be given a description of the present
task site so that it can make an
internal model,

2) It must be given a description of the
state of the task site as the operator
would like it to be.

System:

1) It must have the means to change the
state of the task site,
2) It must know how it can change the

state of the task site.

23

3) It must have a method of planning
changes which result in the solution

of the requested task,

The goal of researchers in this area is to improve the
system's abilities so that more complex tasks can be solved
while the input is kept at the minimum, One measure of a
supervisory controlled manipulator system, then, is the
complexity of the task it can solve when given the minimal

input described above,

Similar Work

Several other researchers have investigated problems
of building supervisory controlled manipulators, Two notable
examples are mentioned below,

The SRI Robot projethl has, as one component, rou-
tines which plan and direct the robot to move objects around
a room, The operator communicates with a question-answering

3.10 He phrases his requests in terms of conjec-

system, QA
tures which QA3 proves logically, using a predicate calculus
technique called "resolution," For example, if the operator

wants to move object X to position P, he conjectures (in logi-

cal terms) that a situation exists in which X is at P, QA3

24

then proves that this situation can exist, if the robot
pushes X to P, The system traces through the proof to find
which objects are to be moved (X in this case) and where they
are to be moved to (P). The system then calls the path
planning routine, plans the path, and executes it., The path
planning routine utilizes the shortest path algorithm by
Hart et al.11

Hewitt's PLANNERLZ is a programming language which is
oriented toward accomplishment of tasks or goals which may be
broken down into sub-tasks or sub-goals. The data, or
theorems, needed to accomplish a desired result need not be
referenced explicitly but rather by requesting, in essence,
"the datum or procedure which accomplishes the desired re-
sult," This is like having the ability to say "Call a sub-
routine which will achieve the desired result." For example,
if a theorem, T, is to be proved, PLANNER is asked to evaluate
"GOAL T." PLANNER also has a back-up feature which allows it,
in the case of failure, to return to the last place where a
decision was made, make another decision at that point and con-
tinue searching. This feature allows PLANNER to explore a
sub-goal tree; other recursive evaluators, like LISP, have no
convenient way to do this,

For PLANNER to plan paths for moving objects, the

operator asks PLANNER to prove that an object, X, could

25

be in a position, P, If its data base includes the appro-
priate axioms, PLANNER, after exploring the necessary sub-
goal trees, would find that object X could be in position P
if it were moved there, Note that although PLANNER seems to
work like QA3, the methods used by the two systems are very
different,

As manipulation tasks can be posed in logical terms,
any logical problem-solving machine can be used to find solu-
tions., Notable examples in addition to the two previously

19

mentioned include the General Problem Solver and the

Logic Theory Machine.1b

Discussion 2£ the Problem

Manipulation tasks generally are not difficult for
people to solve. But there are instances where people
cannot, or do not desire to, solve them, In these cases,
people rely on mechanical servants. A mechanical servant
that (potentially) can perform general manipulation tasks
is commonly called a robot; in this work it is called a
supervisory controlled manipulator,

The design of a supervisory controlled manipulator
poses many difficult problems. Three general problem areas

that seem to be most important are:

26

1) Design of the hardware (includes computers,
vehicles, hands, and arms),

2) Design of a system (computer program) which can
understand a task request made in the opera-
tor's natural language.

3) Design of a system (computer program) which can

figure out how to accomplish the task request,

This thesis concentrates on the third aspect of
the problem, Our goal is to design a planning procedure,
which, when provided only with a description of the task
site and a task request that 1s strictly limited to what
the operator wants done, will have the ability to find
good solutions to complex manipulation tasks, (Complex
manipulation tasks are defined as manipulation tasks in
which two or more objects are to be moved,)

At this point some general comments are in order,
First, for the present time we will restrict our attention
to manipulation tasks in which we are concerned only with
the static arrangement of objects., An object being moved
by the jaws will have a velocity, but we are interested only
in the fact that the object and the jaws occupy a succession

of specific states as they are moving.

27

Second, we are interested in finding good, not
necessarily optimal, solutions. Optimal techniques are
used, and path segments will be optimal in terms of an
a priori cost function, although the gverall solution will
not be, The objective is to find a string of manipulator
primitives which, when executed in order, give a solution
to the requested task without much wasted motion,

Third, the reader should realize that there will
be limits on the capability of the system proposed in this
thesis, The goal is to increase the degree of complexity
of the manipulation tasks that can be performed when given
the minimal input. There will be a discussion of the

limits of this system in Chapter V.

Preview of the System Proposed in This Thesis

The discussions and descriptions in this thesis are
to be at three levels:

1) general task or activity planning,

2) manipulation task planning, and

3) examples used for illustrations.
A characteristic or ability described at one level can be

assumed at any lower, more job specific level. But any

28

restrictions on low level abilities must not be assumed
to be valid at a higher level,

At the general level, there will be a discussion of
the characteristics and uses of AND TREES. AND TREES serve
the same function as PERT charts; and they can be used inter-
changeably, but they are not the same., A PERT chart orders
the sub-activities of an activity so that one can accomplish
it by executing all the sub-activities on the PERT chart in
the indicated order. A plan made in PERT chart form can be
put on an AND TREE by replacing the duplicate edges of the
PERT chart with duplicate nodes on the AND TREE, Like a PERT
chart, all tasks on an AND TREE must be executed, The order
of execution is from bottom to top. The following example
will illustrate the above ideas.

Suppose we plan getting ready to go to work, The
first step is to get out of bed, then dress, eat breakfast,
and finally leave. Getting out of bed must precede the
other events, and leaving home must follow all other events.
Getting dressed and eating breakfast can be done in any order.
A PERT chart diagramming these activities is shown in
figure 5. The same plan on an AND TREE is shown in figure 6,
The duplicate edges of the PERT chart are replaced by dupli-

cate nodes on the AND TREE,

29

PERT chart plan for getting ready to go to work.

Leave home

sat breakfast Get dressed

Gaet out of bed

All tasks must be executed in the order indicated by
the arrows,

Figure 5

AND TREE plan for getting ready to go to work,

Leave honme

Zat breakfast Get dressed

Get out of bed Get out of bed

All tasks must be executed from bottom to top.

Figure 6

30

If we go one step further and adopt a direction of
execution convention (the direction is arbitrary, but once
it is chosen, it must be adhered to), we can reduce the nodes
on the AND TREE. Figure 7 shows the AND TKEE of figure o,
after adopting a right to left execution convention, and
deleting duplicate tasks,

AND TREES are used because they are easier to imple-
ment on a computer, as each node has one, and only one, prede-
cessor node on the tree, As they are equivalent data struc-
tures, the advantages are available without penalties.

To find the solutions to complex manipulation tasks,
Whitney's state space technique will be used to solve the
simple manipulation tasks (move one object), and the
AND TREE will be used as a data structure to order the
simple tasks, The result of the calculations is a string
of manipulation primitives which, when executed in order,
will move objects to the requested final positions,

A simplified block diagram of the system is shown
in figure 8, The input consists of the objects' shapes,
initial positions, and specified final positions, In the
system implementation, these inputs are given by teletype,
but are essentially descriptions of snap shots of the

desired configuration. (See the pictures in Chapter VIII,)

31

Leave home

Eat breakfast Get dressed

Get out of bed

AND TREE plan for getting ready to go to work
after adopting a left to right execution convention
and deleting the duplicate tasks.

Figure 7

32

Simplified Block Diagram of the System

I Uff: er L eve / I

Lower Leve/

I - —_—— - —— —— - —_—— I

Input: objects' shapes, initial positions, and
specified final positions

OQutput: path for Jjaws and objects
Upper level of system: AND TREE to order sub-tasks

Lower level of system: a state space method to find
solutions to sub-tasks

Figure 8

28

Note that only one object must have a specified final posi-
tion for a task to be defined; that is, not all objects on the
initial position list must be on the final position list, For
these other objects the system assumes the operator does not
care where they are at the end of the task, It tends to
leave these objects scattered around the space, Note the
position of objects B, F, and D in the last picture of
task 1 in the examples section, frame 211,

The lower level of the system is an implementation
of a shortest path algorithm that is designed to plan a
path for moving one object, It is, in essence, Whitney's
state space method, but the algorithms are implemented
differently to handle random shaped objects. Chapter IV
discusses the implementation of the shortest path algorithm,

The main part of the upper level of the system is an
AND TREE which determines the order for moving objects to
their final positions, The upper level also generates and
orders the sub-tasks which specify moving objects out of
the way of the proposed path of others,

The output of the system is a path for the jaws and
objects which shows the step by step changes in positions,
After the last step of the path has been completed, the task

as defined by the operator is completed.

34

Briefly, the system works as follows. The system
sets up a model of the physical space where the task is to
be executed, and the operator gives it a description of the
task space as he would like it when the task is completed.
The system uses this information to generate an order to
move objects to their specified Final Positions., This order
is represented by a stack of sub-tasks (each of which re-
quests moving one object) on the AND TREE. The upper level
system gives the lower level system the name of an object to
be moved, and a position to which it is to be moved., The
lower level system attempts to compute a path for the object
and returns to the upper level system a value corresponding to:

1) A path is found and the object can be moved,

2) A path is found but other objects are in the

path and must be moved out of the way before
this object can be moved,

3) No path is found to move this object,

If the value corresponding to 1 is returned, the object in
the system's internal task model is moved, If the value cor-
responding to 2 is returned, sub-tasks are generated to move
the objects in the planned path out of the way. These sub-
tasks are put on the AND TREE to be executed prior to the

sub-task whose execution was just attempted, If the value

35
corresponding to 3 is returned, the shortest path algorithm
failed to find a path (for example, the task is impossible
because of an immovable wall), and the system terminates
execution of this entire task,

When values corresponding to either 1 or 2 are re-
turned, the upper level system gives the lower level sys-
tem another sub-task to execute. This sequence continues
until the system finds a solution to the complete task as
defined by the operator, or until it discovers, using its
internal model of the task, that task is impossible,

As an example, consider the following task, Figure 9-a
shows the objects' Initial Positions and figure 9-b shows
their Final Positions., The small square with the crooked
line ("W") through it is the manipulator jaws, They are the
prime movers; they move the objects in the space by grasping
or pushing them,

The system decides that the order in which the
objects are to be moved to their final positions is A, then B,
and then C, (There are only two other orders that are possibple:
B, A, and C; or B, C, and A,) The system's solution is as
follows: the upper level system asks the lower level system
to find a path to move A to its final position, The system

then discovers that B is in the way. (A is not moved,) The

36
Sample Task Specification

——7-;);7‘/'6.'/ pOJ.I%l;:ns

=,
kot
s /c’ﬁOE'CCiS) ée moved
NIRIE
s Wz;:n:'faa/a*orj‘qws
AR

Flgure G=-=a

/C;/;)a/ ’/Do ST roms

Figure 9=b

37

system tries to move B out of the way and discovers C is

in the way., The system then finds a path in which the jaws
push C out of B's and A's way, then finds the next segment of
the path which moves B out of A's way. At this point B and C
are out of the way, and the objects may be moved to their
final positions, The system continues and finds the path

for the jaws to move A to 1its final position, then B to its
final position, and finally C to its final position, The last
segment of the path directs the jaws to move to their

final position, (For further examples, the reader is

referred to Chapter VIII.)

Preview of the Remainder gf This Thesis

The next chapter contains an explanation of an
AND TREE, what some of its properties are, and how it can
be used to order the sub-activities of a general activity,
Chapters III and IV contain comments about the lower level
system, the shortest path algorithm, and the particular
implementations used for this work, Also included in
Chapter IV are descriptions of the restrictions on the demon-
stration system and outlines of some basic manipulation situa-
tions, Chapter V describes some of the situations in which

the system will fail to find solutions, explains why it fails,

38

and suggests remedies to overcome the failures, It also
includes explanations of how the system finds solutions
(if solutions exist!) of explicitly defined task types,
Chapter VI describes the ability of the presently imple-
mented system to diagnose failures, It also gives a brief
outline of those diagnostic aids which could be added,
Chapter VII contains a comparison of the advantages
of using three proposed systems:
1) A full optimization solution of the entire problen,
Z2) The OR TREE method proposed by Whitney,
3) The system described in this thesis.
The final chapters contain examples of tasks this system
has solved, followed by suggestions of specific problems
that need future work and the conclusions, Appendix C
describes the input/output formats required by the progran,
and Appendix D contains a high level flow chart of the

demonstration system,

33

Chapter II Basis for This System

The basis of this thesis is to use an AND TREE on
which are arranged several simple manipulation tasks to rep-
resent a complex manipulation task, The solutions to the
simple tasks can be found using a state space system like

31 and the characteristics of the AND TREE will

Whitney's,
assure that the order in which the simple tasks are executed
will be an order which will give a solution to the complex
task.

In this chapter the characteristics of an AND TKEE, in-
cluding the characteristics of the tasks that can be analyzed

by an AND TREE system, will be investigated and an outline of how

the AND TREE can solve complex manipulation tasks will be given,

Characteristics of an AND TREE

An AND TREE is composed of nodes and edges. For our
purposes, the nodes represent sub-tasks, and the edges con-
nect the sub-tasks. Figure llis a drawing of an AND TREE,
The AND TREE looks like the familiar OR TREE, or decision
tree, but it differs in that

1) all branches must be executed, and

2) execution begins at the bottom of the branches

and proceeds toward the top of the tree,

40

Because there is a direction of execution of the nodes on
the tree, the AND TREE can order the execution of a set of
sub-tasks,

To aid in the following discussion, the terms

predecessor node, successor node, and brother node will be

defined, A predecessor node is closer to the top of the

tree and on the same branch as a given node, In figure 11,
nodes 8 and 4 (the upper node 4) are both predecessors of node
10, A successor node is closer to the bottom of the tree

and on the same branch as a given node, In figure 11, node

11 is the successor of nodes 8 and 4 (the upper node 4),
Brother nodes have the same immediate predecessor. In figure
11, nodes 7, 8, and 9 are brothers, but nodes 6 and 7 are

not brothers,

The AND TREE is a useful way of specifying in varying
amounts of detail, any activity which can be divided into
sub-activities, The TREE provides a structure which can
specify hierarchical relationships., It also can keep lists
of sub-activities that have no hierarchical relationship,

And it can be used in situations where the hierarchical rela-

tionships between some sub-activities are important and other

41

sub-activities have no important hierarchical relationship
to one another, To illustrate, consider the AND TREE shown
in figure 11 (disregard the lower sub-tasks 2 and 4), Sub-
tasks 10, 11, 12, and 13 can be executed in any order, but
all of them must be executed prior to sub-task 8,

The familiar data structure that does the same
job as the AND TREE is the PERT chart, The PERT chart is
a graph, but not a tree as it generally contains too many
edges., A graph which contains n nodes is defined to be a
tree if the graph is connected and if there are n-1 edges.,
A tree must contain at least two nodes, There has been much
written about PERT charts, both theory and use. See, for
example, Archibaldl and Shaffer et al,?®

The AND TREE is a special case of a graph, There are
several books on graphs which have some sections devoted to
the characteristics of trees. The interested reader is re-
ferred to Berge,> Ore,22 or the NASA Technical Report 32-1413%
which is a detailed review of the literature available
on graphs,

The OR TREE can also specify the order in which sub-
tasks are to be executed, But, because only one branch of an
OR TREE 1is executed, all sub-tasks must be on all branches.

The OR TREE with all possible permutations of n sub-tasks

h2

n*(n!)
of a complex task has n! branches and n nodes,

T b1
i=1

An AND TREE, on the other hand, need have only n nodes

n+2

and fewer branches,

To be analyzed by the system, a complex task must be
made up of specific sub-tasks; that is, the sub-tasks must
request an action be performed on or with a specific object,
or at a specific location., An example of a specific task is
'""Move object A to position X," An example of a non-specific
task is '"Move an object," If this requirement is not met,
the system cannot detect loops in the task structure (loop
detection will be discussed later in this chapter).

A second requirement a complex task must meet is
that the system must be able to figure out how to perform
the sub-tasks of the complex task, or that the system be
pre-programmed to perform the sub-tasks. Also, the system
could break the sub-tasks up into sub-sub-tasks, etc, But
at some point the system must know, or be able to figure out,
how to perform the sub-tasks.

The ability to analyze sub-tasks must include the
ability to determine if another sub-task should be per-
formed prior to the sub-task whose execution is being con-

templated, The system must have this ability if it is to

b3

figure out that the order implied by the direction of
execution of brother tasks on the AND TREE is not the one
that will achieve the requested complex task, 7To use this
information the system must be able to add sub-tasks to
the AND TREE.

A third requirement of complex tasks is that the

sub-tasks, when executed one at a time in some order,

will give a solution to the complex task, This require-
ment eliminates those complex tasks whose solution re-
quires that two or more sub-tasks be executed at the

same time, An example of such a task is one that requires
assembling a spring loaded mechanism, One typically has
to compress the spring, put a plate in place, and insert
and start two or three bolts. The spring must be held in
place while the last two sub-tasks are executed; two sub-
tasks must be executed simultaneously.

A general AND TREE system would work in the following
way, All sub-tasks that are explicitly requested are put on
an AND TREE., Then the system either breaks the tasks into
sub-tasks or figures out how to perform them, Generally,
the system will discover that one or more other sub-tasks

must be performed before the requested task can be performed.

Lh

The system then puts these other sub-tasks on the AND TREE,
prior to the task whose execution was planned,

The system continues, trying to execute the sub-
tasks at the bottom of the AND TREE. When a sub-task can be
executed (without requiring the execution of any other sub-
task) that branch of the tree is terminated, The above
sequence is continued until all branches are terminated,
This will be demonstrated in an example to follow,

Besides the branch termination where the task can
be performed, there are two other possibilities for termi-
nation, The first is a case in which a task is impossible
to perform, In the case in which the impossible task is
explicitly requested by the operator, the system will in-
form the operator that the task is impossible, Figure 10
is an example of an impossible two dimensional task, In the
case where the impossible task is generated by the system, the
system will try to find other tasks that can be performed
which, when executed, allow the task requested by the opera-
tor to be performed,

The other possibility for termination of an AND TREE
branch occurs when the system detects a task loop., The

AND TREE gives one the opportunity to discover, quite easily,

Task:s move A to X

/ / / / immovable object
///_
Gl ®

An impossible two dimensional task

Figure 10

46

if an activity is its own predecessor, In the case where
an activity is its own predecessor, either immediately or
several predecessor nodes up the tree, there is said to be
a loop in the activity structure (that is, on the TREE),
Figure 11 shows an AND TREE with two loops. The ability to
detect loops easily is valuable as the number of sub-
activities in a complex activity may be very large.

The concept of how a task loop is generated and de-
tected is illustrated in the following example.
The system is requested to perform

task #0 (it does not matter what

#0

task #0 is), Task #0 is put on

the first level of the AND TREE.
In planning to execute this task, the system finds that the

best thing to do is to first per-

form task #1, Task #1 is then put #0

on the AND TREE prior to task #0,

The system now plans to perform # 7

task #1, It finds that the cheap-

est way to execute this task 1s to first perform task #0, The

system then puts task #0 on the i
AND TREE prior to task #1. There

#7
now has developed a task loop, as
a task is its own predecessor. il

An AND TREE

TOP
- |
b 4 2 3 4 [— — —
/oop(/, l
\
[s] 2] Te] [7] T3] [e

10 14 12

All branches must be executed

Loops are shown involving tasks 2 and 4

Figure 11

48

To stop the system from forming the same task loop
again, a special note is added to the task (on the TASK
TREE) that comes just before the second instance of the
task which constituted the loop (the note is added to
task #1 in this case). This note says that when the environ-
ment is in the present configuration (which must be remem-
bered), it costs an infinite amount to perform task #0
when planning to perform task #1, If there is no alterna-
tive to a loop, the system will respond that the task re-
quested 1is impossible (costs an infinite amount to perform),

As an example of how the system detects loops when
performing an actual task, consider the task depicted in
figure 12, As shown, the requested task is impossible, The
system decides this in the following manner,

First the system plans to move A to X, It finds
that first, B must be moved, (How the system finds this will
be discussed in Chapter IV.,) So it plans to move B to an
Out of the Way Place. In making this plan, the system finds
that A must first be moved, The system now discovers that
this AND TREE has a loop by finding that the task just
added is its own predecessor. (Move A - Move B - Move A).
The system then makes a note that when the environment is

in its present configuration A should be considered a fixed

49

Impossible two dimensional task demonstrating
a task loop

Tasks move A to X

V\/1

N

B

NN

77

/

Figure 12

50

object when planning to move B, When the system plans to move
B out of the way the next time, it finds that the sub-task

is impossible, and hence, that moving A is impossible,

The TASK TREE

For the purposes of this thesis, the AND TREE will
be referred to as the TASK TREE. An example of a TASK TREE
is shown in figure 14, To show its usefulness, let us con-
sider the following example, Suppose we have the situation
shown in figure 13, The lettered objects are movable blocks.
The task assigned is to move block A to position X, This is
a two dimensional problem, and objects can be moved only one
at a time.

The solution 1s to move objects B and C out of the way,
and then move A to X. The system discovers that B and C must
be moved out of the way, generates the sub-tasks to request
this, and puts the sub-tasks on the TASK TREE prior to the
sub-task to move A to X. The complete TASK TREE for the task
request is shown in figure 14,

If there were other objects encumbering the motion
of B and C, then requests to move them to Out of the Way
Places would be shown on the TASK TREE prior to the requests

to move B and C (just as the requests to move B and C are

51

Task: move A to X

A

@ A

Figure 13

TASK TREE for task shown in figure 13

Move object A to position

™

Move B out of the way Move C out of the way

The system generates the sub-tasks to move B and C

Figure 14
[ASK TREZ and Interpretive List are the same as
TA3K TREE in figure 14
Interpretive List
w1
Task #1 move A to X
/// \\\ lask #2 move B out of
the wa
#2 #3 4
Task #3 move C out of
the way

Figure 15=a Fizure 15-b

prior to the request to move A),

For ease of operation in the proposed system, the
tasks are given number codes--task #1, task #2, etc, These
numbers are put on the TASK TREE, and an interpretive
list is made telling which task corresponds to which number,
This 1list can be referenced from either a task number or a
task name, The TASK TREE shown in figure 15-a with the
interpretive list of figure 15-b is the equivalent of the
TASK TREE of figure 14,

The part of the TASK TREE system that detects failures
can be fairly simple, Manipulation tasks (in which we are
interested) are requested by specifying a goal state which
differs from a given initial state, To determine if it has
failed to solve the requested manipulation task, the TASK
TREE system only has to compare the final state of its in-
ternal model to the requested goal state,

A TASK TREE is a workable way of making plans for
complex tasks that consist of many sub-tasks, It can store
(in an orderly manner that allows computer processing) the
important aspect of the task that we need for making plans
for performing large, complex tasks--which tasks must be

performed before other tasks, A TASK TREE can maintain cost

53

information about all tasks so one can know not only the
order to perform tasks, but also how much they will cost,

The TASK TREE system must be able to request solu-
tions to simple tasks from a lower level system it super-
vises, by giving the lower level system the information it
needs to find the solutions to the simple tasks., This
higher level system does not know anything about the nature
of the tasks it is processing; it is concerned only with
abstractions., It only knows about the TREE, the names,
as it were, for the simple tasks on the TREE, and whether
the lower level system finds solutions for the simple tasks.

The TASK TREE structure allows a computer to deter-
mine if there are any logical task loops in the tree, This
ability to detect loops gives the user confidence that the
system will not perform a large number of tasks before an
operator discovers it is in a loop.

Also, the TASK TREE structure allows for dynamic grow-
ing and shrinking, It is not limited to any particular number

or type of tasks, "Given a larger computer... ."

54

Chapter III Shortest Path Algorithms

This chapter is an explanation of the shortest
path algorithms used in the demonstration system, The
reader who is not interested in the detailed workings of
these algorithms may go to the next chapter with no loss
of continuity,

Before beginning the explanations of the algorithms,
some terms which will aid in the discussions need to be de-
fined, The algorithms will usually begin from one point,

the start. In a state space, the starting point 1is the

state (point) that represents the current configuration of

the physical space, Likewise, the finish is the point to which
the algorithms will find a path., In a state space, the £i£-
ishing point 1is the goal state (point) that represents the de-
sired configuration of the physical space.

To expand a point in the state space is to investi-
gate the total cost to get from the start to each of this
point's neighbors with the path including this point as the
immediately preceding point, That is, the last two sections
of the flow chart, figure 10, are the "expansion of a point,"
(Note that it is not possible to get from each point in the

state space to all other points in one step. In a two dimen-

sional space with a rectangular grid of points in one step

55

it would be possible to get from one point only to its four
nearest neighbors (no diagonal transition is allowed), This
implementation of the algorithms considers only the possibility
of transitions from a point to its nearest neighbors, however,
the descriptions of the algorithms' properties will be general
so that the reader can apply these algorithms to cases in which
transitions are possible to other than the nearest neighbors,)
The front is the set of points to which the algorithm has

found at least one path, but has not yet decided that it has
found the cheapest path, That is, the points on the front

are neighbors of points that have been expanded, but they

(the points on the front) have not yet been '"closed," To

close a point is to set a flag that indicates that the cheap-
est path to this point has been found, and there is no use

trying to find others., The cost of a point is defined as the

cost to get from the start to the point., Similarly, the cost
of the front 1s the cost to get from the start to the lowest

cost point on the front,

Flooding Algorithm

The basic flow chart for the flooding algorithm is
shown in figure 16, The flow chart is complete, except for

the various termination conditions we will want to utilize,

56

FLOODING ALGORITHIM:
Basic Flow Chart

Start at the designated point

Put this point on the "front" list (a list that
contains all points of the "front" arranged so that
the cheapest one 1s quickly accessible; ties are
resolved arbitrarily).

Is the "front" list empty?

>Exit
no

Take the cheapest point off the "front" list, and
mark the point "closed.,"

Generate a 1Yst of This Point's neighbors.

N

Is the list of neighboring points empty? Je0
no

Take a new point off the neighboring point list.
Call it the Fresent Location.

Calculate the cost of a path to get to the Present
Location with This Point as the immediately
preceeding point on the path,

\
N0 Ts the cost of this path to the Present Location
less than any previously computed path?

yes

A. Replace the old cost with the new cost.

B. HReplace the point to have come from to get to
the Present Location with This FPoint.

C. Put the Present Location on the "front'" list.

Figure 16

57

These termination conditions will be added as they are
discussed,

The point we choose to expand each time is the lowest
cost point on the front, Doing this guarantees us the fol-
lowing relation: the cost to get to the lowest cost point
on the front is greater than or equal to the cost to get to
any point inside the front (inside and outside the front as
defined below)., This relation holds because we previously
expanded and closed the points inside the front, hence the
cost to get to them is less than or equal to (in the case of
ties) the cost to get to the lowest cost point on the front,
There is also another relation we can use to our benefit:
the cost to get to any point outside the front, when found,
will be greater than the cost to get to the lowest cost
point on the front, This relation holds because the minimum
cost transition from one point to another is greater than
zero, and the path from the start to any point outside the
front must include, when found, at least one member of the
present front, These two relations can be summarized as:
The cost to get to any point outside the front, when found,
will be greater than the cost to get to the lowest cost point

on the front, which is greater than or equal to the cost to

58

get to any point inside the front, The following example
will clarify the concepts of "inside" and "outside" the
front,

The initial situation is as shown in figure 17, ex-
cept that no points are shown other than the starting point
and its four nearest neighbors, The other points in the
space lie in the same rectangular grid pattern as the five
points shown, and extend in all directions,

We will call the center point of figure 17 the start-
ing point and set its cost to zero., This point is now put
on the front list., This is the only point on the front,

All other points in the space are outside the front, In-
itially, the cost to get to these points is infinity, or some
number large enough so that all necessary relations will

hold., (A good number is 10 times a maximum dimension of the
space times the maximum transition cost in the space. For
computer implementations, the largest possible positive number
works very well,) At this stage, there are no points inside
the front,

The cost to make a transition from one point to another
must be greater than zero. For convenience, let all transi-
tion costs be integers, with the minimum cost transition

being one (1),

59

Initial Stage
Finding a path through a space using the
flooding algorithm

S= gtarting point
£= this point is on the front

Flgure 17

Second Stage
Finding a path through a space using the
flooding algorithm

+

C= this point 1s closed ~}

Figure 18

60

We now pick the lowest cost point off the front list,
mark it closed (this is the starting point; there can be no
cheaper way to get here), and expand it, This point's neigh-
bors are now on the front list (they were put there by the
algorithm after it found the paths and costs). The situation
is now as shown in figure 18,

Let the algorithm continue, We pick the lowest cost
point off the front (resolve ties arbitrarily), Then we
mark this point as closed; its cost cannot decrease, Let
us see why this is so,

The points in the space can be classified as belonging
to one of three sets: points inside the front, points on the
front, and points outside the front., Let us consider the
possibilities that a lower cost path to this point could be
found. First, consider all the points inside the front, 1In
this case there is only one point; and the path includes it
as one of the two points on the path, (The path consists of
this point and the starting point,) Hence, there is no need
to reconsider this alternative. Next, consider the points on
the front, In picking the lowest cost point on the front
(remember the possibility of ties), we guarantee that the

cost of all other points on the front is greater than or

61
equal to the cost to get to this point, Hence, any path to
this point which includes any other point on the front can-
not possibly be cheaper than the path that the algorithm has
presently settled on (all costs are greater than 0),

Finally, there are the points outside the front., We
have not yet found a path to them from the start, and there-
fore the cost to get there 1is presently infinity, However,
when we do find a path to each of these points, the cost of
this path must be greater than or equal to the cost to get
to the lowest cost point on the front as the path must include
at least one point that is now on the front, Hence, any path
from the start that includes one of these points must be
more expensive than the path to the lowest cost point on the
front,

To resume the discussion, we just picked the lowest
cost point off the front and marked it closed, We then ex-
pand the front to include the points we can get to from this
point where this path is cheaper than any previously com-
puted, The situation is now as shown in figure 19,

Now let us examine the situation in figure 19, There
are two closed points., We have shown that we have found the

cheapest way to get to them from the start, There are a number

62

Third Stage
Finding a path through a space using the
flooding algorithm

Figure 190

63

of points on the front whose costs are greater than or equal
to the cost to get to any point inside the front, There are
also the points outside the front, (again not shown) and we
know the cost to get to any of these points is presently
infinity,

Now, we will pick the lowest cost point on the front,
and mark it closed; the cost to get from the start to this
point cannot decrease. Again, we will pause to see why
this is so,

There are agailn, the three sets of points: points
inside the front, points on the front, and points outside
the front, There are two points inside the front, Each of
them has previously been on the front, and we have checked
the cost to get from each of their neighbors, through them,
back to the start, and retained the lowest cost computed for
each instance, Hence, we have already considered all the
possibilities of lowest cost paths that are possible from
points inside the front. And we have retained the lowest
cost of these, There 1s no reason to reconsider these possi-
bilities. If we do, the lowest cost path we could possible
find would be this path, or possibly another path of equal
cost., This argument is general, It applies when there are

any number of points (more than zero) inside the front,

64

The arguments previously given as to why we cannot
find a lower cost path from this point to the start through
any of the points on or outside the front continue to hold,
(Note that the path to the lowest cost point on the front
can include only points inside the front,)

Again, to resume the explanation., We just picked
the lowest cost point off the front and marked it closed.

We then expand the point and increase the front list by the
additional points we can get to from this point in the cases
where the path found is cheaper than any previously computed,
Now we can continue expanding the front, confident that it

is finding the lowest cost paths until we reach a terminal

point, which terminates the search,

Termination of the Search

The reason for using this search technique is its
speed, It finds the shortest path to a point quickly if
the cost of the path to the terminal point is less than the
average of the costs of the paths to all the points in the
space,

In the case of a single terminal point, the search
terminates after the terminal point is closed. The sequence

of events for the algorithm is: pick the lowest cost point

off the front list, mark i1t closed, and check to see if it is
the termination point, If it is, the search is finished., If
not, continue the normal way,

When there is a set of possible terminal points (we
must find a path to any one of the set, the OR condition of
multiple terminal points), the termination condition is the
same, except that the process terminates as soon as any one
of the points of the terminal set is closed, See figure 20,

How are we sure that this gives us the shortest path
to any of the terminal set? The reason is basically the same
as that used to justify closing the point., The cost to get
to any open (not closed) points in the space will be greater
than or equal to the cost to get to this point. And, as
this is the first point of the terminal set to be closed, the
cost to get to this point 1s less than or equal to the cost
to get to any other point of the terminal set,

When there is a set of required terminal points (we
must find a path to all of the points of the set, the AND
condition of multiple terminal points), the algorithm termi-
nates only after all points in the set have been closed,

See figure 20,

66

FLOODING ALGORITHM:
Flow chart for termination with an OR set of
terminal points

Start at the disignated point(s).

Put this (theif) point(s) on the "front list."

yes

Is the "front 1list" empty? —>Error exit:
no path found

no

Take the cheapest point off the "front list" and mark
it closed.

Termination condition (see figure 20-b)
(Che requirement 1 or 2; either will lead to
or |2].

1 2] Y8 SExit with path

no

N/
Generate a list of this point's neighbors,

b

i

v
Is the list of neighboring points empty? yes

no

v
Take a point off the neighboring point list,

Calculate the cost of a path to get to this neighboring

point with this point as the immediately preceeding
point on the path.

N
‘GEE——IS the cost of this path less than any previously

computed path?

yes

W
A, Replace the o0ld cost with the new cost.
B. Replace the point to have come from with this point.
Cs Fut this neighbor point on the "front list."

Figure 20-a

67

TBERMINATION CONDITIONS:

Requirement: Must find a path to any one of
several points.,

Permination Condition: 1Is this point (just closed)
a terminal point? >

yes

no E

Requirement:

Must find a path to all of several
points,
Termination Condition: Is this point (just closed)
a terminal point?
no yes

¥
Is this the last
one on the 1list?

no

Figure 20-b

68
Starting From More Than One Point

The flooding algorithm will work as described pre-
viously when considering the possibility of starting from
more than one point, The only change is that the algorithm
should not set all starting points' cost equal to zero, but
should allow the flexibility of different positive values
for the starting costs,

An example will clarify, At the end of a working day
you want to go home., However, you have a choice as to where
you will be when you finish work, points A, B, or C. Due to
circumstances other than closeness to home, you have prefer-
ences as to which of these you would rather be at when work
ends. For instance, if at the end of work you are at B, you
will be able to spend only 10 minutes there when you would
like to spend 15, For this inconvenience, let us assign a cost
of starting from B equal to 5 units, And say also that the
cost of starting from A is 10 units, and from C is 2 units,
Now, if the cost to get from A to home is 20 units, from B to
home is 24 units, and from C to home is 29 units, a rational
decision maker would pick B as the starting point. Ile would
do this even if his route home takes him by A, (Note that

given the costs, he should not go by C on the way home,)

69

This situation is the OR condition for multiple start-
ing points. The implementation of this condition is quite
easy. Calculate the cost to start at the various starting
points, then put all the points on the front list and begin
the calculation in the usual way, See figure 20,

If you look at the positions of the fronts after
several iterations of the algorithm, the situation may be
as shown in figure 21, Although there are actually several
different lines that compose the front, they are all part
of the same front, And, the relations we have previously
proven still hold, If the algorithm is allowed to proceed,
the "separate'" fronts will join to form the more familiar
pattern shown in figure 22,

Above we showed that the algorithm could start from
multiple starting points (OR only) and finish with multiple
finishing points (AND or OR). Now we want to introduce the
possibility of starting the algorithm from two or more points,
This is different from allowing the possibility of the path
starting from two points, It is the AND condition for mul-
tiple starting points, Now we must keep two (or more) front
lists and two (or more) sets of records of the best place to

have come from and the cost to get to each point, This is

Aront

jte)

71

most easily accomplished by running the algorithm (finding
paths) for each starting point and storing the paths and

costs after each is found. Note that it is possible to imple-
ment any number and combination of AND and OR starting and
termination conditions for the algorithm,

There is the possibility of making one-half as many
calculations as when we let the algorithm proceed only from
the path starting point, if we let the algorithm start from
the path starting point and finishing point, and stop it
after the two fronts cross, In an idealized case where we
let the algorithm start only from the path starting point,
the front will expand as a set of concentric circles, The
number of points that have been expanded is proportional to
the area of this circle, If the distance (in this case the
number of points, not the cost) from the starting point to
the termination point is R, then the number of points
expanded is proportional to ‘7R2. If we now let the fronts

expand at the same rate from the path starting point and

the path finishing point, and terminate the algorithm when

(or after) the fronts cross, the radius of each of the two
e = : .

circles is ER. Ihe number of points expanded is then

proportional to 2(77(%k)2) = %WRZ (see figure 23).

72

Idealized case of starting a flooding algorithm
from two points

Area-4TR"

Area 477 R?

Area='/7/?z

Area of large circle 1s twice the area of the
two smaller circles,

If the points in the space are of equal density,

there are one-half as many points inside the two smaller
circles as inside the larger circle.

Figure 23

7

As previously mentioned, the time to terminate the
algorithm is when (or after) the fronts cross. There are
two ways of deciding when to terminate the algorithm ex-
plained below. The first of these is perhaps the easier to
implement, However, the time required for the algorithm
to terminate for some uses may be longer than with the
second, This is because the first method requires the
termination decision to be made in the innermost loop of
the algorithm, while the second method allows the termina-
tion decision to be made in an outer loop. We will now
introduce the notation for the following discussion, There
are two fronts, front A and front B, The points inside the
fronts we will call a and b (points a are inside front A,

points b are inside front B), See figure 24,

Termination Criterion for Algorithms Which Develop Paths
From Both Ends Simultaneously

The first method is essentially the same as described
by Nicholson,zo The only differences are in notation and
algorithm implementation (although the algorithms are imple-
mented differently, they do the same thing), The criterion
for termination of the algorithm is as follows, First, the

cost to get to a point is computed. If this cost is less

74

Figure for discussion of termination criteria
of the flooding algorithm

+
Start or

£l ish

Figure 24

75

than any previously computed, the cost to get from this
point to the other algorithm starting point must be checked
(in addition to the other operations required by the flood-
ing algorithm as described by the bottom section of
figure 20-a), If this computation is finding paths from
the start, then we must check the cost of getting from this
point to the finish; and vice versa, If we find this cost
to be less than infinity (or its approximation), then we
have found a path from the start to the finish, If the cost
of the complete path is lower than previously found, then
replace the old total cost with this new cost, (Also re-
place the path,) The time to terminate the algorithm is
when the cost of the cheapest path found is less than or
equal to the cost of one front plus the cost of the other
front plus the lowest cost transition possible,

One proof that this gives the lowest cost path is

20 A briefer proof is as follows. The

given by Nicholson,
position of the fronts will be as shown in figure 24, The

lowest cost path from the path starting point to the finish-
ing point can include as members only points that are inside

front A or inside front B, If a point is outside front A

and outside front B, then the cost to get to it from the start

76

will be greater than or equal the present cost of front B
plus the cost of front A, Hence, the total cost of the

path which includes this point as a member must be greater
than or equal the sum of the present front costs, From
above, the cost of the path we have found is less than or
equal this sum, and there is no need to consider these
possibilities., To continue the proof, we must investigate
the properties of the fronts, KRemember that it is impossible
for a path to go from a point outside the front to a point
inside the front without the path including a point on the
present front, Therefore, to go from the start to the fin-
ish, we must cross both fronts; that is, any path must in-
clude as a member at least one point of each front. Each
time a point is added to either front, the algorithm requires
that we check the cost of the path from the start to finish
that includes this point, It saves the lowest cost of these,
Therefore, we have found the lowest cost path.

The second method of terminating the algorithm is as
follows, Each time the top point is taken off the front
list, a check is made to see if this point is inside the
other front. If it is, the cost to get to this point is re-

corded as C;. This has to be the lowest cost point on this

77

front that is also inside the other front. Let us call this
front at this time front A', and likewise, the other front B',
Now we must search over the points on front B' to find which
one has the lowest cost to get to the point from which this
algorithm started, When this cost is found, it is recorded

as D Remember from the previous section that there is no

1
need to consider points outside either front (front A' or front
B'), and any path must contain at least one member of each
of these fronts, Therefore, the lowest cost path that can be
found is C1 + Dl’ the sum of the lowest cost components on
the front,

Now, we will not continue to expand the fronts at
equal rates, We will continue to expand only front A (front
A" is a particular position of front A), As each point is
expanded, we must check for a lower cost path from the start
to the finish, and replace the old cost with any new lower
cost found (and the old path with the new path). We can ter-
minate the algorithm only as soon as the cost of the point
being expanded is greater than or equal to the cost of the
lowest cost path yet found minus Uy. This procedure guar-
antees that the lowest path from the start to the finish has

been found as any future path that will be found must have a

cost greater than or equal to the present lowest cost path.

78

As we showed above, the lowest possible cost path is Cl L 0

1
and the lowest cost path must include at least one point
that is a member of the set comprising front A' ANU b (AND
is logical and). When the cost of the point being expanded,

C;» plus D, is greater than or equal to the cost of the lowest

i}
cost path found, then we have investigated all points that
are members of the set front A* AND b that could be on the
lowest cost path, (Ci can never decrease; therefore,
Ci * D1 can only be greater than or equal to the present low-
est cost path.) Figure 25 supplements the above explanation,
There are two trivial termination situations which de-
serve special consideration., Prior experience has shown that
one or the other of these has always been the situation when
the algorithm terminated, The first is when there is only one
member of the set front A' AND b, Then the first path found
is the only path possible, The second situation is when all
the costs of the members of front A' ANUD b are the same,
However, see figure 26 for a situation where this is not
the case.
There is one further item to add, That is, when there
is at least one member of the set front A' AND b, and there

are no members of the set a AND b, (that is, front A' and

front B' are adjacent where front A' is inside front B', or

79

Illustration to supplement explanation of Termination
Criterion of flooding algorithm when paths are
developed from both ends.

-pr-on‘f A’ /003/'7‘/5,—, of #Dn?LA 74'0/'77‘ % /oo.s/f/bn of front B
when point with, cost when poimt with cost C4
on tront A is foand on #-on/ A s &nc{

CX/oansfbn Oir
Front A 5e/onq’
Jef'on/ A’

ot with
Cost C; jooint with
cos? Z&

5 |

C, 18 cost of first lowest cost point on front A
f%und to be inside front B,

D, 1s cost of lowest cost point on front B’,

Front A is expanded from front A" until C;, the cost
of front A, 1s greater than or equal to the cost of

the cheapest path from start to finish minus Di'

Figure 25

80

Situation in which complete inspection 1s necessary
to find shortest path.,

— Shortest
path
Position of Front Position of '/:‘onf
from 57{ar;‘ 3 ﬂrorn 7£;h /15h

Numbers between points are transition costs,
Hissing costs can be taken to be infinity.

Light numbers at points (on the left) are costs
to get from start to that point.

Boldface numbers at points (on the right) are costs
to get from this point to the finish,

The cost to get to points where the fronts are

ad jacent and parallel are not equal, The lowest

cost path is 18 cost units., It will not be the first
path investigated,

Figure 26

81

vice versa), then the number of members of front A' AND b
equals the number of members of front B' AND a, As the two
fronts are adjacent, they must be parallel (not necessarily
straight). As they cross one another at the ends of the
parallel sections, the lengths of the fronts where they

are parallel must be equal. And as the number of points on
the fronts are proportional to the length of the fronts, then
the number of points on each front in this region must be

equal,

The ﬁ* Algorithm

The flooding algorithm just discussed is a special

11 However, having proved the

case of the A* algorithm,
flooding algorithm's properties we have a solid basis on
which to proceed with the A* algorithm. There are no flow
charts given for the A* algorithm as it is identical to the
flooding algorithm except for expanding the point on the
front (the open point) which minimizes @(06)+ﬁ(06) (defined
below) and the special cautions outlined below,
First a definition of terms, of is the point being

discussed, any point in the space, g(o() is the current

best estimate of the lowest cost path from the start to o(.

g(o¢) is the cost of the lowest cost path from the start to o<,

82

2(o¢) 2 g(o¢) in all cases, ﬁ(cﬂ) is an estimate of the
cost of the path from o to the finish, Hf(o¢) must be
greater than or equal to the cost of the lowest cost
path from of to the finish, 'The set of terminal points for
the algorithm is 7, and t represents a member of [.

When implementing A*, it became apparent that
special care has to be taken when there is more than one
point in the terminal set, 77, and the terminal condition
is to find the cheapest path to any one of the several mem-
bers of ’Tt (The OR terminal condition,) Let 7/ be composed

of n members, By Ty o o 4y

s & « =« €T 5 "As ﬂ(o() must be
1 n

a function of o¢ and t, te[, we must, at every point &,
use h(c¢) where ﬁ(o<)=’?" f(eC,t;), to insure that the algor-
ithm terminates properly.

When the terminal condition is AND (we must find the
cheapest path to all members of 7°), the same problem does
not exist. One way of implementing this condition is to
pick a ti to compute ﬁ(oc)=f(oc,ti), and continue with this
t; until it is closed, Then, scan the list of terminal
points and pick one that is not yet closed, tj’ and use it to
compute ﬁ(o()=f(c£,tj). Continue these steps until all

points of the terminal set are closed,

The A* algorithm has the same properties as the flood-
ing algorithm in the case of multiple starting points (OR)
and starting the algorithm from two or more points (AND).
Also, when the A* algorithm is started from the patn start-
ing and finishing points, the same termination procedures as
described for the flooding algorithm apply (as £(¥)=g(¥)
when ¥ is the open node that satisfies g (¢)+ﬁ(\$)i§(ogj+
ﬁ(o() and o¢ is any open node). However, in all cases in
which there is more than one possible terminal state, the

procedures described above must be used,

The Two Stack Diamond

One of the first objectives of this project was to
find or invent shortest path algorithms that terminate
quickly when finding paths through large numbers of nodes
(of the order of 10,000 or so). One of the first algorithms

23 In an effort

tried was a variation of Minty's Algorithm,
to make this algorithm run faster, a list was kept of all
the points whose cost (of the path from this point to the
start) had decreased, A point was taken off the list when
the costs of the paths to its neighbors were investigated

(these paths being required to go through this point),

This list of points composed a front,

84

In the course of some experimentation, it was found the
best way to put points on the list and take them off was the
First in-First out method, This method tended to make the
front progress through the matrix of nodes perpendicular to
the surface formed by the front, Using a Last in-First out
method (a push-down list) tended to generate lines of nodes
that started from the extremities of the front and were
parallel to the surface formed by the front, This is a waste-
ful procedure as the paths formed along these lines would
generally not be minimum cost and would have to be recalcu-
lated many times before a minimum cost path was found,

The only problem with the First in-First out method
was that it required extra instructions for computer imple-
mentation as it could not use instructions for pushdown list
manipulation, As an alternative, two stacks of front points
were kept, Points whose cost had changed were put on one
list, and points to expand were taken off the other, When
the list the points were being taken from was empty, the
lists were swapped. We now took points off the list we were
adding them to, and vice versa, This procedure let the
push-down list facilities be used, and moved the front

perpendicular to the surface formed by the front,

85

A flow chart of this algorithm is shown in figure 27,
The advantage of this algorithm is that very few decisions are
made in the inner loop. When paths to many points, or widely
separated points in the space must be found, then this
algorithm is generally faster than the flooding algorithm
or the A* algorithm, They both require many more decisions
to be made in the inner loop. This greatly increases the
time they require to terminate, Appendix A shows this

algorithm finding the minimum cost paths in a space,

86

Flow Chart for the Two Stack Diamond Shortest
Fath Algorithm

Initially, set all costs =oo (or some implementable
approximation).

3et the cost of the starting point = 0 ,
Put the starting point on the "full" list. (The
other list should be empty.)

ra

Is the "full" list empty? yes sJIs the other
list empty?
no no yes
Swap Exit,

TisLs finished

|

Take a point\%ff the "full" list.

Generate a 1list of all nearest neighbors of this
point.

b

yes

N
Is the 1list of neighbors empty?

no

Take a point off the neighbor list.

Compute the lost of the path from the start to this
neighbor point with this point as the immediately
preceeding point on the path.

. 1O Is this cost less than the cost of any previously
computed path?

yes

A, Replace Bld cost with new, lower cost.
B. HReplace point to have come from with this point.
Gt Bt thisipelghbor point on "empty" list,

Figure 27

a7

Chapter IV Implementation of Algorithms for the Purposes

g£ This Work

The chapter begins by specifying the restrictions on
the examples the demonstration system can solve and investi-
gating some basic manipulation situations. In the body of
the chapter, the methods used to implement the procedures

discussed in previous chapters are explained.

Restrictions on the Examples and Demonstrations

and Definitions

Two Dimensional Space

All tasks will be performed in a two dimensional
space, All motion will be confined to be within the space,
and the representation of all objects and the manipulator
jaws will be two dimensional, This restriction is made
to keep the size of data storage needed for the state space
model of the task reasonable, The principles on which the
system is designed are extendable to three dimensions (or
more), but of course, the data storage and the processing
time increase according to the number of dimensions re-

quired by the state space model to describe the task.

88

No Rotations

For the same reason, the system will not allow any
rotations. Rotations of objects can be completely described
by a model of sufficient dimensionality., Not allowing rota-
tions keeps the number of dimensions in the model small, As
before, the system can be extended to include rotations if

necessary.

Digitized Object Shapes

The objects that the demonstration system can repre-
sent can be of any two dimensional shape, but the sides must
be parallel to the X or Y axes of the space, and the object
must be connected, Figure 28 1s a representation of an

object that can be represented on the system,

Movable and Immovable Objects

The system will divide objects into two classes,
movable and immovable, In our everyday experience, we
make this classification, but the attribute immovable has
meaning only in a relative sense, As far as is known,
there is no absolutely immovable object, When we are think-
ing of moving furniture, we consider the walls of the house
as immovable., But wreckers move (or remove) walls or

entire buildings, Likewise, there are other groups that

hat can be represented on the
Figure 28

demonstration

AV

specialize in moving things we normally think of as
immovable, In the examples and demonstration, objects are
defined as movable or fixed., The system will never move a

fixed object.

Only One Object at a Time Can be Moved

This demonstration system cannot move more than one
object at a time, This means, for example, that the system
cannot use one object to push others, nor can it use an ob-

ject as a tool in an active manner,

Description of Manipulator Jaws

The things that move the objects are the representa-
tions of manipulator jaws, These are an idealization of an
end on view of a pair of no-slip jaws of a three degree
of freedom manipulator (X, Y, open-close). The jaws will
normally move from place to place closed, but may move open,
Also, they will normally grasp objects to move them, but they

can also push, Figure 29 shows the jaws in various states,

Definition of Temporary Location
The characteristic that identifies a lTemporary Loca-
tion is that if an object is put in a Temporary Location,

then the jaws can move, unimpeded, completely around the

91

Manipulator Jaws

LV
]

a) jaws closed b) jaws open

Ny
SRSRRaE s

e

¢) jaws grasping d) jaws pushing
an object an object

Flgure 290

92

object, Note that what is a Temporary Location for one
object is not necessarily a lemporary Location for another
object. The value of Temporary Locations is that if an
object is moved to one, then the object can be moved from
it to another location, This follows directly from the defi-
nition, One deficiency of the demonstration system is that
many times it would be satisfactory to move an object to a
position (not necessarily a Temporary Location) from which
it can be moved, But the system has no way of deciding
which locations in the space satisfy this requirement, So
the system moves the object to a Temporary Location, There

will be a discussion of this and associated problems later,

Definition of Out of the Way Place

The next term is Out of the Way Place, This is a set
of locations in the task space which are Temporary Locations,
and in addition, are out of the way of all paths the system has
planned, but not yet executed, How the system determines which
locations are Out of the Way Places will be explained later

in this chapter,

Definition of a Simple Task
For our purposes, a simple task is defined as moving

one object, This task must be able to be executed without

93

any restrictions or qualifications, Operationally, this is
equivalent to saying that a shortest path algorithm, de-
signed to find the path for one object, is capable of find-
ing the solution to the simple task, Figure 30 is an ex-
ample of a specification of a simple task,
As well as specifying the task pictorially, we can

also specify it using the following words:

MOVE A TO LOCATION 20,20,
A more concise way of saying the same thing, given that we
are talking about moving objects to places that can be
specified by numbered coordinates, is to give only the name
of the object and the location to which it is to be moved,
specifically:

Ay 20,20,
In this restricted case, the character string, <name, loca-
tiod> completely specifies the task, We can call this

character string an abstract specification of a task.

Such a character string does not include all of the infor-
mation about a task, but does include enough so that a
computer system (Whitney's, for example), or a person, can
determine the remaining information necessary to execute

the task.

9l

Specification of a Simple Task

Lnitia/ s Yrons

Final Paitioms

Figure 30

95

Some Basic Manipulation Situations

In conjunction with the restrictions given on the
previous pages, there developed the necessity to study some
basic manipulation situations, As the reader will see, they
are all more or less straightforward, but it was felt they

deserved special consideration,

Situation 1

Even if an object has the attribute of being movable,
it may not be possible to move it, Its position, or the ob-
jects that surround it, make it impossible to move, In the
system, if an object is described as movable, but is sur-
rounded by immovable objects, the system has to discover that
the object cannot be moved, It does not know the object is
immovable without first attempting to move it and discover-
ing in the internal model that it cannot be moved,

An example of such a situation 1is shown in figure 31,
The movable object, A, has only two sides covered by the im-
movable object, but as A presents no handles for grasping, or
surfaces on which to push away from the immovable object, A
cannot be moved, There are many more similar situations,
The system discovers that an object is, in effect, immovable

by attempting to move the object and finding out (by the

96

Movable two dimensional objeet cannot be moved out
of corner

VA - il s £ Pl

N R TR

Figure 31

97

failure of the shortest path algorithm to find a solution)
that the object cannot be moved,

In conjunction with the above, let us point out that
an object can be moved into a position that it cannot be
moved from, For example, if in figure 31, object A were a
few spaces to the right, it could be pushed to the left into

the corner, where it would again be immovable,

Situation 2

Given that an object is in a position it can be
moved from, then it is not always possible to move the
object to a desired position in the space. Usually, this
situation occurs because the desired position is blocked by
one or more immovable objects, Figure 32 is an example of
such a situation,

The demonstration system will discover this situation
only if it attempts to move an object to such a position, If
this situation is discovered, the task being executed is de-

clared to be impossible,

Situation 3
Given two positions, Pl and P2, that objects can be

moved from, and given that an object can be moved from Pl

98

Obj
;u ect A be
me : poc

i Onsann ot
moved to
posi
ti
on X
{ in
tw
WO

Figure 32

99

to P2, then it is not always possible to move the object
from P2 to Pl,

This states that diodes exist for objects, that an
object may be moved in one direction through a narrow open-
ing between immovable objects but may not be able to be moved
in the other direction. In figure 33, the movable object A
can be moved by the jaws from Pl to P2, but the jaws cannot
move it back., There are many more possible situations where
diodes are encountered,

In the remainder of this work the assumption will
be made that diodes do not exist in the task space, If a
diode is present in an example, the demonstration system

may make a fatal mistake in attempting to solve the task.

Situation 4

Before an object can be moved, that which is to
cause motion must be in contact with the object, The
basis for this statement is that an object must be acted
on by a force before it can move., Of course, there are
situations where physical contact is not necessary to move
an object, In these cases, some other force such as mag-

netic or electrostatic must be used. But in the demonstration

100

A can be moved from Pl to P2, but not from P2 to P1

®)
L

Fd

S A A

Figure 33

101

and examples only the jaws, acting directly, can move

objects,

Generation of a State Space for an Object of Any Shape

As stated previously, a state space can describe a
manipulation task, and a shortest path algorithm can find
the solution of a manipulation task by finding a path
through the state space., The state space method is used
to find solutions to simple tasks, and the solutions of
several simple tasks are concatenated to form the solution
of a complex manipulation task, The TASK TREE orders the
simple tasks so their combined solutions form the solution
to the complex task, This is described in this and the fol-
lowing chapters,

The first step toward finding the solution of a simple
manipulation task is the generation of a state space, To
generate the state space, the system first needs a descrip-
tion of the physical space and of the object to be moved,

These descriptions depend in some part on the exact-
ness with which they are made., The exactness or precision with
which the space is described will be called the '"quantization"
or "reticulation" of the space. If the quantization is very

fine, many surface irregularities of the objects in the space

102

will be included in the description, All this information
probably is not necessary. On the other hand, if the scale
of quantization is coarse, not enough information about ob-
jects' shapes will be known for good system performance,
An object could not be grasped or pushed reliably, for ex-
ample, The scale of quantization is probably best deter-
mined after a task has been specified, Accordingly, this
system has no specified quantization scale, (However, the
quantization scale for the demonstration is constant,)
For this system, the description of the space is
an input, In other systems, it may be desirable for the
system to be able to provide itself with the description
of the task site, The input would be some lower level (less
processed), more readily available information from the
space, For example, it might be desirable to provide the
system with the ability to '"see.'" See, for example,
"Recognizing Convex Blobs," by J. Sklamsky,z9 or the sec-
tions on Artificial intelligence in M,I.T. Project M.A.C,
Progress Report VI.l7
Alternatively, it may be desirable for the system to

be able to understand a Natural Language description of the

. 28 :
space, See the Simmonds article for numerous references.

103

In the present system, a space 1is described in terms
of X-Y coordinates, An object's position is identified by
reference to its "base location," a location on an object
that is specifically designated, The base location occu-
pies a square on the object, one quantization unit on a side,
As most objects will be larger than this, the remainder of
the object is described by specifying the other locations the
object occupies, Figure 34-a is the drawing of an object,
Figure 34-b is the list of locations the object occupies and
the specified base location, Figure 34-c is the computer in-
terpretation of the object's shape, The computer descrip-
tion lacks much of the information given by the drawing of
the object, But it does give the system something to work
with, and the computer description of objects is not a goal
of this thesis,

We want to generate a state space to describe the
motion of an object in a physical space. The first step is
to get a computer description of the physical space, exclud-
ing the object to be moved, The next step is to use the
description of the object to be moved., Then the object's
base location is put at every location in the physical space,

every node or state in the space. If any part of the object

104

Digitizing an object's shape

C
O

4 = o &~
A T R e i S -

n

i

Figure 34-a

Base Location 5,3 Computer interpretation
of object's shape

Locations occupied: B

2,2 4,2 5,3 ¢

2,3 4,3 5,5 F

2,5 4,k 5,6 5

3,2 b,5 6,2 |_

3,3 4,6 6,3 i

3,4 5.1 6,5

5 e 5,2 6,6

3,6

Ny
i e e

~

i 2 3 4+ § ¢

% is at base location

Figure 34-b Figure 34-c

105

is on an immovable object, or out of the space, a flag is
set that says the object cannot occupy this state, This
state becomes a forbidden node, If the object is "on" a
movable object, this is indicated by calculating an extra
cost for moving to this node from each of its neighbors,
This "extra cost" is used to make the system behave in a
"desirable" way. An example of '"desirable" behavior is
"it is better to go around an object than to move through
the space occupied by it," The question is, how far is one
willing to go to avoid moving through an object? The answer
depends on how difficult the object is to move., For example,
most people will not walk more than a few feet out of their
way to avoid moving a light chair, But most people would
rather walk a moderate distance than have to move a large
table, This "extra cost" is made proportional to the size
of the object.

The reader may be disturbed that the system can
move one object through the space occupied by another,
Actually, the system will not do this, What it can do is to
plan to move one object through the space another object
occupies, This is analogous to the way one might plan to
move a large piece of furniture out of the house, First, the

best path out of the house is estimated, and a list of the

106

chairs, tables, etc,, that need to be moved out of the way
is made, These are moved out of the way, and then the large
piece of furniture is moved, The furniture mover plans to
move one piece of furniture through the space occupied by
others, the same way the system does.,

The flag for the object being "on" a fixed object
and the extra cost information are all the information
needed from the physical space. As described, the state
space is a mapping of physical space., However, there must
be more information in the state space to describe how the
object is to be moved., We need an added dimension in the
state space, which has five values: one to denote that the
object is being grasped, and one for each of the four push
directions (%X, ?Y), This is the minimum set needed to de-
scribe motion of the object, The axis for this dimension is
named the G axis. The complete state space for moving an ob-
ject consists of the set of nodes {%,y,%} which specifies
an object's position in X - Y space, and how the jaws are in
contact with the object,

The state space that describes the jaw's motion is
the same as an object's state space, except for one differ-

ence. The jaw's state space does not need a dimension to

indicate how they are moved. But the jaw's state space does

107

need a dimension to describe their opening and closing, A
node in the jaw's state space defines values for the X
coordinate, the Y coordinate, and how far open the jaws are,
the K coordinate. The jaw's state space is generated in the
same way as an object's state space.

The state space that describes the jaw's motion is
used when the jaws are not in contact with the object, This
state space is used to find the path the jaws take to get to
the object initially, to change from a grasp position to a

push position, or to change push positions,

Moving an Object from its Initial to a Final Position

The A* Algorithm discussed in the previous section
finds the path for the object., The implementation procedure
is straightforward and simple, but because of the way push
and grasp positions are recorded, there is a possibility of
trapping the jaws, Figure 35 is an example of a task in
which the jaws get trapped moving an object., The system's
solution for this problem, as the system has been described
to this point, would be for the jaws to grasp the right "arm"
of object A and move it to the right to its final position,
The jaws would be trapped, and could not return to their spe-
cified final position; the task as specified could not be

completed.

108

Specification of a task in which jaws could be trapped

Lpitial Positsons
\; M \\s
LA s
AANNN B

Figure 35-a

F;’}a/ /'Dos/'f/éns

NN RN

—— -

.

A

B NN\

Fo

ol e

Figure 35-b

109

To prevent the jaws from getting trapped, two short-
est path algorithms are used, one starting from the object's
initial position going toward its final position, the other
starting from the object's final position and going toward
its initial position, The termination criteria are

1) that a path has been found from this point

(any point in the space which the shortest
path algorithm is currently considering
expanding) to the object's initial position
and to the object's final position; and
Z) that with the object at this point, the jaws can
get from their position as defined in one
shortest path algorithm to their position as
defined in the other shortest path algorithm,
In the previous section, conditions were given for terminat-
ing a set of shortest path algorithms, These conditions are
purely mathematical and do not allow for the above problem.

Because of constraint Z from above, the overall path
may not be optimal; but, the path that is found will be near-
optimal, and each of the two segments will be optimal, In
general, this is good enough, as a near-optimal path will
get the object moved in a reasonable manner.

In all cases, though, it is not necessary to have

110

the two shortest path algorithms running at each other, In
tasks where the jaws cannot get trapped, only one algorithm may
be used, Unfortunately, it 1s difficult to determine whether
the jaws will be trapped when moving an object to a specified
position, Hence, a test that is easier to implement, but is
more restrictive, is used. The test determines if either the ob-
ject's initial position or its final position is a Temporary Lo-
cation, If either is, the system starts one algorithm that runs
toward the position that is the Temporary Location, If both
positions are Temporary Locations, the system starts the algor-
ithm at the initial position., If neither position is a Tem-
porary Location, the system starts the algorithm from both ends,
When the system moves an object to an Out of the Way
Place, a different version of the A* Algorithm is used., First,
the final location is guaranteed to be a Temporary Location; so
only one algorithm is used, It starts from the object's start-
ing position, Second, the system has no way of knowing a
priori the best Out of the Way Place., Hence, fi (¢)cannot
be calculated as the terminal point, t, is not known, So a
modified A* Algorithm is used, which sets'ﬁ(oc)=0 for all oc.
This is the Flooding Algorithm described in the previous chap-
ter, This method finds the Out of the Way Place that is the

cheapest to move the object to.

111

Discovering Which Objects Are in the Way

In some cases, the shortest path algorithm plans
a path that requires moving an object through the space
occupied by one or more other objects. In these cases,
the object is not moved, but a list is made of those ob-
jects which are in the planned path, and tasks are gener-
ated to move these objects out of the way. Planning to
move one object through the space occupied by another is
the way the system discovers which objects must be moved
out of the way.

The Out of the Way Place for an object is found in
the following way. Say the system is given a task as de-
scribed by the Initial and Final positions of figure 36,

The aspect of this task to be noticed is that the system

has to move B to an Out of the Way Place, The system goes
through the following steps, It attempts to move A to its
final position, It checks over the path it planned for mov-
ing A and discovers that the planned path includes space
occupied by B, and that B must be moved so that it will not
be in A's path, The system must move B to an Out of the Way
Place. The crucial point of finding an Out of the Way Place
is remembering the planned path, i.e,, all the locations over

which A is moved, including its initial and final positions,

112

L=

>

Task in which B must
be moved out of A'ls
planned path

Trital ;g.s #r0ns

Figure 36-a

SV s

. & T

/L_/f.oa/ 2)5/.740}75

Figure 36-b

153

The system remembers this path, all the locations, as a
dummy object A', The system then moves B to an Out of the
Way Place, a Temporary Location given the dummy object A',
(The system does allow movement over A', but not A, without
worrying that A' ought to be moved before B is moved,) In
some cases there may be a great number of paths that have
been planned, and an equivalent number of dummy objects,
An Out of the Way Place in these cases would be a Temporary
Location, given all the dummy objects,

The rule that an object must be moved to a Temporary
Location as an Out of the Way Place is overly restrictive,
To move the object to a location where it is no longer on
the space occupied by any of the dummy objects, in the large
majority of cases, would be satisfactory. But if this rule
1s used, there will be cases in which an object is moved to
a position from which it cannot be removed, and later in the
task, the need may arise, Requiring that the object be moved
to a Temporary Location guarantees that it can be moved later

if necessary,

Finding the Order in Which to Move Several Objects to

Final Positions

The system, as described, works very well unpiling a

114

stack of objects. But as so far described, it has no way to
put more than one object at a specified final position. To
overcome this deficiency, the ability of the system to un-

pile stacks of objects will be used to find the order to put
them into a specified pile. To accomplish this, the task is
reversed; that is, the time sense of the task is reversed and
it runs from finish to start, The objects with specified final
positions are moved from their final positions to their initial
positions, Objects that have no designated final positions
remain at their initial positions. (See Appendix B for the
solution of a problem this method poses.) The TASK TREE as
previously described is used to keep track of the order the
objects are moved, As there are no gravity effects, springs,
clips, etc.,, and the time sense of the task is reversed, the
order that objects are taken out of the pile is the reverse

of the order that they would have to be put into the pile,

The system remembers the order the objects are moved from

final positions., Once an object is moved from its final
position, it can be moved any place where it will not inter-
fere with moving the other objects. The easiest thing to do
is to make the object disappear from the system's internal

model of the space,

115

The system sets up the TASK TREEL for moving objects to their
final positions by putting the tasks on the TASK TKEE in a
single stack in the reverse of the order found above, 1hen,
as each object is moved to its final position, it is set as
immovable to insure that the system won't move it out of the
way of some other object,

After each object is moved to its final position,
a check is made to determine if any other object with a spe-
cified final position has been moved, If one has, then the
order in which the remaining objects are moved to their final
positions must be recalculated., The reason for this is as
follows. Suppose that when the system first determines the
order to move objects to their final positions, several
objects' initial positions are also their final positions.,
The system cannot determine the order to move these objects
as it doesn't have to move them, Later, during the task, one
or more of these objects is moved out of the way. Now the
objects' final positions and present positions (their present
initial positions) are different, and the system must determine
an order for moving them to their final positions,

In summary, the part of the system that determines
the order of moving several objects to final positions works

as follows, The system determines an order, puts this on the

116

TASK TREE, then moves objects until the first object is
moved to its final position, Then the system checks if

any other objects with specified final positions were moved.
If they were, the system determines an order for the re-
maining objects, and continues. In a worst case, after
moving each object to its final position, the system would
have to recompute the order for moving the remaining objects
to their final positions. But as there can be only a finite

number of objects in a finite space, the system will complete

the task,

Ll

Chapter V Capability of This System to Find Solutions

In this chapter, types of tasks for which this system
will find solutions will be discussed, For the discussion,
restrictions previously explained will be assumed to hold,
We begin by investigating those tasks for which the system

might not find solutions,

Tasks for Which the System is Not Assured of Finding Solutions

Before beginning the explanation, Connected Out of the

Way Places must be defined, To aid in the definition, a

simple example will be used, Say the system is planning to
move object A, and finds that object B must first be moved
out of the way. B is moved to Out of the Way Place Xl, 1In
the space there is another Out of the Way Place X2. X1 and
X2 are Connected only if B can be moved from X1 to Xz after
A is moved to its final position, without having to move A,
In general, two Out of the Way Places, Xl and XZ, are
Connected only if an object can be moved from one to the
other without having to move any objects that are in theilr
final positions, Note that what might be Connected Out of
the Way Places for one object might not be Connected Out of

the Way Places for another object.

118

Two contrasting examples follow., Figure 37-a shows
an initial position and figure 37-b the final position., In
this task, all Out of the Way Places in the space are connected,

In figure 38, objects Y and Z are fixed, Figure 38-a
shows the Initial Positions and figure 38-b the Final Posi-
tion, In this task, Out of the Way Places X1 and X2 are not
connected. B cannot be moved from one to the other after A
is moved to its final position, The situation shown in
figure 38 leads to a task the system cannot solve, The in-
itial position could be as shown in figure 38-a, with the
final position shown in figure 38-c,

The solution to this task is to move B to the left,
then A to the right, then move B to an Out of the Way Place
on the right side of Y and zZz. Then move A to its final
position, then B to its final position, The key to solving
this task i1s moving B from the left side of Y and Z to the
right side, This step moves B to an Out of the Way Place
from which the task can be solved, The left and right sides
of Y and Z will not be Connected Out of the Way Places after
A is put into its final position, A solution is possible
only if B is in the set of Connected Out of the Way Places

to the right of Y and Z,

119

Tagsk in which all Out of the Way FPlaces are connected

LriFial Fostions

Figure 37=-a

/:;75cz// 72%\5/}%}0}75'

Figure 37-b

120

Task in which all Out of
the Way Places are not
connected

Tnrbiat Pasitions

ANy

Figure 38-a

@ Frhal ?05/'7[/&05

Figure 38-b

SUNNVE NN NN

121

Final Positions of a task that the demonstration system
cannot solve

Firna/ ?%6/' Frams

TSOONOONEINANNNN N

Figure 38-c

122

The system would attempt to solve the problem as
follows., B would be moved to the right, then A would be
moved to its final position and set immovable, The system
is now blocked, It will not be able to move B to its
final position. Note, if A were not set immovable the sys-
tem would be stuck in an endless loop, moving one object
out of the way, the second to its final position, then
Out of the Way again, then the first to its final position,
and so on,

What the system needs to solve problems of this type
is a routine that divides Out of the Way Places into Con-
nected sets, and determines which of the sets of Connected
Out of the Way Places are acceptable for solving the task.

It is possible for the system to solve tasks that
have non-Connected Out of the Way Places, But the system
can fail if the task is such that the system doesn't hap-
pen to find the solution.

In cases where the system will not find solutions,
the operator can give the system a sequence of intermediate
final positions before he gives it the desired final positions,
This method guides the system toward the solution, In the case

of the task specified by figures 38-a and 38-c, the operator

123

could give an intermediate final position for A and B to
the right of Y and Z,

There is one other assumption the system makes, It
assumes that the jaws can get to their final positions. The
system is designed to make sure the jaws are not trapped
after they move an object, but it is not designed to make
sure the jaws can get to their final position. The only way
the jaws cannot get to their final position is for the
jaw's final position to be blocked by a movable object which
has no specified final position which is in turn blocked by
a movable object that has been moved to its final position,
Figure 39 shows a task of this type, The jaws will not be

able to get to their final position after they move A,

Tasks for Which This System Will Find Solutions

There are two types of tasks the system can solve,
It can be requested to move one object to a specified final
position or to move two or more objects to specified final

positions,

lask Type: Move One Object to a Specified Final Position

Sufficient Requirements for a Solution:

Sufficient Out of the Way Places

124

Task in which jaws will not be able to move to thelr
specified final position

Initial Posirtions

=

E

Figure 39=-a

Fnal Psitrons

i Lt i |

I 1| A

=it
e = J

The Final Position of B is not specified, It 1is
shown only to emphasize the Final Fosition of A,

Figure 39=b

125

How the Solution li Found

The system starts by asking the shortest path algorithm
to find a path., The shortest path algorithm returns a value
corresponding to a) no solution, b) path found, c) path found
but requires moving objects out of the way, For the moment,
assume that a) does not occur, If b) is returned, the solu-
tion is found, If c), then the shortest path algorithm tries
to find paths to Out of the Way Places for each object in the
way. For each attempt to find a path, a value corresponding
to either b) or ¢) is returned, Lach time c) is returned,
at least one sub-task--each requesting an object to be moved
out of the way--is put on the TASK TREE, Eventually, for
one object the shortest path algorithm must return the value
corresponding to b), The system cannot indefinitely return
c) as there are a finite number of objects, and the system
detects logical loops in the task structure, (The maximum
number of times c) can be returned is one less than the number
of movable objects in the space.,) When the value correspond-
ing to b) is returned, the system can move the object out of
the way, The system can then move the previous object
(previous object means the object named in the predecessor

task on the TREE) out of the way, and continue until it has

126

moved the object the operator requested., (Remember that
moving an object out of the way means it will be moved
out of the way of all objects whose paths have been planned,
and not just the previous object,)

On the other hand, if a) is returned when planning
to move the object requested by the operator, the task is
defined is impossible, If a) is returned when planning to
move other objects out of the way, the system does not con-
clude the task is impossible, It attempts instead to find
an alternate solution to the problem., The system sets the
object it tried to move temporarily immovable, (This ob-
ject is set movable again when the predecessor chain of
the TASK TREE is changed from what it was when the object was
set immovable,) This forces the system to find an alternate
plan for moving the previous object, This strategy assures
that all reasonable combinations of moving objects out of the
way will be tried before the system declares the task to be
impossible, Therefore, if there is a solution, the system

will faind it.

Task Type: Move Several Objects to Specified Final Positions

Sufficient Requirements for Solution:

127

1) Last out - First in rule applies. (It must, as
the time sense of the task is reversed,)

2) All Out of the Way Places for objects that have
specified final positions are Connected.

3) There are sufficient Out of the Way Places.

How the Solution 13 Found

Requirement 1 guarantees that the system will find
the correct order for moving objects to their final positions,

Requirement 2 guarantees that if an object can be
moved from any one particular Out of the Way Place to its
final position, then it can be moved to its final position
from any Out of the Way Place in the space, Also, as it is
assumed that diodes do not exist in the task space, an ob-
ject can be moved from any Out of the Way Place to its in-
itial position, For a solution to the task to exist, the
system must be able to plan a path for the object from its
initial position to its final position, Therefore, if an
object is in its initial position or any Out of the Way
Place, a path can be planned to move the object to its final
position,

The above guarantees that paths can be found and

will be planned in an order that will solve the task--if

128

a solution exists, Now, all that remains is to show that
each object will be moved to its specified final position,
But this is identical to the first task type, and it has
already been shown that these solutions will be found,

Therefore, the solution to the complex task will be found,

129

Chapter VI Self-bDiagnosis of Failure

Failures occur only 1in the shortest path algorithm,
The shortest path algorithm fails by not finding a path
with the required end points, Failures occur, for example,
because immovable objects or walls prevent the jaws from
grasping or moving an object. Failure can occur either
in planning the object and jaw's motion, or in planning only
the jaw's motion (jaws moving with object stationary)., As
presently implemented, the system cannot distinguish where
the failure occurs,

The presently implemented version of the system
has very limited failure diagnosis features, If a task
fails, the system gives the operator a chance to inspect
the TASK TREE as it was before the failure, From this in-
spection, the operator can gain an understanding of the
state of the entire task, including the specific Simple
Task that caused the failure, If the Simple Task was ex-
plicitly requested by the operator, the system decides the
entire task has failed, and halts, If the Simple Task was
generated by the system, the system attempts to find an
alternate solution, It is possible that a solution has been

overlooked, To search for this solution, the system sets

130

the object it tried to move fixed, and continues with the
complete task by attempting to execute the next task on
the TREE., By doing this, the system will try moving all
reasonable combinations of objects before it abandons a
task as impossible, The system 1s designed to attempt
these recoveries as it may decide to move the wrong object
First,

In addition to this failure procedure, there are
others that could be implemented. One possibility, sug-
gested above, is to indicate which part of the shortest path
algorithm failed (moving jaws and object, or jaws alone).
This would help tne operator discover the exact cause of
failure.

As another possibility, when the system finds that
it must move objects to Out of the Way Places before it finds
the paths, it could compute the area required for these Out
of the Way Places. If this area were greater than the area
available as Out of the Way Places, an appropriate error
procedure could be entered,

Also, it might be possible for the system to check
that all of the Out of the Way Places are connected for

each object that has a specified Final Position,

131

These failure tests cover all of the possibilities
of the system failing, except for the Last out - First in
requirement, But the Last out - First in rule must apply

as the complete time sense of the task is reversed,

132

Chapter VII Economic Advantages of the System

A Comparison of a Complete Optimization Method, Whitney's
System, and This System

Whitney,32 in his Chapter 5, discussed the reasons
for not using full optimization methods to find paths for
planning to move two or more objects, He also outlined a
method to find paths for moving more than one object., This
method depended on an operator specifying sets of Out of the
Way Places for objects, It finds an optimal set of paths
(given that the operator specifies the Out of the Way Places)
for moving the objects, but at a cost of inconvenience to the
operator and of the system having to compute many paths,

Whitney's system and this system will be investigated
and compared below to determine which one should be used for
greater efficiency in various situations, The time taken to
find complete task solutions and the cost of the total paths
found will be compared, It is assumed that both systems use
the same shortest path algorithms,

The first task investigated is moving one object, i,e.,
a simple task, Whitney's system will perform better in tnis
task, as it does not have to support the overhead of the

second level problem solving system. The paths found will be

133

the same cost, but the computer time used will be greater
for this system, However, the time will be greater by only
one-tenth of a second or less (enough time to process 10,000
instructions on a slow computer), Therefore, there is a
very slight advantage for Whitney's system in this case,

Second, consider the task of moving one object that
requires having to move one other object out of the way.
(For example, a doorway blocked by one object.,) Whitney's
system requires a human operator to specify a set of Out
of the Way Places, The number of paths (here one path is
the solution to one simple task) Whitney's system computes
is 1+2+n where n is the number of locations in the Out of
the Way Place set supplied by the operator. The minimal
value for n 1is 1, and the minimal number of paths computed
is three, This system computes three paths, at all times,
and it could handle all the necessary computations in the
second level of the system in less than one second as this
case 1s relatively simple. Presumably, the operator using
Whitney's system would require at least one second to specify
one Out of the Way Place,

As to the path cost consideration, both methods
should find paths that cost the same, as there is no choice

of which object to move first, There is the possibility

134

that the operator using Whitney's system would pick his
Qut of the Way Place far away from the path, further than
the minimum distance necessary, and hence his method would
find costlier paths,

If the set of Out of the Way Places contains more

than one item, then Whitney's system will be much slower,

l+2 ol
_T—

as the large majority of the time in this system (99% or

The ratio of computing time can be approximated as

more) is taken by the path finding algorithm,

For this case then, we find both systems to be equally
good, provided the operator of Whitney's system chooses one
Qut of the Way Place which is the optimal Out of the Way
Place, If he picks any other location, or more than one
location, the performance of Whitney's system will not be as
good as the performance of this system,

Third, consider the task of moving an object that
requires having to move two additional objects out of the way.

¢ paths with the

Whitney's system requires computing 1+4n
minimum value of n -equal to 2, This is a minimum of 17
paths to be computed, My system requires computing a maxi-

mum of five and a minimum of four paths, The savings in

computing time is greater than a factor of 3, This savings

135

increases rapidly, as the number of Out of the Way Places
the operator specifies increases. For n=3, the number of
paths found is 37, for n=4, 65, etc,

From a cost of paths standpoint, Whitney's systen,
if directed by a good operator, may find paths that cost
only 4/5 as much as the paths found by the system described
in this thesis, This difference, 20%, would not seem to
compensate for the difference in computer processing times,
300% plus. This 1is more than an order of magnitude differ-
ence in the percentage differences (20% against 300%).

For this situation, it can be concluded that this system

is the best to use., Note, that for moving four or more ob-
jects, the advantage of using this system increases over
that found for moving three objects,

In summary, Whitney's system may have a very small
time edge when moving one object., When moving two objects,
the systems are about even, given a good operator for
Whitney's system, But when moving three or more objects,
this system requires only 1/3 or less as much computing
time as Whitney's, with the penalty of the paths being at
worst 20% more costly than those found by Whitney's system,

If choosing a system, one must weigh the advantage of much

136

reduced computing time against the potential disadvantage
of slightly more expensive paths, Additionally, one must
remember that the system described in this thesis has the
ability to discover whether additional sub-tasks must be

solved to solve the requested task,

137

Chapter VIII Lxamples Solved by the Uemonstration System

This section includes several examples of tasks the
demonstration system solved, The system output is an oscillo-
scope display of the movement of the jaws and objects. The
motion is shown as a series of still pictures, The differ-
ence between two succeeding frames is usually that the jaws
or the jaws and an object have moved one unit., 'The regular
display intervals and the after-images combine to give the
appearance of jerky but regular motion., The display frames
are numbered sequentially in octal, except that occasionally
three numbers are skipped., For example, in Task 1 frame 35
is shown immediately after frame 31, The frame numbers refer
to relative computer locations., Locations 32 through 34 con-
tain information necessary to set up the display lists,

The output will be presented here as a sequence of
photographs. Not every picture presented on the oscillo-
scope display will be included., The display frames not
shown consist of motion in a straight line or in an obvious
path, For example, in Task 1, the motion from frame 35 to
frame 47 consists of the jaws moving in the +Y direction,
from (5,5) to (5,17). Also, in Task 1 when the jaws move
from their position in frame 103 down to b, frame 107, they

move around C at (20,21),

138

Plans that the system makes to discover which objects
to move out of the way are indicated in two ways, First,
the word '"PLAN" appears at the top right of the picture.
Second, a ghost image of the jaws and the object being moved
shows the plan, Frame 21 of Task 1 has a ghost image of the
jaws and object A at (10,20). In a plan no object or the
jaws are actually moved, Frame 31 is the last picture in
this plan, Frame 35 is the next picture shown by the dis-
play. The order for viewing the pictures is to compare
the Initial Positions and Final Positions, start with the
Initial Positions and go through the numbered frames in
order, and finally compare the last numbered frame with

the Final Positions,

Iwo Examples Presented in Detail

Task 1

The first task requests moving one object to a
specified final position, Figure 40, a representative
drawing (not to scale) of the initial positions of the ob-
jects, is included as the letters on the objects in the
photographs are difficult to read, 7lhe final position of

object A is the same as the initial position of object F,

139

_Z;')ﬁ‘/'a/ 7%3/.7//5,75
Jask 1

Objects A, B, C, D, E, and F.

All objects are movable. .

Figure 40

140

The task proceeds as follows. The jaws move up
(frame 5), open and grasp object A (frame 11), move the
object A's ghost image up and right to its final position
(frames 21, 26, 31),

The system discovers objects B and F are in the way
and generates sub-tasks to move them out of the way. The
TASK TREE at this point is shown in figure 41, The jaws
move up and over and push B up three units, out of the
way (frames 35 to 65). The system now plans to move F
out of the way, by pushing it across object D (frames 71
to 77), The TASK TREE at this point is shown in figure 42,
The jaws move D out of the way of F (frames 103 to 112),

F is then moved out of the way (frames 122 to 125). The
jaws then grasp A to carry it to its final position (frames
145 to 200), Finally, the jaws move to their specified
final position (frames 205 to 211),

There are two aspects of this task that deserve
special notice., The first is that in moving A to its
final position, the jaws grab it on its left and not on the
right as a straight forward minimization would., This happens
because the shortest path algorithm starts at the final

position (not a Temporary Location--see frame 200), and runs

141

Task 1
TASK TREE
TOF
#1
=
#3 #2

Interpretive List

task #1 move A to (20,20)
task #2 move B out of the way

task #3 move F out of the way

Note: The system executes the bottom right sub-task
first; in this case, #2.

The TOP task is a null task, used only as a reference
by the system. If the TOP task is the only one left
on the TASK TREE, the system knows it has finished the
complete task.

Figure 41

142

Task 1
TASK TRED
TOF
#1
#3
#4
Interpretive List
task #1 move A to (20,20)
task #2 move B out of the way
task #3 move F out of the way
task #4 move D out of the way

Note: Although task #2 is still on the Interpretive
List it will not be executed., Only tasks on
the TASK TREE are executed.

Figure 42

143

to the initial position (a Temporary Location--see frame 145),
The second is the detail of the jaws opening and grasping A,
frames 154 to 160, When the jaws grasp an object, the motion

is similar to that shown by these four sequential frames,

144

INITIAL POSITIONS FINAL POSITIONS

e AT LR e

FRAME @285 FRAME 8811

oMo,

34
33
3
26
i
g4
32
21
20
iz
.
12
i
g
52

i

=PGBI IS MOS0 IS TO0 B O

SN ENEHE I bttt r s U

123456701234567012345670123456 T2 AL e Bl os4c67010345670123456

FRAME 8621 FRAME @826

3

L L T By e D WAV R, 1o (o B TN M o et B VS N N T
A pspspmt et ba [OFONOM

mml‘l-‘h"—""." == POMONO NN NN NG (I

123456701234567012345670123456 123456701234567812345670123458

145

8a71

FRAME ©@3S
AME

FR
S45B7P1234567012345670123456

123456701234567012345670123456
1234567012345670123456701234586

Ui DUt DL XU DL (0
SR T S AR 8]

7

FRAME 0804
RAME B8BES

F

©
0
*
)
o
-
©
o
©
10
-
]
o
—
®
I
©0
1
+
)
o
-
@
N
0
n
o
)
04
-

123456781234567012345670123458
123456701234567012345670123456

LN O G ADL) (OO~ COLT 000U DO 0L (0~ LU (OL 0O U (0L 00U i (L o P P
A IO IS bbbttt CHEN NI s A S DD TR P At L 2 S

146

FRAME @877
FRANE @187

123456701234567012345670123456
FRAME @122

123456701234567012345670123456

DL U D DL CWU D DL AT MU, LAt (MU0 OO0
< 5 Uttt SO Ml 20 B snd A (IO DI LN (L 03t
. QU CLICUO Ut ettt NN NN

eiiz

FRANE

1ot {V1]
- {1
i +
s L]
s o
by -t
L
: :
- w0
o 0
i :
A o
vo L'l
2] -4
¢

®
t i
0 el
by w
n +
4 o
Lt} P
joad al
td {1
B »
0 o
0 I
A +
Lv] (D
oy e
o) il

123456701234567012345670123458

I OO0 (O T, 0L O s o oo e) = ;
SRR 2 o SR et o AR R S A A T S SR S R AR D R

147

FRAM
AME 8125 . FRAME B14S

T =T I D MO W IO b

Ty S
Lo LT o B T 0 1y

(M DT ety et ok e OFONOMONONONINOL.

345 23 7elig 7 34
123456701234567012345670123456 I EACEr 0121567 012345670125456

FRAME
8154 FRAME B15S

2
3
1
2
:
e
g
3
2
1

:
:
1
1
i
I
é

Lo O L s i A

N U DD bt sttt

F-% 2 -
1234567812345670123456701234586 123456701234567012345670123458

FRAME @156 FRAME 8157

== M

TOMONOTOMOMONMOGI

UL D N HD M- D NG T00)R (DT

ror

G T IS

NN DDt bt s
R0 T T

N EHH TSI 1t bbbttt

purt

123456701234567012345670123458

148

FRAME B178

FRAME 8160

S6701234567012345670123458

34

DL EIOU—D O EIB O (D0
&% EcEEﬁ.hﬁB‘_sTiLllliﬂm“%ﬂﬁém

0
]
-«
)
(]l
s,
=3
1
(D
n
+
{11
o
—
o
N
7]
(1]
+
)
0
=
=
{29
(1]
Ln
+
0
0l
=

e (DL EI i S DU
R T e A 2 0 o

FRAME B2B7

FRAME @228

U,

LS OLON (U D DL
St _TLIIYMU1LML%1%

7012345670123456

12345670123456

LOLT OO0 I O (U~ (0L OO0t

IO OO O bbbt et e SN

LI DL CWU DR DL (U DL O
& A e

3456701234567012345670123458

2
a

149

Task 2

Task 2 gives the system an opportunity to move
several objects to specified final positions, Figure 43-a
shows the initial positions and figure 43-b shows the final
positions. These are included to aid in identifying the
objects in the photographs; neither figure is drawn to scale,

The task begins and the system determines the order
to move the objects to their final positions is A first,
then B, then C, The system plans to move A to its final
position and discovers that C is in the way (frames 11 to
44), The system then plans to move C out of the way and
discovers B is in the way (frames 50 to 72)., The system
then plans to move B out of the way and discovers A is in
the way (frames 76 to 126). The TASK TREE at this point
is shown in figure 44, The system now moves A out of the
way (frames 132 to 151). Note that this is the first time
an object has actually been moved in this task, The sys-
tem then moves B out of the way (frames 160 to 176), followed
by C (frames 205 to 234), At this point, only sub-tasks
#1, #2, and #3 remain on the TASK TREE, the others having
been successfully executed and removed,

The system continues and moves A to its final posi-

tion (frames 243 to 272), followed by B (frames 301 to 341;

150

_Z‘/?/fl/'a/ BS/'%/an
lask 2

N\

All objects are movable

Figure 43-a

Final Fositions
Task 2

Figure 43-b

TASK TREE

Interpretive List

task #1
task #2
task #3
task #4
task #5

task #6

Note:

move

move

move

move

move

move

C

B

A

(5

B
A

151

Task 2
TOF
#1
#2
#3
#h
#5
#6

to (6,4)

to (4,3)

to (2,2)

out of the way
out of the way

out of the way

The sub=-task, "move g out of the way" is not
the same as the sub-task "move q to position

(le)'"

Figure 44

152

note in frame 301 jaws close at (3,2) for minimum cost path

to (20,4)), and then C (frames 350 to 377). The jaws re-

lease C and move to their specified final position at (1,5)

(frames 400 to 414),

155

FINAL POSITIONS

INITIAL POSITIONS

1234567012234567012345670123458

Ut (DL WU L (It
ULt bt ettt M NN

0
{2
s 2
L]
o
-
(=
L
0

LOLO T LOLOT (90t
L ottt ettt e SN SIENIS)

FRAME 88215

OO0 OO (90—
bttt RSN

34567012345670123456

2

123456701

1231567912345879123458?9123158

345670123458

5
2

3456701¢

4567912345670123456

3

12345678012

154

FRAME @048 FRAME 0841

(SNt it st

leaicRiBlesacErolactoc Rlnotae [EEii6r01254567012345670123456

FRAME 0044
A FRAME BASQ

t
i
42
g
4
2
1

S

(SN

P1234567012345
gresss 1234587312345878!2345576123456

FRAME BB5E

M =t bbb 14
L [T s L g LRV Ay e

=

I NACErP1234567012345670123456
LE = i 2 1054567 P1234567012345670123456

FRAMNE B2c+

(T ot et o et e
D /
(NN TN s et st T}

(EHEENE
L [T R

3456701234567012345670123458

FRAME B818E

1

15
14
H
2
&

2345670123456

156

144

ME
P1234567012345670123456

A

123456701234567012345670123458
FR

T S456701234567012345670123456

PO OU D00

AR
U DL 00—

et SN E MMM

o
n
+
]
L]
-
]
.
0
0
+

12345878123456.’—"9123156?5133455
1234557’31E:B‘}SBP'BIES‘?ES?QI2-’3156

CADL T (U LOL (90t
DU St et ot ot et ettt UMMM o 4, 0 {
DN e e vy OO ¢ Ur DI OO (Ot
= bt bt U SHENEHENENEE)

157

FRAME 8168 FRAME

MM EHTHE
L LTS N (s s T

Loty

IESASErD12345670123456701234586

FRAME 8167 FRAME 8176

FRAME @ FRAME 8217

15%

70123458

012345670123456

123456701234567012345670123456
345670123456

c 400
.kllllls;llﬁaﬂ.ﬁ__m..h:,t .H. st

MENSINS)

43

0
(L2}
+
L3}
Lof]
—
2
[\
w0
{13}
o+
(]
ol
—
o
158
w0
L
<+

FRAME 8223
FRAME B2
3

1234567812!

Oy Ut 0L et : 1
ottt e et SN AT Y o 4 : v B i . AU (DL 00—
et ENE NSNS

FRAME BZES

TR B VR Ry

ISt bttt b n PP PP

PTG T =00,
TG0 ORI NI MO b UT) NI E=FO

D SN s bms st b b= U

1254t er01234567812345670123456 TILILLa1 k]

1
16
15
1
¥
1
1
1
1%
[

DS

7012345678123456

W et ot ot ot et s (1)
INIE= TGS U NI S 1y

1234567P12345670123456708123456

160

FRANE FRANE

FRANE

16L

w
o9
[}
@
w
b =4
T
(4
w

TS O MU DO

D
LD
<+
L}
Ll
-
S
L3
0
L
+
syl
L'}
-
()
(1
7]
{1a]
-+
00
0
-
o
{38
0
U
+
L]
(U]
-

ICUCUO it ot ettt SHEME W EMENE

A O LT Ut o
oa..EE:._9._Eemawxmthalluéluéng:ﬁr:ﬁaghl

1234567081234567012345670123456

2406

FRAME

020

123456701234567012345678123458

OO LT CHU
et S D

345670123458708123456

>
e

123456781¢

u 1.1.7 .bSA. U O OIS COLO 0 —
y LU it bt bt SHE VS HE NSNS

162

Four Examples Briefly Presented

The following tasks are shown in much less detail
than the previous two. The pictures of the first two tasks
should have given the reader a good feeling for the paths.
These latter tasks are included to give the reader some idea

of the types of tasks the system has solved,

Task 3

Task 3 is called a "locked doorway" after Whitney's3l
"blocked doorway." The initial positions are shown in fig-
ure 45, Objects X and Y are immovable,

The task proceeds as follows, A plan is made to
move A up and then to its final position during which the
system discovers objects C, D, and B are in the way
(frames 14 to 26), The system plans to move C out of the
way and finds D in the way (frames 41 and 46), The system then
plans to move D out of the way and discovers A is in the way
(frames 60 and 74), The TASK TREE at this stage is shown in
figure 4o,

The system moves A out of the way (frame 105) and
then D (frame 131), At this point the TASK TREE is as

shown in figure 47, The system then moves C out of the way

163

Initial Rsrtions
Task 3

L

Objeects A, B, C, and D are movable.

Objects X and Y are immovable.

Figure 45

164

Task 3

TASK TREE
TOH
#1

[|
#3 #2 level 3

#3 level 4
#5

Interpretive List

task #1 move A to (12,12)

task #2 move C out of the way

task #3 move D out of the way

task #4 move B out of the way

task #5 move A out of the way

Note: Sub-task #3 appears on the TASK TREE twlce. The

first time, at level 3, it requests D to be moved
out of the way of A's path. The second time,
level 4, it requests D to be moved out of the way
of A's planned path and C's planned path., After
sub-task #3 at level 4 is executed, both it and
the occurrence of sub-task #3 at level 3 will be
removed, See figure 47,

Figure 46

TASK TRAL

Interpretive List

task #1
task #2
task #3
task #U4

task #5

move

move

move

move

move

Q

> W o

165
Task 3

TOF

#2

to (12, 12)
out of the
out of the
out of the

out of the

Figure 47

#

way

way

way

way

166

(frames 160 to 106) followed by B (frames 212 to 231),
The system then moves A to its specified final position
(frame 267) and the jaws move to their final position

(frame 303),

26T

ITIONS

FINAL POS
34567012345670123456

ela:d
123456701234567012345670123456

ahelim ; D (L) D0 DLt
ettt ettt S P bl o 1 B

ONS

D
{0
+
£]
Lt
—
()
T
(0
L
-+
(2}

0SITI
23456701234

INITIAL P
FRAME 8814

U XU RO 00~ D0 OLIT I DN LI IS B i
bttt ot ot ot U SHE NSNS Ayt 19% 0Hﬂ...m Uﬁ.?._ ..nﬂmm..mun.&.ml

L CO U S COLO U

bbbt S NSS!

16y

45B87012345670123456

3

1234567012!

345670123456

S O U O 00—
U eyt ot vt vttt = SHENEMENENENEY

34567012345670123456

o
e

7Bl

1234567

@
L0
<+
)
]
-
-]
N
@0

5

12345670123456701234¢

169

o
==
o
(]
171}
E
@
o
(TR

FRAME @166

S DL T COLY 4O S LY (OOt
OOttt ettt SHEMEN NN

FRAME 8383

OO et et bt vt A MM HE NSRS

170

Task 4

The object of Task 4 1is to switch the positions of
objects A and B, The system decides the order to move the
objects to their final positions is B, then A, The system
plans to move B to its final position and finds A in the
way, (frame 27)., It then moves A out of the way (frame 46),
moves B to its final position (frame 100), moves A to its
final position (frame 145), and directs the jaws to their
final position (frame not shown as it is identical to the

Final Position picture).

LAL

FINAL POSITIONS

0D O TS DL 00—
OO OO Uttt ottt ot RN

o
=
o
—
=
-
[
(=]
o
=
T
=
=
-
=z
=1

DT CIU AT DL Ot DL HCHU D L0t
OISO O OOttt bttt M ENEND)

56

1234567012345670123456701234

FRAME @827

AOL ORI DL MU0 DL 00U~

OO ULt ettt ot ettt S ST

U OO COLI U (LT SOOI

AOOUCICUOI U vt vt et vttt SN EHENEND

122456701234567012345670123456

FRAME 8188

L (DU WL MU= L (U

DL AU DO (DDLU S0 DL (00—

OO OO QUL vt et vt vttt et S MMM

123456701234567012345670123458

172

Task 5

Task 5 is presented to show some of the abilities of
the implemented version of the shortest path algorithms, the
lower level of the system. Object A is movable, X is fixed,
This task could have been solved without the upper level
of the system,

The task is accomplished as follows, The jaws grasp
A's right protrusion (frame 21), move A to (14,2) (frame 33),
move around to push (frame 45), push A to (17,2) (frame 50),
move around and grasp the left protrusion (frame 63), move
A to its specified final position (frame 76), and finally
the jaws move to their final position, The last frame is

not shown as it is identical to the Final Positions picture,

1.7

@

INITIAL POSITIONS FINAL POSITIONS

ANttt
=GR IR0

fit i PPN 1
PG IO T

123456701234567012345670123456

FRAME @21 FRAME 8833

AN NN e tshstis i LU
T e N I MO e LT == 0,

BI234557 01234067012 I930 TESiCEr0la345b701a545670123456

[\

FRAME @858

FRAME 0845

LS R
ittt ettt MDD

DL (U (L 00—
ERDENHD

34567812345670123456

P12345670123458

o0
L0

123456701234

175

Task 6
The final task, 6, is presented to show that the sys-
tem can solve an arbitrarily complex task., The goal of the
task is to move object I (the object alone above the large
group) to the location object H presently occupies (the
upper left in the group). All objects are movable except
Z, the long object, The objects in the task are B, C, D, E,
G, H, I, J, and Z, Frame 1464 shows the position of the objects
after they have been moved so object I can be put into place,

Frame 2461 1is the last frame of the task.

INITIAL POSITIONS FINAL POSITIONS

L

NSNS e bt pt i PO OO OMNOTY
Lt s L R
Lo (TR s L A N Ty

123456701234587012345670123456

FRAME 1464 - FRAME 24€1

-

ST St bt o gt et et [

G

[L7 7 i e o O S PR X T

123456701234567812345670123456

1%7

Chapter IX Specific Problems for Future Work

The work necessary to implement the system, the
thought in formulating the concepts, and subsequent re-
flections have illuminated several problems that need

future work.

What li a Handle?

The first problem is the identification of a handle
on an object. For some tasks, with some objects, people
have no problem distinguishing which part of an object is
the handle, For example, the handle of an ordinary screw-
driver is easily distinguished, But, as a counter example,
consider the combination pliers, shown in figure 48, which
can be used as pliers, screwdriver, wrench, wire cutter,
and possibly as a hammer, One must know how he is going to
use this tool before he decides which part will be the
"handle," ilowever, people normally do not consciously cal-
culate their actions., Ordinarily, they do not think what
part of an object is to be the handle, They just pick the
object up by the most convenient part; and as they work,
they frequently change their grip to others that better suit

their immediate purposes, The process is more reflex in

Combination Pliers

Figure 48

179

adults than conscious effort, People, then, solve the
handle problem by:

1) having the ability to change their grip

frequently and easily, and

2) having the ability to know what they are

going to do with an object before they
pick it up.

When pushing, the problem of what a "handle" is,
where to push, is a bit simpler, To push an object, one
contacts the object so that the line drawn from the point
where he is pushing through the center of gravity (or the
center of adhesion to the support surface) of the object
is in the direction the object is to move, If this posi-
tion on the object is not available (for example, if the
object is next to a wall), one tries to find another place
to push so the object will move approximately in the de-
sired direction,

The system uses some arbitrary rules to help it solve
the problem of where an object should be grasped, The sys-
tem tries to find a point closest to the middle (Y direction
only) of an object to grasp. If it has a choice of places,

it picks the one that is the cheapest for the jaws to get to,

180

In the examples run on the system, these two heuristics worked
very well, (In no case was a task or object designed so as
to insure the system would behave '"nicely,'") As an example,
consider the object shown in figure 49, If the jaws can, they
will grasp the right protrusion rather than either of the left
ones, The decision this system makes about a place to push
is very simple; it chooses the cheapest one it can find
(that will move the object in the correct direction), It
makes no effort to push through the center of gravity, as
all motion 1is restricted to the X and Y directions.

As the system is presently implemented, it remembers
only one grasp position and four push positions (one for
ecach direction). The system could be made much more flexi-
ble if it remembered (and calculated paths for) all possi-
ble grasp and push positions., This procedure would give
the system the ability to change from one grasp position to
another if it wanted, This procedure could be implemented
only by increasing the number of values on the G (grasp and
push) axis in the object state space, the number of points
in the space, and the processing time needed to find a short-
est path., TFor complex objects, these increases could be a
factor of ten or more, making the task almost impossible to

solve using the present techniques,

-
on
.

Y 4+

Jaws will prefer to grasp the right protrusion of the
object

Figure 49

182

What is needed, then, is a method which will allow
the system to change freely from one grasp position to
another but will not increase the size of the state space

nor increase the time necessary to compute shortest paths,

Variable Quantization of a Space

This system divides the space 1into equal sized
squares. This procedure is straightforward to implement
and gives easily interpreted solutions (patns). But it
is wasteful, as a lot of unnecessary points are stored,

The system allots the same amount of storage space whether
a space is empty or full of objects. Also, paths across
empty space are straight lines; the system should not have
to compute these paths in the same way as it computes the
paths around objects,

One possibility is to compute straight line paths to
the corners of objects, as 1is done by the SRI group.ZI’ &
This method assumes a path will be a straight line from
start to finish, or will be straight line segments from the
start, to object corners, to the finish, Figure 50 shows a
path found using this method, However, the discussion in
their reportszs indicates that there is some difficulty in

computing paths using these corner points,

183

Fath found using straight line segments to the corners
of objects

Finish

Fath

Sfﬁrl“

Figure 50

184

Another approach to the problem might be to desig-
nate points only around objects, and compute the paths in
the immediate vicinity of the objects in the same way as
is presently done, Paths across the empty space would be
computed as straight lines, A similar approach to the
problem would be to have variably spaced points in the
space, The spacing would be dependent on some function of
"interest'" the system has in an area,

Successful implementation of a method similar to
those described above would be of benefit in finding solu-
tions to manipulation tasks, Other fields that rely on

shortest path algorithms would also benefit,

Not Enough Out of the Way Places

In some cases, this system will fail to find task
solutions because there are not enough Out of the Way
Places. In these cases, solutions might be found if the re-
quirements for Out of the Way Places were relaxed, As men-
tioned earlier, the requirements are overly restrictive, The
unnecessary failures, caused by too few Out of the Way Places
in the task space, occur for two reasons:

1) Objects moved to Temporary Locations are, in

many cases, moved further than is necessary

185

to solve tasks,

2) There may be an interaction between an object's
shape and its Out of the Way Place, which re-
sults in an object's being moved further out
of the way than is absolutely necessary to
solve tasks,

To explain reason 2, task 2 of Chapter VIII will be used

as an example, Note the path planned for object A, frames
11 to 44, (This path is chosen as C 1s one unit wide where
A crosses it, and two units wide at the other possible
crossing point along the X axis, The shortest path algo-
rithms try to move objects through as little space occupied
by other objects as possible.) With this planned path, C
must be moved up to Y=14, Suppose instead that A were
moved down to the X axis and then left to its final position.
Then C would have to be moved up only to Y=12, Here C's
shape has influenced A's path, And A's path sets the re-
quirements for C's Out of the Way Place, Hence, C's shape
has influenced its Out of the Way Place.

Now to examine the two reasons for unnecessary failures

cited above, Objects moved out of the way are moved to Tempo-

rary Locations so they can be moved later, However, Temporary

186

Locations take more than the minimum amount of space to
store an object, decreasing the number of Out of the Way
Places in the task space, As an object does not always
have to be moved to a Temporary Location to guarantee that
it can be moved later, what is needed is a method to find

a location from which an object can be moved, that requires
only a minimal amount of space to store the object, Dis-
covering such a method is left as a future project,

In moving an object to a Temporary Location, the
assumption has been made that the object must be moved
again., However, in some cases, the object will not need to
pe moved again, DBut to keep the system from making irrever-
sible decisions, the system can decide to move an object
only to a location from which it can be moved,

Reason 2 (object's shape influences its Out of the
Way Place) leads to more specific suggestions., The first
suggestion is to change the algorithm to charge only once
for moving one object through the space occupied by another,
This procedure, unfortunately, would increase the running
time of the program as partial sub-paths would have to be
retraced frequently,

Another solution might be to move the in the way ob-

ject to various test positions, then try computing an object's

187

path to determine which of the test positions is the best
Out of the Way Place, This approach, however, would re-
quire computing multiple paths before some objects are
moved, Hopefully, there are other ways to find "minimal"
Qut of the Way Places.

There are puzzles which are difficult just because
there are few Out of the Way Places, A common example is
the "15 puzzle." (A drawing is shown in figure 51.,) There
has been some study of mechanical solution of various 15
puzzle problems, Most of these have depended on sub-goal
tree searching techniques, which are in essence the same as

the solution technique proposed in the previous paragraph,

Pushing or Carrying More Than One Object

Giving the system the ability to carry or push more
than one object presents a powerful tool for solutions to
very difficult tasks, To implement this ability would re-
quire a drastic change in the state space models of the task
spaces, as methods must be found which allow the state space
to describe the task; but, at the same time, keep the state
spaces from becoming too large., Perhaps the spaces could be
segmented in a way similar to that used to segment the jaw/

object spaces, But as the criteria for this new problem are

15 PUZZLE

12

1
5
T
15

189

not as strict and straightforward, the segmentation rules
will probably be more complex,

The above problem is very similar to the problem
of giving the system the ability to construct sub-
assemblies which would be used to build a complete assembly,
There are two different ways to incorporate this ability in-
to the system, The first is for the operator to indicate
that at a particular point in a task, a particular sub-
assembly must be constructed, This method could be imple-
mented on this system as it now exists by adding the neces-
sary functions to the TASK TREE section of the system,

The other way is to make the system figure out
when the sub-assemblies must be constructed, and which ob-
jects are to be combined to form the sub-assemblies., Sup-
pose the system is given a problem like "Here are n objects
to be put together to make final form Q," If final form Q
could be built from the n objects only by construction of
sub-assemblies using some of the n objects (the others being
used individually in the final construction), the system
would have a combinatorial problem larger than n!, If n
is much larger than 5 or so, presumably some heuristic meth-

ods must be utilized to keep the problem of manageable size,

190

Finding Connected Out of the Way Places

In future research, some method should be found to
determine the locations that are Connected Out of the Way
Places. A straight forward method to do this would be to
put objects in required positions (see Chapter V for the
definition of Connected Out of the Way Places), and then
determine if paths can be found to (or from) various
locations, But this method would require the computation
of many paths, a time consuming procedure, Hopefully, a

method can be found which is more practical,

Use of an N Level Method to Find Problem Solutions

———— — — —

To find solutions to complex manipulation tasks, the
system described in this thesis uses a two level method in
which the upper level deals only with abstract task re-
quests, The philosophy of using a two level method should
be extended to N levels, in which progressively higher levels
deal with more highly abstracted task requests. Such a solu-
tion technique may form a useful framework for solving prob-

lems such as those that require planning activities,

191

Chapter X Conclusions

1, The work of this thesis has demonstrated that a
two level system as specified below is a practical way of
solving manipulation problems, The upper level part of the
system is an AND TREE which orders sub-tasks, so that their
concatenated solutions result in the solution of a specified
complex task., The lower level part of the system consists of

a) a procedure for setting up a state space
which describes a sub-task, and
b) a shortest path algorithm which finds the
solution to the sub-task.
This scheme avoids the need for very large, many dimensional,
state space searches substituting instead an ordered series
of searches in smaller state spaces, It therefore makes
more efficient use of computer memory than schemes pre-

viously available.

Z, An operator can effectively control this system
as a supervisor, He inputs a task request by specifying the
desired goal state of the task space (he specifies what he
wants done; he lets the system figure out how to accomplish

it), and monitors the results, His decisions on what the

192

next task is, is influenced (but not determined) by the

response of the system,

5. The upper level system's mode of control of
the lower system is supervisory; the upper level system
gives the lower level system requests and then waits to see
what the results are, The lower level system's response
(i.e., no solution, conditional solution, or solution) in-
fluences the next request made by the upper level system,
There is no reason why one upper level system could not
supervise several lower level systems, Current computer
programming methods (re-entrant programming) makes this a

practical possibility.

4, The AND TREE is a general data structure which
can be used to order the sub-activities of any task, It
performs the same functions as a PERT chart, and offers the

same opportunity for general application.

133

AREendix A

Example of Two Stack Diamond Algorithm Finding Paths in a Space

The space is as initially shown in figure A-1, with
the transition costs next to the node links, All costs are
symmetrical, cost El,l)-—e (l,Zi} = cost [}1,2)-—9 (l,l)} =1,
The starting point is at (1,0, Its cost is zero, and it is
the only point on the "full" list, The other list is empty.

The situation is as shown in figure A-1 and below,

FFL EFL POINTS COST BPTHCF
(Full Front (Empty Front (To get (Best Place
List) List) here) to have

Come From)

el empty 1,1 0 Start
1,2 oo NW (Nowhere)
1,3 b NW
2,1 0O NW
252 00 NW
2,3 oo NW
3,1 oo NW
34 co NW
3,3 o0 NW

194

We now take all the points off the FFL. As we take
each point off, we proceed as directed by the algorithm
(figure 27, Chapter III), We call this procedure a front
motion, as the front has moved one unit, The situation is
as shown below, and in figure A-2Z, Note that only arrows

marked #1 are in place now,

1, First Front Motion

FFL EFL POINTS COSTS BPTHCF
1,2 Lol 0 Start
2,1 1,2 1 Lyl
1,3 oo NW
251 9 j i e
Lgd (oY) NW
25) NW
3,1 o NW
3,2) NW
543 o® NW

Note: Changes are indicated by a bold line to the right,

195

We swap the two lists and then proceed until both lists

are empty, which indicates the algorithm has terminated,

2, Second Front Motion

FEL EFL POINTS COSTS BPTHCF
1,2 3,1 gl 0 Start
2,1 2,4 1,2 1 (9 |
1,3 1.5 2 1,2

2y d 9 1.1

2,2 9 1,2

2y o0 NW

i | 10 241

358 oo NW

3,3 oo NW

3, Third Front Motion

FFL
3,1 (a)
2;2 (b)

i o

EFL
2,3 (c)
2,3 (b)

3,2 (a)

196

POINTS COSTS
1,1 0
1,2 1
1,3 2
22l 9
2.2 9
P 15 (b)
ST}
3,1 10
3,2 i1
3,3 oo

BPTHCF

Start

1

1,2

NW

(b)
(c)

Note that the point 2,3 was put on the EFL twice, as the

result of the order in which the algorithm computed paths

and costs,

197

4, Fourth Front Motion

FFL EFL POINTS COSTS BPTHCF
2,3 3,3 1,1 0 Start
2,53 1,2 1 1,1
3,2 1.3 2 1,2
2,0 9 i
2,2 9 1,2
2,3 3 1,3
30 10 2,1
3.2 11 3,1
3,3 4 2,3

5, Fifth Front Motion

EFL EFL POINTS COSTS BPTHCF
353 3,2 1y 0 Start
1,2 i 1,4
1ea 2 1,2
2,1 9 11
Syl 9 1,2
2,3 3 ,3
See figure A-3 for 3.1 10 P
changes in the path, 3,2 5 S50

198

6, Sixth Front Motion

FFL EFL POINTS COSTS BPTHCF

5,2 S, C 0 Start
1,2 1 Ly
) (. Z 1,2
Z 9 1,1
2,2 9 I,2
2,8 3 1,5
T | 6 3,2
542 S 3,3
3.3 4 293

7. Seventh Front Motion

FFL EFL POINTS COSTS BPTHCF

Fyel 2% 5 0 Start
1,2 1 1oy
1,5 2 1,2
2,1 7 3,1
252 9 1,2
2,3 3 1,3
3,1 6 352
3,2 5 3,3
5.5 4 2,3

199

8, Eighth Front Motion

FFL EFL POINTS COSTS BPTHCF
2.1 2.2 1,1 0 Start
12 1 1,1
1,3 2 1,2
2,1 7 5.0
2,2 8 2,1 ———
2,53 3 1,3
5yl 0 3,2
3,2 5 3,3
3,3 4 2,3

9, Ninth Front Motion
FFL EFL

i

No changes are made in costs, and no point is put on the EFL,
The algorithm terminates with all paths and costs as found
during Front Motion Eight, The paths from any point to the
start are as shown in figure A-5, Just trace back as directed

by the arrows,

200

Initial configuration, no paths

3 F ?, 4 PR |

21

1k
1 1 J
| 2 3

Figure A-1
Initial paths

g

2 =

i =
1 i

Flgure A-2

201

Intermediate paths « Changes are numbered

Final paths

3

2k

1k
I i]
b 4 4 3

Figure A-3

T

2k

1k
L I "
i 2 3

Figure A-4

202

Appendix B

What to do when an object at its specified final
position occupies part of the same space as a movable object
(that has no specified final position) at its present position,

The above problem can be encountered when finding the
order to move objects to their final positions. Figure B-1
shows a task in which this occurs, Figure B-1l-a shows the
initial positions and figure B-1-b the final positions,
Figure B-1-c shows the position of objects when the system
starts to find the order to move the objects to their final
positions,

The system, as described earlier, attempts to solve
the problem in the following way. In figure B-l-c it plans
to move A and discovers that C is in the way., It then tries
to move C out of the way, and discovers that A is in the way.
It tries to move A out of the way and discovers C is in the
way, still, The system then discovers the loop and eventually
finds the task impossible,

To prevent the above failure, the following amendment
must be made in the system procedure, When the system plans
to move an object out of the way that has no specified final
position, and finds that a second object is in the planned

path, the system must check to determine if the second object

203

Flgure B=1lec

Initial 7gsdébn5
A
NN
3
C
G 2 3
Figure B-l-a
B
A c
NN
1 £ 3

Frnal Fositions

Overlap problem as
described in Appendix B.

Position of obJjects when
system starts to find
order to move objects to
their Final Positions,

Objects A and C overlap
at (2,2).

204

is in the part of the path the object occupies when it is

at its initial position, If this is true, and if this other
object has a specified final position, then the object is
moved to an Out of the Way Place, and the second object

is 1ignored,

The only circumstance where there can be overlapping
objects 1s when the system is determining the order to move
objects to their final positions, There exists the possi-
bility that an overlap might be specified in the input of the
initial or final positions, but a well-designed input routine

would prevent this.

205

Apgendix C

Program Documentation

There are five programs that compose the systen,
Four of the programs make up a complete system, The
fifth is a stand alone program which can perform all of
the input/output functions of the systems and requires
much less core than the complete system, All the programs
can be run only on the M,I.T. Project MAC Artificial In-
telligence Group's PDP-10 Time Sharing System,6 circa
September, 1970, or other computer systems that are hardware
and software compatible,
The four programs that compose a complete system
are retained in ASCII code to facilitate changes., These
programs are
INS 34
TREE 20
OBJSMS 31
CSP 5
as of September 15, 1970, The second names of the programs,
the numbers, are subject to change as improvements are made,

Each program should be assembled and the binary files loaded

using the linking loader, The program is started at location

206

"START", The system will reply with several line feeds
followed by the word "READY", The program is now ready
for input, to be described below. The loading and starting
procedures are not described in detail as software improve-
ments are rapidly being implemented and any descriptions
given here will probably be quickly outdated, For specific
loading and starting instructions, it is suggested that a
person familiar with the computer operating system be
contacted,

The input/output program is INA 25, It is assembled
and started the same as the complete system, but it can be

loaded using the regular loader,

Input/Output Format

The input for the system can be from three sources:
teletype, disk, or micro-tape, When started, the program
looks for input from the teletype,.

The control character for the input is the colon (:).
It preceeds the letter that designates what is to be input,

The input functions are

:T Allows one to change from one input source to

another; e.g., disk to teletype.

207

:0 For input of objects' descriptions at

initial position,

3§ To change objects' initial positions and to

specify the jaw's initial position,

2 To specify objects' and jaw's final positions,

3D To delete an object from the task space,

1S To check initial and final configurations

of objects.

s R To read results, previously computed, that

are stored in tape or disk files,

:GO To start the system to find a solution to

the task.

:5, :R, and :GO can be given only from teletype control,

208

The operator has the choice of three inputs,
TTY) () represents carriage return,)
For input from teletype,
DSK:flnml flnm2) ("flnml" is short for "file name 1".)
For input from flnml flnmZ on disk,
UTn:flnml flnm2)
For input from flnml flnmZ on a micro-tape
mounted on unit n.
If an input file ROPE 6 is to be read off a micro-tape mounted
on unit 3, the request would be

i
UT3:ROPE 6)

When input is complete, a message is printed on the

console, The last characters in ROPE 6 must be

e 1
TTY)

to return control of input to teletype,.
The system supplies some carriage returns, others
must be supplied by the operator. The best rule is to type

a line, wait a second, and if no carriage return is gener-

ated, type it,

209

|5

The format here is of two types. The first is

name,M or F,(nl, nZiT OR :HE? (""" delimits OR choice)
Here '"mame'" is the name of an object to be described,

"name" can be any combination of six letters and numbers,
As the left character is used to identify the object in the
various displays, most objects receive one letter names,

"M or F'", either letter may be used, "M" specifies
the object is movable; "F" specifies the object is fixed,
immovable,

nl is the X coordinate of the base location,

n2 is the Y coordinate of the base location,

n3 is the cost of moving through the space occupied
by this object,

n3 is supplied if the operator wishes to supply this
cost versus having the system compute it, A cost less
than or equal to zero is not allowed,

The commas and parentheses must be supplied as
field delimiters.

The second format of objects' descriptions is

nl,n2
nl is the X coordinate of a location occupied by the object,

nZ is the Y coordinate of a location occupied by the object,

210

There are usually several lines in this second format,
The object's base location must be included as one entry,
The list is terminal by a line "0,0)",
For example, the description set

L)

KU2,M, (10,15),5

10,15

10,16

1017

11,17

0,0
defines object KU2, that is movable, and has its base loca-
tion at (10,15)., It will cost another object 5 units to
move through the space occupied by KUZ2, See figure C-1,

There are various error detecting mechanisms in
the input routines, but they cannot be guaranteed to catch
all errors, The only way to be sure the system has under-

stood what is meant is to check initial and final positions

with the :S command,

The format here is
name,(nl,nZ)r—.}-1 OR fon3)
Again,

"name'" 1is the name of the object

211

Video display of object KUZ

20 =

17 -

Ié-‘

15 =
K

Figure C-l

212

nl is the X coordinate of the new base location
n2 is the Y coordinate of the new base location
n3 is the same as described under the ":0" command.

If the name 1is '"JAWS", this command sets the initial posi-

tion of the jaws,

The format here 1is

name, (nl,n2)
(nl,n2) is the desired base location of the object when
the task has been completed, If (nl,nZ2) is equal to (0,0),
the specified final position of object '"name" is removed,
I1f the input line is "KILALL", all specified final loca-

tions are erased,

3D
The format here is
name

The object "name" is deleted from the task space, If name

is "KILALL", all objects are deleted from the space,

:s
There are several options available here,

T)

213

If the next line is "T ", an abbreviated description of
the task site's initial and final positions are printed
on the teletype.
L b
This command causes a picture of the Initial Position of the
object in the task space to be printed on the line printer,
L F)
This command causes a picture of the Final Position of the
objects in the task space to be printed on the line printer,
vV 1)
This causes the video display to show the initial position
of the objects, Typing a "K" turns the display off and
allows the program to proceed,
V F)
This causes the video display to show the Final Positions
of objects. Typing a "K" turns the display off and allows
the program to proceed,
Error returns will be generated if the program cannot

"sieze'" the line printer or video display as necessary,

The system responds with

FROM-

214

The input format is

DSK:flnml flnml
to read disk file "flnml flnm2", or

UTn:{flnml flnm2
to read file "flnml flnmZ2'" from micro-tape mounted on
drive n,

The file "flnml flnm2" is the result of previous
computations of the system, saved after the system completed
a task solution,

The response of the system is a few carriage returns
followed by the line

MOTION DISPLAY
The previously computed path can be viewed, There are
three forms of output: the video display, the line printer,
and teletype., The format for these displays 1is

V A)

This starts the video display at the start of the task.
The solution can be seen by hitting the space bar once for
every frame, To reverse the motion, type an R for each
frame, To have the motion automatically displayed, type
an A , The automatic display can be stopped at any time
by typing any character. Then spaces, R's, or another A

can be typed to continue,

215

To start the video display at the last sub-task
executed, type

vV L)
followed by the desired string of spaces, R's, or A's,

The display will run until the last frame of the
task motion is shown, where it will hang with no response
to A's, R's, or spaces, Typing a K will turn off the display.
The system is now ready for the next command to the motion
display routine,

A sample interaction with the display routine is

vV A)
RRARRRR RA K

Caution: 1if the first display command after the
computer types MOTION DISPLAY is "V L ", the display will
show very strange results,

Before one gets output from the line printer, it is
expected that the video display will have been seen, and
particularly desirable frames selected for permanent copies.

The format for line printer output is

L2

nld
n2)
nSJ

216

L signifies the line printer output is desired, nl, n2,
and n3 are frames to be printed. The last entry, 0 (the
number) denotes the end of the list,

A sample printout from the printer is shown in
figure C-2, This is frame 1464 of task 6 in Chapter VIII,
The first character of the object's name shows the loca-
tions the object occupies, The * denotes the base location.
An object that occupies only one location would be repre-
sented by a *, The interpretation of JK, JX, etc., is
given in the description of the teletype output, below,.
The jaws are represented by the =, one = for each half,

If the jaws are closed, only one = is shown,

The teletype output is the contents of the list
the system keeps to define the task solution, the descrip-
tion of the jaw's and objects' paths,

There are two options for teletype output. The
first is

T L
This outputs the path that is the solution of the last

sub-task the system solved., The first line of output is

217

Example of line printer output

fRAME 1464 -«
IJBJECT HEING MOVYED 1Is I .

A IAMETERS ARE JK=02, JX=0gs JY=26s,» 0G=00, OX=i1, NY=32 ,

PR SR O O S T T T TR R S S I A O R R T R
35+
I3
S4+ F
S35+
32+
31+
30+
27 %
25+
25%
24+
23+
22+
21+
20+
17+
15+
15+
ld+
13+
126 L 2B N
11+ Z D
10+ 7
a7+ T EVES TR
05+
03+
Od+
03+ B
02+
Ol+

- + + o+ o+

00Co0O
1 23 4

- ™
(9]
a

Gt et S St
H o= W =t =
- %
T ™
OGO =*

@l
@ @
D O
@
EXEX

L R S
[SRS OUEN SR O
o
* M mMmmm
o
* O
fom |

c

099

(o= o JR e B |
o |

L @
v ¥}
T * ©®@ w
T T o
X

o
LA I I T T T T R G T

no +
>3O +
~NC +
O =
-~ ¢
N o= 4
W
b= 4
A = 4
Oh =
Ty =
T N+
Ll IR
NN+
N+
BN+
AN+
s SOV 3
NN+
QW+
laalil ' I
N+
“ o
Ll I

Figure C-2

218

a set of labels,

JK, JX, JY, ,, 06, O0X, OY
which will be explained later,

The next line is the name of the object moved, The
third line tells whether this object could be moved, or
whether the solution was a plan: the line is PLAN or
EXECUTION,

On the lines following this are six two digit numbers
per line separated by commas:

il N2, Bd,; 5, DAL as, hb

nl is directly below JK and tells how far open the
jaws are, nl=00 means the jaws are closed,

n2 is below JX and is the X coordinate of the lower
half of the jaws,

n3 comes below JY, and is the Y coordinate of the
lower half of the jaws,

n4 is below 0G, and tells how the object is being
moved,

If 0G=10, the jaws are not in contact with the object,

If 0G=00, the object is being grasped.

I1f 0G=01, the jaws are in contact with the object

in a position to push it in the -X direction,

219

If 0G=02, the jaws are in contact with the object in
a position to push it in the +X direction,
If 0G=03, the jaws are in contact with the object in
a position to push it in the -Y direction,
If 0G=04, the jaws are in contact with the object in
a position to push it in the +Y direction,
n5 is directly below OX, and defines the object's
base location X coordinate,
n6 is below 0Y, and defines the Y coordinate of
the object's base location,
The other format alternative for teletype output is
T F)
nl)
nz)
which designates that the path list between frames nl and
nZ will be typed out in the format described above, nl
must be less than n2Z,
Requests for output from the teletype, line printer,
and video display may be made in any order,
To escape from the motion display, type an N where

new output would normally be requested,

: GO
This command starts the program running to find a

solution to the task, If it is given to the input/output

220

program (INA) an error return is generated,

As the system computes each sub-task, the system
types out

MOTION DISPLAY
if the program has control of the teletype, If the system
does not have control of the teletype, no output is attempted,

The operator's responses here are the same as de-
scribed under :R except that typing N) to escape produces
the question

PRINT OUT TREE?
A response of YES) prints out the TASK TREE on the line
printer as it was just before execution of the last sub-task
was attempted, After the TASK TREE is printed, the system
continues to complete the solution of the task, If any
other response to the question is given, the TASK TREE is
not printed,

When the system completes the solution of a complete
task,

THEEND »> ,VALUE
is printed at the teletype. When the program is "proceeded"
(ask for help if not familiar with the procedure) the system

will ask

SAVE RESULTS?

221

A response of YES) will cause the system to type

ON-
The response is device:flnml flnmZ to save the path on
"ieviceas '"flnml flnm2." Usual device names are DSK (disk)
or UIn (micro-tape unit n)., The information is saved in
image mode; i.e.,, the binary contents of memory locations,
The saved results can be read using the :R command.

After the results have been saved, the program is
restarted automatically, but with objects left in their
final positions, Type

2T
TTY

$5
VI

to see the initial positions as they are now,

The easiest way to input initial conditions into the
system is to type a file with objects' descriptions and
final positions using the editor program, TECO., The last

characters of the file must be

)
TTY)

to return control of the input program to the teletype.

222

Aggendix D

Flow Chart of the System

There will be no flow chart of the input/output
for the system as the functions are described in the sections
on formats, The input/output section of the program con-
structs three lists which it gives to the next part of the
program, These lists are:

1) The Active Object List which contains objects'
descriptions and objects' positions in the space,

2) The Abstracted Object List which contains objects'
descriptions coded as though the base location
were at (0,0).

3) The Finishing Position List which contains the
names and final positions of those objects that
have specified final positions.,

The system flow chart is high level, showing how the various
components interact, Detailed information of functions is

included in the text of this thesis,

223

SYSTEM FLOW CHARTS

Flow Chart #1

Does one or more objects have specified final positions?
yes no

Error exit

Set Gb order objects are to be moved to final positions.

L

Ixecute the last sub-task on the TASK TREE
(See Flow Chart #2.)

(Out of tasks?—JY€8 smove jaws to final
position)
gxit =« finished
Was g'solution found for the sub-task?
no yes
Hemove the sub=task from TASK TREDZ,.
Were any other objects with

specified final positions
moved 7—> no >

yes
[d

7T

Was Ebnditional solution for sub=task found?

yes no

Failﬁ}e diagnosis

Generate sub-tasks to move objects out of the way.
FPut these sub-tasks on the TASK TREE underneath the
task the system tried to execute.

224

Flow Chart #2 Execute Last Sub-Task

Is task to move object out of the way?
no yes

set Eb A* Algorithm Set up Flooding Algorithm
(compute f(c¢)=0)

Is ffnal position a Temporary Location?
no yes

Run algorithm from start

to finishe
Is iHitial position a Temporary Locatlon?
no yes

Run algorithm from finish

to start.

\
Run 6w0 algorithms
(Terminate when fronts cross and jaws
can move to defined positions.)

Run algorithms to termination (No termination)

Retrace path Return a value to

v
Did this object of jaws move through any space
occupied by another object?

yes no

indicate no solution.—

Return a value to indicate a

path was found.

GeneTate A. List of objects moved through.
B. Positions this object moved over.

Return a value to indicate a conditional path was found.

Return below "Execute last sub=task," flow chart #1.

10.

s

References

Archibald, R, D., and R, L, Villoria., Network-based
Management System (PERT/CPM). New York: John Wiley §
Sons, 1967,

Barber, D. J., MANTRAN: A Symbolic Language for Super-
visory Lontrol of an Intelllgent Remote Manipulator,
S,M, Thesis (M.E,), M,1,T,, June, 1967,

Berge, Claude, The Theory of Graphs and its Applications,
Translated by Alison Doig. New York: John Wiley § Sons,
1964,

Deo, Narsingh, An Extensive English Language Bibliography
on Graph Theory and Its Applications, NASA Technical
Report 32-1413, Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, California, October,
1969,

Digital Equipment Corporation, PDP-8 User's Handbook,
Maynard, Massachusetts,

Eastlake, Donald E., "ITS 1.5 Reference Manual." M,I.T,
Project MAC Artificial Intelligence memo #161A, Cambridge,
Massachusetts, July, 1969,

Ferrell, W, R, Remote Manipulation witn Transmission Delay,

Ph,D. Thesis (M.E.), M.I1I.T,, September, 1904,

Ferrell, W, R, and T, B, Sheridan, "Supervisory Control
of Remote Manipulation," I1EEE Spectrum, Vol., 4, No, 10,
(October, 1967) pp. 81f,

Goertz, R, C. '"Manipulators Used for Handling Radioactive
Materials." Chapter 27 of Human Factors in Technology.
New York: McGraw-Hill, 1963,

Green, C, "Theorem Proving by Resolution as a Basis For
Question-Answering Systems,'" Machine Intelligence 4,

D. Michie and B, Meltzer, eds., Edinburgh University Press,
Edinburgh, Scotland, 1969,

11.

12,

1355

14.

16

17,

184

185

20,

21,

226

Hart, P, E., N, J, Nilsson, and B. Raphael, "A Formal
Basis for the Heuristic bDetermination of Minimum Cost
Paths," IEEL Transactions on Systems Science and Cyber-
netics, Vol. 4, No, 2, (July, 1968) pp. 100f,

Hewitt, C, "PLANNER: A Language for Proving Theorems in
Robots." in Proceedings of the Joint Conference on Arti-
ficial Intelligence, Washington, D, C, May 7-9, 1969,

Johnsen, E. G, '"The Case for Localized Control Loops
for Remote Manipulators,'" Paper presented at IEEEL
Human Factors Group Symposium, Boston, Massachusetts,
May, 1965,

Johnsen, E. G. and Charles B, Magee, editors, Advance-
ments in Teleoperator Systems, A colloquium held at
University of Denver, Denver, Colorado, February 26-27,
1969, NASA SP-5081,

Johnsen, E, G. and W, R, Corliss, Teleoperator Controls,
NASA SP-5070, 1968,

McCandlish, S, G, A Computer Simulation Experiment of
Supervisory Control of Remote Manipulation, S.M, Thesis
(M.E.) M,I,T. June, 1966,

Massachusetts Institute of Technology., Project MAC
Progress Report VI, Cambridge, Massachusetts. 1909,

Newell, A,, J, C, Shaw, and H, A, Simon, "Empirical
Explorations with the Logic Theory Machine: A Case

Study in Heuristics," in Computers and ‘lhought,

E. A, Feigenbaum and J, Feldman, eds,, New York: McGraw-
Hill, 1963,

Newell, A, and H, A, Simon, '"GPS, A Program That
Simulates Human Thought.," in Feigenbaum and Feldman,

Nicholson, T, A, J. "Finding the Shortest Route Between
Iwo Points in a Network." Computer J, Vol, 9, (1966)
bp. 275%,

Nilsson, N, J, "A Mobile Automation: An Application of
Artificial Intelligence Techniques.'" in Proceedings of
the International Joint Conference on Artificial Intelli-
gence, Washington, U, C, May 7-9, 1969,

22,

23,

24,

25,

26,

P47

28,

28,

525

cey

Ore, Oystein, Theory of Graphs. American Mathematical
Society. Providence, Rhode Island, 1967,

Pollack, M. and W, Wiebenson, "Solution of the Shortest-
Route Problem--A Review.,'" Operations Research, Vol, 8,
(1960) pp. 224f,

Rosen, Charles A, and Nils J, Nilsson, eds, Application
of Intelllgent Automata to Reconnaissance, Third Interim
Report, 18 March to 17 December, 1967, Prepared for

Rome Air Development Center, Stanford Research Institute,
Menlo Park, California,

Rosen, Charles A, and Nils J, Nilsson, eds, Application
of Intelligent Automata to Reconnaissance. pp. 20-43,

Shaffer, L. R., J. B. Ritter, and W, 0, Meyer, The

Critical-Path Method, New York: McGraw-Hill, 1965,

Sheridan, T, B. '"Use of Artificial Computation Loops
Within Human Control Loops for Remote Manipulation,"
Unpublished memo, M,I.T. October 28, 1964,

Simmons, R. F. '"Natural Language Question-Answering
Systems--19609." Communications of the ACM, Vol, 13,
No., 1, (January, 1970) pp. 15f,

Sklansky, Jack. '"Recognizing Convex Blobs.'" in Proceedings
of the Joint Conference on Artificial Intelllgence.
Washington, D, C. May 7-9, 1969,

Tou, Julius. Modern Control Theory. New York: McGraw-
Hill, 1964. pp. 02-110,

Whitney, L, E. '"State Space Models of Remote Manipulation
Tasks." ILEE Transactions on Automatic Control, Vol. AC-14,
No, 6, (December, 1969) pp. 017f,

Whitney, D. E. State Space Models of Remote Manipulation
Tasks. Ph,D, Thesis (M.E.), M.I.T., January, 1968,

228

BIOGRAPHY

Philip A, Hardin was born in Atlanta, Georgia, on
March 24, 1943, and received his elementary education in
the public schools of Forsyth, Georgia., He attended high
school at The Baylor School, Chattanooga, Tennessee, He
entered M,I.T. in 1961, and was active in intercollege
sports and other extra curricular activities including Pi
Tau Sigma, He received a Bachelors Degree in June, 1965,
a Masters Degree in August, 1960, and a Mechanical Engi-
neers Degree in February, 1969, all from M,I,T, During
his graduate years, he was a Research Assistant, He is a
member of Sigma Xi and is a Lieutenant in the United States

Naval Reserve,

