
"AND TREE" COMPUTER DATA STRUCTURES FOR

SUPERVISORY CONTROL OF MANIPULATION

N

PHILIP A. HARDIN

5.8., Massachusetts Institute of Technology
(1965)

M.S.,, Massachusetts Institute of Technology
(1966)

MECH,E,, Massachusetts Institute of Technology
(1969)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF

PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

October, 1970 (t.¢. fo (C7

Signature of Author.,..s--
Department of Mechan-

‘Signature redacted
“1 Eno: 20, October 13, 1970

Signature redacted -
"ertified bv

J

LCeo©@o

31s Supervisor

Signature redacted
Accented pv

Chairman, Depasitmental Committee
on Graduate StudentsArchives

ARN FEB 25 1911
lair

"AND TREE" Computer Data Structures for

Supervisory Control of Manipulation

n A, Hardin

Submitted to the Department of Mechanical Engineering in
partial fulfillment of the requirements of the degree
of Doctor of Philosophy, October, 1970,

ABSTRACT

Remote manipulators, originally designed for handling
radioactive materials, have been proposed for use on unmanned
space vehicles. A pure time delay in the transmission of ra-
dio signals, present because of distance or other reasons,
makes remote manipulation task completion more difficult,
supervisory controlled computer-manipulator overcomes this
problem and has many other potential uses,

This thesis describes a supervisory controlled manipu-
lation system which can accomplish complex manipulation tasks.
The system, which presumably knows the initial positions of
all objects involved in the task (the initial state of the
task), is given an operator's description of the desired final
goal state of the objects in the task, It uses this descrip-
tion to generate a set of sub-tasks, each of which describes
moving one object to a final position designated by the goal
state description.

The system is divided into two parts. The upper level
is an AND TREE which orders the sub-tasks so their combined
solution results in the solution of the complete task, The
lower level consists of

a procedure to generate the state spaces which
describe a sub-task, and

a set of shortest path algorithms which find a
path through the state spaces and therefore find
the solution of the sub-task.

The system was implemented on a digital computer,
and the manipulator jaws and object of the task site were
simulated by a two dimensional computer model, Six exam-
ple tasks, solved by the system are presented: two in
step by step detail, In addition, there are included: de-
tailed descriptions of task types for which the system will
find solutions (if they exist!); the additional abilities
the system would have to possess to solve more complex
tasks; the economic advantages of this system as compared
to others that have been proposed; and documentation of
the system as implemented.

Thesis Supervisor: Thomas B., Sheridan
Title: Professor of Mechanical Engineering

ACKNOWLEDGEMENTS

" deeply appreciate the advice, guidance, and en-

couragement provided by my thesis committee: Professor

Thomas B. Sheridan especially for his patience and support;

Professor Joseph Weizenbaum especially for his helpful ideas;

and Professor Daniel E. Whitney especially for his construc-

tive advice.

{ also thank Professor Marvin L. Minsky and other members

of Project MAC's Artificial Intelligence Group for their

assistance in using their PDP-10 computer; Jane Browning

for the excellent typing; and my wife, Jane, for editing,

drawing the figures, and preliminary typing.

The work of this thesis was supported by the National

Aeronautics and Space Administration Grant NGL-22-009-002.

TABLE OF CONTENTS

ABSTRACT »

AL a. A wry LEUGEMENTS

1d A + lr 1. INTRODUCTICN

Background. -

Requirements of a Sun-~visc ry Controlled

Manipulator, .

Similar Work. .

Discussion of the Proolen

Preview of the System Proposed 1in This

? .

" -

Thesis ,

CHAPTER II,

CHAPTER III.

Preview of the Remainder of

BASIS FOR THIS SYSTEM

Characteristics of an Alw ™

The TASK TREE .

SHORTEST PATH ALGORITI!.c

Flooding Algorithm,

A* Algorithm,

Thi -

 |

wet

Tr 1en5 gS

.

J
4

Two Stack Diamond

CHAPTER 1V, IMPLEMENTATION OF ALGORITHMS FOR THE

PURPOSES OF THIS WORK ,

lestrictions on the Examples and

strations and Definitions Tr

vUemon

Some Basic Manipulation Situations

Generation of a State Space for an

Object of Any Shape . .
™

Moving an Object from its Initial Pocition

to a Final Position . .

Discovering Which Objects are in the

107

Wavy . 111

Finding the Order in Which to Move

CHAPTER V,

Several Objects to Final Pos?

CAPABILITY OF THIS SYSTEM TO

4
*

“ons, ., 11-7

FIND SOLUTIONS. .

Tasks for Which This System 13 Not

Assured of Finding Solutions

Tasks for Which This System Will Find

Solutions . .

CHAPTER VI, SELF-1 LAGNGSIS ~~
4

vy <n iY

CHAPTER VII. ECONOMIC ADVANTAGES OF T.iE ~~
“J

CHAPTER VIII, EXAMPLES OF TASKS SOLVED BY r

.olEM

DEMONSTRATION SYSTEM

Iwo Examples Presented in Detail

CHAPTER IX,

Four Examples Briefly Presented

SPECIFIC PROBLEMS FOR FUTURE AC 2 %ad

 ZL
NZ

[

What is a "Handle"?

Variable Quantization of a Space

Not Enough Out of the Way Places

~ ¢

| 84

pushing or Carrying More Than

One Object . ,

finding Connected Out of the W- vy

Use of an N Level Method to Find

Places, 9 15G

Problem Solutions

CHAPTER X,

APPENDICES

 Ere RENCES

BIOGRAPHY

CCNCLUSIONs, J |

J

7 25

228

Chapter 1 Introduction

Background

Manipulators allow man to extend the range of the

environment he can affect into those that are very distant

or very dangerous, without the hardship or hazard that would

be attendant 1f he were physically present.

The first remote manipulators (master-slave manipu-

lators) were built after World War II at Argonne National

Laboratory when ways were needed to conduct experiments with

* - * g* La * -. -

radioactive materials. These manipulators did not increase

man's strength or precision, but skilled operators could per-

form delicate and complex tasks with them, These early

manipulators had mechanical linkages with steel tapes and

pulleys; the recent manipulators have been built using servc

motors and electrical linkages,

There has been much improvement in these manipulator

systems, now called Teleoperator Systems, since the first

ones were built, They have become quite intricate, and pro-

posals have been made for systems that include stereo T.V.

(for eves) and full duplication of the operator's arm

; 14, 15 }

motions. ’ Provnosals for their use have extended from

Supeérscripts inuicacte r rences

radioactive materials experiments, to use in outer space,

to aids for the physically handicapped.

These systems have several drawbacks when their use

is extended to fields for which they were not specifically

designed. For example, they only duplicate an operator's

motions, For repetitive tasks this constraint may limit

their usefulness,

As another example, consider the slave hand being a

long distance from the master controller, In this situation

there is a pure transmission delay of the electrical signal,

For example, if the master end is on Earth, and the slave is

on the moon, any motion of the master end will require nearly

three seconds to be confirmed because of the distance the

signals must travel, If systems are to cope with emergencies

that require action in less than round trip signal time, they

nust have some method to handle emergencies locally,

Ferrell’ has shown that manipulation tasks executed by

3 man using a master-slave manipulator with no force feed-

back can be completed in the presence of a pure time delay,

and that the time to complete the task is linearly propor-

tional to the delay. A manipulation task can be accomplished

in a reasonable length of time with a five or ten second time

lela v (Ferrell used delays of this order), but attempting any

but the simplest tasks with a five minute delay would require

very long completion times, Delays of five minutes or more

are typical for communications with the near planets,

To overcome the difficulty of operating under condi-

tions of long delay times, manipulators which have intelli-

: 27,8] 13 d
gence have been proposed by Sheridan, Johnsen, an

others, The machine proposed by Sheridan would be operated

in a supervisory manner; the operator would give it instruc-

tions and would periodically check on its progress,

Several researchers have worked on systems that are

. . : 6 :

supervisory controlled, McCandlish?! found, in the case of

his experiment, that his subjects performed worse on a given

simple task when using a supervisory controlled system than

when they were in continuous control of the task, In later

interviews the subjects disclosed that they had fairly well

memorized the entire task, and could perform it reasonably

well in an open-loop mode. Their impressions were that they

worked much harder on the task when continuously controlling

it; they "relaxed" and made unnecessary errors when operating

in supervisory mode, Also, they were curious enough about

the system's performance when operating in supervisory mode

to increase the value of their task penalty function by re-

juesting extra feedback to verify the system's performance.

Barber™ has also investigated the use of supervisory

controlled manipulation systems. He devised a compiler sys-

tem to enable an operator to symbolically input commands to

a computer controlled manipulator. An example of a command

is "Move left 200 units or until touch [something]." The

system also has the facility to receive several commands as

1 set, accept a set name, and execute the entire set, Barber

gives as an example a command set that would cause the manipu-

lator to search a plane area (using its touch sensors), and

if it finds a block, to move it to a specified position in

the plane,

Unfortunately, Barber reported that he had many diffi-

culties with the hardware in his system, which prevented him

from doing any more than testing the basic aspects of his

system, Also, it was found that to have a flexible and

easily utilized software system, the computer program would

have to have major changes made in it, Barber did outline

the improvements that were needed, but they were never imple-

mented and no extensive exmeriments were performed with

the equipment.

Barber's ideal system overcomes most of the problems

of manipulation with long time delays. The operator can

specify the manipulator motions before their use. and, with

artful use of the conditional statements, avoid or prepare

for emergencies or slight errors in the on-site manipulator's

herformance,

But Barber's system does have one drawback, The

operator must explicitly, and in detail, specify all actions

the manipulator is to make, It is true he must do this only

once, but specifying all the motions and conditional actions

of even a relatively simple task can be a laborious under-

taking, It would be better for the operator to specify what

he wanted done rather than how to do it.

i 1 : |

Whitney" developed a supervisory controlled system

for manipulation that allows the operator to specify only

what is to be done; the computer, using optimal control tech-

niques, figures out how to perform the task,

Whitney's approach is to define a set of atomic

manipulator primitives: for example, move left one unit,

move up one unit, open, grasp, etc.; and to digitize the

physical space in which the task is to be performed. The

digitized model of the space (that includes the objects)

and the manipulator primitives are combined to form a

state space that describes the task.

The state of a physical space is determined by the

location, temperature, or other variables of interest that

describe the space or the objects within it. A specific

state, then, corresponds to a particular condition of the

physical space,

The term state space 1s usec in thie same sense as in

30 2 pd
control theory, Specifically, a state space is a space in

which there is one dimension for each degree of freedom

(that is, for each variable of interest), of the physical

space. In manipulation tasks, typical degrees of freedom

are the variables which describe the manipulator jaw coordi-

nates and the coordinates of the object or objects to be

moved, In a state space, each variable is allowed to assume

values over the range of interest, The volume of the state

space is the product of the range of the allowed values of

all variables. For example, 1f in a digitized space, the

variables of interest are A, B, C, ... , Q; and A is allowec

to assume "a" discrete values, B is allowed to assume "b"

values, etc,, then there will be a<bece .,, °q points in

the state space,

The goal of a manipulation task is Jefined as

desired state of the task space. The solution of a manipu-

aq

lation task is a path through the state space from the cur-

rent state to the desired state.

State spaces are designed so that the difference between

neighboring states 1s a single, simple feature. Neighboring

states of a state space describing a manipulation task differ

by a feature alterable by a single atomic manipulator primi-

tive; one can move from state to state and alter the environ-

ment by the application of a string of manipulator primi-

tives. Hence, a path from a current state to a goal state

is an ordered set of manipulator primitives which, when

executed in the physical space, will accomplish the desired

task, Whitney's method reduces the entire problem of find-

ing solutions to manipulation tasks to generating a state

space and finding a path through the state space.

As an aid in understanding the concepts presented

above, consider the following example, summarized from

Whitney. 1 Figure 1 shows a one dimensional line with =

set of manipulator jaws and a block, The jaws can move

along the line and open and close. If it is assumed that

the object will not be moved, the state vector necessary

to describe changes in the space is

S =
X;

H |

where

and

#.=X coordinate of jaws

0 1f the jaws are open
Y=

l if the jaws arn closed

rhysical space from whitney-!

object
pis A

f

be |=

aw”

state vector

Siour

1
o[osed

0
NOer

5

>t +

wht

 | -

Ned
Er

- ».

[I = -

-
" -Num!

Arr , Yn ra -~_ 1
w

|

(-

+—Xj5

eo. vy~ 2 yr f

’ : “Na

Ly —r
ot ‘tion.

1]

from

The relevant atomic commands for this task are open

jaws, close jaws, move jaws one unit right, and move jaws

one unit left, The state space for figure 1, with allowable

transitions, is shown in figure 2, The possible states are

indicated by the nodes (points). The edges (lines) connect-

ing the nodes indicate the possible transitions from state

to state. The jaws cannot move while closed from X5=1 or

X;=3 to Xy=2 because they will collide with the object. The

numbers along the transition lines represent the cost of

making the transition, The charge is one unit for opening

or closing the jaws, two units for moving with the jaws

closed, and three units for moving with the jaws open.

Now let us investigate solving a simple task, moving

the jaws from their present position, state H , to X=1,

1] . The shortest path aleorithm findsclosed, or to state

the path to the goal as the sequence of states (in the form

~

[.=
' a]:

~ Is1 Q-.= |» ses i
-

S = lo| » Se= I
v

» anu S7=
[.
|

[ranslating, the jaws are moved from X=5 to X=3 closed,

opened at X=3, moved to X=1 open, and then closed, which

solves the given task. The arrows on the transition lines in

figure 2 show the path in the state space.

To plan tasks which move the block, the state vector

nus¢ be extended to include the block's X coordinate,

5 nh i’

Ky|

- ¥. and H as before

X,=% coordinate of ohi~Cct

and the open and close motions of the jaws at X=2 must be

interpreted as release and grasp, respectively, By extend-

ing the state space to three dimensions, any task to move

the object can be solved using the principles we have

discussed. The complete task is thoroughly examined by

Whitney.

To summarize, Whitney showed that the solution of

manipulation task can be found as a path through a state

space. This path describes a string of manipulator primi-

tives which, when executed in sequence, results in accomplish-

ing the requested task.

As a demonstration of his theory, Whitney implemented

version of the state space system on a PDP-8 computer’a

that controlled a three degree of freedom manipulator

(X,Y, open-close jaws), The manipulator system moved one

unit square blocks in response to task requests input from

3 teletype.

The state space method provides a solution technique

for manipulation problems, But it has a realistic limit on

the complexity of tasks it can solve. Because the state

space description must be contained in a computer or some

storage medium accessible by a computer, the size (number

of nodes) of the state space is limited, From experience,

this limit on task complexity has been set so that the state

space describes moving one object,

In an attempt to overcome this limitation, Whitney

proposed a method that could find the solution to a task

that required moving two or more objects. The operator speci

fies all the relevant sub-tasks (sub-task means a task in

which one object will be moved) of which he expects one per-

mutation to be optimum, and the system forms an OR TREE of all

possible permutations, It evaluates all these combinations

to find the cheapest chain of sub-tasks that accomplishes

the task, The system finds the cost and solution of each sub-

task using the the state space method.

One disadvantage of this method is that the operator

must specify all sub-tasks the system is to consider. In

many cases, this includes sub-tasks in which the operator

has no interest, except that they must be solved betore

the complete task is solved, In these cases, the operator

is helping the system find the solution by specifying, in part.

how the task is to be solved.

As an example, consider the task shown in figure 3,

The operator is interested in moving A to X. But, in addi-

tion, he must specify that B should be moved, and where it 1S

to be moved to, in this case, the area L. Let us say the

area L contains three distinct positions, L,, L,, and Ls

The OR TREE which the system computes is shown in figure ¢

The costs are all different as the jaws move B to different

places, then return to move A, The system has to compute

seven paths, and remember and compare their costs. Of

course, a 7-dimensional state space could solve it auto-

matically, without the operator giving any hints at all,

but seven dimensions are out of proportion for such a

simple problem.

[n summary, the OR TREE uf concatenated paths is

one system to move several objects to several places, but

it has the disadvantages of

1) in some cases the operator must specify, in part

how the task is to be solved by specifying all

the sub-tasks that need to be solved for the

4
objec’ 70
be moved

— Jaws

|A]
MO vable
04 ect B

S
x)

Position to
move. A to

I (|)
Semi-intinite

wa //s
Area +o move B #o

[=~ks me"
aa
v

Cper- tor me
the r ’

the r— ° A

- Cy

 move B, and give
be moved,

Rate’ Le 0. 8

*mmeabhle,

 4 cruire

OR TRAL to sc!7T™ t~- > shown in figure 3,

» COST + OD

[otal cost = Cq+4Cp

Total cost = C3*Cy

Total cost = Cg+Cg

- ~3 costs

<4ui

system to find the solution to the requested

task, and

2) the system must compute a large number of paths,

This proposed OR TREE system of Whitney's will be discussed

further in Chapter VII,

The Requirements of a Surmervisory Controlled Manipulator

For a supervisory controlled manipulator to solve

manipulation tasks, there is a minimal amount of information

it must be given about the task, and there are certain

abilities the system must possess. These are summarized below,

Input:

1) It must be given a description of the present

task site so that 1t can make an

internal model.

2, It must be given a de rv “ption of the

state of the task site as the operator

would like it to be

System:

[) It must have the means to change the

state of the task site.

2) It must know how it can change the

state of the task site.

3, It must have a method of planning

changes which result in the solution

of the requested task,

The goal of researchers in this area is to improve the

system's abilities so that more complex tasks can be solved

while the input is kept at the minimum, One measure of a

supervisory controlled manipulator system, then, is the

complexity of the task it can solve when given the minimal

input described above.

Similar Work

Several other researchers have investigated problems

of building supervisory controlled manipulators, Two notable

saxamples are mentioned below.

The SRI Robot project?! has, as one component, rou-

tines which plan and direct the robot to move objects around

a room, The operator communicates with a question-answering

system, Qa3,10 He phrases his requests in terms of conjec-

tures which QA3 proves logically, using a predicate calculus

technique called "resolution," For example, if the operator

wants to move object X to position P, he conjectures (in logi

cal terms) that a situation exists in which X is at P. 0A3

then proves that this situation can exist, if the robot

pushes X to P. The system traces through the proof to find

which objects are to be moved (X in this case) and where they

are to be moved to (P). The system then calls the path

planning routine. plans the path, and executes it, The path

planning routine utilizes the shortest path algorithm by

Hart et a1, 1!

Hewitt's PLANNER14 is a programming language which is

oriented toward accomplishment of tasks or goals which may be

broken down into sub-tasks or sub-goals. The data, or

theorems, needed to accomplish a desired result need not be

referenced explicitly but rather by requesting, in essence,

"the datum or procedure which accomplishes the desired re-

sult," This is like having the ability to say '"Call a sub-

routine which will achieve the desired result," For example,

if a theorem, T, is to be proved, PLANNER is asked to evaluate

"GOAL T," PLANNER also has a back-up feature which allows it,

in the case of failure, to return to the last place where a

decision was made, make another decision at that point and con-

tinue searching. This feature allows PLANNER to explore a

sub-goal tree; other recursive evaluators, like LISP, have no

convenient way to do this.

For PLANNER to plan paths for moving objects, the

-rator asks PLANNER to prove that an object, X, could

be in a position, P, If its data base includes the appro-

priate axioms, PLANNER, after exploring the necessary sub-

coal trees, would find that object X could be 1n position F

if it were moved there. Note that although PLANNER seems to

work like QA3, the methods used by the two systems are very

different,

As manipulation tasks can be posed in logical terms,

any logical problem-solving machine can be used to find solu

tions, Notable examples in addition to the two previously

mentioned include the General Problem Solveri?d and the

. : 1s

Logic Theory Machine.

Discussion of the Problem

Manipulation tasks generally are not difficult for

people to solve, But there are instances where people

cannot, or do not desire to, solve them. In these cases,

people rely on mechanical servants. A mechanical servant

that (potentially) can perform general manipulation tasks

is commonly called a robot; in this work it is called a

supervisory controlled manipulator,

The design of a supervisory controlled manipulator

poses many difficult problems, Three general problem areas

that seem to be most important are:

i j Design of the hardware (includes computers,

vehicles, hands, and arms),

} j Design of a system (computer program) which can

understand a task request made in the opera-

tor's natural language,

3) Design of a system (computer program) which can

ficure out how to accomplish the task request.

his thesis concentrates on the third aspect of

the problem. Our goal is to design a planning procedure,

which, when provided only with a description of the task

site and a task request that is strictly limited to what

the operator wants done, will have the ability to find

good solutions to complex manipulation tasks. (Complex

manipulation tasks are defined as manipulation tasks in

which two or more objects are to be moved.)

At this point some general comments are in order.

First, for the present time we will restrict our attention

to manipulation tasks in which we are concerned only with

the static arrangement of objects, An object being moved

by the jaws will have a velocity, but we are interested only

in the fact that the object and the jaws occupy a succession

of specific states as they are moving.

Second, we are interested in finding good, not

necessarily optimal, solutions. Optimal techniques are

used, and path segments will be optimal in terms of an

a priori cost function, although the overall solution will

not be, The objective is to find a string of manipulator

primitives which, when executed in order, give a solution

to the requested task without much wasted motion.

Third, the reader should realize that there will

be limits on the capability of the system proposed in this

thesis. The goal is to increase the degree of complexity

of the manipulation tasks that can be performed when given

the minimal input. There will be a discussion of the

limits of this system in Chapter V.

Preview of the System Proposed in This Thesis

ae)

The discussions and descriptions in this

De at three levels:

thesis are

1) general task or activity planning

2) manipulation task planning, and

3) examples used for illustrations.

A characteristic or ability described at one level can be

assumed at any lower, more job specific level. But any

restrictions on low level abilities must not be assumed

to be valid at a higher level,

At the general level, there will be a discussion of

the characteristics and uses of AND TREES. AND TREES serve

the same function as PERT charts; and they can be used inter-

changeably, but they are not the same. A PERT chart orders

the sub-activities of an activity so that one can accomplish

it by executing all the sub-activities on the PERT chart in

the indicated order. A plan made in PERT chart form can be

put on an AND TREE by replacing the duplicate edges of the

PERT chart with duplicate nodes on the AND TREE. Like a PERI

chart, all tasks on an AND TREE must be executed, The order

of execution is from bottom to top. The following example

will illustrate the above ideas.

Suppose we plan getting ready to go to work. The

first step is to get out of bed, then dress, eat breakfast,

and finally leave. Getting out of bed must precede the

other events, and leaving home must follow all other events.

Getting dressed and eating breakfast can be done in any order.

A PERT chart diagramming these activities is shown in

figure 5. The same plan on an AND TREE is shown in figure 6.

The duplicate edges of the PERT chart are replaced by dupli-

cate nodes on the AND TREE.

PART ehart plan te cr *- 4 r~ v LD WOorH%,

Lear hona

5 bre

All tasks mv
the arrows.

r + out of b=

A a

Get drezzc

d by~Tlcate

Mas

TTY TAD

hama

 +. bre = -

Gat out

ea tasks mu: -

EX

of bed

“A

Get drezza

Get out of bed

bo SOM to top

 8 riya

[f we go one step further and adopt a direction of

execution convention (the direction is arbitrary, but once

it is chosen, it must be adhered to), we can reduce the nodes

on the AND TREE. Figure 7 shows the AND TREE of figure 6.

after adopting a right to left execution convention, and

deleting duplicate tasks,

AND TREES are used because they are easier to imple-

ment on a computer, as each node has one, and only one, prede-

cessor node on the tree, As they are equivalent data struc-

tures, the advantages are available without penalties.

To find the solutions to complex manipulation tasks

Whitney's state space technique will be used to solve the

simple manipulation tasks (move one object), and the

AND TREE will be used as a data structure to order the

simple tasks, The result of the calculations 1s a string

of manipulation primitives which, when executed in order,

will move objects to the requested final positions.

A simplified block diagram of the system is shown

in figure 8. The input consists of the objects' shapes,

initial positions, and specified final positions. In the

system implementation, these inputs are given by teletype,

but are essentially descriptions of snap shots of the

desired configuration. (See the pictures in Chapter VIII.)

home

A
aft.
snd ¢

+’ rr Nn A
vo> eh Get dresse!

~
yo tt out of bed

LI to go to work
AN oa igi. executlon convention
nt the dupli-~~te tasks.

<4 rIT

5implified Block Diagram of the System

|Yer er L eve /

Lnput—— | b— Output

Lower Level

Input: or“
 ;~

rk ii

. no” lons, and
 ran

Ort

Tomam=-

Low wo }

scluticn ’ 1

2 “ype }

-

r-"nod to find

Note that only one object must have a specified final posi-

tion for a task to be defined; that 1s, not all objects on the

initial position list must be on the final position list, For

these other objects the system assumes the operator does not

care where they are at the end of the task. It tends to

leave these objects scattered around the space, Note the

position of objects B, F, and D in the last picture of

task 1 in the examples section, frame 211,

The lower level of the system is an implementation

of a shortest path algorithm that is designed to plan a

path for moving one object, It is, in essence, Whitney's

state space method, but the algorithms are implemented

differently to handle random shaped objects. Chapter I}

discusses the implementation of the shortest path algorithm

The main part of the upper level of the system is an

AND TREE which determines the order for moving objects to

their final positions. The upper level also generates and

orders the sub-tasks which specify moving objects out of

the way of the proposed path of others,

The output of the system is a path for the jaws and

objects which shows the step by step changes in positions.

After the last step of the path has been completed, the task

as defined by the operator is completed.

Briefly, the system works as follows. The system

sets up a model of the physical space where the task is to

be executed, and the operator gives it a description of the

task space as he would like it when the task is completed.

The system uses this information to generate an order to

move objects to their specified Final Positions, This order

is represented by a stack of sub-tasks (each of which re-

quests moving one object) on the AND TREE. The upper level

system gives the lower level system the name of an object to

be moved, and a position to which it is to be moved, The

lower level system attempts to compute a path for the object

and returns to the upper level system a value corresponding to:

1) A path 1s found and the object can be moved.

2) A path is found but other objects are in the

path and must be moved out of the way before

this object can be moved.

3) No path 1s found to move this object.

[f the value corresponding to 1 is returned, the object in

the system's internal task model is moved, If the value cor

responding to 2 is returned, sub-tasks are generated to move

the objects in the planned path out of the way. These sub-

tasks are put on the AND TREE to be executed prior to the

sub-task whose execution was just attempted. If the value

corresponding to 3 is returned, the shortest path algorithm

failed to find a path (for example, the task is impossible

because of an immovable wall), and the system terminates

execution of this entire task.

When values corresponding to either 1 or . are re-

turned, the upper level system gives the lower level sys-

tem another sub-task to execute, This sequence continues

until the system finds a solution to the complete task as

defined by the operator, or until it discovers, using its

internal model of the task, that task is impossible,

As an example, consider the following task. Figure 9-¢

shows the objects' Initial Positions and figure 9-b shows

their Final Positions, The small square with the crooked

line ("W'") through it is the manipulator jaws, They are the

prime movers; they move the objects in the space by grasping

or pushing them,

The system decides that the order in which the

objects are to be moved to their final positions is A, then B,

and then C, (There are only two other orders that are possivole:

B, A, and C; or B, C, and A,) The system's solution is as

follows: the upper level system asks the lower level system

to find a path to move A to its final position. The system

then discovers that B is in the way. (A is not moved,) The

3ample Task Spe~!“icetion

Lritial Positions

CN
Immova ble

object

objects 75 be moved

 £ yo LA

S manipulator jaws

hal Zz 5171605

Al ¢Fo WM

 4 ure
~ E

)

system tries to move B out of the way and discovers C is

in the way. The system then finds a path in which the jaws

push C out of B's and A's way, then finds the next segment of

the path which moves B out of A's way. At this point B and (

are out of the way, and the objects may be moved to their

final positions, The system continues and finds the path

for the jaws to move A to its final position, then B to its

final position, and finally C to its final position, The last

segment of the path directs the jaws to move to their

final position, (For further examples, the reader is

referred to Chapter VIII.)

Preview of the Remainder of This Thesis

The next chapter contains an explanation of an

AND TREE, what some of its properties are, and how it can

be used to order the sub-activities of a general activity.

Chapters III and IV contain comments about the lower level

system, the shortest path algorithm, and the particular

implementations used for this work, Also included in

Chapter IV are descriptions of the restrictions on the demon-

stration system and outlines of some basic manipulation situa-

tions, Chapter V describes some of the situations in which

the system will fail to find solutions, explains why it fails,

and suggests remedies to overcome the f.ilures, It alsc

includes explanations of how the system finds solutions

(if solutions exist!) of explicitly defined task types.

Chapter VI describes the ability of the presently imple-

mented system to diagnose failures, It also gives a brief

outline of those diagnostic aids which could be added.

Chapter VII contains a comparison of the advantages

3 - using three proposed systems:

1) A full optimization solution of the ent. re problem,

2) The OR TREE method proposed by Whitney.

3) The system described in this thesis,

[he final chapters contain examples of tasks this systen

has solved, followed by suggestions of specific problems

that need future work and the conclusions, Appendix C

describes the input/output formats required by the program

and Appendix D contains a high level flow chart of the

demonstration system,

Chapter I1 Basis for This System

The basis of this thesis is to use an AND TREE on

which are arranged several simple manipulation tasks to rep

resent a complex manipulation task, The solutions to the

simple tasks can be found using a state space system like

te 3 . 31 ded Comb: os

Whitney's, and the characteristics of the AND TKEE will

assure that the order in which the simple tasks are executed

will be an order which will give a solution to the complex

task.

In this chapter the cher »"-~ tics of an AND Tkkk, in-

cluding the characteristics of the tasks that can be analyzed

by an AND TREE system, will be investigated and an outline of how

the AND TREE can solve complex manipulation tasks will be given,

character stics of an AND TREE

An AND TREE is composed of nodes and edges. For our

purposes, the nodes represent sub-tasks, and the edges con-

nect the sub-tasks. Figure 11 "5s a drawing of an AND TREE.

The AND TREE looks like the familiar OR TREE, or decision

rree, but 1t differs in that

1) all branches must be executed. and

2) execution begins at the bottom of the branches

and proceeds toward the top of the tree.

Because there 1s a direction of execution of the nodes on

the tree, the AND TREE can order the execution of a set of

sub-tasks.,

To aid in the following discussion, the terms

predecessor node, successor node, and brother node will be

defined, A predecessor node is closer to the top of the

tree and on the same branch as a given node, In figure 11,

nodes 8 and 4 (the upper node 4) are both predecessors of node

10, A successor node is closer to the bottom of the tree

and on the same branch as a given node. In figure 11, node

11 is the successor of nodes 8 and 4 (the upper node 4).

Brother nodes have the same immediate predecessor. In figure

11, nodes 7, 8, anid 9 are brothers, but nodes 6 and 7 are

not brothers.

The AND TREE is a useful way of specifying in varying

amounts of detail, any activity which can be divided into

sub-activities, The TREE provides a structure which can

specify hierarchical relationships. It also can keep lists

of sub-activities that have no hierarchical relationship.

And it can be used in situations where the hierarchical rela-

tionships between some sub-act’vities are important and other

sub-activities have no important hierarchical relationship

to one another, To illustrate, consider the AND TREE shown

in figure 11 (disregard the lower sub-tasks 2 and 4). Sub-

tasks 10, 11, 12, and 13 can be executed in any order, but

all of them must be executed prior to sub-task 8,

The familiar data structure that does the same

job as the AND TREE is the PERT chart, The PERT chart is

a graph, but not a tree as it generally contains too many

edges. A graph which contains n nodes is defined to be &g

tree if the graph is connected and if there are n-1 edges.

A tree must contain at least two nodes. There has been much

written about PERT charts, both theory and use. See, for

example, Archibald?! and Shaffer et al 2°

The AND TREE 1s a special case of a graph, There are

several books on graphs which have some sections devoted to

the characteristics of trees. The interested reader is re-

ferred to Berge, > Ore, 22 or the NASA Technical Report 32-1413

which 1s a detailed review of the literature available

on graphs,

The CX TREE can also specify the order in which sub-

tasks are to be executed. But, because only one branch of an

OR TREE is executed, all sub-tasks must be on all branches.

Ihe OR TREE with all possible permutations of n sub-tasks

ot a complex task has n! branches and
ne(n!)

n nodes,

7 an
1=1

An AMD TREE, on the other hand, need have only n

and n+Z or fewer branches.
LL

nodes

To be analyzed by the system, a complex task must be

made up of specific sub-tasks; that is, the sub-tasks must

request an action be performed on or with a specific object,

or at a specific location. An example of a specific task is

"Move object A to position X.'" An example of a non-specific

task 1s "Move an object,' If this requirement is not met,

the system cannot detect loops in the task structure (loop

letection will be discussed later in this chapter).

A second requirement a complex task must meet is

that the system must be able to figure out how to perform

the sub-tasks of the complex task, or that the system be

pre-programmed to perform the sub-tasks. Also, the system

could break the sub-tasks up into sub-sub-tasks, etc. But

at some point the system must know. or be able to figure out

how to perform the sub-tasks.

The ability to analyze sub-tasks must include the

ability to determine if another sub-task should be per-

formed prior to the sub-task whose execution is being con-

temnlated. The system must have this ability if it is to

figure out that the order implied by the direction of

axecution of brother tasks on the AND TREE is not the one

that will achieve the requested complex task, To use this

information the system must be able to add sub-tasks to

the AND TREE,

A third requirement of complex tasks is that the

sub-tasks, when executed one at a time in some order,

will give a solution to the complex task, This require-

ment eliminates those complex tasks whose solution re-

guires that two or more sub-tasks be executed at the

same time. An example of such a task is one that requires

assembling a spring loaded mechanism, One typically has

to compress the spring, put a plate in place, and insert

and start two or three bolts, The spring must be held in

place while the last two sub-tasks are executed; two sub-

tasks must be executed simultaneously,

A general AND TREE system would work in the following

vay, All sub-tasks that are explicitly requested are put on

an AND TREE. Then the system either breaks the tasks into

sub-tasks or figures out how to perform them. Generally,

the system will discover that one or more other sub-tasks

must be performed before the requested task can be performed,

The system then puts these other sub-tasks on the AND TREE

prior to the task whose execution was planned,

The system continues, trying to execute the sub-

tasks at the bottom of the AND TREE. When a sub-task can be

executed (without requiring the execution of any other sub-

task) that branch of the tree 1s terminated. The above

sequence 1s continued until all branches are terminated,

This will be demonstrated in an example to follow,

Besides the branch termination where the task can

be performed, there are two other possibilities for termi:

nation, The first is a case 1n which a task 1s impossible

to perform. In the case in which the impossible task is

explicitly requested by the operator, the system will in-

form the operator that the task 1s impossible, Figure 1)

is an example of an impossible two dimensional task. In the

case where the impossible task is generated by the system, the

system will try to find other tasks that can be performed

which, when executed, allow the task requested by the opera-

tor to be performed.

The other possibility for termination of an AND TREE

branch occurs when the system detects a task loop. The

AND TREE gives one the opportunity to discover, quite easily,

Tasks move A to X

immovable object

A

in impc

M JAWS

“ible two dir

AY pram

“ional

2
»

4

i }

tagk

)

if an activity 1s its own predecessor, In the case where

an activity is its own predecessor, either immediately or

several predecessor nodes up the tree, there is said to be

a loop in the activity structure (that is, on the TREE).

Figure 11 shows an AND TREE with two loops. The ability to

detect loops easily is valuable as the number of sub-

activities in a complex activity may be very large.

The concept of how a task loop is generated and de-

tected is illustrated in the following example.

The system is requested to perform

task #0 (it does not matter what

task #0 is), Task #0 is put on
#0

the first level of the AND TREE,

In planning to execute this task, the system finds that the

best thing to do 1s to first per-

form task #1, Task #1 is then put

on the AND TREE prior to task #0,

The system now plans to perform

#0
Aren

ay
task #1, It finds that the cheap-

est way to execute this task 1s to

system then puts task #0 on the

AND TREE prior to task #1. There

first perform task

[#0

#7

#0, The

now has developed a task loop, as

ask 1s 1ft< own nredecessor [#0

An AND TRZL

| ror |

i

 =] [2] [3] G7)
~~

Foy

= BEE
-

(4

[--

yr “uted

~taprry frr Yering ta~rg 2 and V

Tf orure i

To stop the system from forming the same task loop

again, a special note is added to the task (on the TASK

TREE) that comes just before the second instance of the

task which constituted the loop (the note is added to

task #1 in this case). This note says that when the environ-

ment is in the present configuration (which must be remem-

bered), it costs an infinite amount to perform task #0

when planning to perform task #1, If there is no alterna-

tive to a loop, the system will respond that the task re-

quested is impossible (costs an infinite amount to perform;

As an example of how the system detects loops when

performing an actual task, consider the task depicted in

figure 12. As shown, the requested task is impossible, The

system decides this in the following manner,

First the system plans to move A to X. It finds

that first, B must be moved, (How the system finds this will

be discussed in Chapter IV,) So it plans to move B to an

Out of the Way Place. In making this plan, the system finds

that A must first be moved, The system now discovers that

this AND TREE has a loop by finding that the task just

added is its own predecessor. (Move A - Move B - Move A).

lhe system then makes a note that when the environment is

in its present configuration A should be considered a fixed

Impossible two dimensional ta~'t dem-~~"="ting
a ta- ‘nr

Ttf=" ma = i2

NAV

A

M)
-

)

Tlourn

object when planning to move B. When the system plans to move

B out of the way the next time, it finds that the sub-task

is impossible, and hence, that moving A is impossible,

The TASK TREE

For the purposes of this thesis, the AND TREE will

he referred to as the TASK TREE. An example of a TASK TREE

is shown in figure 14, To show 1ts usefulness, let us con-

sider the following example. Suppose we have the situation

shown in figure 13. The lettered objects are movable blocks.

lhe task assigned 1s to move block A to position X. This 1s

1 two dimensional problem, and objects can be moved only one

at a time,

The solution 1s to move objects B and C out of the way

and then move A to X. The system discovers that B and C must

be moved out of the way, generates the sub-tasks to request

this, and puts the sub-tasks on the TASK TREE prior to the

sub-task to move A to X. The complete TASK TREE for the task

request is shown in figure 14.

If there were other objects encumbering the motion

of B and C, then requests to move them to Out of the Way

Places would be shown on the TASK TREE prior to the requests

ro move B and C (just as the requests to move B and C are

l'ask: move A to X

M

*)

BA

4

Figure 173

A

C
-

TASK TRee for task shown in figure 173

Move object A to vosition

ove

The

' out of the wavy

cyatem rer tes the 1b=t

move C out cf the wav

hee.
1 J mova BH and

fi~ure 14

ney
i

.

Ra mn at ta asm

-r
iia

Ade L wrm | A nH

[|

“i oure 15-9

—"

I

T~ im [8 . mony

+

“foure 15-bh

out of

out of
Wey

prior to the request to move A),

For ease of operation in the proposed system, the

tasks are given number codes--task #1, task #2, etc. These

numbers are put on the TASK TREE, and an interpretive

list is made telling which task corresponds to which number

This 1ist can be referenced from either a task number or a

task name, The TASK TREE shown in figure 15-a with the

interpretive list of figure 15-b 1s the equivalent of the

TASK TREE of figure 14.

The part of the TASK TREE system that detects failures

can be fairly simple, Manipulation tasks (in which we are

interested) are requested by specifying a goal state which

differs from a given initial state, To determine if it has

failed to solve the requested manipulation task, the TASK

TREE system only has to compare the final state of its 1in-

ternal model to the requested goal state,

A TASK TREE is a workable way of making plans for

complex tasks that consist of many sub-tasks. It can store

(in an orderly manner that allows computer processing) the

important aspect of the task that we need for making plans

for performing large, complex tasks--which tasks must be

performed before other tasks, A TASK TREE can maintain cost

information about all tasks so one can know not only the

order to perform tasks, but also how much they will cost.

The TASK TREE system must be able to request solu-

tions to simple tasks from a lower level system it super-

vises, by giving the lower level system the information it

needs to find the solutions to the simple tasks. This

higher level system does not know anything about the nature

of the tasks it is processing; it is concerned only with

abstractions, It only knows about the TREE, the names,

as it were, for the simple tasks on the TREE, and whether

the lower level system finds solutions for the simple tasks

The TASK TREE structure allows a computer to deter-

mine 1f there are any logical task loops in the tree. This

ability to detect loops gives the user confidence that the

system will not perform a large number of tasks before an

sperator discovers it is in a loop.

Also, the TASK TREE structure allows for dynamic grow-

ing and shrinking, It is not limited to any particular number

oD& type of tasks. "Given a larger computer..

Chapter III Shortest Path Algorithms

This chapter is an explanation of the shortest

path algorithms used in the demonstr-tion system, The

reader who is not interested in the detailed workings of

these algorithms may go to the next chapter with no loss

of continuity,

Before beginning the explanations of the algorithms,

some terms which will aid in the discussions need to be de-

fined, The algorithms will usually begin from one point,

the start. In a state space, the startine point is the

state (point) that represents the current configuration of

the physical space, Likewise, the finish is the point to which

the algorithms will find a path. In a state space, the fin-

ishing point 1s the goal state (point) that represents the de-

sired configuration of the physical space.

To expand a point in the state space is to investi-

gate the total cost to get from the start to each of this

point's neighbors with the path including this point as the

immediately preceding point, That is, the last two sections

of the flow chart, figure 10, are the "expansion of a point.’

(Note that it is not possible to get from each point in the

state space to all other points in one step. In a two dimen-

sional space with a rectangular grid of points in one step

it would be possible to get from one point only to its four

nearest neighbors (no diagonal transition is allowed). This

implementation of the algorithms considers only the possibility

of transitions from a point to its nearest neighbors, however,

the descriptions of the algorithms' properties will be general

so that the reader can apply these algorithms to cases in which

transitions are possible to other than the nearest neighbors,)

The front is the set of points to which the algorithm has

found at least one path, but has not yet decided that it has

found the cheapest path, That is, the points on the front

are neighbors of points that have been expanded, but they

(the points on the front) have not yet been "closed." To

close a point is to set a flag that indicates that the cheap

est path to this point has been found, and there is no use

trying to find others. The cost of a point is defined as the

cost to get from the start to the point, Similarly, the cost

of the front 1s the cost to get from the start to the lowest

cost point on the front,

tlooding Algorithm

The basic flow chart for the flooding algorithm is

shown in figure 16. The flow chart is complete, except for

the various termination conditions we will want to utilize.

FLOODING ALGORITHI
Basic Flow Chart

Start at the designated point

Put this goin on the "front" list (a list that
contains all points of the "front" arranged so that
the cheapest one is qulckly accessible; ties are

resolved arbitrarily).

Is the Hf nen” "14st emptv?—— yas — Soxit

no

Take the cheavest point ¢*“7
mark the point "closed."

A Vy
be 1, -r

J Ney es
: w

Generate
-

I,
~t of This Foirt': neler bors.

[a the list neishboring points empty”

i, anc

ves

no

Take a new pint off the neighboring point list,
Call it the Fresent Location.
Calculate the cost of a path to get to the Fresent
Location with This Point as the immediately

preceeding i on the path.
NO Ts the cost of this path to the Fresent

less than any previously computed path?

| ves
Ao
B.

¥
 3

Replace the 0ld cost with the new cost.
Replace the point to have come from to get to
the Present Location with This Foint.
Fut the Present Location on the "front!" list.

HY "11 e 1 3

hese termination conditions will be added as they are

discussed.

The point we choose to expand each time is the lowest

cost point on the front, Doing this guarantees us the fol-

lowing relation: the cost to get to the lowest cost point

on the front is greater than or equal to the cost to get to

any point inside the front (inside and outside the front as

defined below). This relation holds because we previously

expanded and closed the points inside the front, hence the

cost to get to them is less than or equal to (in the case of

ties) the cost to get to the lowest cost point on the front.

There is also another relation we can use to our benefit:

the cost to get to any point outside the front, when found,

will be greater than the cost to get to the lowest cost

point on the front, This relation holds because the minimum

cost transition from one point to another is greater than

zero, and the path from the start to any point outside the

front must include, when found, at least one member of the

present front, These two relations can be summarized as:

The cost to get to any point outside the front, when found,

will be greater than the cost to get to the lowest cost point

on the front, which is greater than or equal to the cost to

get to any point inside the front, The following example

will clarify the concepts of "inside" and "outside' the

front.

The initial situation is as shown ia figure 17, ex-

cept that no points are shown other than the starting point

and its four nearest neighbors, The other points in the

space lie in the same rectangular grid pattern as the five

points shown, and extend in all directions,

We will call the center point of figure 17 the start

ing point and set its cost to zero, This point is now put

on the front list, This 1s the only point on the front,

All other points in the space are outside the front, In-

itially, the cost to get to these points is infinity, or some

number large enough so that all necessary relations will

hold. (A good number is 10 times a maximum dimension of the

space times the maximum transition cost in the space. For

computer implementations, the largest possible positive number

works very well,) At this stage, there are no points inside

the front,

The cost to ma »; a transition from one point to another

must be greater than zero. For convenience, let all transi-

tion costs be integers, with the minimum cost transition

being one (1).

Initial otacge
finding a path throusnh a z2pace using the
floodiny alzorithm

 iL

A

J= starting point
£= this point is c¢- th Front

“9 _. re a ~~

sreonl
Findin: nat’t throu
flondins alzsoritnm

+
-—

 nh

ry
—’

 AL

this point 13 closed

-

”

 -_

 1 rure

We now pick the lowest cost point off the front list,

mark it closed (this is the starting point; there can be no

cheaper way to get here), and expand it. This point's neigi-

bors are now on the front list (they were put there by the

algorithm after it found the paths and costs). The situation

LS now as shown in figure 18,

Let the algorithm continue, We pick the lowest cost

point off the front (resolve ties arbitrarily), Then we

mark this point as closed; its cost cannot decrease. Let

1s see why this 1s so.

The points in the space can be classified as belonging

to one of three sets: points inside the front, points on the

front, and points outside the front, Let us consider the

possibilities that a lower cost path to this point could be

found. First, consider all the points inside the front. In

this case there is only one point; and the path includes it

as one of the two points on the path, (The path consists of

this point and the starting point,) Hence, there is no need

to reconsider this alternative. Next, consider the points on

the front, In picking the lowest cost point on the front

(remember the possibility of ties), we guarantee that the

cost of all other points on the front is greater than or

equal to the cost to get to this point, Hence, any path to

this point which includes any other point on the front can-

not possibly be cheaper than the path that the algorithm has

presently settled on (all costs are greater than 0).

Finally, there are the points outside the front, We

have not yet found a path to them from the start, and there-

fore the cost to get there is presently infinity. However,

when we do find a path to each of these points, the cost of

this path must be greater than or equal to the cost to get

to the lowest cost point on the front as the path must include

at least one point that is now on the front. Hence, any path

from the start that includes one of these points must be

more expensive than the path to the lowest cost point on the

front,

lo resume the discussion, we just picked the lowest

cost point off the front and marked it closed, We then ex-

pand the front to include the points we can get to from this

point where this path 1s cheaper than any previously com-

puted, The situation is now as shown in figure 19,

Now let us examine the situation in figure 19. There

are two closed points. We have shown that we have found the

cheapest way to get to them from the start, There are a number

third stage
finding a path through a space using the
floodinz algorithm

-

 Ly

Figure 19

of points on the front whose costs are greater than or equal

to the cost to get to any point inside the front, There are

also the points outside the front, (again not shown) and we

know the cost to get to any of these points is presently

infinity.

Now, we will pick the lowest cost point on the front,

and mark it closed; the cost to get from the start to this

point cannot decrease. Again, we will pause to see why

this 1s so,

There are again, the three sets of points: points

inside the front, points on the front, and points outside

the front. There are two points inside the front, Each of

them has previously been on the front, and we have checked

the cost to get from each of their neighbors, through them,

back to the start, and retained the lowest cost computed for

each instance, Hence, we have already considered all the

possibilities of lowest cost paths that are possible from

points inside the front, And we have retained the lowest

cost of these, There 1s no reason to reconsider these possi-

bilities. If we do, the lowest cost path we could possible

find would be this path, or possibly another path of equal

cost. This argument is general, It applies when there are

any number of points (more than zero) inside the front.

The arguments previously given as to why we cannot

find a lower cost path from this point to the start through

any of the points on or outside the front continue to hold.

(Note that the path to the lowest cost point on the front

can include only points inside the front.)

Again, to resume the explanation, We just picked

the lowest cost point off the front and marked it closed.

Ne then expand the point and increase the front list by the

additional points we can get to from this point in the cases

where the path found is cheaper than any previously computed.

Now we can continue expanding the front, confident that it

is finding the lowest cost paths until we reach a terminal

roint, which terminates the search.

Termination of the Search

The reason for using this search technique is its

speed, It finds the shortest path to a point quickly if

the cost of the path to the terminal point is less than the

average of the costs of the paths to all the points in the

space.

[n the case of a single terminal point, the search

terminates after the terminal point is closed. The sequence

of events for the algorithm is: pick the lowest cost point

off the front list, mark it closed, and check to see if it is

the termination point, If it is, the search is finished. If

not, continue the normal way,

When there is a set of possible terminal points (we

must find a path to any one of the set, the OR condition of

multiple terminal points), the termination condition is the

same, except that the process terminates as soon as any one

of the points of the terminal set is closed. See figure 20

How are we sure that this gives us the shortest path

to any of the terminal set? The reason is basically the same

as that used to justify closing the point. The cost to get

to any open (not closed) points in the space will be greater

than or equal to the cost to get to this point. And, as

this is the first point of the terminal set to be closed, the

cost to get to this point is less than or equal to the cost

to get to any other point of the terminal set,

When there 1s a set of required terminal points (we

must find a path to all of the points of the set, the AND

condition of multinle terminal points), the algorithm termi

nates only after all points in the set have been closed,

See figure 20.

FLOODING ALGORITHM
flow chart for termination with an OR set of
terminal points

start at the disignated point(s

J
Fut this (these) point(s) on the

oyIa tha Hfm~-- 2-0JM empty?__¥es

"front list."

—irror exit:
no path found

no

Take the che-
it closed,

LA point °° rE "rent list" and mark

Termination condition (see figure 20-b)

ST requirement 1 or 2; either will lead to
or .

[1] le 8 - »Pvit with path

no

Generate a 1] vo
of this point!'s nei~"bors,

[3 the 19st ned grhoring poi-ts empty?— Ve°

no

Vv
Take a point off the neighboring point list.
Calculate the cost of a path to get to this neighboring
point with this point as the immediately preceeding
point on the path.

M0 1s the cost ¢

computed path

— gun

yes
V

i, Replace the old cost with the new cost.
B. Replace the point to have come from with this point.
Ce Put this neighbor point on the "front list."

1 cure 2D

'BRMINATION CONDITIONS:

nequirement: rust find a path t. any one
several points.

Permination Condition: Is this point (just closed
a terminal polnt”™

ves
no

Requirement: FusC find a path tH .
points.

3

de -

rfermination Condition: Is this point
a terminal voint?——

no yes

Is this the las
one on the list

-

. several

(just closed

no

fioure 20-b

Starting From More Than One Point

the flooding algorithm will work as described pre-

siously when considering the possibility of starting from

more than one point. The only change is that the algorithm

should not set all starting points' cost equal to zero, but

should allow the flexibility of different positive values

for the starting costs,

An example will clarify. At the end of a working day

you want to go home, However, you have a choice as to where

you will be when you finish work, points A, B, or C. Uue to

circumstances other than closeness to home, you have prefer-

ences as to which of these you would rather be at when work

ends, For instance, 1f at the end of work you are at B, you

will be able to spend only 10 minutes there when you would

like to spend 15, For this inconvenience, let us assign a cost

of starting from B equal to 5 units, And say also that the

cost of starting from A is 10 units, and from C is 2 units.

Now, if the cost to get from A to home is 20 units, from B to

home is 24 units, and from C to home is 29 units, a rational

decision maker would pick B as the starting point. lle would

do this even if his route home takes him by A, (Note that

ci1ven the costs, he should not go by C on the way home.)

This situation is the OR condition for multiple start-

ing points. The implementation of this condition is quite

easy. Calculate the cost to start at the various starting

points, then put all the points on the front list and begin

the calculation in the usual way. See figure 20,

If you look at the positions of the fronts after

several iterations of the algorithm, the situation may be

as shown in figure 21, Although there are actually several

different lines that compose the front, they are all part

of the same front, And, the relations we have previously

proven still hold, If the algorithm is allowed to proceed,

the "separate' fronts will join to form the more familiar

pattern shown in figure 22.

Above we showed that the algorithm could start from

multiple starting points (OR only) and finish with multiple

finishing points (AND or OR). Now we want to introduce the

possibility of starting the algorithm from two or more points.

This is different from allowing the possibility of the path

starting from two points, It is the AND condition for mul-

tiple starting points, Now we must keep two (or more) front

lists and two (or more) sets of records of the best place to

have come from and the cost to get to each point. This is

starting the flooding algorithm at three polnts

=

(+)
7
. ce

,

5)

fronts fF

yr
a —

2 ap ~- thre

~-

S <

Ao +) 5J

icure c2

most easily accomplished by running the algorithm (finding

paths) for each starting point and storing the paths and

costs after each is found. Note that it is possible to imple-

ment any number and combination of AND and OR starting and

termination conditions for the algorithm,

There is the possibility of making one-half as many

calculations as when we let the algorithm proceed only from

the path starting point, if we let the algorithm start from

the path starting point and finishing point, and stop it

after the two fronts cross. In an idealized case where we

let the algorithm start only from the path starting point,

the front will expand as a set of concentric circles, The

number of points that have been expanded is proportional to

the area of this circle, If the distance (in this case the

number of points, not the cost) from the starting point to

the termination point is R, then the number of points

expanded is proportional to TRE If we now let the fronts

expand at the same rate from the path starting point and

the path finishing point, and terminate the algorithm when

(or after) the fronts cross, the radius of each of the two

circles is 2K. The number of points expanded is then

proportional to 2(T (3k)2) = TR? (see figure 23).

Idealized case of str ing
from two points

a 'erding algorithm

\ Area=4"

2
yy -

s/f R

Area =7R*

Area of large circle
two smaller circles,

13 twice the area of the

If the points in the space are of equal density,
there are one-half as many polnts inside the two smaller
rircles a2 inside the larcer circle,

cure 2 4

As previously mentioned, the time to terminate the

algorithm is when (or after) the fronts cross. There are

two ways of deciding when to terminate the algorithm ex-

plained below. The first of these is perhaps the easier tc

implement, However, the time required for the algorithm

to terminate for some uses may be longer than with the

second, This is because the first method requires the

termination decision to be made in the innermost loop of

the algorithm, while the second method allows the termina-

tion decision to be made in an outer loop. We will now

introduce the notation for the following discussion, There

are two fronts, front A and front B., The points inside the

fronts we will call a and b (points a are inside front A

points b are inside front B). See figure 24,

Termination Criterion for Algorithms Which Develop Paths

From Both Ends Simultaneously

The first method is essentially the same as described

by Nicholson, 2) The only differences are in notation and

algorithm implementation (although the algorithms are imple-

mented differently, they do the same thing). The criterion

for termination of the algorithm is as follows, First, the

cost to get to a point is computed. If this cost is less

Figure for discussion of termination criteria
of the flooding algorithm

I4

7 7r¢

~~ a. ~~ —
~

rront B

]

»

Na

than any previously computed, the cost to get from this

point to the other algorithm starting point must be checked

(in addition to the other operations required by the flood-

ing algorithm as described by the bottom section of

figure 20-a), If this computation is finding paths from

the start, then we must check the cost of getting from this

point to the finish; and vice versa, If we find this cost

to be less than infinity (or its approximation), then we

have found a path from the start to the finish, If the cost

of the complete path is lower than previously found, then

replace the old total cost with this new cost, (Also re-

place the path.) The time to terminate the algorithm is

when the cost of the cheapest path found is less than or

equal to the cost of one front plus the cost of the other

front plus the lowest cost transition possible,

One proof that this gives the lowest cost path is

given by Nicholson.%Y A briefer proof is as follows. The

position of the fronts will be as shown in figure 24, The

lowest cost path from the path starting point to the finish-

ing point can include as members only points that are inside

front A or inside front B. If a point is outside front A

and outside front B, then the cost to get to it from the start

will be greater than or equal the present cost of front pre

plus the cost of front A, Hence, the total cost of the

path which includes this point as a member must be greater

than or equal the sum of the present front costs. From

above, the cost of the path we have found is less than or

equal this sum, and there 1s no need to consider these

possibilities. To continue the proof, we must investigate

the properties of the fronts, Kemember that it is impossible

for a path to go from a point outside the front to a point

inside the front without the path including a point on the

present front, Therefore, to go from the start to the fin-

ish, we must cross both fronts; that is, any path must in-

clude as a member at least one point of each front, Each

time a point is added to either front, the algorithm requires

that we check the cost of the path from the start to finish

that includes this point, It saves the lowest cost of these.

Therefore, we have found the lowest cost path,

The second method of terminating the algorithm 13 as

tollows, Each time the top point is taken off the front

list, a check 1s made to see if this point is inside the

other front, If it is, the cost to get to this point is re-

corded as C,. This has to be the lowest cost point on this

front that is also inside the other front. Let us call this

front at this time front A', and likewise, the other front B

Now we must search over the points on front B' to find which

one has the lowest cost to get to the point from which this

algorithm started, When this cost is found, it is recorded

as D,. Remember from the previous section that there is no

need to consider points outside either front (front A' or front

B'), and any path must contain at least one member of eachp

of these fronts, Therefore, the lowest cost path that can be

found is C. + D,., the sum of the lowest cost components on

the front.

Now, we will not continue to expand the fronts at

equal rates, We will continue to expand only front A (front

AY 1s a particular position of front A), As each point is

axpanded, we must check for a lower cost path from the start

to the finish, and replace the old cost with any new lower

cost found (and the old path with the new path). We can ter

minate the algorithm only as soon as the cost of the point

being expanded is greater than or equal to the cost of the

lowest cost path yet found minus Ui. This procedure guar-

antees that the lowest path from the start to the finish has

been found as any future path that will be found must have a

cost greater than or equal to the present lowest cost path.

As we showed above, the lowest possible cost path is C,

and the lowest cost path must include at least one point

that is a member of the set comprising front A' AND b (ANU

is logical and). When the cost of the point being expanded,

C., plus D, is greater than or equal to the cost of the lowest1? 1

cost path found, then we have investigated all points that

are members of the set front A' AND b that could be on the

lowest cost path, (C, can never decrease; therefore,

C. + D, can only be greater than or equal to the present low-

est cost path.) Figure 25 supplements the above explanation,

There are two trivial termination situations which de-

serve special consideration, Prior experience has shown that

one or the other of these has always been the situation when

the algorithm terminated, The first is when there is only one

member of the set front A' AND b, Then the first path found

is the only path possible. The second situation is when all

the costs of the members of front A' AND b are the sae.

However, see figure 26 for a situation where this is not

the case.

There is one further item to add. That is, when there

Ls at least one member of the set front A' AND b, and there

are no members of the set a AND b, (that is, front A' and

front B' are adjacent where front A' is inside front B', TyYX

Illustration to supplement explanation cc. Termination
Criterion of flooding algorithm when paths are
developed from both ends.

Front A’ p08 Tron of fontA
I when point with cost Cs

on frontAis found.

front B poston of front BB
when point with cost Cy
nn Dont A 65 found.

Expansion of
from? 4 beyond

~ wy £7

&
/

, FF £70 AA \
\

7

\
fT
Ce Tr Ng

oo

ps
Ce.

Cc. 18 ree”
£ dund t —

Dy
’ —-

front
of front =»,
the cheapest ¢

-oe_,

fyr~=" |
1owr« “a PoNalini ow -» 4 7

»

n frc-

lr © erat pete <1 front BY

front .. until C;, the cost
+ than or equal to the cost of

«ii from start to finish minus Dg

"teure 25

Situation in whieh comp ~~.
to find shortest path.

-~- e

i1- TvdOn |

aZhg0

co 12,

Numb
file’

Ligh’
to

Bol
to

Shor les?
pathel 2.,.

g 12 : #Ly

ie Ea"

(Bsition of front
From start

Position of Lont
Potirn Fon ISAC

A

ca
& "tf ~m engts.,

Tv.

| #1) ary er to

‘=m the ri’
nd

Uy

-

» oot

Tha co- to oot the frrr” wa

adjacent. and par«l?!..&#r: not equal, T a8t
cost path 1s 18 cost units. It will not bs the first
path investisgzated,

+4 rx <

vice versa), then the number of members of front A' AND _

equals the number of members of front B' AND a. As the two

fronts are adjacent, they must be parallel (not nece<sarily

straight). As they cross one another at the ends of the

parallel sections, the lengths of the fronts where they

are parallel must be equal. And as the number of points on

the fronts are proportional to the length of the fronts, then

the number of points on each front in this region must be

iL,asqu

The A* Algorithm

The flooding algorithm just discussed is .

case of the A* algorithm! However, having proved the

. special

flooding algorithm's properties we have a solid basis on

which to proceed with the A* algorithm, There are no flow

charts given for the A* algorithm as it is identical to the

flooding algorithm except for expanding the point on the

front (the open point) which minimizes 2(o¢)+h(o¢) (defined

below) and the special cautions outlined below.

First a definition of terms, « is the point being

discussed, any point in the space. g(o«) is the current

best estimate of the lowest cost path from the start to of.

g(c¢) 1s the cost of the lowest cost path from the start to <<,

0(o¢) 2 g(e¢) in all cases, h(x) is an estimate of the

cost of the path from & to the finish, INGD) must be

greater than or equal to the cost of the lowest cost

path from of to the finish, The set of terminal points for

the algorithm is 7, and t represents a member of |.

When implementing A*, it became apparent that

special care has to be taken when there is more than one

point in the terminal set, 7°, and the terminal condition

is to find the cheapest path to any one of the several mem-

bers of T. (The OR terminal condition.) Let 7be composed

of n members, ti, ty, + » 20 Lon 0

a function of of and t, te], we must, at every point X.

t . As f(x) must be

use INCA where fi(ex)="" f(od,t;), to insure that the algor-

ithm terminates properly.

When the terminal condition is AND (we must find the

cheapest path to all members of 7’), the same problem does

not exist. One way of implementing this condition is to

pick a t. to compute Rlec)=£(oc,t,), and continue with this

“ until it is closed. Then, scan the list of terminal

oin : : ;

points and pick one that is not yet closed, t. and use it tc

compute Ne) =f(el,t.). Continue these steps until all

points of the terminal set are closed.

The A* algorithm has the same properties as the flood-

ing algorithm in the case of multiple starting points (OR)

and starting the algorithm from two or more points (AND).

Also, when the A* algorithm is started from the path start-

ing and finishing points, the same termination procedures as

described for the flooding algorithm apply (as Z(¥)=g(¥)

when ¥ is the open node that satisfies g(\¢ J+h (WR) < (ec)-

fl (oC) and oC is any open node). However, in all cases in

which there is more than one possible terminal state, the

procedures described above must be used.

The Two Stack Diamond

One of the first objectives of this project was tc

find or invent shortest path algorithms that terminate

quickly when finding paths through large numbers of nodes

(of the order of 10,000 or so). One of the first algorithms

tried was a variation of Minty's Algorithm,?3 In an effort

to make this algorithm run faster, a list was kept of all

the points whose cost (of the path from this point to the

start) had decreased. A point was taken off the list when

the costs of the paths to its neighbors were investigated

(these paths being required to go through this point).

This list of points composed a front,

In the course of some experimentation, it was found the

best way to put points on the list and take them off was the

First in-First out method. This method tended to make the

front progress through the matrix of nodes perpendicular to

the surface formed by the front, Using a Last in-First out

method (a push-down list) tended to generate lines of nodes

that started from the extremities of the front and were

parallel to the surface formed by the front, This is a waste-

ful procedure as the paths formed along these lines would

generally not be minimum cost and would have to be recalcu-

lated many times before a minimum cost path was found.

The only problem with the First in-First out method

was that it required extra instructions for computer imple-

mentation as it could not use instructions for pushdown list

manipulation, As an alternative, two stacks of front points

were kept, Points whose cost had changed were put on one

list, and points to expand were taken off the other. When

the list the points were being taken from was empty, the

lists were swapped. We now took points off the list we were

adding them to, and vice versa, This procedure let the

hush-down list facilities be used, and moved the front

serpendicular to the surface formed by the front.

A tlow chart of this algorithm is shown in figure 27,

The advantage of this algorithm is that very few decisions are

made in the inner loop. When paths to many points, or widely

separated points in the space must be found, then this

algorithm is generally faster than the flooding algorithm

or the A* algorithm, They both require many more decisions

to be made in the inner loop. This greatly increases the

time they require to terminate, Appendix A shows this

algorithm finding the minimum cost paths in a space.

low Chart for
rath Algorithm

the Two stack Diamond shortest

Initially, set all
approximation).

COS Ls T some implementable

Set the cost of the starting point = 0 .
Put the starting point on the "full" list. (The

other list ia be empty.)

Is the "full

Take a rn in’

Generate a

point.

y

1 a “ empty? ———0 7. sls the other
1* =~" empty?

Lr
ide Ty
 rc inished

~~ -

Swab
lists

4 Tar -

off ths W770 Y2a¢,

boy of all nearest neigchbais -

this

r

[3 Fhe L113 ne i ghbors empty”—

no

Tak2 a poi”
J
cre +he neighbor 1i- |

Compute the ost of the path from the
neighbor point with thls point as the

preceeding i on the path,
no Is this cost less than

computed path?

start to this
immediately

previously

yes

A
B.,

Replace
Replace
fut this

l
old cost with new,
r0int to have come

neighbor point on

lower cost.
from with this point.
"empty" list.

Ficure 27

Chapter IV Implementation of Algorithms for the Purposes

of This Work

The chapter begins by specifying the restrictions on

the examples the demonstration system can solve and investi

gating some basic manipulation situations. In the body of

the chapter, the methods used to implement the procedures

discussed in previous chapters are explained.

Restrictions on the cxamples and Demonstrations

and Definitions

{wo Dimensional Space

All tasks will be performed in a two dimensional

space, All motion will be confined to be within the space.

and the representation of all objects and the manipulator

jaws will be two dimensional, This restriction 1s made

to keep the size of data storage needed for the state space

model of the task reasonable, The principles on which the

system is designed are extendable to three dimensions (or

more), but of course, the data storage and the processing

time increase according to the number of dimensions re-

quired by the state space model to describe the task.

E.

NO Rotations

For the same reason, the system will not allow any

rotations, Rotations of objects can be completely described

by a model of sufficient dimensionality. Not allowing rota-

tions keeps the number of dimensions in the model small, As

before, the system can be extended to include rotations if

necessary.

Jigitized Object Shapzas

The objects that the demonstration system can repre-

sent can be of any two dimensional shape, but the sides must

be parallel to the X or Y axes of the space, and the object

must be connected, Figure 28 1s a represent~tion of an

object that can be represented on the system.

Movable and Immovable Objects

The system will divide objects into two classes,

movable and immovable, In our everyday experience, we

make this classification, but the attribute immovable has

meaning only in a relative sense. As far as is known,

there is no absolutely immovable object, When we are think

ing of moving furniture, we consider the walls of the house

as immovable, But wreckers move (or remove) walls or

entire buildings. Likewise, there are other groups that

Object that can be re-
system

»rnted on the demonstration

i
Cigure 28

specialize in moving things we normally think of as

immovable, In the examples and demonstration, objects are

defined as movable or fixed. The system will never move a

fixed object.

nly One Object at a Time Can be Moved

This demonstration system cannot move more than one

object at a time, This means, for example, that the system

cannot use one object to push others, nor can it use an ob-

ject as a tool in an active manner.

Jes “ription of Manipulator Jaws

The things that move the objects are the representa-

tions of manipulator jaws. ‘lhese are an idealization of an

end on view of a pair of no-slip jaws of a three degree

of freedom manipulator (X, Y, open-close). The jaws will

normally move from place to place closed, but may move open.

Also, they will normally grasp objects to move them, but they

can also push, Figure 29 shows the jaws 1n various states,

Jefinition of Temporary Location

Ihe characteristic that identifies a lemporary Loca:

tion is that if an object is put in a lemporary Location,

then the jaws can move, unimpeded, completely around the

canipulator Jaws

-

M1
wy clogged

~~
po

4

J
f=

jd

 4

“aeplng
at

+4 mire ”~

LJ

™

open

Na%

Jaws pushing
an object

object. Note that what is a Temporary Location for one

object is not necessarily a Temporary Location for another

object. The value of Temporary Locations is that if an

object is moved to one, then the object can be moved from

it to another location, This follows directly from the defi

nition. One deficiency of the demonstration system is that

many times it would be satisfactory to move an object to a

position (not necessarily a Temporary Location) from which

it can be moved, But the system has no way of deciding

which locations in the space satisfy this requirement, So

the system moves the object to a Temporary Location, There

will be a discussion of this and associated problems later.

Definition of Out of the Way Place

The next term is Out of the Wey Place. This is a set

of locations in the task space which are Temporary Locations,

and in addition, are out of the way of all paths the system has

planned, but not yet executed, How the system determines which

locations are Out of the Way Places will be explained later

in this chapter,

Jefinition of a Simple Task

For our purposes, a simple task is defined as moving

Nc object. This task must be able to be executed without

any restrictions or qualifications, Operationally, this is

equivalent to saying that a shortest path algorithm, de-

signed to find the path for one object, is capable of find-

ing the solution to the simple task, Figure 30 is an ex-

ample of a specification of a simple task.

As well as specifying the task pictorial:y, we can

21 SV specify it using the following words:

MOVE A TO LOCATION 20,20,

A more concise way of saying the same thing, given that we

are talking about moving objects to places that can be

specified by numbered coordinates, is to give only the name

of the object and the location to which it is to be moved,

specifically:

A, 20,29

[n this restricted case, the character string, <name, loca-

tion) completely specifies the task. We can call this

character string an abstract snecification of a task.

Such a character string does not include all of the infor-

mation about a task, but does include enough so that a

computer system (Whitney's, for example), or a verson., can

determine the remaining information necessary to execute

the task.

sper ‘fication of a Simple Tasz

Znitial Positrons

7
Fihal Pasitions

=hs
MM

AA rn Hy

Some Basic Manipulation Situations

[In conjunction with the rect vvctions given on the

previous pages, there developed the necessity to study some

basic manipulation situations, As the reader will see, they

are all more or less straightforward, but it was felt they

deserved special consideration,

Situation i

Even if an object has the attribute of being movable,

it may not be possible to move it, Its position, or the ob-

jects that surround it, make 1t impossible to move. In the

system, if an object is described as movable, but is sur-

rounded by immovable objects, the system has to discover that

the object cannot be moved, It does not know the object is

immovable without first attempting to move it and discover-

ing 1n the internal model that it cannot be moved,

An example of such a situation 1s shown in figure 31,

The movable object, A, has only two sides covered by the im-

movable object, but as A presents no handles for grasping, or

surfaces on which to push away from the immovable object, A

cannot be moved. There are many more similar situations.

[he system discovers that an object is, in effect, immovable

Dy attempting to move the object and finding out (bv the

Movable two dimensional object
of corner

cannot be moved out

MM

A

Figure 31

failure of the shortest path algorithm to find a solution)

that the object cannot be moved.

(n conjunction with the above, let us point out that

an object can be moved 1nto a position that it cannot be

moved from, For example, if in figure 31, object A were

few spaces to the right, it could be pushed to the left intc

the corner, where it would again be immovable.

Situation 2

Given that an object is in a position it can be

moved from, then it is not always possible to move the

object to a desired position in the space, Usually, this

situation occurs because the desired position is blocked by

one or more immovable objects, Figure 32 is an example of

such a situation.

The demonstration system will discover this situation

only 1f it attempts to move an object to such a position, If

this situation 1s discovered, the task being executed is de-

clared to be impossible.

Situation J

Given two positions, Pl and PZ, that objects can be

noved from, and given that an object can be moved from Pl

Cbject A cannot be moved to pc-
1imensions

tion 4 in tro

0M

N. N
(x)

No L

Figure 32

to PZ, then it is not always possible to move the object

from PZ to Pl,

This states that diodes exist for objects, that an

object may be moved in one direction through a narrow open-

ing between immovable objects but may not be able to be moved

in the other direction. In figure 33, the movable object A

can be moved by the jaws from Pl to PZ, but the jaws cannot

move it back, There are many more possible situations where

diodes are encountered,

In the remainder of this work the assumption will

be made that diodes do not exist in the task space, If 2

diode is present in an example, the demonstration system

may make a fatal mistake in attempting to solve the task.

Situation 4

Before an object can be moved, that which is to

cause motion must be in contact with the object. The

basis for this statement is that an object must be acted

on by a force before it can move. Of course, there are

situations where physical contact is not necessary to move

an object. In these cases, some other force such as mag-

netic or electrostatic must be used, But in the demonstration

 gan be moved from 1 E) F?, but not from F2 to P1

(PL)

| A] (72)

MY

 A eT
~

and examples only the jaws, acting directly, can move

objects.

Generation of a State Space for an Object of Any Shape

As stated previously, a state space can describe ¢

manipulation task, and a shortest path algorithm can find

the solution of a manipulation task by finding a path

through the state space. The state space method is used

to find solutions to simple tasks, and the solutions of

several simple tasks are concatenated to form the solution

of a complex manipulation task, The TASK TREE orders the

simple tasks so their combined solutions form the solution

to the complex task, This is described in this and the fol-

lowing chapters.

The first step toward finding the solution of a simple

manipulation task is the generation of a state space. To

generate the state space, the system first needs a descrin-

tion of the physical space and of the object to be moved.

lhese descriptions depend in some part on the exact-

ness with which they are made, The exactness or precision with

which the space is described will be called the "quantization"

or "reticulation" of the space. If the quantization is very

fine, many surface irregularities of the objects in the space

I V7

will be included in the description, All this information

probably is not necessary. On the other hand, if the scale

of quantization is coarse, not enough information about ob-

jects' shapes will be known for good system performance.

An object could not be grasped or pushed reliably, for ex-

ample. The scale of quantization is probably best deter-

mined after a task has been specified. Accordingly, this

system has no specified quantization scale, (However, the

quantization scale for the demonstration is constant,)

For this system, the description of the space is

an input, In other systems, it may be desirable for the

system to be able to provide itself with the description

of the task site, The input would be some lower level (less

processed), more readily available information from the

space, For example, it might be desirable to provide the

system with the ability to '"see.'" See, for example,

oo 29"Recognizing Convex Blobs," by J. Sklansky, or the sec-

tions on Artificial intelligence in M,I,T. Project M.A,C.

, 17
Progress Keport VI.

Alternatively, it may be desirable for the system to

be able to understand a Natural Language description of the

S.

In the present system, a space is described in terms

of X-Y coordinates, An object's position is identified by

I f i J

that is specifically designated. The base location occu-

pies a square on the object, one quantization unit on a side,

As most objects will be larger than this, the remainder of

the object is described by specifying the other locations the

object occupies, Figure 34-a 1s the drawing of an object,

Figure 34-b is the list of locations the object occupies and

the specified base location. Figure 34-c is the computer in-

terpretation of the object's shape, The computer descrip-

tion lacks much of the information given by the drawing of

the object. But it does give the system something to work

with, and the computer description of objects is not a goal

of this thesis.

We want to Tenerate a “ate space to describe the

motion of an object in a physical space. The first step is

to get a computer description of the physical space, exclud-

ing the object to be moved. The next step is to use the

description of the object to be moved, Then the object's

base location is put at every location in the physical space,

cvery node or state in the space. If any part of the object

Digitizing an object's shape

‘dec
Sy

ia ¢ itized space

 TT =
7 |

mall

4

Fi rure 3g

Base Location 5,3

Mak - ay ~
- 2

{cure 34-b

s-.

Computer interpretation
c' object's shape
= 7

—.

. + + +

— + -

i

Lo

L

 SO 4 5
L

X E "necation

Figure 34-c

3 -

is on an immovable object, or out of the space, a flag is

set that says the object cannot occupy this state, This

state becomes a forbidden node, If the object is "on" a

movable object, this is indicated by calculating an extra

cost for moving to this node from each of its neighbors,

This "extra cost" is used to make the system behave in a

"desirable" way. An example of 'desirable'" behavior is

"it is better to go around an object than to move through

the space occupied by it," The question is, how far is one

willing to go to avoid moving through an object? The answer

depends on how difficult the object is to move. For example,

most people will not walk more than a few feet out of their

way to avoid moving a light chair, But most people would

rather walk a moderate distance than have to move a large

table, This "extra cost" is made proportional to the size

of the object,

The reader may be disturbed that the system can

move one object through the space occupied by another,

Actually, the system will not do this. What it can do is to

blan to move one object through the space another object

occupies. This 1s analogous to the way one might plan to

move a large piece of furniture out of the house. First, the

best path out of the house 1s estimated, and a list of the

chairs, tables, etc,, that need to be moved out of the way

is made, These are moved out of the way, and then the large

piece of furniture is moved, The furniture mover plans to

move one piece of furniture through the space occupied by

others, the same way the system does,

The flag for the object being "on" a fixed object

and the extra cost information are all the information

needed from the physical space, As described, the state

space is a mapping of physical space, Illowever, there must

be more information in the state space to describe how the

object is to be moved. We need an added dimension in the

state space, which has five values: one to denote that the

object is belng grasped, and one for each of the four push

directions (2X, *Y). This is the minimum set needed to de-

scribe motion of the object, The axis for this dimension is

named the G axis. The complete state space for moving an ob-

ject consists of the set of nodes {x,y,e} which specifies

an object's position in X - Y space, and how the jaws are in

contact with the object,

The state space that describes the jaw's motion is

the same as an object's state space, except for one differ-

ence, The jaw's state space does not need a dimension to

indicate how they are moved, But the jaw's state space does

need a dimension to describe their opening and closing,

node in the jaw's state space defines values for the Y¥

coordinate, the Y coordinate, and how far open the jaws are,

the K coordinate. The jaw's state space is generated in the

same way as an object's state space,

The state space that describes the jaw's motion is

used when the jaws are not in contact with the object, This

state space 1s used to find the path the jaws take to get tc

the object initially, to change from a grasp position to a

push position, or to change push positions,

Moving an Object from its Initial tn a Final Position

The A* Alcorithm discussed in th »r2vious section

finds the path for the object. lhe implementation procedvurs

is straightforward and simple, but because of the way push

and grasp positions are recorded, there is a possibility of

trapping the jaws, Figure 35 is an example of a task in

which the jaws get trapped moving an object. The system's

solution for this problem, as the system has been described

to this point, would be for the jaws to grasp the right "arm

of object A and nove it to the right to its final position.

The jaws would be trapped, and could not return to their spe-

cified final position; the task as specified could not be

completed.

Specification of a CASK in which J~~ »
J) could ©? traprea

Ls Fra/ Abs 770 nS

Mv
A |

|

8
»

-

Frinal bs /Frons

MM |

[A
N

Figure 35«b

to prevent the jaws from getting trapped, two short-

est path algorithms are used, one starting from the object's

initial position going toward its final position, the other

starting from the object's final position and going toward

its initial position. The termination criteria are

lL) that a path has been found from this point

(any point in the space which the shortest

path algorithm is currently considering

expanding) to the object's initial position

and to the object's final position; and

4 that with the object at this point, the jaws can

get from their position as defined in one

shortest path algorithm to their position as

defined in the other shortest path algorithm,

[n the previous section, conditions were given for terminat-

ing a set of shortest path algorithms, These conditions are

purely mathematical and do not allow for the above problem.

Because of constraint Z from above, the overall path

may not be optimal; but, the path that is found will be near

optimal, and each of the two segments will be optimal, In

general, this 1s good enough, as a near-optimal path will

cet the object moved in a reasonable manner.

In all cases, though, it is not necessary to have

the two shortest path algorithms running at each other, In

tasks where the jaws cannot get trapped, only one algorithm may

be used. Unfortunately, it is difficult to determine whether

the jaws will be trapped when moving an object to a specified

position, Hence, a test that is easier to implement, but is

more restrictive, is used, The test determines if either the ob-

ject's initial position or its final position is a Temporary Lo-

cation, If either is, the system starts one algorithm that runs

toward the position that is the Temporary Location. If both

positions are Temporary Locations, the system starts the algor-

ithm at the initial position, If neither position is a Tem-

porary Location, the system starts the algorithm from both ends.

When the system moves an object to an Out of the Way

Place, a different version of the A* Algorithm is used, First,

the final location 1s guaranteed to be a Temporary Location; so

only one algorithm is used, It starts from the object's start-

ing position, Second, the system has no way of knowing a

priori the best Out of the Way Place, Hence, fi (x Jcannot

be calculated as the terminal point, t, is not known, So =

modified A* Algorithm is used, which sets Nh (e¢)=0 for all

This is the Flooding Algorithm described in the previous chap-

ter. This method finds the Out of the Way Place that 1s the

~heapest to move the object to.

Discovering Which Objects Are in the Way

In some cases, the shortest path algorithm plans

a path that requires moving an object through the space

occupied by one or more other objects, In these cases,

the object is not moved, but a list is made of those ob-

jects which are in the planned path, and tasks are gener-

ated to move these objects out of the way. Planning to

move one object through the space occupied by another is

the way the system discovers which objects must be moved

out of the way.

The Out of the Way Place for an object is found in

the following way. Say the system is given a task as de-

scribed by the Initial and Final positions of figure 36.

The aspect of this task to be noticed is that the system

has to move B to an Out of the Way Place. The system goes

through the following steps. It attempts to move A to its

final position. It checks over the path it planned for mov-

ing A and discovers that the planned path includes space

occupied by B, and that B must be moved so that it will not

be in A's path, The system must move B to an Out of the Way

Place. The crucial point of finding an Out of the Way Place

is remembering the planned path, i.e., all the locations over

which A is moved, including its initial and final positions.

MM

1 -

a

IE:

Task in which B must
be moved out of A's
planned path

Lrital 2s 1% ons

 |
N

MM

[|
Final #5 s/#0ns

“{rure 3I6=-D
 aN

[he system remembers this path, all the locations, as a

Jummy object A', The system then moves B to an Out of the

Wry Place, a Temporary Location given the dummy object A'.

(The system does allow movement over A', but not A, without

worrying that A' ought to be moved before B is moved.) In

some cases there may be a great number of paths that have

been planned, and an equivalent number of dummy objects,

An Out of the Way Place in these cases would be a Temporary

Location, given all the dummy objects.

The rule that an object must be moved “> a Temporary

Location as an Out of the Way Place is overly restrictive.

To move the object to a location where it is no longer on

the space occupied by any of the dummy objects, in the large

majority of cases, would be satisfactory. But if this rule

is used, there will be cases in which an object is moved to

a position from which it cannot be removed, and later in the

task, the need may arise. Requiring that the object be moved

to a Temporary Location guarantees that it can be moved later

Lf necessary,

Finding the Order in Which to Move Several Objects to
Final Positions

The system, as described, works very well unpiling GC

stack of objects. But as so far described, it has no way tr

put more than one object at a specified final position, Tc

overcome this deficiency, the ability of the system to un-

pile stacks of objects will be used to find the order to put

them into a specified pile. To accomplish this, the task 1s

reversed; that is, the time sense of the task is reversed and

it runs from finish to start, The objects with specified final

positions are moved from their final positions to their initial

positions, Objects that have no designated final positions

remain at their initial positions. (See Appendix B for the

solution of a problem this method poses.) The TASK TREE as

previously described is used to keep track of the order the

objects are moved, As there are no gravity effects, springs

clips, etc., and the time sense of the task is reversed, the

order that objects are taken out of the pile 1s the reverse

of the order that they would have to be put into the pile.

Ihe system remembers the order the objects are moved from

final positions, Once an object is moved from its final

position, it can be moved any place where it will not inter-

fere with moving the other objects. The easiest thing to do

is to make the object disappear from the system's internal

model of the space,

The system sets up the TASK TREE for moving objects to their

final positions by putting the tasks on the TASK TKEE in a

single stack in the reverse of the order found above, Then

as each object is moved to its final position, it is set as

immovable to insure that the system won't move it out of the

way of some other object.

After each object is moved to its final position,

1 check 1s made to determine if any other object with a spe-

cified final position has been moved. If one has, then the

order in which the remaining objects are moved to their fina)

positions must be recalculated. The reason for this is as

follows. Suppose that when the system first determines the

order to move objects to their final positions, several

objects' initial positions are also their final positions.

The system cannot determine the order to move these objects

as it doesn't have to move them. Later, during the task, one

or more of these objects is moved out of the way, Now the

objects' final positions and present positions (their present

initial positions) are different, and the system must determine

an order for moving them to their final positions.

In summary, the part of the system that determines

the order of moving several objects to final positions works

as follows. The system determines an order, puts this on the

TASK TREE, then moves objects until the first object is

moved to its final position, Then the system checks :

any other objects with specified final positions were moved

If they were, the system determines an order for the re-

maining objects, and continues. In a worst case, after

moving each object to its final position, the system would

have to recompute the order for moving the remaining objects

to their final positions. But as there can be only a finite

number of objects in a finite space, the system will complete

the task.

Chapter V Capability of This System to Find Solutions

In this chapter, types of tasks for which this systen

vill find solutions will be discussed. For the discussion,

restrictions previously explained will be assumed to hold,

We begin by investigating those tasks for which the system

might not find solutions,

asks for Which the System 1s Not Assured eo Finding Solutions

Before beginning the explanation, Connected Out of the

Way Places must be defined. To aid in the definition, a

simple example will be used, Say the system is planning to

move object A, and finds that object B must first be moved

out of the way, B is moved to Out of the Way Place Xl. In

the space there is another Out of the Way Place XZ. Xl and

X2 are Connected only if B can be moved from X1 to XZ after

A is moved to its final position, without having to move A.

In general, two Out of the Way Places, X1 and XZ, are

Connected only if an object can be moved from one to the

other without having to move any objects that are in their

final positions, Note that what might be Connected Out of

the Way Places for one object might not be Connected Out of

the Way Places for another object.

Iwo contrasting examples follow, Figure 37-a shows

an initial position and figure 37-b the final position. In

this task, all Out of the Way Places in the space are connected

In figure 38, objects Y and Z are fixed, Figure 38-a

shows the Initial Positions and figure 38-b the Final Posi-

tion, In this task, Out of the Way Places X1 and X2 are not

connected. B cannot be moved from one to the other after A

is moved to its final position. The situation shown in

figure 38 leads to a task the system cannot solve, The in

1tial position could be as sliown in figure 38-a, with the

final position shown 1n figure 38-c,

the solution to this task 1s to mov. 3 to the leit,

then A to the right, then move B to an Out of the Way Place

on the right side of Y and zz. Then move A to its final

position, then B to its final position. The key to solving

this task 1s moving B from the left side of Y and Z to the

right side, This step moves B to an Out of the Way Place

from which the task can be solved, The left and right sides

of Y and Z will not be Connected Out of the Way Places after

\ 1s put 1nto its final position, A solution is possible

only 1f B is in the set of Connected Out of the Way Places

to the right of Y and 2

[ask in which 211 Out cf Fn ~nnnected

 LT rnitia/ Fos itions

Ala

Fy ovr ~ 37 =8

Fraa/ Fbsit0ns

AM

“*tgure 3I7-bD

FON

Task in which all Out of
the Way Flaces are not
connected

Trrtral Bositions
 BB | A |

IM

Hq
Flgure 33ea

’

(xD) Fria! Bsibions
(x2)

M

Figure 38«D
| {

final Positions cf (. task that the aemonstration system
cannot solve

Final 13sitrons

nL

.

f 8

MM

I=

 i cure 38-c

The system would attempt to solve the problem as

follows. B would be moved to the right, then A would be

moved to its final position and set immovable, The systen

is now blocked, It will not be able to move B to 1ts

final position. Note, if A were not set immovable the sys-

tem would be stuck in an endless loop, moving one object

out of the way, the second to its final position, then

Out of the Way again, then the first to its final position

and so on,

What the system needs to solve problems of this type

is a routine that divides Out of the Way Places into Con-

nected sets, and determines which of the sets of Connected

Out of the Way Places are acceptable for solving the task.

It is possible for the system to solve tasks that

have non-Connected Out of the Way Places, But the system

can fail if the task is such that the system doesn't hap-

pen to find the solution,

In cases where the svstem will not find solutions,

the operator can give the system a sequence of intermediate

final positions before he gives it the desired final positions.

[his method guides the system toward the solution, In the case

of the task specified by figures 38-a and 38-c, the operator

could give an intermediate tinal position for A and B ta

the right of Y and Z,

There 1s one other assumption the system makes.
1

9

assumes that the jaws can get to their final positions, lhe

system is designed to make sure the jaws are not trapped

after they move an object, but it 1s not designed to make

sure the jaws can get to their final position. The only way

the jaws cannot get to their final position is for the

jaw's final position to be blocked by a movable object which

has no specified final position which is in turn blocked by

a movable object that has been moved to its final position.

Figure 39 shows a task of this type. The jaws will not be

able to get to their final position after they move A

Tasks for Which This System Wil! Find Solutions

There are two types of tasks the system can solve.

[t can be requested to move one object to a specified final

position or to move two or more objects to specified final

yositions,

ask Type:

Sufficient

Move (ne Object tuo a Specified Final Position

Requirements for a Solution:

Sufficient Out of the Wav Places

Task in which jaws will not
specified final position

Ja » EO move to thelr

Initial Positions

|al

A

 2 Ae Sg

A

Frnal Positrons

HA

1 i 3

> dl B t
LL T= fe |——

Ihe 1" 1 i no. rnecified., It 1s

shown only to em~he~*=a the Final Fosition of A,

Figure 3G=b

How the Solution is Found

The system starts by asking the shortest path algorithm

to find a path, The shortest path algorithm returns a value

corresponding to a) no solution, b) path found, c) path found

but requires moving objects out of the way, For the moment,

assume that a) does not occur, If b) is returned, the solu-

tion is found, If c), then the shortest path algorithm tries

to find paths to Out of the Way Places for each object in the

way. For each attempt to find a path, a value corresponding

to either b) or ¢) is returned, Lach time c) is returned,

at least one sub-task--each requesting an object to be moved

out of the way--is put on the TASK Tkkk. Lventually, for

one object the shortest path algorithm must return the value

corresponding to b). ‘The system cannot indefinitely return

c) as there are a finite number of objects, and the system

detects logical loops in the task structure. (The maximum

number of times c) can be returned is one less than the numbei

of movable objects in the space.) When the value correspond-

ing to b) is returned, the system can move the object out of

the way, The system can then move the previous object

(previous object means the object named in the predecessor

task on the TREE) out of the way, and continue until it has

moved the object the operator requested. (Kemember that

moving an object out of the way means it will be moved

out of the way of all objects whose paths have been planned

and not just the previous object.)

On the other hand, if a) is returned when planning

to move the object requested by the operator, the task is

defined is impossible, If a) is returned when planning to

move other objects out of the way, the system does not con-

clude the task is impossible, It attempts instead to find

an alternate solution to the problem. The system sets the

object it tried to move temporarily immovable. (This ob-

ject 1s set movable again when the predecessor chain of

the TASK TREE is changed from what it was when the object was

set immovable,) This forces the system to find an alternate

plan for moving the previous object, This strategy assures

that all reasonable combinations of moving objects out of the

way will be tried before the system declares the task to be

impossible, Therefore, if there is a solution, the system

will find it.

lask Type: Move Several Cbjec.s to S-

Sufficient Requirements for Solution:

“fied Final Positions

| Last out - First in rule applies. (It must, as

the time sense of the task is reversed,)

? A271 Out of the Way Places for objects that have

specified final positions are Connected.

j There are sufficient Out of the Way Places.

How the Solution is Found

Requirement 1 guarantees that the system will find

E h2 correct order for moving objects to their final positions

Requirement 2 guarantees that if an object can be

moved from any one particular Out of the Way Place to its

final position, then it can be moved to its final position

from any Out of the Way Place in the space, Also, as 1t is

assumed that diodes do not exist in the task space, an ob-

ject can be moved from any Out of the Way Place to its in-

itial position, For a solution to the task to exist, the

system must be able to plan a path for the object from its

initial position to its final position. Therefore, if an

object is 1n its initial position or any Out of the Way

Place, a path can be planned to move the object to its final

position,

The above guarantees that paths can be found and

viil be planned in an order that will solve the task--if

1 solution exists. Now, all that remains 1s to show that

each object will be moved to its specified final position,

But this is identical to the first task type, and it has

already been shown that these solutions will be found,

Therefore, the solution to the complex task will be found.

hapter VI Self-biagnosis of Failure

Failures occur only in the shortest path algorithm,

The shortest path algorithm fails by not finding a path

with the required end points, Failures occur, for example

because immovable objects or walls prevent the jaws from

grasping or moving an object. Failure can occur either

in planning the object and jaw's motion, or in planning only

the jaw's motion (jaws moving with object stationary). As

presently implemented, the system cannot distinguish where

the failure occurs.

lhe presently implemented version of the systen

has very limited failure diagnosis features, If a task

fails, the system gives the operator a chance to inspect

the TASK TREE as it was before the failure. From this in

spection, the operator can gain an understanding of the

state of the entire task, including the specific Simple

fask that caused the failure. If the Simple Task was ex-

plicitly requested by the operator, the system decides the

entire task has failed, and halts, If the Simple Task was

generated by the system, the system attempts to find an

alternate solution, It is possible that a solution has been

overlooked. To search for this solution, the system sets

the object it tried to move fixed, and continues with the

complete task by attempting to execute the next task on

the TREE, By doing this, the system will try moving all

reasonable combinations of objects before it abandons a

task as impossible. The system is designed to attempt

these recoveries as it may decide to move the wrong object

First.

In addition to this failure procedure, there are

others that could be implemented. One possibility, sug:

gested above, is to indicate which part of the shortest path

algorithm failed (moving jaws and object, or jaws alone).

This would help tne operator discover the exact cause of

failure.

As another possibility, when the system finds that

It must move objects to Out of the Way Places before it finds

the paths, it could compute the area required for these Out

of the Way Places, If this area were greater than the area

available as Out of the Way Places, an appropriate error

nrocedure could be entered,

Also, it might be possible for the system to check

that all of the Out of the Wav Places are connected for

cach object that has a specified Final Position.

lThese failure tests cover all of the possibilities

of the system failing, except for the Last out - First in

requirement, But the Last out - First in rule must apply

AS the complete time sense of the task 1s reversed,

Chapter VII Economic
ReA= Advanta ges of the System

A Comparison of a Complete Optimization Method, Whitney's

System, and This System
. 32 . .

Whitney, in his Chapter 5, discussed the reasons

for not using full optimization methods to find paths for

planning to move two or more objects, He also outlined a

method to find paths for moving more than one object, Tlhis

method depended on an operator specifying sets of Out of the

Way Places for objects, It finds an optimal set of paths

(given that the operator specifies the Out of the Way Places]

for moving the objects, but at a cost of inconvenience to the

sperator and of the system having to compute many paths.

Whitney's system and this system will be investigated

and compared below to determine which one should be used for

greater efficiency 1n various situations, The time taken to

find complete task solutions and the cost of the total paths

found will be compared, It 1s assumed that both systems use

the same shortest path algorithms,

lhe first task investigated is moving one object, i.e.,

a simple task. Whitney's system will perform better in this

task, as it does not have to support the overhead of the

second level problem solving system. The paths found will be

the same cost, but the computer time used will be greater

for this system, However, the time will be greater by only

one-tenth of a second or less (enough time to process 10,000

instructions on a slow computer), Therefore, there is a

very slight advantage for Whitney's system in this case.

Second, consider the task of moving one object that

requires having to move one other object out of the way,

(For example, a doorway blocked by one object.) Whitney's

system requires a human operator to specify a set of Out

of the Wav Places. The number of paths (here one path is

the solution to one simple task) Whitney's system computes

is 1+2en where n is the number of locations in the Out of

the Way Place set supplied by the operator. The minimal

value for n 1s 1, and the minimal number of paths computed

is three, This system computes three paths, at all times,

and it could handle all the necessary computations in the

second level of the system in less than one second as this

case 1s relatively simple. Presumably, the operator using

Whitney's system would require at least one second to specif,

ne Out of the Way Place.

As to the path cost consideration, both methods

should find paths that cost the same, as there is no choice

>f which object to move first. There is the possibility

that the operator using Whitney's system would pick his

Out of the Way Place far away from the path, further than

the minimum distance necessary, and hence his method would

find costlier paths,

If the set of Out of the Way Places contains more

than one item, then Whitney's system will be much slower.

} . ‘ . - 1+2.n

The ratio of computing time can be approximated as

as the large majority of the time in this system (99% or

nore) is taken by the path finding algorithm,

For this case then, we find both systems to be equall:

good, provided the operator of Whitney's system chooses one

Out of the Way Place which 1s the optimal Out of the Way

Place, If he picks any other location, or more than one

location, the performance of Whitney's system will not be as

cood as the performance of this system,

Third, consider the task of moving an object that

requires having to move two additional objects out of the way

Whitney's system requires computing 1+4n? paths with the

minimum value of n equal to 2. This is a minimum of 17

paths to be computed. My system requires computing a maxi-

mum of five and a minimum of four paths, The savings in

computing time 1s greater than a factor of 3. This savings

increases rapidly, as the number of Out of the Way Places

the operator specifies increases, For n=3, the number of

paths found is 37, for n=4, 05, etc.

From a cost of paths standpoint, Whitney's systen,

if directed by a good operator, may find paths that cost

only 4/5 as much as the paths found by the system described

in this thesis. This difference, 20%, would not seem to

compensate for the difference in computer processing times,

300% plus. This is more than an order of magnitude differ-

ence in the percentage differences (20% against 300%).

For this situation, it can be concluded that this system

is the best to use. Note, that for moving four or more ob

jects, the advantage of using this system increases over

that found for moving three objects.

[n summary, Whitney's system may have a very small

time edge when moving one object, When moving two objects

the systems are about even, given a good operator for

Whitney's system. But when moving three or more objects

this system requires only 1/3 or less as much computing

time as Whitney's, with the penalty of the paths being at

worst 20% more costly than those found by Whitnev's system.

[f choosing a system, one must weigh the advantage of much

reduced computing time against the potential disadvantage

of slightly more expensive paths, Additionally, one must

remember that the system described in this thesis has the

ability to discover whether additional sub-tasks must be

solved to solve the requested task

_hapter VIII cLxamples Solved by the bemonstration System

this section includes several examples of tasks the

lemonstration system solved, The system output is an oscillo

scope display of the movement of the jaws and objects, ‘lhe

motion is shown as a series of still pictures. ‘lhe differ-

ence between two succeeding frames is usually that the jaws

or the jaws and an object have moved one unit, ‘The regular

display intervals and the after-images combine to give the

appearance of jerky but regular motion. The display frames

are numbered sequentially in octal, except that occasionally

three numbers are skipped. For example, in Task 1 frame 35

Ls shown 1mmedlately after frame 31. The frame numbers refer

to relative computer locations, Locations 32 through 34 con-

tain information necessary to set up the display lists.

I'he output will be presented here as a sequence of

photographs. Not every picture presented on the oscillo-

scope display will be included. The display frames not

shown consist of motion in a straight line or in an obvious

path, For examnle, in Task 1, the motion from frame 35 to

frame 47 consists of the jaws moving in the +Y direction.

from (5,5) to (5,17), Also. in Task 1 when the jaws move

from their position in frame 103 down to Lb, frame 107, they

nove around C at (20.21).

Plans that the system makes to discover which objects

to move out of the way are indicated in two ways, First,

the word "PLAN" appears at the top right of the picture.

Second, a ghost image of the jaws and the object being moved

shows the plan, Frame 21 of Task 1 has a ghost image of the

jaws and object A at (10,20). In a plan no object or the

jaws are actually moved, Frame 31 is the last picture in

this plan, Frame 35 is the next picture showin by the dis-

play. The order for viewing the pictures is to compare

the Initial Positions and Final Positions, start with the

[nitial Positions and go through the numbered frames in

order, and finally compare the last numbered frame with

the Final Positions.

lwo Examples Presented in Detail

Task 1

The first task requests moving one object to a

specified final position, Figure 40, a representative

drawing (not to scale) of the initial positions of the ov

jects, is included as the letters on the objects in the

photographs are difficult to read. lhe final position of

object A 1s the same as the initial position of object F,

Initials Fos 716ms

[ask 1

ce]
18] Flo]

|£]

A

MM

Cbjects A I rd ve Ca

All objiscts are movable..

{rue 40

The task proceeds as follows. The jaws move up

(frame 5), open and grasp object A (frame 11), move the

object A's ghost image up and right to its final position

(frames 21, 26, 31).

The system discovers objects B and F are in the wa)

and generates sub-tasks to move them out of the way. The

TASK TREE at this point is shown in figure 41. The jaws

move up and over and push B up three units, out of the

way (frames 35 to 65). The system now plans to move FE

out of the way, by pushing it across object D (frames 7!

to 77). The TASK TREE at this point is shown in figure 42

The jaws move D out of the way of F (frames 103 to 112).

 is then moved out of the way (frames 122 to 125). The

jaws then grasp A to carry it to its final position (frames

145 to 200), Finally, the jaws move to their specified

{inal position (frames 205 to 211),

There are two aspects of this tasx that deserve

special notice. The first is that in moving A to its

final position, the jaws grab it on its left and not on tne

right as a straight forward minimization would. This happens

because the shortest path algorithm starts at the final

position (not a Temporary Location--see frame 200), and runs

[ask |

TASK TREd

| ror
 ee

a

3) |#2

Interpretive List

task #1

task #2

move A to (20,20)

move B out of the way

task #3 move PF out of the way

Note: The system executes the
first; in this case, #2.

bottom right sub-task

The TOP task 1s a null task, used only as a reference
by the system. If the TOP task is the only one left
on the TASK TRBEZ, the system knows it has finished the
complete task.

Figure 41

lask

TASK THAD

| TOE
I——

™

[#1]

|
| hh

Interpretive List

task #1

task #2

task #3

task #4

Note

move A to (20,20)

move B out of the way

move * out of the way

move OD out of the way

Although task #2 1s still on the Interpretive
List it will not be executed, Only tasks on
the TASK TR&# are executed,

'icure 42

to the initial position (a Temporary Location--see frame 145),

The second is the detail of the jaws opening and grasping A,

frames 154 to 160. When the jaws grasp an object, the motion

ls similar to that shown by these four sequential frames.

{

a= FUSS “ie a

al

- -

—
By

~HEA—
! 012345670123458 SEITIP III I230 21)

EE

¥..

I
a=

-:

 er ep op = wl
LI RR it 234567012 458

£

Er

Ir

i
 er

wha om

 ’

r-

-) Lid aih

ers RITILIEEEof Y

1 44

-

wr
hf

456701234567012345670123456
— I———

hy at

Er.

To3456701234567012345670123456

 ses AAte

AIee

mf

 re es.

345670128456
aI——

8345670123456

as

»]

in
_

»
T

ir

--T

. 1234567012345670123456 3 re3ERRE TIL APER dR LA:

J {

Ad

—_)

r

ind
— -~

ad EEC YE IL SEE RET

.

rr ITIIREEY

Ch

3,ny -

c345670123456701234567012345¢€
_ R

ie
 Fr

etl,

 oT PELTED

=i}

|

3)
bl

gifr—==

670123456701 2:bb am rrrEPIL)

-

LL

»
"3
2

8

5

6701234567012345670123456
 nar

=}

5

Sih

2
ailks-
_

 al

IRE.iT
: 6701234567012345670123458

er————memel

 Db
=

wai

® FERAL BE L231:

—

T

1

Ix y Tr 3
ETE

FELT

TAT TIER

a 01234567012345670123458

=

im

i

—

 Ww ry "i ip B= N,. YE

1

§

3
a a 670123456701 3456701234586

Fed

—rr...
P3456701234567012345670123458

 a3

1 15

P
ar pl23456701234567012345€

i

7g
Bl

4.0 eE701234567012345670123458

«oh
=i

JL

=

ln

n

rd: ya" 3g" E

ask 2

Task gives the system an opportunity to move

several objects to specified final positions, Figure 43-a

shows the initial positions and figure 43-b shows the final

positions. These are included to aid in identifying the

objects in the photographs; neither figure is drawn to scale,

The task begins and the system determines the order

to move the objects to their final positions is A first,

then B, then C, The system plans to move A to its final

position and discovers that C is in the way (frames 11 to

44), The system then plans to move C out of the way and

discovers B 1s in the way (frames 50 to 72). The system

then plans to move B out of the way and discovers A is in

the way (frames 76 to 1260), The TASK TREE at this point

1s shown in figure 44, The system now moves A out of the

way (frames 132 to 151). Note that this is the first time

an object has actually been moved in this task, The sys-

tem then moves B out of the way (frames 160 to 176), followed

by C (frames 205 to 234), At this point, only sub-tasks

#1. #2, and #3 remain on the TASK TREE, the others having

heen successfully executed and removed.

[he system continues and moves A to it; final posi-

tion (frames 243 to 272), followed by B (frames 301 to 341:

ccf."ara Posi ions
Task 2

B

<p

* a

Final Positions
Task 2

 Ww
om C

B

A
‘gure 43eb

Task 7

TASK TRE

or

L
ol

#4]

|#6

Interpretive List

task #1

task #2

task #3

task #4

task #5

task #6

move C to (6,4)

move B to (4,3)

move A to (2,2)

mov> C out of the way

move B out of the way

move A out of the way

Note: The sub-task, "move q out of the way" is not
the same as the sub-task "move q to position
(x,y)."

BY our

note in frame 301 jaws close at (3,7) for minimum cost path

to (20,4)), and then C (frames 350 to 377). The jaws re-

lease C and move to their specified final position at (1,5)

(frames 406 to 414,

1K3%

a all Fre ny 7 A a hp Lat

-

iLoa ~
} 1234567012345670123456701234586

- ————— _

=i» -

Mapp
12345670123456701234567012345 =

 i

I

1 = Lem ——

 et ~~~

XT

=esells ;
12345670123456701234568701234%6

——ES

0 fa» -

123456701234567012345670123458
aEy=i

Fil sim:JET
i 12345670123456701234567012345€

 rr — tet

AZ

Is DfN s

CT
 1 23456701234567012345670123456
 ia —————— p—

| 5.

1 BE = =

123456701234567012345670123456

a
» .

FeJ 2

123456701234567012345670123456
rEte

iy r)Fras;
12345670123456701234567012 458

efeei

-] =aai=
123456701234567012345678 458

Say:
Fadi |
123456701234567012345670123458

7155

CES510)
'123456701234567012345670123456

OD
 EERE EEA PERE TP

— frOiJ
123456701234567012345670123456

rT

Tili
=

Fo Elf+H ;
123456701234567012345670123456

Co

* al

aLEn 7
123456701234567012345670123456

oC Es

es1 J LL) §2 aay
123456701234567012345670123456

1 5&6

a =I
123456701234567012345670123456 i

ee

aT» I"
123456701234567012345670125456

 ,

=e iyod an
123456701234567012345670125438

—==TFa
12345670123456701234567012345€
- ————————————

Oe
HERE 43 234567012345670123456

0|J

oN1

12345670123456701234567012345 >
 emet

7
@

py

HL.

r:Is .Cli
123456781 234567012345670123456

 EE —————

af

(Td; - :

; 23456701234567012345670123456

ipn - 4 "
- - _ «J

123456701234567081234 FAR 1]
uk

oo i LN

ft>1» OT
123456701234567012345670123456

EE a —————

hb 234567012345670123456701 234586.
4

 —

123456701234567012345670123456

Isi pr

ds Ir
- 123456701234567012345670123456

Ti
1p"01234567012345670123456!

oFi)
—y— —
FEES +11 HLATIFELE)

f pg -—
A

ar
2345B701234667012345670123456

a -G2
0] 234567012345670123456

ai

- j
E23 234567012345670123458

/8=

HE EW

1456701234567012345676123456
ee—AT

|9

=i
I | ‘gy

12STISTSRERI LPR L rd PE

 iJ
iF)

Ci memwe a oo
123456706 234567012345670123458

4

ha
»

1 3
4 —

23156701234567012345670123456
v ne —

L

9 of |
y

FEELtg pt 570123458721 23450

p—

i

345670123456701234567012345 =
- ee is. —

16470

(a
ay
THEI

~

Ch ah

i

17g

Wf

dar 000
oerra

 lL

a
J -

XL

ary

_ Comme rr i
 3 456701234567 456701234586,

a
 Ny

—~

r:Jis -F TH en ee
234567012345670123456701¢2 hil

x1»
Sab me
H 45670123456701234567012345¢

{ ol

p>

Tee ”
'12345670123456701234567012 FY:

" »

wr =
123 5870123456761234567012 atl

Four Examples Brietly Presented

The following tasks are shown in much less detail

than the previous two. The pictures of the first two tasks

should have given the reader a good feeling for the paths.

These latter tasks are included to give the reader some idea

of the types of tasks the system has solved,

Task y

Task + 1s called a "locked doorway" after Whitney's?31

'blocked doorway," The initial positions are shown in fig-

are 45, Objects X and Y are immovable.

The task proceeds as follows, A plan is made to

move A up and then to its final position during which the

system discovers objects C, D, and B are in the way

(frames 14 to 26), The system plans to move C out of the

way and finds D in the way (frames 41 and 46), The system then

plans to move D out of the way and discovers A is in the way

(frames 60 and 74), The TASK TREE at this stage is shown in

figure 4606.

The system moves A out of the way (frame 105) and

then D (frame 131). At this point the TASK TREE i3 as

shown in figure 47, The system then moves C out of the way

d

Zn tral Rositrs Ns
Task 3

A D oe
-

A

Objects A , B,C, an
}
A £sT ¥ » movable.

Objects X and Y are immovable.

figure
-

~

4

7”

lask
-

TASK TRAS

| r04]
l

2]

 ptf

#4 | level

H

Interpretive List

task #1 move A to (12,12)

task #2

task #°

task #4

task #5

mov: C out of the way

mcv: D out of the way

mcv-3 B out of the way

move A out of the way

Note: Sub-task #3 appears on the TASK TREE twice. The
first time, at level 3, it requests D to be moved
out of the way of A's path. The second time,
level 4, it requests D to be moved out of the way
of A's planned path and C's planned path. After
sub-task #3 at level 4 is executed, both it and
the occurrence of sub-task #3 at level 3 will be
removed, See figure 47.

Figure 46

flask bp

TASK TRoM

au |

[7

#2| | #

Interpretive List

task #°

task #

task #

task #/

task #5

move A to (12, 12)

move C out of the way

move D out of the way

move B out of the way

move A out of the way

figure 47

(frames 160 to 106) followed by B (frames 212 to 231),

The system then moves A to its specified final position

(frame 267) and the jaws move to their final position

(frame 303).

NIT i wi LS J

ala Vill,

 abe nt
XA ph XE BRERAPaRERRT)

~ Lng

oon,SY

4= "

1 oD

Clodh

LO Cw

=) |
“rr }

z 3d") 4567012345670123458

 —

 JX

A

(Guy
liA

r= A——
bc

dl)

a_e
. NTT_

5225bad I IOREE RET ELBEALAT ARF nal

»
- 2]

Hg
- }
_r— } ir _

1 HS Ea

wl 7 il wh :

oy {on

B45670123456870128 : TR

T=
237| PrryPRREY

4

-

fy
el |=rr —————
AUT IILITTRAPRREY

a

a
[=|

7

I « 3 a) I

RITEERE

 ge

LC
I « 3].
“EY
IGA

10 ts

fa
EPLITITY

wlLE.1.

FRILLIEEE.

 la=
_ seniSel

SRR RIGID)

Sefah
‘iJ mh

ey Wal

ask ~

The object of Task 4 is to switch the positions of

objects A and B., The system decides the order to move the

objects to their final positions is B, then A, The system

plans to move B to its final position and finds A in the

way, (frame 27). It then moves A out of the way (frame 46) -

moves B to its final position (frame 100), moves A to its

final position (frame 145), and directs the jaws to their

final position (frame not shown as it is identical to the

Final Position picture).

In, hi

Biden)
ZVI IES 11

AWE
| 8[]

C¥ B @12345670123456701¢2 4586

hy

3456701 STE IIITIZ SELL :
Apr

’. le

Lr

= nll
1234 6701 Rid 2345670123458

— EL ————— et t=

FX £6701234567012345¢

3 456701234567012345670123456

Task 5

Task © 1s presented to show some of the abilities of

the implemented version of the shortest path algorithms, the

lower level of the system, Object A is movable, X is fixed,

This task could have been solved without the upper level

of the system.

The task is accomplished as follows, The jaws grasp

A's ri gh t pr0 tru S 10n (£ ram eo 2 1), m ove A to (1 4 »2) (fr ame 33)

move around to push (frame 45), push A to (17,2) (frame 50).

move around and grasp the left protrusion (frame 63), move

A to its specified final position (frame 76), and finally

the jaws move to their final position. The last frame is

not shown as it 1s identical to the Final Positions picture,

/ -—

 Ph

 =——_a] "

B® 3456701234567012345670123458

 | —

 mS ———— ree he’

eT—p=g_ _-

b455701234567012345670123456
SR ——— ———— I a. at ==

—f Hs il
 —t
| 234567012345670123456701234586

- _

E701 234567012345670123456 bFF

os |Rp 670123456701234567012 =I
"

— | ——
: [—]

456701234567012345670123456

yg: 8

Ex” 031234567012345670123458

Task 5

The final task, 6, 1s presented to show that the sys-

tem can solve an arbitrarily complex task. The goal of the

task is to move object I (the object alone above the large

group) to the location object H presently occupies (the

upper left in the group). All objects are movable except

Zz, the long object, The objects in the task are B, C, Db, E

G, H, I, J, and Z, Frame 1404 shows the position of the objects

after they have been moved so object I can be put into place.

Frame 2461 is the last frame of the task.

4
r

ng a
in 40 a, ofl =P aR hi

Be

Bee

a, Sai-3

e=lbd
Br G5
 nm U3
hr I

RR
HRY IeTIP IIPTITIETIPTILY:

5

Chapter IX Specific Problems for tuture Work

The work necessary to implement the system, the

thought in formulating the concepts, and subsequent re-

flections have illuminated several problems that need

future work.

Nhat 1s a tiandle“

the first problem is the identification of a handle

on an object, For some tasks, with some objects, people

have no problem distinguishing which part of an object is

the handle. For example, the handle of an ordinary screw-

driver is easily distinguished, But, as a counter example

consider the combination pliers, shown in figure 48, which

can be used as pliers, screwdriver, wrench, wire cutter,

and possibly as a hammer. One must know how he is going to

use this tool before he decides which part will be the

"handle," iowever, people normally do not consciously cal

culate their actions. Ordinarily, they do not think what

part of an object 1s to be the handle, They just pick the

object up by the most convenient part; and as they work.

they frequently change their grip to others that better suit

their immediate purposes. The process is more reflex in

NN

Combination Fliers

Figure 48

-

adults than conscious effort, People, then, solve the

handle problem by:

1) having the ability to change their grig

frequently and easily, and

having the ability to know what they are

going to do with an object before they

pick 1t up.

when pushing, the problem of what a "handle" is

where to push, is a bit simpler, To push an object, one

contacts the object so that the line drawn from the point

where he is pushing through the center of gravity (or the

center of adhesion to the support surface) of the object

is in the direction the object is to move, If this posi-

tion on the object is not available (for example, if the

object is next to a wall), one tries to find another place

to push so the object will move approximately in the de-

sired direction,

The system uses some arvitrary rules to help it solve

the problem of where an object should be grasped. The sys-

tem tries to find a point closest to the middle (Y direction

only) of an object to grasp. If it has a choice of places,

it picks the one that is the cheapest for the jaws to get to,

[In the examples run on the system, these two heuristics worked

very well, (In no case was a task or object designed so as

to insure the system would behave 'nicely.") As an example,

consider the object shown in figure 49, If the jaws can, they

will grasp the right protrusion rather than either of the left

ones, The decision this system makes about a place to push

is very simple; it chooses the cheapest one it can find

(that will move the object in the correct direction), It

makes no effort to push through the center of gravity, as

111 motion 1s restricted to the X and Y directions.

As the system is presently implemented, it remembers

only one grasp position and four push positions (one for

cach direction). The system could be made much more flexi-

ble if it remembered (and calculated paths for) all possi-

ble grasp and push positions. This procedure would give

the system the ability to change from one grasp position tc

another if it wanted, This procedure could be implemented

only by increasing the number of values on the G (grasp and

push) axis in the object state space, the number of points

in the space, and the processing time needed to find a short-

2st nath. For complex objects, these increases could be a

factor of ten or more, making the task almost impossible to

solve using the present techniques.

Jaws wlll prefer to zrassp the risht provrusion of the
object

Fioure 49

What is needed, then, is a method which will allow

the system to change freely from one grasp position to

another but will not increase the size of the state space

nor increase the time necessary to compute shortest paths.

variable Quantization of a Space

This system divides the space into equal sized

squares. 1lhis procedure is straightforward to implement

and gives easily interpreted solutions (paths). but 1t

is wasteful, as a lot of unnecessary points are stored.

The system allots the same amount of storage space whether

91 space is empty or full of objects. Also, paths across

empty space are straight lines; the system should not have

to compute these paths in the same way as 1t computes the

paths around objects,

One possibility is to compute straight line paths tc

: : . . 21, 24

the corners of objects, as 1s done by the SKI group,

lhis method assumes a path will be a straight line from

start to finish, or will be straight line segments from the

start, to object corners, to the finish. Figure 5U shows a

path found using this method, tiowever, the discussion in

their reports? indicates that there is some difficulty 1in

computing paths using these corner points.

Fath found using straight line
of objects

~ \ ha de Yo . weSf n > ¥ 2 ~ eohd fr BU 4 i S t 0 t ir ? - te; HZ ilo i C A¥ T 7=)

-

“0p SL

124

Sa+

Ficoure 50

Another approach to the problem might be to desig-

nate points only around objects, and compute the paths in

the immediate vicinity of the objects in the same way as

is presently done, Paths across the empty space would be

computed as straight lines, A similar approach to the

problem would be to have variably spaced points in the

space. The spacing would be dependent on some function of

"interest" the system has in an area,

Successful implementation of a method similar to

those described above would be of benefit in finding solu:

tions to manipulation tasks. Other fields that rely on

shortest path algorithms would also benefit,

Not Enough Out of the Way Places

In some cases, thls system will fail to find task

solutions because there are not enough Out of the Way

Places. In these cases, solutions might be found if the re-

quirements for Out of the Way Places were relaxed, As men-

tioned earlier, the requirements are overly restrictive, The

unnecessary failures, caused by too few Out of the Way Places

in the task space, occur for two reasons:

|) Objects moved to Temporary Locations are, in

many cases, moved further than is necessary

to solve tasks,

}
¥ There may be an interaction between an object's

shape and its Out of the Way Place, which re-

sults in an object's being moved further out

of the way than 1s absolutely necessary to

solve tasks,

lo explain reason 2, task 2 of Chapter VIII will be used

as an example, Note the path planned for object A, frames

11 to 44, (This path is chosen as C is one unit wide where

A crosses it, and two units wide at the other possible

crossing point along the X axis, The shortest path algo-

rithms try to move objects through as little space occupied

by other objects as possible.) With this planned path, C

must be moved up to Y=14, Suppose instead that A were

moved down to the X axis and then left to its final position.

Then C would have to be moved up only to Y=12, Here C's

shape has influenced A's path, And A's path sets the re-

quirements for C's Out of the Way Place. lence, C's shape

has influenced its Out of the Way Place.

Now to examine the two reasons for unnecessary failures

cited above. Objects moved out of the way are moved to Tempo-

rarv Locations so they can be moved later, However, Temporary

Locations take more than the minimum amount of space tc

store an object, decreasing the number of Out of the Way

Places in the task space. As an object does not always

have to be moved to a Temporary Location to guarantee that

it can be moved later, what 1s needed is a method to find

3 location from which an object can be moved, that requires

only a minimal amount of space to store the object, DUis-

covering such a method is left as a future project,

'n moving an object to a Temporary Location, the

assumption has been made that the object must be moved

again. towever, in some cases, the object will not need to

be moved again, But to keep the system from making irrever-

sible decisions, the system can decide to move an object

»nly to a location from which it can be moved.

Reason 2 (object's shape influences its Out of the

Way Place) leads to more specific suggestions, The first

suggestion is to change the algorithm to charge only once

for moving one object through the space occupied by another

[his procedure, unfortunately, would increase the running

time of the program as partial sub-paths would have to be

retraced frequently.

Another solution might be to move the in the way ob-

ject to various test positions, then try computing an object's

path to determine which of the test positions is the best

Out of the Way Place. This approach, however, would re-

quire computing multiple paths before some objects are

moved, liopefully, there are other ways to find "minimal"

Dut of the Way Places.

There are puzzles which are difficult just because

there are few Out of the Way Places, A common example is

the "15 puzzle." (A drawing is shown 1n figure 51.) There

has been some study of mechanical solution of various 15

puzzle problems, Most of these have depended on sub-goal

tree searching techniques, which are in essence the same as

the solution technique proposed in the previous paragraph,

Pushing or Carrying More Than One Object

Giving the system the ability to carry or push more

than one object presents a powerful tool for solutions to

very difficult tasks. To implement this ability would re-

quire a drastic change in the state space models of the task

spaces, as methods must be found which allow the state space

to describe the task; but, at the same time, keep the state

spaces from becoming too large, Perhaps the spaces could be

segmented in a way similar to that used to segment the jaw/

object spaces. But as the criteria for this new problem are

15 PUL TZ!

| / 9

5 b |

dq 10 11

13 14 15

4

&

17

Figure 51

not as strict and straightforward, tne segmentation rules

will probably be more complex.

The above problem is very similar to the problem

of giving the system the ability to construct sub-

assemblies which would be used to build a complete assembly.

here are two different ways to incorporate this ability in-

to the system, The first is for the operator to indicate

that at a particular point in a task, a particular sub-

assembly must be constructed. This method could be imple-

mented on this system as it now exists by adding the neces-

sary functions to the TASK TREE section of the system.

The other way 1s to make the system figure out

~hen the sub-assemblies must be constructed, and which ob-

jects are to be combined to form the sub-assemblies., Sup-

bose the system 1s given a problem like 'Here are n objects

to be put together to make final form Q," If final form Q

could be built from the n objects only by construction of

sub-assemblies using some of the n objects (the others being

used individually in the final construction), the system

would have a combinatorial problem larger than n!, If r

is much larger than 5 or so, presumably some heuristic meth-

ods must be utilized to keep the problem of manageable size,

Finding Connected Out of the Way Places

In future research, some method should be found to

determine the locations that are Connected Out of the Way

Places. A straight forward method to do this would be to

put objects in required positions (see Chapter V for the

definition of Connected Out of the Way Places), and then

determine if paths can be found to (or from) various

locations, But this method would require the computation

of many paths, a time consuming procedure, Hopefully, a

method can be found which is more practical,

Use of an N Level Method to Find Problem Solutions

To find solutions to complex manipulation tasks, the

system described in this thesis uses a two level method in

which the upper level deals only with abstract task re-

quests. The philosophy of using a two level method should

be extended to N levels, in which progressively higher levels

deal with more highly abstracted task requests. Such a solu-

tion technique may form a useful framework for solving prob-

lems such as those that require planning activities,

chapter X Loncliusions

The work of this thesis has demonstrated that .

two level system as specified below is a practical way of

solving manipulation problems, The upper level part of the

system is an AND TREE which orders sub-tasks, so that their

concatenated solutions result in the solution of a specified

complex task, The lower level part of the system consists of

1} a procedure for setting up a state space

which describes a sub-task, and

]
~ a shortest path algorithm which finds the

solution to the sub-task.

lhis scheme avoids the need for very large, many dimensional

state space searches substituting instead an ordered series

of searches 1n smaller state spaces, It therefore makes

nore efficient use of computer memory than schemes pre-

viously available.

An operator can effectively control this system

as a supervisor. He inputs a task request by specifying the

desired goal state of the task space (he specifies what he

wants done; he lets the system figure out how to accomplish

it), and monitors the results, His decisions on what the

next task is, is influenced (but not determined) by the

response of the system,

The upper level system's mode of control of

the lower system 1s supervisory; the upper level system

gives the lower level system requests and then waits to see

what the results are, The lower level system's response

(i.e., no solution, conditional solution, or solution) in-

fluences the next request made by the upper level system.

There is no reason why one upper level system could not

supervise several lower level systems. Current computer

programming methods (re-entrant programming) makes this a

practical possibility,

The AND TREE 13 o general data structure which

can be used to order the sub-activities of any task, It

performs the same functions as a PERT chart, and offers the

same opportunity for general application.

Appendix A

Example of Two Stack Diamond Algorithm Finding Paths in a Space

The space 13 as initially shown in figure A-1. with

the transition costs next to the node links, All costs are

symmetrical, cost 1,1) —_ (1,2)] = COSt [a,2) —> (1,1) |
The starting point is at (1,l). Its cost is zero, and it is

the only point on the "full" list, The other list is empty.

~

The situation is as shown in figure A-1 and below.

Q CT, EFL POINTS COST BPTHCEF

(Full Front (Empty Front
List) List)

(To get (Best Place
here) to have

Come From)

2 Start

NW (Nowhere)

NA

NW

NW

NW

NV

cy “TW

\' TA

Ne now take all the points off the FFL. As we take

zach point off, we proceed as directed by the algorithm

(figure 27, Chapter III), We call this procedure a front

motion, as the front has moved one unit, The situation is

as shown below, and in figure A-Z2, Note that only arrows

marked #1 are in place now,

= ~5t Front Motion

~t

|?

) 1

POINTS

1 7

" >

 >»

2.1

CNSTS BPTHCEF

Start

3

SAN

1

> 2

7 3

> /

-

Note: Changes are indicated by a bold line to the right,

Ne swap the two lists and then proceed until both lists

are empty, which indicates the algorithm has terminated,

Second Front Motion

r
id POINTS COSTS BPTHCE

Start

Y

-

Thy

Third Front Motion

9
-y

hg
1 [EFL

3,1 (a) 2,3 (c)

2,7? (MY 2,3 (b)

POINTS

1

! 7

COSTS BPTHCF

Start

1,2 (¢) 3,2 (8)

J)

2 is (b)3 (c¢)

.

2,2 (b) _
1,3 (c)

1°

)

Note that the point . 7 was put on the EFL twice, as the

result of the order in which the algorithm computed paths

and costs.

Fourth Front Motion

—

T.

) 3

®

I 7

POINTS COSTS BPTHCE

Start

V2yo

}]

{

3

v

3

* 0)

v

Fifth Front Motion

“Pl,

’

 rE Y

Tg

POINTS COSTS BPTHCF

Start

3

+4

i»

See figure A-J for

changes in the path - -

-

Sixth Front Motion

aT

z=,

"2

E =? POINTS COSTS BPTHCEF

Start

’ J

}
a 7

) 7

wn oy

Seventh Front Motion

|,

Tl

Ln I.

?

POINTS COSTS BPTHCF

Start

J)

2

) -

_ x

0 Eighth Front Motion

EB L Hu [
| 1

> | .

POINTS

{

CGSTS BPTHCF

Start

«

?

, K

~

Ninth Front Motion

r

1a

No changes are made in costs, and no point is put on the EFL.

The algorithm terminates with all paths and costs as found

during Front Motion Eight. The paths from any point to the

start are as shown in figure A-5., Just trace back as directed

by the arrows.

{ey 4 tial corf 2n, nO pains

—

——

J~24%4 +7 » *

po

Intermecate ratns - Change 3 Ere num

——

4»- » Ms

 .- 4 TTR A-3

<4 rrp a
o

r

nF&K

Appendix B

What to do when an object at its specified final

position occupies part of the same space as a movable object

(that has no specified final position) at its present position.

The above problem can be encountered when finding the

order to move objects to their final positions, Figure B-1

shows a task in which this occurs, Figure B-1-a shows the

initial positions and figure B-1-b the final positions,

Figure B-1l-c shows the position of objects when the system

starts to find the order to move the objects to their final

hositions,

The system, as described earlier, attempts to solve

the problem in the following way. In figure B-1l-c it plans

to move A and discovers that C is in the way, It then tries

to move C out of the way, and discovers that A is in the way.

[t tries to move A out of the way and discovers C is in the

way, still, The system then discovers the loop and eventually

finds the task impossible,

To prevent the above failure, the following amendment

must be made in the system procedure. When the system plans

to move an object out of the way that has no specified final

position, and finds that a second object is in the planned

path, the system must check to determine if the second object

Initial Tositions Frnal Fositions

“i
] CL

R

lc

Tow em

y

|)
Del -

or
N

A
— — Lo.
I

at 1.7-

Overlap problem as
described in appendix B.

 le LE
2

Fosit*cn of corjects when
system start to find
orde- to mnv. objects to
the© [4~ rositions.

Cor
 KX - ~

ow

3
Je

—~ cro wlap

"oure Belec

is in the part of the path the object occupies when it is

at 1ts initial position, If this is true, and if this other

object has a specified final position, then the object is

noved to an Out of the Way Place, and the second object

is ignored,

The onlv circumstance where there can be overlapping

objects 1s when the system is determining the order to move

objects to their final positions, There exists the possi-

bility that an overlap might be specified in the input of the

initial or final positions, but a well-designed input routine

vould prevent this,

~~

Appendix C

Program Documentation

There are five programs that compose the system,

Four of the programs make up a complete system, The

fifth is a stand alone program which can perform all of

the input/output functions of the systems and requires

much less core than the complete system, All the programs

can be run only on the M,I.T. Project MAC Artificial In-

telligence Group's PDP-10 Time Sharing System, © circa

September, 1970, or other computer systems that are hardware

and software compatible,

The four programs that compose a complete system

are retained in ASCII code to facilitate changes. These

Programs are

INS 34

TREE 20

OBJSMS 31

CSP §

as of September 15, 1970. The second names of the programs,

the numbers, are subject to change as improvements are made.

Each program should be assembled and the binary files loaded

using the linking loader. The program is started at location

"START". The system will reply with several line feeds

followed by the word "READY", The program is now ready

for input, to be described below. The loading and starting

procedures are not described in detail as software improve-

ments are rapidly being implemented and any descriptions

given here will probably be quickly outdated, For specific

loading and starting instructions, it is suggested that a

person familiar with the computer operating system be

contacted,

The input/output program is INA 25, It is assembled

and started the same as the complete system, but it can be

loaded using the regular loader.

[nput/Output Format

The input for the system can be from three sources:

teletype, disk, or micro-tape. When started, the program

looks for input from the teletype,

The control character for the input 1s the colon (:).

[t preceeds the letter that designates what 1s to be input.

The input functions are

‘.lows one to change from one input source to

another; e.g., disk to teletype.

For input of objects' descriptions at

initial position.

Ilo change objects' initial positions and tc

specify the jaw's initial position,

1)

lv

3pecl™ 7 objects: and jaw’ 5

aclete an object trom the

f1nal

ta.

positions.

suace

fo check 1nitial and final configurations

o) + obilacts.,

To read results, previously computed, that

are stored in tape or disk files.

 J) To start the system to find a solution to

Fhe task.

:R, and :u0 can oe given only from teletype control,

The operator has the choice of three inputs,

TTY) () represents carriage return,)

For input from teletype.

DSK: flnml flnm2) ("flnml" is short for "file name 1".

For input from flnml flnmZ on disk,

JTn:flnml flnm2)

For input from flnml flnmZ on a micro-tape

mounted on unit n.

¢ an input file ROPE 6 is to be read ott a micro-tape mounted

on unit 3, the request would be

: T

UT3:ROPE 6)

Nhen input is complete, a message is printed on the

-onsole, The last charecters in ROPE 6 must be

: T

TTY)

0 return control of input to teletype,

The cystem supplies some carriage returns, others

must be supplied by the operator. The best rule is to type

a line, wait a second, and if no carriage return is gener-

ated, type it.

 3

The format here is of two types. The first is

~~ 0 Lo.
name ,M or F,(nl, n2)) OR n3) ("~~" delimits OR choice.

Here 'mame'" is the name of an object to be described.

" " : 2 :name" can be any combination of six letters and numbers,

As the left character is used to identify the object in the

various displays, most objects receive one letter names.

"M or F'", either letter may be used. '"M" specifies

the object is movable; "F" specifies the object is fixed,

immovable,

nl is the X coordinate of the base location.

n2 is the Y coordinate of the base location.

n3 is the cost of moving through the space occupied

yy this object,

n3 is supplied if the operator wishes to supply this

cost versus having the system compute it, A cost less

than or equal to zero is not allowed.

The commas and parentheses must be supplied as

Field delimiters.

The second format ot ob jects der ciintions is

nl.az

nai is the X coordinate of a location occupied by the object.

n2 is the Y coordinate of a location occupied by the object.

There are usually several lines in this second format,

The object's base location must be included as one entry.J y

The list is terminal by a line "0,7)

For example, the description set

KU2,M, (10,.
10,15
10,16
10,17
11,17
0.0

J , 3 5

defines object KUZ2, that is movable, and has its base loca-

tion at (10,15). It will cost another object 5 units to

move through the space occupied by KUZ2, See figure C-1,

There are various error detecting mechanisms in

the input routines, but they cannot be guaranteed to catch

all errors, The only way to be sure the system has under-

stood what is meant is to check initial and final positions

with the :S command.

The format here 1s

= 7name, (nl,n2)) OR ,n3)

Again,

"name"! i s tse name of the object

Tideo display of object KUZ

K

offs Ss 37 ty

Ttonre Cel

nl is the X coordinate of the new base location

n2 is the Y coordinate of the new base location

n3 is the same as described under the ":0" command.

[f the name 1s "JAWS", thls command sets the initial posi-

tion of the jaws.

The format here 1.

name, (nl,n2)

(nl,n2) is the desired base location of the object when

the task has been completed, If (nl,nZ) is equal to (0,0)

the specified final position of object "name" is removed.

[f the input line is "KILALL", all specified final loca-

tions are erased,

The format here 1is

namie

The object 'mame" is deleted from the task space, If name

is "KILALL", all objects are deleted from the space,

[.lere are several options available here.

[f the next line 13 "T ", an abbreviated description of

the task site's initial and final positions are printed

on the teletype.

vq 1)

This command causes a picture of the Initial Position of the

object in the task space to be printed on the line printer,

rN
» 1 /

This command causes a picture of the Final Position of the

objects in the task space to be printed on the line printer.

f)

Ihis causes the video display to show the initial position

of the objects, Typing a "K" turns the display off and

allows the program to proceed,

7 FJ)

This causes the video display to show the Final Positions

of objects, Typing a "K" turns the display off and allows

the program to proceed.

Error returns will be generated if the program cannot

'sieze'" the line printer or video display as necessary,

The

9 2(;\Vi=

system responds with

The input format is

DSK: flnml flnmZ

-
ou read disk file "flnml flnm2", or

UTn:flnml flnm2

to read file "flnml flnm2" from micro-tape mounted on

drive n.

The file "flnml flnml'" is the result of previous

computations of the system, saved after the system completed

2] task solution.

The response of Ele yotem 13 a few coirriage returns

followed by the line

MOTION DISPLAY

The previously computed path can be viewed, There are

three forms of output: the video display, the line pr'r*er,

and teletype. The format for these displays is

J A)

This starts the video display at the start of the task.

The solution can be seen by hitting the space bar once for

every frame, To reverse the motion, type an R for each

frame. To have the motion automatically displayed, type

an A , The automatic display can be stopped at any time

by typing any character. Then spaces, R's, or another A

can be typed to continue.

[0 start the video display at the last sub-task

zxecuted, type

V LJ

followed by the desired string of spaces, R's, or A's,

The display will run until the last frame of the

task motion is shown, where 1t will hang with no response

to A's, R's, or spaces. Typing a K will turn off the display.

The system is now ready for the next command to the motion

display routine,

A sample interaction w.. 1

J /

RRARRRR RA

&
>
- oe -Splay routine 1S

Caution: 1f the first display command after the

computer types MOTION DISPLAY is "V L ", the display will

show very strange results.

Before one gets output from the line printer, it i:

expected that the video display will have been seen, and

particularly desirable frames selected for permanent copies

The format for line printer output is

LJ
nld
n2ld
N32)

L signifies the line printer output is desired, nl, nZ2,

and n3 are frames to be printed. The last entry, 0 (the

number) denotes the end of the list.

A sample printout from the printer is shown in

figure C-2, This 1s frame 1464 of task 6 in Chapter VIII,

The first character of the object's name shows the loca-

tions the object occupies. The * denotes the base location.

An object that occupies only one location would be repre-

sented by a *, The interpretation of JK, JX, etc., is

given in the description of the teletype output, below.

The jaws are represented by the =, one = for each half.

[f the jaws arz2 closed, only one = 1s shown

lhe teletype output is the contents of the list

the system keeps to define the task solution, the descrip-

tion of the jaw's and objects' paths.

There are two options for teletype output. 1hha

First 1s

al)

This outputs the path that is the solution of the last

sub-task the system solved. The first line of output is

Example of line printer output

*RAME 1464

IJBJECT HTING MIyED tg

 a TAMETERS ARE JK=C2,

Jue
33+
34+
33+
12+
31+
3J+
27+
25+:
25%
24+
23+
22+
21+
20+

7 +

5+
3+
24

+

i

vt

J7 +

J5+
J3+
Ode
03+
J+
01+

J
1

u
2 X 4 5 BA 7 ny

JX EQ $

x \

«YY rs 06G=00, 0OX=11l, NY=%2

:
E
¥

pe
>

J 1

hb] n

a
wr

A”

 :

3

5
J

vy 8] t 23 4567 44 23
“J

a

Figure C-2

1 set of labels,

JK, Jx, Jy, ,, 0G, 0X, OY

vhich will be explained later.

The next line is the name of the object moved. The

third line tells whether this object could be moved. or

whether the solution was a plan: the line is PLAN or

EXECUTION,

On the lines following this are s.Xx two digit numbers

ber line separated by commas:

nl, nz, n3, ,, n4, n5, no

nl is directly below JK and tells how far open the

jaws are, nl=00 means the jaws are closed,

n2 is below JX and 1s the Y ccordin-te of the lower

half of the jaws,

n3 comes below JY, and 13 t 1 coordinate ot the

lower half of the jaws,

nd 1s below 0G, and te.ls how the object is being

noved

[f 0G=10, the jaws are not in contact with the object,

If 0G=00, the object is being grasped.

[f O0G=01. the jaws are in contact with the object

in a position to push it in the -X direction.

~9

[f 0G=02, the jaws are in contact with the object in

3 position to push it in the +X direction.

rr

"=03, the jaws are in contact with the object in

position to push it in the -Y direction,

C CC=04, the jaws are in contact with the object in

1 position to push it in the +Y direction,

n5 is directly below OX, and defines the object's

ase location X coordinate,

he

n6 is below OY, and defines the r coordinate of

ie object's base location,

The other format alternat. ve oY te LE { } J Outu dl 1

T F/
nl)
n2)

which designates that the path list between frames nl and

nZ will be typed out in the format described above, nl

must be less than nZ2.

Requests for output from the teletype, line printer

and video display may be made in any order.

To escape from the motion display, type an WN where

new output would normally be requested.

 50

[his command starts the program running to find a

solution to the task, If it is given to the input/output

~ 9 —

program (INA) an error return is generated,

As the system computes each sub-task, the system

.Y 9 o
ww’ - Dd

-
fe

MOTION DISPLAY

Lf the program has control of the teletype. If the system

does not have control of the teletype, no output is attempted

The operator's responses here are the same as de-

scribed under :R except that typing NJ) to escape produces

the question

PRINT OUT TREE?

A response of YES) prints out the TASK TREE on the line

printer as it was just before execution of the last sub-task

was attempted. After the TASK TREE is printed, the system

continues to complete the solution of the task, If any

other response to the question is given, the TASK TREE is

not oprinted.

Nvhen the system completes the solution of a complete

- 9 5K,

THEEND >> VALUE

ls printed at the teletype, When the program is 'proceeded"

(ask for help if not familiar with the procedure) the system

wlll ask

SAVE RESULTS?

-r

s, response of YES/ will cause the system to type

The response is device:flnml flnmZ to save the path on

Yevice"as 'flnml flnm2." Usual device names are DSK (disk]

or UTn (micro-tape unit n), The information is saved in

image mode; i.e., the binary contents of memory locations.

The saved results can be read using the (R command.

After the results have been saved, the program is

restarted automatically, but with objects left in their

final positions. Type

ei
Try

LO

1S
J I

see the initial positions as they are now,

The easiest way to input initial conditions into t.e

system is to type a file with objects' descriptions and

final positions using the editor program, TECO, The last

characters of the file must be

:T L
TTY,

0 return control of the input program to the teletype,

Appendix D

Flow Chart of the System

There will be no flow chart of the input/output

for the system as the functions are described in the sections

on formats, The input/output section of the program con-

structs three lists which 1t gives to the next part of the

program, These lists are:

l) The Active Object List which contains objects!

descriptions and objects' positions in the space.

,) The Abstracted Object List which contains objects’

descriptions coded as though the base location

were at (0,0).

3) The Finishing Position List which contains the

names and final positions of those objects that

have specified final positions,

[he system flow chart is high level, showing how the various

components interact, Detailed information of functions 1s

included in the text of this thesis

~

3YSTEM FLOW CHARTS

Flow Chart #1

Joes one Or more objects have specified final positions?

yes no

Err oY exit

set r order objects are to be moved to final positions,

ixecute the last sub-task on the TASK TREE
(See Flow Chart #2.)

(Out of tasks?—XEE smove jaws to final
position)

yaQa

{ga

Vv
Ara finished

solution found for the sub-task?

10 yes

Remove the sub=-task from TASK TRid.

were by other objects with
specified final positions _.
moved iI—>——

v/
~2* tional sol. 2

<1} for sub-task found?

ves ig
Fallur diagnosis

GeneXYate sub=tasks to move objects out of the way.
rut these sub-tasks on the TASK TRZZ underneath the

bask the system tried to execute,

‘low Chart #2 wXxecute Last oub-=Tlask

[a task to move Ny [
tan
J out of the way:

no yes
WV |

Algorithm set up Flooding
(compute h(c¢)=0)

at
V +
 no A

f nal position a Temporary Location?

no es
Run algorithm from
to finish.-

Algorithm

¥

start

tial position a Temporary Location?

nn yes
WV

fun algorithm from finish
to st~rr+-

Run two algorithms
(Terminate when fronts cross and jaws
can move to defined positions.)

lzorithms to termination (No Perminasion)
Return a value to
indicate no solutior.

Retr se path

v
Did this object of jaws move
occupied by another object?

through any space

ve| no

J
Return a value to indicate a
path was fou~r~

rene ‘ate A. List of objects moved through.
B. Positions this object moved over.

— a value to 1lndicate a conditional path was found.

Return below "Ixecute last sub-~task." flow chart ~

elerences

Archibald,
Management
Sons, 1967,

Re Uys,

System
and K, L, Villoria., Network-based
(PERT/CPM), New York: John Wiley (

(;

Barber, D. J., MANTRAN: A Symbolic Language for Super-
visory Control of an Intelligent Remote Manipulator,
S.M, Thesis (M.Ek.), M.I.,T., June, 1967,

Berge, Claude, The Theory of Graphs and its Applications,
Translated by Alison vVoilg. New York: John Wiley & Sons,
1964,

beo, Narsingh, An Extensive English Language Bibliography
on Graph Theory and Its Applications, NASA Technical
Report 32-1413, Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, California, October,
1969,

Digital Equipment Corporation, PDP-8 User's Handbook,
Maynard, Massachusetts, ”

Eastlake, bonald E. "ITS 1.5 Reference Manual," M.I[.1,
Project MAC Artificial Intelligence memo #161lA, Cambridge,
Massachusetts, July, 1969,

Ferrell, W, K, Remote Manipulation with Transmission Delay
Ph,D., Thesis (M.E,), M.1.T.,, September, 1904,

Ferrell, W, K., and 1, B, Sheridan. "Supervisory Control
of Remote Manipulation," 1EEE Spectrum, Vol. 4, No, 10,
(October, 1967) pp. 81f.

Goertz, R, C., "Manipulators Used for Handling Radioactive
Materials." Chapter 27 of Human Factors in Technology.
New York: McGraw-Hill, 1963.

8 Green, C, "Theorem Proving by Resolution as a Basis For
Question-Answering Systems,' Machine Intelligence 4,
D., Michie and B, Meltzer, eds., Edinburgh University Press,
tdinburgh, Scotland, 1969,

-

Hart, P. L., N., J. Nilsson, and B., Raphael, "A Formal
Basis for the Heuristic betermination of Minimum Cost

Paths," IEEE Transactions on Systems Science and Cyber-
netics, Vol. 4, No. 2, (July, 19608) pp. 10Uf,

Hewitt, C, "PLANNER: A Language for Proving Theorems in
Robots." in Proceedings of the Joint Conference on Arti-
ficial Intelligence, Washington, UD. C, May 7-9, 19069.

Johnsen, LE. G. '"The Case for Localized Control Loops
for Remote Manipulators,'" Paper presented at ILLD
Human Factors Group Symposium, Boston, Massachusetts,
May, 1965.

Johnsen, E. G. and Charles B, Magee, editors, Advance-
ments in Teleoperator Systems, A colloquium held at
University of Denver, Denver, Colorado, February 26-27,
1969, NASA SP-5081,

L)

' 4

J) 3

Johnsen, E. G, and W, R Corliss, Teleoperator
NASA SP-5070, 1908.

Controls

McCandlish, S. G, A Computer
Supervisory Control of kemote
(M.E.) M.I,T, June, 19060.

Massachusetts Institute of Technology. Project MAC
Progress Report V1, (Cambridge, Massachusetts. 1909

Newell, A,, J, C. Shaw, and H, A, Simon, "Empirical
Explorations with the Logic Theory Machine: A Case
Study in lleuristics." in Computers and Thought,
E. A, Feigenbaum and J, Feldman, eds., New York: McGraw-
Hill, 19063,

Newell, A, and H. A, Simon, "GPS, A Program That
Simulates Human Thought." in Feigenbaum and Feldman.

Nicholson, T, A, J. "Finding the Shortest Route Between
Iwo Points in a Network," Computer J. Vol, 9, (1966)
pp. 2751.

Nilsson, N, J. "A Mobile Automation: An Application of
Artificial Intelligence Techniques." in Proceedings of
the International Joint Conference on Artificial Intelli-
gence, Washington, b, C, May 7-9, 1909,

22.

) 3.

Ore, Oystein. Theory of Graphs. American Mathematical
Society. Providence, Rhode Island, 1967,

Pollack, M. and W, Wiebenson, "Solution of the Shortest-
Route Problem--A Review." Operations Research, Vol, 8,
(1960) pp. 224f,

Rosen, Charles A, and Nils J, Nilsson, eds, Application
of Intelligent Automata to Reconnaissance, Third Interim
Report, 18 March to 17 December, 1967, Prepared for
Rome Air Development Center, Stanford Research Institute,
Menlo Park, California,

/ oF

29.

ly 7

73.

29.

3().

| »

J 2.

Rosen, Charles A, and Nils

of Intelligent Automata to
J. Nilsson, eds, Application
Reconnaissance, pp. 20-23.

Shaffer, L. R., J. B. Ritter, and W, O, Meyer, The
Critical-Path Method, New York: McGraw-Hill, 1965.

Sheridan, T. B. "Use of Artificial Computation Loops
Within Human Control Loops for Remote Manipulation,"
Unpublished memo, M.,I1.T. October 28, 1964,

Simmons, R. F. '"Natural Language Question-Answering
Systems--1969." Communications of the ACM, Vol. 13,
No. 1, (January, 1970) pp. 15f.

Sklansky, Jack. 'Recognizing Convex Blobs." in Proceedings
of the Joint Conference on Artificial Intelligence.
Washington, DU. C. May 7-9, 1969,

Tou, Julius, Modern Control Theory. New York: McGraw-
Hill, 1964. pp. 02-110.

Whitney, bD, E., ''State Space Models of Remote Manipulation
Tasks." IEEE Transactions on Automatic Control, Vol, AC-14
No, 6, (December, 19609) pp. 017f.

Whitney, D. E. State Space Models of Remote Manipulation
Tasks. Ph.D, Thesis (M.E.), M.I.T., January, 1968,

- =

BIOGRAPHY

Philip A, Hardin was born in Atlanta, Georgia, on

March 24, 1943, and received his elementary education in

the public schools of Forsyth, Georgia. He attended high

school at The Baylor School, Chattanooga, Tennessee, He

entered M,I.T, in 1961, and was active in intercollege

sports and other extra curricular activities including Pi

Tau Sigma. He received a Bachelors Degree in June, 1965,

a Masters Degree in August, 1966, and a Mechanical Engi-

neers Degree in February, 1969, all from M,I,T, During

his graduate years, he was a Research Assistant, He is

member of Sigma Xi and is a Lieutenant in the United States

Naval Reserve.

