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Abstract

In this review, we describe the singular success of attractor neural network models in describing
how the brain maintains persistent activity states for working memory, error-corrects, and inte-
grates noisy cues. We consider the mechanisms by which simple and forgetful units can organize
to collectively generate dynamics on the long time-scales required for such computations. We
discuss the myriad potential uses of attractor dynamics for computation in the brain, and show-
case notable examples of brain systems in which inherently low-dimensional continuous attractor
dynamics have been concretely and rigorously identified. Thus, it is now possible to conclusively
state that the brain constructs and uses such systems for computation. Finally, we look ahead
by highlighting recent theoretical advances in understanding how the fundamental tradeoffs be-
tween robustness and capacity and between structure and flexibility can be overcome by reusing
and recombining the same set of modular attractors for multiple functions, so they together pro-
duce representations that are structurally constrained and robust but exhibit high capacity and
are flexible.

Introduction

One of Biology’s grand challenges is to explain how order and complex function spring from inan-
imate physical systems composed of much simpler parts. The brain creates order in its repre-
sentations of the world and performs complex functions through the collective interactions of
simpler elements. In this review, we will describe and evaluate the hypothesis that attractor dy-
namics in widespread regions of the central nervous system play a key role in constructing some
of these representations, generating long time-scales to support integration and memory func-
tions, and endowing all these functions with robustness. We will review the specific predictions of
attractor-based models and the now-extensive body of work testing these predictions. Thus, we
will illustrate that the theory and validation of computation with attractor dynamics in the brain
is one of the biggest success stories in systems neuroscience.

Some of the first formal circuit-level models of brain function focused on the problem of as-
sociative memory and how neural circuits might generate spatially distributed, stable patterns
of activity that could function as such a memory [1, 2, 3, 4]. Hopfield networks, with multi-
ple stable states learned from distributed input patterns, were proposed over four decades ago
⇤Corresponding author
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[5, 3, 6]. Network models possessing a continuous set of stable states, that could be used to rep-
resent continuous variables, were also first proposed around the same period [7]. Subsequently,
many canonical brain circuits for motor control, sensory amplification and memory, motion inte-
gration, evidence integration, decision making, and spatial navigation have been modeled using
the same general principle – that a set of states stabilized through collective positive feedback can
be used for robust representation, memory, and to perform computations that involve memory
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

Because these are circuit-level models, but were typically inspired by experimental charac-
terization of neurons recorded singly or a few at a time, the patterns of connectivity and cell
activity correlations in the models automatically became novel and relatively specific predictions
about the population dynamics and architecture of such circuits. As we will discuss below, the
combination of these prediction-rich (and often conceptually simple) models, modern experimen-
tal breakthroughs in the acquisition of cellular-resolution population activity data, and novel and
rigorous analyses of such data based on the model predictions has led to the accumulation of a pre-
ponderance of evidence that the brain constructs and exploits attractor networks for performing
several essential computations.

We will begin by defining attractors, then describe proposed mechanisms for the construction
of attractor network models in neuroscience. We will provide an overview of why attractor net-
works can be important for computation in the brain and give criteria for determining whether a
system has non-trivial attractor dynamics. After this groundwork we will discuss several examples
of brain circuits with non-trivial attractor dynamics. Finally, we will end with new directions in
our understanding of how these simple circuits could contribute to flexible computation through
reuse in multiple contexts.

What are attractors?

To define an attractor, we first define a dynamical system and its states. A dynamical system is a
set of variables together with all the rules that determine their time-evolution. The instantaneous
value of these variables is called the state of the system at that moment. The state is a point
(vector) in the state space of the dynamical system. An attractor is the minimal set of states in a
state space, to which all nearby states eventually flow [18]. One simple example of an attractor is a
stable fixed point: all neighboring states flow to it. Porting these crisp mathematical definitions to
the brain involves challenges and simplifications, which revolve around identifying a sufficiently
self-contained system and the variables necessary to determine its dynamics.

Defining the state of a neural system: Inherent in the definition of a dynamical system is
the assumption that there are no external dynamical inputs to the system (equivalently, the sys-
tem definition includes all such variables). The first simplification in characterizing the dynamics
of a neural circuit is to assume that at least on the time-scale of interest, the system evolves au-
tonomously. Given that subcircuits in the brain are interconnected with others, and that the brain
itself interacts with the world, it is impossible to completely isolate these circuits into autonomous
systems. However, we may define a notion of effectively autonomous dynamics over time-scales
where inputs are not temporally varying and are untuned in the sense that they do not provide
differential drive to subsets of the putative set of attractor states. The second simplification is in
defining the states of the system. The time-evolution of a circuit in the brain may depend on the
detailed pattern of all the spikes in all neurons, the levels of associated ions, neurotransmitters
and modulators, the states of the ion channels. The weights and connections between neurons

2



may be considered as parameters rather than variables on short timescales, but as variables if con-
sidering a longer time-scale. One widely used simplification in describing a neural circuit on the
timescale of seconds is to use just the spiking outputs of the neurons in the circuit as the states,
often further simplified as time-varying spike rates. If such a description is sufficient to predict
the evolution of the system at the relevant time-scales, it can be viewed as a reasonable dynamical
system model of the circuit. Even though spike or spike rate descriptions ignore sub-cellular and
molecular variables to make the grossly simplifying assumption that the relevant circuit dynamics
are governed by spikes, the state space of a vertebrate microcircuit described in this way is never-
theless very high-dimensional, comprising the number of neurons in the circuit, or 102�107 cells.
As we will see below, such simplified models can nevertheless yield rich and accurate predictions
about neural circuits.

Attractors exist in various flavors: an attractor may consist of a single state or a set of states
that trace out a complex shape, such as a curved manifold 1, Fig. 1 (rightmost column). States
on an attractor may be stationary, or might flow along the attractor to trace out trajectories that
are periodic (limit cycles, Fig. 1f, rightmost column) or chaotic (dynamics that are inherently
unpredictable due to high sensitivity to small changes in the state [21]). Various combinations of
such attractors, of different dimension, geometry, and topology, may coexist in different regions
of the state space of a single dynamical system. Typically, the set of attractors in a dynamical
system comprises a small subset of the state space, and attractor manifolds are usually much
lower-dimensional than the state space. In cases where a system has multiple attractor states, the
initial condition determines the attractor state to which the system flows.

Defining attractors in the presence of noise: Any real physical system unavoidably behaves
non-deterministically from the perspective of a model of the system. This is because one cannot
observe and describe all variables, and all uncharacterized variables together with true stochas-
tic sources of variation (e.g., synaptic signalling noise from stochastic vesicle release [22], ionic
number fluctuations in processes like spike initiation [23], calcium signaling, fluctuations in small
copy numbers of proteins [24]) serve as effective sources of noise in the model. Noise can buffet
states so they do not strictly localize to the attractor described in a noise-free version of the model,
and can drive the system to escape from an attractor over time. However, the general idea of at-
tracting states remains in the following sense: If the system is initialized near such a state, it tends
to flow toward it and subsequently remains localized around it, for extended periods. In sum,
since attractor states are where systems tend to localize (when not externally driven), they should
be observable in the autonomous dynamics of real systems. This basic property is the basis for
the most fundamental and robust tests of attractor dynamics in neural systems, as we will discuss
below. In a nutshell, the critical signatures of attractors in real systems (discussed in more detail
in later sections of this review) can be summarized as: localization of the states of a system to a
lower-dimensional subset, flow of the states towards the subset after perturbation, and long-time
and (effectively) autonomous stability of states in that subset.

1Attractor manifolds: If the number of attractor states in a network is large and the points are close to one another,
they can behave effectively as a continuous set. If this near-continuous set traces out a surface that is locally Euclidean,
it is called a manifold. Nonlinear continuous attractor manifolds can be curved and topologically complex (e.g. rings,
torii, etc., Fig. 1c-d, rightmost column [19, 20].
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Mechanisms: The construction of neural attractors

The general principle underlying the formation of non-trivial attractor states in neural circuits is
strong recurrent positive feedback 2. Positive feedback fights activity decay to stabilize certain
states, and has been conjectured by James, Hebb and others [25, 26, 27, 28] as the basis for the
stabilization of memory traces and persistent activity in the brain. Which states become stabilized
into attractors depends on how the network sculpts the positive feedback, which according to the
synaptic hypothesis is determined by the synaptic weights.[29, 30, 31]

In general, characterizing the relationship between structure and function in a large collection
of interacting elements is extremely difficult, as described by Anderson in "More is different” [32].
For instance, a large collection of simple polar 3-atom molecules of hydrogen and oxygen give
rise to emergent phenomena like liquidness and wetness and freezing into a solid, which cannot
be predicted through intuition or drawing box-and-arrow diagrams. On the flip side, there is also
emergent simplicity, in that the transitions and properties of the emergent states can be described
with very few key parameters and variables.

One way to characterize the relationship between synaptic weights and attractor dynamics is to
ask what attractor states a given set of weights produces (the “forward” problem). With the given
weights, one can simulate the circuit and explore the resulting dynamics to find attractors of the
system. A more powerful method, the Lyapunov function approach, holds for symmetric weight
matrices (Wi j = Wji) and rate-based neural dynamics. For this class of models, a generalized
energy function (the Lyapunov function), which is a function of the weights and neural activation
function [6, 5, 2], analytically specifies the network’s dynamics. Stable (unstable) attractor states
are the energy minima (maxima) of the derived landscape, and the network’s state flows downhill
towards the attractors Fig. 2e in the way a ball rolls down a gravitational potential.

Another way to characterize the relationship between attractors and network structure is to
consider the “inverse” problem: given a set of attractors, what network structure could generate
it? Neuroscientists want to solve the inverse problem to make predictions about underlying mech-
anism (and since neural activations are more readily observed than synaptic weights, the inverse
problem is more frequently encountered than the forward one), while evolution, the brain, and
artificially intelligent systems need to solve the inverse problem to be able to perform computa-
tions that require a given type of attractor dynamics (which we will discuss below). Theoretical
neuroscience has discovered some solutions to the inverse problem for different types of attractors,
as we describe next.

Discrete attractors. A well-known prescription for creating a discrete set of stable attrac-
tors at user-defined points in state space is given by the Hopfield network model [5], Fig. 1a:
an externally induced and distributed pattern of neural activity is encoded into the weights by a
Hebbian-like learning rule that causes co-activated neurons to excite each other and inhibit all
the rest. As a result, these patterns become stable attractor states. If a sufficiently small number
of patterns are inscribed into the weights, they can be retrieved from partial or corrupted ver-
sions of the stored states, thus the network is a content-addressable memory. More generally, the
attractors of simple rate-based networks without synaptic delays and with arbitrary symmetric
weight matrices3 consist entirely of fixed points. Some non-symmetric networks can also support
point attractors [33], but this is not the generic case and can require additional mechanisms like

2Non-trivial attractor states refer to any state other than the null activity state. Positive feedback is not synonymous
with excitatory feedback: like mutual excitation, disinhibition or inhibition of one’s inhibitor is also a form of positive
feedback.

3A symmetric weight matrix W satisfies W T =W : it is invariant to reflection of its entries about its diagonal.
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homeostatic plasticity [34, 35].
The attractor states in Hopfield-like networks typically have highly mixed and overlapping neu-

ral memberships, even when they are well-separated in the state space, Fig. 1a (middle column).
In a special case of Hopfield networks, neurons are partitioned into largely disjoint groups with
self-excitation within groups and inhibition between groups. In these winner-take-all networks,
Fig. 1b, the attractor states consist of non-overlapping active groups of cells, Fig. 1a,b (middle
columns).

Continuous attractors. How can one construct networks with a continuum of stationary
attractor states? Weights that are invariant to reflection about their diagonal lead to the formation
of discrete attractors, as we have seen. If the weights instead exhibit a continuous symmetry – for
instance, if the weights are invariant to continuous shifts in neural locations – then the set of
formed attractors will be related by the same symmetry and could thus form a continuous set.

The general principle for the formation of stationary continuous attractors is pattern forma-
tion [36, 37, 38, 39, 40, 41, 42]. Simple and spatially local competitive interactions lead to the
emergence of rich stable spatial activity patterns – neurons with excitatory coupling between them
become co-active, and suppress the rest of their neighbors through inhibition – a linear (Turning)
instability [36].

The following three elements provide a solution to the inverse problem for forming stationary
continuous attractors: 1) Nonlinear neurons with saturating responses or inhibition-dominated
recurrent interactions with a uniform excitatory drive [7, 16, 43, 44] to keep network activity
bounded. 2) Sufficiently strong recurrent weights with competitive dynamics in the form of local
excitation or disinhibition with broader inhibition to drive spontaneous pattern formation via the
Turing instability [36, 37, 38, 39, 40, 41, 42, 16]; these patterns become the attractor states. 3)
Some continuous symmetry in the weights (a continuous weight symmetry is one where, as some
variable is varied continuously, the weights remain invariant), such as translational or rotational
invariance, Fig. 1c-d, to ensure a continuum of attractor states. These conditions are generally
sufficient, but not strictly necessary, for the construction of continuous attractors (see Box on “Cor-
respondences between attractor dynamics and anatomical layout”). If the continuous symmetry
of weights is sufficiently corrupted, the continuous attractor will fragment into a discretized set of
attractor states. Thus, the existence of stationary continuous attractors is fragile in the sense that
it depends on the maintenance of continuous symmetries.

A special set of networks, which do not involve pattern formation to generate continuous
attractor dynamics, are those with linear, planar, or hyperplanar attractors generated by neurons
with linear or near-linear response functions. In circuits of linear neurons, the network feedback
is a linear function of activity (Wr where W is the weight matrix and r are the neural activities), as
is the activity decay (given by �r). Such networks can stablize non-zero activity states simply by
tuning the strength of the feedback so that positive feedback cancels decay. The feedback matrix W
can direct feedback into the different dimensions of the state space; if feedback is directed largely
along one dimension, the network can support a line attractor, Fig. 1e. If it is directed equally
along two or more dimensions, it can support a plane or hyperplane attractor. To create long-lived
attractors requires feedback to precisely cancel decay, thus the strength of network feedback must
be finely tuned [9, 45], in contrast with pattern-forming continuous attractor systems.

Non-stationary continuous attractors: Large non-symmetric (and nonlinear) networks with
strong connectivity generically exhibit limit cycle attractors or chaotic dynamics [46, 47]. Just as
point attractors emerge generically in large networks with strong symmetric weights and bounded
state spaces, chaotic attractors emerge generically in large recurrent networks with strong asym-
metric weights. Adequate asymmetries are easily achieved if excitatory and inhibtory synapses
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emerge from distinct sets of neurons neurons [47], as biologically necessitated by Dale’s law.
Despite the complexity of chaotic dynamics, these attractors are also highly structured in that

they are typically much lower-dimensional than the number of neurons in the network [48]. Non-
symmetric networks dominated by inhibition exhibit a single attractor at zero activity, though the
flow towards the attractor in responose to perturbations can involve large transients in neural
activation that temporarily move the state further away from the attractor [49, 50].

The potential utility of attractors for computation in the brain

Networks with low-dimensional attractor dynamics exhibit myriad properties that can be vital for
computation in the brain 4. These include robust representation, memory, sequence generation,
integration, and robust classification and decision making, ideas that have been extensively ex-
plored in the literature. In a later section, we will describe how, though attractor dynamics may
be rigid and invariant as needed for the roles listed above, recent theoretical and experimental
findings are beginning to reveal how these rigid constructions may also be exploited to perform
flexible computation through reuse and re-combination across tasks.

Representation and memory

A representation of a set of inputs means the assignment of inputs to representational states (a
representation need not be injective), with the ability to reproducibly retrieve those states (’la-
bels’) when cued. Attractor networks provide a stable internal set of states that can be used for
reproducible representation of discrete or analog variables, by mapping states in the world to the
attractor states. One way to achieve this mapping is through a feedforward learning process that
associates each external state with an internal attractor state, Fig. 2a.

An attractor network can exhibit two kinds of memory: The first is in the structure of the
weights, which specify the set of all attractors. If these weights are specified through an input-
driven learning process, this is a form of long-term memory about the inputs. The second is
the ability to maintain persistent activity in a stationary attractor state: if a system with multiple
stationary attractor states is initialized in one of them, it will tend to remain at or near the same
state for some time. In other words, the activation levels of the neurons contributing to that state
persist while the system remains in the state. This persistent activity response is thus a form of
short-term memory of the input that initialized the circuit. If these persistent memory states can
be activated without an explicit address, using just the content (or partial content) of the memory,
they are content-addressable.

The short-term memory function of attractors depends on the prior formation of stable states
through long-term plasticity: For instance, in Hopfield-like networks, states cannot persist if they
were not first trained to be attractor states. Even models of short-term memory that are based on
synaptic facilitation rather than persistent activity rely implicitly on prior long-term plasticity to
construct recurrently stabilized neural ensembles that can be reinstated by random inputs [51]. In

4A system could theoretically be perfectly tuned such that every point in state space is a neutrally stable attractor,
and thus the system has maximally high-dimensional attractor dynamics. However, because the robustness of attractor
networks is related to the low-dimensionality of the attractor states as quantified in the subsections below, the system
would lose most of its interesting computational properties: error correction/noise tolerance, nearest-neighbor com-
putation, pattern completion and content-addressable memory. It could perform integration but with no robustness to
noise.
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other words, these models cannot explain short-term memory for entirely novel inputs; however,
combinations of attractors could enable more flexible short-term memory, as we discuss later.

Denoising for fidelity of representation and memory

If the representational states are attractors, then the representations are robust in the sense that
they perform denoising: If the input cues or initial conditions reflect noisy or corrupted versions
of an attractor state, the dynamics drive the state onto a point on the representational attractor,
Fig. 2b (inset). When the attractors form a continuous manifold of dimension K ⌧ N , where
N is the number of neurons in the circuit, all noise in N � K dimensions is erased. A noise ball
of unit radius in N dimensions (corresponding to random independent noise per neuron) has a
projection of size only ⇠

p
K/N ⌧ 1 along K dimensions. If K is low-dimensional, as is often the

case, and N ranges from 102�107 as estimated before for common microcircuits, this constitutes
a massive reduction in the sensitivity of the state to internal or input noise, Fig. 2b. Thus, most
noise is rendered impotent.

Denoising due to attractor dynamics is especially important for memory maintenance, as oth-
erwise noise-induced deviations would accumulate and grow over time. Discrete attractors con-
tinually erase all noise by mapping perturbed states back to the point attractor , resulting in zero
drift. With continuous attractors as memory states, all noise orthogonal to the manifold is cor-
rected, thus there is a net reduction of the effects of noise by the factor ⇠

p
K/N ⌧ 1 [52, 53].

However, all states on the attractor manifold are neutrally stable so movements along the attrac-
tor are allowed. Thus, components of noise along the K attractor dimensions are not internally
corrected and cause an accumulating drift away from the inital state, with variance proportional
to KT/N , where T is the elapsed time [52, 16, 53, 54]. Thus, even continuous memory states can
be well-stablized in sufficiently large attractor networks.

Although content-addressable long-term memory and error reduction can be instantiated through
few-step feedforward computations [55, 56, 57] in place of attractor dynamics, recurrent attractor
dynamics are indispensable for the generation of persistent activity states (and thus for short-term
memory through persistent activity [58, 59]) and integration, as we discuss below.

Robust classification

When the attractors form a set with a discrete component (e.g. a set of point attractors or a set
of continuous attractors), inputs that are not initially on one of the attractors will flow to one of
the attractors and thus we may view the identity of the specific attractor to which the input flows
as a classification of the input as a class represented by that attractor. The process can perform a
pattern-completing nearest-neighbor computation, if the dynamics correctly drives non-attractor
states to the nearest attractor states. In other words, the dynamical basins of attraction must
align with the Voronoi regions of the attractor states, which is approximately the case for attractor
networks operating well below capacity. This property deteriorates when attractor networks are
pushed toward their capacity [60].

Integration

Single neurons integrate their inputs, but usually can only do this over the time-scales associated
with their membrane capacitances, typically 10-100 milliseconds. Continuous attractor dynamics
can allow neural circuits to integrate over much longer time-scales ( 1-100 seconds).
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A non-linear continuous attractor network requires an additional mechanism to gain the func-
tionality of an integrator: A way to shift the internal state along the attractor in response to an
input that encodes changes in the external variable, Fig. 2d (left). Conceptually the simplest way
to build a shift mechanism is by a copy-and-offset construction: construct multiple copies of the
attractor network, each with slightly offset (asymmetric) weights in the sense that active neurons
center their excitation or point of maximal disinhibition slightly offset from themselves on the
neural sheet (e.g Fig. 1g (left) represents a slightly asymmetric version of Fig. 1c). The states in
each such network will then form a limit cycle attractor, with patterns flowing in the direction of
the asymmetry. If opposing copies are coupled together, the pattern is stabilized through a push-
pull balance. A velocity input whose components project differentially to the copies will break
the push-pull balance, allowing the more-active population of the moment to drive the pattern
along its flow direction (cf Fig. 1g). Thus, the total direction and magnitude of the shift of the
pattern, corresponding to movement along the attractor manifold, represents the time-integral of
the velocity input to the network. This common principle unifies the mechanisms across diverse
integrator models [61, 13, 14, 16, 62].

Decision making

If, instead of a velocity signal, the input to an integrator network consisted of temporally varying
positive and negative evidence in support of two options [63], Fig. 2d (right) (or in the case of
multiple options, evidence vectors instead of velocity vectors [64]), the network would integrate
those inputs and thus perform evidence accumulation.

Decision-making can be viewed as a selection process applied to the integrator, based on a
readout that detects when the integrator state has accumulated enough evidence and moved past a
decision threshold [65, 54]. The selection process can be external to the integrator in the form of a
readout circuit that detects such threshold crossings and outputs the decision; or it can be built into
the dynamics of the integrator itself, in the form of a more-complex attractor landscape: the states
evolve along a continuous attractor, but at some point the continuous attractor gives way to a pair
of discrete attractors toward which the states flow, Fig. 2e. Neural winner-take-all (WTA) models
implement such a hybrid analog-discrete computation [63, 17, 66, 67, 68, 64]. The parameters in
WTA networks determine the balance between integration dynamics and competitive dynamics,
and thus how well the network integrates later evidence (when the network is tuned to be a perfect
integrator, its response to inputs is gradual and small amounts of evidence cause (reversible) flow
along the continuous attractor manifold. In the case when competition dominates, the response
to evidence is a fast flow toward one of the discrete attractors; beyond a point the flow is nearly
irreversible, leading to rapid decision making and discounting of later evidence [69]).

Neural winner-take-all networks can accurately and rapidly (in ⇠ log(N) time) make the best
decision among N alternatives, even if the presented data are noisy (fluctuating over time around
their means) [68, 64] and the number of options varies over orders of magnitude [64].

Sequence generation

Attractor dynamics can be important for stabilizing another long time-scale behavior: the genera-
tion of sequences. Robust sequences can be constructed as low-dimensional limit cycle attractors,
in which high-dimensional perturbations are corrected, while along the attractor there is a sys-
tematic, periodic, or quasiperiodic flow of states [70, 71, 72, 73, 74]. The attractor property that
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affords ongoing de-noising is important for preventing spatial dispersion and temporal dissipation
of the activity packet during sequence generation.

As for stationary attractor manifolds, the small components of noise along the limit cycle attrac-
tors are not correctable and lead to a gradual accumulation of drift, which for sequence generation
is manifest as timing variability: the standard-deviation in the time of reaching the T th state in
the sequence is predicted to grow as

p
T for unbiased random drift along the attractor [53].

Evidence of attractors in the brain

Criteria for establishing attractor dynamics

The fundamental predictions of attractor models center on the state-space dynamics of the circuit,
as first explicitly discussed and tested in a few papers [75, 9, 16, 76]: 1) That the system’s states
should be found localized at or around a much lower-dimensional set of states corresponding to
the attractors in the state space. 2) That perturbations of the system should flow quickly back to
the low-dimensional states. 3) That the set of attractor states – quantified by either direct char-
acterization of the full state space or by the relationships between cells – should be invariant,
persisting over time and after removal of tuned input, across conditions, across behavioral states,
and even when there are induced variations in the mapping from internal states to external inputs
[75, 16, 76]. 4) Integrator networks should further exhibit the property of isometry, in which
lengths of coding space along a dimension are allocated to equal displacements along a dimen-
sion of the external variable. 5) Additional predictions of attractor dynamics models, that are not
as fundamental in the sense that they are not theoretically necessary or sufficient but are nev-
ertheless of high significance because they are highly supportive of the mechanisms of attractor
dynamics, are anatomical and structural correlates: the existence of low-dimensional structures
and symmetries in connectivity between cells.

Because attractor systems are characterized by their internally generated or autonomous dy-
namics5, putative attractor networks are best tested in conditions that minimize external cues that
are time-varying or tuned to provide localized inputs along the putative attractor.

Innovations in recording methods that made it possible to record multiple neurons simultane-
ously in animals performing naturalistic behaviors [77, 78, 79, 80], have enabled essential tests of
these state-space predictions of attractor models. The newest methods provide activity data from
⇠ 1000’s of neurons within a circuit [81, 82, 83], making it possible to directly characterize the
low-dimensional state-space dynamics of whole circuits [84, 85, 19, 86, 87].

When the attractor manifolds are < 3-dimensional, one can directly visualize them by project-
ing or embedding the high-dimensional state-spaces into  3 dimensions (using e.g. PCA, multi-
dimensional scaling, tensor factorization, and other linear methods for projection, or Isomap, LLE,
tSNE, VAEs, LFADS, nonlinear tensor factorization, and so on, for nonlinear embedding [88, 89,
90, 91]). These methods can also be useful when manifolds have dimension � 3 but are topolog-
ically simple [86, 92]. For topologically non-trivial structures (e.g. rings, torii), especially those
of dimension� 3, topological data analysis methods become important[93, 94, 95, 19, 96, 97, 87].

5Attractor networks dynamics need not be used by the brain in an autonomous setting: inputs that drive attractor
networks can be an important part of their function, for instance in integration and evidence accumulation. However,
for the purposes of identifying mechanism, it is important that their dynamics are probed in an (effectively) autonomous
setting
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Testing predictions 1)-3) requires examination of the state-space structure of the population
response, rather than the more conventional characterization of relationships (tuning curves) be-
tween cell activity and input or output variables. The most direct way to examine the state-
space structure is to record enough cells simultaneously that it is possible to characterize the
full state-space manifold [19, 96, 20]. However, the existence, stability, and invariance of lower-
dimensional state-space structures (predictions 1)-3)) can be inferred from smaller samples of
simultaneously recorded cells, by characterizing the invariant structure in pairwise cell-cell rela-
tionships, as has been successfully done in a number of studies [75, 98, 99, 76, 100, 101].

Predictions 1) and 2) are necessary but not sufficient for identification of recurrent attractor
dynamics in a target network. First, if the behaviors and inputs are themselves low-dimensional,
then any observed low dimensionality of the circuit states may be ascribed to the inputs and reveals
little about intrinsic constraints imposed by the circuit. Second, even if inputs and behaviors are
high-dimensional, a low-dimensional feedforward projection into the target network can generate
low-dimensional target states and rapid erasure of high-dimensional perturbations. The sina qua
non of attractor dynamics is prediction 3), which is that, because the states are internally generated
and stabilized by strong recurrent connectivity, the population states and cell-cell relationships
should be invariant when probed across time and across a wide and rich variety of input conditions
including the removal of tuned input and across waking and sleep. In simple terms, the states
observed in 1)-2) should be invariant across a broad range of conditions [16, 76].

Next, to the question of circuit localization: If a circuit exhibits the key signatures of attractor
dynamics, does it originate these dynamics or is it a readout of some other region? Localiza-
tion need not be a primary goal of establishing attractor dynamics: an important first step is to
simply characterize whether the brain solves certain problems through attractor dynamics, re-
gardless which circuits create these dynamics. Nevertheless, the persistence of activity states in
attractors can lend a helping hand to localization efforts. If a region originates or is upstream of
the attractor dynamics, but not downstream of it, then perturbations that succeed in altering its
low-dimensional state should persist after the perturbing drive is removed [102].

As we illustrate next, theoretically-motivated analyses of population data have now firmly
established that low-dimensional attractor dynamics are ubiquitous in the brain, across levels in
the brain’s hierarchy and across species.

Discrete attractors

Up and down states

The simplest example of nontrivial discrete attractor dynamics (i.e., beyond a single point attrac-
tor) is bistability. Bistable dynamics are a feature of cortical activity in the form of up and down
states [103, 104, 105, 106, 4, 107, 108], in which the subthreshold membrane potential of neurons
switches between a hyperpolarized state and a relatively depolarized one, with long persistence
(100’s of milliseconds to seconds) per state, Fig. 3a. The two states are relatively invariant over
time, as seen in the relatively sharply peaked histograms (Fig. 3a; predictions 1), 3)), and despite
presumed internal noise in the system the peaks are well separated, suggesting a relatively rapid
corrective dynamics towards the two states (prediction 2)). There is little evidence of a critical con-
tribution from cellular bistability in supporting these states, suggesting that it is a network-driven
phenomenon involving self-excitation and global inhibition [109, 110, 111, 104, 105, 106, 4, 107].
Transitions are believed to be driven through adaptation (from up to down) and stochastic as well
as external coordinating events (from down to up) [108]. Though these states and switches can
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occur in cortex without input from thalamus and striatum, they tend to be synchronous across
cortex and striatum. Thus, the origin of up and down states may be highly distributed.

Perceptual bistability

Visual and auditory percepts including binocular rivalry, the Necker cube, and some auditory illu-
sions [112, 113, 114, 115, 116, 117, 118] offer clear examples of bistability in neural processing.
In these illusions, the brain (at the level of perceptual reports) selects one possible interpretation
of an ambiguous input, often switching between possibilities. Though the phenomenon has long
been known and studied, no localized circuit has been identified as the basis of perceptual bista-
bility. Indeed, some percepts may involve top-down activation and modulation of activity across
many brain areas [116], suggesting once again a widely distributed circuit for bistability.

Bistability in a premotor area

Recent studies identify and localize discrete attractor dynamics in a mouse premotor area, the
anterior lateral motor cortex (ALM) [119, 120, 121, 122]. In a cued 2-alternative delayed response
task ALM neurons exhibit persistent activity over a ⇠ 1s delay period. During the post-cue delay
period, activity evolves toward one of two states that guide the response, Fig. 3b (prediction
1)). The delay-period terminal states are similar for cues from different sensory modalities [123]
(partial test of prediction 3)). ALM perturbations during the delay are either erased (corrected)
by the circuit (Fig. 3b, top) or drive a jump to the opposite state (Fig. 3b, bottom), which results
in the animal making the wrong action, suggesting a bistable switching dynamics similar to the
mechanisms in either Fig.1b or Fig.2e (prediction 2)).

Given the long training time required for the task and the resulting tailoring of the ALM dy-
namics to the specific task structure – bistability for a two-choice task – it is likely that this system
acquires its dynamics through slow plasticity and thus that the network’s recurrent structure is
malleable in adult animals. New results showing the existence of small (⇠ 100µm scale) locally
recurrent clusters of neurons ALM that can maintain persistent responses to microstimulation
[124] may provide experimental evidence of the theoretically posited mixed modular networks
(below) hypothesized to support robust and high-capacity memory states [60].

Discrete multistability

Hopfield networks and winner-take-all (WTA) networks are models of multistability beyond bista-
bility6

To date, there are somewhat less direct data and exhaustive analyses to establish discrete mul-
tistability as a circuit-level brain process, in comparison to the evidence for continuous attractor
networks (described next). However, there are many likely candidates systems and brain regions
with dynamics suggestive of and consistent with discrete multistability, at least of the special case
of WTA attractor dynamics, including in mammalian hippocampus and auditory cortex, and the
fly and mamalian olfactory system [133, 134, 135, 136, 137, 138]. In particular, many of these
circuits exhibit global inhibition that clearly narrows and refines activity in the circuit (predic-
tion 5)), Fig. 3c top versus middle, and also show evidence of selective recurrent excitation that

6WTA networks [125, 126, 127, 67, 128, 129, 130, 131, 132]may be viewed as a special case of Hopfield networks,
and bistable switch networks are a special case of WTA networks. As noted earlier, both can express mulitple discrete
attractor states, but while the Hopfield network attractors have highly mixed and overlapping neural membership, WTA
attractors consist of activity in largely disjoint groups of neurons.
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leads to multiple distinct and stably correlated input responses in distinct subpopulations of cells,
Fig. 3c, middle versus bottom [133, 134, 135, 136, 137, 138]. In our view, it is likely that these
circuits exhibit multiple discrete attractor states but quantitative testing of predictions 1)-3) and
direct demonstration of these states as stable and invariant remains an important future direction
for characterizing these circuits.

Continuous attractors

The oculomotor integrator

The oculomotor integrator, together with the HD circuit, was one of the first systems in neuro-
science to be studied theoretically [8, 139, 9] and experimentally [140] as a continuous attractor
network – specifically as a line attractor, Fig. 1e. This network, presynaptic to the motor neurons
that control horizontal eye position, is highly conserved across vertebrates, from fish [141, 140]
to primates [142, 143]. It integrates pulse-like saccadic eye movement command signals to gener-
ate step-like stable muscle tension command signals (Fig.4a) that persist autonomously at various
graded activity levels after removal of the movement cue and even in the dark in the absence
of visual feedback (Fig.4b; prediction 3)) and thus enable stable gaze fixation at various eccen-
tricities. Saccadic inputs knock the system slightly off the linear response states, but the neural
responses rapidly decay back towards the persistent firing states (prediction 2)). Remarkably,
the same system also integrates smooth head velocity signals to permit gaze stabilization during
head movement. Integration functionality is a network-level rather than single-cell process: single
neurons do not generate persistent responses to transient current injections, Fig. 4c (inset), while
decreasing network feedback through synaptic blockers reduces the time-constant of integration
and results in a leaky integrator [144], Fig.4c. It is possible to induce a reduction or increase
in network feedback through training with a virtual surround that generates an artificial retinal
slip percept, Fig.4d, showing that the system is capable of error-driven fine-tuning to maintain a
high degree of persistence [145]. Finally, a recent EM reconstruction [146, 147] finds recurrent
synaptic interconnectivty between integrator neurons, with excitatory connections between ipsi-
lateral neurons and primarily inhibitory contralateral projections, in excellent agreement with line
attractor models of the oculomotor circuit [9], Fig.1e (prediction 5)).

Head direction cells

Some of the earliest experiments to suggest the existence of low-dimensional continuous attrac-
tor dynamics were done in the rodent head-direction (HD) circuit[98, 75, 148], Fig.5a,b. The
HD circuit in mammals maintains an updated internal compass estimate of heading direction
(relative to some arbitrary external reference) as animals move around. It does so by integrat-
ing internal rotational velocity estimates during navigation and incorporating information from
external cues [149, 150, 151, 152, 153]. The HD circuit is modeled by the ring attractor net-
work [10, 61, 11, 154, 13, 14], Fig.1c, g (left). Before large population recordings became avail-
able, cell-cell correlations established that the network states remained invariant on a very low-
dimensional manifold across environments [98, 75, 148], Fig.5a (predictions 1), 3)). Recently, the
complete set of states of the several thousand neuron-sized mammalian HD network was shown to
consist solely of a 1-dimensional ring, Fig.5b [19, 96] (prediction 1)), revealing that the brain has
completely factorized its navigational representations to dedicate a circuit only to head direction.
Further, intervals in the state-space ring manifold map isometrically to intervals of head direction
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(prediction 4)), as evidenced by a close match between the isometrically parameterized internal
ring states and the measured head direction, Fig. 5b (inset, right).

Natural perturbations away from the ring flowed back to it, Fig.5d [19] (prediction 2)), and the
ring manifold was invariant across waking and REM sleep, Fig.5e [19, 96] (prediction 3)). These
findings explicitly validate the most fundamental predictions (predictions 1)-3)) of ring attractor
models and continuous attractor-based integrators (predictions 1)-3) with 5)), providing arguably
the most direct and compelling evidence of continuous attractor dynamics in the brain.

In a striking example of convergent evolution [155, 151], Drosophila compute HD estimates
using apparently very similar dynamics [156, 157, 153, 152]. The fly neural compass circuit is
topographically organized such that the neuropil forms a physical ring-shaped structure in the
ellipsoid body, with a local moving activity peak that tracks head direction as the fly turns, Fig. 5f.
Another notable advantage of the fly circuit in the effort to characterize its mechanisms is that the
number of neurons is small and their morphology and connectivity has been fully traced [158],
Fig.5g. This detailed view of the circuit permits quantitative, not just qualitative, comparisons with
ring attractor models. The combined activity and connectivity data reveal that the fly HD system
implements the copy-and-offset double-ring network architecture proposed for velocity integration
[159, 14]. The actual dimensionality of the fly HD circuit and its full state-space dynamics remain
to be characterized; even though the circuit is organized physically as a ring network, recent
evidence suggests that the insect HD circuit may be involved in performing 2-dimensional path
integration as well [160, 161], and thus unlike the ADn network in mammals, may not be confined
to a 1D ring of attractor states that fully factorizes head direction in its representation of spatial
variables.

Finally, the HD system can be re-anchored and reset based on tuned external cues [152, 153],
which can change the orientiation tuning curves of cells and moment-by-moment firing rates of
cells in a way that remains consistent with prediction 3) for attractor dynamics.

Grid cells

Grid cells encode spatial location though a regular triangular-lattice discharge pattern that tiles
explored 2D spaces [162], representing 2D position as a set of spatially periodic 2D phases [163,
129]. They update their states while moving in the light and the dark [162], presumably based on
motion cues. Continuous attractor models [15, 164, 16, 165] predict that the population states of
a module – a set of grid cells with a common period – should be confined to merely 2 dimensions
regardless of environment and behavioral state [16], forming a manifold that is topologically a
torus, Fig.1d (rightmost column).

Indeed, grid cells from one module (“co-modular cells”) have identical periods and orientations
and all possible 2D phases, suggesting a 2D set of states [166, 76] (prediction 1)). The relative
firing phase and relative grid parameters of pairs of co-modular cells is tightly conserved even
as the spatial tuning and spatial phase of single cells varies across time and across familiar and
novel environments (Fig. 6a) [166, 76], across the dimension of the spatial environment (6b)
[167], and despite environmental rescaling that leads to large deformations in the spatial tuning
of grid cells [76] (prediction 3)). Moreover, the detailed cell-cell relationships (whether a pair
of cells is co-active, active in quadrature, or active fully out of phase) that are seen in waking
exploration are conserved across overnight REM and non-REM sleep for grid cells but not place
cells, Fig. 6c [100, 101], establishing that the low-dimensional states are autonomously generated
(prediction 3)). These findings established that the structure of the grid cell response is very low-
dimensional on a population level, invariant across environments, time, and behavioral states,
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and internally stabilized and autonomously generated – validating the fundamental predictions
[16] made by continuous attractor grid models. Most recently, these findings were reproduced
by a direct visualization of the state-space manifold, Fig6e made possible by large population
recordings of grid cells across waking and sleep that confirmed the toroidal state-space structure
of co-modular cells [20].

A corollary of these findings is that the grid cell response is not derived from upstream place
cell inputs since place cells remap across environments and during sleep while grid cells retain
their population structure (Fig. 6c); this corollary belies and is inconsistetnt with models in which
the place cell response is primary to grid cells [168, 169, 170], as shown in [100].

Given the preserved internal structure and autonomous dynamics of grid cells across states,
time, and environments, it follows that various deviations in the spatial tuning curves of grid cells
from equilateral grid-like responses in 2- and 3-dimensional spaces [171, 172, 173, 174, 175, 176]
likely result from variability in how the invariant internal states are driven by and mapped to
external cues and states: for instance through altered velocity estimation [16, 76] or feedforward
inputs that shift the phase of the grid cell network [177, 178, 179]. This has been verified in the
case of the expansion of grid cells in novel environments [76] and is almost certain to hold – given
the preponderance of evidence of internal grid stability [166, 76, 180, 100, 101, 20] – when tested
in various other conditions that report grid deformations as well [172, 173, 174, 175, 176, 181].

In sum, the HD and grid cell systems confirm that the same pattern formation principle – based
on local excitation or disinhibition, with broader inhibition – that is pivotal for morphogenesis in
plants and animals [39] is also fundamental to the genesis of stationary continuous attractor states
for computation and representation in the brain.

Graded working memory networks

In monkeys trained to make saccades to previously cued targets (selected from a set arranged in a
circle), neurons in PFC and PPC exhibit persistent activity tuned to the direction of the initial cue,
across the delay period after cue removal (predictions 1), 3)) [182, 183]. Analysis of delay-period
PFC activity [85] in a population of simultaneously recorded shows that the delay period activity
bump moves apparently randomly along a 1-dimensional manifold, with the characteristics of
a diffusion process, so that the variance in the location of the bump grows linearly with time,
as predicted by continuous attractor models [52, 16, 19], but the bump profile remains largely
invariant over the duration of the delay (predictions 1) and 2), assuming that the diffusive process
is indicative of natural noise-driven perturbations of the system). The bump movement predicts
subsequent behavioral errors [85], suggesting that these states are repositories or readouts of the
memory.

The need for extensive training on the task and the observed tailoring of the attractor states
to this specific multi-cue task suggests that this attractor formed through learning in a flexible
system rather by (re)using a genetically pre-specified circuit. Given the apparent malleability of
this attractor network, we might therefore also expect a loss of the neural correlation structure if
the animal is subsequently trained on other tasks, unlike with the grid and HD cell networks.

Attracting limit cycles and trajectories

The central and peripheral nervous systems contain numerous instances of periodic dynamics,
ranging from the spiking of single neurons [184, 185] to circadian rhythms and sleep cycle gen-
eration [186], to rhythmic activity in motor circuits. While linear oscillators have amplitudes set
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by the initial condition, attractive limit cycle oscillators have an intrinsic and invariant amplitude.
Thus, not all systems with oscillatory behavior are limit cycle attractors: oscillations that decay or
grow over time or whose long-term amplitude or frequency changes after a transient perturbation
are not limit cycles. Driven (non-autonomous) systems may exhibit limit cycles because of their
inputs rather than intrinsic attractor dynamics [187].

Many of the oscillations noted above maintain a fixed amplitude, and because of their strong
functional imperatives for robustness to perturbation are almost certainly generated through at-
tractor dynamics. Particularly well-characterized examples are central pattern generators (CPGs)
in motor circuits of the peripheral nervous system, that drive swimming, crawling, walking, breath-
ing, and digestion, and differ in specifics across species but have common principles of mechanism
and operation, including high robustness [188, 189]. CPG circuits typically integrate external
feedback but have been shown to be able to operate in isolation without external drive [190].

Given the sizeable literature on these topics, we refer the reader to some excellent papers and
reviews [191, 192, 193, 194, 195, 186].

Departures from low-dimensional continuous attractor dynamics

Not all circuits hypothesized to exhibit low-dimensional attractor dynamics appear under further
experimentation to do so, or currently lack sufficient evidence to establish such dynamics within
the circuit. We discuss three potential examples.

Orientation tuning in V1

The circuit of simple cells in V1 satisfies some key properties of ring attractor networks [11]: V1
and V2 cells exhibit strong orientation-tuned responses to real and illusory edges in the visual
world [196, 197, 198], and population-wide V1 spontaneous activity during sleep is correlated
with these tuned population coding states [199]. While these suggests that illusory edge re-
sponses may be driven by self-generated attractor dynamics, they tend to occur after a longer
latency than real edge responses, making them more likely to be driven by top-down inputs rather
than within-V1 dynamics. Next, moving an attractor state along a continuous attractor manifold
requires strong inputs and is slow [200, 201]. These features seem inconsistent with the imper-
atives of a perceptual system to respond rapidly to changes in input [202], and the dynamics of
state fluctuations in sleep appear relatively rapid compared to attractor time-scales [199]. These
observations seem to lend more weight to models in which the circuit response is dominated by
feedforward drive [196, 203], possibly with recurrently generated but fast non-normal amplifica-
tion processes [49, 204]. More quantitative characterizations of response speed will be important
to draw clear conclusions about competing models for V1 circuit dynamics.

Place cells

Place cells form stable and detailed representations of familiar 1-2 dimensional spatial environ-
ments [205], which can persist in the dark [206] and for short intervals after the animal has
fallen asleep [207, 208]. In any particular 2-dimensional environment, the population response
lies on a low-dimensional manifold in state-space [86]. Accordingly, the place cell circuit has
been modeled as a 2-dimensional continuous attractor network [209, 210] or as a superposition
(with overlapping neural membership) of a discrete number of such 2-dimensional continuous
attractors, each representing a different environment[211]. However, the capacity limitations of
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generating multiple high-resolution maps within one homogeneous attractor network are severe
[212, 213, 163, 214]. And, unlike grid cells, place cells do not, across long sleep bouts, exhibit
the spatial correlations measured in awake exploration Fig. 6c [100, 101, 207]. Even during
waking, cell-cell correlations are not preserved across environments because of the phenomenon
of remapping [215, 216]. Like V1 neurons, place cells might be better described as deriving their
tuning by forming conjunctions of multiple feedforward inputs, including from grid cells and cells
that encode external cues like borders, landmarks, and reward sites [217, 218, 129, 214]. At the
same time, place cells exhibit sequential activation of previous trajectories during activity replay
[208, 219, 220, 221], which is hypothesized to be generated by recurrent connections in CA3, sug-
gesting that recurrent and feedforward dynamics collaborate in the generation of place cell states;
recent models are beginning to capture this interplay [210]. Closing the book on the question of
autonomous low-dimensional dynamics in the far more complex response of place than grid cells
requires more detailed experimentation, analysis, and modeling.

Motor cortical trajectories

Finally, recordings of motor cortical activity during stereotyped primate arm movements reveal
the existence of stable low-dimensional trajectories [84, 222, 223, 224, 225], similar to the tra-
jectories in state space originally characterized in olfactory circuit responses to odors [226]. Limit
cycles and other low-dimensional attractors have been hypothesized to play a key role in corti-
cal movement generation [227, 228]. The behaviors typically performed during neural recording
are themselves restricted to be stereotyped and low-dimensional, thus it remains unclear whether
activity would remain equally low-dimensional across a richer set of behaviors (e.g. over the set
of all possible arm movements). Recent evidence from perturbation experiments [187] suggests
that neural trajectories in motor cortex during skilled movements are driven by input from the
thalamus, and thus that the circuits for motor pattern generation in the central nervous system
might be distributed across multiple brain regions. Characterizing the intrinsic dimensionality of
motor cortical activity, and determining whether the command to make more-complex motions
involves multiple upstream or distributed primitive attractors, remain important open questions
for both clinical brain-machine interfaces and neuroscience.

Flexibility despite rigidity: modern glimpses into the broader poten-
tial of attractor networks

Above, the key predictions and experimental validations of attractors in the brain hinged on their
invariance, or rigidity, across time and conditions. The identified attractor states were highly
structured and low-dimensional. The weight symmetries and asymmetries underlying these states
were precisely tailored to the specific tasks performed by the systems. These properties appear
to run counter to a key desideratum for representation, memory, and computation in the brain:
flexibility.

Recent experimental and theoretical work are beginning to shed light on how the brain might
solve the perennial conundrum of stability versus flexibility through attractor networks: the low-
dimensional and rigid attractor states might be reused and recombined to create versatile and
efficient systems for novel situations.

16



Exploiting integration for rapid representation: reuse of continuous attractors

Strikingly, all established stationary continuous attractor networks in the brain are also integrators.
This seems surprising given that not all continuous variables represented in the brain need be
accumulation of evidence or navigation-like variables. Here we discuss how, even for just the
problem of representation, the functionality of integration could serve a vital role by enabling
rapid construction of new representations.

Building a representation (mapping values of an external variable to the internal states on a
continuous attractor) as in Fig. 2a can proceed by painstaking construction of a large set of asso-
ciative feedforward correspondences: Visit each external state and associate it with an attractor
state. Building this lookup table requires full exploration of the space. By contrast, if the attrac-
tor is an integrator, only two feedforward correspondences must be built: identify one value of
the external variable with one internal state – an anchoring process – then associate the velocity
signal with the shift mechanism in the integrator through a learned feedforward projection that
is independent of location on the attractor or in the external space, Fig. 2f [229]. The circuit
can now automatically generate appropriate and consistent representational states for future and
previously unvisited values of the variable based on displacements. This mapping is rapid and
does not require exhaustive exploration of the space or reconfiguration of the recurrent attractor
circuit, a form of generalizable and rapid learning [230, 231, 229] and zero-shot memory state
construction [229]. Moreover, an integrator network can correctly infer the current state upon
returning to it along a previously untraversed path (novel trajectory), a form of zero-shot inference
[231, 229, 232].

This rapid integration-based mapping process permits another use: A single attractor can be
easily reused to represent mutiple variables, Fig. 2f: By simply adding another anchor point for
another variable Z and driving the shift mechanism with velocities related to changes in Z , the
network can switch from representing variable X to de-novo representing Z , or can alternate
between representing X and Z without any reconfiguration of the attractor itself [229]. Consistent
with this idea, it appears that the brain (re)uses grid and place cells when navigating through both
the spatial environment and through non-spatial cognitive domains [233, 234, 235].

Multiple modular attractors for high-capacity representation

In general, a fully connected symmetric attractor network of N neurons permits the construction
of ⇠ N chosen attractor states (where the notation ⇠ refers to the functional scaling with N
with potential prefactors that do not depend on N), a result established by a large body of work
from statistical physics [236, 237, 238] and information theory [239]. The result is independent
of learning rules [239, 236] and not qualitatively altered by adding hidden neurons [60]. It
also applies to (near-)continuous attractors, for which the total number of distinguishable states
(resolution) on an attractor manifold also scales in the same way.

A D-dimensional attractor with resolution ⇠ P per dimension would thus require a number of
neurons that grows exponentially with dimension, N ⇠ PD (this is one aspect of the curse of dimen-
sionality). For 2-dimensional space at a resolution of 10 cm per dimension, the full population
of ⇠ 106 rodent hippocampal cells – which have been hypothesized to function as a Hopfield-
like associative memory – could at most represent a combined 100m2 area [163]. Similarly, the
number of cells in hippocampus is vastly smaller than the combinatorially large number of sparse
coding states of cortical neurons in rodents and humans, which might set the scale for the number
of items to be stored in memory. These arguments point to the need for much higher-capacity
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representations and memory than possible with fully-connected Hopfield-like networks.
Modular attractor networks permit efficient construction of a large number of representational

and memory states in neural networks [163, 129, 240, 241, 242, 243, 60, 214]. If M modular sub-
networks have⇠ N discrete attractor states each, and these can update independently (uncoupled
modules), the combined system expresses a set of⇠ N M states, exponential in the number of mod-
ules. Though these states are not attractors, it is possible to couple together these subnetworks to
generate exponentially many attractor states so they each have reasonable-sized basins and are
thus robust [244, 241, 242, 60, 57], Fig. 2. (By contrast, randomly connected Hopfield networks
also typically have exponentially many fixed points, but the basins are often small.) Similar ideas
have been applied in the temporal domain to show how networks might support exponentially
long activity sequences [245].

If each module expresses a continous attractor of dimension K and the subnetworks are inde-
pendent, their combined states define an MK�dimensional manifold (with no error correction
between states on the manifold), solving the curse of dimensionality for representing higher-
dimensional variables while maintaining a structured representation for the variable that goes well
beyond random combinatorial codes [163, 129, 246]. These subnetworks can be coupled together
through their shift mechanisms, forcing a certain fixed relationship between modules in how their
relative states update [243], in which case the coupled system exhibits one K-dimensional attrac-
tor but with large capacity, containing ⇠ eM states per dimension.

In short, modular subnetworks can work together to greatly expand representational capacity
in terms of number of attractor states while also maintaining a large denoising capability [244,
241, 242, 60, 57, 163, 129, 246, 243]. However, the vast set of attractor states made possible
by these coupled-module constructions are a rather structured set pre-defined as combinations of
the states in the individual modules, rather than being arbitrarily specified as the states are in a
standard Hopfield network. They do not directly encode user-defined patterns as the attractor
states, and thus do not violate the capacity limitations of neural networks [236, 237, 238, 239].
A critical question is how high-capacity and robust but structured sets of attractor states could be
leveraged for general memory and computation. Three recent works have begun to address this
question, showing that structured attractor states can be leveraged for robust labeling and action
selection [247], robust classification [248], and as a component of a heterogeneously structured
general associative memory that exhibits smooth degradation instead of catastrophic memory loss
as more patterns beyond capacity are added to the network sharma2022content.

Mixed modular codes for flexible representation

Finally, M modular subnetworks that are each integrators in K dimensions can be (re)used with-
out any rewiring of recurrent weights to represent and store inputs of any input dimension MK ,
Fig. 2h, using a mixed-modular coding scheme [229]. This scheme combines five concepts: Rapid
representation learning with the integration mechanism, the reuse of the same attractors for dif-
ferent variables, the capacity of modular attractors, the fact that a high-dimensional variable can
be represented unambiguously by multiple independent lower-dimensional projections, and the
fact that random projections tend to be independent.

In mixed modular coding, movement along each dimension in the external space is randomly
projected to the shift mechanisms of all modular integrators. Every module is thus involved in rep-
resenting every input dimension – a form of holographic representation [249, 250]. If the number
of input dimensions D is smaller than MK , all input dimensions are represented without informa-
tion loss, and excess module capacity (MK � D excess dimensions) is automatically convertible
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into extending the coding range or resolution for each of the D input dimensions, instantly trading
off the number of represented dimensions and the dynamic range of each represented dimension
without recurrent plasticity.

Looking ahead

The theory of attractor dynamics in the brain has provided a powerful and unifying conceptual
framework for understanding integration, representation, memory, error-correction, and efficient
learning and inference in the brain. The experimental effort to study candidate attractor circuits
and test their predictions has been a fertile field of research, and population-wide physiology
techniques have led to breathtaking direct visualizations of attractor dynamics at work in the
brain.

The theory is also proving to be a powerful tool in interpreting how artifical neural networks
(ANNs) solve complex tasks. ANNs trained to robustly solve memory, integration, and decision-
making tasks in domains as diverse as spatial navigation, vision, and language, develop attractor
dynamics [251, 252, 253, 254, 255], suggesting that not only are attractor networks able to solve
such problems but might be necessary when the computing elements are memoryless neurons.
Further, equipping networks with preconfigured attractor networks can help to produce faster,
more data-efficient and generalizable learning [230, 229]. Because ANNs can be trained on com-
plex tasks and then fully examined after learning, they will potentially more readily contribute
to the next chapter in our understanding of how continuous attractor networks can interact and
combine with other mechanisms to allow the brain to solve richer problems associated with intel-
ligence.

Notable mechanistic questions about attractor networks also remain open, including: Mov-
ing away from the high-firing-rate asynchronous spiking regime [256, 257] to better understand
whether low-firing-rate synchronous spiking networks might support attractor dynamics – and
thus permit a combination of fast time-scale dynamics like spike synchronization and oscillatory
phase dynamics [256, 258, 259]. For continuous attractors, understanding how the brain deals
with the problem of fine-tuning in linear networks or the imposition and maintenance of a con-
tinuous symmetry across neurons remains unknown and ripe for resolution [34, 260].

A few continuous attractor development models show how they could emerge simply through
unsupervised associative plasticity [10, 211, 178]; others are based on combining feedback of
known or plausible error signals with neural activity in relatively simple learning rules [261, 10,
262]; the rest train networks on a high-level goal with error backpropagation, combined with
other constraints on architecture or the form the solutions should take [263, 264, 252, 253, 230,
265, 254]. These models are incomplete for different reasons: the unsupervised models require
uniform exploration of the input variable space and suppression of recurrent weights during their
training; the backpropagation models do not offer an account of how the loss functions, learning,
and additional constraints might be generated in biological systems.

There is much left to do in the field and an exciting vista ahead. On the experimental side, tools
for high-resolution population-level neural recrdings and perturbation across multiple brain areas
[266, 82, 83] let us peer further and deeper than ever. On the theory side, future developments will
help us conceptualize how such circuits could help underwrite intellegent computation through
the formation, interaction, and reuse of multiple low-dimensional structures.
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Correspondences between attractor dynamics and anatomical layout, and
weight symmetries in models and biology

Anatomical topography, in which functionally similar neurons are near one another, is
neither a necessary nor sufficient condition for the existence of an attractor: Any low-
dimensional attractor network is mathematically unchanged if all weights are preserved but
neuron locations are scrambled. However, if the network is merely a spatially scrambled
version of the idealized model, then the symmetries of the weight matrix can be revealed af-
ter an appropriate reordering of the neurons. An advantage of anatomical topography from
a biological perspective is that it can reduce the complexity of development, in that wiring
decisions can be guided by spatial proximity rather than depending entirely on activity or
other target cell signalling mechanisms; for instance, the locally competitive interactions
of grid and HD circuit models could be largely constructed through local arborization. It
also reduces overall wiring length in the mature circuit [275]. However, a circuit with � 3-
dimensional dynamics that are represented in an unfactorizable form cannot be embedded
topographically in a 2-dimensional cell layout, which limits the utility of topographic lay-
outs for circuits representing higher-dimensional manifolds.
Second, the posited weight symmetries in simple models of attractors need not exist in
a biological instance of the circuit with the same dynamics: If low-dimensional attractor
dynamics is only needed downstream of the size-N recurrent network that generates the
dynamics, in a set of M < N neurons, then the symmetries required for continuous attractor
dynamics can be spread across the recurrent and readout weights and the recurrent weights
alone without taking into account the readout weights will not reflect the relevant symme-
tries [253]. These considerations suggest a hypothesis for circuits with  2-D continuous
attractors: Evolutionarily conserved circuits that do not require extensive early experience
[276, 277] should be topographically organized. We might thus predict that the circuit that
originates HD signals in mammals should be topographically organized. By contrast, if the
low-dimensional dynamics only emerges on the basis of activity-dependent plasticity with
repetitive training, we may not expect the circuit to be topographically organized (or even
localized to single brain regions).
Remarkably, despite these caveats and in a beautiful example of the predictive power of
simple theories in neuroscience, the recent empirical evidence from the anatomy of the
zebrafish oculomotor integrator and the fly HD circuit show that nature has used precisely
the hypothesized constructions proposed in simple circuit models to build some integrator
networks.

Figure 1 (preceding page): Mechanisms of attractor formation. In all plots, open gray neurons represent neurons, connections
between them are excitatory (black lines ending in bars) or inhibitory (black lines ending in circles). Left column: layout of neurons
and connections; connectivity matries shown as inset, with blue to yellow colors indicating strongly inhibitory to excitatory inter-
actions. Middle column: examples of stable population activity patterns. Right column: state-space views of population states and
dynamics. Red circles with gray-green ring indicate the activity states shown in middle column. (a) A network with dense symmetric
connections determined by associative Hebbian learning on a set of input patterns (middle) stores them as stable attractor states.
This defines a Hopfield network. (b) Disjoint groups of neurons interacting through within-group excitation and across-group mutual
inhibition leads to group winner-take-all dynamics. Stable states are any patterns with only one winning group (the state-space plot
collapses all activities of neurons in group gi along the axis rgi). (c) Neurons arranged in a ring with global inhibition and either
local excitation or a lack of local inhibition combined with uniform excitatory input to all neurons produces localized activity bumps
(middle) as the stable states. Bumps may be centered anywhere on the neural ring, defining a near-continuum of attractor states
that form a ring in state-space (right). (d) Neurons arranged on a two-dimensional sheet, interacting through local inhibition and
either center-excitation or a lack of inhibition near the center together with uniform excitatory input to all neurons results in a pattern
of multiple, periodically spaced activity bumps (middle). Any two-dimensional phase shift of the periodic pattern upto the lattice
periodicity are distinct but equivalent stable states, then the states repeat; thus these are predicted to form a torus in the state-space.
(e) Two neuron groups with in-group excitation and across-group inhibition, precisely tuned interaction strengths, and quasi-linear
neural fI responses can counteract activity decay in the network and produce persistent activity over a continuum of activity levels
in the two populations, defining ramp-like population activity states and a line of attractor states. (f) Neurons arranged on a ring
with asymmetric connections that bias neural activity to flow in a particular direction (middle) The network forms localized activity
bumps that sequentially move around the ring in that direction (right) The state space contains a limit cycle. (g) The copy-and-offset
mechanism for constructing integrators, illustrated for the ring (left) and grid (right) attractor circuits. Each network copy receives
velocity inputs tuned to the corresponding shift direction.

21



e

a b

...

f

~1

~1/N d

time

g

c

h

...

Figure 2: Utility of low-dimensional attractor networks. (a) Persistent and stable states generated by attractor networks (red) can be
used to represent and remember external variables (blue) by constructing an appropriate mapping between them (vertical lines). (b)
Noise-robustness: attractor networks error-correct by mapping noisy states to the nearest attractor state [267]. Main: N -dimensional
noise drawn from the unit sphere centered on a 1D attractor has a projection strength of only 1/N along the attractor: in this counter-
intuitive high-dimensional geometry, a ball is more like a pancake with the attractor orthogonal to the large dimensions [19]. (c)
Flow to the nearest (continuous or discrete) attractor can perform a nearest-neighbor computation and thus perform classification:
e.g. the two attractors may represent ”cat” and ”dog” perceptual manifolds, and the blue dot a specific input data point. (d) Left:
Continuous attractors can become integrators if velocities or movements in the external space are inputs to the network and induce
proportional shifts in the internal attractor state: The current state on the attractor is then the integral of past velocity inputs relative
to the starting state. Right: if the input to an integrating attractor consists of temporally varying evidence pulses (bottom, evidence
about one option in blue and evidence about the opposing option in khaki), these will move the state on the attractor (top) so its
current state reflects the integral of the total evidence.(e) The energy landscape of a combined integration and decision making
network: inputs push the state left or right, and as it integrates, the network state also moves toward one of two discrete attractors
(left and right; white arrows: two sample trajectories). Arrival to the neighborhood of one of the discrete attractors is a decision point
[63, 64]. (f) An integrator can be quickly re-purposed to represent multiple different and new external variables simply by yoking its
velocity shift mechanism to different external velocities cues by feedforward learning. It also does zero-shot learning and inference:
Given an initial state and an input velocity trajectory, it will generate a self-consistent representation for the current state even if the
trajectory if different and new each time [229, 231, 232]. (g) A set of (continuous or discrete) attractor subnetworks (red boxes at
bottom) can interact bidirectionally with a shared network to form a high-capacity attractor network [241, 242, 268, 60]. (h) Mixed
modular representations can enable representation of inputs of different dimensions by resuing the same attractors of fixed dimension
each. Velocities (vi) from external spaces of potentially different dimension are selected by a set of selection signals (si). The selected
velocity (green) is routed through random projections to a set of M modular integrator networks of dimension K each. This kind
of mixed modular circuit can interchangeably represent a variety of input spaces of dimension D  MK while smoothly trading off
resolution for dimension [229].
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Figure 3: Evidence of discrete attractor dynamics in the brain. (a) Multi-unit (above) and single-unit (middle) activity during
cortical up- and down-states show signatures of bistability (clusters and histograms at bottom). Reproduced with permission from
[269]. (b) Delay-period dynamics in rodent premotor area ALM during a binary decision task before the animal can make a motor
report of its decision appears to converge to one of two discrete end points (blue and red curves and histograms, top). Perturbations
are either robustly ignored (top), or flip the dynamics so that the end points are reversed (bottom). Reproduced with permission
from [123, 119]. (c) Evidence of all-to-all inhibition and competitive winner-take-all recurrent dynamics in the fly olfactory system:
Kenyon cell (KC) responses to odors, with input from the globally projecting APL inhibitory neuron, are sparse (top left, Ca fluorescence
response to odor IA) and decorrelated across odors (top right); blockage of KC drive to APL or APL inhibition to KCs results in dense
and correlated odor responses (middle, bottom). Reproduced with permission from [137].
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Figure 4: Linear attractor dynamics generated by nework feedback in the oculomotor integrator. (a) Stable horizontal gaze
during fixation at different angular positions (top two traces) is supported by stable steps in firing rate by oculomotor integrator
neurons (bottom two traces) that integrate transient (⇠ 100 ms) saccadic command bursts. Reproduced with permission from [140].
(b) Oculomotor neurons maintain eye position through linearly ramping tuning curves (bottom); responses are the same in the light
and dark (top) and thus do not depend on visual input for gaze stabilization on the time-scale of seconds. Reproduced with permission
from [270]. (c) Transient current injection into single oculomotor neurons reveals a transient, not persistent, decrease or elevation
(inset) in firing rate, consistent with lack of a cellular origin for persistent intersaccadic firing. Reproduced with permission from
[140]. (d) Injection of kainic acid into the oculomotor integrator produces leaky dynamics even in the light (inset, faster leak in the
dark), consistent with network models. Adapted with permission from [271]. (e) Visual feedback mimicking leaky or unstable eye
positions in goldfish can mistune the oculomotor integrator, making it unstable or leaky, respectively. Adapted with permission from
[272, 145].
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Figure 5: The head direction circuit: a ring attractor in the brain. (a) Activity of two cells in the rat HD circuit during free foraging
in a 2-dimensional circular arena with a globally orienting cue (top). When the cue is removed (bottom), the fields rotate but the
cells maintain their tuning shapes and relative tuning angles (pale curves: top plot, globally rotated. Adapted with permission from
[75, 98]. (b) A nonlinear 2-dimensional embedding of the population-level states of the thousands-of-neurons sized mammalian
thalamic area ADn recorded during 2-dimensional free-foraging: the states are confined to a 1-dimensional ring (cf. Fig. 1c); here,
colors encode the measured head direction of the rodent. Inset: Non-linear embedding of states from a different rodent (left), with
coloring obtained by an isometric parametrization along the ring by SPUD [19]. Reproduced with permission from [19]. (c) A close
match between unsupervised isometric parametrization of the manifold from (b, inset) and the externally measured head direction
of the rodent. Reproduced with permission from [19]. (d-e) The same cells as in (b, inset), recorded during REM sleep (green): the
states during REM remain confined to a 1-dimensional ring that precisely overlays the ring of waking states (blue, in (e)), and exhibit
large flows back toward the ring (in (d)) Reproduced with permission from [19]. (f) Calcium imaging of activity in the physically
ring-shaped Drosophila ellipsoid body reveals a localized bump of excitation that follows the movement of a cue in the fly’s visual field.
Reproduced with permission from [156]. (g) Combination of electrophysiology and EM imaging of the central complex in bees (left)
and flies (right) provides detailed layout and connectivity data for comparison with predicted connectivity in ring attractor models.
Reproduced with permission from [161, 273].
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Figure 6: A set of 2-dimensional toroidal attractors in the grid cell system. (a) An example pair of grid cells (left column) whose
spatial tuning periods and orientations reconfigure in novel environments (middle column), but the changes are tightly yoked to
preserve cell-cell relationships (right column). Each color corresponds to a variable describing the lattice of the spatial tuning curve
of the cell as shown in the schematic. Adapted with permission from [76]. (b) Responses of co-modular cells on 1D linear tracks
can explained by parallel slices through a 2-dimensional grid, suggesting preserved 2-dimensional circuit dynamics across diverse
environments. Reproduced with permission from [167]. (c) Pairwise correlations between grid cells measured during navigation are
preserved across overnight sleep, while those of place cells are not. Reproduced with permission from [100, 101]. (d) Grid cells are
anatomically arranged according to their relative spatial firing phases. (left) Cell positions are colored according to the phase of their
spatial tuning curves. The relative cortical positions of same-phase cells make a triangular lattice pattern (middle), with a grid-like
autocorrelation pattern (right). Reproduced with permission from [274] (e) Non-linear dimensionality reduction and topological data
analysis directly reveal that the states of individual grid modules lie on a torus (left); as the animal follows a spatial trajectory (right),
the state moves along the manifold (left). Reproduced with permission from [20].
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