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Abstract

Previous studies suggest that mentally representing exact numbers larger than four depends on a verbal
count routine (e.g. “one, two, three...”). However, these findings are controversial, as they rely on
comparisons across radically different languages and cultures. We tested the role of language in number
concepts within a single population – the Tsimane’ of Bolivia – where knowledge of number words varies
across individual adults. We used a novel data analysis model to quantify the point at which participants
switched from exact to approximate number representations during a simple numerical matching task.
The results show that these behavioral switchpoints were bounded by participants’ verbal count ranges;
their representations of exact cardinalities were limited to the number words they could recite. Beyond
that range, they resorted to numerical approximation. These findings resolve competing accounts of
previous findings and provide unambiguous evidence that large exact number concepts are enabled by
language.

Introduction

Language gives humans extraordinary cognitive abilities, but its role in numerical cognition remains 1

unresolved. Studies of human infants and non-human animals have shown that at least some numerical 2

abilities do not depend on language. Babies, monkeys, and even invertebrates can make precise distinc- 3

tions between small quantities without counting (up to about four; 1, 2) and can rapidly distinguish the 4

numerosities of larger sets, although only roughly (3–7). Whereas the ability to represent small exact 5

and large approximate numbers is conserved across species, the ability to represent larger numbers ex- 6

actly (e.g. exactly seven) appears to be unique to humans (3; c.f. 8) and is often attributed to language 7

(7, 9–11). Specifically, predominant accounts posit that the structure of the verbal count list (e.g. “one, 8

two, three...”), which children learn to recite long before they understand the meanings of the number 9

words (12–14), allows them to discover the logic of number by induction (9, 15–18; cf. 19–24). 10

This account draws support from studies of isolated groups with few or no words for exact quan- 11

tities (11, 25–27). Specifically, two indigenous groups in the Brazilian Amazon – the Pirahã and the 12

Mundurukú – have no words denoting large exact quantities (and in the case of the Pirahã, no words 13

for any exact quantity, not even one; 25, 26). To test large exact number concepts in such groups 14

without using number words, researchers have used simple numerical tasks that require only behavioral 15

responses, often on sets of physical objects (e.g. 7 pebbles; Figure 1; 11, 25–27). Pirahã and Mundurukú 16

adults perform well on these tasks only up to about four; for larger cardinalities, they are unable to 17

reproduce the number of objects in a set exactly, relying instead on approximation (11, 25, 26). A 18
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similar pattern has been found in Nicaraguan Homesigners, a group of congenitally deaf adults whose 19

language lacks a count routine (27). Across groups, the pattern is the same: People without words for 20

large exact numbers seem unable to represent cardinalities larger than four, leading some scholars to 21

conclude that the verbal count list “enables exact enumeration” (11). 22

However, these findings are difficult to interpret (20, 23, 24, 28, 29), in part because they rely on 23

comparing across languages and cultures. Groups without exact number words (like the Pirahã) are 24

compared, if only implicitly, to groups with productive counting systems (like Americans). Of course, 25

isolated groups differ radically from Western, Educated, Industrialized, Rich, and Democratic (WEIRD; 26

30) groups in many ways besides in their knowledge of number words (e.g. 31), and any of these 27

differences could account for the observed difference in numerical cognition (27, 32). For example, some 28

scholars suggest that the Pirahã failed to make exact numerical matches of large sets not because they 29

lacked the requisite linguistic resources, but because they were simply “indifferent to exact numerical 30

equality” (20; also see 27, 29), perhaps because “keeping track of large exact quantities is not critical for 31

getting along in Pirahã society” (28). Indeed, whereas quantification is prized in WEIRD cultures, some 32

unindustrialized groups like the Pirahã do not track chronological age, use currency, or have units of 33

measurement (31, 33, 34). In short, cross-cultural comparisons cannot in principle distinguish whether 34

large exact number concepts depend on a verbal count routine or on other aspects of language and 35

culture. 36

Even if these studies clearly established a causal role for language in large exact number concepts, it 37

remains unclear what role that would be. Some accounts posit that the verbal count list is instrumental 38

both for inducing the principles of number (e.g. Hume’s principle: one-to-one correspondence guarantees 39

numerical equivalence; 7, 35) and for using those principles to construct representations of specific 40

cardinalities (e.g. exactly seven; 15). Alternatively, the verbal count list may be necessary for inducing 41

the logic of number only, which people could then use to enumerate large sets whether or not the 42

corresponding verbal symbols were available to them. Previous cross-cultural studies cannot distinguish 43

between these possibilities because they test numerical abilities only at the extremes. In principle, the 44

failure of the Pirahã (and other groups without large exact number words) to represent large exact 45

numbers could be due to a lack of the requisite number principles, number words, or both. 46

To date, few studies have tested the role of number words in large exact number concepts without 47

comparing across language groups (36), and the results are difficult to interpret. In a group of MIT 48

undergraduates, verbal interference impaired performance on some numerical tasks more than a spatial 49

control task, suggesting a functional role for language in representing large exact numbers. However, 50

despite verbal interference, participants performed well on two other tests of large exact number repre- 51

sentations, including the orthogonal matching task, complicating interpretation of the results. (Even if 52

verbal interference had caused unambiguous impairments in participants’ numerical abilities, it is unclear 53

whether such an effect would generalize beyond this highly-specialized sample of WEIRD adults, given 54

their decades of dependence on verbal number symbols.) In another study, US children overwhelmingly 55

failed to make exact numerical matches of large sets, but this failure is difficult to interpret given their 56

imprecision in a task that only required one-to-one matching of objects (35). In sum, previous studies 57

do not clearly establish whether or how language influences the representation of large exact numbers. 58

Here we addressed these inferential challenges by testing the relationship between number words 59

and number concepts in the Tsimane’, a group of unindustrialized farmer-foragers indigenous to the 60

Bolivian Amazon (37), who differ importantly from previously studied populations. Unlike the Pirahã, 61

Mundurukú, and Nicaraguan Homesigners, the Tsimane’ have a fully productive system of number 62

words in their language. Yet, unlike adults in WEIRD cultures, Tsimane’ adults exhibit considerable 63

variation in their knowledge of the verbal count list; many Tsimane’ adults can count indefinitely, but 64

some do not know words above 10, others falter at 12, etc. This variability allowed us to compare verbal 65

and numerical abilities across individuals, rather than across groups. It also allowed us to test the 66

relationship between verbal and numerical abilities not just at the extremes, but at many intermediate 67

levels. To determine which large numbers participants could represent exactly, and which numbers they 68

could only approximate, we used a novel statistical analysis to model participants’ behavioral responses 69

in an orthogonal matching task. This model uses the known psychophysical properties of numerical 70

estimation to determine the set size at which participants switched from exact to approximate number 71
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representations. By comparing this switchpoint to participants’ highest verbal counts, we tested whether 72

people need a system of number symbols (like those in the verbal count list) in order to represent large 73

exact numbers. If they do (16, 17), then we should find not only that these abilities are correlated, 74

but that one systematically exceeds the other; participants’ highest verbal counts should place an upper 75

bound on their numerical representations, allowing them to make exact matches only within the limits 76

of their verbal count range. Alternatively, if number words are necessary for discovering the logic of 77

number but not for deploying it (or not at all, e.g. 21, 23), then participants’ numerical representations 78

should sometimes exceed their verbal count ranges. Unlike in previous studies, here the relationship 79

between verbal counting and numerical reproduction cannot be attributed to broad cultural or linguistic 80

differences, since our participants shared the same culture, language, and in many cases lived in the 81

same small community. 82

Parallel matching task

Parallel matching results

(N = 15)

Low-counters

Orthogonal matching task

Orthogonal matching results

(N = 4)

Low-counters

Figure 1: In the parallel matching task (top left), Tsimane’ participants used 1-to-1 correspondence to
make a numerical match (on sets of 3, 4, 5, 10, and 15 objects). Low-counters were highly accurate
on this task (bottom left). In the orthogonal matching task (top right), correctly matching required
participants to represent the cardinality of the sets (of 4-25 objects). Low-counters’ accuracy was
variable on this task, with signs of scalar variability (bottom right).

Results 83

Verbal and non-verbal number tasks 84

We tested participants’ verbal counting abilities using a simple pebble-counting task, once before the 85

matching tasks and again afterward (see Materials and Methods). Participants whose highest verbal 86

count was 20 or less were included in the group of low-counters (N = 15). As a control, we also 87

ran a group of 15 high-counters on the same set of tasks; these Tsimane’ adults were from the same 88

communities but had verbal counts that reached at least 40. 89

Participants then performed two non-verbal number tasks in which they were asked to make arrays 90

with the same number of objects as a sample array. In the parallel matching task, the experimenter 91

presented a sample array of objects (in a lateral line) for each trial and participants arranged their 92

response array parallel to each sample array (see Figure 1, top left). Because sample and response arrays 93

were parallel, participants could use 1-1 correspondence to perform the match in this task, spatially 94
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aligning each object in their response array with an object in the sample array without representing the 95

cardinality of either set. For this reason, the parallel matching task does not test representations of large 96

exact numbers. Rather, success on this task suggests understanding of exact numerical equivalence: for 97

two sets to be equal in number, every element in each set must correspond to an element in the other set 98

(38, 39). This task also functioned as a task check, ensuring that participants understood the mechanics 99

of these numerical reproduction tasks. Participants correctly produced a parallel match for each of five 100

sample arrays (N = 3, 4, 5, 10, and 15) and then advanced to the orthogonal matching task. 101

In the orthogonal matching task, the sample arrays were arranged sagittally in a line extending 102

away from the participant. Participants arranged their response arrays laterally (as in the parallel 103

matching task), in a line that was orthogonal to the sample array (see Figure 1, top right). Unlike 104

the parallel matching task, this task precludes spatially aligning sample and response arrays, requiring 105

participants to represent the cardinality of each set. Note that this task places minimal demands on 106

number representations: Participants were not asked to perform any arithmetic operations and because 107

sample and response arrays remained visible throughout each trial, they could inspect them indefinitely 108

before finalizing their responses (which were unspeeded). In a series of practice trials, all participants 109

correctly performed orthogonal matches for sets of size 3, 4, and 5 (with feedback) before advancing to 110

the critical trials. 111

In critical trials, participants received no feedback about their performance. For high counters, the 112

first critical trial was a sample array of 10 objects. For low-counters, the first critical trial was a sample 113

array with two fewer objects than the participant’s highest verbal count. From this starting point, we 114

followed a pre-defined staircasing procedure (i.e. +2 for correct, -1 for incorrect) to determine the size 115

of each sample array until participants (a) produced three incorrect response arrays for sample arrays 116

of the same number (e.g. samples with N=15 objects), (b) correctly matched three arrays numbering 117

20 or more, or (c) completed 20 critical trials (see Materials and Methods). 118

Psychophysical model of numerical abilities 119

To evaluate the limits of participants’ exact numerical representations, we analyzed their distribution 120

of responses using a generative Bayesian data analysis (40). This model formalized a process in which 121

participants use an “exact” system (with constant error) for smaller sets and an approximate system 122

(with scalar variability) for larger sets. The number at which participants switched from exact to 123

approximate representations is the participant’s switchpoint, our dependent measure. 124

Formally, for the exact system (i.e., numbers below the switchpoint) we assumed that participants 125

responded from a Cauchy(µlow + n, σlow) distribution, where n is the number of objects in the sample 126

set and µlow and σlow are location and scale parameters (so that µlow ≈ 0 means responses are centered 127

on the true value n, and σlow ≈ 0 means that responses cluster tightly around the mode µlow + n). A 128

Cauchy distribution was used because errors in the exact system likely reflect inattention or confusion, 129

and estimation of this distribution is robust to outliers. For the approximate system, we assumed a 130

standard model of approximate number psychophysics (41) where subjects respond according to the 131

distribution Normal(n,wi · n), where wi is a Weber ratio parameter that varies by individual. Putting 132

these together, the model assumes that, when shown a sample of n objects, participant responses r 133

follow 134

P (r | n,wi, µlow, σlow) ∼

{
Cauchy(µlow + n, σlow) if n ≤ si
Normal(n,wi · n) if n > si

(1)

where si is the switchpoint of the i’th participant. In addition, we included a hierarchical model for 135

participant Weber ratios wi, such that wi ∼ Normal(µW , σW ) constrained to be positive, which means 136

that we partially pool participant estimates of Weber fraction. We put a uniform prior on si between 1 137

and 40, a standard normal prior on µlow, and Exponential(1) priors on σlow, µW , and σW (see Materials 138

and Methods). 139

This model allowed us to infer the likely distribution of switchpoint values si from participants’ 140

pattern of behavioral responses, while accounting for the uncertainty inherent both to exact enumeration 141

(i.e. a noise parameter for low numbers, shared across participants) and to numerical approximation 142

(i.e. a Weber ratio fit to each participant). 143
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All data and analysis scripts are available in the Open Science Framework repository: osf.io/me7w4/ 144

Switchpoint estimate: low-counters Switchpoint estimate: high-counters

Highest match (based on 3 failures)

Figure 2: Left: Participants’ switchpoints as a function of their highest verbal counts. Diamonds show
median estimate and error bars show 50% confidence intervals. With one exception, all low-counters
(red) and high counters (blue) had switchpoints below their highest verbal counts. The same pattern
obtains for an alternative measure of participants’ highest numerical match (red circles), based on the set
size at which they failed three times. Right: The probability that low-counters’ switchpoints exceeded
their highest verbal counts.

Whereas high-counters counted to 40 without error on both trials, low-counters’ highest verbal counts 145

ranged from 6 to 20 (mean = 12.6), and often differed across the two trials (mean absolute difference = 146

2.0). 147

Parallel matching 148

In the parallel matching task, high-counters performed at ceiling, correctly matching each of the sample 149

sets (i.e., N = 3, 4, 5, 10, 15) on their first attempt. Low-counters were 85% accurate on their first 150

attempts, with 70% accuracy on sets larger than five (i.e. N = 10 and 15). With one exception, their 151

incorrect responses were within 2 of the correct number (see Figure 1, left), and no participant made 152

more than two errors. When they did make an error, they then showed 100% accuracy on their second 153

attempt, fully reconstructing the response set without feedback about the magnitude or direction of 154

their error. 155

Orthogonal matching 156

Participants were less accurate in the orthogonal matching task (mean = 51% correct) than in the 157

parallel matching task (mean = 93% correct), even for the same cardinalities (56% correct for N = 3, 158

4, 5, 10, or 15; see Figure 1, top). 159

The model estimated a mean Weber ratio of 0.13, consistent with Weber ratios found in studies of 160

numerical estimation in adults (26, 42), including Tsimane’ adults (43). The noise for low numbers was 161

estimated to have a mean of µlow = −0.14 and a standard deviation of σlow = 0.14. 162

The critical question is how participants’ switchpoints were related to their verbal counting abilities. 163

Figure 2 (left panel) shows estimated switchpoints as a function of participants’ highest verbal counts, 164
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and individual participants’ data is shown in Figure 3. Although analysis of the response data was blind 165

to participants’ counting abilities, it inferred markedly different switchpoints for low and high counters, 166

solely on the basis of their numerical matching responses. Whereas switchpoints among the low counters 167

averaged below 7 and never exceeded 11, the average switchpoint among the high counters was over 28 168

(t(17.47) = 11.01, p < .0001). Highest verbal count reliably predicted switchpoint, above and beyond 169

any effect of formal education: higher counters had higher switchpoints (β = .55, SEM = 0.01, t = 170

5.48, p < .0001). This relationship also held on zero education individuals: highest verbal count reliably 171

predicted switchpoint even when analyzing only those participants with no formal education (i.e. 12 172

low-counters and 2 high-counters; β = 0.40, SEM = 0.15, t = 2.67, p = .02; all tests are two-sided). 173

Low counters

Sample set size

R
es

po
ns

e 
se

t s
iz

e

Sample set size

High counters

Highest match (3x)

Highest verbal count

Estimated switchpoint

Figure 3: Each plot shows the data an individual participant. Blue dots are correct numerical matches
and red Xs are incorrect responses. Shaded regions are outside the participant’s verbal count range.
With one exception, participants’ switchpoints as estimated by the model (solid red lines) were within
their verbal count range (unshaded region), as were their highest matches as determined by our 3x
failure criterion (dashed red lines).

Importantly, participants’ counting abilities and matching abilities were related beyond simple cor- 174

relation: Low counters’ switchpoints fell at or below their highest verbal count (i.e. below the diagonal 175

dotted line) with only one exception, as shown in Figure 2 (left panel). According to Pearson chi-squared 176

tests, this ratio (i.e. above:below) differed significantly from chance (χ2(1) = 9.60, p = .002). Note that 177

in principle, participants’ data points could fall below the line simply due to poor performance on the 178

orthogonal matching task, independent of counting abilities. To assess this possibility, we conducted a 179

permutation test in which we randomized the pairings of participants’ highest verbal counts and switch- 180

points. This procedure respects the marginal distribution of each variable, and therefore allowed us 181

to evaluate what proportion of data points we should expect to fall below the line by chance (i.e., if 182

verbal counting and numerical matching performance were statistically independent). In 10,000 per- 183

muted samples, the number of participants whose switchpoints exceeded their highest counts was 7.72 184

on average and was never as small or smaller than the number we observed (i.e. 1), indicating that the 185

observed pattern is extremely unlikely to occur by chance (p < .001). 186

Figure 2 (right panel) shows the probability that low counters’ switchpoints exceeded their highest 187

verbal counts, calculated using each participants’ distribution of switchpoint estimates. Except for one, 188

these switchpoints were below the 50% threshold (Mean = 11.89%), indicating that they were likely 189

within participants’ verbal count range. For numbers beyond their highest verbal count, low counters’ 190

responses were on average nearly seven times more likely to reflect an approximate system than an exact 191

system. 192

In addition to our generative model, we also used a simple behavioral criterion to evaluate partici- 193
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pants’ highest match: the number at which they failed to produce an exact match three times (which 194

also served as one of our stopping criteria during testing). Given the staircase procedure we used for 195

testing, failing three times on sets of N required a combination of failing on sets of N+1 and succeeding 196

on sets of N-2. We therefore defined highest match as two less than the number at which participants’ 197

failed three times. This alternative measure was highly correlated with participants’ switchpoints as 198

estimated by the model (R2 = 0.64, t(11) = 2.79, p = .02). Although these two measures were of- 199

ten identical (see Figure 3), highest match was on average higher than estimated switchpoints (mean 200

difference = 1.77), and therefore provides a more conservative estimate of participants’ numerical repro- 201

duction abilities. Nevertheless, this alternative measure showed the same relationship to highest count 202

as the switchpoint estimates from our model; with one exception, participants’ highest matches were 203

at or below their highest verbal counts (see red circles in Figure 2, left panel, and dashed red lines in 204

Figure 3), and this ratio differed significantly from chance (χ2 = 7.69, p = .006). Low-counters’ verbal 205

count range reliably predicted their highest match (t(11) = 2.44, p = .03). This alternative measure 206

also revealed the same difference between groups; whereas the highest match for low-counters (by this 207

criteria) was below ten on average (and was always below 15), no high counter failed three times on any 208

number we tested; rather, they all succeeded to make exact numerical matches into the twenties. (Two 209

of the fifteen low-counters did not fail three times on the same number within 20 critical trials, and so 210

their data do not appear in Figures 2 or 3) 211

Discussion 212

In a group of Tsimane’ adults, the ability to represent exact numbers was limited to the part of the 213

verbal count list they had mastered. Using a generative model of participants’ responses, we found that 214

they reliably matched the number of objects in a sample set only when this number was within their 215

own verbal count range; for numbers beyond this range, participants overwhelmingly failed to make 216

exact matches (by two measures), relying instead on numerical approximation. 217

Why did participants’ highest matches often fall short of their highest counts, rather than equal 218

them? In part, this gap is likely due to instability in participants’ verbal count routines. Because 219

number words are most practiced for smaller numbers, uncertainty about the next number in the list 220

should increase as the number increases. This uncertainty results in a soft upper bound to the count 221

routine, causing a given participant to falter at different numbers on different attempts. Indeed, low- 222

counters’ highest counts often differed across the two trials that we administered, which were separated 223

by only a few minutes (mean absolute difference = 2.00). This uncertainty in highest count can also 224

explain why one participant showed a median switchpoint slightly above their highest verbal count, as 225

measured. 226

Although small gaps between highest count and highest match can be explained by the fragility of 227

individuals’ verbal count routines, larger gaps in performance may reflect a deeper conceptual limitation 228

in some participants. A subset of our participants failed to reproduce cardinalities that were well within 229

their count range (by as much as 12, among the low-counters), suggesting that adults with no formal 230

education may undergo the same developmental trajectory as WEIRD children (44), who learn much 231

of the verbal count list and the mechanics of counting long before they learn how it relates to the 232

cardinality of sets (13, 16, 45). To understand how counting relates to cardinality, mastery of counting 233

procedures may be necessary but not sufficient, even in adults (46). 234

These findings clarify the role of language in number concepts in three ways. First, unlike the 235

Pirahã, Mundurukú, and Nicaraguan Homesigners, our Tsimane’ participants succeeded in representing 236

at least some cardinalities above four. This success shows that participants did not misunderstand the 237

orthogonal matching task, nor were they “indifferent to exact numerical equality” (20; also see 29). On 238

the contrary, participants were attuned to exact numerical equality in both in the orthogonal matching 239

task and in the parallel matching task, in which they succeeded for sets as large as 15. The baseline 240

level of numeracy we observed even among the low-counters reflects the importance of exact enumeration 241

in the Tsimane’ communities we tested, where counting practices are widespread. Yet, despite living 242

in a numerate culture and demonstrating the ability to represent at least some large exact numbers, 243
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participants used no alternative method for representing large exact quantities. This pattern of success 244

and failure within individuals shows that large exact number concepts are not all-or-nothing; in principle, 245

learning part of the count list could be important for inducing the logic of exact enumeration, but not for 246

representing specific cardinalities. On the contrary, we show that those representations depend critically 247

on the availability of the corresponding (verbal) symbols. 248

Second, our inferences rely on comparisons across individuals, rather than across cultures or language 249

groups (11, 25–27). Therefore, the differences in conceptual abilities that we observe cannot reflect 250

broad differences across groups. In principle, the correlation between participants’ numeric abilities 251

could reflect differences in their formal education; on average, high-counters had more years of formal 252

schooling (mean = 4) than low-counters (mean = 0.2). However, highest count reliably predicted 253

highest numerical match when we controlled for differences in education, and when we analyzed only 254

the participants with no formal schooling at all. Therefore, this relationship cannot easily be attributed 255

to differences in language, culture, or formal education. 256

Finally, whereas previous studies have shown (cross-cultural) correlations between verbal counting 257

abilities and numerical reproduction abilities, our inferences do not rely on correlation. Rather than 258

simply asking whether one ability predicts the other ability, we also ask whether one ability systematically 259

exceeds the other, allowing us to assess the causal relationship between them. In principle, once equipped 260

with the logic of large exact numbers, people could represent “an unbounded set of discrete values...as 261

needed” (22). If so, then participants’ numerical matching ranges should have systematically exceeded 262

their verbal counting ranges. We found the opposite pattern, providing the strongest evidence to date 263

that number words play a functional role in representing large exact numbers (7, 15–18, 47). 264

In interpreting the findings in the Pirahã, Mundurukú, and other isolated groups, some researchers 265

have characterized the verbal count list as a “cultural tool” (41) or a “cognitive technology” (25; also see 266

48). Although these metaphors may be compelling, they do little to clarify whether a verbal count list 267

(or other external symbol system) is necessary for representing large exact numbers. Just as a bicycle is 268

useful but not necessary for transportation, some scholars have argued that “using words to name exact 269

numerosities is useful but not necessary”(23) for representing large exact numbers, providing an efficient 270

way to encode numerical information that “complements, rather than altering or replacing, nonverbal 271

representations” (24). If such nonverbal representations of large exact numbers exist (19, 21, 49), they 272

had no effect on the numerical abilities of our participants (or of the Pirahã, Mundurukú, or Nicaraguan 273

Homesigners), none of whom showed any sign of “alternative representational strategies” (24). Rather, 274

these findings show that if the verbal count list is a cognitive technology, it is one that not only facilitates 275

large exact number representations, but enables them. 276

Beyond theories of numerical cognition, these findings also bear on a broader debate about the role 277

of language in cognition (50–55). Although linguistic relativity effects have been reported in a variety 278

of domains (including color: 56, 57; time: 58; musical pitch: 59; and spatial reasoning: 60, 61), the 279

idea that language shapes thought remains controversial (24, 62, 63), in part because there are many 280

versions of the “Whorfian hypothesis” (64, 65). On a strong version, language can not only change 281

conceptual representations but can also enable new ones (32, 65). The present results reveal such an 282

effect in the domain of number, where language appears to enable representations of exact cardinalities 283

larger than four (25–27). To be clear, language may not be the only external symbol system that can 284

enable large exact number concepts. For example, finger counting (66), body-part counting (67), and 285

abacus use (48) may also support the development and elaboration of such concepts (46, 68). Whatever 286

set of symbols people use, their ability to represent large exact numbers extends only as far as their 287

mastery of those symbols. 288

Materials and Methods 289

Participants 290

As part of an initial questionnaire, participants were asked to count aloud as high as they were able, 291

starting at one, in whatever language they preferred (i.e. Tsimane’ or Spanish). Those who faltered in 292

their count routine for numbers below 20 were selected for the low-counter group and their highest count 293
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was retested using the pebble-counting task (N = 15; mean age = 48.73 +/- 4.34 years, mean schooling 294

= 0.2 +/- .11 years) Those who initially showed good counting abilities above 40 were selected for the 295

control group of high counters, and their highest count was retested using the pebble-counting task (N = 296

15; mean age = 32.87 +/- 4.52 years, mean schooling = 4.00 +/- .65 years). One participant discontinued 297

testing before reaching any stopping criteria and was excluded from further analyses. All participants 298

gave verbal informed consent before participating. The study was approved by the institutional review 299

board at UC Berkeley. 300

Pebble counting task 301

Participants were given a pile of glass pebbles (N = 30 for low counters, N = 40 for high counters) on the 302

testing table. Starting with the pebbles on their left side, participants moved them one at a time to the 303

right while counting each one aloud. After they stopped counting, participants were asked how many 304

pebbles there were in the counted set. The experimenter(s) and translator noted counting errors and 305

totals given by participants. With three exceptions, participants performed this task twice, once before 306

and once after completing the matching tasks. We used the higher of the two counts as participants’ 307

highest verbal count. 308

Parallel matching task 309

To begin the parallel matching task, an experimenter seated across from the participant laid out two 310

white buttons (arranged left-right) and explained that the participant was to make a set of pebbles with 311

the exact same number of objects. The experimenter then demonstrated the correct response by moving 312

two pebbles from the participant’s pile into alignment with the two buttons, making two parallel rows of 313

two objects. Then in a series of five trials, the experimenter increased the sample array from 2 buttons 314

to 3, 4, 5, 10, and then 15 buttons. Participants were given unlimited time to complete each match, 315

and trials ended only after the participant verbally indicated that they had finished, at which point the 316

response array was removed. When the response was correct, participants received verbal confirmation 317

that their response was accurate. When participants produced a response array that differed in number 318

from the sample, the discrepancy was pointed out and the trial was repeated. All participants completed 319

the five trials of the parallel matching task correctly before advancing to the orthogonal matching task. 320

Orthogonal matching task 321

Like the parallel matching task, the orthogonal matching task began with a demonstration using a set 322

size of two. The experimenter placed two buttons on the table (arranged front-back) and explained that 323

the participant was so do the same as before: make a lateral array of pebbles with the same number 324

of objects as the sample. In warm-up trials, participants made orthogonal matches to sets of 3, 4, and 325

5 buttons. If participants produced a response array in these trials that differed in number from the 326

sample, the discrepancy was pointed out and the trial was repeated. All participants completed the 327

three warm-up trials correctly before advancing to the critical trials. For the critical trials, low-counters 328

began with an array of two less than their highest count and high-counters began with an array of 329

ten. From this starting point, all participants followed the same staircasing procedure: after a correct 330

response, the set size was increased by two; after an incorrect response, the set size was decreased by 331

one (i.e. +2, -1). 332

To ensure that participants evaluated the cardinality of each sample array independently of the 333

preceding arrays, at the end of each trial we (i) removed the response array (and reincorporated it into 334

the larger pile of pebbles) and (ii) removed an arbitrary subset of buttons from the sample array before 335

making the subsequent sample array. This aspect of the procedure allowed the experimenter to change 336

the cardinality of the sample set (i.e. add two or subtract one button) out of sight of participants, 337

making it difficult for participants to track the changes to the sample array or to infer the accuracy of 338

their responses from those changes. 339
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Participants were instructed to take as much time as required to ensure that their array of objects 340

had exactly the same number of objects as in the sample array, and were free to touch the objects as 341

needed. Each trial ended only when the participant verbally indicated that they had finished, and no 342

feedback was given during the critical trials. The task ended when the participant (a) produced an 343

incorrect response to three arrays of the same cardinality, (b) correctly reproduced three sets of 20 or 344

more objects, or (c) completed 20 critical trials. 345

Modeling 346

Posterior distributions were inferred using a No-U-Turn sampler in Stan (69–71) with four chains of 347

10000 samples. In order to create a model with only continuous parameters, we marginalized out each 348

participant’s cutoff parameter si, and then computed posterior samples of those si from samples of 349

other parameters. Because our behavioral responses were discrete, we computed the probability of a 350

response r under either the Cauchy or Normal distribution as the total probability mass between r− 1
2 351

and r+ 1
2 . Our implementation used a non-centered parameterization of subject effects (72) and was run 352

with adapt delta = 0.9999. With these parameters, the model encountered 209 divergent transitions in 353

10000 samples, but examination of a pairs plot did not reveal any regions of obvious difficulty or bias 354

in the model. Overall, convergence was assessed by examination of the traces and computation of R̂, 355

which was approximately 1. The code for this model is available at osf.io/me7w4/. 356
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interpreters, Manuel Roca, Robin Nate, and Eĺıas Hiza, for their hard work, and to Kensy Cooperrider 361

for comments on the manuscript. 362

Code availability 363

All data and analysis scripts are available in the Open Science Framework repository: osf.io/me7w4/ 364

References 365

[1] Lisa Feigenson, Stanislas Dehaene, and Elizabeth Spelke. Core systems of number. Trends in 366

cognitive sciences, 8(7):307–314, 2004. 367

[2] Mario Pahl, Aung Si, and Shaowu Zhang. Numerical cognition in bees and other insects. Frontiers 368

in psychology, 4:162, 2013. 369

[3] S. Dehaene. The Number Sense: How the Mind Creates Mathematics. Oxford University Press, 370

USA, 1997. 371

[4] Justin Halberda and Lisa Feigenson. Developmental change in the acuity of the “number sense”: 372

The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental psychology, 373

44(5):1457, 2008. 374

[5] Stanislas Dehaene, Ghislaine Dehaene-Lambertz, and Laurent Cohen. Abstract representations of 375

numbers in the animal and human brain. Trends in neurosciences, 21(8):355–361, 1998. 376

[6] Samuel J Cheyette and Steven T Piantadosi. A unified account of numerosity perception. Nature 377

Human Behaviour, 4(12):1265–1272, 2020. 378

10



[7] Susan Carey and David Barner. Ontogenetic origins of human integer representations. Trends in 379

Cognitive Sciences, 23(10):823–835, 2019. 380

[8] Elizabeth M Brannon. What animals know about numbers. Handbook of mathematical cognition, 381

pages 85–107, 2005. 382

[9] Paul Bloom. Generativity within language and other cognitive domains. 1994. 383

[10] Noam Chomsky, Samuel Jay Keyser, et al. Language and problems of knowledge: The Managua 384

lectures, volume 16. MIT press, 1988. 385

[11] P. Gordon. Numerical cognition without words: Evidence from Amazonia. Science, 306(5695):496, 386

2004. 387

[12] Karen Wynn. Children’s acquisition of the number words and the counting system. Cognitive 388

Psychology, 24(2):220–251, 1992. 389

[13] Kathryn Davidson, Kortney Eng, and David Barner. Does learning to count involve a semantic 390

induction? Cognition, 123(1):162–173, 2012. 391

[14] Barbara W Sarnecka, Meghan C Goldman, and Emily B Slusser. How counting leads to children’s 392

first representations of exact, large numbers. Oxford handbook of numerical cognition, pages 291– 393

309, 2015. 394

[15] Susan Carey. Bootstrapping & the origin of concepts. Daedalus, 133(1):59–68, 2004. 395

[16] Susan Carey. The origin of concepts. Oxford University Press, 2009. 396

[17] Elizabeth S Spelke. What makes us smart? core knowledge and natural language. Language in 397

mind: Advances in the study of language and thought, pages 277–311, 2003. 398

[18] Steven T Piantadosi, Joshua B Tenenbaum, and Noah D Goodman. Bootstrapping in a language 399

of thought: A formal model of numerical concept learning. Cognition, 123(2):199–217, 2012. 400

[19] Charles R Gallistel and Rochel Gelman. Preverbal and verbal counting and computation. Cognition, 401

44(1-2):43–74, 1992. 402

[20] Rochel Gelman and Charles R Gallistel. Language and the origin of numerical concepts. Science, 403

306(5695):441–443, 2004. 404

[21] Alan M Leslie, Rochel Gelman, and CR Gallistel. The generative basis of natural number concepts. 405

Trends in cognitive sciences, 12(6):213–218, 2008. 406

[22] Alan M Leslie, CR Gallistel, and Rochel Gelman. Where integers come from. The innate mind: 407

Foundations and the future, 3:109–149, 2007. 408

[23] Brian Butterworth, Robert Reeve, Fiona Reynolds, and Delyth Lloyd. Numerical thought with and 409

without words: Evidence from indigenous australian children. Proceedings of the National Academy 410

of Sciences, 105(35):13179–13184, 2008. 411

[24] Lila Gleitman and Anna Papafragou. New perspectives on language and thought. The Oxford 412

handbook of thinking and reasoning, 2:543–568, 2012. 413

[25] Michael C Frank, Daniel L Everett, Evelina Fedorenko, and Edward Gibson. Number as a cognitive 414
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