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ABSTRACT

High pressure phase equilibria in ternary mixtures consisting of water,
supercritical carbon dioxide and polar organic compounds (acetone, n-
butanol, acetic acid and n-butyric acid) were studied experimentally using
a high pressure optical cell with external recirculation. The main features
of the ternary phase diagrams include the presence of extensive multiphase
(three- and four-phase) equilibrium regions and a dramatic change in
system behavior as pressure was increased above the critical pressure of

carbon dioxide. The observed phase equilibrium behavior can form the
basis for practical separations between a polar organic compound and
water. Selectivities of supercritical carbon dioxide for the organic

compound over water were found to be higher for the less polar solutes.

A correlation technique based on the application of a novel density-
dependent mixing rule for cubic equations of state was used for modelling
the experimental results. The model describes quantitatively many features
of the experimentally observed behavior. In most cases, the model parameters
were obtained from binary data only, thus providing a means for prediction
of the ternary behavior from limited experimental information.

A methodology was developed for the direct determination of phase
equilibria in fluid mixtures from Monte Carlo simulation, based on fundamental
information on intermolecular interactions. The Widom test-particle
expression was used for the evaluation of the chemical potential. The
novel features of the proposed methodology include use of fluctuation
theory to allow one to "observe" the approach of the system to a stability
limit, and the introduction of an interchange algorithm to facilitate the
calculation of properties for highly non-ideal mixtures.

The Monte Carlo simulation methodology was applied for mixtures of
simple, spherically symmetric Lennard-Jones molecules. It was shown that
the interaction energies between unlike molecules are particularly important
in determining the tendency of a system to phase-separate or to form an



azeotrope. Molecular size differences between componerits were found to be
less important. Finally, by choosing potential parameters that reproduce
the critical constants of carbon dioxide and acetone, a simulated phase
diagram was obtained that captures all the essential elements of the phase
equilibrium behavior of the real mixture.

Thesis supervisors: Professor Robert C. Reid
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SUMMARY

0.1. Introduction and research objectives

0.1.1 Motivation

In the recent years, there has been considerable interest in the use
of gases above their critical temperature and pressure (supercritical
fluids) as novel solvents for separations. The main advantage in using
such solvents, relative to conventional liquid extraction or distillation,
is the ease of recovery of the dissolved material by pressure or temperature
changes. Numerous studies of the solubilities of pure solids in supercritical
solvents have appeared in the literature (Paulaitis et al., 1983), but
there are relatively few studies for multicomponent solid mixtures. Phase
equilibria in binary fluid systems, especially for hydrocarbons, have also
been extensively studied. However, experimental results are not readily
available for multicomponent systems that contain highly polar components

(such as water) and a supercritical fluid.

A potentially important new area for the application of separation
techniques using supercritical solvents is the recovery of organic compounds
from dilute aqueous solutions. Such mixtures commonly arise as products
of biochemical processes, and are often difficult to separate. This challenge
provided the primary motivation for the experimental part of this work, in
which we studied the phase behavior of low molecular weight polar organic
compounds, such as alcohols and carboxylic acids, in ternary mixtures with

water and supercritical carbon dioxide.

To realize the full potential of any separation process, accurate

values are needed for the physical properties of the mixtures to be separated



over a wide range of conditlons. The most common way to extend the
experimental data outside the immediate range for which they were obtained
is to extrapolate using semiempirical models, with adjustable parameters
obtained from data regression. Substantial effort and activity has thus
been centered on the development of new correlation techniques that can be

used for polar, asymmestric mixtures at high pressures.

An alternative to semiempirical methods is the use of models with a firm
theoretical basis that can extrapclate from limited experimental information
and accurately predict the behavior of systems for which no data exist.
Two sets of difficulties prevent such predictions of macroscopic properties
of pure substances and mixtures frow first principles: (i) the energies of
interaction (repulsion and attraction) between molecules are rarely known
quantitatively and (ii) the problem of utilizing knowledge about the
molecular interactions to calculate properties of large collections of
molecules is very difficult to solve. For the first problem, we now
believe that the interaction energies are direct manifestations of the
electromagnetic interactions between elementary charges but, until now, we
have only a few a priori calculated potentials for simple atoms and molecules
(Maitland et al., 1981). Addressing the second problem is one of the main

objectives of this work.

A powerful approach for the investigation of the properties of fluids
and fluid mixtures based on fundamental knowledge about the intermolecular
interactions is direct computer simulation. Molecular dynamics (Alder and
Wainwright, 1959) or Monte Carlo simulation methods (Metropolis et al.,
1953) can, in principle, be used to obtain the thermodynamic properties of
fluids. There have been, however, few studies that attempt to calculate
phase equilibrium properties of mixtures, despite recent significant
advances in the methods available for the evaluation of the chemical

potential (Shing and Gubbins, 1983a).

The integratior of the various approaches for the determimation of
physical properties and phase equilibria is schematically summarized in
Figure 1.2 (page 59). Experimental methods play a central role by providing
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data for the development of new separation techniques and for testing of
models, theories and simulation results. Correlation methods draw on
experiment for the determination of the model parameters, but they can be
used to enhance the usefulness of experimental data and provide input for
detailed process modelling and optimization. Computer simulation can be
used both for the prediction of properties of real mixtures and for the
testing of theoretical models by generating exact results for model systems.
Finally, theoretical models are developed with input from both experiment

and computer simulation.

0.1.2 Problem definition

The general area of interest of this work is the investigation of
phase equilibria in fluid mixtures at high pressures. The term high
pressure is used relative to the gas-liquid critical pressure of the
components of a system. This would imply that pressures from above atmospheric
to a few hundred bar are considered. We approached the problem from two
directions, namely (i) from an experimental and correlation point of view
and (ii) in terms of a purely predictive molecular simulation technique.
The two approaches are complementary: experiment and correlation provide
information directly usable for the development of practical separations
and data for the testing of theoretical models; the parallel investigation
of direct computer simulation techniques for determining phase equilibria
in dense fluid mixtures may eventually extend the range of confidence of

limited experimental information.

Our basic goals were as follows:

Experimental and correlation: The primary objective in this area was
to evaluate the potential of high-pressure separations using supercritical
solvents for the recovery of polar organic materials from aqueous solutions.

The specific aspects of the problem that we addressed are summarized below:

20
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a. We attempted to obtain a general picture of the relevant phase equilibria
in ternary systems with a polar organic compound, water and a supercritical
fluid. We selected to use carbon dioxide as the supercritical fluid
and acetone, n-butanol, acetic acid and n-butyric acid as model polar
organic compounds. Possible trends with different functional groups

and molecular weight of the compounds were of interest.

b. We developed new correlation techniques, based on the use of density-
dependent mixing rules for cubic equations of state, to represent the

relevant phase equilibria.

c. Finally, the implications for the development of new separation processes
were determined, based on the experimentally observed phase equilibrium

behavior and the correlation results.

Molecular simulation: The basic objective in this area was the prediction
of phase equilibrium behavior of demse fluid mixtures with assumed inter-

molecular interactions. Specifically:

a. We investigated techniques to predict the phase diagrams for nonideal
fluid mixtures. The Lennard-Jones potential was employed to represent
the interactions between like and unlike molecules. The Widom (1963)
test particle method was used for the calculation of the chemical
potential, augmented by two novel techniques: the use of fluctuation
theory for the determination of stability limits and a particle
interchange technique that facilitated the calculation of the properties

of highly asymmetric systems.

b. We investigated the effect of primary microscopic parar :.t- .ze and
attractive well depth) on the macroscopic phase equi . behavior

and the local structure of a fluid.

c. Finally, we compared some of the results from direct molecular simulation

to available experimental information.



0.2. Experimental and correlation

0.2.1 Background

Previous studies in the phase equilibrium behavior of fluid mixtures
at high pressures have illustrated a wide range of possible phase diagrams
for binary (Scott and van Konynenburg, 1970) and termary systems (Elgin
and Weinstock, 1959) that can serve as a guide to the selection of systems

and conditions for separatioms.

Experimental studies for ternary systems with water, a polar organic
compound and a supercritical fluid are relatively scarce. Todd (1952) and
Snedeker (1956) investigated equilibria with carbon dioxide and ethylene
in binary and ternmary systems with liquid organic compounds. Francis
(1954) presented a large number of ternary diagrams of near-critical
(liquid) carbon dioxide. Elgin and Weinstock (1959) were the first to
observe the "salting out" effect of a supercritical fluid on aqueous
solutions of organic compounds. In the more recent years, Paulaitis et
al. (1981), McHugh et al. (1981) and Gilbert and Paulaitis (1986) investigated
phase equilibria relevant to the recovery of ethanol from water using a
supercritical fluid. Radosz (1984) and Paulaitis et al. (1984) have
determined phase equilibria for the system isopropanol - water - carbon
dioxide. The results from these investigations suggest that supercritical
solvents may possibly be used for the recovery of ethanol from aqueous
solutions, but the distribution coefficients are low. Distribution
coefficients for isopropanol are higher. No systematic study of the
effect of changing the carbon chain length within a homologous series of
compounds or comparisons for components with different functional groups

has been reported.

The most successful approach to date for modelling high pressure phase
equilibria has been the equation of state approach, in which the volumetric
properties of a mixture are described by a pressure explicit expression.

An important group is cubic equations of state (van der Waals, 1873;
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Redlich and Kwong, 1949; Peng and Robinson, 1976). Some of the attractive
features of this type of equations are their analyticity (because of their
cubic form) and the small number of adjustable parameters. Their limitations

anc. drawbacks stem primarily from their empirical character.

In the recent years, several attempts have been made to improve the
performance of cubic equations of state, especially for highly nonideal
mixtures. The basic factor determining the behavior of the equations is
the mixing rules used. The quadratic mixing rules normally used are
theoretically correct at low densities (Hirschfelder et al., 1954), but
are not appropriate for asymmetric mixtures at high densities. An important
trend in the efforts to model nonideal mixtures has b.een the use of density-
dependent mixing rules that preserve the quadratic form at low densities
but substitute a higher-order dependence at high densities. Examples of
this approach are the works by Whiting and Prausnitz (1982) and Mathias
and Copeman (1983). Simple equations of state with higher-order mixing
rules appear to be successful in representing phase equilibria in asymmetric
mixtures. This approach is the focus of the effort to develop new correlation

methods for the data obtained in this work.

0.2.2 Development of new correlation techniques

Pure component parameter evaluation

Before using an equation of state, a method must be devised to obtain
pure component parameters that give a reasonable representation of the
pure component thermodynamic properties. The conventional approach (e.g.,
Peng and Robinson, 1976), using the critical point parameters, suffers
from increasing inaccuracy away from the critical point. We have developed
a new generalized technique (Panagiotopoulos and Kumar, 1985), based on
dimensional analysis of two-parameter equations of state, that enables the
direct calculation of pure component parameters that exactly reproduce
vapor pressure and liquid volume of a pure component at a given temperature.

We have utilized this technique for the determination of the pure component
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parameters for all subcritical components of interest. For the supercritical

components, however, the conventional critical-point correlations were used.

Higher order mixing rules for cubic equations of state

For the representation of the experimental information we selected the
Peng-Robinson cubic equation of state as the starting point. This equation

is a special case of the general cubic equation of state given by Eq. 2.7.

RT a,
P = - 5 7 (0.1]
V-b V™ + 2Vb, - bm

The mixture parameters a; and b, are related to the pure component
parameters and the mixture composition through a mixing rule. Eqs. 2.8 and
2.9 show a common choice for the mixing rules, the van der Waals 1-fluid mixing

rule that we also use:

4y = ZZ X Xy ay; (2.8]
1]

b, = X X, b, : [2.9]
i .

The conventional combining rule for the interaction parameter ay,
a;; = Ja a (1-k, 4) (2.10]

does not reproduce well the properties of highly polar and asymmetric
systems. To improve the representation of the phase equilibrium behavior
of such systems, we introduced a modification of the mixing rules that
involves an additional parameter to be regressed from experimental data.

The form of the new combining rule is given below:
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b

m
a,, = Jaya; (l-k;,) +E (XA 3+ Ky Ayy) [3.6]

where A, = - Ay, is one additional parameter per binary system.

Eq. 3.6 results in a density dependent mixing rule: at low, gas-like
densities (V - «), the theoretically correct quadratic dependence of the
mixture second virial coefficient on mixture composition is recovered,
whereas at high densities a higher-order dependence necessary for the

representation of the properties of asymmetric mixtures is introduced.

The physical significance of the original interaction parameter in Eq.
2.10, k,,,

unlike-pair attractive interactions. The physical basis of the proposed

is that it provides corrections to the geometric-mean rule for

higher order dependence at high densities in Eq. 3.6 lies in the concept of
local compositions: in non-ideal systems, the local environment around
molecules of different types deviates from the global (average) composition.
The interaction parameter ),; provides additional corrections to the
geometric-mean rule that are due to differences in the local environment
around each molecule. The corrections are assumed linear in the mole

fractions of the two interacting components.

An example of the representation of the properties of highly non-ideal
mixtures using Eq. 3.6 with Eqs. 0.1, 2.8 and 2.9, is given in Figure 3.6
for the binary system ethanol - water at four temperatures. As can be
seen, a good description of the phase diagram of this system is obtained,
including the location of the azeotrope. Representation of the properties
of non-ideal 1liquid mixtures has, until now, only been possible using
activity coefficient models. The equation of state approach has the
advantage of being capable of providing a unified description of both the

high- and low- pressure regions.

We have used this model (Eq. 3.6 with Eq. 0.1, 2.8 and 2.9) to represent

the experimental results for all ternary systems studied.
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Figure 3.6 Phase equilibrium behavior for the system ethanol - water
Data are from Pemberton and Mash (1978): (O) 303 K;

at 303 - 363 K.
(a) 363 K. Lines are calculated using the

(+) 323 K; (0) 343 K;
density-dependent model (Eq. 3.6).
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0.2.3 Summary of experimental and correlation results

Equipment and procedures

The experimental set-up used is shown in Figure 4.1. The basic element
of the equipment was a high-pressure cell equipped with windows that
enabled visual observation of all phases present. Direct chromatographic
sampling with high-pressure switching valves was utilized for the determination
of the composition of the phases, and a vibrating tube density meter was

used for density measurements.
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Figure 4.1 Schematic diagram of the equipment.
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Acetone - water - carbon dioxide

The experimental results for this ternary system at 333 K are shown in
Figure 4.3 for a series of pressures from 20 to 150 bar. The phase behavior
for this system illustrates several of the general characteristics of the
behavior of ternary systems with water and a supercritical fluids:

a. At low pressures, the phase diagram represents equilibrium between
a liquid mixture of water and acetone with a carbon dioxide phase
that contains small dissolved quantities of acetone and water. The
solubility of CO, in water is small, but significant quantities of
CO, dissolve in an acetone-rich liquid.

b. As pressure is increased, the presence of dissolved carbon dioxide
results in a liquid-liquid phase split 5etweeﬁ acetone and water
("salting out with a gas"), and a three-phase region appears.
This happens at pressures significantly lower than the carbon
dioxide critical pressure (7.4 MPa).

c. At even higher pressures, the immiscibility gap between carbon dioxide
and acetone narrows and eventually disappears at approximately
10.0 MPa. The three-phase equilibrium region also narrows and
disappears at approximately the same pressure.

d. At high pressures, the phase diagram represents equilibrium between
two phases, a phase rich in carbon dioxide that has dissolved substantial
quantities of acetone and lesser amounts of water, and an aqueous
phase with small quantities of acetone or carbon dioxide.

The results from the density-dependent model (Eq 3.6) are shown on the
same figure. The interaction parameters were derived solely from binary
data. As can be seen, the model represents the experimental behavior

quite closely, including the evolution of the three-phase regionwith pressure.

n-Butanol - water - carbon dioxide

The experimentally observed behavior at 333 K is shown in Figure 4.8
(Panagiotopoulos and Reid, 1986b). The general pattern of behavior has
similarities with the acetone system, but in this case, n-butanol and
water are immiscible at all pressures studied. This results in a three-
phase region that extends down to atmospheric pressure even in the absence

of carbon dioxide.
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Figure 4.8 Phase equilibrium behavior for the system watex - n-butanol-

carbon dioxide at 333 K. Symbols are as in Figure 4.3.



— a slightly different pressure (7.86 MPu, as compared to the experimental

A unique characteristic of this system is the presence of a four phase
LLLG equilibrium region at 313 K. The evolution of the phase behavior with
pressure at the vicinity of the four-phase equilibrium point is shown in
Figure 4.10, both from the experimental measurements and the predictions from
the density-dependent model (Eq 3.6). As can be seen, the model correctly

predicts the presence of a four-phase equilibrium region at 313 K, but at
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value of 8.25 MPa). The predicted phase compositions differ from the
measured ones, especially for the (less dense) phases rich in CO,. It is
important to note, however, that no information about the four-phase
equilibrium region was incorporated into the model parameters.

The very presence of a four-phase equilibrium region implies the
existence of more than one three-phase region in the immediate vicinity of
t! ~ four-phase point (a point of fixed pressure at constant temperature,
according to the phase rule). The evolution of two three-phase regions
into a four-phase region and then again into two different three-phase
regions, was originally proposed by Gibbs in 1876, based solely on
thermodynamic arguments (no data were available). Figure 4.11 presents
schematic three-dimensional diagrams of the topology of Gibbs space at the
vicinity of the four-phase equilibrium point, for pressure slightly above
and below the four-phase equilibrium pressure at constant temperature.
The appearance of four equilibrium phases is necessarily related to the
presence of four distinct local minima in the Gibbs energy space (the
negative Gibbs energy is plotted in Figure 4.11). At exactly the four-phase

equilibrium point, all four peaks must be coplanar.

Carboxylic acids - water - carbon dioxide

The phase equilibrium behavior for acetic acid and n-butyric acid in
ternary systems with water and carbon dioxide was determined in this work.
In addition, Willson (1987) studied the phase equilibrium behavior for
propionlc acid using the same equipment and experimental procedures. A
comparison of the behavior of the three acid systems at T = 313 K and P ~
15.0 MPa is given in Figure 4.15. The slope of the tie-lines, and therefore
the distribution coefficient of the organic acid between the supercritical
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Figure 4.10 Phase diagrams at the vicinity of the four-phase equilibrium
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Figure 4.11 Schematic diagram of the topology of Gibbs space at the

vicinity of a four-phase equilibrium point.
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fluid and aqueous phases changes gradually from less than 1 (the acid prefers
the aqueous phase) for acetic acid, to greater than 1l (the acid preferentially
distributes itself to the supercritical phase) for n-butyric acid. In
addition, the extent of the two-phase envelope (in a mole fraction basis)
is less the higher the chain length of the acid.

Acetic acid

313.1 K
13.0 MPa

—
"

313.1 K
15.0 MPa

—
1

Figure 4.15 Comparison of the ternary phase equilibrium behavior at
313 K and 150 bar for acetic, propionic and n-butyric acids. Data for

propionic acid are from Willson (1987).
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Overview of experimental results

A summary of the experimentally observed behavior for the ternary systems
measured is given in Table 0.1. The table also provides information for the

three- and four-phase equilibrium regions we determined.

Table 0.1 Summary of experimental results

Ternary T Range? 3 Phase? 4 Phase® class*
system K MPa MPa MPa
acetone - water 313 1.0-26.3 2.9-8.0 - 2
- carbon dioxide 333 0.9-16.5 3.9-9.3 - 2
n-butanol - water 313 0.3-26.5 all 8.25 3
- carbon dioxide 333 r.1-20.0 all - 3
acetic acid - water 313 1.9-15.0 7.7-8.2 - 2
- carbon dioxide 333 1.9-20.0 10.2 - 2
n-butyric acid - water 313 1.9-20.0 4.0-8.0 - 2

carbon dioxide

! Pressure range of experimental measurements.

2 Range of pressures over which three-phase equilibria were observed.
Since no attempt was made to locate the critical end points, this would
represent the minimum pressure range for three-phase coexistence.

3 Measured four-phase coexistence pressure.

% Classification according to Elgin and Weinstock (1959).

0.2.4 Process implications

The phase equilibrium behavior observed for several organic compounds,
can form the basis for recovery of a solute from a dilute aqueous solution.
Such a process would operate between a high pressure, where the dissolving
power of the supercritical fluid is high, and a low pressure where near-
complete precipitation of the dissolved material would occur.

To illustrate the extent of separation possible using such a process,
we present in Figure 4.6 a plot of the concentration of acetone in the
supercritical phase as a function of the concentration of acetone in the
liquid phase for a single step extraction with supercritical carbon dioxide

at 150 bar and 333 K. Both concentrations are given as weight percent on
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Figure 4.6 Concentration of acetone in the supercritical fluid phase
as a function of the concentration of acetone in the liquid phase at
150 bar. Concentration is given in % w/w on a CO,-free basis. Q)
experimental, 333 K; (—) predicted (Eq 3.6), 333 K and 313 K.

a solvent-free basis. The physical significance of this representation is
that after precipitation and complete removal of the solvent, the purity
of the product acetone can be determined from the graph for any inlet
stream composition. As can be seen, the curve has a broad maximum between
3% and 10% w/w concentration of acetone in the aqueous phase. The maximum
possible purity of acetone is close to 95% w/w.

For a compound such as acetic acid, that has a low distribution coefficient
between the supercritical and aqueous phase, the maximum possible purity
after a single step extraction is again close to 95% w/w, but this is only
possible with an inlet concentration of acid close to 65 % w/w and a high
solvent to feed ratio. This implies that the selectivity of the solvent for
acetic acid over water is still high, but the affinity of the acid for the
highly polar aqueous versus the less polar supercritical enviromment is

much lower.
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0.3. Monte Carlo simulation

0.3.1 Methods

Metropolis importance sampling technique

The determination of the properties of a thermodynamic system using
direct computer simulation originated in the 1950's, when the first electronic
computing devices became available. The Metropolis (1953) Monte Carlo
technique is based on the generation of a long sequence of configurations
of a system. In its simplest form, the basic step is a random perturbation
of a configuration x,, to generate a trial configuration x,,. The new
configuration is accepted (becomes part of the sequence of configuraticns)
or rejected (in which case the old configuration is counted once more),

based on the following acceptance criterion:

1 if AH <0

Probability of transition (x, -+ x,,) = [ [5.5]
e 2M/%T 5¢ A > 0

where AH = H,,- H, , the difference in energy between the old and new

configurations. No constraint is placed upon the particular method used to
generate configuration x,” from configuration x,, other than the requirement
of not biasing the Markov chain by favoring some particular types of
configurations. The basic step is repeated using the generated configuration
as the new starting point, and a large number of steps (~10° in this
study) are executed and used to calculate the ensemble average properties
of the system.

The rnumber of molecules of a system that can be investigated, even
with the largest available computers, is limited to a few hundred or a few
thousand, whereas our primary interest is in the calculation of properties
of a macroscopic fluid, with 0(10%2%) molecules. One way to overcome this
difficulty is the use of spatially periodic boundary conditions: the basic

simulation cell is embedded in an infinite medium consisting of periodic



images of itself. This alleviates surface effects that would be dominant
is an isolated cell but imposes an artificial periodicity not found in a
true macroscopic system. The effect of the periodic boundary conditions
on the calculated properties of the fluid is small, except near a critical
point or phase stability limit.

In Figure 6.1 (Panagiotopoulos et al., 1986), we give an example of the
calculated properties of the pure Lennard-Jones fluid at a subcritical and
a supercritical temperature (the critical temperature of the Lennard-Jones
fluid in the reduced units used is T, =1.30). As can be seen, the agreement
between results from previous investigators and our calculated results is

excellent, thus demonstrating the validity of our simulation procedures.
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Figure 6.1 Pressure-density relationship for the pure Lennard-Jones (6,12)
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(1976) ; (%) Adams (1979); (¢) Yao et al. (1982); (—) Equation of
state, Nicolas et al. (1979).



Fluctuation theory and its applications

A canonical ensemble Monte Carlo simulation can directly provide
information on the observable thermodynamic properties (e.g energy or
pressure) for a homogeneous fluid. Our primary interest is, however, the
determination of phase boundaries. Inside a phase separation region where
a macroscopic fluid would completely separate into phases of different
composition and density, a simulated system exhibits large local fluctuations
in density and composition but cannot truly phase separate because of the
system periodicity. An instantaneous configuration of the Lennard-Jones
fluid at a set of conditions where a macroscopic fluid would phase-separate

is given in Figure 6.2.

Figure 6.2 Three dimensional representation of one instantaneous

configuration for the pure Lennard-Jones fluid at T*=1.15 and p"=0.20,
with N=108 molecules. The molecules are drawn at a distance equal to
0.80. The same configuration is represented in both halves with the

origin of the coordinate system (indicated by the arrows) rotated by 90°.
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It can be shown using fluctuation theory (Landau and Lifshitz, 1980;
Debenedetti, 1986; Panagiotopoulos and Reid, 1986a) that for a macroscopic
fluid, at the point of phase instability, the fluctuations in local density
would diverge. One method to obtain a quantitative estimate of the magnitude
of the fluctuations is to follow the number of molecules in subcells of
our basic simulation cell (the total number of molecules in the canonical
ensemble we simulate 1s strictly constant). Using this technique, we were
able to obtain qualitative information on the presence and approximate
position of the phase transitions, thus preparing the ground for the
precise determination of the phase coexistence curves by calculation of

the chemical potential.

Determination of the chemical potential

The calculation of the observable thermodynamic properties of a system
from a representative ensemble of configurations 1s relatively straight
forward. This is not so, however, for the derived thermodynamic properties,
such as the entropy and chemical potential. The Widom (1963) test particle
method, provides a means of directly obtaining the chemical potential in a
normal canonical ensemble simulation. The method has been recently extended
(Shing and Gubbins, 1982) and used for the determination of the chemical
potential in fluids (Romano and Singer, 1980; Powles et al., 1982; Shing
and Gubbins, 1983a; Fincham et al., 1986). The essence of the method is
the placement, at random positions in the fluid, of a "test" particle that
does not affect in any way the course of the simulation. The chemical
potential can then be calculated as an ensemble average of the interaction
energies between the test particle and the rest of the fluid:

Bp; . = — An <exp(-puf)> [5.7]

A corresponding expression can be written (Shing and Gubbins, 1982)
for the calculation of the chemical potential using the properties of a

"real" particle that normally takes part in the simulation:

ﬂpi.r = In <exp(+pu})> [5.9]
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A combination of both expressions provides the means of more accurately
calculating the chemical potential and testing the validity of a simulation

run in terms of coverage of the relevant regions of configuration space:

£, (u)

in = pu - Bu . [5.12]

g, (u)

where £, (u) and g, (u) are the test- and real-particle distribution functions,
that describe the frequency of occurrence of a given interaction energy
during the simulation. An example of the application of this method is
given in Figure 6.6, in which the right-hand side of Eq. 5.12 is plotted versus

the dimensionless energy, u" for the pure Lennard-Jones fluid.
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Figure 6.6. The function In[f(u*)/g(u*)] vs. the energy u* for the pure
Lennard-Jones fluid at p* = 0.60. The line has slope exactly equal to
p=1/k,T and intercept fitted to the points; (%) T"=0.93; (Q) T*=1.56.



the Lennard-Jones fluid. Figure 6.4 presents the results for the test-particle
energy-distribution function for the pure Lennard-Jones fluid at T"=1.56.
Figure 6.5 presents the corresponding results for the real-particle
distribution function. Comparable results, but at a lower reduced temperature,

have been presented by Powles et al. (1982).

Let us examine the energy-distribution functions and their behavior for

made:

a.

At low densities, both real- and test-particle energy-distribution
functions show a sharp peak at u" = 0, corresponding to an isolated
molecule. A peak is also observed at a value of u' = — 1, corre-
sponding to a pair of interacting molecules. The distribution
functions drop off rapidly for positive and negative values of u",

since interactions in the low density gas are uncommon.

As density 1is increased, the maximum value of the test-particle
distribution function decreases significantly, the peak becomes
less sharp and shifts towards lower energy values. This is explained
by the fact that the probability of accommodating a test particle
in a "hole" of suitable size, without overlap with any of the real
particles, becomes smaller as the density increases. On the other
hand, in any such configuration, the test particle is likely to be
surrounded by several real particles, thus interacting with a

large negative energy.

The real-particle distribution functions show similar trends
towards less sharp peaks and lower energies as density increases,
but the value of the distribution function at the maximum (and
thus the relztive probability of occurrence of favorable energy
configurations) remains constant. In a macroscopic fluid, or
during a simulation, a real molecule is not likely to find itself

in a configuration of high positive energy.

Several observations can be

41
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Figure 6.4 Test-particle energy-distribution functions for the pure

Lennard-Jones fluid at T*=1.56 for a series of reduced densities.
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Figure 6.5 Real-particle energy-distribution functions for the pure

Lennard-Jones fluid at T"=1.56 for a series of reduced densities.
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0.3.2 Determination of mixture phase diagrams

The study of the influénce of the mixture parameters on the phase
equilibrium behavicr was performed in a series of model systems, usiag the
Lennard-Jones (6,12) potential to describe the interactions between like and
unlike molecules. The intermolecular potential parameters used for the
three mixtures studied is given in Table 5.1. The analysis of the behavior

of the mixtures follows.

Table 5.1 Lennard-Jones (6,12) potential parameters for the mixtures studied

Mixture €1, €1, €32 o1, 0, 05, ™
I 1 0.75 1 1 1 1 1.15
II 1 1 1 1 0.885 0.769 1.15
III 1 0.773 0.597 1 0.854 0.768 0.93-1.19
Mixture T An interesting class of mixtures is one in which the

components have similar sizes, hut interact with specific forces that lead
to unlike-pair energy interactions different from like-pair interactions.
To investigate the effect of changing unlike-pair interactions, we calculated
the properties of a mixture of molecules with unlike-pair parameters equal
to 75% of the like-pair parameters. The molecules in their pure state are
completely identical, so the mixture is symmetric. Because the unlike-
pair interactions are less faverable than the like-pair interactions, we
.expect the mixture to show positive deviations from Raoult’s law and,
since the pure components have the same vapor pressures, positive azeotropy
is suggested. .

Figure 6.16 presents the calculated phase diagram for this mixture at
™ = 1.15. As expected, there is an azeotrope at equimolar composition.
In addition, a liquid-liquid phase split at higher pressures is suggested
by the dashed curve at the high-pressure range.

A set of energy distribution functions for this mixture at T" = 1.15,
p* = 0.50, is shown in Figure 6.15. The functions f(u*)exp(-pu) and
g(u")exp(+Bu) are plotted rather than f(u') and g(u"), because the chemical
potential of the corresponding species can be directly obtained from the

integral under the curves. The peak of the functions as plotted in Figure
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Figure 6.16 Phase-coexistence curves for mixture I at T = 1.15. (w)
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lines are drawn through the points for visual clarity. The solid

lines at the points indicate estimated errors for the pressure and

concentration.

6.15 correspond to the interaction energy contributing most to the chemical
potential of a component. At low concentrations of component 1, the peaks
of the test and real particle energy distri'wtion functions are shifted to
positive values relative to component 2. This is a direct consequence of

the unfavorable unlike-pair interactions.
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Figure 6.15. Test- and real-particle energy-distribution functions for
mixture I at T*=1.15, p*=~ 0.500. (—) component 1; (---) component 2.

The parameter on the curves is the mole fraction of component 1, X,.



Mixture II, The case of mixtures of molecules of unequal sizes but
similar potential well depths is not very common for real fluids since
increasing size of a molecule usually results in a larger effective e.
Exceptions are fluorocarbon molecules that have low attractive well parameters.
The ratio of volumes of the two components chosen for mixture II is equal
to (o,,/0,, )3 = 0.45, so the two components have a significant size disparity.
The unlike size parameter, og,,, is taken as the average of the pure-component
size parameters (Lorenz rule).

Figure 6.19 summarizes the phase coexistence properties of this mixture.
Despite the large size difference, the phase behavior of the mixture is
close to ideal. The calculation of the mixture phase diagram from Monte
Carlo simulation was still possible, despite this relatively narrow coexistence

region.
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Figure 6.19 Phase-coexistence curve for mixture II at T'~1.15. For

an explanation of the symbols used, see legend of Figure 6.16.
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Mixture ITI, As a test of the case where both size and energy interaction
parameters are different, and also to test the ability of the simulation to
reproduce phase diagrams of real mixtures, we performed a series of simulations
for a mixture that is a simple model of a real asymmetric system, namely
the acetone-carbon dioxide system at temperatures above the critical
temperature of carbon dioxide. There is significant practical interest in
the properties of mixtures of a supercritical fluid and a component of
lower volatility. To obtain the potential parameters, we fitted the
critical temperature and critical volume of the corresponding components
using values from Reid et al. (1977). The Lorenz-Berthelot rules were
used for the unlike-pair parameters (arithmetic mean of the pure component
parameters for o,, and geometric mean for ¢,,).

The calculated phase diagram for this mixture at T" = 0.928 (T = 350 K)
is shown in Figure 6.26a, together with experimental data for the mixture
carbon dioxide-acetone at three temperatures in Figure 6.26b. Only results
from the cubic equation of state are available for the properties at
350 K. The mixture critical pressure is lower than the experimental value
(P

experimental data) and the solubility of acetone in the supercritical

er = 91 bar from Monte Carlo; P . = 115 bar from the extrapolation of the
phase is higher than what is experimentally observed, but the general
shape of the coexistence curve is well reproduced. This agreement is all
the more significant since this is a completely a priori prediction of the
properties of the mixture with no adjustment of the potential parameters.
The good representation of the properties of this mixture using the Lennard-
Jones potential with no polar or quadrupolar interactions that are present
in real acetone and carbon dioxide suggest that the properties of the
mixture are primarily influenced by the difference in size and energy
parameters and not by the detailed shape or multipolar moments of the
molecules. The ability to obtaindirect information on the factors responsible
for a given type of macroscopic behavior is a distinct advantage of molecular
simulation methods.

An important parameter characterizing fluid mixtures 1is the shape and
location of the mixture critical curve. Close to critical points, the accurate

calculation of properties of fluids from molecular simulation is impossible
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because of the very large correlation lengths. We can, nevertheless, obtain

the approximate location of the critical point (in the classical mean-field
approximation for distances larger than the cut-off distance) by determining
the point beyond which no solution to the two-phase equilibrium problem
can be found. We performed a series of simulations for mixture III to
obtain the mixture critical curve at several temperatures. Figure 6.27
presents the results of these calculations (no experimental data are
available). The mixture critical curve is continuous from the critical
point of one to the critical point of the other component; therefore, this
is a type I mixture according to the classification by Scott and van

Konynenburg (1970).
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Figure 6.27 Mixture critical curve for mixture III from Monte Carlo
simulation. (---) pure component vapor pressures; (0O) calculated

mixture critical points; (—) interpolated mixture critical line.



0.4. Conclusions and significance

Experimental and correlation

The experimental data obtained in this work demonstrate the basic
characteristics of phase equilibrium behavior in ternary systems with
water, a polar organic compound and a supercritical fluid. It was shown
that a drastic change in phase equilibrium behavior occurs as pressure is
increased above the supercritical component critical pressure. This
change in behavior can be exploited for developing methods for separation

of polar organic compounds from water.

A common feature of the phase equilibrium behavior in the systems
studied is the presence of multiphase equilibrium regions. Three-phase
equilibrium regions occur over a range of pressures comparable to the
critical pressures of the supercritical fluid - organic compound binaries.
The presence of a three-phase region at relatively low pressures is associated
with a high selectivity of the supercritical fluid for organic compound over
water. Equilibria between four fluid phases were observed for one of the
systems studied (n-butanol - water - carbon dioxide). This type of multiphase

equilibria has rarely been reported in the past.

A summary of the'phase equiiibrium results and their possible implications

for the development of new separation methods is given below:

a. Organic compounds of moderate polarity can be extracted from dilute
aqueous mixtures with high selectivity and favorable solvent capacities.
For example, single-step extraction of a 4% w/w aqueous solution of acetone
with carbon dioxide at 333 K and 15 MPa results in approximately

93% w/w acetone in the solvent phase (on a solvent-free basis).

b. Organic compounds, such as acetic acid, that strongly associate with water
can still be selectively extracted, but the distribution coefficients

between the solvent and the aqueous phase are significantly less than 1.
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c. Increasing the hydrocarbon chain length in a homologous series of
polar organic ccmpounds results in improved separation efficiency, at

least for the lower molecular weight compounds.

The development of new methods for recovery of fermentation products
from aqueous solutions using supercritical fluids needs to take into
account both the solvent ability to extract sele;:tively the desired compound,
and, in the case of in_situ extraction, the solvent effect on the growing
microorganisms. The results from this study suggest that the type of
compounds best suited for consideration in supercritical fluid recovery
processes would be low to moderately polar compounds of relatively low

molecular weight.

A new density-dependent mixing rule for cubic equations of state was
developed for modelling the experimental results. The model, in conjunction
with a novel technique to obtain pure component parameters for equations
of state, can quantitatively reproduce phase equilibrium data for highly
non-ideal systems at both low and high pressures. Ternary data were
predicted with parameters determined from binary data only. The methods
developed can thus be used for the extension of limited experimental

information and can greatly facilitate process design and optimization.

Monte Carlo simulation

The Monte Carlo simulation technique provides a direct means for predicting
the macroscopic behavior of fluids and fluid mixtures when the intermolecular
interactions are known. Phase envelopes, solubilities and mixture critical
curves can be obtained with sufficient accuracy to permit practical use of
the results. Since no empirical approximations are involved, this is a
method for a priori calculation of the properties of mixtures. The technique
is only limited by the lack of knowledge for the intermolecular potentials
acting between real fluids, but it can still be used to elucidate the
effect of the primary molecular parameters (size, shape, specific forces)

on the macroscopic behavior of mixtures. Direct molecular simulation also
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provides detailed information at the molecular level that cannot be obtained

in any other way.

The Widom test particle expression provides a direct means for the
calculation of the chemical potential from simulation. The method has
limitations at high densities, but is adequate for fluids over a wide
range of densities of practical importance. The energy distribution
functions obtained with this approach provide useful information on the

microscopic structure and energetic interactions in fluid mixtures.

Two specialized techniques developed in this work can facilitate the
calculation of thermodynami¢ properties of non-ideal fluid mixtures. “The
first is based on the observation of microscopic fluctuations and enables
a qualitative determination of the presence or absence of a phase transition.
The second involves a particle interchange step that enables a faster and
more accurate calculation of the properties of mixtures with dissimilar

components.

Calculated phase diagrams for a range of mixtures using simple Lennard-
Jones potential energy functions show significant variety, including
azeotropes and liquid-liquid immiscibilities. Simulation of a model
system of the mixture acetone-carbon dioxide demonstrates that a simple
potential gives a good representation of the phase equilibrium behavior of

this non-ideal mixture.
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CHAPTER 1
INTRODUCTION

1.1 High pressure separations

The successful development and operation of manufacturing processes in
the chemical and related industries is often determined by the ability to
separate and recover desired products from a mixture. Conventional physical
separations, such as distillation, have served successfully the needs of
the petrochemical and oil industries, but appear to be less well suited
for important new areas such as the field of biotechnology. Novel separation
techniques that operate with non-traditional materials or conditions need
to be explored and developed. One such new technique is the use of fluids
near their critical point as solvents: the method has become known as

supercritical fluid extraction.

The use of supercritical fluids has received wide attention in the
recent years, and commercial applications have been proposed in such
diverse areas as extraction of natural products and coal liquids, enhanced
0il recovery, and supercritical fluid chromatography. For the successful
development of such processes, an understanding of phase equilibria at
high pressures must be achieved. 1In the past, only systems not involving
highly polar or very dissimilar compounds, at conditions far removed from
critical have been extensively studied. For such systems (e.g. hydrocarbon
mixtures), reliable, although primarily empirical correlations have been
developed. To the contrary, for systems such as those commonly encountered
in supercritical fluid extraction, both reliable data as well as an adequate
theoretical framework seem to be lacking. Because of this, the rational
design of processes is difficult. The advantages associated with the use

of supercritical fluids as solvents can be summarized as follows:



High energy efficiency: The density of a supercritical fluid is the
primary variable influencing its solvent power. The recovery of
solute can often be achieved with relatively small changes in pressure
or temperature, since close to the critical point, a small change in either
of these conditions has a significant effect on the solvent density
and its solvent power. In Figure 1.1, this strong effect of both
temperature and pressure on the density of carbon dioxide near the

critical point is illustrated.
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Figure 1.1 Reduced density versus reduced pressure for carbon dioxide
at the vicinity of the critical point (CP) for several isotherms (from
Paulaitis et al., 1983).
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— Use of readily available and environmentally acceptable materials,
such as €O, or light hydrocarbon gases. Other solvents, such as
fluorocarbons, could also be used. They offer the advantage of lower
operating pressures, althdugh they are more expensive and questionable
from an environmental-impact point of view.

— Highly favorable transport properties of the solvents. A typi:zal
comparison of the properties of a supercritical fluid to those of a
liquid is given in Table 1.1 (Paulaitis et al., 1984). As can be
seen, while having a density close to that of a liquid, supercritical
fluids have viscosity and diffusion coefficients intermediate in value
to those of a liquid and a low-pressure gas. The effective diffusion
coefficients for supercritical fluids can be almost an order of magnitude
higher than the values shown in Table 1.1, due to strong natural
convection effects, as shown by Debenedetti (1984). Both these properties
are desirable, since they lead to enhanced mass transfer characteristics
for high pressure phase extraction processes.

- Supercritical fluids often show higher selectivities for some compounds
than those expected from the compound’'s volatility. This may result

in improved separation efficiencies relative to distillation.

Table 1.1 Order-of-magnitude comparison of the properties of typical
low-density gases, liquids and supercritical fluids

Property Gas Supercritical fluid! Liquid
Density (kg/m?) 1 700 1000
Viscosity (Ns/m?) 10°° 1074 10°3
Self diffusion

coefficient (cm?/s) 101 1074 1073

tAt T =1 and P_=2

A promising potential application of high-pressure extractions is to
recover organic chemicals from aqueous solutions in a more efficient way
than conventional liquid-liquid extraction od distillation. The importance
of this particular application becomes apparent if one considers the role

that biotechnology has assumed in recent years. Biochemical processes
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have provided new opportunities for the synthesis of a wide variety of
chemical products which at present are mostly high-value, small-volume
chemicals such as pharmaceuticals. High-volume, commodity chemicals
traditionally manufactured by direct chemical synthesis can also be made.
Biochemical conversions can utilize cheap, readily available raw materials
such as lignocellulosic biomass or coal- or biomass- derived synthesis
gas, and provide increased selectivity and the possibility of operation
near room temperatures. A general problem, however, especially severe for
the lower value products, may be product recovery from dilute aqueous
solutions, containing cells, salts, and possibly insoluble substrates.
For a chemical such as ethanol, the energy required for distillation of
the product from the aqueous broth, is the limiting factor for the economic
viability of the process. One can also hope-to eiiminate an additional
restraint that often limits the productivity of biotechnological processes,
namely the problem of product inhibition. A high pressure fluid may be
used for the in situ recovery of one or more products from a fermentation

broth.

1.2 Prediction of macroscopic properties

To realize the full potential of any separation process, accurate
information on the physical properties of the mixtures to be separated are
needed. Clearly, the range of process conditions that may be used in
practice, especially for complex mixtures with many degrees of freedom, is
much greater than the amount of direct experimental information that can
be obtained. This is especially true for new separation methods, such as
extraction with dense gases, that operate in a range of conditions where
relatively little experimental information has been obtained in the past.

The most common way to extend the experimental data base outside the
immediate range of conditions for which it was obtained, is to extrapolate
using empirical or semiempirical models, with adjustable parameters obtained
from regression of experimental data. Substantial effort and activity has
been centered on the question of developing new correlation methods that

can be used for polar, asymmetric mixtures at high pressures, but the



problem of obtaining methods that will be successful for a wide range of
conditions outside the data range on which they are based remains open. An
alternative for such methods is the use of models with a firm theoretical
basis that can use very limited experimental information to predict the

behavior of a system over a wide range of process conditions.

Two sets of difficulties prohibit the prediction of macroscopic properties
of pure substances and mixtures from first principles: (i) the energies of
interaction (repulsion and attraction) between molecules are rarely known
quantitatively and (ii) the problem of utilizing knowledge about the
molecular interactions to calculate properties of large collections of
molecules is very difficult to solve. For the first problem, we now
believe that the interaction energies are direct manifestations of the
electrcmagnetic interactions between elementary charges but until now, we
have only a few a_priori calculated potentials for simple atoms and molecules
(Maitland et al., 1981). The second problem is the basic theme of statistical
thermodynamics.

One approach to the estimation of macroscopic properties when the
‘intermolecular interactions are known is primarily analytical. The partition
function or the Helmholtz energy of the system is expanded in a perturbation
series around a fluid of known properties (Barker and Henderson, 1967;
Weeks et al., 1971) or a closure of the integral equations describing the
fluid is attempted (Yvon-Borg-Green hierarchy and Ornstein-Zernike equations).
Detailed discussions of both types of methods are given by Hansen and
McDonald (1976) and Gray and Gubbins (1984). The resulting expressions
have the advantage of being analytical or semi-analytical in nature, but
the theories are not generally applicable to complex or highly non-ideal
mixtures differing substantially from the reference fluids. In the application
of these methods, data are needed for the thermodynamic properties of a wide
variety of mixtures with known intermolecular interactions. Such data are
not normally available for complex fluids.

Another approach uses computer simulation techniques, namely molecular
dynamics (Alder and Wainwright, 1959) or Monte Carlo simulation (Metropolis
et al., 1953) to investigate fluids with specified intermolecular interactions.

In principle, results can be obtained that closely approximate the exact
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properties of a fluid model. The price for the higher flexibility and
accuracy 1is the substantial computational effort associated with these
mcthods, as well as the non-analytical form of the results. The calculations
must be repeated for a wide range of conditions and molecular potential
parametcers to obtain a broad picture of the behavior of different classes
of fluids. These techniques should therefore be regarded as complementing,
rather than replacing, the theoretical methods mentioned above. Incorporation
of results from molecular simulation of well defined mixtures can greatly
facilitate the development of theories of the liquid state. The techniques
can also help to obtain thermodynamic data for mixtures outside the practical

limits for experimentation (high pressures, hazardous mixtures).

The integration of the various approaches for the determination of
physical properties and phase equilibria is schematically summarized in
Figure 1.2. Experimental methods play a central role by providing the
data for the development of new separation methods and for the testing of
models, theories and simulation results. Correlation methods draw on
experimental data for the determination of parameters, but they extend the
usefulness and provide input for detailed process modelling and optimization.
Computer simulation can be used both for the prediction of properties of
real mixtures and for the testing of theoretical models, by generating
exact results for model systems. Finally, theoretical models are developed
with input from both experiment and computer simulation. The distinction
between "correlation" and "theory" is often not as clear-cut as represented
in the schematic diagram, since many successful correlation techniques use
theoretical expressions as their starting point, but make approximations

to render the models more tractable.

1.3 Problem definition

The general area of interest of this work 1is the investigation of
phase equilibria in fluid mixtures at high pressures for systems that have
a potential for development of novel separation methods. The term high

pressure means pressures comparable or greater than the critical pressures
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EXPERIMENT CORRETATION
- determination of phase parameter regression - representation of
equilibria — experimental data
- development of new - process design and
separation processes optimization
A
theory +
potential potential empirical
model model approximations
SIMULATION THEORY
statistical mechanical
- exact results for model theory - basis for development
systems - of models
- testing of theoretical - input from simulation
models and experiment

Figure 1.2 Relationships between the various techniques for the

investigation of phase equilibria.

of the systems in question. In general, this would imply that pressures
from above atmospheric to a few hundred bar are considered. We approached
the problem from two directions, namely (i) from an experimental and
correlation point of view and (ii) in terms of purely predictive molecular
simulation techniques. The two approaches are complementary: the experimental
and correlation parts of the work provide new experimental information for
the range of conditions that may be useful for practical separations and data
for the testing of theoretical models; the parallel investigation of the

applicability of direct computer simulation techniques te the determinacion
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of phase equilibria in dense fluid mixtures may eventually extend the
range of validity of experimental information.

We can identify our basic objectives as follows:

Experimental and correlation: The basic goal in this area is to
obtain experimental information to evaluate the potential of high pressure
separations with supercritical solvents for the recovery of polar organic
materials from aqueous solutions. The specific aspects of the problem

that need to be addressed can be summarized below:

a. What are promising solutes and solvents with potential for efficient
separations?

b. What kind of experimental information is needed to obtain an understanding
of the basic phase equilibrium phenomena for the systems of interest?

c. Can we develop correlation techniques for the relevant experimental

data valid for a wide range of process conditions?

Molecular simulation: The basic goal in this area, is the determination
of the ability to predict the phase equilibrium behavior of dense fluid
mixtures when the intermolecular interactions are known. Specifically, we

are interested in the following questions:

a. Can we predict the phase diagram for mixtures with known intermolecular
interactions?

b. How do microscopic properties (size, attractive well depth, dipole and
quadrupole moment, cross potential parameters) affect the phase behavior?

c. How do the results from direct molecular simulation compare to the

available experimental information?

A detailed presentation of the specific research objectives for the

two parts of this work is given in the first sections of Chapters 2 and 4.




CHAPTER 2
EXPERTMENTAL AND CORRELATION: BACKGROUND

2.1 Research objectives
2.1.1 Systems of interest

The main focus of the proposed research, as stated in Section 1.2, is
on systems that include a supercritical fluid and an aqueous solution of a
low molecular weight organic compound. Phase equilibrium data are needed
to evaluate the potential of supercritical fluid extraction for separations
of products of biochemical syntheses. Moreover, ve need to test theoretical
and semi-empirical models for their applicability in the correlation and
prediction of high-pressure phase behavior in systems that include polar
compountds. The selection of the systems to be investigated, must take

into account both objectives.

The criteria that were used for the selection of the compounds to be

extracted (solutes) were as follows:

— The solutes were required to be representative of a class of organic
compounds. This helps in generalizing the results, as most properties
of organic compounds show a regular change in behavior within a
homologous series;

— It was desirable that the compounds were either primary products of
fermentations, substrates, or undesired by-products that inhibit the
growth of microorganisms.

— The solutes were chosen to have simple chemical structures, so that the
effect of various functional groups on the properties of the mixtures

could be investigated.
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Based on these criteria, the solutes selected, were:

n-Butanol: A product of synthesis by some anaerobic bacteria, one
problem for its production by fermentation is the high toxicity to the
producing microorganisms. Because of this, the maximum product concentration
that can be achieved is only around 1% w/w. n-Butanol is representative
of the higher alcohols, and preliminary evidence (Schultz and Randall, 1970)
suggested that it may be considerably more extractable than ethanol. This
was found indeed to be the case (Section 4.3).

Acetone: Acetone can also be produced by anaerobic fermentation,
usually simultaneously with n-butanol (e.g. from clostridium aceto-
butilicum). The reason this compound was included is that it has a fairly
simple structure, and is representative of ketones, an industrially important
class of organic compounds.

Acetic acid: A study of the effect of the carboxyl group and its
strong acidic character on the phase equilibrium behavior is possible
using this compound. In general, carboxylic acids form an important group
of compounds for which data for the evaluation of supercritical fluid
extractio processes are lacking.

n-Butyric acid: The i_nclﬁsion of this compound in our base set enables
us to form a complete 2 X 2 matrix of alcohols (together with literature
results for ethamnol) and monocarboxyiic, straight-chain organic acids. 1In
this way, both the 2ffect of changing a functional group at a given carbon
number, and the effect of changing chain length, can be evaluated.

For the selection of solvents, a different set of criteria applied. The

most important among them were:

- They should be readily available industrial gases.

- Their critical temperature should be in the temperature region where
common microorganisms show the maximum productivity (approx. 300-330 K).

- Favorable safety characteristics, namely non-flammability and low

toxicity, were desirable.

The most favorable selection, that satisfies all of the above

constraints, is carbon dioxide. This gas was used as the common solvent
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for this work. With a critical temperature of 304 K, low cost, and
non-toxic, non-flammable character, it appears to be an attractive potential
solvent. It is for this reason, that CO, has been so extensively studied,
and indeed, has sometimes been considered as a unique "supercritical
solvent”. For the purposes we are interested in, there are, nevertheless,
some potential disadvantages. The most important is its acidic nature in
an aqueous environment. This creates problems for the viability of the

microorganisms if CO, is used for in vive extraction ( Willson et al., 1986).

2.1.2 Objectives

The basic requirement from the experimental and correlation part of
this work is to obtain sufficient information for the evaluation of the
use of supercritical solvents for the recovery of polar organic compounds

from aqueous solutions. Several specific subtasks can be identified:

- We need to obtain a general picture of the relevant phase equilibria
in the ternary systems we selected for study, and identify possible
trends with different functional groups or molecular weight of the
compounds.

- To achieve such a general picture, we need to use existing correlation
techniques or develop new ones to represent the phase equilibria in
the range of conditions of interest.

- Finally, we need to investigate the possible implications for the
development of new separation processes, based on the experimentally

observed phase equilibrium behavior and the correlation results.

The range of conditions of interest should be sufficient to cover the
potential useful range of operation of separation processes. We chose to
operate at two temperatures, 313 and 333 K, both above the critical
temperature of the solvent (T, = 304 K for CO,). Operation at higher
temperatures seems less desirable because the favorable characteristics of

the supercritical solvent are gradually reduced away from the critical point.
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The pressure range for the experimental investigation is from 20 - 250
bar total pressure. The critical pressure of carbon dioxide is 74 bar, so
the range of operating conditions covers both regions where the solvent is
a low-density gas and the dense fluid region. The latter region is important
for determining the maximum solvent power of the supercritical fluid. The
low-pressure region is important for the investigation of solvent losses

and solute recoveries after depressurization.

2.2 Literature review - Experimental

2.2.1 Historic development of supercritical extraction

Over 100 years ago, Hannay and Hogarth (1879) and Hannay (1880) noticed
that gases above their critical points possess solvent power very similar
to that of liquids, a fact which they used to argue for the fundamental
continuity of the liquid and gas phases above the critical point. They
worked primarily with solid solutes, and observed the peculiar dependence
of the solubility on the temperature (retrograde solubility region, in
which the solubility decreases with increasing temperature at constant
pressure). Several decades passed before there was a renewed interest in
supercritical fluids as solvents. Equilibria between solids and
supercritical fluids were extensively investigated by Diepen and Scheffer
(1948,1953), van Welie and Diepen (1961) and Tsekhanskaya et al. (1962,1964).
Recent industrial efforts for the use of supercritical solvents have been
stimulated primarily by work at the Max Planck Institute fiir Kolhenforschung
in Germany (Zosel,1978), that concentrated on the extraction of wvarious
natural products.

In the area of equilibria between supercritical fluids and liquids
early work at Princeton University (Todd, 1952; Snedeker, 1956) concentrated
on the equilibria of supercritical carbon dioxide and ethylene in binary
and ternary systems with liquid organic compounds. Francis (1954)
investigated a large number of ternary systems of liquid carbon dioxide
near its critical point and demonstrated that it can be useful as an

extracting agent. Elgin and Weinstock (1959) were the first to investigate



extensively ternary systems of ethylene, water, and an organic liquid, and
to propose possible applications for the separation of organics from
water. One of their important observations, was that a supercritical gas
can act as a "salting out" agent and induce a phase split of an aqueous
solution.

The use of supercritical solvents for the energy-efficient recovery of
alcohols from aqueous solutions has been recently been proposed by several
investigators. Paulaitis et al. (1981) and McHugh et al. (1981) investigated
the recov:ry of ethanol with carbon dioxide, ethylene and ethane. Kuk and
Montagna (1983) presented results for the recovery of ethanol and isopropanol
using. supercritical carbon dioxide. Radosz (1984) and Paulaitis et al.
(1984) have determined phase equilibria for the system isopropanol - water-
carbon dioxide. The results from these investigations suggest that
supercritical solvents can be used for the recovery of ethanol from aqueous
solutions, but the distribution coefficients are low, with resulting large
requirements for solvent. Distribution coefficients for isopropanol are
more favorable.

The field of supercritical fluid extraction, has been reviewed in the
past by several authors (Irani and Funk, 1977; Williams, 1981; Randall,
1982). The last author concentrates on the development of dense gas
chromatography, but also provides an extensive review of experimental
data. The-review of Paulaitis et al. (1983) covers much of the literature
up to 1982.

2.2.2 Phase equilibria at high pressures

In the following, we restrict cur attention to equilibria between
fluid (liquid, gas, or supercritical) phases. Equilibria involving solid
phases are substantially more complex, because of the large number of
possible solid phases for a component or a mixture. We also do not discuss

the case of a single pure component.

Binary mixtures: The equilibria between fluid phases at high pressures

has been the subject of several investigations in the past, especilally for
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binary systems. A useful generalization of the possible forms of binary
phase diagrams was given by Scott and van Konynenburg (1970). The
classification is based on the location of the mixture critical locus and
the presence of liquid-liquid or fluid-fluid immiscibility regions.

Figure 2.1 (Shing and Gubbins, 1983b) shows the six possible types of high
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Figure 2.1 Classification of phase diagrams in binary fluid mixtures.
Curves 1 and 2 are pure component vapor pressures. Dashed lines are
critical loci, LLG are liquid-liquid-gas equilibrium lines that terminate

in upper (UCEP) and lower (LCEP) critical end-points (Shing and Gubbins,
1983b).
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pressure phase diagrams. A discussion of the relationship between molecular
structure and the resulting type of phase equilibrium behavior is given by

Rowlinson and Swinton (1982). In general, simple molecules with small
differences in size and interaction energies give rise to a type I behavior.
as the difference in molecular parameters of the two components becomes
larger, liquid-liquid immiscibilities (type II behavior) or a critical
curve that ends at a lower critical end point (type IV or V) become likely.
An open critical locus (type III) or a liquid-liquid immiscibility with
both an upper and a lower critical solution temperature is usually associated
with strong specific forces (e.g. hydrogen bonding) between the components

of a mixture.

Ternary systems: For the complete representation of phase equilibrium
in a system that includes more than two components, even a three-dimensional
construction is no longer sufficient. The usual practice is to keep ome
or more of the variables (often temperature and/or pressure) constant, and
present the remaining variables using two- or three-dimensional projections.
In ceveral cases, the qualitative features of a ternary or higher-order
system can be derived from the corresponding binary phase equilibrium
behavior.

In the following, we will discuss only a few examples of the behavior
that can be expected for systems that include a supercritical gas and a
mixture of two relatively non-volatile liquids. According to the
classification of Elgin and Weinstock (1959), three distinct patterns are
possible:

Type 1 behavior: The isothermal pressure-composition diagrams for this

type of mixtures is shown in Figure 2.2, together with the corresponding

isobaric isothermal sections. It is assumed that temperature 1is
slightly above the critical temperature of the solvent. At low
pressures, the solubilities of both water and solute in the supercritical
phase are small. As pressure increases, the miscibility gap between
the supercitical fluid and the solute narrows, until they form a single
phase. This behavior is typical of solutes that have a strong affinity
for water, usually because of a strong tendency to form hydrogen

bonds. Ethanol is an example of a compound that has been experimentally
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shown to comply with this type of behavior in mixtures with a variety
of supercritical solvents like CO,, ethane and ethylene (see Section

2.2.4 for references).
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Figure 2.2 Type 1 phase behavior in supercritical fluid - water-

organic compound systems (Elgin and Weinstock, 1959). C,H, was used as
the supercritical fluid, and "solvent" or "S" denotes the organic

compound .

Type 2 behavior: Figure 2.3 shows the phase behavior in this case.
The most important feature, is a solvent induced immiscibility between
water and the solute for a range of pressures. This "salting out effect"
may be advantageous for the recovery of the solute. This is a case in

which the ternary behavior cannot be qualitatively predicted from the

binary behavior. In this category belong systems that have a lesser
tendency to form hydrogen bonds, but still have active hydrogen atoms

and donor atoms in their structure. For example, Elgin and Weinstock
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Figure 2.3 Type 2 phase behavior in supercritical fluid - water-
organic compound systems (Elgin and Weinstock, 1959). The notation is

the same as for Figure 2.2.

(1959) observed this type of behavior, among others, for acetone,

n-propyl alcohol, acetic and propionic acids in ethylene at 278-288 K.

Type 3 behavior: For these systems, the solute-water immiscibility
exists even when no supercritical solvent is present (Figure 2.4). As
pressure is increased, the immiscibility gaps for both the water - solute
and the solute - fluid pairs close up. Systems that belong to this
category, are typically expected to include solutes with little or no
hydrogen-bonding capacity. and, therefore, low affinity with water.
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Figure 2.4 Type 3 phase behavior in supercritical fluid - water-
organic compound systems (Elgin and Weinstocx, 1959). The notation is

the same as for Figure 2.2.

The classification of a system as belonging to one of the three
categories is a function of the temperature of interest. It is possible
that a system can pass from type 3 to type 2 to type 1 behavior, by only a
modest increase in temperature. A system may show an even more complex
behavior: the appearance of additional phases, four-phase equilibrium
regions, or the formation of solids (hydrates) are a few such additional

possibilities.

2.2.3 Experimental techniques

The experimental investigation of high pressure phase equilibria
requires the use of specialized equipment. Among the variety of methods
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proposed for the experimental investigation of egquilibria between fluid

phases at high pressure the following general methods can be identified:

Flow-through methods: In these designs, the more volatile component
in the fluid state is passed through a liquid mixture at a specified
temperature and pressure and the composition of the effluent gas
determined. The technique is able to operate with very non-velatile
components, since large quantities of sample can be obtained; the same
technique has also been extensively applied for the determination of
equilibria between solids and supercritical fluids (Kurnik et al.,
1982). It is, however, less useful for multiphase systems, or for
volatile components. A variation of the method that can operate even
for volatile mixtures involves a continuous flow of both liquid mixture
and solvent (Paulaitis et al., 1981). The major uncertainty is
attainment of equilibrium in the relatively short contact time available.
Static analytical methods: These designs are based on preparing a
mixture with the desired components and determining the number and
composition of the coexisting phases after equilibration. Visval
cells are often used to enable a direct observation of the presence of
multiple phases. The major problem here is withdrawing representative
samples of the phases without disturbing the equilibrium. Mercury
displacement (Elgin and Weinstock, 1959) or chromatographic sampling
(Kuk and Montagna, 1983; Richon and Renon, 1983; Radosz, 1984) are often
used for the sampling. These techniques are not very suitable for
low-solubility components because of the limited sample size, but can
handle multiphase equilibria in many-component systems.

Static synthetic methods: At very high pressures, the only practical
method is a static one in which a mixture with predetermined composition
is confined in a sample chamber, often equipped with windows for
visual observation, and the conditions for appearance or disappearance
of the various phases are determined. A variation of the technique
for the determination of multiphase equilibria was used by DiAndreth
(1985). Since no sampling is involved, the technique avoids disturbing

the equilibrium, but application to many-component systems is tedious.
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For the experimental part of this work, we have adopted the static
analytical method with extermal recirculation of all coexisting phases.
The equipment used is similar in many aspects with the designs of Kuk and
Montagna (1981) and Radosz (1984). A detailed description of the

experimental apparatus and operating procedures is given in Section 3.1.

2.2.4 Available experimental data for ternary aqueous systems

A summary of the available experimental data for phase equilibria in
ternary systems with water, a supercritical fluid and an organic compound

is given in Table 2.1.

2.3 Literature review - methods for phase equilibrium calculations
2.3.1 Overview

The problem of calculating the equilibrium mole fractions in different
phases for a multicomponent mixture can be solved if a way can be found to
relate the fugacities of all components of the mixture to temperature,

pressure and composition (generally different for each phase at equilibrium).

The general problem of phase equilibrium between phases I,II, ...,M that

contain components 1,2,...,n can be expressed thermodynamically with the

relationships:

Pl = PIT = |, = PM

TP =Tl - |, =T [2.1]
I M

Bt o= =y

where P is the pressure, T is the temperature and p, 1is the chemical
potential (partial molar Gibbs energy) of component i. In addition to
Eqs. 2.1, there is a requirement for stability: all phases must be stable



supercritical fluid ternary systems

Table 2.1 Available equilibrium data for water - organic compound -

Reference Solvent Solute P(MPa) T(K)
Snedeker (1956) co, acetone 2.2-4.3 305
acetic acid 6.1-7.0 305
Baker and
Anderson (1957) co, ethanol 6-20 283-323
acetone 2.8-4.9 288
methyl ethyl
ketone 3.6 288
n-propyl alcohol 4.9 288
Elgin and tert-butyl
Weinstock (1959) C,H, alcohol 3.6 288
acetic acid 5.4 288
propionic acid 5.4 288
acetonitrile 3.6 288
Tsiklis (1960) C,H, ethanol 3-17 470-570
C,H, 4-6.4 308
C,Hg 3.4 308
Fleck (1967) co, n-propyl alcohol 5.8-7.9 308
CClF, 2.8 308
CHF, 3.7 308
Shvarts and
Efremova (1970) co, ethanol 8.1-9.1 310-320
Paulaitis et al. co, ethanol 7.2-14 308
(1981) C,H, ethanol 14 308
McHugh et al.
(1981) C,Hg ethanol 5-8 31.3-323
Kuk and Montagna CO, ethanol 7.5-21 313-323
(1983) co, isopropanol 10 313
Radosz (1984) co, isopropanol 10-12 335
DiAndreth (1985) GO, isofropanol 10-13 313-333
Gilbert and
Paulaitis (1986) co, ethanol 10-17 308-338
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with respect to arbitrary small perturbations. The conditions for stability
for a multicomponent system are (Modell and Reid, 1983):

(n)
Yin+1)n+1) = 0 [2.2]

where y‘®) is the n-order Legendre transform of energy.
There are numercus approaches to this fundamental problem. 1In the
sections that follow, we will discuss practical approaches for the

correlation and prediction of phase equilibrium data in fluid mixtures.

2.3.2 Excess Gibbs energy models

In this approach, an equation, usually with a few adjustable parameters,
is proposed to represent the mixture excess Gibbs energy, that is, the
difference between the total Gibbs energy at the state of interest and at

a reference state denoted by *:

AGE¥ = G(T,P,NL,N,,...,N.) - G(T,P*,Nj,N} ...,N}) [2.3]

The activities and fugacities of the components can then be directly
calculated. Representative models of this type include the Wilson
(Wilson,1964), NRTL (Renon and Prausnitz, 1968), and UNIQUAC (Abrams and
Prausnitz, 1975) equations, which, in conjunction with group-contribution
methods, have been quite successful in correlating and predicting from
limited experimental information VLE data at low pressures. However, the
need to use reference states, and the use of different models for the
different phases at equilibrium prevent the successful application of this
approach for systems at pressures comparable to the critical pressure of

one or more of the major components of the mixture.



2.3.3 Helmholtz energy models

This is a more general method, in which the properties of all phases
at equilibrium are described by the same equation. In this approach, the
starting point is an expression for the residual Helmholtz energy in terms

of the state variables:
A (T,Y,N, ,N,,...,N;) - A (T,Y,N,,N,,...,N;) - A%(T,V,N, ,N,,...,Nn) [2.4]

The equations for the pressure and chemical potentials are then obtained
from the thermodynamic identities:

P = - (3A/8V) [2.5]

T,N,

b = OB/ )y y [2.6]

A recent promising development for the generation of theoretically-
founded expressions for the mixture Helmholtz energy is based on perturbation
theories. 1In this approach, the thermodynamic properties of a mixture are
expanded in terms of the known properties of a model system (such as the hard
sphere mixture), and a number of perturbation variables to describe the
difference between the model and the real mixture. Examples in this
category, include the work of Gubbins and Twu (1977a,1977b) using a
Lennard-Jonec reference fluid and Barker and Henderson (1967) using a hard
sphere reference fluid. A recent effort to incorporate different expansions
for the Helmholtz energy in different density regions is the work by
Cotterman et al. (1985) and Cotterman and Prausnitz (1985). A common
difficulty in this approach is the increasing complexity of the resulting
expressions, and the large number of unknown parameters that must be
determined for each component and combination of components. The area has
been reviewed by Henderson (1974,1979), Gubbins (1983) and Shing and
Gubbins (1983b).
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2.3.4 Equation of state approach

In this method, the volumetric properties of the system of interest are
described by an equation, usually explicit in pressure. This is essentially
a subcase of the previous case, since an equation of state (EOS) can be
obtained from a Helmholtz energy model using Eq. 2.5. The reason this
method is treated separately is that there exists a very large number of such
equations, mostly of a semi-empirical nature. A very successful group is
one that originates from the cubic EOS proposed by van der Waals in 1873.
Modern versions of this equation have found extensive practical use for
the correlation and prediction of volumetric and phase equilibrium properties
of mixtures, especially at high pressures. Among the more common of the
currently used cubic EOS are the Soave (1972) modification of the Red-
lich-Kwong (1949) and the Peng-Robinson EOS (1976). The functional form
of both equations, as well as several other proposed cubic forms, can be
represented in a general manner as shown in Eq. 2.7 (Schmidt and Wenzel,
1980):

P = - (2.7]

where u and w are numerical constants. Table 2.2 lists the values of u and
w for some common EOS.

For a mixture, parameters a,Z and b are related to the pure component
parameters and the mixture composition through a mixing rule. Eqs. 2.8 and
2.9 show one common choice for the mixing rules, the van der Waals 1l-fluid

mixing rule:
o= L) % % oAy [2.8]
ij

b, = ¥ x, b, [2.9]



Table 2.2 Parameters for some common cubic Equations of State

Equation of State u w

van der Walls (1873) 0 0
Redlich-Kwong (1949) 1 0
Peng-Robinson (1976) 2 -1

The cross-parameters a;, are related in turn to the pure-component
parameters by a "combining rule". Eq. 2.10 shows a common form of the

combining rule for a,;

a, = Ja; a, (l-k,) (2.10]

In Equation 2.10, k,; is called a binary interaction parameter, and was orig-
inally introduced so that the equation could better reproduce experimental
composition data in systems that contained components other than the light
hydrocarbons.

Some of the attractive features of this type of equations are their
analyticity (because of their cubic form) and the small number of adjustable
parameters. The limitations and drawbacks stem primarily from their

empirical character.

In the recent years, several attempts have been made to improve the
performance of cubic equations of state, especially for highly asymmetric
and non-ideal mixtures. The basic factor determining the behavior of the
equations for mixtures is the mixing rules used. The quadratic mixing
rule represented by Eq. 2.8 is theoretically correct at low densities, but
is not appropriate for highly asymmetric mixtures at high densities, where
a higher-order mixing rule is required. Huron and Vidal (1979) proposed a
modification of Eq. 2.8 that results in an infinite-pressure excess Gibbs
energy similar to the one predicted by the NRTL equation; the low-pressure
quadratic behavior is not preserved. An important trend in the efforts to

incorporate such dependence has been the use of density-dependent mixing

117



rules that preserve the quadratic form at low densities (as dictated by
the theoretical requirement for the dependence of the mixture second
virial coefficient on composition) but substitute a higher-order dependence
at high densities. Examples of this approach are the works by Whiting and
and Prausnitz (1982) and Mathias and Copeman (1983). The use of simple

equations of state with higher-order mixing rules appears to successfully
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represent phase equilibria in asymmetric mixtures similar to the ones used

in this work. This approach was the focus of the effort to develop
corralation methods for the data obtained in this work.
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CHAPTER 3
DEVELOPMENT OF NEW CORRELATION TECHNIQUES

3.1 Methods
3.1.1 Computational techniques

For th2 correlation of experimental data, we elected to use as a
starting point a simple cubic equation of state, as described in Section
2.3.4. Little difference among the various cubic equations of state
presented in Table 2.2 exists when the same mixing rule and appropriate
pure component parameters are used (Goral et al., 1981), but the Peng and
Robinson (1976) form was selected based on its slightly better representation
of the volumetric and phase equilibrium properties of simple mixtures. As
will be demonstrated in the sections that follow, the conventional mixing
rules with these equations of state cannot adequately represent phase
equilibria in the highly asymmetric systems of intefest,. and modifications
of the mixing rules were required. The development of the new mixing
rules was performed using the general form of a cubic equation of state
given in Eq. 2.7, but only the Peng-Robinson form (Eq. 0.1) was utilized.

To use the equation of state approach, we first need to have an algorithm
for the calculation of phase equilibria in multicomponent systems. The
basic elements of the algerithm we implemented for this purpose are as
follows: We start by assuming that the component and interaction parameters
are known at a given temperature and postulate the existence of a given
number of phases (normally 2 or 3). Newton’s method is applied for the
solution of the system of non-linear equations given by Eq. 2.1. The
implementation of the Newton’s method requires the determination of the
derivatives of the functions to be solved; these derivatives were obtained

by numerical differentiation. Alsc, a transformation of the solution
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domain for the unknown mole fractions from [0,1] to the interval {-o,4w],
using a trigonometric tangent function, was required to avoid excursions
of the solution vector into physically unrealistic regions. Without the
transformation, the problem is especially severe when one or more of the
unknown mole fractions is small.

In addition to the conditions of phkase equilibria, we performed a
thermodynamic stability analysis, based on Eq. 2.2, for all the calculated
phase equilibrium points. This provided a means of deciding when a multiphase
equilibrium calculation was necessary: if the initial guess as to the
number of phases in a system at given conditions were wrong, the phase
stability criteria would be violated and a calculation with an increased

number of coexisting phases became necessary.

The values of the binary interaction parameters were regressed from
experimental binary phase equilibrium data using a simple optimization
algorithm. Normally, the sum of the absolute deviations in the calculated
mole fractions was utilized as the objective function for the optimizations.
In the case where one or more of the coexisting phases had very small
concentrations of one component (as is the case for highly asymmetric
systems), the deviations were multiplied by the inverse of the smaller mole

fraction.

A description of the computer programs used for the phase equilibrium

calculations is given in Appendix B.

3.1.2 Pure component parameter estimation

For the modelling of phase equilibria using the equation of state
approach, the determination of pure component parameters is the first step
for the use of an equation of state. Generalized correlations are available
employing the principle of corresponding states: for example, Peng and
Robinson (1976) give such a generalized expression for use with the equation
of state they propose. Such generalized correlations are based on application

of the criticality conditions to determine the values of the parameters at



the critical point, followed by regression of experimental data for vapor
pressures and liquid densities of a series of substances. They give the
desired pure-component parameters in terms of the critical properties and
the reduced temperature. The accuracy of the correlations is variable, and
the errors can be more that 10%, especially at low reduced temperatures.
For subecritical components, the pure component vapor pressures must be
reproduced to a much higher degree of accuracy for a reasonable modelling
of the corresponding low-pressure phase equilibria. Mcdelling of the low-
pressure equilibria for subcritical components is important for the

determination of the corresponding interaction parameters.

One way to overcome this difficulty, is to use pure component parameters
in an equation of state that directly reproduce the measured vapor pressure
and one additional property (usually liquid density) at the temperature of
interest. This would normally require the solution of a non-linear system
of equations for every component at each temperature. By using the general
properties of a cubic equation of state (Eq. 2.7), analytical expressions
can be obtained (Panagiotopoulos and Kumar, 1985) for the values of the
pure component parameters for an equation of state that exactly reproduce
vapor pressure and liquid density of a subcritical component. Appendix A
gives a detailed exposition of the method developgd and'provides analytical
expressions for the determination of pure component;parameters of subcritical
components. For the supercritical components, we employed the conventional

generalized correlations (Peng and Robinson, 1976).

In Appendix D, tables are presented with the pure component parameters
thus obtained, together with the necessary data (vapor pressure and liquid
densities for the subcritical components) used in the calculation of the

parameters.
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3.2 New mixing rules for cubic equations of state

3.2.1 Density-independent mixing rules

The conventional quadratic mixing rules given by Eq. 2.8-2.10 do not
give a good representation of the properties of asymmetric mixtures. An
illustration of this deficiency 1is given in Figure 3.1 for the binary
system CO, - water, a binary that appears in all the ternary systems studied
in this work. This binary system has a large immiscibility gap up to very
high pressures for temperatures close to the critical point of carbon
dioxide: two phases, one mostly aqueous and one with high concentration of
carbon dioxide coexist. The prediction of the conventional mixing rule
using the Peng and Robinson (1976) equation of state for this system at
323 K is given in Figure 3.1 by the continuous lines marked k,,~k,,=+0.160.
The parameters were fitted to the experimental phase equilibrium data for
the solubility of water in the supercritical carbon dioxide phase (Y,). As
can be seen, while the representation of the data in the aqueous phase is
good, the solubility of carbon dioxide in the aqueous phase is under-
predicted by more than two orders of magnitude.

The physical reason behind this failure lies most likely in the large
difference in local environment around the solution molecules in an water-
rich and a carbon dioxide-rich phase. This observation provides the physical
basis for several proposed local composition models (e.g. Renon and Prausnitz,
1968; Abrams and Prausnitz, 1975). The conventional quadratic mixing rule
for the attractive parameter in cubic equations of state is not appropriate
when significant asymmetries in local environment exist, as verified by
the inability to reproduce experimental results for asymmetric mixtures.

In order to correct this deficiency, it has been proposed (Robinson et
al., 1984) to utilize different values of the interaction parameters for
coexisting highly asymmetric phases. The approach gives good results for
aqueous systems with hydrocarbon gases. However, since, in essence,
different equations of state are applied to the different phases, the
approach cannot be used to model cases where the compositions of the two
phases would approach each other, for example, close to vapor-liquid critical

point or a plait point.
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Figure 3.1 Experimental and predicted phase equilibrium behavior for
the system CO,-water at 323 K. X1 is the mole fraction of CO, in the
liquid phase and Y2 the mole fraction of water in the fluid phase.
Experimental data: (0O) Wiebe and Gaddy (1941); (A) Zawisza et al.
(1981); (¢) Matous et al. (1969). Predicted using Eq. 3.1 (—).
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In order to improve the representation of the phase behavior in non-
lueal mixtures, an empirical modification of the quadratic combining rule
given by Eq. 2.10 was developed (Panagiotopoulos and Reid, 1986c). In our
approach, we relax the assumption ky, = k;; thus introducing a second

interaction parameter per binary:

agy = J a a; [1-k +(k -k, )X, ] [3.1]

Eq. 3.1 has the following characteristics:
- If k,; = k,, , the »riginal mixing rule given by Eq. 2.10] is recovered.

- The "effective" interaction parameter between components i and j ap-
proaches kij as X,, the mole fraction of component i, approaches zero.
It also approaches ky, if X, approaches unity. The apparent asymmetry
under an interchange of i and j is corrected by the fact that both a

and a, , enter in the calculation of the mixture parameter a, symmetrically.

- Application of the rule given by Eq. 3.1 for the calculation of the
mixture parameter a, results in a cubic expression for the mole fraction
dependence of the mixture parameter a,. This is different from the
case of the conventional mixing rule which. leads to a quadratic

expression for a .

The physical significance of the interaction parameters k,, and ky; is
that they provide a measure for the deviations of the attractive part of
the molecular interactions from the geometric-mean rule. The two parameters
give two different limits at the two ends of the concentration spectrum.

An important feature of the new method is that the two parameters are
essentially uncorrelated in many cases, as shown in the previous example,
in which the parameters were determined from data in different phases.
This is generally true only for systems in which the compositions of the
coexisting phases are very different.

Using this mixing rule with Eq. 2.7, we can obtain the fugacity coef-

ficient of a component in a mixture as:
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Using the mixing rule given by Eq. 3.1 results in excellent agreement
with the experimental data for both phases for the system CO,-water, as
demonstrated in Figure 3.1 (lines marked k,, = -0.198, k,, = 0.160).

In comparing the results of the conventional (one-parameter) mixing
rule and the proposed correlation (two-parameter), we should keep in mind
that the introduction of one additional adjustable parameter necessarily
results in at least some improvement of the representation of the
experimental data. To Investigate if the proposed method has an; real
advantages over previously proposed two-parameter correlations, we used a
two-parameter correlation proposed by Heidemann and his co-workers
(Evelein et al., 1976) that uses a quadratic mixing rule for b, analogous
to Eq. 2.10]. 1In Figure 2.2, the data of Figure 3.1 are replotted on a
different. scale and the results of the proposed correlation are compared
to the results of the Heidemann model. The proposed correlation is seen
to be in significantly better agreement with the experimental data,
especially for the high pressure range.

It has also been shown (Panagiotopoulos and Reid, 1986c) that th-
mixing rule can represent a wide variety of phase equilibrium data for
highly non-ideal mixtures, that include low-pressure VLE data and high-
pressure ternary data predicted using only binary parameters. A similar
mixing rule was proposed independently by Stryjek and Vera (1986a, 1986b).
It was found to represent phase equilibrium data for a variety of low-
pressure, highly nonideal mixtures with the same or better accuracy as the

conventional activity coefficient models discussed in Section 2.3.2. The
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Figure 3.2 Comparison of the prediction of the proposed density-
independent mixing rule (curves A) with the results of the two-
parameter correlation by Evelein et al., 1976 (curves B) for the

system carbon dioxide-water at 323 K (data sources as for Figure 3.1).



same number of adjustable parameters (two per binary) was used for all

models compared.

A significant deficiency, however, of the combining rule given in Eq.

3.1 is that the dependence of the mixture second virial coefficient,
B, =b, - a,/RT [3.3]

is now a cubic function of mole fraction. This result is contrary to the
theoretical requirement for a quadratic dependence on the mixture mole
fraction at low densities (Hirschfelder et al., 1954, pp. 153). The
problem is that, whilé‘the quadratic dependence of a; on mixture
composition is exact at the limit ofhlow; gag-like densities, a higher-
order dependence is required for a reasonable representation of the
properties of non-ideal mixtures at high densities. The solution to this
problem, as suggested by several authors in the recent years (e.g.
Mollerup, 1981.; Whiting and Prausnitz, 1982; Mathias and Copeman, 1983)
is to introduce density dependence in the combining rules,such that they
may reproduce the required limits for both density ranges. The
modification of Eq. 3.1 for this purpose is presented in the following

section.

3.2.2 Density-dependent mixing rules

First, we rewrite the combining rule given by Eq. 3.1 in the form:

k”+kJi ku-kJi
ay =l 1 v | | %) ) [3.4]
2 2

In Eq. 3.4, the term (k13+k41)/2 corresponds closely to kid in Eq.
2.8. The term that multiplies (xi-xd) leads to the cubic dependeice of a,
on mixture composition at high densities. In order to introduce density
dependence in Eq. 3.4, we need to multiply this term by a function that

will reduce to zero at low densities, while being approximately constant
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at high densities. Several "interpolation functions" have been proposed
(e.g. Topliss et al., 1982; Lidecke and Prausnitz, 1985), but no
theoretical guidelines exist for the rational development of such
functions. Since we would like to avoid introducing additional adjustable
parameters into the equations, a simple, parameter-free function of
density appears appropriate. We have selected to use the function b /VRT,

in which case the combining rule analogous to Eq. 3.4 is

bm

a;; = XLXJ ,/aia‘j (l-k“) +—X1XJ(XLA1J+XJ/\“) [3.6]
VRT

where k“ - k“ , ,\“ - -A“, are binary interaction parameters (again

two per binary).

The mixing rule given by Eq. 3.6 is similar to the density dependent
form proposed by Lidecke and Prausnitz (1985), with the important
difference that b,, the mixture volume parameter is introduced in the
numerator. At high, liquid-like densities, the mixture volume parameter
b, 1is roughly proportional to the mixture molar volume V, so the density-
dependent function, b, /VRT, in Eq. 3.6 is insensitive to composition and
density.

The physical significance of k,y; and A;, in the proposed mixing rule,
is now different for the two parameters. The term k,, represents an
deviations from the geometric mean rule for the attractive parameter,
whereas A,,; measures the composition-dependent deviations (assumed
symmetric in mole fraction). It would be physically appealing to identify
LI
limiting behavior at low densities given by the second virial coefficient,

as obtained from the regression of high-pressure data, with the

but unfortunately this is not possible.
The expressions for the parameters of a general cubic equation of
state using Eq. 3.6 and the resulting expressions for the fugacity

coefficient of a component in a mixture are given below.

ad = Y YXX Jaa (1-k,) [3.7]
ij



0 Pa
G < A F LY XX (XA +K0y,) 5 Ay = -y (3.8]
VRT 1 j
b - 21: x, b, [3.9]
£y by PV P(V-by,)

-a%b, + 2b %, + u/2w [Zbk/bm = - 2 2k - 3k ] 2V + b (u-JuZ-4w)
- n

+ - 2
JoT = 4w bRT ' 2V + by (ut/uf-4w)
2b, /b, = - 23k 3% v?
- 3 In —5 5 (3.10]
2w b RT V™ + ub V + wb_
2
vhere o= Y YAy XX
ij]

% - %xi (L-kyy) /a8

It was found that Eqs. 3.1 and 3.6 are approximately equivalent in
correlating phase equilibria at high and low pressures, the basic
difference being the dependence of the mixture second virial on
composition at low density. A test of the proposed mixing rules with
literature data for a variety of systems 1Is given in the sections that

follow.
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3.3 Testing of proposed mixing rules
3.3.1 Polar - supercritical fluid systems

An example of the application of the proposed density-dependent mixing
rules for the case of highly asymmetric systems, is given in Figure 3.3
for the binary system carbon dioxide - water for a series of temperatures.
A good representation of the properties of this highly non-ideal system is
obtained for all temperatures studied. The regressed parameters as a
function of temperature for this system, as well as for the other systems
studied are given in Appendix D in tabular form. As can be seen from
table D.2, the absolute magnitude of \,, for this system is high relative
to most of the other systems studied. This reflects the asymmetric
character otf the system, and is consistent with the large difference
between the parameters k;, and k,, for the density-independent model
(Figure 3.1). This binary system illustrates one possible type of
behavior (type III, according to the classification discussed in Section
2.2.2) with an immiscibility gap that persists up to very high pressures.
This type of behavior is typical for systems with water and several light
hydrocarbon gases (e.g. ethane) that may also be used for supercritical

extraction of organic compounds.

One additional example for another class of systems is provided in
Figure 3.4 for the system ethanol - carbon dioxide. The binary data were
obtained during calibration of the equipment described in Section 4.1, and
are presented in tabular form in Appendix C. The system illustrates a
typical phase equilibrium behavior between carbon dioxide and a low
molecular weight organic compound above the CO, critical temperature. For
the temperature range studied, the solubility of carbon dioxide in the
liquid phase 1is considerable even at low reduced pressures. The
solubility of the organic compound in the supercritical fluid phase is
much lower. Binary critical points occur at pressures comparable to the

pure carbon dioxide critical pressure. The mixture critical pressure
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Figure 3.3 Phase equilibrium behavior for the system carbon dioxide-
water at a series of temperatures. Data are from Wiebe (1941) and
Wiebe and Gaddy (1941): (+) 298 K; (%) 304 K; (a) 323 K; (x) 348 K.
Lines are calculated with the density-dependent mixing rule given by
Eq. 3.6.
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Figure 3.4 Phase equilibrium behavior for the system carbon dioxide -
ethanol at a series of temperatures. Experimental data are from this
work (Appendix C.6): (+) 308 K; (o) 323 K; (o) 338 K. Lines are
calculated with the density-dependent mixing rule given by Eq. 3.6.

increases with temperature for the temperature range studied. Above that
pressure, the two components are completely miscible at all proportionms.
This behavior is consistent with the fact that liquid carbon dioxide and
ethanol are also completely miscible (Francis, 1954). The same behavior
is also common for several other low molecular weight organic compounds.

The model reproduces the experimental behavior well, except near the

critical pressure.



One additional example for this type of behavior is given in Figure
3.5, where the phase equilibrium behavior for the system acetone-carbon
dioxide at T = 313 K is presented. For this system, the regressed value
for A,, is very close to zero, and the mixing rule essentially reduces to
the conventional one-parameter mixing rule given by Eq. 2.8. The ability
to directly use regressed parameters for the widely used conventional
cubic equations of state for systems that can be adequately represented by
the conventional approach is a distinct advantage of the proposed

correlation method.
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Figure 3.5 Phase equilibrium behavior for the system acetone - carbon
dioxide at 313 and 333 K. Data are from: (O) Katayama et al. (1975);
(xX) this work. Lines are calculated with the density-dependent

mixing rule given by Eq. 3.6.
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3.3.2 Low pressure vapor-liquid equilibria

A desirable property of any equation-of-state model is the ability to
predict low-pressure phase equilibrium data. Such data have been
traditionally modelled using the excess Gibbs energy approach (Section
2.3.2). 1t has been repeatedly demonstrated (Goral et al., 1981; Stryjek
and Vera, 1986a, 1986b), however, that an equation-state model that
reproduces properly the pure component vapor pressures can represent
experimental data for VLE at low pressures with an accuracy equal to or
exceeding that of excess Gibbs energy models with the same number of
adjustable parameters.

For our purposes of modelling ternary phase equilibrium data at high
pressures, it is also important that we obtain a reasonable representation
of all binaries between the components. The binary system between water
and the polar organic compound is normally completely miscible at high
pressures, and the determination of the interaction parameters must be
based on low pressure data.

In Figure 3.6, we present results from the density-dependent model for
the system ethanol-water, a highly non-ideal system that iancludes an
azeotropic point at all temperatures indicated in Figure 3.6. As can be
seen, the model reproduces the experimental phase compositions to a good
accuracy, including the location of the azeotropic point. Similar good
agreement is obtained for the system acetone - water, as demonstrated in

Figure 3.7. This system has a wide phase coexistence envelope.

3.3.3. Ternary systems

One of the most important tests for a proposed correlation is the
ability to predict ternary behavior when only the binary behavior is
known. In Figure 3.8, the model predictions for the ternary system carbon
dioxide - ethanol - water are presented. The model predictions are based
solely on values of the interaction parameters regressed from binary data,

as shown on Figures 3.3, 3.4 and 3.6.
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Figure 3.6 Phase equilibrium behavior for the system ethanol - water
at 303 - 363 K. Data are from Pemberton and Mash (1978): (O) 303 K;
(+) 323 K; (o) 343 K; (o) 363 K. Lines are calculated using the

density-dependent mixing rule given by Eq. 3.6.
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Figure 3.7 Phase equilibrium behavior for the system acetone - water
at 308 and 323 K. Data are from: (0O) Lieberwirth and Schuberth (1979)
and (¢) Chaudhry et al. (1980). Lines are calculated using Eq. 3.6.
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Figure 3.8 Phase equilibriun behavior for the system water - ethanol
- carbon dioxide at T=313 K and P=10.2 MPa. (A) Experimental data
(Kuk and Montagna, 1983). Lines are calculated using Eq. 3.6.
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As can be seen from Figure 3.8, the accuracy of the model predictions
for the shape and extent of the two-phase region at this temperature is
reasonable, but the shape of the coexistence envelope deviates somewhat
from the experimental measurements as the plait point is approach, and the
overall agreement is reasonable. A comparison of the model predictions
with the experimentally observed values for the distribution coefficients
of the components in the two coexisting phases, however, indicates that
the model gives values for the distribution coefficients of water that are
systematically too low by as much as 50%. Similar deviations for the same
system using different sets of density-dependent mixing rules were
obtained by other investigators (ﬁathias, 1986).

It is significant, howevéf,'&ﬁaé no‘ternary parameters are used to fit
the data and the results for the ternary mixture are essentially
predictions. Several previously prdposed models for equilibria in non-
ideal mixtures lack this attribute (a correlation of the ternary system
discussed above that required ternary parameters was presented by Topliss
et al., 1982). The ability of the model to predict correctly phase
coexistence envelopes for ternary mixtures at a range of pressures will be

valuable for the systems that we discuss in Chapter 4.

3.4 Overall evaluation of proposed mixing rules

The new two-parameter mixing rule (Eq. 3.6) proposed for use in cubic
equations of state was shown to be useful in correlating the phase equil-
ibrium behavior in highly polar systems that cannot be correctly
represented by a conventional one-parameter mixing rule. The introduction
of Eq. 3.6, is at this point an empirical modification of the original
form of the mixing rule. The modification is related, but is not directly
derived from, the idea of local compositions, that has been shown in the
past to result in improved representation of the phase equilibrium
behavior in highly polar and asymmetric mixtures.

Among the advantages of the proposed mixing rule, are the relative
simpiicity of the resulting expressions for the derived thermodynamic pro-

perties, tcgether with the fact that the model can be easily reduced to



the conventional one-parameter mixing rule for which a substantial amount
of regressed interaction parameters exists. The model is shown to
reproduce accurately data for both high pressure polar - supercritical
fluid, and low pressure polar - polar binary phase equilibrium. In
addition, predictions for ternary systems based on coefficients regressed

from binary data only, are qualitatively correct for the systems studied.
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CHAPTER 4
EXPERIMENTAL AND CORRELATION: RESULTS

4.1 Equipment and procedures
4.1.1 Equipment design

The experimental setup used is shown in Figure 4.1. The main elements

of the equipment are described below.

Equilibrium cell: The equilibrium cell was a high pressure optical
cell (Jerguson gage model 19-TCH-40). The internal space of the cell
consisted of a long rectangular vertical channel of approximate dimensions
32cm X 1l.3cm X 1.3cm (internal wvolume approximately 50 cm3), confined
between two high-strength borosilicate glass plates and a 316 stainless
steel enclosure. A full view of the contents of the cell was possible.
The cell served as a mixing and separating vessel, and for the visual

observation of the number and degree of separation of the coexisting phases.

Recirculation system: Connections at the bottom, top and side of the
vessel permit withdrawal of the lower, upper and middle phases, any two of
which can be recirculated externally with a dual high-pressure Milton-Roy
Mini Pump. An on-line Mettler-Paar vibrating tube density meter (DMA 60
with a DMA 512 cell) was used to measure the density of one of the
recirculating phases. The density meter could be switched to sample any of

recirculating streams.

Temperature control: The equilibrium cell was immersed in a constant
temperature bath with silicon fluid (Dow-Corning DC 200) as the heat-transfer

medium, that also thermostated the density meter. The bath temperature was

= mowme e ey
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Figure 4.1 Schematic diagram of the equipment.

controlled to * 0.01 K with a Thermomix 1460 temperature regulator. The
lines external to the bath were maintained at the bath temperature with
the help of heating tapes. The supercritical fluid sampling valve was placed

in a heated enclosure with an independent temperature controller,

Other measurements: Temperature was measured with a calibrated

mercury-in-glass thermometer to within 0.01 K. Temperatures at several
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points along the external recirculation and sampling loops were monitored
with thermocouples. Pressure was measured with two calibrated Heise pressure
indicators to within *.16 bar for pressures up to 160 bar and to within
+.4 bar for pressures up to 350 bar. A vibrating tube density meter
(Mettler-Paar DMA 60 with a DMA 512 high-pressure cell) was used to measure
the density of the recirculating phases. The density meter could be manually
switched to sample any of the recirculating streams. The density meter
directly measures the frequency of oscillation of a U-shaped tube filled
with the fluid being sampled. The calculation of density from the measured
frequency involves calibration with fluids of known density. Nitrogen gas
and water were used for the calibrations. The observed accuracy and

Shaa . -4 3
reproducibility of the density measurements was *10 = g/cm™.

Sampling: Sampling was performed with two high pressure switching
valves with internal volume .5 upl (for the upper phase) and .2 ul for the
lower or middle phases. The samples were directly depressurized into a He
carrier gas stream and analyzed with a Perkin Elmer Sigma 2 Gas Chromatograph,
using a Porapak Q column supplied by Supelco. The response factors for
the materials used were found to be close to the values reported by Dietz
(1967). Typical reproducibility of the analysis was *.003 in mole fraction,
with somewhat larger deviations for the gas-phase compositions—at—low

pressures. Because only a small fraction of the material in the cell was
withdrawn during sampling, no measurable pressure drop could be observed.
Repeated sampling was possible using a single loading of the equilibrium
cell. The small quantity of the sample also facilitated rapid evaporation
into the carrier gas stream. For the supercritical fluid sampling loop,
it was determined that irreproducible results with an erroneously high
concentration of water were obtained if the temperature of the sampling
valve was not equal or slightly above the temperature of the cell. The

problem was especially severe at low pressures (<8.0 MPa).

Safety aspects: The use of high pressures in the experimental apparatus
warranted the careful examination of the safety issues associated with the
operation of the equipment. The main component of the experimental setup

(the Jerguson gage), had an internal volume of approximately 50 cm®. The
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additional volume in the system (piping, valves) added less than 10% to the
total internal volume. The potential for damage by rapid depressurization
of the CO, in the system was, therefore, small. For protection against
overpressure, a safety head with a rupture pressure of 35 MPa was installed.
This pressure is equal to the pressure rating of the cell and well below
that of the other equipment components. The line that was connected to the
safety head, as well as all other purge lines, led to a hood for the safe
removal of the purged gases. For added protection of the operator, in
case of a failure of the sides of the Jerguson gage or the bath (made of
Pyrex glass), a 1/2 inch thick Lexan enclosure surrounded the equilibrium
bath. The liquid chemicals used are flammable and some (acetic acid,
butyric acid) are corrosive. Since only small quantities (max 25 g) are
used for every set of runms, the standard laboratory precautions, such as
use of rubber gloves, safety goggles and adequate ventilation were found

to be adequate.

4.1.2 Operating procedures

After purging and evacuation of the equipment, the cell was charged
with a liquid mixture of known composition and the supercritical component
up to the desired pressure. The recirculation pumps were started, and
approach to equilibrium monitored by the stability of pressure, density
and composition measurements with time. For the mixtures studied, a
typical equilibration time is 15 min, but at least 30 min are allowed
before the final sampling. At least two samples were taken from each phase
at equilibrium. A new pressure point could then be immediately established
by introducing or removing supercritical fluid or liquid, so that the level
of the interfaces in the cell at the new desired pressure was appropriate
for sampling through the available ports. Entrainment of the phases was
not normally a problem, except near a critical point. Selective flashing
and adsorption on the switching valves was sometimes a difficulty for the

upper (gas) phase sampling loop at low pressures.
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4.2. Acetone - water - carbon dioxide

The first of our series of model systems, is the ternary system carbon
dioxide - acetone - water. The experimentally determined phase equilibrium
behavior of this system at 313 K and 333 K is shown in Figures 4.2 and 4.3
as a series of triangular diagrams at various pressures. Tables with the
experimental values for the composition of the coexisting phases are
presented in Appendix C.2. On Figures 4.2 and 4.3, the results from the
density-dependent model (Eq. 3.6 with the Peng-Robinson form of Eq. 2.7) are
presented; the values of the pure component and interaction parameters
used for the generation of the modelling résuits are given‘in Appendix D.
The interaction parameters were determined solely from regression of binary
phase-equilibrium data for the constituent binaries.

The most distinctive feature of the system behavior 1s an extensive
three-phase region at both temperatures. The three-phase region is first
observed at a pressure of less than 3.0 MPa at 313 K and approximately 3.5
MPa at 333 K and extends up to approximately the critical pressure of the
binary carbon dioxide - acetone system. Table 4.1 summarizes our experimental
results fer the composition of the three phases at equilibrium as a function
of pressure and temperature.

The physical picture that underlies this behavior, as pointed out
first by Elgin and Weinstock (1959), is the "salting out" effect by a
supercritical fluid on an aqueous solution of an organic compound. As
pressure is increased, the tendency of the supercritical fluid to solubilize
in the liquid results in a phase split in the aqueous phase at a lower
critical solution pressure (which varies with temperature). As pressure
is further increased, the second liquid phase and the supercritical phase
become more similar to each other and merge at an upper critical solution
pressure. Above this pressure only two phases can coexist at equilibrium.
This pattern of behavior was also observed by Elgin and Weinstock for the
system ethylene - acetone - water at 288 K. In addition, the same type of
behavior, but at quite different pressures relative to the pure solvent
critical pressure was reported by Paulaitis et al. (1984) and Radosz

(1984) for the system carbon dioxide - isopropanol - water, by McHugh et al.
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Figure 4.2 Phase equilibrium behavior for the system water - acetone-
carbon dioxide at 313 K. (O) and (=) measured tie-lines; (A) measured

three-phase equilibrium compositions; (—) predicted tie-lines (Eq. 3.6).
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_Figure 4.3 Phase equilibrium behavior for the system water-acetone-

carbon dioxide at 333 K. Symbols as in Figure 4.2.
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Table 4.1 Three phase equilibrium compositions for the system water(l) -
acetone(2) - carbon dioxide(3) at 313 and 333 K

lower phase upper phase middle phase
P(bar)
X1 X2 X3 b4 Y2 Y3 Z Z2 Z3
T =313 K
29.3 0.810 0.153 0.037 0.005 0.025 0.970 0.294 0.454 0.252
35.9 0.864 0.106 0.030 0.006 0.019 0.975 0.197 0.427 0.376
43.2 0.904 0.075 0.021 0.003 0.017 0.980 0.153 0.360 0.487
55.9 0.920 0.052 0.028 0.002 0.015 0.983 0.119 0.230 0.651
61.1 0.942 0.037 0.021 0.004 0.015 0.981 0.114 0.191 0.695
65.8 0.944 0.032 0.024 0.002 0.015 0.983 0.130 0.148 0.722
75.2 0.959 0.017 0.024 0.002 0.014 0.984 0.020 0.069 0.911
79.6 0.966 0.011 0.023 0.002 0.015 0.983 0.049 0.035 0.916
T = 333 K
39.4 0.795 0.163 0.042 0.400 0.398 0.202
51.1 0.880 0.091 0.029 0.182 0.418 0.400
59.4 0.906 0.068 0.026 0.006 0.030 0.964 0.173 0.359 0.468
70.3 0.925 0.049 0.026 0.008 0.035 0.957 0.117 0.300 0.583
79.2 0.939 0.039 0.022 0.006 0.032 0.962 0.089 (0.234 0.677
92.6 0.946 0.029 0.025 0.010 0.046 0.944 0.084 0.127 0.789

1 We were not able to obtain results for these state conditions.

(1981) for the system ethane - ethanol - water and by Paulaitis et al.
(1981) for the system carbon dioxide - ethanol - water. This behavior
appears then to be quite common. The phase equilibrium behavior for this
system, can be classified as type 2, according to the system proposed by
Elgin and Weinstock (1959), as discussed in Section 2.2.2.

The changes in the system behavior as pressure is increased result in
a dramatic change in the slope of the tie-lines between the low-pressure
and high-pressure diagrams. This reflects the change in the behavior of
the solvent (carbon dioxide) from a low-pressure gas with relative little

solvent power to a high-density efficacious solvent at pressures higher
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than the critical pressure for the binary acetone-carbon dioxid.. This
change in behavior can be exploited for the development of separation
processes.

It is interesting to note that the intervening three-ph: 2 region at
intermediate pressures in effect "generates"” the tie-lines for the high
pressure side. This is evidenced by the fact that the plait-point and the
position of the tie lines on the liquid-liquid immiscibility region change
little with pressure. A further verification of this insensitivity is
obtained by comparison of the diagrams at 100 and 150 tar in Figures 4.2
and 4.3. This suggests that similar separations can be achieved by operation
at a range of pressures above the upper critical solution pressure of
approximately 95 bar.

From an engineering point of view, the most important quantities in
the evaluation of a separation scheme based on a phase behavior pattern
such as the ones shown, are the selectivity of the separation with respect
to the desired component, as well as the loading of the desired component
in the extractant phase. It is well known that those two factors usually
increase in different directions. In Figures 4.4 and 4.5, we present
experimental data and model predictions for the distribution coefficient
of acetone, and the selectivity ratio a of acetone over water (defined as
the ratio of distribution coefficients of acetome and water in the liquid
and fluid phases). The distribution factor shows a sharp maximum at both
temperatures, with a higher value at the higher temperature, whereas the
selectivity decreases smoothly from the limiting wvalue of ~300 at low
acetone concentrations to 1 as the plait point is approached. The experimental
data show the same trends, although there is some scatter due to the fact
that small absolute errors in the low supercritical phase concentrations
of acetone and water result in large relative errors for the distribution
coefficient and selectivity factors. Selectivities are generally higher

for the lower temperature, but loadings are lower.

In Figure 4.6, we present the weight fraction of acetone in the
supercritical phase on a CO, -free basis versus the corresponding concentration
of acetone in the 1liquid phase. The physical significance of this

representation is that, for practical applications, the supercritical phase
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Figure 4.4 Distribution coefficient of acetone for the system water
(1) - acetone (2) - carbon dioxide (3) at P = 15.0 MPa, as a function
of the water concentration in the lower phase. Experimental, 333 X (O);

predicted, 333 K and 313 K (—).
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Figure 4.5 Selectivity factor for acetone over water for the system
water (1) - acetone (2) - carbon dioxide (3) system at P = 15.0 MPa,
as a function of the water concentration in the lower phase. Experimental,

333 K (¢0); predicted, 333 K and 313 K (—).
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Figure 4.6 Concentration of acetone in the supercritical fluid phase
as a function of the concentration of acetone in the liquid phase at P
= 15.0 MPa. Concentrations are expressed in % w/w on a CO,-free

basis. Experimental, 333 K (0O), predicted, 333 K and 313 K (—).

would be depressurized after extraction with the supercritical solvent. This
results in remcval of most of the solvent (CO,). The curve necessarily
passes through the origin at zero acetone concentration in the aqueous
phase (for which no acetone can be present in the supercritical phase),but
shows a broad maximum at a range of concentrations of acetone in the aqueous
phase between 3% and 16% w/w. The maximum concentration of acetone in the
supercritical phase is close to 95% w/w. We can, therefore, obtain almost
pure acetone from a dilute aqueous solution using a single-step extraction
with supercritical carbon dioxide. The dilute concentration range 1is
exactly the concentration range of greatest interest for the recovery of

fermentation products.
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4.3. n-Butanol - water - carbon dioxide
4.3.1 Two- and three-phase equilibria

The experimentally observed phase behavior at 313 and 333 K is shown
in Figures 4.7 and 4.8 (experimental data are shown as square points, and
experimentally observed tie lines as dark lines). Let us follow the phase
evolution by starting at a low pressure, e.g. 2.0 MPa in Figure 4.7. Since
all three components are mutually immiscible at this temperature and pressure,
the ternary phase diagram shows an extensive three-phase equilibrium
region. As pressure is increased, the imn.scibility gap between CO, and
n-butanol decreases, whereas the immiscibility gaps between water and CO,
or n-butanol do not change appreciably on the scale of the graph. As
pressure is further increased above the critical pressure of the binary
CO, -n-butanol (Figure 4.7, P =~ 10 MPa), the phase diagram changes drastically,
with the extent of the three-phase regions decreasing with pressure. The
system can be classified as Type 3 according to the notation of Elgin and
Weinstock (1959). Similar results are obtained at 333 K (Figure 4.8),
with the scale of pressures shifted to higher values. No three phase re-
gions were observed experimentally above 9.0 MPa at 313 K and 13.0 MPa at
333 K.

In Figures 4.7 and 4.8, we also present results from the density-
dependent model (light lines). The model parameters for the CO, - water
and the n-butanol - water binaries were determined solely from literature
data. No literature data were available for the n-butanol - CO, binary
system, but they were measured in this study. We used these data for the
regression of the n-butanol - CO, parameters. The predicted phase diagram
at high pressure was found to be quite sensitive to the values of the n-
butanol - CO, interaction parameters. For the two temperatures studied,
no temperature dependence of the parameters was necessary. The values of
the interaction parameters used are given in Appendix D.

The agreement between experimental data and model predictions is best

at low pressures. At the high pressure end, the model predicts a three -
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phase equilibrium region that was not observed experimentally, but the
general shape of the phase diagram and its evolution with pressure are

well described.

In Fig. 4.9, we present the measured and predicted concentrations of n-
butanol in the two coexisting phases at the high density region. The
results are given on a CO,-free basis, as for the acetone system. At very
low butanol concentrations, the supercritical fluid (SCF) phase is lean in
butanol, but the concentration of butarol rises sharply and has a hroad
maximum at around 2% - 5% w/w concencration in the aqueous phase. It thus
appears possible, to enrich a dilute (e.g. 3%) aqueous solution of butanol
to better than 90% w/w by a single-step extraction with supercritical CO,
at 313 K and 15.0 MPa preésure.
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Figure 4.9 Concentration of n-butanol in the aqueous and supercritical
fluid phase on a CO,-free basis. (O) experimental, 313 K, 10 MPa; (4)
experimental, 313 K, 15 MPa; (—) predicted using Eq. 3.6.
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4.3.2 Four-phase equilibria and interpretation

A unique characteristic of the water - n-butanol - carbon dioxide system
is the presence of a four phase LLLG equilibrium region at 313 K. The
experimentally determined phase compositions and densities for the coexisting

phases are given in Table 4.2.

Table 4.2 TFour-phase equilibrium for the system water - n-butanol -
carbon dioxide at T = 313.1 K, P = 8.25 MPa

Phase Composition (mole fraction) Density
Water n-Butanol co, (kg/m?)
L, 0.966 0.011 0.023 1002
L, 0.168 0.285 0.547 846
L, 0.034 0.039 0.927 793
G 0.013 0.066 0.921 730

As can be seen from Table 4.2, the third liquid (L,) and "gas" (G) phases
have quite similar compositions and all phases have similar densities.

The evolution of the phase behavior with pressure at the vicinity of
the four-phase equilibrium point is shown in Figure 4.10. As can be seen,
the model correctly predicts the presence of a four-phase equilibrium region
at 313 K, but at a slightly different pressure (7.86 MPa, as compared to
the experimental value of 8.25 MPa). The predicted phase compositions
differ from the measured ones, especially for the (less dense) phases rich
in CO,. It is important to note, however, that no information about the
four-phase equilibrium region was incorporated into the model parameters.

The very presence of a four-phase equilibrium region implies the
existence of more than one three-phase region in the immediate vicinity of
the four-phase point (a point of fixed pressure at constant temperature,
according to the phase rule). The evolution of two three-phase regions
into a four-phase region and then again into two different three-phase
regions, was originally proposed by Gibbs in 1876, based solely on
thermodynamic arguments (no data were available). Figure 4.11 presents
two schematic three-dimensional diagrams of the topology of Gibbs space at
the vicinity of the four-phase equilibrium point, for pressure slightly

above and below the four-phase equilibrium pressure at constant temperature.
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Figure 4.10 Phase diagrams at the vicinity of the four-phase equilibrium

pressure at 313 K. Lower row, experimental; upper row, predicted (Eq. 3.6).

The appearance of four stable equilibrium phases must necessarily be
connected to the appearance of four distinct "peaks" in Gibbs space. Tne
determination of the phase diagram for a given topology is performed by the
geometric construction of fitting planes that are tangent to the Gibbs
surface, but do not penetrate any part of the surface. Two sets of such
planes can be constructed at each pressure, corresponding to the isothermal-
isobaric cross sections shown as projections on the X,-X, plane. ks

pressure is changed, the height of the peaks of the Gibbs energy changes;
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a four-phase equilibrium point exists when all four peaks are coplanar.
In this representation, it is easy to understand why the two distinct
three-phase equilibrium regions come together along a diagonal and separate
along a different diagonal.

The only other case known to us for equilibrium between four fluid phases
in a ternary mixture, is for the system isopropanol - water - CO, (DiAndreth
and Paulaitis, 1985) at 313 K and 7.6 MPa. It thus would appear that
ternary aqueous systems with a supercritical fluid offer unique possibilities
for the investigation of multiphase behavior, in addition to their practical

applicability in separatioms.

4.4, Acetic Acid - water - carbon dioxide

In Figures 4.12 and 4.13, the experimentally observed phuse equilibrium
behavior for the system acetic acid - water - carbon dioxide is presented
together with the predictions of the density-dependent model (Eq. 3.6 with
the Peng-Robinson form of Eq. 2.7) using parameters derived from binary
data. The experimental data for the system are summarized in Appendix C.4.

The phase equilibrium behavior of the system shares several features
with the results for previous systems. The ternary diagrams at low pressures
are dominated by a two-phase region fhat represents equilibrium between a
liquid mixture of water and acetic acid, and a carbon dioxide-rich phase
that contains small amounts of both acid and water. The solubility of CO,
in the acid phase increases with pressure, with a binary acid-CO, critical
point at a pressure of approximately 8.5 MPa at 313 K and 10.5 MPa for
333 K. This is similar to the binary critical pressures observed for the
binary systems of carbon dioxide with acetone and n-butanol. Again, above
the binary critical pressure, carbon dioxide and acid form a < .y
miscible binary.

A three-phase equilibrium region is experimentally observed for this
system for a narrow range of pressures just below the binary acid-CO,
critical pressure (at 7.7-8.1 MPa for T=313 K and 10.2-10.4 MPa for T=333 K,
from Table C.7). The model also predicts a three-phase equilibrium region
between 6.5 and 8.4 MPa at 313 K. This results in classification of the
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system as "type 2" (according to Elgin and Weinstock, 1959). This system,
although qualitatively similar to the ternary acetone system, has a much
narrower range of three-phase equilibrium coexistence regions. The behavior
of the acetone system can be interpreted as a liquid-phase split between
acetone and water at the presence of moderate quantities of carbon dioxide.
By contrast, the acetic acid behavior is more seen as equilibrium between
two phases rich in carbon dioxide at the presence of a liquid mixture of

acetic acid and water.

This contrast in behavior is apparent also at higher pressures: the
slope of the tie-lines at high pressures gives a distribution coefficient
of acetic acid between the aqueous and the supercritical phase that is
significantly less than 1, whereas the acetone system had distribution
coefficients at comparable conditions significantly higher that 1. The
difference in both high- and low-pressure behavicr can be interpreted as
an indication of a lower affinity of acetic acid for a carbon dioxide-rich
environment relative to acetone. This is consistent with the fact that
acetic acid has a high hydrogen-btond formation ability in an aqueous

envircnment that acetone lacks.

The ability of the model to predict the experimentally observed behavior
is again best at low pressures. The high pressure prediction is approximately
correct for the extent of the two-phase equilibrium region and the slope
of the tie-lines at low acid concentrations, but the slope of the tie-
lines as the plait-point is approached is less well predicted. It appears,
however, that the slope of the tie-lines at the low acid concentration

regions 1is correct.

4.5. n-Butyric Acid - water - carbon dioxide

The experimentally observed phase equilibrium behavior for this system

at 313 K is shown in Figure 4.14 and presented in tabular form in Appendix
C.6. The predictions of the density-dependent model (Eq. 3.6) are also

given on the same figure.
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The low-pressure behavior of the system is similar to the observed
behavior for the acetone-water-CO, system. A three-phase equilibrium
region appears at a relatively low pressure (between 2.0 and 4.0 MPa
experimentally and at a pressure slightly below 2.0 MPa from the model
predictions). At high pressures, the systemhas a single two-phase coexistence
region, with tie lines sloping towards the water corner, implying distribution

coefficients for n-butyric acid higher than 1.

The model predicts the evolution of the three-phase equilibrium region
with pressure quite closely and gives correct results for the slope of the
tie-line at high pressures, but overpredicts the extent of the two-phase
equilibrium region. The dense tie-lines close to the plait point at 15.0
MPa indicate that the binary system n-butyric acid - water is close to

phase separation.

4.6 Summary and conclusions
4.6.1 Phase equilibrium results

A pronounced effect of the hydrocarbon chain length in a homologous
series of organic compounds on the phase diagrams and the selectivity of
the supercritical solvent for the organic compound over water was observed.
This can be best described by comparing the results for the ternary diagrams
at a constant temperature and density for a series of organic acids, as
shown in Figure 4.15, comparing the results for the phase equilibrium
behavior at 313 K and 15 MPa for acetic, n-propionic and n-butyric acid
in ternary systems with CO, and water. Results for acetic and n-butyric
acid were obtained in this study and discussed before in the appropriate
sections; results for n-propionic acid were obtained by Willson (1987)

using the same experimental apparatus and procedures.

As can be seen in Figure 4.15, the change in hydrocarbon chain length
for this serles of straight-chain organic acids has the following effects

on the phase equilibrium behavior:
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Figure 4.15 Comparison of the ternary phase equilibrium behavior at
313 K and 15.0 MPa for acetic, propionic and n-butyric acids. Data for
propionic acid are from Willson (1987). Symbols as in Figure 4.2.
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a. The slope of the tie-lines, and therefore the distribution coefficient
of the organic acid between the supercritical fluid and aqueous phases
changes gradually: it is less than 1 (the acid prefers the supercritical
phase) for acetic acid, approximately equal to 1 (parallel tie-lines)
for n-propionic acid, and 1is greater than 1 (the acid preferentially
distributes itself to the supercritical phase) for n-butyric acid.

b. The extent of the two-phase envelope (on a mole fraction basis) is
less the higher the chain length of the acid.

c. As cthe hydrocarbon chain length for the acid increases, there is a
tendency for phase-separation on the acid-water side of the ternary
diagram. This is consistent with the fact that straight-chain organic
acids above n-pentanoic acid show a liquid-liquid phase split with
water at atmospheric pressure that is expected to persist up to high
pressures, since liquid-liquid equilibria are relatively insensitive

to pressure variations.

A similar behavior can be determined by comparing the results for n-
butanol (Figures 4.7 and 4.8) and literature results for ethanol (Figure
3.8). Again, increasing the size of the hydrophobic part of a molecule
results in an increased tendency of the organic compound to favor the
supercritical fluid versus the aqueous phase. This tendency is most
likely a direct result of the change in the character of the molecule from
hydrophilic at low carbon chain lengths, where the properties of the
molecule are primarily determined by the polar oxygen-containing group, to

hydrophobic as the carbon chain length increases.

Another observation relates to the sensitivity of the phase diagrams
to pressure and temperature. It was observed (Section 4.2) that the shape
and extent of the phase coexistence curves for all the systems studied was
relatively insensitive to changes in pressure and temperature apove the
critical pressure of the pure supercritical fluid, for the range of reduced
pressures 1.3< P =< 3 and for reduced temperatures 1.03< Ty =<1.10. This
is in agreement with the results of previous investigators for the ethanol
system (Gilbert and Paulaitis, 1986); this may not be correct when the

system behavior at the high pressure range is complicated by the presence
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of three-phase equilibrium regions. An example of this latter case is
provided by the system isopropanol - water - carbon dioxide studied by
Paulaitis et al. (1984) and Radosz (1984).

The equilibrium between four fluid phases, although theoretically possible,
has rarely been observed in the past. The appearance of the four-phase equi-
librium region for water - n-butanol - carbon dioxide system at 313 K may
be related ro two factors : 1) the immiscibility gap between water and n-
butanol, which is enhanced in the presence of CO, and 2) the proximity of
the critical point of carbon dioxide (T, = 304.2 K). In the binary system
water - CO,, a three phase equilibrium region is observed at a very narrow
temperature interval, up to 304.6 K ( Morrison, 1981). The multiphase
behavicr in the case of butanol and isopropanol extends to temperatures
further away from the critical point of CO,. One would expect this behavior
to be giite general, in that several other systems of the type water-

organic couppound - supercritical fluid may show similar behavior.

The densit;-dependent model was successful in predicting the qualitative
characteristics of the experimentally observed behavior for all the cases
studied, including the presence and approximate location of the four-phase
equilibrium region in the system water - n-butanol - carbon dioxide. The
quantitative agreement between model predictions and experimental data is
good in most cases, especially for the low-pressure region. For the high
pressure region, the wodel usually overpredicts the extend of the two-
phase region and does not accurately reproduce the location of the plait
points. However, since only binary parameters regressed from binary data
that contain no information about the ternary system behavior were used,

the overall performance of the model should be considered satisfactory.
4.6.2 Process implicaticns
The phase equilibrium behavior we observed can form the basis for

separation processes that utilize supercritical solvents for the recovery

of polar organic compounds from aqueous solutions.
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In general, the solvent power of the supercritical fluid, as determined
by the loading of the organic compounds in the supercritical phase at a
constant concentration of organic compound in the aqueous phase, was found
to increase with solvent density. Since an increase in pressure at constant
temperature or a decrease in temperature at constant pressure result in an
increased density (see Figure 1.1), this would also be the direction of
increasing solvent power of the supercritical fluid. The selectivity of
the supercritical solvent for the organic compound over water, however,
generally increases in the opposite direction: this can be verified from
Figures 4.4 - 4.6. A careful optimization of process conditions with
respect to both pressure and temperature for the best combination of

selectivity and solvent ratio is required.

The ability to use an equation of state that captures most of the
important characteristics of the phase equilibrium behavior of the systems
should greatly facilitate the design and optimization of separation processes.
When only binary data are available, the model predictions for the distribution
coefficients are not normally reliable enough for detailed process design,
but could serve as guidelines for a preliminary screening of potential

solvents and solutes.

4.6.3 Integration with fermentation processes

A conceptual integrated process for the recovery of fermentation
products from aqueous solutions using supercritical solvents is shown in
Figure 4.16. The basic steps involved are (i) the fermentation that
produces a dilute broth containing the growing cells, nutrients and desired
product (ii) a supercritical fluid contacting step that recovers part of
the product and (iii) separation of the desired product by pressure reduction
or a change in temperature and recycling of the supercritical solvent.
The success of the process depends on the ability to recover selectively
the desired product with a minimum amount of solvent and a low energy
consumption, as well as the ability to recycle the stream containing the

microorganisms with minimum damage to the growing cells.
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It has been observed (Willson, 1986) that under conditions typical for
extraction with a supercritical fluids, the growth of propionibacterium
freudereuchii is inhibited in the presence of the solvent, but the inhibition
may be reversible on removal of the solvent by depressurization. An
inverse correlation between solvent power of a supercritical fluid and
inhibition effect was observed. The likely cause for the inhibition was
found to be the dissolution of the supercritical solvente into the cell
membranes. The selection of possible solvents and conditions for an
integrated process for the production of low molecular-weight polar organic
compounds by biochemical synthesis and recovery with supercritical fluids
needs to combine information on the solvent properties and the biological

effects of supercritical fluids.
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Figure 4.16 A conceptual integrated process for production of organic
compounds using biochemical synthesis and recovery with a supercritical

fluid.
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CHAPTER 35
MONTE CARLO SIMULATION - METHODS

5.1 Introduction and research objectives

Direct computer simulation techniques have only recently advanced to
the point where the calculation of the properties of realistic mixtures
with acceptable accuracy is possible. In recent years, significant advances
have been realized in methods to determine the chemical potential of non-
ideal mixtures using Monte Carlo simulation (Romano and Singer, 1979;
Shing and Gubbins, 1983). The combination of better theoretical techniques
and significantly improved computer facilities makes molecular simulation
an increasingly attractive tool to understand and predict the behavior of

systems of practical importance.

In this work, we focus on the question of predicting the phase equilibrium
behavior of non-ideal fluid mixtures using Monte Carlo simulation, The
basic goal is the determination of the effects of molecular' size and
intermolecular potential energy differences in mixtures, on the macroscopic

phase behavior and on the microscopic structure.

The ability to determine phase diagrams for fluid mixtures is important
both from a theoretical as well as a practical point of view. For binary
fluid mixtures, the classification of Scott and van Konynenburg (1970),
based on the shape and location of the mixture critical curves, identifies
six possible classes of fluids. This classification can serve as a gulde
to the selection of solvents and process conditions for applications such
as supercritical extraction (Paulaitis et al., 1983). It has also been
shown using perturbation theory (Gubbins and Twu, 1977a, 1977b) that even

a simple potential model, such as the Lennard-Jones with multipolar
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interactions, can reproduce a wide range of types of phase equilibrium
behavior. However, few calculations of complete phase diagrams of mixtures

using direct molecular simulation have been reported.

A discussion of the general questions for the molecular simulation
part of this work was given in Section 1.3. The specific issues that need

to be addressed are summarized below.

a. We need to select models for the intermolecular potential energy
functions which will give a reasonable description of the basic features
of molecular interactions, while being simple enough to be tractable

using the available computational resources.

b. What are appropriate methods for the estimation of the position of phase
transitions in fluid mixtures using Monte Carlo simulation? Are there
short-cut methods that avoid the complete chemical potential determination

step and still give an indication of the presence of phase transitions?

c. How can we obtain the chemical potential in non-ideal mixtures in an
efficient way? What is the range of validity of the Widom test-particle

expressions for the calculation of the chemical potential?

d. We need to verify the accuracy and efficiency of our methods using

results from previous investigators for both pure-fluids and mixtures.

e. Finally, we would like to obtain results for a representative range of
non-ideal mixtures, to investigate the effect of the potential parameters
on the mixture phase diagrams and compare the results with corresponding

data for real fluids.

In the sections that follow, we present the methodology developed to
address questions a. to c. above. Comparisons of the calculated results
with literature results and the results from our calculations on mixtures

are given in Chapter 6.
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5.2 Monte Carlo simulation

5.2.1 Historical background

The availability of the first electronic computing devices in the
years immediately following the Second World War, made possible for the first
time calculations in which systems with several interacting particles
could be followed for a relatively large number of possible configuratioms.
The first use of computing machines for the calculation of thermodynamic
properties was made by Metropolis et al. (1953) for the hard sphere fluid.
His method became known as the Metropolis importance sampling algorithm,
and still forms the basis for Monte-Carlo calculations in statistical
physiecs. The theoretical basis of this method is presented in Section
5.5.2.

In a parallel development, the related method of molecular dynamics
was proposed by Alder and Wainwright (1959). In this method, the equations
of motion for a system of molecules are integrated in the time domain.
The method forms an alternate to the Monte-Carlo technique and offers
advantages when dynamic properties (for example, transport coefficients)
are of interest. The two methods are completely equivalent for the calculation
of equilibrium properties in the so-called ergodic limit, that is when a
sufficiently large number of configurations has been sampled (McQuarrie,
1976, p.554).

Despite the theoretical advancements, the capabilities of the early
machines were far from sufficient for the simulation of realistic fluid
and significant new advances were only made in the recent years with the
rapid increase in available computing power. Mixtures, molecules interacting
with complicated potentials and even biological macromolecules in solution
have been studied in the recent years. The potential for increase in the
scope of molecular simulations appears to be expanding at a very rapid
pace, driven both by the improvements in hardware and software technology
and by advances in theory that make it possible to determine properties

of practical importance.
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5.2.2 Metropolis importance sampling

The Monte Carlo method (Metropolis et al., 1953) is now a standard
technique in statistical physics. A summary of the basic technique is
given by Binder (1979) and Binder and Stauffer (1984), and only a brief
outline is presented here. In order to use the method, we need first to
define the system that will be investigated. We use the canonical (NVT)
ensemble, defined by a constant total number of molecules, total volume
and temperature. The thermodynamic average of any observable quantity, A,

can be written in the following manner :

[ ax acey T/

J dx oM B/l T

<> [5.1)

In Eq. 5.1, the numerator is the integral of the observable quantity A
over phase space, a 3N-dimensional space in the case of N molecules with
spherical symmetry that only have translational degrees of freedom. The
integral in the numerator is the canonical partition function. Hﬁ is the
Hamiltonian (or configurational energy) of the system and kB is Boltzmann's
constant.

The problem of evaluating the integral in Eq. 5.1 is a formidable cone,
even for a relatively small ensemble of a few hundred molecules, because of
the high dimensionality of the problem. It is important to note, however,
that not all regions in configuration space contribute equally to the
integrals in Eq. 5.1. In a relatively dense fluid, most of the configurations
that would result if we assigned random positions to a system of N molecules
(equivalent to sampling a random point of the phase space) would result in
the overlap of one or more molecules, with correspondingly very high
energy. Because of the negative exponentials in Eq. 5.1, at any reasonable
temperature, the contribution of the high-energy configurations to the
thermodynamic averages would be negligible. The Metropolis et al. (1953)

method of importance sampling is based on taking advantage of this property
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of the problem, and concentrating the evaluation of the integrals in Eq. 5.1
at points that are most likely to contribute to the thermodynamic averages.
In general, if we generate a set of configurations {gy) with an associated
set of probabilities (P(;v) )}, the expressions appropriate for the approximation
of Eq. 5.1 are :

M
¥ A(x,)P 1 (x,) e W (%)/T

";1 [5.2]

Z p-1 (Ev) e'HN (-’-‘-u)/kBT

ve=1

¢

where we have simply divided each point with the associated probability to
correct for the biased sampling. If we now select our sampling points
with the probability

P(x,) = e M(%)/1gT [5.3]
then Eq. 5.2 becomes simply

1 M
B> = Y A(x,) _ : [5.4]

vm1l

and we can obtain thermodynamic averages by simply taking the unweighted
average of the observable quantity over all configurations generated:

It can be shown that a sufficient but not necessary condition (Wood,
1968) for the Markov chain to have the desired property that P(x,) converges

towards the equilibrium probability given in Eq. 5.3, is:

Probability of tranmsition (x, - X,.) P(x,,)
) T P(x,)

14

- o M/KyT [5.5]

Probability of tramsition (x,,” x

where AH = H(x,.) - H(x,).
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Eqn. 5.5 does not specify uniquely the probability of transition
between states x, and X,,. A common choice for the transition probabilities

that we have used in this work, is:

1 ifAH =<0

Probability of transition (x, -+ x,6,) = [ [5.6]
e M/%T 16 an s 0

No constraint is placed upon the particular method used to generate
configuration x,  from configuration x,, other than the requirement of not
biasing the Markov chain by favoring some particular types of configurations.
The basic step is repeated using the generated configuration as the new
starting point, and a large number of steps (~10% in this study) are
executed and used to calculate the ensemble average properties of the

fluid via Eq. 5.4.

5.3 Determination of the chemical potential

5.3.1 Background

The determination, using molecular simulation, of those of the properties
of a fluid that can easily be calculated for a given configuration (such
as the energy, pressure or radial distribution functions) follows directly
from the application of Eq. 5.4. This is not so for derived properties,
those properties that in classical thermodynamics cannot be associated
with a single state of a system, but instead must be calculated by performing
a change to a state of known or assumed properties. Examples of the last
set of properties would be the entropy S, or the chemical potential of a
component in a mixture, u,. The calculation of such properties has been
performed up to recently, by using specialized simulation techniques such
as the grand canonical ensemble Monte Carlo technique (Adams, 1976; 1979),
or umbrella sampling (Shing and Gubbins, 198l1). A major disadvantage of
these techniques, is that the calculation of the derived properties is made
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on artificial systems; a separate series of simulations is necessary to

obtain the observable properties of the fluid.

5.3.2 The test particle method

The calculation of the chemical potential of a fluid based on tho
potential energy distribution functions was first proposed by Widom (1963)
and extended by Shing and Gubbins (1981, 1982, 1982). It has been used
recently for the determination of the chemical potential in fluids (Romano
and Singer, 1980; Powles et al., 1982; Fincham et al., 1986). Eq. 5.7
relates the residual chemical potent’al of a component i in a mixture to
the ensemble average of the energy of a "test" particle that does not take
part in the evolution of the system, but is inserted at a random position

in the fluid.

Bpy = — in <exp(-ﬁuf)> [5.7]

uf is the potential energy of interaction of the test particle with the
rest of the particles of the fluid (a simple sum of the corresponding
interaction energies). The residual chemical potential p,; , is the difference
between the chemical potential of component i in the fluid, and the same
component in an ideal gas mixture at the same density, composition and
temperature. It is useful to define the configurational chemical potential

of a component as:
By ¢ =By, ot ky TAnp [5.8a]

The chemical potential can then be calculated from :
By - By . + ky TAnX, [5.8b]

The chemical potential defined by Eq. 5.8b is the difference between the
chemical potential at the state of interest and a pure component ideal gas
reference state; it is equal for a component in all coexisting phases at

equilibrium.
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The inverse Widom relationship (de Oliveira, 1979; Shing and Gubbins,
1981) provides a similar expression where only the interaction energies of

real particles enter:

Buy . = In <exp(+puf)> [5.9]

Here u} is the interaction energy of a real particle (that is, a particle
that is a member of the ensemble during the simulation) with the rest of
the particles in the fluid.

The expressions shown above can be interpreted in physical terms as
follows: the chemical potential of a component is directly related to the

energy required to insert a molecule at a random position within a fluid

(Eq. 5.7); it is also directly related to the emergy required to remove a
molecule of this component from a position in the fluid (Eq. 5.9). 1In the
latter case, the position of a molecule is strongly correlated with the
positions of the other molecules in the system.

The energy distribution function £, (u) for the test particle of species
iis:

[ scau-pupy expi-pupraa™t

£, (u) = [5.10]

I exp (-puf)dq !

where § is the Kronecker delta. In Eq. 5.10, it is assumed that N-1 real
particles take part in the simulation. The integral in the numerator of
Eq. 5.10 is a constrained ensemble average so that the interaction enargy
between the test particle and the N-1 real particles is always u. Similarly,

the energy distribution function g, (u) for a real particle of species i is:

[ sau-put) exp(-putrad

gy (u) = [5.11)

I exp (-fus)dq"

Note that Eq. 5.11 is written for a system of N real particles, whereas
Eq. 5.10 was written for a simulation with N-1 real particles. When the
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two systems have the same total volume and temperature, it can been shown
(Shing and Gubbins, 1981) that f(u) and g(u) are related through the

following expression:

£, (w)

in = pu - By, . [5.12]

g; (u)

The test and real particle distribution functions describe the frequency
of occurrence of a given interaction energy. As such, they are interesting
in themselves for the determination of the dominant energy interactions in

a fluid. It follows directly from Eq. 5.10 and 5.11 that:

' -1
exp(bu ) = | [Ewerat-pwan | - [awenprpnran [5.13]

Eq. 5.13 implies that we can calculate the chemical potential from an
integration of the functions f(u) and g(u). The integrands in Eq. 5.13
represent the contribution of a given energy of interaction tc¢ the chemical
potential of the fluid; these functions also provide information about the

structure of the fluid.

Both expressions (Eq. 5.7 and 5.9) for the calculation of the chemical
potential fail at high densities because of inefficient sampling of
configurations of favorable (negative) energies in Eq. 5.7 and of repulsive
(positive) energies in Eq. 5.9. An asymmetry exists, however, in the
accuracy of the two expressions in a practical simulation. It appears
(and we have verified that in the course of the simulations performed),
that Eq. 5.7, averaging over the interaction energies for the test particles,
gives much better results than Eq. 5.9 that averages over the real particles.
The causes for this fundamental asymmetry were discussed by Powles (1982)
and appear to be related to the inadequate normalization of the real
particle distribution function for positive-energy (repulsive) energies in
a simulation of limited length. Because the positioning of the test

particle is random, this is much less of a problem for Eq. 5.7.
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Shing and Gubbins (1981) proposed using the region of overlap of the two
distributions and then integrating (via Eq. 5.13) each distribution separately
up to that point. The method requires the determination of the appropriate
proportionality constant between the integrands of Eq. 5.13, which depends
on the unknown chemical potential itself. Shing and Gubbins have argued,
however, that the use of both the test- and real-particle distribution
functions minimizes the effect of the uncertainties associated with the
tails of the energy-distribution functions that are not well sampled.

Powles et al. (1982), on the othazr hand, used Eq. 5.12 to obtain the
value of the chemical potential directly. It has been shown (and we also
verify this for our simulations) that this method and the direct integration
of the test particle distribution function give results that are very
close to each other. The direct method (Eq. 5.12) is the approach preferred
here, because (i) an independent verification of the validity of the
simulation and the efficiency of sampling the relevant configuration space
is possible by plotting #n[f(u)/g(u)] vs u and comparing the best slope of
the line to 8 = 1/k;T, and (ii) one can obtain error estimates for the chemical
potential from the standard deviation of the points around that line. For
most of the cases studied in this work, the results of this method and the
direct usage of Eq. 5.7 agree to within the estimated uncertainty of the

chemical potential.

5.4 Fluctuation theory and its applications

In the vicinity of phase instabilities (i.e., close to spinodal curves),
the accurate calculation of the thermodynamic properties of a mixture
using Monte Carlo simulation is hindered by large fluctuations in local
density and energy. In a truly macroscopic system, complete phase separation
into distinct homogeneous regions would resulc, but for a microscopic
model system with a small number of molecules and spacially periodic
boundary conditions no phase separation is possible. Specialized techniques
that restrict the maximum allowed fluctuations in density within subregions

of the simulation cell have been used (Hansea and Verlet, 1969) to allow
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for a continuous integration of the pressure-volume relationship for a
pure fluid through the unstable region.

Little attention has been paid, however, to the possibility of utilizing
fluctuations to detect the presence of phase transitions in a mixture.
The equations relating principal fluctuations in macroscopic systems to
thermodynamic derivatives (Landau and Lifshitz, 1980; Debenedetti, 1986;

Panagiotopoulos and Reid, 1986) are:

aN
For a pure fluid : <6N&N>, = kT [——-] =- -
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For a multicomponent mixture : <§N, 6N, >v = kgT [ [5.15]
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Eqs. 5.14 and 5.15 describe the fluctuations of the number of molecules
in a fixed volume containing a macroscopic number of particles at equilibrium
with an infinite 2nergy and mass reservoir. The fluctuations would diverge
at the limit of intrinsic stability (the spinodal point), since the derivatives
at the right-hand side of Eqs. 5.14 and 5.15 diverge. In the canonical
NVT ensemble used in the simulation, the total number of molecules in the
simulation volume is constant and the above expressions clearly do not
hold; one way of obtaining a measure of the intensity of the fluctuations,
however, is to subdivide the simulation volume into smaller subcells an-
observe the number of molecules of each species for a series of configurations.
The size of the subcells should be significantly smaller than the total cell
size so that the influence of the periodic boundaries and the constant
total number of molecules would be minimized, but should also contain as
large a number of molecules as possible to allow for meaningful statistics.
The requirements for strict validity of Egs. 5.14 and 5.15 can never be met
when a phase transition is approached. In these cases, the correlation length
for the density or concentration fluctuations in the macroscopic system
grows without bound and exceeds the length of the simulation cell. What
we hoped to obtain, despite this limitation, is an indication of the

presence of a phase transition.
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5.5 Intermolecular potentials and selection of systems
5.5.1 Intermolecular forces

For matter at normal conditions, the intermolecular forces determining
the structure and physical properties are entirely due to the electromagnetic
interactions between the charged particles, electrons and protons, which
make up an atom or a molecule (Maitland, 1981). It is convenient to
classify the contributions to intermolecular forces between neutral species

into several distinct categories:

a. Overlap forces At short ranges relative to the dimensions of atoms
and molecules, as determined by the volume.per particle for dense liquid
and solid phases, the dominant intermolecular interactions result in
strong repulsive forces. These forces have their origin to the partial
overlap of the electronic clouds of the molecules: according to the Pauli
exclusion principle, some electrons will be prevented from occupying the
overlap region, and tbe nucleic positive charges become incompletely
shielded from each other. Although the qualitative features of these
forces are well understood, the exact cglcu_lati;)n of the dependence of

force on distance for short distances is extremely complex.

b. Electrostatic contributions Molecules possessing permanent multipole
moments (dipole, quadrupole etc), interact at all distances without
distortion of the electron clouds. These forces become dominant at
large distances, since the decay of the force with distance is of a
lower order than for the overlap (short-range) forces. These forces
can be both repulsive and attractive, depending on the relative orientation
of the molecules.

c. _Inductiog contributions The interaction of a molecule with a permanent
dipole (or higher-order) moment and a polar or non-polar molecule
results in a distortion of the electronic cloud of the second molecule

due to the electric field of the first. This interaction is always
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attractive and usually lower in magnitude than the direct contribution

for polar molecules.

d. Dispersioncontributions For the interaction between non-polar molecules,

the only source of the long-range attractive contributions to the

intermolecular energy result from dispersion contributions. These

forces, first treated by London (1930), are due to instantaneous k
fluctuations in the electron density that result in fluctuating electric i
multipoles that in turn induce corresponding multipoles to the othlier -

molecule. The forces are attractive, do not depend on orientation for —

large distances, and are also present for the interactions between

polar molecules.

Even as the qualitative features of the intermolecular forces are now
well understood, accurate intermolecular potentials are not available,
except for some of the inert gases. For the interactions in dense phases,
it is now accepted, that multibody (non pair-wise additive) forces play a
role in determining the properties of a fluid. By appropriately selecting
"effective" pair-wise additive potential energy parameters, however, it is
possible to represent the properties of simple atomic fluids using potentials
(such as the Lennard-Jdnes potential) that contain terms representing
overlap and dispersion forces only. For the purpose of determining the
effect of the basic molecular parameters on the thermodynamic properties

of fluid, such a potential appears to be a good starting point.

For representing the intermolecular interactions, we selected to use
the simple, spherically symmetric Lennard-Jones (6,12) potential energy
function to represent interactions between like and unlike molecules. We
selected this energy function for two reasons: (i) a large number of
theoretical and computer simulation studies employed this potential, thus
providing a basis for comparisons and (ii) the Lennard-Jones potential
incoxrporates both repulsive (size exclusion) and attractive interactions
and should be able to account for a wide range of observed phase equilibrium
characteristics. In addition, since only these two kinds of interactions

are incorporated, it would be easier to investigate the effect of each
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separately, as well as the combined effect, on the calculated chemical
potentials and the mixture phase diagrams. Additional refinements of the
potential used, with the incorporation of non-spherical repulsive cores or

multipolar interactious, can be introduced at a later stage.

5.5.2 The Lennard-Jones potential

The Lennard-Jones (6,12) potential energy function is written as

uy(r) = ey [ [ aid]l?_ [ 014]6 ] ‘ - [5.16]

r r

where e is the potential well depth and o the characteristic length-scale
of the potential.

We can use the two potential parameters ¢ and ¢ to reduce the thermodynamic
variables to nor-dimensional form. The definitions of the reduced variables
(denoted by ") are given below, using component 1 as the basis for the
scaling. By convention, component 1 is the one with the largest size

paramater o:

kyT By
€53 = €15/€1, gy = 033/91, T = — By =
€11 €11
3 3 [5.17]
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For the representation of the interactions between unlike molecules, a
common practice is to use "combining rules", that express the unlike potential
parameters in terms of the pure component parameters. A commonly used set
of such combining rules is the Lorenz rule for o

o,y = (a11+”JJ)/2 [5.18]
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and the Berthelot rule for e
1/2
e, = (e [5.19]

Neither rule is exact, and especially the Berthelot rule appears to
systematically overestimate the magnitude of the wunlike potential well
depth (Maitland et al., 1981, pp.519); because of this, an empirical
correction factor is wusually incorporated into Eq. 5.19. Since it is
difficult to estimate a priori the magnitude of the correction, experimental
data are normally used to guide the selection of appropriate values for

the cross parameters.

5.5.3 Selection of systems

The selection of systems was made based on the stated goal of obtaining
results for the phase equilibrium behavior for a representative set of
molecular size and energy parameters. Three types of mixtures were selected
for the investigation, covering respectively (i) the case of components of
equal sizes that deviate from the Berthelot geometric-mean rule for the
unlike-pair interaction, (ii) the case of a mixture with components that
differ significantly in size but have similar potential well depths and
(iii) a case with pure components that differ both in size and potential
energies of interaction with unlike-pair interactions that follow Egs.
5.18 and 5.19. This last case represents a simple model of a realistic mixture
and we can directly compare the results from the simulation with experimental
phase equilibrium data. For simplicity, a single temperature, T"=1.15,
was investigated for all systems. In addition, a temperature range was
investigated for Mixture III to obtain results for the mixture critical
curve as a function of temperature. Table 5.1 summarizes the potential
parameters used for these three mixtures, and the temperature (or temperature

range) at which the mixture phase diagram was investigated.

o Ee——— — =

.o
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Table 5.1 Lennard-Jones (6,12) potential parameters for the mixtures studied

Mixture €1, €1, €32 011 o}, 05, ™
1 1 0.75 1 1 1 1 1.15
II 1 1 1 1 0.885 0.769 1.15
I1I 1 0.773 0.597 1 0.884 0.768 0.93-1.19

5.6 Computational procedures
5.6.1 Spatially periodic boundary conditions

The simulation of a truly macroscopic system (that is, incorporating a
number of molecules of 0(1023) is impossible and even undesirable in
practice. The memory and execution speed limits of modern computers
generally impose a limit on the maximum size for a system to be investigated
of a few hundred to a few thousand molecules. A system of this size, if
isolated, would be only a few times larger that the characteristic size of
the molecules. Because of this, surface effects, with a relative significance
inversely proportional to the system size, would completely dominate the
behavior of the system. ,

One method of overcoming this difficulty, is the use of periodic
boundary conditions. Figure 5.1 gives a schematic representation of the
periodic boundary conditions in two dimensions. The extension to three
dimensions is direct. In essence, when a molecule leaves the boundary of
the simulation volume and ends up to one of the neighboring cells, a new
image of it is made to appear in the basic simulation cell. The molecules
interact with all their nearest neighbors, including the molecules belonging
to cells other than the basic cell. The effect of the artificial periodicity
is minimized when the potential energy functions used are of limited
range; ideally, no interactions should exist that extend beyond a distance
equal to half the basic cell edge. For the Lennard-Jcnes potential, this
condition is well satisfied, provided that the basic cell has a linear

dimension more than a few o (the hard-core diameter of a molecule).
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Figure 5.1 Spatially periodic boundary conditions in two dimensions.

The periodic boundaries make the simulated system appear as if embedded
in an infinite medium, but they give rise to an artificial periodicity not
found in real systems. Fortunately, the effect of this artificial periodicity
on the properties of the fluid is small, except in regions where large-
scale correlations would exist in a macroscopic fluid, e.g., close to a
critical point.

The practical implementation of the condition that each particle
should interact directly with only its nearest neighbor is based on the
"minimum image convention". This is a computationally efficient method of
deciding which of the 27 possible nearest-neighbors (for a cubic basic

cell) is the nearest one, based on the requirement that the absolute
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differences in the values of the particle coordinates should not exceed

half the box size for the nearest-neighbor pair.

5.6.2 Cutoff radius and long-range corrections

It was indicated in the preceding section that the range of the potential
cannot be allowed to exceed half the box size, because of the periodic
boundary conditions. In addition, for computational convenience, it is
preferable to use a discretized, rather than continuous, form of the
potential. This is so because the "table look-up" operation required to
obtain the value of the pbtential at a given distance when the potential
is in discretized form, is orders of magnitude faster than the calculation
of the full potential (for the Lennard-Jones potential). Because of these
requirements, a discretized and truncated form of the potential was used.
The truncation was made at the maximum permitted distance equal to 1/2 the
box edge length. There is one exception: at low densities, the length of
the simulation cell with the fixed number of molecules used, greatly
exceeds the characteristic length of the potential. To prevent large
discretization errors in this case, we imposed a maximum limit on the

cutoff radius equal to 4o,,.

The long-range corrections to the thermodynamic properties are based
on the assumption of uniform distribution of pairs beyond the cut-off
radius, an assumption that is confirmed by the radial distribution functions
that we obtained (e.g. Figure 6.17). The following expressions were used
for the calculation of the long-range corrections to the energy, pressure

and chemical potential (adapted from Hansen and Verlet, 1976, pp. 40)

@

AU n n 2
_ - 210 ) ) u,, (r)g, , (r)rdr [5.20]
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n
2
Ap, = bmp ) u,, (r)g,; (r)x"dr [5.22]
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[

Assuming a uniform density of pairs beyond the cutoff radius, and substituting

the potential from eq 11, we obtain, in raduced quantities:
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Because of the relatively large cutoff radius, the required corrections
to the energy, pressure and chemical potential were always below 2% of the

calculated value.

5.6.3 Particle interchange technique

In the simulation of mixtures, particularly when the components differ
greatly in size or interaction energies, ensemble averages converge much
more slowly than for pure fluids. The reason for this is that at high
densities, only very small displacements of the larger particles are
allowed by Eq. 5.6 for a large particle interacting with several other
molecules. One way to improve this situation, is to introduce the possibility
of "jumps" by the large particles, by randomly interchanging the positions
of two particles. In the case of a pure fluid, the new configuration is

identical to the old, and there is no benefit in performing such an
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interchange. In the case of a mixture, however, the new configuration is
different from the old 1f the two particles selected are of different
types. The acceptance ratio of this interchange step for the case of
mixtures of Lennard-Jones molecules is relatively high even at liquid-like
densities because the removal of a particle at a position opens up a hole
that may accommodate a larger molecule (detailed results for the acceptance
ratios for the interchange steps obtained for the mixtures studied are
given in Appendixz G.). No biasing is introduced, since the selection of
the pair to be interchanged is completely random. The sampling of
configuration space becomes significantly more efficient with only modest
increases in the computational time per configuration. Numerical examples
of the advantages gained by using the particle interchange technique are
given in Chapter 6. ‘ ' .

This interchange possibility is an example of the potential advantages
of the Monte Carlo method relative to molecular dynamics for the calculation
of equilibrium properties. The introduction of artificial "jumps" that
helps to sample a larger region of configuration space and thus speed up the
calculation of equilibrium properties is not possible when the evolution
of the system is dictated by the equations of motion.

Simulations with periodic attempts to move a particle by a relatively
large distance using interchange have been proposed in the past (Fixman,
1983), but, to the best of our knowledge, this is the first time an interchange
method is applied for the calculation of the properties of a mixture of

dissimilar components.

5.6.4 Simulation parameters

All simulations were performed using the Metropolis Monte Carlo method
in the NVT ensemble with particle interchange for the binary mixtures at
high densities. A total number of 256 molecules was used in a cubic box
with spatially periodic boundaries. The relatively large number of molecules
used makes the application of Eq. 5.7 - 5.13 easier because the difference
between the system with N and N-1 molecules at the same total volume is

negligible, corresponding on the average to a density change of less than
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0.4%. This agrees with the observations of Powles et al. (1982) and
Fincham et al. (1986).

The starting configuration for all runs was a faced-centered cubic
lattice with a random assignment of the type of molecules to either of
type 1 or 2 in the case of binary mixtures. Between 6x10° and 1.5x10°%
"composite" steps (an attempted displacement and interchange) were performed
for a single density-composition point. The requirements for computer
time were of the order of 0.5 - 1.0 ms per configuration on a CYBER-205
supercomputer using explicitly vectorized code. A minimum of 10° initial
configurations from each run were rejected to allow for equilibration. It
was determined that this number was more than sufficient to allow for
complete "loss of memory" of the initial non-random configuration.

For the application of the test particle method, a total of 256 static
test particles were used. These were placed on a faced-centered cubic
lattice (as for the starting configuration of the real particles). No
sampling problems related tc the correlation between the initial particle
positions and the test particle positions were encountered. Equal numbers
of test molecules of type 1 and 2 were used for all mixtures studied in
order that the number of samples for the test particle distribution functions
would not decrease for the dilute mixtures (as would have been the case if
the overall mixture composition was used to determine the number of test
particles). The energy distribution functions for the real and test
particles were recorded every 250 simulation steps, discretized into bins
of 0.2 reduced units width, for energies between -20 to +20 in reduced
units. More frequent sampling did not improve the statistics because of
the correlation in positions between successive configurations. For the
real particle interaction energies this energy range was sufficient to
cover all events; for the test particle interaction energies, events with
u* = +20 were simply counted for the purpose of normalizing the test
particle distribution function.

The simulation volume was subdivided into 8 cubic subcells, each with
edge length half that of the total simulation volume. The number of
particles in each subcell was traced by a bookkeeping algorithm, and the
total number of molecules of each species, the total energy and the virial

of the force in each of the subcells were recorded every 250 "composite"



150

steps. From this record, a post-run analysis for the average fluctuatiecns

was performed.

5.6.5 Determination of the phase diagrams

The calculation of the phase diagram of a fluid or fluid mixture
proceeded according to the following methodology: (i) a broad picture of
the regions in thermodynamic space was obtained by testing for large
fluctuations; these would be regions of possible phase separation,
(ii) detailed results for the thermodynamic properties of a series of state
conditions that bound the regio'n'of ;;hase separation were calculated and
(iii) a numerical solution was found for the thermodynamic conditions for

phase equilibrium, namely that:

PI - PII
(5.26]

pl = pil , i=1,n

where I and II denote the coexisting phases. The procedure for the solution
of this set of non-linear equations 1Is based on an iterative graphical
calculation. The simulation results for the pressure and chemical potential
as functions of density and mole fraction are plotted, and smooth curves
are fitted to the simulation points. An initial guess for the composition
and density of the coexisting phases is made, and the solution is refined
until the conditions given by Eqs. 5.26 are satisfied to within the estimated
accuracy of our results. Linear interpolation between the simulation
points is utilized for conditions where no simulation results were available.

In certain cases, the calculation of the properties of one of the
coexisting phases may be carried out by theoretical methods, without need
for simulation; this would be the case for low density gas phases where
the virial expansion would adequately describe the properties of the
mixture. However, even for the pure Lennard-Jones (6,12) fluid using the
first five virial coefficients (Barker et al., 1966), the convergence of

the virial series is quite slow. The conditions for satisfactory convergence
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of the virial series (Nicolas et al., 1979) were not met for mest of the
conditions studied in this work, so a full calculation of the properties

at low (gas-like) conditions was necessary.

5.6.6 Programming and computational time considerations

Modern supercomputers, base their speed on the ability to operate, in
the central processing unit, on a series of items (a "vector") without
need to interrupt continuously for the slower memory retrieval and storage
operations. Because of this, thg,eff;ciqnt usage of these machines requires
the "vectorization" of the domﬁutef prbgrams uSéd. In Appendix f;'wé ﬁresent
the listings of the FORTRAN programs written for the simulations. Complete
vectorization of the internal loops for the Monte Carlo simulation program
was achieved by using explicit vector operation statements. The computational
time requirements are of the order of 0.5 - 1.0 ps/configuration generated,
on a CYBER 205 supercomputer. The computer time requirements for the
unvectorized code was approximately 4 times as large. The computational
tirme required increases with the interchange efficiency (the fraction of
successful interchange steps) because of the need to update the position
and infteraction energy vectors.

For the generation of the pseudo-random number sequence, we used the
intrinsic CYBER 205 random number generator (function RANF). This is a
fast, 64-bit mixed congruential random number generator that was tested
for correlations among successive triads of generated random numbers and
found satisfactory. Use of a different 32-bit mixed congruential random
number generator or changing the initial "seed" did not affect the results

for the calculated properties or the chemical potential.
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CHAPTER 6
MONTE CARLO SIMULATION: RESULTS

6.1 Pure Lennard-Jones (6,12) fluid
6.1.1 Thermodynamic properties and comparison with literature

The Lennard-Jones (6,12) fluid has been widely studied by theoretical
and computer simulation methods. A thorough review of the available results
up to 1979 is given by Nicolas et al. (1979). Here, this fluid is used to
verify the accuracy of our procedures and to illustrate the new methods we
propose.

Table 6.1 presents a summary of the comparison between the calculated
results for the properties of the pure Lennard-Jones (6,12) fluid and
literature results. The Nicolas et al. (1979) equation of state, a 32-
parameter equation fitted to the literature results available up to 1979,
is used for the comparisons when no directly comparable results are available.
The agreement between the sets of results is satisfactory for all properties,
including the chemical potential at high densities. Occasional discrepancies,
e.g., for the reduced energy at p"=0.050 and the chemical potential at
p*=0.800 at T*=1.15, may be due to an inadequacy of the equation for these
state conditions as evidenced by the much better agreement with direct
literature results. The estimated statistical uncertainty of our calculated
results is, in most cases, similar to the observed deviations between the
results from different sources. The statistical uncertainty of the chemical
potential rises rapidly with density, being approximately #0.3 for p" =
0.800. Beyond this density, specialized sampling techniques csuch as the
test particle method with umbrella sampling (Shing and Gubbins, 1982) are

needed for the accurate determination of the chemical potential.
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Table 6.1 Comparison of the properties of the pure Lemmard-Jomes (6,12) fluid

This study Equation of statel! Other studies
p* T
- U P - pt - U P* - -u p* - u* Source
0.025 0.928 0.224 0.0201 3.67 0.233 0.0199 3.69
0.050 0.928 0.460 0.0334 3.28 0.459 0.0334 3.31
0.600 0.928 4.265 -0.456 4.52 4.289 -0.486 4.70
0.700 0.928 4.939 -0.250 4.01 4.971 -0.227 4.31
0.750 0.928 5.288 0.046 3.73 5.296 0.113 3.84
0.800 0.928 £5.602 0.626 2.92 5.608 0.655 3.14
0.050 1.15 0.431 0.0461 3.92 0.402 0.0464 3.90 0.431 0.0460 3.93 2
0.100 1.15 0.872 0.0699 3.55 0.789 0.0724 3.52 0.86 0.07 3
0.600 1.15 4.118 0.000 3.68 4.144 -0.012 3.83 4.14 0.05 3
0.700 1.15 4.792 0.480 2.52 4,803 0.481 3.08 4.83 0.508 2.65 4
0.800 1.15 5.406 1.708 0.63 5.403 1.704 1.46 5.40 1.90 3
0.050 1.556 0.367 G.0691 5.00 0.357 0.0693 5.01
0.200 1.556 1.405 0.201 3.71 1.380 0.197 3.72
0.400 1.556 2.682 0.344 3.28 2.649 0.316 3.32
0.600 1.556 3.932 0.892 2.15 3.924 0.822 2.36
0.800 1.556 5.093 3.445 1l.44 5.066 3.471 1.34
1 Nicolas et al., (1979)
2 Interpolated from Adams (1979)
3 Hansen and Verlet (1969); the data at p*=0.80 are interpolated
4

Interpolated from Adams (1976)

In Figure €.1, a graphical comparison is made for the pressure-density
relationship at two temperatures. Quite different methods have been used
by the various studies, including canonical and grand-canonical ensemble
Monte Carlo as well as molecular dynamics. The size of the ensemble used
also varies between 108 and several thousand molecules. In the reduced
units used, the critical temperature of the Lennard-Jones (6,12) fluid is
approximately T*=1.35. The isotherm shown at T*=1.15 then corresponds to
subcritical conditions, whereas that at T*=1.56 is supercritical. One
basic difference between the two isotherms is the fact that for the subcritical
isotherm a van-der-Waals "loop" is observed, with the pressure passing

through a local maximum, then decreasing with increasing demsity in the
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mechanically unstable region and then increasing again on the liquid,
high-density side of the isotherm. This behavior is a natural consequence
of the limited size of the simulated system; in a macroscopic fluid, the

pressure-density relationship in the coexistence region would be flat.

0.0 02 0.4 0.6 0.8 1.0

Figure 6.1 Pressure-density relationship for the pure Lennard-Jones (6,12)
fluid. (O) This study ; (A) Hansen and Verlet (1969) ; (+) Adams (1976)
; (%) Adams (1979); (¢) Yao et al. (1982); (—) Equation of state,
Nicolas et al. (1979).
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6.1.2 Fluctuations

We use the pure Lennard-Jones fluid to illustrate the possibility of
determining the presence of a phase transition based on the microscopic
fluctuations. In Figure 6.2, we show a typical configuration for the
system at T*=1.15 and p*=0.20, a state condition that corresponds to an
unstable region according to Figure 6.1. This configuration was obtained
in an early run using N = 128 molecules. As may be observed in Figure
6.2, the fluid aggregates into regions of relatively high density (liquid-
like) and regions of relatively low density (gas-like). These regions are
not static; the aggregates form and dissolve rapidly as the simulation
evolves, but the overall picture remains similar to Figure 6.2 when the

simulation is performed inside regions where a macroscopic fluid would

phase separate.

Figure 6.2 Three dimensional representation of one instantaneous
configuration for the pure Lernard-Jones fluid at T"=1.15 and p*=0.20,
with N=108 molecules. The molecules are drawn at a distance equal to
0.80. The same configuration is represented in both halves with the

origin of the coordinate system “indicated by the arrows) rotated by 90°.

TN I By i
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To quantify this behavior, we have determined the fluctuations in number
density within each subcell of our basic cell. The observed fluctuations
in number density in 1/8 of our simulation volume, averaged over all
subcells for every run, are presented in Figure 6.3a. A distinct difference
in the fluctuation behavior is observed between the subcritical and
supercritical isotherm. The subcritical isotherm shows a pronounced
increase in the level of the fluctuations inside the phase coexistence
region, whereas no such effect is present for the supercritical isotherm.
The fluctuations at high densities are less pronounced than at low densities
because of the lower compressibility of the liquid. 1In Figure 6.3b, the
expected values for the fluctuations in an infinite system are shown, as
obtained from differentiation of the equation of state of Nicolas et al.
(1979), according to Eq. 5.14. The fluctuations for the subcritical isotherm
diverge at the limit of stability for the fluid which, of course, cannot be
observed in the simulations. The fluctuations for the supercritical isotherm,
however, are also more pronounced than observed in the simulations. This
is due to the fact that the fluctuations in the subcells are influenced by
the boundary conditions (constant total number of particles) and the average
number of molecules in each subcell is rather small (32 molecules). The
conditions for exact validity of the fluctuation relations do not hold. This
limits the usefulness of the determination of fluctuations in fluids to
qualitative indications of the presence or absence of a phase transition,
as well as its approximaée location within the phase diagram. The
determination of the location of phase transitions requires the calculation
of the chemical potential, as discussed in Section 5.3.

Contrary to the behavior at intermediate densities, the fluctuations in
the high density range (p*>0.700) from Monte Carlo simulation are higher that
the theoretical prediction based on Eq. 5.12. The explanation for this
discrepancy 1is again related to the small subcell size. At the limit
where the subcell is so small as to contain just 1 molecule on the average,
the simulation results would indicate large fluctuations even at close-
packing densities, since the center of a molecule may or may not be found
inside a subcell. A correction for this discretization effect may be
possible by modifying the counting technique so as to take into account

the presence of fractional molecules, or by using a larger subcell.

BN KD OMg R Sowes wn =
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6.1.3 Energy distribution functions

Figure 6.4 presents the results for the test-particle energy-distribution
function for the pure Lennard-Jones fluid at T*=1.56. Figure 6.5 presents
the corresponding results for the real-particle energy distribution function.
Comparable results, but at a lower reduced temperature, have been presented

by Powles et al. (1982). Several observations can be made at this point :

a. At low densities, both real and test particle emnergy distribution
functions show a sharp peak at u" = 0, corresponding to an isolated
particle. A peak is also observed at a value of u" = — 1, corre-
sponding to a pair of interacting particles. The distribution
functions drop off rapidly for positive values of u*, since repulsive
interactions in the low density gas are uncommon. The functions
also decrease rapidly at lower (more negative) values of u*, since
it is unlikely that a single particle will interact with more than
one other particle at a time. The real and test particle distribution

functions are quite similar at the lower densities.

b. As density is increased, the maximum value of the test particle
distribution function decreases significantly, and the peak becomes
less sharp and shifts towards lower energy values. This is explained
by the fact that the probability of accommodating a test particle
in a "hole" of suitable size, without overlap with any of the real
particles becomes smaller as the density increases. On the other
hand, if such a configuration should occur during the simulation,
the test particle is 1likely to be surrounded by several real
particles, thus interacting with a large negative energy. The
error (statistical uncertainty) in the determination of the test
particle distribution function increases as density increases; it
is greatest at the tail of the distributions. This is due to the
fact that only a limited sample is available. A value of the test
particle distribution function of 10°° would imply that only one
in every 100,000 samples contains a test particle in a configuration
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within 1 unit of a given energy. Such events are too rare to be evaluated

with good accuracy in a simulation of reasonable length.

c. The real particle distribution functions show similar trends
towards less sharp peaks and lower energies as density increases,
but the wvalue of the distribution function at the maximum (ard
thus the relative probability of occurrence of favorable energy
configurations) remains constant. In a macroscopic fluid, or
during a simulation, a real particle is not likely to find itself
in a configuration of high positive energy. The statistical
problems mentioned above for the test particle distribution functions

are also present for the tail of the distributions.

A test of the validity of Eq. 5.12, as well as a test of the ability to
obtain representative configurations that allow the chemical potential to
be estimated is obtained by plotting the distribution functions f(u*) and
g(u') as n[f(u*)/g(u")] versus u*. This is done in Figure 6.6 for p* =
0.60 and two temperatures, T* = 0.93 and T* = 1.56. The straight lines in
Figure 6.6 are drawn with slopes exactly equal to 8 = 1/k;T; the y-intercept
was fitted to the points at each temperature. The data lie remarkably
close to the straight line with the correct theoretical slope,' except at
the end of the distributions where. the statistical accuracy of the
determination of the f(u) and g(u) functions is lower. The y-intercept
(at u*=0) of these lines is directly related, according to Eq. 5.12, to
the residual chemical potential at this state point. The estimated statistical
uncertainty for the chemical potential at this density is approximately *
0.05 reduced units, as calculated from the scatter of the data around the

straight line.

It was observed that for densities up to approximately p*=0.7, application
of Eq. 5.12 (plotting In[£(u*)/g(u")] versus u") gives results virtually
identical to the ones obtained by the simple test particle expression (Eq.
5.7). Since the latter method is easier to implement computationally, we
have used Eq. 5.7 for most conditions studied, and tested a representative

sample of the high-density results using Eq. 5.12.
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in | 1(u*)/g(u")]

Figure 6.6 The function £n[f(u*)/g(u’)] vs. the energy u" for the pure
Lennard-Jones fluid at p* = 0.60. The line has slope exactly equal to
p=1/k, T and intercept fitted to the points . (a) T*=0.93; (QO) T*=1.56.

6.2 Calculation of the chemical potential for mixtures and comparisons

In the previous sections, we presented results for the calculation of
the chemical potential for the pure Lennard-Jones fluid and demonstrated the
agreement with literature results for the properties of the pure fluid.
In order to ascertain the validity of our mixture calculations, we also
performed a comparison of our results with literature results for the
chemical potential in mixtures. We chcse to compare our findings with the
results of Shing and Gubbins (1983) for a mixture of Lennard-Jones molecules

at conditions similar to the ones we have studied. The comparison is
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given in Table 6.2, and graphically depicted in Figure 6.7. As can be
seen, the agreement between the two sets of results is good for all
compositions. There are small systematic deviations (our results tend to
be slightly higher), especially for the chemical potential of component 2,
but the agreement is probably within the accuracy of the results (shown in
parentheses for our results; the results of Shing and Gubbins have a
claimed accuracy of 5%). The systematic differences may be due to the
difference in ensemble size (128 molecules for Shing and Gubbins versus
256 molecules fur our results). The results agree well with the predictions
of the van der: Waals 1-fluid mixing rule, shown as dashed lines in Figure
6.7. The coaplete results for the thermodynamic properties of the fluid
at the conditions investigated are presented in Appendix G.2.

A typical example of the calculation of the chemical potential in a
mixture using Eq. 5.12 is given in Figure 6.8, where the results for the
function L(u") = In{f(u")/g(u’)] versus u" for the mixture with X,;=0.5 are
presented. The data for both components fall on a2 straight line with the
correct theoretical slope, except close to the two ends of the distributions,
where there is significant scatter due to statistical inaccuracies in

determining the energy-distribution functions (see Section 6.1.3).

Table 6.2 Comparison of calculated results for the chemical potential
of a mixture with e],=1.41,¢;,=2,07,=0;,=1 at T"=1.2,p%=0.70

This work Shing and Gubbins (1983)
X, L B2, Pl 2,
0 -2.39¢%
0.0195 -2.19 (5) -6.39(10) -2.40 -6.65
0.0741 -2.55 -7.00
0.1484 -2.71 (5) -7.18(10) -2.82 -7.51
0.3320 -3.53 (5) -8.30 (5) -3.45 -8.42
0.5 -4.10 (5) -9.29 (5) -4.25 -9.30
0.6111 -4.55 -10.2
0.7226 -4.99(10) -10.38 (5) -5.25 -10.6
0.8515 -5.41(10) -11.16 (5) -5.61 -11.7
1 -12.3t -

t Calculated from the Lennard-Jones equation of state (Nicolas et al., 1979)
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Figure 6.8 The function L(u*) = In[f(u*)/g(u")] versus the energy u"
for a mixture with ej,=1.41,€;,=2,07,~0,,=1 at T*=1.2,p*=0.70. The lines
have slopes exactly equal to B=1/k,T and y-intercepts fitted to the

points. (O) component 1; (A) component 2.

6.3 Mixture I: Effect of different interaction energiles

An interesting class of mixtures is one in which the components have
similar sizes, but interact with specific forces that lead to unlike-pair
energy interactions different from like-pair interactions. To investigate
the effect of changing unlike-pair interactions, we calculated the properties
of a mixture of molecules with unlike-pair parameters only 75% of the
like-pair parameters, as shown in Table 5.1. The molecules in their pure
state are completely identical, so the mixture is symmetric. Because the
unlike-pair interactions are less favorable than the like-pair interactions,

we expect the mixture to show positive deviations from Raoult’s law and,
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since the pure components have the same vapor pressures, positive azeotropy

is suggested.

6.3.1 Thermodynamic properties

The results for the properties of the system at the state conditions
studied are given in Appendix G.3. First, let us examine the dependence
of the main thermodynamic quantities on mixture composition and density.

Internal Energy: The dependence of the mixture internal energy on

composition for a series of. reduced densities at T*'=1.15 is shown in
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Figure 6.9 Reduced internal energy versus composition for Mixture I
at T"'=1.15 and a series of reduced densities: (O) p* = 0.050; (A)
0.075; (+) 0.100; (x) 0.125; (¢) 0.500; (v) 0.525; (0) 0.550; (®)
0.575; (3¢) 0.600; (¢) 0.625; (®) 0.650; (@) 0.750.
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Figure 6.9. The mixture internal energy appears to be a parabolic function
of composition. The increase in internal enrergy as the equimolar composition
is approached is easily explained by the fact that for the equimolar
mixture, the unfavorable unlike-pair interactions are maximized. The
effect increases as density is increased.

Pressure: Again, a near-parabolic dependence is observed in Figure 6.10
for the total pressure as a function of mixture composition. For clarity,
we have omitted the results for some densities from Figure 6.10. The magnitude
of the effect of composition on pressure at constant density is significant.
For the equimolar mixture at p*=0.650, the maximum pressure (at X,=0.5) is
0.5, or three times the pure component crit;ical pressure. This can be

understood as follows: the pure components at T" = 1.15 are quitie close to

Figure 6.10 Reduced pressure versus composition for Mixture I at

T*=1.15 and a series of densities. Symbols are as in Figure 6.9.
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the vapor-liquid critical point (T;—1.35). For the equimolar mixture,
however, the effective reduced temperature is much lower, due to the
unfaverable unlike-pair interactions. Mixtures close to the equimolar
composition have the character of compressed liquids, and show significantly

higher resistance to compression.

Chemical potential: The dependence of the configurational chemical
potential of component 1, pj,., on the mixture composition is shown in
Figure 6.11. Since the mixture is symmetric, the configurational chemical
potential of component 2 is identical to that of component 1, when a
comparison is made at the same concentration (this was also obtained during
the simulations of tﬁe equimolar mixtures, as shown in Appendix G.3). The
configuration chemical potential is, to a good approximation, a linear

function of composition for all densities, as was also observed from the

—

1
o YT

Figure 6.11 Reduced configurational chemical potential of component 1,
p;'c at T*=1.15, versus composition for Mixture I at a series of reduced

densities. Symbols are as in Figure 6.9.
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results of Shing and Gubbins (1983) for a mixture with the same size
parameters but unequal potential well depths. For the calculation of the
mixture phase diagrams, the simulation results for the chemical potential

were smoothed by linear regression to facilitate their use.

6.3.2 Effect of particle interchange

The calculation of the fluctuations of the number of molecules in subcells
of the basic equilibrium cell, as described in Section 6.1.3, entails severe
difficulties when the conventional Metropolis procedure (Eq. 5.6 without
particle interchange) is used. The difficulties are related to the slow
movement of molecules during a simulation at high densities: the average
distanée travelled by a molecule is less than the box edge length for
simulations of reasonable duration (10° or so configurations for N=256
molecules). This has the following effect: if, because of random deviations,
a subcell starts with significantly different number of molecules of one
species than the expected average, it is likely that it will still have
some of the same molecules (and therefore, a significantly higher number
of molecules of one species) at the end of the simulation. This results
in very large apparent fluctuations of the number of molecules across
cells, that only reflect the initial random assignment of molecules to

positions rather than the properties of the fluid.

In order to illustrate this effect, two simulations were performed for
Mixture I at T*=1.15, p*=0.750, X, ~0.50, without and with particle interchange.
For the simulation without particle interchange, twice as many steps (1.2x105)
were performed to compensate for the fact that both an attempted displacement
and an interchange are performed per simulation step when the particle
interchange method is applied. The simulations required approximately
equal amounts of computer time, as shown in Table 6.3. The average number
of molecules in each of the eight subcells and the mean-squared fluctuation
of the number of molecules in each subcell for the two simulation runs are
presented in Table 6.3. The expected average number of molecules of each

species (for an infinite number of configurations generated) in each of
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the eight subcells is 16. As can be seen, for the run without particle
interchange, there are large deviations in the average number of molecules
of each species (values range between 12.36 and 19.57). In addition, the
mean-squared deviation of the number of molecules in each subcell show
significant variation across cells. The problem cannot be easily solved
by generating a larger number of configurations, since the average distance
travelled by a molecule only increases with the square root of the number

of configurations generated. By contrast, the average number of molecules

Table 6.3 Effects of particle interchange for Mixture I at T"=~1.15, p*=0.750,

X,=0.50.

Property no interchange with interchange

Configurations generated 1600000 800000

CPU time (min) 760 780

Interchange efficiency - 0.634

u* -4.41 -4.43

P* 1.377 1.331

p;'c -1.04 -1.07

p;’c -1.03 -1.09

Cell no interchange with interchange

number <N> <N, > <N, > <N> <N,> <N, >

<6NSN> <8N, 8N,> <6N,6N,> <SNSN>  <6N,8N,> <8N, 5N,>

1 32.07 15.63 16.44 31.82 16.11 15.70
5.27 3.69 3.71 5.02 15.61 14.86

2 30.96 14.74 16.22 32.29 16.19 16.10
5.52 4.56 5.06 5.70 14.91 15.02

3 31.93 19.57 12.36 32.84 16.46 16.38
5.65 6.57 7.24 5.46 16.29 15.96

4 32.37 16.59 15.78 31.28 15.59 15.68
5.76 3.97 3.93 5.22 14.88 14.75

5 32.06 13.85 18.21 32.71 16.17 16.54
5.73 5.10 7.06 6.24 16.13 16.21

6 31.94 18.50 13.44 31.58 15.69 15.89
5.50 7.05 6.71 6.19 16.15 15.24

7 32.32 16.03 16.29 31.77 15.94 15.83
5.55 8.33 7.37 5.06 14.89 14.60

8 32.36 13.09 19.27 31.71 15.84 15.86
5.64 5.30 5.71 5.90 16.12 16.64
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of each species for the run with particle interchange are very close to
their theoretical values, and the fluctuation of the number of . r>lecules
of each species is almost constant across cells, and significantly higher
than the values obtained without interchange.

Figures 6.12 and 6.13 represent graphically the correlation of position
of the particles between two configurations. For the run without particle
interchange, after 400000 simulation steps, the particles have only travelled
an average distance of approximately 1 reduced unit, or 1/7 of the simulation
box edge length. By contrast, there is no correlation of the position of
two configurations for the run with particle interchange.

The results for the thermodynamic properties (energy, pressure and
chemical potentials) are not éignificéntly different fofr the two rums with
and without interchange. This is probabiy due to the fact that for both
cases the number of configurations generated is sufficient for the calculation
of the thermodynamic properties. However, it is expected that for different
cases, and especially at higher densities or for mixtires that phase-
separate, the calculation of the thermodynamic properties should be more

rapid when particle interchange is used.

6.3.3 Energy and radial distribution functions

In Figure 6.14, we illustrate the behavior of the radial distribution
function for this mixture at a fixed density, p*=0.500. For mixtures dilute
in component 1, there is significant clustering of molecules of type 1, as
evidenced by the first peak of the radial distribution function which is
highest for 1-1 pairs. As the composition of the mixture approaches the
equimolar point, the peak becomes less pronounced, although there is still
more clustering than for c.he pure components at the same state conditions
(8,5 (r) for x,=0.0625 is practically identical to g(r) for the pure compornents
at the same conditions). 1-2 pairs occur less frequently than any other type
of pairs because of the less favorable energy of an unlike pair interaction.
Studies of local compositions in Lennard-Jones fluids have been performed

by Nakanishi and his coworkers (Gierycz and Nakanishi, 1984).
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A set of energy distribution functions for this mixture a¢ T* - 1.15,
pl= 0.50, is shown in Figure 6.15. The reason the functions f(u')exp(-ﬂu)
and g(u')exp(+ﬂu) are plotted rather thap f(u*) and 8(u"), is that the chemical
Potential of the Corresponding Species can be directly obtained frop the
integral under the curves (Eq. 5.13). The Peak of the functions as Plotted
in Figure 6.15 Correspond to the interaction energy contributing most to
the chemical Potential of the component. At low concentrations of component

1, the Peaks of the test and rea] particle energy distribution functions
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Figure 6.14. Radial distriburjon functions for mixture I ar T"~1.15,
p*=0.500 (—) 1-1 pairs; (...) 1.2 pairs; (---) 2.9 pairs,
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6.3.4 Phase behavior

Figure 6.16 presents the calculated phase diagram for this mixture at
T"= 1.15. There is, as expected, an azeotrope at equimolar composition.
In addition, a liquid-liquid phase split at higher pressures is hinted by
the dashed curve in Figure 6.16. The presence of a liquid-liquid phase
split for a Lennard-Jones mixture with this set of unlike pair interactions
has been suggested by Torrie and Valleau (1977) and recently verified by
Schoen and Hoheisel (1984). At T = 1.15, the mixture is very close to
the upper critical solution temperature and an accurate determination of
very small differences of the chemical potential between the two liquid
phases is difficult; this leads tc large uncertainties in the liquid-
liquid coexisting phase compositions.

Table 6.4 summarizes the results for the phase coexistence curve, including
the chemical potential and densities of the coexisting phases. The results
at X; = 0 (pure component) were calculated from in the present study and
are in excellent agreement with the results given by Adams (1979).

As can be seen in Table 6.4, there is a very pronounced decrease in the

saturated liquid density of the mixture as the azeotropic point is approached.

Table 6.4' Phase coexistence properties for mixture I at T" = 1.15

Vapor - Liquid Equilibrium
* * *

XL X v P, AL Py “; ”;
0 0 0.063 (2) 0.613 (3) 0.077 (2) - -3.65 (5)
0.0313 0.13 (2) 0.067 (3) 0.599 (3) 0.083 (4) -5.71 (5) =-3.75 (5)
0.0625 0.21 (3) 0.078 (3) 0.574 (3) 0.095 (4) -5.23 (5) -3.82 (5)
0.125 0.28 (2) 0.086 (3) 0.554 (3) 0.118 (4) -4.65 (5) -3.75 (5)
0.250 0.40 (2) 0.099 (3) 0.513 (3) 0.145 (4) -4.23 (5) -3.79 (5
Liquid - Liquid Equilibrium
W * L] w w
X)L X, L2 Py PrLa Pr2 B B2
0.29 (7) 0.71 (7) 1.3 (L) 0.750% 0.750¢% -1.3 (1) -1.3 (1)

t The numbers in parentheses indicate the estimated error in the last decimal
digit: 0.063 (2) means 0.063 * 0.002
t This calculation was performed at fixed density
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Figure 6.16 Phase-coexistence curves for mixture I at T* = 1.15. (a)
liquid phase compositions; (e) gas phase compositions. The dashed lines
are drawn through the points for visual clarity. The solid lines at the

points indicate estimated errors for the pressure and concentration.

This unexpected decrease is most likely due to the proximity of a mixture
liquid-vapor critical point. The pure component critical temperature is
approximately T" = 1.35; the unfavorable unlike-pair interactions tend to
decrease this temperature, with a resulting decrease in liquid molar density

as the equimolar composition is approached.
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6.4 Mixture II: Effect of different size

The case of mixtures of molecules of unequal sizes but similar potential
well depths is not very common for real fluids, since increasing size of a
molecule usually results in largetr effective ¢. Exceptions are fluorocarbon
molecules that have low attractive well parameters. The ratio of volumes
of the two components chosen for mixture II is equal to (azz/a“)3 = 0.45,
so the two components have a significant size disparity. The unlike size
parameter, o,,, is taken as the average of the pure-component size parameters
(Lorenz rule). A summary of the potential parameters used is given in
Table 5.1. A summary of the simulation results for this mixture is given

in Appendix G.4.

6.4.1 Energy and radial distribution functions

Figure 6.17 shows results for the radial distribution functions for the
mixture at a T*=1.15, p*=0.950 and X,;=0.500. The behavior illustrated for
these conditions is representative for the high-density conditions studied.
The three pair-distribution functions are displaced with respect to the radial
position of the peaks, reflecting the difference in the size parameter
characterizing the corresponding interactions. The height of the first
(nearest-neighbor) peak of the radial distribution function is the lowest
for the 1-1 pairs. This may be related to the fact that the potential
well depth for 1-1 pairs is the same as for the 2-2 pairs, but the size of
molecules of type 1 is significantly larger. Fewer nearest neighbors of
type 1 can then be accommodated in the first-nearest neighbor cell of a

molecule of type 1.

Figure 6.18 shows the test-particle energy distribution functions for
this mixture at T = 1,15 as a function of composition. Because of the
difference in size of the two components, changes in composition at a
constant reduced density result in significant changes in absolute density;

to compensate for this effect, a constant volume fraction of p(x1a1§+x2azg)
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Figure 6.17 Radial distribution functions for Mixture II at T'=1.15,
p*=0.950, X,=0.500. (—) 1-1 pairs; (---) 1-2 pairs; (...) 2-2 pairs.

= 0.63, rather than a constant density, was used in Figure 6.18. As in

Figure 6.15, the integrals under the curves are related to the chemical
potentials of the components via Eq. 5.13. For the 1larger component
(component 1), the peak of the test-particle distribution function is
shifted to more mnegative values relative to the smaller component,
because the greater exposed area of the large molecules results in more
attractive average interaction energies. This effect is stronger at low

concentrations of component 1 because of the more efficient packing of the
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Figure 6.18 Test-particle energy-distribution functions for mixture
II at T'=1.15, p(X,0,3+X,0,3) = 0.63. (—) component 1; (---)

component 2.

small molecules around a center of type 1. No such shifting of the position
of the peak of the test-particle energy-distribution function is seen for

component 2.

6.4.2 Phase coexistence curves

Figure 6.19 and Table 6.5 summarize the phase coexistence properties of
this mixture. Despite the large size difference, the phase behavior of the
mixture is close to ideal, with a narrow coexistence envelope. The calculation
of the mixture phase diagram from Monte Carlo simulation is possible, despite

this relatively narrow coexistence region.
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Table 6.5t Phase coexistence properties for mixture II at T" = 1.15
2SI X v P, oL Py B H2
0 0 0.139 (4) 1.348 (5) 0.169 (4) - -2.74 (5)
0.125 0.08 (2) 0.120 (5) 1.159 (5) 0.140 (5) -6.11 (5) -3.00 (5)
0.25 0.19 (2) 0.102 (5) 1.037 (5) 0.120 (5) -5.26 (5) -3.25 (5)
0.375 0.27 (2) 0.095 (5) 0.927 (5) 0.110 (5) -4.82 (5) -3.36 (5)
0.5 0.37 (2) 0.083 (5) 0.854 (5) 0.095 (5) -4.61 (5) -3.72 (5)
0.625 0.52 (2) 0.078 (5) 0.771 (5) 0.090 (5) -4.18 (5) -4.06 (5)
0.75 0.67 (2) 0.072 (4) 0.717 (5) 0.087 (4) -3.95 (5) -4.50 (5)
0.875 0.84 (2) 0.067 (2) 0.666 (5) 0.082 (2) -3.73 (5) -5.35 (5)
0.9375 0.91 (1) 0.064 (2) 0.635 (5) 0.078 (2) -3.66 (5) -6.21 (5)
1 1 0.063 (2) 0.613 (3) 0.077 (2) -3.65 (5) -
t See footnote to Table 6.4 for the notation used for the errors
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Figure 6.19. Phase-coexistence curve for mixture II at T*=1.15. For

an explanation of the symbols, see legend of Figure 6.15.
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6.5 Mixture III: Simulation of a realistic mixture
6.5.1 Selection of potential parameters

As a test of the case where both size and energy interaction parameters
are different, and also to test the ability of the simulation to reproduce
phase diagrams of real mixtures, we performed a series of simulations for
a mixture that is a simple model of a real asymmetric system, namely the
acetone - carbon dioxide system at temperatures above the critical temperature
of carbon dioxide. Experimental results for this system are presented in
Section 4.2 and Appendix C.2. To obtain the potential parameters we
fitted the critical temperature and critical volume of the correéponding
components using values from Reid et al. (1977). The critical parameters
for the pure Lennard-Jones fluid were taken to be T, = 1.35, p; = 0.35,
P, = 0.142 (Nicolas et al., 1979). The resulting parameters are shown in
Table 6.6 and correspond to the ratios given in Table 5.1. The Lorenz-
Berthelot rules were used for the unlike pair parameters (arithmetic mean

of the pure component parameters for o,, and geometric mean for ¢,,).

Table 6.6 Lennard-Jones (6,12) potential parameters for mixture III:
acetone (1) - carbon dioxide (2)

€,1/Ky €12/Kg €32/Kp 911 12 %32
(X) (&)
377 291 225 4.95 4,38 3.80

6.5.2 Thermodynamic properties

The calculated results for the thermodynamic properties of this mixture
are given in Appendix G.5. Here, we present a summary of the basic results
in graphical form.

Energy: The energy versus composition for this mixture at T"=1.15 for
a series of reduced densities is shown in Figure 6.20. There is an almost

linear dependence of internal energy on compositicn at constant density.
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Figure 6.20 Reduced internal energy as a function of compositions for
a series of reduced densities for Mixture III at T*=0.928. The parameter

on the curves is the reduced density, p*.

For the larger component (component 1) the absolute value of the energy is
significantly higher at a given reduced density. Because of the large
difference in size of the two components, a constant reduced density
corresponds to much higher absolute densities for the nixtures rich in
component 1.

Pressure: A plot of the pressure (in bar) versus density for a series
of compositions is given in Figure 6.21. For the mixture rich in component
2 (carbon dioxide) the behavior closely approximates the behavior of a pure
supercritical component (e.g. T*=1.556 in Figure 6.1), with a monotoni:
increase in pressure with increasing density. As the mixture becomes more
concentrated in component 1, the behavior changes gradually to that of a

subcritical liquid, and a van der Waals loop appears. For the mixtures
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Figure 6.21 Pressure versus reduced density for Mixture III at T"=0.928
(T=350K). The legend on the figure gives the mole fraction of component
1, x.

rich in component 1, the behavior is more typical of a subcritical liquid.
The compressibility at high densities is low, and pressure increases
rapidly with increasing density. A pronounced van der Waals loop is
present (only partly shown in Figure 6.21).

Chemical potentials: In Figure 6.22, we present the chemical potentials,
p; for the two components at the conditions investigated. Close to the two
ends of the composition scale, the chemical potentials change rapidly,
reflecting the effect of concentration on the chemical potential (via Eq.
5.8b). Some scatter in the data is evident, especially for the higher
densities, but the accuracy of the results is sufficieut for the calculation
of the mixture phase diagrams by the graphical construction explained in
Section 5.6.5.
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Figure 6.22 Reduced chemical potentials as a function of composition
at a series of reduced densities for Mixture III at T"=0.928 (T=350 K).

The legend on the figures give the mole fraction of component 1, X,.
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Figure 6.23 Average energy versus configuration generated for a simulation

of Mixture III at T,=0.928, p*=0.125, X,=0.938. A running average of

100000 configurations was performed. —

An example of a case where the calculation of the properties of the
fluid becomes difficult because the fluid is in a materially unstable region,
is given in Figures 6.23 and 6.24, from the results from a simulation at
T*=0.928, p*=.125, X,=0.938. In Figure 6.23, the average value of the
energy versus the number of configurations generated shows a substantial
dovnward trend, and large fluctuations in pressure are present. In addition,

the radial distribution function for component 1 (Figure 6.24) shows a very

pronounced first peak, and decreases very slowly, being significantly
above unity even for r*=4.0. This behavior of the radial distribution was
also observed by Shoen and Hoheisel (1984) for unstable mixtures. Despite

the large fluctuations of energy and local density, the energy distribution !

functions appear to be well-behaved, and a good straight line was obtained -
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Figure 6.24 Radial distribution functions for Mixture III at T"=0.928,

p*=0.125, X,=0.938.

during calculation of the chemical potential (this may be related to the

fact that changes in density do not affect the chemical potential at

constant composition close to the spinodal limit). For the same conditions,

the fluctuations in the number of molecules are extremely large (Appendix

G.4), verifying the presence of phase instability.

6.5.3 Radial and energy distribution functions

A typical example of the radial distribution functions obtained for this

mixture for the high-density simulation runs is given in Figure 6.26 for

T"=0.928, p*=0.800, X,=0.500. The behavior resembles closely the behavior

observed for Mixture II (Figure 6.17), with the first peak displaced along
the radial direction because of the difference of the characteristic size

parameter for the interactions of the 1-1, 1-2 and 2-2 pairs. The height
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of the first peak, however is now highest for the 1-1 pairs (the largest
component), whereas in the case of Mixture II it was highest for component
2 (the smallest component). It is interesting to note that the shape of
the radial distribution function for the pairs 1-1 is virtually identical
for Mixtures II and III. The height of the first peak of the 2-2 pair
distribution function, however, is significantly higher for Mixture II,
reflecting the deeper potential well depth for component 1 (e,,=0.597 for

Mixture III versus ¢,,~l for Mixture II).

The energy distribution functions for this mixture were qualitatively
similar to the corresponding functions for Mixture II (Figure 6.18), reflecting
the significant disparity in size of the two components.

Nr "i m
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Figure 6.25 Radial distribution functions for MIxture III at T*=0.928,
p"=0.800, X1-0.500.
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6.5.4 Phase behavior and comparison with experiment

The calculated phase coexistence properties for this mixture at T" = 0.928
(T = 350 K) are presented in Table 6.7. The calculated phase diagram at the
same temperature is shown in Figure 6.26a, together with experimental data
for the mixture acetone - carbon dioxide at three temperatures in Figure
6.26b. Only results from the correlation are available for the experimental
properties at 350 K, but they are expected to be of comparable accuracy to
the results at the lower temperatures. The mixture critical pressure is
lower than the experimental value (P, = 91 bar from Moate Carlo; P, = 115
bar from the extrapolation of the experimental data) and the solubility of
acetone in the supercritical phase is higher than what is experimentally
observed, but the general shape of the coexistence curve is well reproduced.
This agreement is all the more significant since this is a completely a
pricri prediction of the properties of the mixture with no fitting of the
potential parameters to experimental data. This agreement is at first
surprising given the fact that the Lennard-Jones potential does not give a
realistic representation of the molecular structure of either acetone or
carbon dioxide. Both molecules have a distinctly non-spherical shape and
a significant dipole moment (acetone) or quadrupole moment (carbon dioxide).
The inability of the Lennard-Jones potential to give a good description of
the properties of the pure components is evidenced in Figure 6.26 by the
fact that at X, = 0 (pure acetone) the pure component vapor pressure for
the Lennard-Jones fluids is almost twice the experimental wvalue. It
appears, however, that the properties of the mixture are primarily influenced

by the difference in size and energy parameters and not by the detailed shape

Table 6.7! Phase coexistence properties for mixture III at T" = 0.928

XL X v P, pL Py ™ My

0.625 0.19 (3) 0.072 (9) 0.86 (1) 0.09 (1) -4.3 (1) -2.55 (5)
0.50 0.12 (3) 0.100 (9) 0.88 (1) 0.13 (1)  -4.5 (1) -2.19 (5)
0.375 0.10 (2) 0.163 (9) 0.92 (1) 0.24 (1)  -4.7 (1) -1.90 (5)
0.25 0.15 (2) 0.196 (9) 0.91 (1)  0.55 (1)  -4.9 (1) -1.72 (5)

0.20%(2) 0.20#(3) 0.212 (9) 0.68 (3) 0.68 (3) -4.8 (1) -1.70 (5)

t See footnote tc Table 6.4 for the notation used for the errors
t Mixture critical point
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or multipolar moments of the molecules. The ability to obtain direct
information on the factors responsible for a given type of macroscopic

behavior is a distinct advantage of molecular simulation methods.

6.5.5. Mixture critical curves

An important parameter characterizing fluid mixtures is the shape and
location of the mixture critical curve. Close to critical points, the accurate
calculation of properties of fluids from molecular simulation is impossible
because of the very large correlation lengths. We can, nevertheless, obtain
the approximate location of the critical point (in the classical mean-field
approximation) by determining the point beyond which no solution to the two-
phase equilibrium problem can be found. We performed a series of simulations
for mixture III to obtain the mixture critical curve at several temperatures.
Figure 6.27 presents the results of these calculations (no comparable set
of experimental data is available). The mixture critical curve is continuous
from the critical point of one to the critical point of the other component;
therefore this is a type I mixture according to the classification by Scott
and van Konynenburg (1970). This is in agreement with the results of the
perturbation theory of Gubbins and Twu (1977).
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CHAPTER 7
CONCLUSIONS AND SIGNIFICANCE

7.1 Experimental and correlation
7.1.1 Summary of present work

The experimental data obtained in this work demonstrate the basic
characteristics of phase equilibrium behavior in ternary systems containing
water, a polar organic compound and a supercritical fluid. It was shown
that a drastic change in phase equilibrium behavior occurs as pressure is
increased above the supercritical component critical pressure. This
change in behavior can be exploited for developing separation methods

between polar organic compounds and water.

A common feature of the phase equilibrium behavior in the systems
studied is the presence of multiphase equilibrium regions. Three-phase
equilibrium regions occur over a range of pressures comparable to the
critical pressures of the supercri.ticé.l fluid-organic compound binaries.
The presence of a three-phase region at relatively low pressures is associated
with a high selectivity of the supercritical fluid for the organic
compound over water at high pressures. Equilibria between four fluid
phases were observed for one of the systems studied (n-butanol - watex-
carbon dioxide). . This type of multiphase equilibria has rarely been

reported in the past.

A summary of the phase equilibrium results and their possible implications

for the development of new separation methods is given below:
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- Organic compounds of moderate polarity can be extracted from dilute
aqueous mixtures with high selectivity and favorable solvent capacities.
For example, single-step extraction of a 4% w/w aqueous solution of acetone
with carbon dioxide at 333 K and 15 MPa results in approximately

93% w/w acetone in the solvent phase.

- Organic compounds, such as acetic acid, that strongly associate with water
can still be selectively extracted, but the distribution coefficients

between the solvent and the aqueous phase are significantly less than 1.

- Increasing the hydrocarbon chain length in a homologous series of
polar organic ccapounds results in improved separation efficiency, at
least for the lower molecular weight compounds. It is known, however,
that the solvent capacity also diminishes with increasing molecular

weight of the solute.

The development of new methods for recovery of fermentation products
from aqueous solutions using supercritical fluids needs to take into
account both the solvent ability to extract selectively the desired compound,
and, in the case of in situ extraction, the solvent effect on the growing
microorganisms. The results from this study suggest that the type of
compounds best suited for consideration in supercritical fluid recovery
processes would be compounds of low to moderate polarity and relatively

low molecular weight.

A new density-dependent mixing rule for cubic equations of state was
developed for modelling the experimental results. The model, in conjunction
with a novel technique to obtain pure component parameters for equations
of state, can quantitatively reproduce phase equilibrium data for highly
non-ideal systems at both low and high pressures. Ternary data were
predicted with parameters determined from binary data only. The methods
developed can thus be used for the extension of limited experimental

information and can greatly facilitate process design and optimization.



193

7.1.2 Possible extensions

Several possible improvements and extensions of the experimental and
correlation techniques developed in this work, and the rangevof systems

covered can be identified:

Experimental technique: The experimental techniques used in this work
was found to be accurate, reliable and rapid. The techniques can be improved,

however, in several ways:

- Better temperature control.of the equilibrium apparatus is important.
Isothermal operation of all parts of the equipment, including the
recirculation and sampling séction,.caﬁ be achieved by using a totally
enclosed system and air for temperature control. This should improve
the stability of conditions and the reproducibility of the experimental

results.

- Direct chromatographic sampling using switching valves was found to be
an efficient and rapid method of obtaining composition measurements in
multicomponent systems. The sampling technique employed (using a gas
chromatograph) cannot be used for non-volatile or heat-labile components.
Use of a liquid or supercritical fluid chromatograph and thus sampling
to a high-pressure environment without depressurization of the sample

should greatly extend the range of applicability of the sampling technique.

- Continuous calibration of the gas chromatograph with mixtures of known
composition close to the compositions being measured should eliminate
the most likely source of systematic error in the measurements, namely
the uncertainties in the relative response factors of the components.
This could be achieved using a special sampling compartment and gravimetric

preparation of calibration mixtures.

Modelling: The use of cubic equations of state with higher-order,

density-dependent mixing rules appears to be a promising way to correlate
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experimental data for highly asymmetric systems, at both low and high

pressures. Several areas for possible future work can be identified:

- Determination of the behavior of the models for a large number of
systems, including highly polar systems at high and low pressures.
The objective of this investigation may be the generalization of the
model parameters (e.g. using group contribution methods) to facilitate

use of the models when no appropriate data are available.

- Testing of existing mixing rules and development of new methods based
on incorporation of results from well-defined model systems using
molecular simulation methods. This may significantly improve certain
aspects of current equations of state, for example thejtransition'from
the low-density to the high density region using arbitrary interpolation

functions.

- Incorporation of specific interactions and chemical association (for
example for the hydrogen-bonding species) may extend the range of
validity of the correlation methods developed in this work. The
incorporation of additional adjustable parameters, however, should be

avoided whenever possible.

Extensions to different systems: The range of systems covered in this
and previous studies of high pressure phase equilibria in ternary fluid
mixtures is sufficient to demonstrate the feasibility of separations between
polar organic compounds and water using supercritical fluids. The basic

needs for additional studies may be summarized as follows:

- Investigation of the phase equilibrium behavior for ternary systems
with water, a polar organic compound and a range of different solvents
(for example light hydrocarbons and halogenated hydrocarbons). This
should demonstrate the effect of the solvent chemical character on the

system behavior.
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- Extension of the phase equilibrium data for solutes of higher molecular
weight. We have determined in this study that extraction efficiency
appears to be increasing with hydrocarbon chain length. Equilibrium
data are needed for higher molecular weight compounds, in order to
determine the upper limits of molecular size for the practical use of

supercritical solvents.

- Data for higher order systems (quaternary and multicomponent) are
needed for the investigation of possible deviations from the behavior
expected based on the corresponding ternary and binary systems. The
investigation of the effect of added electrolytes should help the

development of new separation processes for biochemical products.

7.2 Molecular simulation

7.2.1 Summary of present work

The Monte Carlo simulation technique provides ameans of directly obtaining
results for the macroscopic behavior of fluids and fluid mixtures when the
intermolecular interactions are known. Phase envelopes, solubilities and
mixture critical curves can be obtained with sufficient accuracy to permit
practical use of the results. Since no empirical approximations are involved,
this is a method for a priori calculation of the properties of mixtures.
The technique is only limited by the lack of knowledge for the intermolecular
potentials acting between real fluids, but it can still be used to elucidate
the effect of the primary molecular parameters (size, specific attractive
interactions) on the macroscopic behavior of mixtures. Direct molecular
simulation also provides detailed information at the molecular level that

cannot be obtained in any other way.

The Widom test-particle expression provides a direct route for the
calculation oi the chemical potential from simulation. The method has
limitations at high densities, but is adequate for fluids over a wide

range of densities of practical importance. The energy-distribution
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functions obtained with this technique provide useful information on the

microscopic structure and energetic interactions in fluid mixtures.

Two specialized techniques used in this work can facilitate the calculation
of thermodynamic properties of non-ideal fluid mixtures. The first is based
on the observation of microscopic fluctuations and enables a qualitative
determination of the presence or absence of a phase transition. The second
involves a particle interchange technique that enables a faster and more

accurate calculation of the properties of mixtures of dissimilar components.

Calculated phase diagrams for a range of mixtures using simple Lennard-
Jones potential energy functions show significant variety, including azeotropes
and liquid-liquid immiscibilities. Simulation of a model system of the mixture
acetone-carbon dioxide demonstrates that a simple potential gives a good

representation of the phase equilibrium behavior of this non-ideal mixture.

7.2.2 Possible extensions

Ihe methodologies developed in this work are quite general and can be
used . for the investigation of a wide range of questions related to the
prediction of macroscopic properties of mixtures from information at the
molecular level. In particular, the following problems are of significant

interest:

- Computation of the phase diagrams and critical curves for binary
mixtures that include the effects of: a) a wider variation in size and
potential energy b) non-spherical pctentials c¢) multipolar terms,
such as dipolar and quadrupolar interactions d) molecules with internal
degrees of freedom (rotation, vibration) and e) molecules with strong

specific forces, such as hydrogen bonding.

- Adetailed comparison of results from simulation with existing perturbation
theories and possibly incorporation of the results into new versions

of the theories needs to be performed.



197

The Monte Carlo simulation methodology developed in this work can be
used for the determination of the chemical potential in systems with
an interface. Of particular interest are the equilibrium properties
and molecular organization at the vicinity of a solid surface for a
fluid or mixture interacting with the surface. Another area of possible
application is the study of fluids at the vicinity of a liquid-gas

interface.

An important area of possible application for molecular simulation
techniques relates to systems with organized aggregates that contain a
large number of molecules, in particular micellar systems. An improved
understanding of the molecular mechanisms for micelle formation,
structure and solubilization behavior is of considerable practical and

theoretical interest.

Nucleation from liquids and gases may also be studied using molecular
simulation methods. Understanding the microscopic mechanisms for
nucleation and crystal growth can result in significant practical
benefits, since these processes are widely used but not well described

by phenomenological methods.
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NOTATION

a = energy parameter in an equation of state, J m® mol~?

A = molar Helmholtz energy, J mol~!

A = total Helmholtz energy, J

B = second virial coefficient, m® mol~!

b = volume parameters in an equation of state, m® mol-1

f = fugacity of component, N/m?

f(u) = test particle energy distribution function (dimensionless)

g(u) = real particle energy distribution function (dimensionless)

g(r) = radial pair distribution function

G = Gibbs energy, J mol™!

H = system Hamiltonian, J

k; = Boltzmann's constant, 1.3805x10°23 J/K

k, ;= binary interaction parameter in Eqs 2.10 or 3.6 (dimensionless)

L = edge length of the cubic simulation volume

L(u) = the function #n[f(u)/g(u)]

M = number of coexisting phases at equilibrium; also number of configurations
genarated during a simulation run

number of components in a mixture

= number of molecules

= pressure, Pa (=Jm"3); also probability in Eq. 5.2

= universal gas constant, 8.31429 J K ! mol~!

= configuration space integration variable

= distance from the center of a molecule, m or A

= entropy, J/K

= thermodynamic temperature, K

energy parameter, J

= internal energy of a system, J

yW = arithmetic constants in a cubic EOS represented in Eq. 2.7

= specific volume, m® mol-~!

= total system vclume, m?

= configuration of a system

= mole fraction

= Legendre-transformed function

“ XKk dedde HunuRra muwZ2s
]

Greek Letters

B = 1/kT, J°!

§ = fluctuation quantity; also Kronecker delta in Eqs. 5.10 and 5.11
A = difference

€ = energy parameter in Lennard-Jones potential (Eq. 5.16), J

A;j = binary interaction parameter in Eq. 3.6, J? m’ mol"?

p = chemical potential, J

p = density, m™?

o = size parameter in Lennard-Jones potential (Eq. 5.16), m or A

{1 = phase space
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Subscripts

¢ = configurational property (for chemical potential); also cutoff
distance (for potential energy function)

cr = critical property

G - gas-phase property

i,j = component i or j

[k] = in partial differentiation, indicates that all component variables
except for those of component k are held constant

L = liquid-phase property

mixture property

= residual property

= reduced property (e.g Tz = T/T_.)

saturation property

= configuration count

P = vapor pressure

B
i

4R L R
]

Superscripts

= reduced property (see Eq. 5.17 for definitions)
= reference state

= ideal-gas property

test-particle property

= real-particle property

n)= n-th order Legendre transform

~0 Hh O+ %
]
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APPENDIX A. PURE COMPONENT PARAMETER DETERMINATION
FOR TWO-PARAMETER EQUATIONS OF STATE

When using the equation of state approach for determining phase equilibria
in mixtures, as described in Section 2.3.4, a method must be devised to obtain
the pure component parameters of the equations. The methods available
from the literature for the pure component parameter evaluation are summarized
below; a new method is then proposed, based on the technique of Joffe and
Judkevitch (1970).

Corresponding States Approach.

One of the simplest ways to obtain a and b for a pure component is to
use a general cubic equation of state (Eq. 2.7) with the thermodynamic

critical point criteria for a pure material,

2
() - (53], - (a1
T-T, _ ave JT-T__

We can define two dimensionless parameters Q, and @, so that

a,, = O, x(R’T2_/p_ ) (A.2]
b, = Qx(R T, /P, ) (A.3]

Application of Eqs. A.1 - A.3 then yields the following result:

3Z,, - [1 -0, (u-1) ] =0 [A.4a)
BZZr-ﬂb[wﬂb~uﬂb-u]-ﬂ.-0 [A.4b]
22, -0, (v + w0, +0,] -0 (A.4c]

Z,. is the critical compressibility. In principle, Eqs. A.4a through A.4c
can be solved analytically to give
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0, = 0, (u,w)

, = 0, {(u,w) [A.5]

Z,, =2, (u,w)

cr

In the van der Waals EOS (u=w=0 in Eq. 2.7), it is assumed that a and
b, as calculated at T, . and P _ are applicable at all temperatures. In
general, however, to obtain better agreement with experimental data, Egs.
A.2 and A.3 are modified to apply at temperatures other than the critical

point, i.e.,

2,2
a = a,X(R"T /P .) [A.6]

b = O, X(RT,_/P..) (A.7]

where a and B are functions of the reduced temperature, and frequently
other component-dependent parameters such as the acentric factor w. In
most cases, at the critical point a=l and f=1. Some values of «, 8, i, and
O, for a few of the common EOS are shown in Table A.l.

While Table A.l could be expanded to include other cubic EOS, the point
being emphasized is that there are many generalized, but approximate,
techniques in use for estimation of a and b away from the critical point
for a selected EOS. These methods were developed to obtain a good fit of
saturation pressures and volumetric properties for a wide range of components

and temperatures.

Direct Approach.
In many cases of interest, one has available the vapor pressure and

saturated liquid molar volumes for the pure components over the temperature
range of interest. Critical properties may be unknown or of quecstionable
accuracy. This can especially be the case for compounds of low volatility.
If vapor pressure and liquid volume data are available, then it is possible
to use these along with Eq. 2.7 to obtain values of a and b at each
temperature. Joffe and Zudkevitch (1970) and Zudkevitch et al.(1970)

developed a procedure wherein data on vapor pressure and liquid volume were
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Table A.1 Parameters for some common cubic equations of state

Equation of State u W 0, 0, Z, a B
van der Waals (1873) 0 0O 27/64 18 3/8 1 1
1/3 .
Redlich-Kwong (1949) 1 0 92311t 2 5 Lo r 1/2 1
131 2Y3 1722
Soave (1972) 1 O [9¢(277-1)] 3 1/3 [l-i-l(S(l-Tr )] 1
. 1/2. .2
Peng-Robinson (1976) 2 -1 0.45724 0.0778  0.308  [14K, (1-T/ 51?1
Kg = 0.480 + 1574 w - 0.176 &
2

KPR = 0.37464 + 1.54226 w - 0.26992 w

used to obtain temperature-dependent values for a and b. Their technique
involved the formulation of the criterion of phase equilibrium between the

liquid and the vapor, i.e.,
f, = £ [A.8]

Eq. A.8 was then solved along with Eq. 2.7 using a Newton-Raphson
technique, in order to obtain wvalues for a and b that would reproduce the
saturated liquid volume and vapor pressure at the temperature of interest.
Their procedure is widely used (see for example Oellrich et al., 1978), but
the need to solve a system of non-linear equations for each component at each

temperature somewhat limits its usefulness.
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New method

The technique discussed below (Panagiotopoulos and Kumar, 1985) is an
extension of the technique of Joffe and Zudkevitch (1970), and allows one
to determine component values of a and b for any two parameter EQS, given
the vapor pressure and the liquid volume of a component at the temperature
of interest. The results can be put in an analytic, substance-independent
form, in contrast to the method of Joffe and Zudkevitch.

A pressure explicit, two parameter EOS can be written as:
P = P(V, RT; a,b) [A.9]

where a and b are temperature dependent parameters. For the particular
form given in Eq. 2.7, parameter a has thé unitsrof (mass) x (length)3® x
(time)"2 x (mole)”? and b has the units of (length)?® x (mole)"!, but for a
different form of the EOS, the parameters will have different dimensions.
From dimensional analysis of Eq. 2.7 the minimum number of dimensionless

groups to reduce this equation to a dimensionless form is three. We have

chosen:

¢ = bP/RT [A.10]
n - aP/(RT)> [A.11]
Z = PV/RT [A.12]

For an EOS of different form, the choice of the dimensionless groups
may have to be modified, but the groups shown above are valid for most of
the common forms of the currently available two-parameter EOS.

Using these groups, Eq. A.9 becomes:
51(5.’7.2) = 0 [A.13]

Any two parameter EOS can be reduced to the form represented by Eq. [A.14],
with an appropriate choice for the dimensionless groups. All thermodynamic
properties that can be derived from Eq. A.9 may also be expressed in terms
of ¢, n, and Z, when non-dimensionalized in an appropriate way. For example,

for the fugacity of a pure substance,
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In(£/P) = fn v = g, (€,n,2) [A.14]

If the pure component is in a state at which the vapor and the liquid
are at equilibrium, Eq. A.13 must have at least two real roots for Z, one
of which can be assigned to the saturated liquid state and the other to
the saturated vapor state. In addition, the fugacities of the two phases
must be equal. These conditions result in the following system of non

linear equations:

g,(e,n,2,) =0 [A.15a]
g,(e,n,Zy) = 0 [A.15b)
gz(el"lzL) = gz(el”lzv) [A.].SC]

where Z;, and Z, refer to the compressibility of the saturated liquid and
vapor phases.

Eqs. A.15a through A.1l5c form a system of equations with unknowns e,
n, Z, and Z;. 1If this system can be solved, then three of the unknowns may
be obtained as a function of the fourth. A particular choice, in accord-
ance with our objective to obtain the parameters of the EOS when saturated
liquid volume and vapor pressure are known, is to express €, n and Z, in

terms of Z :

n = n(Z,)

e = €(2,) [A.16]

Zy = Zy(Z)

Up to this point, the analysis is valid for any two parameter EOS. When
applied to the cubic form represented by Eq. 2.7, the equations corres-

ponding to Eqs. A.13 and A.1l4 are:
Z3 + Zz[e(u-l) -1 ] + Z[ez(w-u) - ue + n] - (we3 + we2 +en) = 0 [A.17]
nv = Z-1-4n(Z - €) + (n/eq) EIn (2Z+ue-eq/2Z+uc+eq) [A.18]

where q = (u2 - lmr)l/2
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For any value of Z;, up to Z once an EOS of the form of Zg. 2.7 is

cr?
selected to define u and w, one can employ numerical methods to obtain ¢
and n. This only needs to be done once for any particular two-parameter
equation of state, since the results are substance independent.

Using this method, we carried out the calculations for the van der
Waals form (u=w=0), the Redlich-Kwong or Soave form (u=l,w=0) and the
Peng-Robinson form (u=2, w=1) of cubic EOS. In Figures A.l and A.2, fne¢ and
n/e¢ are shown as functions of fnZ, for the three forms of Eq. 2.7 listed
above. From Figure A.1 it is clear that fne is an almost linear function
of InZ , except in the critical region. A more interesting fact is that in
the same region the curves for the three EOS considered, essentially
coincide (at the scale of the graph), leading to the conclusion that at
low vapor pressures the "volume parameter", b, is EOS independent to a
good approximation. For example at Z ~ 10™%, the variation among the
three EOS is less than four percent.

In Figure A.2, n/e¢ is again a nearly linear function of £nZ except
close to the critical point.

It is important to note that the values of ¢ and 5 obtained by the
numerical solution of Eqs. 16a through 16c approach the values 0 and Q,
respectively, as the compressibility approaches Z_, .

In order to facilitate the use of the numerical results, ¢ and n need
to be obtained as analytical functions of Z;. A standard least squares
regression technique was used to obtain polynomial approximations to e(Z;)
and n(Z; ) functions. The final form of the correlation selected was based

on the following observations:

a. It was found that expressing ¢/(Z, - ¢) and n/e¢ as a power series in
In Z, was superior to any of the other correlating schemes attempted.

b. It was found that a single polynomial function of a reasonable order,
could not give sufficiently accurate results for the whole range of Z
desired (7x10°'3 <Z <2Z . ). The polynomial fitting was thus performed
in two parts, one for low Z, and the other for higher Z , up to and

including the predicted value of Z__.

The coefficients of the polynomial expansions are listed in Table A.2.
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Figure A.1 The dependence of #ne on InZ, for the van der Waals (VDW),
Redlich-Kwong or Soave (RK) and Peng-Robinson (PR) forms of the general
cubic EOS.
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Figure A.2 The dependence of n/¢ on InZ, for the van der Waals (VDW),
Redlich-Kwong or Soave (RK) and Peng-Robinson (PR) forms of the general
cubic EOS.



216

In order to use the table, one needs to know the vapor pressure and liquid
volume of a component at a given (subcritical) temperature. One can then

calculate 2, as

Z, = PypV, /RT

and use Table A.2 to obtain ¢ and n. The parameters a and b are then

eacily calculated from equations A.10 and A.1ll.

Limitations

Cubic EOS with two parameters cannot produce a substance dependent value
for Z ... Also, the phase coexistence curve tends to flatten in a non-
analytic fashion in the critical region, a feature that that cannot be
captured by any amnalytic EOS. The first fact implies that in most cases
the value of Z _ predicted by the EOS will be incorrect; and the second
fact suggests that large divergences in the values for the a and b parameters
in the vicinity of the critical point are needed to follow the saturated
liquid volume changes in this regime.

The difference between the true critical compressibility of a substance
and the value for Z , predicted by an EOS, -also results in a "shift" of the
critical point, when the new method is appliéd close to the critical tem-
perature of a substance. That is, the condition Z =Z, is no longer valid

at T=T,_ for the new method. For this reason, use of the new method is not

recommended at the immediate vicinity of the critical point.

Notation specific to Appendix A

temperature functionality of parameter a ( a = a/a_ )
temperature functionality of parameter b ( 8 = b/b_ )
dimensionless b parameter, ¢ = bP/RT

dimensionless a parameter, 5 = aP/(RT)?)

pure component fugacity coefficient

n at the critical point

¢ at the critical point

acentric factor

Gup.:")ta a ™R
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Table A.2 Approximate expressions for the functions ¢(Z,) and n(Z,)

(4 Unz)t

1

L+ [ A (4nZ)]
i

n=c"

T [ B, (40 Z )]
i

a. van der Waals Form (u=w =0 , Z _ = 0.375)
-13
6.91'10 "= Z =< 0.011 0011 =7 =<2Z
i
A, B, A, B,
0 -.844962 1.28092 -.125484 3.89522
1 -1.15067 -1.17014 -.471148 1.32552
2 -2.50956-10"3 -5.21032-10°3 .182880 .966997
3 - -6.81575-10"3 1.61945-10°2 .178266
4 - - - 1.26439-1072
. Redlich-Kwong (or Soave) Form (u =1, w=0 , Z = 0.333)
-13
6.91-10 =Z = 0.011 0011 =2, =Z_,
i
A B, A, B,
0 -.874084 1.50479 -3.66182-10°2 5.88848
1 -.827262 -1.66630 -.203841 2.07104
2 -1.74216-10°2 -6.30280-10°3 .147671 1.31927
3 - -7.68315-10°3 1.19456- 1072 .226604
4 - - - 1.52897-10°2
c. Peng-Robinson Form (u = 2, w= -1, 2 _ = 0.308)
-13
6.91-10 "< Z, = 0.011 0.011 = Z, = Z_,
i
A, B, A, B,
0 -1.21190 1.82378 2.14469-10°2 7.09646
1 -.918850 -1.84430 -5.87391-10°2 2.41021
2 -1.91042-10°3 -5.75993-10°3 .195961 1.41294
3 - -2.90784-10" 3 1.53575-10"2 .229028
4 - 8.43108-1077 - 1.47396-1072
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APPENDIX B: PROGRAM DESCRIPTION - PHASE EQUILIBRIUM CALCULATIONS

The phase equilibrium programs need to perform a variety of different
tasks, such as to calculate the fugacities of the components in a mixture
when the pure component parameters and mixture compositions are known, to
solve the non-linear system of equations describing phase equilibria (Eq.
2.7), to perform a calculation of a complete phase diagram for a range of
pressures or mixture compositions, and to regress experimental data for the
determination of the mixture parameters. it was decided that the development
of a single program that performs all of these tasks would be unnecessarily
complicated. Instead, a modular approach was chosen, that uses a relatively
small nv ber of common subroutines that perform recurring tasks (e.g. the
fugacity coefficient calculations) and a number of main programs to perform
the overall calculations. Table B.l summarizes the modules used and their
general function. Table B.2 gives a summary of the function of the main
(calling) programs and their required subroutines.

The programs are implemented in the FORTRAN 77 programming language
for an IBM XT or AT microcomputer (8088 or 80286 processor with an 8087 or
80287 arithmetic co-processor; the IBM Professional FORTRAN compiler that
provides a full implementation of the FORTRAN 77 standard was used). The
requirements for execution time are modest: a single calculation of phase
equilibrium between two phases for a ternary system generally takes less
that 2 seconds (the exact timing depends on the initial guess).

Complete listing of the programs (30 pp.) are available from the author
and from Professor Robert C. Reid, Rm. 66-540, Massachusetts Institute of
Technology, Cambridge, MA 02139.
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Table B.1  Summary of subroutines

Name Function

NEWTON Solves a general non-linear system of equations

LU Lower-upper decomposition of a matrix

BACK Solution of a system of linear equations by back-
substitution

CUBSOLV Analytical solution of a general cubic equation

FUNCT Provides the residuals of the phase-equilibrium equations

TRANSFOR Transformation of the vector of component mole fractions

from the domain [0,1l] to [-»,+»] and the reverse

STABIL Determination of stability coefficients for a mixture

INPTEMP Input parameters and conditions

OUTP Output results

MIXCALC Mixture parameter calculation (mixing-rule dependent)

ALOGFUG Fugacity coefficient calculation (mixing-rule dependent)

SETPAR Set-up of parameters for optimization routines (mixing-
rule dependent)

UPDPAR Update parameters in optimization step (mixing-rule
dependent)

Table B.2  Summary of calling programs

Name Function

PHASE Performs phase equilibrium calculations for a multicomponent
system at constant temperature T, and a series of pressures
(normally used for two-phase equilibrium calculations for
binary systems and three-phase equilibrium calculations in
ternary systems). Uses first-order continuation to provide
initial guesses for the Newton-Raphson method.

PHASEX Performs phase equilibrium calculations for a multicomponent
system at constant temperature T and pressure P (normally
used for two-phase equilibrium calculations in ternary
systems). Uses first-order continuation to provide initial
guesses for the Newton-Raphson method.

OPTIM Parameter regression program. Uses a simple amoeba method
to find an optimum set of parameters from experimental
phase equilibrium data.
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APPENDIX C: EXPERIMENTAL DATA

C.1 Chromatograph calibration

The chromatograph calibration procedure for the compounds of interest

was performed as follows:

Water - organic compound mixtures

Mixtures with known concentrations of water and organic compound were
prepared by weighing appropriate quantities of material in 25 ml glass
jars, using a calibrated balance with a weighing accuracy of *#0.01 g. The
error in composition because of the weighing uncertainties is negligible
relative to the error due to impurities. The purity of the organic compounds
used in this study was stated to be in the 99.5- 99.8 %w/w by the suppliers,
with water being the major impurity, as determined by gas-liquid
chromatographic analysis. Because of this, the purity of the pure components
used for the preparation of the calibration mixtures was determined in the
course of the calibration runs. This requires the unknown values of the
relative response factors, and therefore an iterative calculation was
necessary. Starting values for the response factors were obtained from
Dietz (1967). The calibration runs were performed before, during and
after the corresponding ternary system measurements to ensure chromatograph
stability. No appreciable drift was observed.

In Table C.1, the calculated values of the response factors for each
water - organic compound pair are shown, for the series of calibration
mixtures used for the various liquid components. The response factcrs are
based on a (arbitrary) value for the RRF for water of 33 (this value was
selected for consistency with the values reported by Dietz, 1967). An
average response factor for each component was then determined and is reported
in Table C.2; this value was used for all the determination of composition

of the termary mixtures. The error in the calculated mole fractions using
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these average response factors is also shown in Table C.1. The errors are
usually below 2%, with an average error of approximately 0.6% in mole

fraction.

Determination of the carbon dioxide and air resnonse factors

Air may be present in our system either as an impurity accompanying
CO,, or as a result of inadequate purging or degassing. The response
factors between air and CO, were determined by injecting known volumes of
each gas at atmospheric pressure, using a precision gas syringe. The
relative response factors were found to be identical to the values given

by Dietz (1967) and are reported in Table C.2.

Table C.1 Chromatograph calibration with water (1) - organic compound (2)

mixtures
Compound volume concentration RRF# Error
injected calc.t true (true-calc.)

(s1) X, X,

acetone 0.06 0.084 0.094 87 0.010
1.00 0.087 0.094 91 0.006
0.40 0.088 0.094 91 0.006
0.20 0.102 0.094 108 -0.009
0.20 0.307 0.313 96 0.006
0.20 0.322 0.313 102 -0.009
0.20 0.125 0.133 91 0.008
0.20 0.127 0.133 92 0.007
0.10 0.139 0.133 103 -0.005
0.20 0.409 0.439 87 0.030
0.10 0.412 0.439 88 0.027
0.10 0.432 0.439 95 0.007
0.20 0.449 0.439 102 -0.010

ethanol 0.20 0.061 0.063 76 0.002
0.10 0.061 0.063 76 0.001
0.20 0.062 0.063 77 0.001
0.10 0.063 0.063 78 -0.000
0.20 0.063 0.063 79 -0.001
0.10 0.069 0.063 86 -0.006
0.20 0.239 0.244 76 0.005
0.10 0.249 0.244 80 -0.005

(continued on next page)
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Table C.1 (continued)

Compound volume concentration RRF# Error
injected cale.t true (true-calc.)

(Bl) X, X,

ethanol 0.10 0.250 0.244 80 -0.006
0.10 0.262 0.244 86 -0.018
0.20 0.467 0.482 73 0.015
0.20 0.470 0.482 74 0.012
0.20 0.471 0.482 74 0.011
0.20 0.473 0.482 75 0.009
0.10 0.476 0.482 76 0.006
0.10 0.483 0.482 78 -0.001

n-butanol 0.20 0.550 0.544 107 -0.006
0.20 0.691 0.693 103 0.002
0.20 0.534 0.544 100 0.009
0.20 0.687 0.693 101 0.006
0.50 0.900 0.889 118 -0.011
0.30 0.900 0.889 118 -0.012
0.50 0.012 0.010 123 -0.002
0.50 0.011 0.010 112 -0.001
0.20 0.548 0.549 104 0.001
0.40 0.543 0.549 102 0.006
0.20 0.887 0.857 138 -0.031
0.30 0.883 0.857 132 -0.026
0.40 0.007 0.005 145 -0.002
0.20 0.017 0.012 144 -0.005
0.20 0.017 0.012 146 -0.005

acetic acid 0.20 0.012 0.019 46 0.007
0.20 0.090 0.100 65 0.010
0.20 0.085 0.100 61 0.015
0.20 0.089 0.100 64 0.011
0.20 0.093 0.100 68 0.007
0.17 0.894 0.907 63 0.014
0.20 0.915 C.907 81 -0.008
0.20 0.916 0.907 82 -0.009
0.20 0.579 0.593 59 0.915
0.20 0.611 0.593 79 -0.018
0.10 0.610 0.593 78 -0.016
0.20 0.118 0.118 73 0.000
0.20 0.110 0.118 67 0.008
0.20 0.115 0.118 71 0.004
0.20 0.101 0.100 T4 -0.001

(continued on next page)
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Table C.1 (continued)

Compound volume concentration RRF* Error
injected calc.t true (true-calc.)

(1) X, X,

acetic acid 0.20 0.100 0.100 73 6.000
0.20 0.019 0.019 69 0.001
0.20 0.019 0.019 69 0.001
0.20 0.090 0.100 65 0.010

butyric acid 0.20 0.723 0.791 83 0.068
0.20 0.795 0.791 107 -0.003
0.20 0.047 0.050 86 0.002
0.20 0.053 0.050 85 -0.003
0.20 0.043 0.050 69 0.007
0.20 0.050 0.050 80 -G.000
0.20 0.798 0.791 110 -0.007
0.20 . 0.797 0.791 109 -0.005
0.20 0.048 0.050 86 0.002
0.20 0.429 0.441 95 0.012
0.20 0.015 0.015 82 -0.000
0.20 0.015 0.015 81 -0.000
0.20 0.014 0.015 78 0.00¢C
0.20 0.431 0.441 96 0.009
0.20 0.446 0.450 88 0.005
0.20 0.431 0.441 96 0.010
0.20 0.805 0.791 114 -0.014
0.20 0.051 0.050 93 -0.001
0.20 0.051 0.050 93 -0.002
0.20 0.470 0.450 98 -0.020
0.20 0.714 0.716 89 0.002
0.20 0.723 0.716 104 -0.007
0.20 0.804 0.791 114 -0.013
0.20 0.050 0.050 90 -0.000
0.20 0.050 0.050 91 -0.001
0.20 0.051 0.050 92 -0.001
0.20 0.814 0.791 116 -0.023
0.20 0.714 0.716 99 0.001

t Calculated using the final average values for the relative response
factors shown in Table C.2.

t RRF: calculated value for relative response factor on a molar basis
(water = 33). The final average values of the relative response factors
are shown in Table C.2.
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The problem of determining the relative response factors between a
volatile and non-volatile component is more complicated, since it is more
difficult to prepare and sample a mixture of known composition. For the
determination of these response factors, an indirect approach was used.
We obtained equilibrium data for the binary systems acetone - carbon
dioxide (Table C.3) and methanol - carbon dioxide, using the response
factors reported by Dietz for the initial chromatographic analyses. We then
compared the results with literature values, obtained with a direct technique
(Katayama et al., 1976; Semenova et al., 1979). An adjustment of the
relative response factor for carbon dioxide was required to bring the
measured and literature data into complete agreemernt. Since two different
literature sources were used, this constitutes a reasonable consistency
test for the values of the response factors used. Additional continuous
tests of the validity of the relative response factors 1is provided by
comparisons of the results close to the sides of the ternary diagrams (for
example, water and CO, at low n-butanol concentrations for the ternary
water - n-butanol - CO,) with available literature results for the binary
system CO, - water. Still, the main source of systematic error in our
reported experimental results are the values of the relative response
factors. The final values of tne relative response factors thus obtained

are presented in Table C.2.

Table C.2 Values of the relative response factors (molar basis)

Component RRF used Dietz (1967)
air 59 42
carbon dioxide 68 48
water 33 33
ethanol 78 72
acetone 98 86
n-butanol » 104 117
acetic acid 73 -

n-butyric acid 90 -
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C.2 Acetone - water - carbon dioxide

The primary experimental results for the system water - acetone-
carbon dioxide are presented below in Tables C.3. and C.4. Each line in
the table (and the tables that follow) represents the results of a single
chromatographic analysis for the composition of one of the equilibrium
phases. The conditions in the cell (temperature, pressure, number of
coexisting phases) at the time of sampling are indicated on the table. In
addition, the "run numbers" (runs for each ternary system at each tempera’.ure
were numbered sequentially) are indicated under the column "run". During
each such run, the total composition inside the cell was constant. Pressure
variations occur because of slight changes in environmental conditions, or
small leaks.

Ac pressures below approximately 70-80 bar, entrainment and adsorption
on the supercritical phase sampling loop was a problem, resulting in
abnormally high, and irreproducible, concentrations of water and organic
compound in the supercritical phase. These results were eliminated from

the table, since they are not considered reliable.

Table C.3 Experimental results for the mixture water(l) - acetone(2) -
carbon dioxide(3) at 40 °C (313.1 K)

T P runt  phase M mole fractionst
°C bar X, X, X,
39.72 10.29 1 LIQ 2 0.214 0.689 0.097
39.74 10.37 1 LIQ 2 0.218 0.691 0.091
40.10 10.45 22 LIQ 2 0.001 0.877 0.119
40.10 10.46 22 LIQ 2 0.001 0.877 0.119
40.20 10.48 57 LIQ 2 0.746 0.233 0.019
40.15 10.72 57 LIQ 2 0.745 0.235 0.020
39.73 10.81 8 LIQ 2 0.019 0.810 0.170
39.76 10.88 8 LIQ 2 0.021 0.80° 0.171
39.74 10.89 8 SCF 2 0.000 0.073 0.925
40.10 14.48 24 LIQ 2 0.002 0.779 0.216
40.10 14.50 24 LIQ 2 0.002 0.777 0.219
40.10 14.48 24 LIQ 2 0.001 0.778 0.217
40.10 14.48 24 LIQ 2 0.002 0.778 0.217

(continued on next page)



Table C.3 (continued)

T P runt phase M mole fractionst
°C bar X X, X,
40.10 14 .44 27 LIQ 2 0.937 0.054 0.009
40.10 14.52 27 LIQ 2 0.941 0.051 ©€.008
40.10 14.57 27 SCF 2 0.006 0.023 0.969
39.22 15.30 9 LIQ 2 0.032 0.734 0.233
39.22 15.31 9 LIQ 2 0.034 0.734 0.232
39.30 15.31 9 SCF 2 0.002 0.040 0.956
39.73 15.77 9 SCF 2 0.004 0.040 0.955
39.24 18.31 10 LIQ 2 0.031 0.691 0.277
39.24 18.28 10 LIQ 2 0.032 0.691 0.277
39.23 18.29 10 SCF 2 0.000 0.033 0.966
39.21 18.29 10 ' SCF 2 0.000 0.025 0.974
40.10 18.28 42 LIQ 2 0.875 0.115 0.010
40.10 18.30 42 LIQ 2 0.888 0.103 0.009
40.10 19.45 23 LI1Q 2 0.001 0.772 0.224
40.10 19.45 23 LIQ 2 0.001 0.772 0.224
39.76 20.19 2 LIQ 2 0.160 0.503 0.315
39.80 20.38 2 LIQ 2 0.221 0.606 0.172
40.10 20.37 26 LIQ 2 ¢.947 0.043 0.010
40.10 23.93 28 SCF 2 0.003 0.014 0.981
40.10 23.96 28 SCF 2 0.002 0.015 0.981
40.10 23.98 28 SCF 2 0.004 0.017 0.978
40.10 24.03 28 LIQ 2 0.936 0.051 0.013
40.10 24,32 25 LIQ 2 0.006 0.889 0.103
40.10 24 .31 25 LIQ 2 0.004 0.888 0.104
40.10 24.14 25 LIQ 2 ° 0.006 0.646 0.346
40.10 24 .12 25 SCF 2 0.003 0.039 0.955
40.10 24 .14 25 SCF 2 0.019 0.032 0.946
39.25 24 .31 11 LIQ 2 0.028 0.611 0.361
39.24 24 .33 11 LIQ 2 0.027 0.611 0.3€2
39.24 24.35 11 SCF 2 0.006 0.020 0.973
39.23 24.39 11 SCF 2 0.000 0.028 0.971
40.20 24,63 58 SCF 2 0.006 0.023 0.937
40.20 24.72 58 LIQ 2 0.692 0.245 0.062
40.15 24 .82 58 LIQ 2 0.697 0.247 0.055
40.20 29.27 59 LIQ2 3 0.291 0.455 0.250
40.20 29.37 59 LIQ2 3 0.297 0.452 0.248
40,15 29.40 59 SCF 3 0.005 0.025 0.954
40.20 29.51 59 LIQ 3 0.812 0.153 0.034
40.20 29.61 59 LIQ 3 0.808 0.154 0.037
39.23 29.65 12 SCF 2 0.000 0.025 0.974
39.23 29.68 12 SCF 2 0.000 0.033 0.967
39.23 29.71 12 LIQ 2 0.024 0.542 0.433

(continued on next page)
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Table C.3 {(continued)

T P runt phase M mole fractionst
°C bar X, X, X,
39.24 29.81 12 LIQ 2 0.023 0.540 0.436
39.80 33.37 3 LIQ 2 0.177 0.485 0.338
39.80 33.40 3 SCF 2 0.004 0.025 0.970
39.80 33.41 3 SCF 2 0.002 0.020 0.977
39.80 33.46 3 LIQ 2 0.172 0.478 0.349
39.24 35.15 13 SCF 2 0.000 0.025 0.974
39.26 35.16 13 SCF 2 0.000 0.021 0.978
39.24 35.26 13 LIQ 2 0.020 0.471 0.508
39.23 35.36 13 LIQ 2 0.021 0.473 0.506
40.15 35.80 60 LIQ2 3 0.179 0.435 0.380
40.1°5 35.86 60 SCF 3 0.007 0.020 0.906
40.15 35.88 60 SCF 3 0.005 0.017 0.965
40.15 35.95 60 LIQ 3 0.866 0.104 0.028
40.15 35.95 60 L1Q2 3 0.215 0.420 0.362
40.15 35.98 60 LIQ 3 0.862 0.108 0.029
40.10 36.78 43 LiQ 2 0.892 0.089 0.019
40.10 36.81 43 LIQ 2 0.887 0.090 0.024
40.10 36.91 43 SCF 2 0.002 0.023 0.974
40.10 37.01 43 SCF 2 0.002 0.023 0.975
40.10 38.58 30 SCF 2 0.008 0.013 0.978
40.10 38.68 30 SCF 2 0.002 0.014 0.984
40.10 38.83 30 LIQ 2 0.931 0.050 0.019
40.10 39.13 30 LIQ 2 0.923 0.056 0.021
39.80 41.10 4 SCF 2 0.002 0.015 0.982
39.80 41.23 4 SCF 2 0.002 0.020 0.976
39.80 41.46 4 LIQ 2 0.150 0.383 0.466
39.80 41.67 4 LIQ 2 0.131 0.390 0.479
39.24 42.55 14 LIQ 2 0.016 0.386 0.598
39.24 42.58 14 LIQ 2 0.016 0.386 0.598
39.24 42.59 14 SCF 2 0.000 0.018 0.981
39.24 42.71 14 SCF 2 0.000 0.017 0.982
40.10 42.86 44 SCF 3 0.002 0.017 0.980
40.10 42.94 44 SCF 3 0.004 0.019 0.976
40.10 42.97 44 SCF 3 0.003 0.018 0.978
40.10 43.07 44 LIQ 3 0.906 0.072 0.021
40.10 43.21 44 LIQ 3 0.909 0.072 0.019
40.10 43.21 44 LIQ 3 0.894 0.084 0.023
40.10 43.31 44 LIQ 3 0.907 0.673 0.020
40.10 46.11 35 LIQ2 3 0.135 0.333 0.532
39.25 48.22 15 SCF 2 0.000 0.019 0.980
39.24 48.33 15 SCF 2 0.000 0.017 0.982
39.28 48.36 15 SCF 2 0.000 0.022 0.978
39.28 48.36 15 LIQ 2 0.013 0.320 0.667

(continued on next page)
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Table C.3 (continued)

T P runt phase M mole fractions!
°C bar X, X, X,
39.24 48.41 15 LIQ 2 0.013 0.319 0.668
39.80 48.73 5 SCF 2 0.002 0.016 0.982
39.80 48.81 5 SCF 2 0.002 0.021 0.977
39.80 48.85 5 LIQ 2 0.101 0.307 0.591
39.80 48.94 5 LIQ 2 0.114 0.302 0.584
40.10 49.51 45 SCF 3 0.001 0.016 0.983
40.10 49.61 45 SCF 3 0.003 0.017 0.980
40.10 49,61 45 SCF 3 0.002 0.017 0.981
40.10 49.66 45 LIQ 3 0.913 0.063 0.023
40.10 49.66 45 LIQ 3 0.917 0.060 0.022
39.26 53.53 16 SCF 2 0.000 0.015 0.985
39.26 53.60 16 LIQ 2 0.011 0.263 0.726
39.26 53.61 16 SCF 2 0.000 0.013 0.986
40.10 55.12 51 LIQ2 3 0.081 0.238 0.681
40.10 55.90 31 SCF 3 0.002 0.016 0.982
40.10 55.91 31 LIQ 3 0.918 0.054 0.028
40.10 55.93 31 LIQ 3 0.922 0.051 0.027
40.10 56.99 51 LIQ 3 0.919 0.052 0.0630
40.10 56.62 51 LIQ2 3 0.139 0.226 0.635
40.10 56.47 51 LIQ2 3 0.099 0.234 0.667
40.12 56.28 51 SCF 3 0.003 0.015 0.982
40.10 56.32 51 SCF 3 0.001 0.008 0.990
40.10 57.06 46 LIQ 3 0.928 0.045 0.027
40.10 57.54 36 LIQ 3 0.928 0.040 0.026
40.10 57.54 36 LIQ 3 0.936 0.041 0.023
40.10 57.61 36 LIQ 3 0.938 0.040 0.023
40.10 57.31 36 LIQ2 3 0.108 0.222 0.670
40.10 57.31 36 LIQ2 3 0.153 0.208 0.639
40.10 57.51 36 SCF 3 0.001 0.016 0.982
40.10 57.61 36 SCF 3 0.002 0.015 0.982
40.10 57.51 34 LIQ 3 0.934 0.041 0.025
49.10 55.97 34 LIQ 3 0.939 0.036 0.025
40.10 58.07 34 LIQ 3 0.938 0.039 0.023
40.10 56.31 34 LIQ2 3 0.137 0.222 0.640
40.10 57.47 33 LIQ 2 0.951 0.026 0.023
39.80 56.31 6 LIQ 2 0.086 0.225 0.688
39.80 56.23 6 LIQ 2 0.073 0.232 0.694
39.80 56.56 6 SCF 2 0.001 0.015 0.984
40.10 58.15 32 SCF 2 0.003 0.010 0.986
40.10 58.36 32 SCF 2 0.001 0.023 0.974
40.10 58.46 32 SCF 2 0.001 0.013 0.986
40.10 58.52 32 SCF 2 0.001 0.013 0.985
40.10 58.63 32 LIQ 2 0.940 0.035 0.025
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Table C.3 (continued)

T P runt phase M mole fractions!
°C bar X, X, X,
40.10 58.68 32 LIQ 2 0.935 0.038 0.027
40.10 58.72 32 LIQ 2 0.941 0.035 0.025
39.27 59.13 17 SCF 2 0.000 0.015 0.984
39.29 59.19 17 SCF 2 0.000 0.017 0.983
39.26 59.19 17 LIQ 2 0.007 0.203 0.790
39.26 59.50 17 LIQ 2 0.008 0.202 0.790
40.10 60.80 52 LIQ2 3 0.083 0.199 0.718
40.10 60.80 52 LIQ2 3 0.145 0.183 0.672
40.10 60.80 2 LIQ2 3 0.116 0.19%85 0.688
40.10 60.90 52 LIQ2 3 0.129 0.188 0.683
40.10 60.95 52 LIQ 3 0.939 0.039 0.022
40.10 61.16 52 SCF 3 0.002 0.015 0.983
40.10 61.16 52 SCF 3 0.005 0.015 0.979
40.10 61.22 52 LIQ 3 0.945 0.034 0.021
39.80 62.09 7 SCF 2 0.002 0.014 0.984
39.80 62.18 7 SCF 2 0.002 0.017 0.981
39.80 62.23 7 LIQ 2 0.060 0.171 0.769
39.80 62.28 7 LIQ 2 0.053 0.169 0.777
40.10 63.31 37 LIQ2 3 0.112 0.160 0.728
40.10 63.31 37 LIQ2 3 0.140 0.155 0.706

40.10 63.31 37 LIQ2 3 0.144 0.155

40.10 63.81 37 SCF 3 0.001 0.015 0.984
40.10 64.01 37 SCF 3 0.002 0.015 0.983
40.10 65.80 53 LIQ 3 0.940 0.034 0.025
40.10 65.80 53 LIQ 3 0.948 0.030 0.022
40.10 65.26 53 LIQ2 3 0.123 0.148 0.729
40.10 64.95 53 LIQ2 3 0.136 0.148 0.716
40,10 64.97 53 LIQ2 3 0.141 0.139 0.719
40.10 65.50 53 SCF 3 0.002 0.014 0.983
40.10 65.50 53 SCF 3 0.001 0.015 0.984
39.30 64.68 18 LIQ 2 0.005 0.147 0.848
39.32 64.68 18 LIQ 2 0.006 0.149 0.845
39.30 65.11 18 SCF 2 0.000 0.015 0.985
39.30 64.68 18 SCF 2 0.000 0.015 0.985
40.10 66.51 47 LIQ2 3 0.163 0.126 0.711
40.10 66.61 47 LIQ2 3 0.151 0.118 0.731
40.10 67.71 47 SCF 3 0.001 0.015 0.984
40.10 67.71 47 SCF 3 0.000 0.015 0.985
40.10 67.71 47 SCF 3 0.002 0.015 0.983
40.10 67.81 47 LIQ 3 0.942 0.029 0.029
40.10 68.01 47 LIQ 3 0.951 0.025 0.025
40.10 68.01 47 LIQ 3 0.942 0.030 0.028
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Table C.3 (continued)

T P runt phase M mole fractionst
°C bar X, X, X,
39.10 68.92 19 SCF 2 0.000 0.014 0.986
39.10 68.96 19 SCF 2 0.000 0.014 0.986
39.10 69.03 19 SCF 2 0.000 0.014 0.985
39.10 69.09 19 LIQ 2 0.004 0.105 0.891
39.00 69.19 19 LIQ 2 0.004 0.105 0.891
40.12 69.36 54 LIQ 3 0.943 0.032 0.025
40,12 69.40 54 LIQ 3 0.944 0.032 0.025
39.10 72.67 20 LIQ 2 0.003 0.074 0.923
39.10 72.78 20 LIQ 2 0.003 0.073 0.924
39.10 72.78 20 SCF 2 0.000 0.014 0.986
39.10 72.88 20 SCF 2 0.000 0.014 0.986
40.10 74.41 48 LIQ2 3 0.023 0.069 0.907
40.10 74.51 48 LIQ2 3 0.016 0.069 0.915
40.10 74.51 48 LIQ2 3 0.043 0.067 0.891
40.10 75.01 48 SCF 3 0.002 0.015 0.983
40.10 75.01 48 SCF 3 0.002 0.014 0.983
40.10 75.21 48 LIQ 3 0.962 0.016 0.023
40.10 75.21 48 LIQ 3 0.956 0.019 0.026
39.14 76.37 21 SCF 2 0.000 0.014 0.986
39.12 76.39 21 SCF 2 0.000 0.014 0.985
39.10 76.49 21 LIQ 2 0.001 0.046 0.952
39.10 76.55 21 LIQ 2 0.002 0.045 0.953
40.10 77.22 49 LIQ2 3 0.035 0.047 0.917
40.10 77.82 49 LIQ 3 0.965 0.013 0.023
40.10 77.82 49 LIQ2 3 0.045 0.047 0.908
40.10 77.82 49 SCF 3 0.001 0.014 0.984
40.10 77.87 49 SCF 3 0.001 0.015 0.984
40.15 79.02 50 LIQ2 3 0.048 0.035 0.916
40.10 79.12 50 SCF 3 0.001 0.015 0.984
40.10 79.12 50 SCF 3 0.004 0.015 0.981
40.10 79.52 50 LIQ 3 0.967 0.011 0.022
40.10 79.52 50 LIQ2 3 0.049 0.035 0.915
40.10 79.62 50 LIQ 3 0.964 0.011 0.025
40.15 79.62 55 LIQ 2 0.950 0.026 0.024
40.15 79.62 55 SCF 2 0.023 0.145 0.832
40.15 79.72 55 LIQ 2 T 948 0.027 0.025
40.15 79.82 55 SCF 2 0.023 0.162 0.815
40.15 95.92 56 SCF 2 0.021 0.145 0.834
40.15 96.72 56 SCF 2 0.022 0.143 0.835
40.15 97.72 56 LIQ 2 0.948 0.026 0.026
40.15 99,32 56 LIQ 2 0.949 0.026 0.026

(continued on next page)



221

Table C.3 (concluded)

T P run!  phase M mole fractiomst
°C bar X, X, X,
40.17 115.01 38 LIQ 2 0.945 0.026 0.029
40.17 119.01 38 LIQ 2 0.947 0.027 0.026
40.10 127.51 38 LIQ 2 0.938 0.032 0.030
40.17 151.01 39 LIQ 2 0.947 0.025 0.028
40.17 154,51 39 LIQ 2 0.947 0.026 0.028
40.12 207.51 40 LIQ 2 0.940 0.028 0.033
40.12 213.51 40 LIQ 2 0.951 0.024 0.025
40.12 253.01 41 LIQ 2 0.942 0.027 0.031
40.15 263.01 41 LIQ 2 0.943 0.028 06.030

t  The sum of the three mole fractions in usually slightly lower than
1.000, because of the presence of small quantities of impurities
(usually air) detected during the chromatographic analysis.

! The serial number of the run is included so as to permit the determination
of the tie-lines from the data given in the table.

run number were taken for a constant composition, temperature and
Jressure (small pressure variations did occur, as shown in the table)

Data with the same

Table C.4 Experimental results for the mixture water(l) - acetone(2) -
carbon dioxide(3) at 60 °C (333.1 K)

T P runt  phase M mole fractions!
°C bar X, X, )
60.00 8.62 39 LIQ 2 0.023 0.895 0.082
60.00 8.53 139 LIQ 2 0.032 0.879 0.089
60.00 19.47 1 LIQ 2 0.989 0.005 0.006
60.00 19.46 1 LIQ 2 0.990 0.005 0.006
60.05 20.04 28 LIQ 2 0.583 0.356 0.062
60.10 20.10 28 LIQ 2 0.581 0.360 0.060
60.00 20.29 23 LIQ 2 0.753 0.218 0.030
60.00 20.32 23 LIQ 2 0.753 0.218 0.030
60.10 20.31 17 LIQ 2 0.750 0.221 0.030
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Table €.4 (continued)

T P runt phase M mole fractionst
°C bar X, %, X,
60.10 20.52 17 LIQ 2 0.744 0.225 0.031
60.00 21.10 40 LIQ 2 0.019 0.743 0.237
60.00 21.20 40 LIQ 2 0.020 0.753 0.227
60.00 30.00 41 LIQ 2 0.019 0.663 0.317
60.00 30.12 41 LIQ 2 0.018 0.658 0.324
60.00 38.56 22 LIQ 2 0.842 0.131 0.027
60.00 38.56 22 LIQ 2 0.841 0.131 0.028
60.00 38.25 7 SCF 2 0.006 0.020 0.972
60.00 38.55 7 SCF 2 0.012 0.013 0.975
60.00 39.08 7 LIQ 2. 0.965 0.024 0.011
60.00 39.09 24 LIQ 3 0.793 0.164 0.044
60.00 39.15 24 LIQ2 3 0.394 0.402 0.204
60.00 39.15 24 LIQ2 3 0.394 0.399 0.207
60.00 39.09 24 LIQ 3 0.794 0.164 0.043
60.10 39.25 29 LIQ2 3 0.414 0.390 0.196
60.10 39.20 29 SCF 3 0.018 0.049 0.931
60.10 39.07 29 LIQ2 3 0.397 0.402 0.201
60.00 40.98 18 LIQ2 3 0.446 0.373 0.181
60.00 39.03 18 LIQ 3 0.795 0.164 0.042
60.00 39.03 18 LIQ2 3 0.437 0.380 0.183
60.00 39.03 18 SCF 3 0.015 0.036 0.948
60.00 38.96 18 LIQ 3 0.797 0.161 0.043
60.00 39.36 42 LIQ 2 0.017 0.568 0.415
60.00 39.50 42 LIQ 2 0.016 0.569 0.415
60.00 39.86 2 LIQ 2 0.982 0.006 0.012
60.00 40.54 2 LIQ 2 0.985 0.005 0.009
60.00 39.65 2 LIQ 2 0.984 0,005 0.010
60.00 39.52 2 SCF 2 0.010 0.005 0.934
60.00 40.74 12 LIQ 2 0.844 0.127 0.029
60.00 39.85 12 SCF 2 0.426 0.054 0.520
60.00 40.31 12 LIQ 2 0.845 0.129 0.026
60.00 42 .49 36 LIQ2 2 0.401 0.477 0.122
60.00 41.49 36 LIQ2 2 0.432 0.487 0.082
60.00 42 .49 36 LIQ 2 0.816 0.146 0.038
60.00 42.99 36 LIQ 2 0.813 0.149 0.039
60.00 49.28 43 SCF 2 0.001 0.068 0.928
60.00 49.25 43 SCF 2 0.001 0.064 0.932
60.00 49.32 43 LIQ 2 0.014 0.481 0.505
60.00 49.40 43 LIQ 2 0.014 0.479 0.507
60.00 51.36 31 LIQ 3 0.881 0.090 0.028
60.00 50.77 31 LIQ2 3 0.183 0.431 0.385
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Table C.4 (continued)

T P runt phase M mole fractiomst
°C bar X, X, X,
60.00 50.77 21 LIQ2 3 0.180 0.405 0.414
60.00 51.31 31 LIQ 3 0.879 0.091 0.030
60.00 51.32 31 SCF 3 0.022 0.060 0.917
60.05 58.14 25 LIQ2 3 0.178 0.360 0.461
60.05 58.34 25 LIQ2 3 0.175 0.360 0.465
6C.00 59.03 25 LIQ 3 0.903 0.076 0.027
60.00 59.15 8 LIQ 2 0.962 0.022 0.016
60.00 59.01 8 LIQ 2 0.961 0.023 0.016
60.00 59.01 8 SCF 2 0.009 0.014 0.978
60.00 59.06 3 LIQ 2 0.979 0.006 0.016
60.00 59.44 3 LIQ 2 0.976 0.006 0.018
60.00 58.78 3 SCF 2 0.007 0.020 0.973
60.05 59.33 19 SCF 3 0.006 0.030 0.964
60.00 59.00 19 LIQ2 3 0.166 0.358 0.476
60.00 59.88 19 LIQ 3 0.905 0.068 0.027
60.00 59.93 19 LIQ 3 0.904 0.068 0.028
60.00 60.02 44 SCF 2 0.001 0.043 0.95%
60.00 60.03 44 SCF 2 0.001 0.042 0.955
60.00 60.67 13 LIQ 3 0.909 0.066 0.025
60.00 60.48 13 SCF 3 0.006 0.029 0.963
60.00 60.54 13 SCF 3 0.007 0.032 0.961
60.00 60.75 13 LIQ 3 0.909 0.066 0.025
60.00 64.39 37 LIQ 2 0.843 0.127 0.031
60.00 63.79 37 LIQ 2 0.839 0.131 0.030
60.00 59.49 37 LIQ2 2 0.298 0.421 0.280
60.00 58.39 37 LIQ2 2 0.297 0.432 0.271
60.00 68.97 32 LIQ2 3 0.114 0.297 0.589
60.00 68.67 32 LIQ2 3 0.121 0.303 0.576
60.00 71.07 32 LIQ 3 0.925 0.050 0.025
60.00 70.82 32 SCF 3 0.008 0.035 0.956
60.00 70.87 32 SCF 3 0.089 0.032 0.878
60.00 71.24 32 LIQ 3 0.925 0.049 0.026
60.00 70.68 45 LIQ 2 0.009 0.292 0.699
60.00 70.69 45 SCF 2 0.001 0.039 0.959
60.00 70.72 45 SCF 2 0.001 0.037 0.9%62
60.00 70.68 45 LIQ 2 0.008 0.299 0.693
60.00 79.43 20 LIQ 2 0.908 0.065 0.027
60.00 72.73 20 LIQ2 2 0.149 0.433 0.418
60.00 76.92 20 LIQ 2 0.908 0.065 0.027
60.00 74.48 20 LIQ2 2 0.140 0.386 0.474
60.00 79.91 14 LIQ 3 0.938 0.040 0.022
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Table C.4 (continued)

T P runt  phase M mole fractionst
°C bar X, X, X,
60.00 79.82 14 SCF 3 0.007 0.032 0.961
60.00 79.97 14 LIQ 3 0.939 0.038 0.023
60.00 78.02 14 LIQ2 3 0.081 0.242 0.677
60.00 78.02 14 LIQ2 3 0.097 0.227 0.676
60,00 79.72 14 SCF 3 0.005 0.032 0.962
60.00 80.58 46 SCF 2 0.001 0.057 0.94l1
60.00 80.64 46 LIQ 2 0.006 0.217 0.776
60.00 80.53 46 SCF 2 0.001 0.039 0.960
60.10 80.61 26 LIQ2 2 0.087 0.259 0.654
60.10 80.61 26 LIQ2 2 0.128 0.356 0.516
€0.10 80.61 26 LIQ 2 0.911 0.062 0.027
60.00 80.46 9 SCF 2 0.005 0.017 0.978
60.00 81.60 9 LIQ 2 0.957 0.022 0.021
60.00 80.49 9 SCF 2 0.005 0.017 0.978
60.00 80.07 9 LIQ 2 0.957 0.021 0.022
60.00 81.93 4 SCF 2 0.003 0.005 0.991
60.00 62.01 4 LIQ 2 0.974 0.005 0.020
60.00 81.93 4 LIQ 2 0.979 0.005 0.017
60.00 81.92 4 SCF 2 0.004 0.005 0.990
60.00 89.88 47 SCF 2 0.001 0.045 0.953
60.00 89.70 47 SCF 2 0.000 0.043 0.956
60.00 90.07 47 LIQ 2 0.004 0.143 0.852
60.00 90.33 47 LIQ 2 0.004 0.143 0.853
60.00 93.03 33 LIQ 3 0.945 0.029 0.026
60.00 91.82 33 LIQ2 3 0.089 0.129 0.782
60.00 93.03 33 LIQ 3 0.946 0.028 0.025
60.00 93.03 33 SCF 3 0.009 0.046 0.944
60.00 93.03 33 SCF 3 0.011 0.047 0.942
60.00 91.82 33 LIQ2 3 0.079 0.126 0.795
6G.00 94.21 48 LIQ 2 0.005 0.110 0.887
60.00 94,13 48 SCF 2 0.002 0.060 0.938
60.00 94.89 38 LIQ 2 0.848 0.122 0.030
60.00 96.49 38 LIQ 2 0.851 0.121 0.029
60.00 91.29 38 LIQ2 2 0.299 0.415 0.286
60.00 94.59 49 LIQ 2 0.003 0.106 0.891
60.00 94.39 49 LIQ 2 0.006 0.107 0.889
60.00 94.66 49 SCF 2 0.002 0.065 0.932
60.00 94.69 49 SCF 2 0.002 0.066 0.931
60.00 99.87 34 LIQ 2 0.958 0.020 0.022
60.00 98.57 34 SCF 2 0.015 0.072 0.913
60.00 98.57 34 SCF 2 0.014 0.072 0.913
60.00 99.84 34 LIQ 2 0.957 0.020 0.023
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Table C.4 (concluded)

T P runt phase M mole fractionst
°C bar X, X, X,
60.00 101.49 10 LIQ 2 0.965 0.012 0.022
60.00 101.29 10 SCF 2 0.006 0.026 0.968
60.00 101.46 10 SCF 2 0.008 0.024 0.967
60.00 101.46 10 LIQ 2 0.965 0.014 0.021
60.00 100.67 15 SCF 2 0.033 0.161 0.806
60.00 101.92 15 LIQ 2 0.949 0.029 0.023
60.00 102.40 15 LIQ 2 0.946 0.030 0.024
60.00 101.22 15 SCF 2 0.049 0.226 0.725
60.00 102.42 5 SCF 2 0.004 0.007 0.985
60.00 102.48 5 LIQ 2 0.972 0.005 0.023
60.00 101.92 5 SCF 2 0.004 0.007 0.989
60.00 143.82 16 LIQ 2 0.952 0.025 0.023
60.00 146.73 16 LIQ 2 0.951 0.025 0.024
60.00 141.32 16 SCF 2 0.031 0.143 0.826
60.00 139.82 16 SCF 2 0.030 0.148 0.821
60.00 143.32 11 SCF 2 0.009 0.024 0.967
60.00 143.32 11 SCF 2 0.009 0.025 0.966
60.00 143.32 11 SCF 2 0.009 0.025 0.966
60.00 144 .32 11 LIQ 2 0.969 0.007 0.024
60.00 143.82 11 LIQ 2 0.968 0.007 0.025
60.00 147.22 6 SCF 2 0.000 0.003 0.996
60.00 147.80 6 LIQ 2 J.976 0.002 0.021
60.10 158.51 27 LIQ 2 0.902 0.069 0.029
60.10 156.01 27 LIQ 2 0.903 0.069 0.028
60.10 153.01 27 SCF 2 0.136 0.353 0.510
60.10 151.01 27 SCF 2 0.132 0.356 0.513
60.00 155.02 35 SCF 2 0.152 0.365 0.483
60.00 154.02 35 LIQ 2 0.876 0.090 0.034
60.00 154.02 35 SCF 2 0.161 0.367 0.471
60.00 156.02 35 LIQ 2 0.876 0.090 0.035
60.05 155.03 21 SCF 2 0.152 0.362 0.485
60.05 157.03 21 SCF 2 0.150 0.364 0.487
60.00 163.03 21 LIQ 2 0.899 0.073 0.028
60.00 165.53 21 LIQ 2 0.896 0.073 0.031

t¥ See footnotes to Table C.3
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C.3 n-Butanol - water - carbon dioxide

The methodology described previously in Section C.2 was followed for
the presentation of the experimental results in this system in Tables C.5
and C.6. In addition, results from the density measurements using the
vibrating tube density meter (as described in Section 4.1.1) are presented

in the tables that follow.

Table C.5 Experimental results for the mixture water(l) - n-butanol(2) -
carbon dioxide(3) at 40.°C (313.1 K)

T P runt phase M mole fractionst density

°C bar X, X, X, kg/m?
39.98 2.61 22 LIQ2 2 0.527 0.471 0.002 834
39.98 2.65 22 LIQ 2 0.984 0.016 0.000
39.98 2.68 22 LIQ 2 0.984 0.016 0.000 981
39.98 3.96 22 LIQ2 2 0.527 0.471 0.002
39.98 18.60 5 LIQ 3 0.97¢9 0.014 0.007
39.98 18.20 5 LIQ2 3 0.467 0.476 0.057 839
39.98 18.40 5 LIQ 3 0.978 0.014 0.007 988
39.96 18.50 14 LIQ 2 0.044 0.862 0.094
39.96 18.39 14 LIQ 2 0.044 0.870 0.086 807
39.91 19.19 25 SCF 2 0.012 0.009 0.966
39.91 19.22 25 SCF 2 0.007 0.008 0.977
39.91 19.10 25 LIQ 2 0.336 0.595 0.069 825
39.91 19.14 25 LIQ 2 0.323 0.610 0.066
39.95 38.39 16 SCF 2 0.002 0.004 0.993
39.95 38.52 16 LIQ 2 0.090 0.730 0.181
39.95 38.48 16 LIQ 2 0.097 0.707 0.196 819
39.98 38.75 6 SCF 3 0.004 0.004 0.989
39.98 39.22 6 LIQ 3 0.975 0.013 0.013 993
39.98 37.89 6 LIQ 3 0.974 0.013 0.013
39.98 38.70 6 LIQ2 3 0.404 0.464 0.132 844
39.92 38.20 26 SCF 2 0.002 0.005 0.989
39.92 38.25 26 SCF 2 0.002 0.005 0.989
39.90 39.58 26 LIQ 2 0.335 0.551 0.114
39.90 39.41 26 LIQ 2 0.324 0.538 0.138 836
39.90 38.34 26 LIQ 2 0.335 0.519 0.146
39.96 38.94 15 LIQ 2 0.060 0.739 0.201
40.08 58.25 1 LIQ 2 0.978 0.008 0.014

(continued on next page)
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T P run! phase M mole fractionst density
°C bax X, X, X, kg/m?
40.03 58.60 1 LIQ 2 0.978 0.008 0.013
40.08 58.20 1 SCF 2 0.005 0.003 0.992
40.08 58.08 1 SCF 2 0.003 0.002 0.995
40.03 58.60 1 SCF 2 0.004 0.001 0.994
40.03 58.70 1 LIQ 2 0.975 0.010 0.015
39.92 58.53 27 LIQ 2 0.293 0.458 0.249 846
39.92 58.56 27 LIQ 2 0.288 0.468 0.245
39.92 58.40 27 SCF 2 9.001 0.006 0.991
39.98 59.30 7 LIQ 3 0.972 0.011 0.017
39.98 58.40 7 SCF 3 0.002 0.013 0.983
39.98 58.990 7 LIQ 2 0.968 0.013 0.019 999
39.98 58.40 7 SCF 3 0.002 0.003 0.992
39.98 58.10 7 L1IQ2 3 0.331 0.441 0.228 850
39.98 58.40 7 LIQ2 3 06.351 0.420 0.229
39.95 58.87 17 LIO 2 0.071 0.596 0.333
39.95 60.11 18 LIQ 2 0.v85 0.591 0.325 831
39.96 59.846 18 SCF 2 0.001 0.002 0.997
39.96 60.14 18 SCF 2 0.001 0.005 0.994
39.92 79.20 28 LIQ 2 0.188 0.337 0.474
39.92 79.00 28 LIQ 2 0.199 0.338 9.463 849
39.92 79.40 28 SCF 2 0.003 0.006 0.989
39.92 58.37 28 SCF 2 0.002 0.003 0.993
39.92 79.40 28 SCF 2 0.003 0.008 0.989
39.92 79.50 28 SCF 2 C.002 0.004 0.993
39.98 77.60 8 LIQ2 3 0.216 0.340 0.444
39.98 77.50 8 LIQ2 3 0.216 0.357 0.427 853
39.98 78.70 8 SCF 3 0.003 0.014 0.982
39.98 78.80 8 SCF 3 0.003 0.006 0.991
39.98 78.84 8 LIQ 3 0.966 0.011 0.023 1002
39.96 78.60 19 LIQ 2 0.9%44 0.296 0.660 827
39.96 78.40 19 SCF 2 0.001 0.006 0.992
39.96 78.76 19 LIQ 2 0.045 0.294 0.661
35.96 78.40 19 SCF 2 0.001 0.007 0.991
40.08 79.66 2 LIQ 2 0.975 0.008 0.018
40.08 79.31 2 SCF 2 0.003 €.005 0.992
40.08 79.49 2 LIQ 2 0.975 0.008 0.018
40.08 79.31 2 SCF 2 0.003 0.00& 0.993
39.96 80.49 20 LIQ 2 0.026 0.145 0.831 784
39.96 80.00 20 LIQ 2 0.031 0.172 0.797
39.96 79.95 20 SCF 2 0.002 0.015 0.983
39.96 79.91 20 SCF 2 0.002 0.009 0.988
39.96 80.73 21 SCF 2 0.015 0.062 0.923
39.96 80.72 21 LIQ 2 6.019 0.106 0.877 760
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Table C.5 (continued)
T P run!  phase M mole fractionst density
°C bar X, X, X, kg,/m3
39.96 8G.74 21 SCF 2 0.010 0.067 0.923
39.96 80.59 21 LIQ 2 0.016 0.095 0.889
40.08 80.08 46 LIQ 2 0.099 0.278 0.623 825
40.08 80.80 46 SCF 2 0.016 0.077 0.908
40.08 80.95 46 LIQ 2 0.093 0.274 0.633
40.08 81.15 46 SCF 2 0.016 0.076 0.908 730
40.06 -81.18 40 SCF 3 0.015 0.081 0.903
40.05 81.29 40 LIQ 3 0.969 0.010 0.021
40.05 81.10 40 SCF 3 0.022 0.072 0.906
40.05 81.11 40 LIQ2 3 0.174 0.305 0.520
40.03 80.80 40 LIQ 3 0.966 0.011 0.023 955
40.08 81.19 40 SCF 3 0.012 0.062 0.926
40.05 81.10 40 LIQ2 3 0.172 0.314 0.514 832
39.90 81.45 10 LIQ3 4 0.045 0.046 0.908
39.90 81.45 10 LIQ3 4 0.056 0.043 0.901 669
39.90 81.638 9 LIQ2 4 0.187 0.280 0.533
39.91 81.40 9 LIQ 4 0.969 0.009 0.021
39.91 81.45 9 LIQ2 & 0.168 0.285 0.547
39.91 81.35 9 LIQ 4 0.966 0.011 0.023 1000
39.90 81.45 9 SCF 4 0.012 0.065 0.922
39.90 81.48 9 LIQ2 4 0.160 0.289 0.551 846
40.08 81.40 41 LIQ 4 0.970 0.010 0.020
40.08 81.56 41 SCF 4 0.014 0.066 0.920
40.08 81.54 41 SCF 4 0.015 0.067 0.917
40.08 81.92 41 LIQ2 4 0.155 0.297 0.548
40.08 81.60 41 LIQ2 4 0.179 0.287 0.534 841
39.92 81.59 29 SCF 3 0.011 0.079 0.910
39.92 81.68 29 SCF 3 0.012 0.066 0.921
39.92 81.61 29 SCF 3 0.009 0.057 0.934
39.92 81.68 29 LIQ 3 0.150 0.291 0.559 844
39.92 81.68 29 LIQ 3 0.151 0.291 0.558
40.08 81.80 42 LIQ3 4 0.034 0.039 0.927
40.08 81.80 42 LIQ3 4 0.036 0.039 0.926
40,08 81.66 42 LIQ3 4 0.035 0.041 0.924 793
39.90 81.96 30 LIQ 2 0.970 0.010 0.020 999
39.90 81.50 30 LIQ 2 0.970 0.010 0.020
39.90 81.90 30 SCF 2 0.283 0.402 0.315
39.90 81.90 30 SCF 2 0.295 0.424 0.281 853
40.08 81.85 45 LIQ2 3 0.038 0.040 0.922
40.08 81.99 45 SCF 3 0.024 0.085 0.890
40.08 81.80 45 LIQ2 3 0.020 0.042 0.938 790
40.08 81.82 45 LIQ2 3 0.038 0.042 0.920
40.08 81.95 45 LIQ 3 0.158 0.288 0.554 831
40.08 81.95 45 LIQ 3 0.158 0.292 0.550

(continued on next page)
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Table C.5 (continued)

T P runt phase M mole fractionst density
°C bar X, X, X, kg/m?
40.08 81.93 45 SCF 3 0.020 0.087 0.892
40.08 81.95 45 SCF 3 0.030 0.113 0.856 753
40.08 82.07 47 LIQ 3 0.166 0.309 0.525
40.08 82.12 47 LIQ 3 0.190 0.297 0.513
39.92 82.10 11 LIQ2 3 0.165 0.286 0.549 850
39.92 82.60 11 LIQ 3 0.96¢6 0.011 0.023 1002
39.92 83.40 11 LIQ 3 0.966 0.011 0.024
39.92 82.10 11 LIQ2 3 0.165 0.290 0.545
39.92 83.20 11 SCF 3 0.044 0.175 0.780
40.08 24.80 43 LIQ2 3 0.144 0.268 0.588
40.08 84.98 43 LIQ2 3 0.148 0.249 0.603
40.08 85.50 43 LIQ 3 0.970 0.010 0.020
40.08 85.50 &3 LIQ 3 0.971 0.010 0.020 964
40.08 88.80 48 LIQ2 3 0.147 0.242 0.610
40.08 86.89 48 SCF 3 0.085 0.294 0.620
40.08 89.25 48 LIQ 3 0.971 0.009 0.020
40.08 86.69 48 SCF 3 0.059 0.188 0.752
40.08 86.90 48 SCF 3 0.064 0.235 0.701
40.08 86.90 48 SCF 3 0.071 0.243 0.686
40.08 89.05 48 LIQ2 3 0.162 0.240 0.598
40.08 89.70 48 LIQ 3 0.971 0.009 0.021
40.08 100.5 44 LIQ 2 0.975 0.013 0.011 958
40.08 90.7 44 LIQ2 2 0.442 0.456 0.101 820
40.08 94.6 44 LIQ2 2 0.437 0.461 0.102
40.08 101.0 44 LIQ 2 0.975 0.014 0.011
39.98 97.5 13 SCF 2. 0.082 0.206 0.712
39.98 93.4 13 SCF 2 0.087 0.250 0.663
39.92 99.6 13 LIQ 2 0.969 0.009 0.022
39.92 99.9 13 LIQ 2 0.970 0.010 0.020 1003
40.08 97.8 3 SCF 2 0.007 0.013 0.980
40.08 98.0 3 LIQ 2 0.968 0.004 0.028
40.08 97.7 3 LIQ 2 0.963 0.005 0.033 1008
40.08 97.7 3 SCF 2 0.004 0.014 0.982
39.90 98.1 35 LIQ 2 0.969 0.009 0.021
39.90 98.1 35 LIQ 2 0.970 0.010 0.020
39.90 99.6 36 LIQ 2 0.971 0.010 0.019
39.90 100.4 36 LIQ 2 0.970 0.010 0.020
39.90 97.0 36 SCF 2 0.278 0.378 0.344
39.90 97.5 36 SCF 2 0.263 0.376 0.361
39.90 98.0 32 SCF 2 0.019 0.067 0.913 750
39.90 99.2 32 LIQ 2 0.970 0.009 0.021
39.90 99.9 32 LIQ 2 0.969 0.009 0.022 1003
39.90 99.0 32 SCF 2 0.022 0.085 0.893
39.90 99.7 34 SCF 2 0.228 0.413 ©€.359

(continued on next page)

239



Table C.5 (concluded)
T P runt phase M mole fractionst density
°C bar X, X, X, kg/m®
39.90 99.6 34 SCF 2 0.107 0.233 0.660
39.90 99.5 34 SCF 2 0.110 0.241 0.649 841
39.90 98.0 34 SCF 2 0.196 0.366 0.438
39.90 99.1 34 SCF 2 0.178 0.327 0.495
39.90 103.1 33 LIQ 2 0.970 0.009 0.021 1001
39.90 99.7 34 SCF 2 0.143 0.271 0.585
39.90 101.0 34 LIQ 2 0.971 0.009 0.020
39.90 101.5 34 LIQ 2 0.971 0.009 0.020
39.88 102.7 33 SCF 2 0.065 0.172 0.763
39.88 103.5 33 SCF 2 0.066 0.182 0.752 810
39.90 103.2 33 LIQ 2 0.969 0.009 0.021
39.90 103.1 33 LIQ 2 0.971 0.009 0.020
39.92 109.3 23 LIQ2 2 0.514 0.484 0.002
39.92 98.1 23 LIQ 2 0.983 0.017 0.000
39.92 97.1 23 LIQ 2 0.983 0.017 0.000 985
39.92 109.8 23 LIQ2 2 0.522 0.476 0.002
39.90 105.0 37 SCF 2 0.344 0.427 0.229
39.90 106.9 37 SCF 2 0.348 0.419 0.233
39.90 100.0 37 LIQ 2 0.970 0.011 -0.018
39.90 128.4 31 LIQ 2 0.969 0.008 0.022
39.90 143.3 31 SCF 2 0.012 0.057 0.931
39.90 134.5 31 SCF 2 0.016 0.058 0.926 804
40.08 143.4 4 SCF 2 0.006 0.009 0.984
40.08 144.6 4 LIQ 2 0.969 0.003 0.028
40.08 144.0 4 LIQ 2 0.969 0.003 0.028
39.92 150.0 12 SCF 2 0.054 0.140 0.806 851
39.92 150.6 12 SCF 2 0.057 0.137 0.805
39.92 152.8 12 LIQ 2 0.965 0.010 0.025 1008
39.92 154.0 12 LIQ 2 0.966 0.010 0.025
39.94 260.5 24 LIQ2 2 0.545 0.453 0.002
39.94 265.5 24 LIQ 2 0.982 0.017 0.000
39.94 265.5 24 LIQ 2 0.982 0.018 0.000 993
39.94 244 .5 24 LIQ2 2 0.547 0.451 0.002 854
t+ See footnotes to Table C.3
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Table C.6 Experimental results for the mixture water(l) - n-butanol(2) -
carbon dioxide(3) at 60 °C (333.1 K)

T P runt phase M mole fractionst density

°C bar X, X, X, kg/m?
60.00 1.01 13 LIQ2 2 0.436 0.465 0.099
59.90 18.36 43 LIQ 2 0.007 0.914 0.079
59.90 18.30 43 LIQ 2 0.007 0.914 0.079 786
58.90 19.05 5 LIQ 2 0.991 0.004 0.005
58.90 19.00 5 LIQ 2 0.991 0.004 0.004 987
59.90 19.75 37 LIQ 2 0.094 0.828 0.078
60.00 19.68 37 LIQ 2 0.104 0.832 0.064 791
60.00 19.52 37 LIQ 2 0.096 0.828 0.076
59.70 20.14 1 LIQ 2 0.992 0.003 0.005
59.70 20.17 1 LIQ 2 0.992 0.003 0.005 983
59.82 20.18 1 SCF 2 0.004 0.000 0.996
59.82 20.19 1 SCF 2 0.020 0.003 0.977
60.07 20.71 11 LIQ 3 0.982 0.014 0.004
60.07 20.70 11 LIQ 3 0.982 0.014 0.004 978
60.07 20.65 11 LIQ2 3 0.492 0.476 0.033
60.07 20.65 11 LIQ2 3 0.482 0.486 0.032 839
60.07 20.23 11 SCF 3 0.010 0.002 0.987
60.00 20.83 31 LIQ 2 0.270 0.655 0.064
60.00 20.83 31 LIQ 2 0.260 0.675 0.065
59.85 20.30 31 . LIQ 2 0.268 0.666 0.065 805
59.85 21.15 23 LIQ 2 0.416 0.530 0.053
59.85 21.15 23 LIQ 2 0.418 0.530 0.052 817
60.00 36.71 53 LIQ 2 0.983 0.015 0.002
60.00 34.98 53 LIQ 2 0.983 0.016 0.002
60.00 30.99 53 LIQ2 2 0.556 0.427 0.016
60.00 25.72 53 LIQ2 2 0.552 0.434 0.01i4
38.90 39.03 6 LIQ 2 0.987 0.004 G.009
58.90 38.67 6 LIQ 2 0.986 0.004 0.009 991
58.90 38.39 6 SCF 2 0.004 0.002 0.986
59.82 39.08 24 LIQ 2 0.423 0.525 0.052
59.82 38.73 24 LIQ 2 0.421 0.527 0.052 823
59.85 40.14 32 LIQ 2 0.257 0.609 0.134
59.85 39.98 32 LIQ 2 0.258 0.608 0.134 811
59.85 40.40 38 LIQ 2 0.105 0.732 0.163
59.85 40.17 38 LIQ 2 0.107 0.723 0.170 799
60.08 40.05 12 LIQ 3 0.977 0.013 0.010
60.00 40.26 12 LIQ 3 0.978 0.013 0.010
59.90 40.17 12 LIQ 3 0.977 0.013 0.010 982
59.98 40.83 44 LIQ 2 0.013 0.804 0.i83

(continued on next page)
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Table C.6 (continued)

T P runt phase M moie fractions! density

°C bar X, X, X, kg/m3
60.02 40.59 44 LIQ 2 0.014 0.805 0.181 793
60.00 40.46 13 LIQ2 3 0.446 0.454 0.100
60.00 40.41 13 LIQ2 3 0.436 0.465 0.099 825
60.00 40.61 13 SCF 3 0.009 0.0621 0.955
60.00 40.59 13 SCF 3 0.004 0.003 0.991
59.80 57.92 2 LIQ 2 0.985 0.003 0.013
59.80 58.73 2 SCF 2 0.002 0.001 0.997
59.80 58.09 2 SCF 2 0.002 0.001 0.998

59.82 59.00 25 LIQ 2 0.419 0.487 0.094
59.82 58.46 .25 ' LIQ 2. 0.418 " 0.486 0.097 827
60.00 58.99 14 LIQ 3 0.975 0.012 0.013
60.00 58.70 14 LIQ 3 0.975 0.012 0.013 985
60.00 57.81 14 LIQ2 3 0.394 0.447 0.159
60.00 58.74 39 LIQ 2 0.090 0.656 0.254
60.00 58.54 39 LIQ 2 0.102 0.652 0.246 804
60.00 58.46 39 SCF 2 0.003 0.004 0.992
60.00 60.59 45 LIQ 2 0.013 0.704 0.282
60.00 59.29 45 LIQ 2 0.011 0.717 . 0.271 799
59.85 60.01 54 LIQ 2 0.979 0.015 0.006 978
59.85 60.21 54 LIQ2 2 0.532 0.435 0.033 832
59.80 60.49 7 LIQ 2 0.983 0.004 0.013 991
59.80 60.70 7 LIQ 2 0.983 0.004 0.012
59.80 60.12 7 SCF 2 0.004 0.001 0.994
59.85 60.85 33 LIQ 2 0.237 0.549 0.214
59.88 60.73 33 LIQ 2 0.241 0.546 0.213 817
59.80 61.04 15 LIQ2 3 0.385 0.443 0.172
59.80 60.97 15 LIQ2 3 0.375 0.452 0.173 827
59.85 61.60 15 SCF 3 0.003 0.003 0.993
59.85 61.48 15 SCF 3 0.004 0.004 0.991
59.85 79.81 58 LIQ 2 0.971 0.011 0.018 988
59.85 73.01 58 LIQ2 2 0.423 0.427 0.150
59.80 78.34 40 LIQ 2 0.094 0.554 0.351
59.80 78.21 40 LIQ 2 0.094 0.554 0.352 811
59.80 78.13 40 SCF 2 0.003 0.014 0.971
59.80 78.13 40 SCF 2 0.003 0.008 0.989
59.80 78.11 40 SCF 2 0.003 0.011 0.986
59.85 79.30 26 LIQ 2 0.417 0.485 0.097
59.85 79.10 26 LIQ 2 0.397 0.478 0.126
59.85 78.65 26 LIQ 2 0.401 0.476 0.123 830
59.85 78.50 26 SCF 2 0.005 0.008 0.987
59.90 78.98 8 L1Q 2 0.981L 0.004 0.015
59.15 79.18 8 LIQ 2 0.941 0.004 0.015
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Table C.6 (continued)
T P runt phase M mole fractions! density
°C bar X, X, X, kg/m?
59.85 79.60 8 SCF 2 0.003 0.001 0.995
59.85 79.30 8 SCF 2 0.003 0.001 0.995
59.90 80.74 16 LIQ 3 0.973 0.011 0.016
59.90 80.68 16 LIQ 3 0.973 0.010 0.016 988
59.90 78.50 16 LIQ2 3 0.359 0.404 0.238
59.90 76.36 16 LIQ2 3 0.347 0.420 0.233 831
59.90 80.22 16 SCF 3 0.004 0.006 0.990
59.90 79.87 47 LIQ 2 0.028 0.578 0.394
59.90 79.89 47 LIQ 2 0.028 0.584 0.388 806
59.90 79.81 47 SCF 2 0.001 0.013 0.986
59.90 79.81 47 SCF 2 ..0.001 0.008 0.991
59.90 79.81 47 SCF 2 0.001 0.011 0.988
59.85 80.81 55 LIQ 2 0.980 J3.015 0.004
59.85 80.21 55 LIQ2 2 0.538 0.429 0.032 833
59.80 81.46 34 LIQ 2 0.212 0.475 0.313
59.85 81.51 34 LIQ 2 0.213 0.475 0.312 820
59.85 81.37 34 SCF 2 0.006 0.015 0.979
59.85 81.33 34 SCF 2 0.005 0.010 0.985
60.00 100.8 51 LIQ 2 0.983 0.016 0.001 975
60.00 98.9 51 LIQ2 2 0.563 0.433 0.004
59.90 94.1 51 LIQ2 2 0.560 0.436 0.004 832
59.55 98.1 28 SCF 2 0.005 0.013 0.981
59.95 98.0 28 SCF 2 0.005 0.012 0.983
59.85 98.7 27 LIQ 2 0.377 0.471 0.152
59.85 98.5 27 LIQ 2 0.360 0.470 0.170 830
59.90 99.0 9 LIQ 2 0.980 0.004 0.017
59.90 98.9 9 LIQ 2 0.979 0.004 0.017
59.90 98.7 9 SCF 2 0.005 0.003 0.991
59.90 97.8 9 SCF 2 0.004 0.003 0.993
59.90 99.1 17 LIQ 3 0.973 0.010 0.018
59.90 99.1 17 LIQ 3 0.973 0.010 0.017 991
59.90 98.5 17 LIQ2 3 0.290 0.367 0.342
89.90 98.3 17 LIQ2 3 0.284 0.372 0.344 741
59.90 98.9 17 SCF 3 0.005 0.017 0.976
89.90 98.7 17 SCF 3 0.005 0.010 0.985
59.85 98.0 59 LIQ 2 0.974 0.012 0.015
59.85 101.0 59 LIQ2 2 0.412 0.413 0.174 840
59.90 100.3 48 SCF 2 0.002 0.042 0.955
59.90 100.2 48 SCF 2 0.002 0.046 0.951
59.85 99.9 56 LIQ 2 0.979 0.015 0.006 980
59.85 100.6 56 LIQ2 2 0.538 0.430 0.032 836
59.85 101.4 41 LIQ 2 0.075 0.399 0.527
59.85 101.7 41 LIQ 2 0.075 0.400 0.525 810
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Table C.6 (continued)
T P runt phase M mole fractionst density
°C bar X, X, X, kg/m?
59.85 101.7 41 SCF 2 0.007 0.052 0.940
59.85 101.8 41 SCF 2 0.007 0.043 0.950
59.85 101.7 41 SCF 2 0.010 0.061 0.928
59.90 102.1 46 LIQ 2 0.013 0.395 0.592
59.90 102.1 46 LIQ 2 0.014 0.398 0.589 801
59.90 102.0 46 SCF 2 0.002 0.053 0.941
59.90 102.0 46 SCF 2 0.002 0.062 0.936
59.90 101.9 46 SCF 2 0.002 0.051 0.347
59.85 102.2 35 LIQ 2 0.170 0.382 0.448
59.85 102.2 35 LIQ 2 0.167 0.384 0.449 821
59.90 102.2 35 SCF 2 0.011 0.034 0.949
59.90 102.1 35 SCF 2 0.012 0.033 0.955
59.85 102.2 62 LIQ 2 0.973 0.010 0.017 991
59.85 102.2 62 LIQ2 2 0.299 0.363 0.338 844
59.80 104.5 3 LIQ 2 0.980 0.002 0.018
59.80 104.4 3 LIQ 2 0.980 0.002 0.017 994
59.80 104.5 3 SCF 2 0.004 0.002 0.993
59.80 104.5 3 SCF 2 0.005 0.002 0.993
60.00 100.9 50 LIQ 2 0.984 0.016 0.000
59.90 110.6 50 LIQ 2 0.018 0.272 0.710
59.90 110.4 49 LIQ 2 0.015 0.272 0.713
59.90 110.2 49 LIQ 2 0.015 0.273 0.711 782
59.90 110.1 49 SCF 2 0.003 0.062 0.935
59.90 110.1 49 SCF 2 0.004 0.074 0.922
59.85 113.5 42 LIQ 2 0.054 0.265 0.681
59.85 113.3 42 LIqQ 2 0.054 0.269 0.676 790
59.85 113.2 42 SCF 2 0.009 0.059 0.931 538
59.90 117.2 36 LIQ 2 0.120 0.285 0.595
59.90 117.1 36 LIQ 2 0.119 0.286 0.595 810
60.00 117.2 36 SCF 2 0.030 0.111 0.859
60.00 116.8 36 SCF 2 0.031 0.110 0.859 575
59.90 120.8 18 LIQ 3 0.972 0.010 0.018
59.90 120.5 18 LIQ 3 0.972 0.009 0.018 992
59.90 119.0 18 LIQ2 3 0.203 0.294 0.504
59.90 118.8 18 LIQ2 3 0.199 0.297 0.505 830
60.00 119.0 18 SCF 3 0.037 0.126 0.837
60.00 119.9 18 SCF 3 0.032 0.100 0.868
59.95 123.3 29 LIQ 2 0.329 0.452 0.218
59.95 123,229 LIQ 2 0.313 0.437 0.250
60.00 123.4 29 SCF 2 0.045 0.147 0.803
60.00 121.7 29 SCF 2 0.043 0.144 0.813 640
59.85 125.2 21 LIQ2 3 0.168 0.265 0.567

(continued on nexf page)
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(continued on next page)

- Table C.6 (continued)
T P runt  phase M mole fractionst density
°C bar X, X, X, kg/m?
39.85 125.0 21 LIQ2 3 0.154 0.272 0.574
60.00 127.0 30 LIQ 2 0.348 0.463 0.189
60.00 126.9 30 LIQ 2 0.347 0.460 0.194 805
60.00 126.4 30 SCF 2 0.057 0.164 0.779
60.00 126.4 30 SCF 2 0.055 0.163 0.782 704
60.00 127.6 19 SCF 3 0.061 0.165 0.774
59.90 144 .3 10 LIQ 2 0.979 0.002 0.019
59.90 142.6 10 LIQ 2 0.979 0.002 0.019 998
59.90 146.9 10 SCF 2 0.007 0.006 0.985
59.90 148.4 10 SCF 2 0.007 0.006 0.988
60.00 150.0 20 LIQ -2 0.972 0.009 0.019
60.00 149.2 20 LIQ 2 0.971 0.009 0.020 994
60.00 146.6 20 SCF 2 0.091 0.184 0.724 798
60.00 142.0 20 SCF 2 0.086 0.182 0.731
59.85 148.9 65 LIQ 2 0.974 0.006 0.019 997
59.85 146.7 65 SCF 2 0.029 0.032 0.939
59.85 146.8 65 SCF 2 0.025 0.033 0.942 688
58.80 145.5 4 LIQ 2 0.980 0.001 0.019
59.80 149.6 4 LIQ 2 0.980 0.001 0.019
59.80 150.7 4 SCF 2 0.006 0.005 0.988
59.80 150.2 4 SCF 2 0.007 0.005 0.989
60.00 149.5 57 LIQ 2 0.980 0.016 0.004
60.00 149.6 57 SCF 2 0.536 0.432 0.033 838
59.85 150.2 60 LIQ 2 0.973 0.012 0.015
59.85 149.3 60 SCF 2 0.416 0.412 0.171
59.85 150.4 67 LIQ 2 0.977 0.003 0.020
59.85 150.7 67 LIQ 2 0.978 0.003 0.019 1000
59.85 149.9 67 SCF 2 0.040 0.011 0.948
59.85 149.7 67 SCF 2 0.05 0.011 0.974
59.85 149.5 67 SCF 2 0.011 0.011 0.978
59.85 149.5 67 SCF 2 0.009 0.011 0.980
59.85 149.5 67 SCF 2 0.009 0.011 0.980
59.85 152.0 63 LIQ 2 0.971 0.010 0.019 992
59.85 151.6 63 SCF 2 0.324 0.371 0.306 849
59.85 202.2 22 LIQ 2 0.971 0.009 0.020
59.85 200.6 22 LIQ 2 0.971 0.008 0.020 997
59.90 194.5 22 SCF 2 0.063 0.143 0.760 821
59.95 192.5 22 SCF 2 0.066 0.146 0.788
59.85 199.5 64 LIQ 2 0.971 0.010 0.019 995
59.85 199.5 64 SCF 2 0.320 0.372 0.307 854
59.90 204.0 52 LIQ 2 0.982 0.017 0.001
59.90 199.0 52 LIQ 2 0.983 0.017 0.001 979
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Table C.6 (concluded)
T P runt  phase M mole fractionst density
°C bar X, X, X, kg/m?
59.90 200.5 52 SCF 2 0.564 0.432 0.003 839
59.90 195.5 52 SCF 2 0.560 0.436 0.004
59.85 199.5 68 LIQ 2 0.976 0.002 0.021
59.85 199.5 68 LIQ 2 0.977 0.002 0.021 1002
59.85 200.2 68 SCF 2 0.010 0.011 0.979
59.85 200.2 68 SCF 2 0.010 0.011 0.979
59.85 200.0 61 LIQ 2 0.972 0.013 0.015 992
59.85 200.2 61 SCF 2 0.433 0.405 0.162
59.85 200.0 66 LIQ 2 0.974 0.005 0.021
59.85 199.5 66 LIQ 2 0.974 0.005 0.020 1001
59.85 203.0 66 SCF 2 0.014 .0.032 0.952
59.85 203.0 66 SCF 2 0.014 0.033 0.953 784
tt+ Ssee footnotes to Table C.3

C.4 Acetic acid - water - carbon dioxide
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The methodology described in the previous section was followed for the

presentation of the data for this system in Tables C.7 and C.8.

Table C.7 Experimental results for the mixture water(l) - acetic acid(2)-
carbon dioxide(3) at 40 °C (313.1 K)

T P runt  phase M mole fractionst density

°C bar X, X, X, kg/m®
40.05 19.48 35 LIQ 2 0.894 0.096 0.010 1037
40.05 19.04 35 LIQ 2 0.887 0.102 0.011
39.60 19.42 1 LIQ 2 0.029 0.820 0.151
39.60 19.41 1 LIQ 2 0.023 0.838 0.139
40.05 19.72 26 LIQ 2 0.778 0.206 0.016 1051
40,05 19.68 26 LIQ 2 0.779 0.204 0.017

(continued on next page)



Table C.7 (continued)

T P runt phase M mole fractionst density

°C bar X, X, X, kg/m?
40.05 20.12 42 LIQ 2 0.947 0.044 0.00% 1026
40.05 20.02 42 LIQ 2 0.941 0.051 0.009
40.05 19.95 20 LIQ 2 0.561 0.402 0.037
40.05 20.28 20 LIQ 2 0.568 0.395 0.037 1060
40.05 20.80 16 LIQ 2 0.359 0.573 0.069 1056
40.05 20.84 8 LIQ 2 0.075 0.787 0.138 1038
40.05 20.89 8 LIQ . 2 0.081 0.787 0.132
40.25 20.91 2 LIQ 2 0.010 0.827 0.163
40.05 20.87 2 LIQ 2 0.013 0.820 0.166
40.05 20.86 2 LIQ 2  0.009 0.830 0.160
40.05 21.07 11 LIQ 2 0.158 - 0.728 0.114
40.05 21.18 11 LIQ 2 0.155 0.744 0.101 1046
40.05 21.17 11 LIQ 2 0.162 0.721 0.117
40.05 38.85 27 LIQ 2 0.767 0.201 0.032 1054
40.05 38.75 27 LIQ 2 0.763 0.206 0.031
40.05 39.75 3 LIQ 2 0.008 0.659 0.334
40.05 39.35 3 LIQ 2 0.008 0.663 0.329 1010
40.05 39.83 20a LIQ 2 0.538 0.385 0.077 1061
40.05 39.58 20a LIQ 2 0.537 0.388 0.075
40.05 39.93 36 LIQ 2 0.877 0.104 0.019 1042
40.05 39.77 36 LIQ 2 0.878 0.103 0.019
40.05 40.07 9 LIQ 2 0.068 0.641 0.291
40.05 39.72 9 LIQ 2 0.068 0.645 0.287 1024
40.05 40.04 43 LIQ 2 0.934 0.051 0.016 1030
40.05 39.83 43 LIQ 2 0.932 0.052 0.015
40.05 40.16 12 LIQ 2 0.139 0.617 0.245 1034
40.05 40.01 12 LIQ 2 0.138 0.624 0.238
40.05 40.22 17 LIQ 2 0.321 0.534 0.145 1052
40.05 39.95 17 LIQ 2 0.314 0.523 0.163
40.05 59.00 13 LIQ 2 0.098 0.473 0.430 1003
40.05 58.60 13 LIQ 2 0.099 0.476 0.425
40.05 59.01 18 LIQ 2 0.276 0.469 0.256 1040
40.05 58.61 18 LIQ 2 0.276 0.470 0.254
40.05 58.95 44 LIQ 2 0.927 0.053 0.020 1033
40.05 58.71 44 LIQ 2 0.927 0.053 0.020
40.05 59.05 4 LIQ 2 0.005 0.428 0.588 962
40.05 58.86 4 LIQ 2 0.004 0.430 0.566
40.05 59.31 10 LIQ 2 0.042 0.451 0.507 982
40.05 58.96 10 LIQ 2 0.043 0.452 0.505
40.05 59.61 21 LIQ 2 0.511 0.366 0.123 1060
40.05 59.13 21 LIQ 2 0.511 0.368 0.121
40.05 60.02 37 LIQ 2 0.881 0.091 0.028
40.05 59.84 37 LIQ 2 0.872 0.101 0.027 1045
40.05 59.21 37 SCF 2 0.001 0.000 0.998

(continued on next page)
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Table C.7 (continued)

T P runf phase M mole fractionst density

°C bar X, X, X, kg/m’
40.05 59.15 37 SCF 2 0.001 0.000 0.999
40.05 60.68 28 LIQ 2 0.753 0.199 0.048 1057
40.05 69.61 28 LIQ 2 0.745 0.201 0.054 1058
40.05 68.73 28 LIQ 2 0.745 0.200 0.054
40.05 69.01 55 LIQ 2 0.705 0.228 0.068 1062
40.05 68.55 55 LIQ 2 0.700 0.235 0.065
40.05 68.38 55 SCF 2 0.001 0.017 0.983
40.05 69.70 22 LIQ 2 0.492 0.363 0.145 1059
40.05 67.92 22 LIQ 2 0.495 0.360 0.145
40.05 69.83 5 LIQ 2 0.003 0.262 0.735 895
40.05 69.26 5 LIQ 2 0.003 0.265 0.733 895
40.05 69.07 5 SCF 2 0.000 0.021 0.979
40.05 69.88 14 LIQ 2 0.063 0.320 0.618 945
40.05 69.65 14 LIQ 2 0.062 0.329 0.609
40.05 69.54 14 SCF 2 0.000 0.022 0.978
40.05 69.28 14 SCF 2 0.000 0.012 0.988
40.05 70.11 18a LIQ 2 0.228 0.39 0.373
40.05 69.80 18a LIQ 2 0.232 0.402 0.366
40.05 70.37 10a LIQ 2 0.06z3 0.280 0.697 °15
40.05 69.75 10a LIQ 2 0.025 0.283 0.692
40.05 75.11 6 LIQ 2 0.001 0.165 0.834 820
40.05 74.66 6 LIQ 2 0.001 0.161 0.838
40.05 74.48 6 SCF 2 0.000 0.026 0.974
40.05 74.41 6 SCF 2 0.000 0.004 0.996
40.05 77.77 15 LIQ 2 0.023 0.122 0.855
40.05 77.83 15 LIQ 2 0.025 0.111 0.864 788
40.05 77.50 15 SCF 2 0.000 0.011 0.989
40.05 77.44 15 SCF 2 0.00L 0.007 0.992
40.05 77.98 19 LIQ 2 0.032 0.097 0.871
40.05 77.77 19 LIQ 2 0.029 0.118 0.853 793
40.05 77.75 19 SCF 2 0.010 0.037 0.953
40.05 77.75 19 SCF 2 0.002 0.016 0.982
40.05 77.67 19 SCF 2 0.001 0.007 0.991
40.05 78.03 56 LIQ 3 0.570 0.307 0.123
40.05 77.90 56 LIQ 3 6.572 0.310 0.118 1062
40.05 77.41 56 LIQ2 3 0.087 0.156 0.757 814
40.05 77.61 56 LIQ2 3 0.028 0.131 0.840
40.05 77.37 56 LIQ2 3 0.037 0.134 0.830
40.05 77.92 56 SCF 3 0.000 0.020 0.980
40.05 78.00 56 SCF 3 0.002 0.008 0.990
40.05 78.69 10b LIQ 2 0.007 0.105 0.888
40.05 78.46 10b LIQ 2 0.007 0.101 0.893 784
40.05 78.24 10b SCF 2 0.003 0.042 0.955

(continued on next page)
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Table C.7 (continued)
T P runt phase M mole fractionst density
°C bar X, X, X, kg/m3
40.05 78.04 10b  SCF 2 0.001 0.021 0.978
40.05 77.98 10b  SCF 2 0.001 0.010 0.989
40.05 79.28 7 LIQ 2 0.001 0.076 0.922
40.05 79.13 7 LIQ 2 0.001 0.082 0.917 735
40.05 79.02 7 SCF 2 0.000 0.020 0.980
40.05 78.93 7 SCF 2 0.000 0.007 0.993
40.05 78.83 7 SCF 2 0.000 0.009 0.991
40.05 80.38 51 LIQ 2 0.960 0.021 0.019
40.05 79.98 51 LIQ 2 0.960 0.019 0.021 1021
40.05 79.80 51 SCF 2 0.000 0.004 0.996
40.05 79.57 51 SCF 2 0.000 0.001 0.999
40.05 79.99 45 LIQ 2 0.924 0.051 0.024
40.05 80.30 45 LIQ 2 0.925 0.051 0.024 1036
40.05 79.55 45 SCF 2 0.002 0.014 0.984
40.05 79.45 45 SCF 2 0.001 0.002 0.997
40.05 80.46 45 SCF 2 0.001 0.000 0.999
40.05 80.18 38 LIQ 2 0.871 0.095 0.034 1044
40.05 79.81 38 LIQ 2 0.865 0.102 0.033
40.05 79.95 38 SCF 2 0.003 0.009 0.988
40.05 79.93 38 SCF 2 0.005 0.003 0.992
40.05 81.02 29 LIQ 3 0.743 0.197 0.060 1059
40.05 80.48 29 LIQ 3 0.743 0.199 0.059
40.05 80.44 30 LIQ 3 0.754 0.184 0.062
40.05 81.13 30 LIQ 3 0.743 0.199 0.058 1056
40.05 81.13 30 SCF 3 0.043 0.094 0.862
40.05 81.21 30 SCF 3 0.021 0.059 0.920
40.05 81.24 30 SCF 3 0.020 0.063 0.917
40.05 99.23 39 LIQ 2 0.875 0.092 0.033
40.05 98.68 39 LIQ 2 0.873 0.095 0.032 1048
40.05 98.44 39 SCF 2 0.067 0.039 0.894
40.05 98.07 39 SCF 2 0.047 0.029 0.924
40.05 98.02 39 SCF 2 0.076 0.039 0.884
40.05 100.00 46 LIQ 2 0.931 0.043 0.027 1037
40.05 99.50 46 SCF 2 0.100 0.020 0.880
40.05 99.02 46 SCF 2 0.107 0.019 0.874
40.05 98.49 46 SCF 2 0.114 0.017 0.869
40.05 98.81 46 SCF 2 0.100 0.025 0.875
40.05 97.32 46 SCF 2 0.071 0.011 0.918
40.05 96.79 46 SCF 2 0.035 0.007 0.958
40.05 96.17 46 SCF 2 0.012 0.006 0.982
40.05 95.73 46 SCF 2 0.061 0.008 0.930
40.05 99.66 60 LIQ 2 0.471 0.350 0.179
40.05 99.68 60 LIQ 2 0.473 0.353 0.174 1057
40.05 98.93 60 SCF 2 0.062 0.347 0.590

(continued on next page)
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Table C.7 (continued)
T P run! phase M mole fractionst density
°C bar X, X, X, kg/m3
40.05 98.65 60 SCF 2 0.048 0.280 0.672
40.05 100.23 31 rIQ 2 0.797 0.145 0.058
40.05 99.43 31 LIQ 2 0.772 0.174 0.054 1060
40.05 100.04 52 LIQ 2 0.962 0.016 0.022 1028
40.05 101.36 52 SCF 2 0.001 0.001 0.997
40.05 101.16 52 SCF 2 0.004 0.000 0.996
40.05 100.78 23 LIQ 2 0.581 0.286 0.133
40.05 101.81 23 LIQ 2 0.568 0.306 0.126 1063
40.05 101.25 23 SCF 2 0.021 0.161 0.818
40.05 100.81 23 SCF 2 0.022 0.163 0.815 859
40.05 99.92 47 SCF 2 0.095 0.005 0.900
40.05 100.77 47 SCF 2 0.072 0.011 0.917
40.05 107.97 47 SCF 2 0.102 0.016 0.882
40.05 100.91 47 SCF 2 0.094 0.012 0.89%4
40.05 102.31 47 SCF 2 0.119 0.021 0.860
40.05 103.64 47 SCF 2 (b,034 0.012 0.954
40.05 103.90 47 SCF 2 0.024 0.010 0.966
40.05 104.46 47 SCF 2 0.013 0.008 0.980
40.05 104.41 47 SCF 2 0.009 0.005 0.986
40.05 104.38 47 SCF 2 0.008 0.004 0.987
40.05 102.37 57 LIQ 2 0.687 0.225 0.088 1064
40.05 103.06 57 LIQ 2 0.679 0.238 0.083
40.05 103.21 57 SCF 2 0.022 0.165 0.813
40.05 102.99 57 SCF 2 0.015 0.137 0.848
40.05 102.96 57 SCF 2 0.020 0.168 0.813
40.05 148.11 32 LIQ 2 0.769 0.173 0.058
40.05 147.21 32 LIQ 2 0.774 0.168 0.058 1062
40.05 143,28 32 SCF 2 0.039 0.080 0.881 842
40.05 141.51 32 SCF 2 0.010 0.069 0.921
40.05 148.16 40 LIQ 2 0.879 0.087 0.034 1049
40.05 145.47 40 LIQ 2 0.880 0.088 0.033
40.05 144 .31 40 SCF 2 0.005 0.032 0.963
40.05 142.51 40 SCF 2 0.0046 0.029 0.967
40.05 149.51 24 LIQ 2 0.550 0.309 0.141
40.05 146.51 24 LIQ 2 0.551 0.310 0.140 1065
40.05 139.51 24 SCF 2 0.026 0.186 0.788
40.05 144 .41 58 LIQ 2 0.693 0.225 0.082 1066
40.05 148.79 58 SCF 2 0.012 0.103 0.886
40.05 147.04 58 SCF 2 0.012 0.103 0.885
40.05 137.13 6l LIQ 2 0.405 0.372 0.223
40.05 152.41 61 SCF 2 0.067 0.272 0.661
40.05 148.31 61 SCr 2 0.067 0.260 0.673
40.05 151.78 61 SCF 2 0.402 0.368 0.231 1056
40.05 147.11 48 LIQ 2 0.926 0.044 0.030 1040

(continued on next page)



Table C.7 (concluded)

T P run!t phase M mole fractionst density
°C bar ' X, X, X, kg/m®
40.05 146.91 48 LIQ 2 0.926 0.047 0.027
40.05 149.66 48 SCF 2 0.006 0.008 0.986
40.05 148.16 48 SCF 2 0.004 0.008 0.988
40.05 151.37 53 LIQ 2 0.963 0.014 0.023 1030
40.05 147.61 53 SCF 2 0.003 0.001 0.996
40.05 147.05 53 SCF 2 0.002 0.001 0.997
490.05 176.01 25 LIQ 2 0.540 0.312 0.148
40.05 194.01 25 SCF 2 0.035 0.195 0.771
40.05 184.0) 25 SCF 2 0.034 0.192 0.774 943
40.05 201.01 62 LIQ 2 0.408 0.359 0.233
40.05 190.01 62 LIQ 2 0.409 0.360 0.231
40.05 182.01L 62 SCF 2 0.071 0.272 0.657
40.05 175.01 62 SCF 2 0.067 0.268 0.665
40.05 197.51 33 LIQ 2 0.783 0.158 0.060 1064
40.05 195.51 33 LIQ 2 0.783 0.160 0.057
40.05 188.01 33 SCF 2 0.011 0.077 0.911
40.05 185.01 33 SCF 2 0.034 ©€.077 0.889
40.05 203.51 41 LIQ 2 0.881 0.085 0.034 1052
40.05 188.01 41 SCF 2 0.007 0.027 0.966
40.05 185.01 41 SCF 2 0.005 0.031 0.964
40.05 198.51 34 SCF 2 0.015 0.067 0.917 894
40.05 195.01 34 SCF 2 0.011 0.072 0.917
40.05 195.01 34 SCF 2 0.019 0.074 0.906
40.05 199.51 54 LIQ 2 0.959 0.017 0.024 1032
40.05 195.01 54 LIQ 2 0.958 0.018 0.024
40.05 198.11 54 SCF 2 0.003 0.001 0.997
40.05 196.91 54 SCF 2 0.003 0.001 0.997
40.05 201.01 59 LIQ 2 0.709 0.212 0.079 1069
40.05 198.01 59 SCF 2 0.015 0.109 0.876
40.05 195.01 59 SCF 2 0.013 0.106 0.881
40.05 200.01 49 LIQ 2 0.927 0.046 0.027 1042
40.05 198.01 49 SCF 2 0.004 0.013 0.983
40.05 197.01 49 SCF 2 0.004 0.011 0.986
40.05 252.01 50 SCF 2 0.004 0.011 0.985

te

See footnotes to Table C.3
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Table C.8 Experimental results for the mixture water(l) - acetic acid(2)-
carbon dioxide(3) at 60 °C (333.1 K)
T P run! phase M mole fractionst density
°C bar X, X, X, kg/m?
59.95 19.70 59 LIQ 2 0.979 0.016 0.005 997
59.95 19.60 59 LIQ 2 0.977 0.018 0.005
59.85 20.29 14 LIQ 2 0.418 0.535 0.047
59.85 20.20 14 LIQ 2 0.412 0.544 0.044 1024
59.90 20.38 24 LIQ 2 C.467 0.498 0.035
59.90 20.31 24 LIQ 2 0.467 0.498 0.035
59.95 20.26 33 LIQ 2 0.566 0.406 0.028
59.95 20.23 33 LIQ 2 0.562 0.410 0.028 1024
59.95 20.33 71 LIQ 2 0.682 0.297 0.021 1032
60.00 20.34 71 LIQ 2 0.678 0.301 0.021
59.85 20.41 8 LIQ 2 0.141 0.773 0.086
59.85 20.40 8 LIQ 2 0.137 0.779 0.085 1001
59.90 20.60 42 LIQ 2 0.860 0.132 0.008 1019
60.00 20.74 1 LIQ 2 0.012 0.907 0.081
60.00 20.71 1 LIQ 2 0.013 0.877 0.109 1000
60.00 20.74 1 LIQ 2 0.012 0.880 0.108
60.10 20.95 50 LIQ 2 0.950 0.044 0.006 1004
60.00 20.84 50 LIQ 2 0.947 0.047 0.006
59.90 38.13 25 LIQ 2 0.460 0.467 0.073
59.90 38.13 25 LIQ 2 0.455 0.472 0.073 1030
60.00 38.39 72 LIQ 2 0.659 0.303 0.038 1034
60.00 38.31 72 LIQ 2 0.665 0.297 0.038
59.95 39.04 60 LIQ 2 9.972 0.018 0.009 1000
60.05 38.75 60 LIQ 2 0.971 0.019 0.010
60.00 40.02 2 LIQ 2 0.006 0.802 0.192
60.00 39.82 2 LIQ 2 0.011 0.767 0.222 988
60.00 39.59 2 LIQ 2 0.011 0.811 0.178
60.10 39.69 51 LIQ 2 0.941 0.048 0.011 1008
60.05 39.38 51 LIQ 2 0.939 0.050 0.012
59.85 39.66 15 LIQ 2 0.394 0.509 0.096
59.85 39.60 15 LIQ 2 0.383 0.523 0.095 1022
59.85 40.43 9 LIQ 2 0.125 0.694 0.181
59.85 39.98 9 LIQ 2 0.124 0.697 0.179 993
59.90 40.50 43 LIQ 2 0.864 0.119 0.017 1022
59.90 40.41 43 LIQ 2 0.867 0.116 0.018
60.10 40.35 43 LIQ 2 0.863 0.119 0.018
60.10 41.12 34 LIQ 2 0.557 0.390 0.053
60.10 .41.07 34 LIQ 2 0.552 0.396 0.052 1034
59.85 59.47 16 LIQ 2 0.364 0.486 0.149
59.85 57.74 16 LIQ 2 0.347 0.505 0.148 1019

(continued on next page)



Table C.8 (continued)

T P runt phase M mole fractionst density

°C bar X, X, X, kg/m3
59.90 59.41 26 LIQ 2 0.431 0.448 0.121
59.90 59.06 26 LIQ 2 0.435 0.446 0.119
60.00 59.93 3 LIQ 2 0.010 0.622 0.368
60.00 59.75 3 LIQ 2 0.009 0.628 0.363 965
60.05 59.98 52 LIQ 2 0.933 0.052 0.016
60.05 59.81 52 LIQ 2 0.936 0.048 0.016 1011
59.90 60.06 27 LIQ 2 0.436 0.447 0.117 1028
59.80 60.08 27 LIQ 2 0.434 0.444 0.122
60.00 0.68 73 LIQ 2 0.650 0.291 0.059 1036
60.00 60.41 73 LIQ 2 0.648 0.293 0.059
60.10 60.61 44 LIQ 2 0.865 0.110 0.026
60.10 60.64 44 LIQ - 2 .0.853 0.122 0.024 1026
60.05 60.75 61 LIQ 2 0.967 0.019 0.014 1004
60.05 60.57 61 LIQ 2 0.968 0.019 0.013
60.10 60.75 35 LIQ 2 0.530 0.381 0.089
60.10 60.65 35 LIQ 2 0.528 0.384 0.088 1034
59.85 61.68 10 LIQ 2 0.106 0.589 0.304
59.85 61.44 10 LIQ 2 0.105 0.592 0.302 977
60.05 79.51 36 LIQ 2 0.506 0.370 0.124
60.05 78.89 36 LIQ 2 0.498 0.386 0.116 1033
60.05 78.91 36 SCF 2 0.080 0.030 0.890
60.10 78.61 36 SCF 2 0.119 0.024 0.857
59.90 79.24 28 LIQ 2 0.416 0.418 0.166
59.90 78.94 28 LIQ 2 0.409 0.431 0.159 1025
59.90 78.98 28 SCF 2 0.070 0.032 0.898
59.90 78.84 28 SCF 2 0.103 0.029 0.868
60.05 79.'5 62 LIQ 2 0.964 0.019 0.017
60.05 78.41 62 LIQ 2 0.964 0.019 0.017
59.95 79.05 63 SCF 2 0.007 0.001 0.992
59.95 79.42 63 SCF 2 0.004 0.000 0.996
60.05 79.01 53 LIQ 2 0.930 0.050 0.020 1013
60.05 79.01 53 LIQ 2 0.930 0.050 0.019
60.10 80.06 45 LIQ 2 0.852 0.118 0.031 1027
50.10 79.03 45 LIQ 2 0.848 0.122 0.030
60.00 80.00 74 LIQ 2 0.635 0.288 0.078 1037
60.00 79.35 74 LIQ 2 0.636 0.287 0.077
60.05 79.06 74 SCF 2 0.003 0.040 0.956
60.05 78.81 74 SCF 2 0.002 0.012 0.986
59.85 79.81 11 LIQ 2 0.085 0.470 0.444
59.85 79.63 11 LIQ 2 0.082 0.483 0.435 949
59.85 79.31 11 SCF 2 0.007 0.090 0.903
59.85 79.26 11 SCF 2 0.012 0.075 0.913
59.85 80.11 18 LIQ 2 0.331 0.444 0.225

(continued on next page)
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Table C.8 (continued)

T P runt phase M mole fractionst density
°C bar X, X, X, kg/m?
59.85 80.11 18 LIQ 2 0.331 0.452 0.217 974
60.05 81.67 5 LIQ 2 0.007 0.434 0.559
60.05 81.57 5 LIQ 2 0.007 0.448 0.546
60.05 81.91 4 SCF 2 0.001 0.066 0.933
60.05 81.81 4 SCF 2 0.001 0.061 0.939
59.85 89.60 6 LIQ 2 0.007 0.340 0.654
59.85 89.77 6 LIQ 2 0.006 0.344 0.650 871
59.90 99.15 29 LIQ .389 .390 .221

59.90 98.98 29  LIQ
59.90 98.62 29  SCF
59.90  98.42 29  SCF
59.85  99.34 12  LIQ
59.85  99.25 12  LIQ
59.85  99.04 12  SCF
59.85  99.05 12  SCF
59.85 99.11 7  LIQ
59.85 99.21 7  LIQ
59.85 99.93 19  LIQ
59.85 99.61 19  LIQ
59.85  99.36 19  SCF
59.85 99.11 19  SCF
59.90 100.15 80  LIQ
59.90 100.02 80  LIQ
59.90 99.95 80  LIQ
59.90 99.46 80  SCF
59.90 99.39 80  SCF
60.08 101.70 37  LIQ
60.08 101.17 37  SCF
60.08 101.18 37  SCF
60.05 102.21 75  LIQ
60.05 101.85 75  LIQ
60.05 101.83 75  SCF
60.05 101.03 75  SCF
59.95 102.02 64  LIQ
59.95 102.05 64  LIQ
59.95 101.72 64  SCF
59.90 102.59 81  LIQ
59.90 102.56 81  LIQ
59.90 102.12 81  LIQ2
59.90 102.08 81  LIQ2
59.90 102.37 81  SCF
59.90 102.37 81  SCF

.389
.001
.001
.048
.048
.007
.007
.003
.004
.295
.294
.002
.001
.166
.266
.170
.010
.007
.488
.001
.001
.631
.629
.005
.003
.964
.962
.004
.216
.208
.089
.091
.008
.009

.397
.029
.019
.272
.277
.075
.060
.214
.219
.396
.401
.031
.020
.365
.000
.380
.055
.057
.360
.021
.018
.276
.278
.017
.015
.018
.C19
.003
.381
.397
.304
.318
.080
.067

.214 1018
.969
.979
.681
.675 861
.918
.934
.782
77 783
.308
.306 993
.967
.979
.469
.734 951
.450
.936
.937
.152
.978
.981
.094 1037
.093
.977
.982
.018 1008
.019
.993
.402
.395 971
.606
.591 893
911
.924
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Table C.8 (continued)
T P runt phase M mole fractionst density
°C bar X, X, X, kg/m3
60.00 102.59 54 LIQ 2 0.929 0.048 0.023
60.00 102.48 54 LIQ 2 0.931 0.048 0.021 1016
60.10 103.29 46 LIQ 2 0.844 0.120 0.036 1029
60.10 102.62 46 LIQ 2 0.842 0.123 0.035
60.10 102.62 46 SCF 2 0.064 0.013 0.923
60.10 102.60 46 SCF 2 0.064 0.008 0.928
59.85 103.71 21 LIQ 3 0.272 0.391 0.337
59.85 103.71 21 LIQ 3 0.255 0.397 0.348
59.85 108.81 22 LIQ 2 0.284 0.388 0.328 992
39.85 104 .57 22 SCF 2 0.053 0.229 0.718
59.85 104.11 22 SCF 2 0.064 0.227 0.709 820
59.90 108.93 30 LIQ 2 0.423 0.374 0.204
59.90 108.72 30 LIQ 2 0.415 0.377 0.208 1021
59.90 108.56 30 SCF 2 0.022 0.102 0.876
59.90 108.45 30 SCF 2 0.021 0.099 0.880
59.85 109.31 20 LIQ 2 0.371 0.367 0.262
59.85 108.90 20 LIQ 2 0.361 0.387 0.251 1006
59.85 108.51 20 SCF 2 0.043 0.176 0.782
59.85 108.11 20 SCF 2 0.051 0.176 0.774
60.08 110.15 38 LIQ 2 0.511 0.335 0.154
60.08 110.15 38 LIQ 2 0.508 0.345 0.146
60.10 109.68 - 38 SCF 2 0.022 0.063 0.915
60.10 109.81 38 SCF 2 0.018 0.057 0.925
60.10 110.96 47 LIQ 2 0.859 0.106 0.035
60.10 110.31 47 LIQ 2 0.855 0.110 0.035
60.10 109.60 47 SCF 2 0.057 0.013 0.930
60.10 109.35 47 SCF 2 C.047 0.007 0.945
60.05 110.50 76 LIQ 2 0.637 0.269 0.095
60.05 110.38 76 LIQ 2 0.631 0.274 0.095 1038
60.05 110.03 76 SCF 2 0.031 0.055 0.914
60.05 109.96 76 SCF 2 0.036 0.059 0.905
59.95 119.60 65 LIQ 2 0.960 0.020 0.020
59.95 119.41 65 LIQ 2 0.960 0.020 0.020 1010
59.95 119.11 65 SCF 2 0.004 0.000 0.996
59.95 118.97 65 SCF 2 0.005 0.000 0.995
60.05 120.48 77 LIQ 2 0.644 0.263 0.093
60.05 120.26 77 LIQ 2 0.644 0.265 0.091 1039
60.05 120.11 77 SCF 2 0.031 0.076 0.893
60.05 119.94 77 SCF 2 0.036 0.070 0.894
59.90 120.94 31 LIQ 2 0.472 0.352 0.177
59.90 120.62 31 LIQ 2 0.472 0.353 0.175 1018
59.90 120.02 31 SCF 2 0.027 0.138 0.835

(continued on next page)
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Tahle C.8 (continued)
T P run! phase M mole fractionst density
°C bar X, X, X, kg/m®
59.90 119.47 31 SCF 2 0.029 0.133 0.838
60.05 120.51 55 LIQ 2 0.929 0.046 0.025
60.05 120.36 55 LIQ 2 0.928 0.048 0.024 1018
60.10 120.74 39 LIQ 2 0.547 0.310 0.143
60.10 120.61 39 LIQ 2 0.541 0.324 0.136
60.10 120.82 39 SCF 2 0.026 0.094 0.880
60.10 120.83 39 SCF 2 J.036 0.094 0.871
60.05 122.03 68 LIQ 2 0.579 0.292 0.129
60.05 121.51 68 LIQ 2 0.567 0.308 0.125 1035
60.05 121.47 68 SCF 2 0.024 0.095 0.881
60.05 121.25 68 SCF 2 0.023 0.094 0.883
59.85 132.07 23 LIQ 2 0.341 0.375 0.284
59.85 127.04 23 SCF 2 0.065 0.242 0.693
60.05 148.35 56 LIQ 2 0.933 0.042 0.025
60.00 147.50 56 LIQ 2 0.931 0.044 0.025 1019
60.05 138.39 56 SCF 2 0.012 0.003 0.986
60.05 138.39 56 SCF 2 0.007 0.002 0.991
60.05 138.39 56 SCF 2 0.010 0.003 0.987
59.90 149.16 82 LIQ 2 0.318 0.371 0.311
59.90 147.41 82 LIQ 2 0.312 0.390 0.297 1004
59.90 142.83 82 SCF 2 0.081 0.268 0.651 903
59.90 140.39 82 SCF 2 0.058 0.226 0.716
60.10 149.01 48 LIQ 2 0.859 0.105 0.036
60.10 145.40 48 SCF 2 0.071 0.035 0.894
60.10 145.21 48 SCF 2 0.052 0.021 0.927
59.90 147.60 57 LIQ 2 0.935 0.040 0.025
59.90 148.14 57 LIQ 2 0.933 0.043 0.024
59.90 148.33 57 SCF 2 0.005 0.004 0.991
59.90 148.02 57 SCF 2 0.006 0.003 0.991
60.05 149.81 69 LIQ 2 0.581 0.293 0.126
60.00 148.91 69 LIQ 2 0.580 0.297 0.123 1039
60.05 148.71 69 SCF 2 0.020 0.120 0.860
60.05 146.27 69 SCF 2 0.024 0.113 0.863 783
59.90 150.41 40 LIQ 2 0.530 0.318 0.152
59.90 150.41 40 LIQ 2 0.530 0.325 0.145 1036
59.90 149.12 40 SCF 2 0.028 0.141 0.831
59.90 146.97 40 SCF 2 0.027 0.137 0.837 804
60.05 150.86 78 LIQ 2 0.675 0.238 0.088
60.05 150.16 78 LIQ 2 0.672 0.242 0.087 1042
60.05 149.37 78 SCF 2 0.013 0.082 0.905
60.05 148.85 78 SCF 2 0.011 0.077 0.912
60.10 150.82 66 LIQ 2 0.964 0.016 0.021
60.10 150.24 66 LIQ 2 0.961 0.018 0.021 1019

(continued on next page)
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Table C.8 (concluded)
T P runt phase M mole fractionst density
°C bar X, X, X, kg/m3
60.10 150.02 66 SCF 2 0.007 0.000 0.993
60.10 149.37 66 SCF 2 0.006 0.001 0.993
59.90 184.01 83 LIQ 2 0.381 0.367 0.252
59.90 199.01 83 SCF 2 0.075 0.248 0.677
59.90 194.01 83 SCF 2 0.071 0.248 0.681 917
60.05 197.51 70 LIQ 2 0.596 0.281 0.123
60.05 195.01 70 LIQ 2 0.594 0.285 0.121 1042
60.05 193.01 70 SCF 2 0.024 0.136 0.840
60.05 189.01 70 SCF 2 0.024 0.129 0.847 848
60.10 191.01 49 LIQ 2 0.859 0.098 0.043 1032
60.10 195.01 49 LIQ 2 0.858 0.099 0.043
60.10 202.11 49 SCF 2 0.059 0.035 0.907 768
60.10 189.01 49 SCF 2 0.052 0.028 0.919
60.10 197.21 67 LIQ 2 0.961 0.016 0.023
60.10 195.51 67 LIQ 2 0.962 0.017 0.021 1013
59.95 195.01 67 SCF 2 0.006 0.002 0.992
59.95 193.01 67 SCF 2 0.005 0.000 0.99
59.95 192.01 67 SCF 2 0.005 0.000 0.994
60.00 193.51 79 LIQ 2 0.661 0.247 0.092 1044
60.00 195.01 79 SCF 2 0.018 0.104 0.878
60.00 192.01 79 SCF 2 0.017 0.100 0.883 824
59.90 198.51 58 LIQ 2 0.934 0.040 0.025 1021
59.90 196.51 58 LIQ 2 0.932 0.042 0.026
59.90 194.51 58 SCF 2 0.007 0.008 0.985
59.90 194.51 58 SCF 2 0.007 0.006 0.987 751
60.05 200.12 32 LIQ 2 0.459 0.344 0.198
60.05 199.02 32 LIQ 2 0.453 0.353 0.194 1033
60.05 195.02 32 SCF 2 0.060 0.212 0.728
60.05 192.02 32 SCF 2 0.040 0.198 0.762 888
59.90 203.01 41 LIQ 2 0.526 0.312 0.162
59.90 201.51 41 LIQ 2 0.043 0.169 0.787
59.90 197.01 41 LIQ 2 0.525 0.316 0.159
59.90 195.51 41 SCF 2 0.041 0.164 0.795 874

tt see

footnotes to Table C.3



C.5 n-Butyric acid - water - carbon dioxide
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The methodology described in Sections C.2 and C.3 is followed in the

presentation of the experimental data for this system in Table C.9.

Table C.9 Experimental results for the mixture water(l) - n-butyric acid(2)-

carbon dioxide(3) at 40 °C (313.1 K)

T P run!t phase M mole fractionst density
°C bar X, X, X, kg/m’
40.05 19.58 16 LIQ 2 0.467 0.446 0.086 974
40.05 19.82 21 LIQ 2 0.698 0.256 0.046 987
40.05 19.91 21 LIQ 2 0.673 0.279 0.048
40.05 20.13 35 LIQ 2 0.931 0.058 0.011 1007
40.05 20.38 35 LIQ 2 0.933 0.055 0.012
40.05 20.21 29 LIQ 2 0.876 0.106 0.018 1002
40.05 20.45 29 LIQ 2 0.879 0.103 0.018
40.05 20.44 6 LIQ 2 0.106 0.679 0.209 954
40.05 20.60 6 LIQ 2 0.333 0.006 0.646
40.05 20.50 11 LIQ 2 0.302 0.547 0.149 964
40.05 20.63 11 LIQ 2 0.291 0.558 0.146
40.10 20.55 1 LIQ 2 0.043 0.743 0.204 952
40.10 20.59 1 LIQ 2 0.034 0.756 0.202
40.05 39.62 7 LIQ 2 0.072 0.570 0.354
40.10 39.68 2 LIQ 2 0.034 0.596 0.357 951
40.10 39.57 2 LIQ 2 0.025 0.599 0.370
40.05 39.79 30 LIQ 3 0.939 0.043 0.018 1012
40.05 39.71 30 LIQ 3 0.946 0.035 0.018
40.05 39.59 30 LIQ2 3 0.7064 0.220 0.075 993
40.05 39.49 30 LIQ2 3 0.701 0.225 0.074
40.05 39.77 12 LIQ 2 0.234 0.498 0.262 964
40.05 39.60 12 LIQ 2 0.226 0.503 0.269
40.05 39.87 17 LIQ 2 0.415 0.409 0.174 975
40.05 39.72 17 LIQ 2 0.419 0.408 0.173
40.05 40.46 22 LIQ 2 0.638 0.261 0.100
40.05 58.84 0 LIQ 2 0.444 0.298 0.257
40.05 58.83 0 LIQ 2 0.472 0,293 0.235
40.05 59.75 31 LIQ 3 0.951 0.036 0.019 1015
40.05 58.84 31 LIQ 3 0.952 0.026 0.021
40.05 58.46 31 LIQ2 3 0.390 0.324 0.286 974
40.05 58.46 31 LIQ2 3 0.373 0.340 0.286

(continued on next page)
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T P runt phase M mole fractinnst density

°C bar X, X, X, kg/m?
40.05 59.65 13 LIQ 2 0.156 0.403 0.435 954
40.05 58.99 13 LIQ 2 0.166 0.398 0.432
40.05 60.11 18 LIQ 2 0.316 0.359 0.326 969
40.05 59.31 18 LIQ 2 0.325 0.354 0.322
40.05 60.50 3 LIQ 2 0.022 0.404 0.569 936
40.05 60.54 8 LIQ 2 0.051 0.405 0.538
40.05 60.48 8 LIQ 2 0.049 0.410 0.538 940
40.05 69.77 19 LIQ 2 0.136 0.334 0.531 929
40.05 68.83 19 LIQ 2 0.158 0.326 0.516 947
40.05 70.08 32 LIQ 3 0.963 0.018 0.020 1017
40.05 68.46 32 LIQ2 3 0.129 0.310 0.561 939
40.05 68.38 32 LIQ2 3 0.130 0.332 0.537
40.05 70.01 32 SCF 3 0.002 0.112 0.887
40.05 70.01 32 SCF 3 0.001 0.016 0.983
40.05 70.04 32 SCF 3 0.062 0.004 0.994
40.05 70.04 32 SCF 3 0.999 0.001 0.000
40.05 69.62 9 LIQ 2 0.038 0.318 0.642 918
40.05 69.51 9 LIQ 2 0.033 0.302 0.662
40.05 69.42 9 SCF 2 0.002 0.086 0.911
40.05 69.44 9 SCF 2 0.001 0.013 0.986
40.05 69.86 14 LIQ 2 0.107 0.310 0.579 932
40.05 69.86 14 LIQ 2 0.105 0.317 0.578
40.05 71.06 4 LIQ 2 0.017 0.274 0.706 906
40.05 70.95 4 LIQ 2 0.016 0.270 0.709
40.05 79.21 36 LIQ 2 0.957 0.023 0.020 1017
40.05 78.29 36 LIQ 2 0.963 0.017 0.020
40.05 75.13 36 LIQ 2 0.961 0.019 0.020
40.05 74 .39 36 LIQ2 2 0.176 0.378 0.445 1018
40.05 75.12 36 LIQ2 2 0.152 0.399 0.449
40.05 78.11 15 LIQ 2 0.032 0.169 0.799 848
40.05 78.02 15 LIQ 2 0.029 0.157 0.815
40.05 79.37 10 LIQ 2 0.015 0.112 0.868
40.05 79.04 10 LIQ 2 0.022 0.115 0.863 821
40.05 78.90 10 SCF 2 0.002 0.031 0.967
40.05 78.91 10 SCF 2 0.002 0.007 0.990
40.05 78.84 10 SCF 2 0.002 6.003 0.995
40.05 79 .46 31 LIQ 3 0.961 (0.018 0.021 1017
40.05 79.21 31 LIQ2 3 0.056 0.122 0.822 832
40.05 79.46 31 LIQ2 3 0.041 0.123 0.835
40.05 79.90 5 LIQ 2 0.005 0.111 0.882 804
40.05 79.50 5 LIQ 2 0.005 0.109 0.886
40.05 79.49 5 SCF 2 0.001 0.049 0.951

(continued on next page)
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Table C.9 (concluded)

T P runt phase M mole fractionst density

°C bar X, X, X, kg/m3
40.05 79.45 5 SCF 2 0.001 0.022 0.977
40.05 81.49 20 LIQ 1 0.053 0.255 0.691
40.05 80.92 20 SCF 2 0.085 0.334 0.577
40.05 80.31 20 SCF 2 0.070 0.268 0.658
40.05 79.57 20 SCF 2 0.088 0.334 0.574
40.05 98.31 25 LIQ 2 0.957 0.023 0.020
40.05 96.41 25 LIQ 2 0.959 0.021 0.020 1018
40.05 93.31 25 SCF 2 0.334 0.306 0.359 970
40.05 99.01 28 LIQ 2 0.934 0.047 0.019 1014
40.05 99.01 28 LIQ 2 0.935 0.044 0.021
40.05 101.51 28 SCF 2 0.784 0.157 0.060 999
40,05 98.01 28 SCF 2 0.736 0.181 0.081
40,05 99.51 32 LIQ 2 0.965 0.014 0.021 1019
40.05 99.82 32 LIQ 2 0.967 0.012 0.021
40.05 100.05 32 SCF 2 0.052 0.220 0.728 857
40.05 101.30 22 LIQ 2 0.9¢1 0.019 0.020 1019
40.05 101.11 22 LIQ 2 0.961 0.018 0.021
40.05 100.71 22 SCF 2 0.134 0.265 0.601
40.05 97.01 22 SCF 2 0.111 0.306 0.583 946
40.05 151.35 23 LIQ 2 0.950 0.029 0.021
40,05 148.81 23 LIQ 2 0.958 0.020 0.021 1021
40.05 140.51 23 SCF 2 0.129 0.246 0.626
40.05 143.31 23 SCF 2 0.129 0.257 0.614 955
40.05 151.01 26 LIQ 2 0.948 0.031 0.021 1019
40.05 151.51 26 SCF 2 0.363 0.287 0.329 982
40,05 151.01 26 SCF 2 0.370 0.295 0.335
40.05 152.01 33 LIQ 2 0.956 0.022 0.021 1021
40.05 150.01 33 LIQ 2 0.963 0.015 0.022
40.05 153.01 33 SCF 2 0.041 0.171 0.788 915
40.05 153.01 33 SCF 2 0.040 0.179 0.782
40.05 199.01 34 LIQ 2 0.963 0.015 0.023 1023
40.05 193.01 34 LIQ 2 0.963 0.014 0.022
40.05 188.01 34 SCF 2 0.052 0.178 0.770
40.05 185.01 34 SCF 2 0.047 0.179 0.773 932
40.05 194 .01 24 LIQ 2 0.954 0.024 0.022 1022
40.05 198.01 24 SCF 2 0.130 0.251 0.619 966
40.05 200.51 27 LIQ 2 0.956 0.022 0.021
40.05 194.01 27 LIQ 2 0.947 0.026 0.027 1021
40.05 196.01 27 SCF 2 0.433 0.269 0.298 989
40.05 197.01 27 SCF 2 0.404 0.289 0.307

t+ See footnotes to Table C.3
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Data for this binary system were obtained in the initial stages of the

operation of the equipment.

Some water was found present in the systen,

coming from the ethanol used; the measured concentration is listed in the

table.

closely to the binary system ethanol - carbon dioxide.

Table C.10 Experimental results for the system carbon dioxide(l) -
ethanol(2) at 35, 50 and 65 °C.

T P phase M mole fractionst

°C bar X, X, water
35.08 12.45 LIQ 2 0.078 0.914 0.003
34.95 12.45 LIQ 2 0.077 0.915 0.004
35.08 12.45 LIQ 2 0.078 0.914 0.003
35.10 12.48 SCF 2 0.973 0.018 0.000
34.70 12.63 LIQ 2 0.077 0.915 0.004
35.10 26.45 SCF 2 0.987 0.009 0.000
35.10 26.46 SCF 2 0.987 0.010 0.000
35.10 26.48 SCF 2 0.987 0.010 0.000
35.10 26.54 LIQ 2 0.166 0.825 0.004
35.10 26.75 LIQ 2 0.167 0.826 0.004
35.10 34.77 SCF 2 0.990 0.008 ©.000
35.10 34.77 SCF 2 0.989 0.009 0.000
35.10 34.79 SCF 2 0.989 0.009 0.000
35.10 34.85 LIQ 2 0.224 0.768 0.003
35.10 35.14 LIQ 2 0.222 0.770 0.003
35.10 42.36 SCF 2 0.991 0.007 0.000
35.10 42.47 SCF 2 0.991 0.007 0.M00
35.10 42.47 LIQ 2 0.283 0.710 0.003
35.10 42.73 LIQ 2 0.283 0.709 0.003
35.10 51.86 SCF 2 0.991 0.007 0.000
35.10 51.8¢8 SCF 2 0.991 0.007 9.000
35.10 51.95 LIQ 2 0.369 0.625 0.003
35.10 52.20 LIQ 2 0.370 0.624 0.003
35.10 63.83 SCF 2 0.991 0.008 0.000
35.10 63.86 SCF 2 0.992 0.008 0.000
35.10 63.87 SCF 2 0.990 0.008 0.001
35.10 64.01 LIQ 2 0.535 U.460 0.002
35.10 64.31 LIQ 2 0.541 0.454 0.002
35.05 69.09 LIQ 2 0.711 0.286 0.001

(continued on next page)
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Table C.10 (continued)

T P phase M mole fractionst

°C bar X, Z, water
35.07 69.09 SCF 2 0.991 0.009 0.000
35.10 69.10 SCF 2 0.990 0.010 0.000
35.08 69.13 SCF 2 0.989 0.010 0.000
35.00 69.27 LIQ 2 0.702 0.296 0.000
35.08 71.59 SCF 2 0.989 0.011 0.000
35.08 71.63 SCF 2 0.986 0.011 0.003
35.08 71.66 LIQ 2 0.867 0.131 0.001
35.09 71.72 LIQ 2 0.867 0.131 0.001
35.01 72.34 SCF 2 0.990 0.010 0.000
35.01 72.34 SCF 2 0.989 0.010 0.000
35.00 72.37 SCF 2 0.990 0.009 0.000
35.00 72.43 LIQ 2 0.906 0.092 0.000
35.03 72.53 LIQ 2 0.907 0.091 0.000
50.00 17.17 SCF 2 0.952 0.044 0.000
50.00 17.18 SCF 2 0.958 0.038 0.000
50.00 17.19 SCF 2 0.954 0.043 0.c00
50.00 17.21 LIQ 2 0.086 0.910 0.001
50.02 17.23 LIQ 2 0.086 0.909 0.002
50.02 26.66 SCF 2 0.978 0.019 0.000
50.02 26.67 SCF 2 0.978 0.020 0.000
50.02 26.70 SCF 2 0.978 0.019 0.000
50.02 26.72 LIQ 2 0.138 0.857 0.002
50.02 26.75 LIQ 2 0.135 0.860 0.002
50.00 26.77 LIQ 2 0.137 0.859 0.001
50.00 38.00 SCF 2 0.983 0.015 0.000
50.00 38.01 SCF 2 0.985 0.014 0.000
50.00 38.03 SCF 2 0.984 0.015 0.000
50.02 38.07 LIQ 2 0.195 0.801 0.002
50.02 38.10 LIQ 2 0.192 0.804 0.001
50.00 38.42 LIQ 2 0.197 0.799 0.001
50.00 48.32 LIQ 2 0.255 0.741 0.001
50.00 48.37 SCF 2 0.986 0.013 0.000
50.00 48.49 LIQ 2 0.257 0.739 0.001
50.00 62.55 LIQ 2 0.350 0.646 0.001
50.00 62.59 LIQ 2 0.352 0.645 0.001
50.00 62.66 SCF 2 0.986 0.013 0.000
50.00 62.66 SCF 2 0.987 0.013 0.000
50.00 62.69 SCF 2 0.987 0.012 0.000
50.00 75.20 SCF 2 0.983 0.016 0.000
50.00 75.21 SCF 2 0.935 0.015 0.000
50.00 75.33 SCF 2 0.985 0.015 0.000
50.00 75.42 LIQ 2 0.459 0.538 0.001
50.00 75.42 LIQ 2 0.466 0.532 0.000

(continued on next page)



Table C.10 (continued)

T P phase M mole fractionst

°C bar X, X, water
50.00 87.61 LIQ 2 0.660 0.337 0.001
50.00 87.65 LIQ 2 0.662 0.336 0.000
50.04 87.66 SCF 2 0.974 0.025 0.000
50.02 87.69 SCF 2 0.974 0.025 0.000
50.00 87.69 SCF 2 0.973 0.026 0.000
50.01 90.21 SCF 2 0.965 0.035 0.000
50.01 90.26 SCF 2 0.948 0.052 0.000
50.03 90.28 SCF 2 0.961 0.038 0.000
50.02 90.36 LIQ 2 0.750 0.248 0.000
50.04 90.41 LIQ 2 0.752 0.246 0.001
50.00 91.71 SCF 2 0.870 0.129 0.000
50.00 91.71 SCF 2 0.906 0.094 0.000
50.00 91.71 LIQ 2 0.815 0.183 0.000
50.00 91.71 SCF 2 0.871 0.128 0.000
50.00 91.73 LIQ 2 0.815 0.183 0.000
64.60 12.31 LIQ 2 0.051 0.948 0.001
64.63 12.31 LIQ 2 0.050 0.949 0.001
64.66 26.88 LI 2 0.113 0.885 0.001
64.62 27.09 LIQ 2 0.113 0.886 0.001
64.68 44.71 SCF 2 0.971 0.019 0.007
64.68 44.74 SCF 2 0.973 0.025 0.000
64.70 44 .87 LIQ 2 0.196 0.803 0.001
64.70 45.19 LIQ 2 0.195 0.805 0.000
64.56 63.41 LIQ 2 0.292 0.707 0.001
64,60 63.55 LIQ 2 0.292 0.708 0.000
64.60 63.63 SCF 2 0.973 0.022 0.004
64.60 63.70 SCF 2 0.970 0.023 0.005
64.60 63.71 SCF 2 0.971 0.025 0.002
64.60 85.70 SCF 2 0.972 0.027 0.000
64.60 85.70 SCF 2 0.972 0.028 0.000
64 .49 85.71 LIQ 2 0.431 0.568 0.001
64.60 85.71 SCF 2 0.973 0.027 0.000
64.60 100.76 SCF 2 0.959 0.040 0.000
64.60 100.82 SCF 2 0.959 0.040 0.000
64.60 100.98 LIQ 2 0.571 0.429 0.000
64.55 101.05 LIQ 2 0.575 0.425 0.000
64.60 109.21 SCF 2 0.882 0.117 0.000
64.60 109.25 SCF 2 0.852 0.148 0.000
64.60 109.38 LIQ 2 0.708 0.291 0.000
64.60 109.50 LIQ 2 0.710 0.290 0.000

263
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APPENDIX D: CORRELATION PARAMETERS

In Table D.1l, the pure componént parameters used for the correlation
with the Peng-Robinson (1976) equation of state (u~2 and w=-1 in Eq. 2.7).
The pure component parameters for the subcritical components were determined
as described in Appendix A. The table lists the data for liquid volume
and vapor pressure as a function of temperature that were used as input
for the expressions given in Table A.2, as well the resulting values for
the pure component parameters a and b. For the supercritical component

(carbon dioxide) the normal acentric factor correlation was used.

Table D.1 Pure component parameters for the Peng-Robinson equation of state

Component T T P Pyp a b
°C K kg m™3 bar Jm¥mol”2 mPmol-2
%10~ 6
ethanol 30.0 303.2 787.8 0.1043 2.138 50.48
35.0 308.2 782.5 0.1372 2.116 50.55
40.0 313.2 777.2 0.1787 2.094 50.62
45.0 318.2 771.8 0.2305 2.072 50.68
50.0 323.2 766.3 0.2946 2.050 50.75
55.0 328.2 760.8 0.3731 2.029 50.81
60.0 333,22 755.2 0.4687 2.007 50.87
65.0 338.2 749.5 0.5841 1.985 50.92
70.0 343.2 743.8 0.7225 1.963 50.96
75.0 348.2 737.9 0.8871 1.941 51.00
90.0 363.2 724.0 1.5790 1.865 50.75
acetone 30.0 303.2 776.8 0.3804 2.208 62.17
35.0 308.2 770.9 0.4660 2,192 62.27
40.0 313.2 765.0 0.5664 2.177 62.35
45.0 318.2 759.0 0.6837 2.162 62.44
50.0 323.2 753.0 0.8196 2.147 62.52
55.0 328.2 747.0 0.9764 2.132 62.59
60.0 333.2 741.0 1.1562 2.117 62.65

(continued on next page)
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Component T T p Pyp a b

°c K kg m™3 bar Jm3mol 2 mmol-2

x10~6

water 25.0 298.2 997.3 0.0317 0.8362 16.13

30.0 303.2 996.0 0.0424 0.8293 16.11

31.0 304.2 995.8 0.0450 0.8276 16.10

35.0 308.2 994.0 0.0562 0.8226 16.08

40.0 313.2 992.1 0.0738 0.8162 16.07

50.0 323.2 988.1 0.1234 0.8032 16.02

60.0 333.2 983.3 0.1992 0.7912 15.98

70.0 343.2 977.5 0.3116 0.7799 15.956

75.0 348.2 974.6 0.3855 0.7742 15.95

80.0 353.2 971.8 0.4736 0.7688 15.94

90.0 363.2 965.2 0.7011 0.7580 15.91

100.0 373.2 957.9 1.0130 0.7483 15.91

n-butanol 30.0 303.2 806.1 0.0124 4.053 81.50

40.0 313.2 796.1 0.0238 3.969 81.80

50.0 323.2 785.9 0.0436 3.883 82.08

60.0 333.2 775.6 0.0768 3.796 82.34

acetic acid 40.0 313.2 1028.4 0.0469 2.431 51.13

50.0 323.2 1017.5 0.0766 2.403 51.28

60.0 333.2 1006.0 0.1209 2.376  51.45

propionic acid 40.0 313.2 967.8 0.0134 3.534 67.95

50.0 323.2 956.5 0.0237 3.488 68.26

60.0 333.2 945.2 0.0402 3.441 68.54

butyric acid 40.0 313.2 938.0 0.0039 4.778 84.36

50.0 323.2 928.2 0.0073 4.714 84.70

60.0 333.2 918.5 0.0131 4.648 85.02

carbon dioxide 303.2 0.3970 26.65

308.2 0.3923 26.65

313.2 0.3876  26.65

323.2 0.3785 26.65

333.2 0.3696 26.65

348.2 0.3610 26.65
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Table D.2 lists the interaction parameters for the density-dependent

model (Eq. 3.6 and the Peng-Robinson form of a cubic equation of state).

The parameters were obtained from regression of binary data and were used

for the predictions of the ternary behavior (except for the parameters for

CO, - n-butanol parameters that were slightly modified to obtain a better

description of the three-phase equilibrium behavior of the ternary system).

As can be seen in Table D.2, in several instances the parameters were

found to be temperature independent, although a separate parameter regression

at each temperature was performed.

In other cases,

found to be weak functions of temperature.

Table D.2 Interaction parameters
Binary system T ki, = k;, A1z = =Xy,
(K) (J2m® /mo12)
CO, (1) - water(2) 298.2 0.012 -1710
304.2 0.021 -1750
313.2 0.024 -1740
323.2 0.027 -1740
333.2 0.028 -1710
348.2 0.029 -1680
CO, (1) - acetone(2) all 0.00 0
CO, (1) - n-butanol(2) all 0.125 1310
C0, (1) - acetic acid(2) all 0.005 530
G0, (1) - n-butyric acid(2) 313.2 0.023 527
water(l) - acetone(2) 313.2 -0.229 1305
333.2 -0.213 1432
water(l) - n-butanol(2) all -0.164 1595
water(l) - acetic acid(2) 313.2 -0.147 410
333.2 -0.142 580
water(l) - n-butyric acid(2) 313.2 -0.135 1686

the parameters were
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APPENDIX E. DERIVATION OF FLUCTUATION EXPRESSIONS

In classical thermodynamics, a system at equilibrium is characterized
by the minimization of a state function that depends upon the constraints
placed on the system. For example, in an isolated system the total energy
U is minimized. The conditions for the minimization of the apprcpriate
state function result in a set of equilibrium conditions for the system.
For a homogeneous system with no internal barriers to energy or mass
transfer, the conditions for equilibrium would be that 'temperature, pressure
and the chemical potential of all components be the same throughout the
system. In statistical thermodynamics, the same conditions would apply,
but are strictly valid only in an average sense; the exact values of the
local density or energy in a small part of a system fluctuate around a
mean value predicted by classical thermodynamics. The mean-squared deviation
of any given quantity from the average is termed the principal fluctuation

of that quantity. Also lmportant is the correlation between fluctuations

of two different properties, defined as :
EX EX)> = <K K> - <K ><K,> (E.1]

which we term a pair-wise fluctuation. Clearly, if i=j this definition
would include the principal fluctuations.

The fluctuations of thermodynamic properties, although very small for
macroscopic systems under normal conditions, become important in the
vicinity of phase transitions and critical points. Moreover, fluctuations
are particularly significant when microscopic systems are investigated, as
in light-scattering experiments, Brownian motion, or in molecular simulation.
The derivation of the relationships governing the fluctuations of thermodynamic
quantities also serves the purpose of elucidating the molecular mechanisms
for the change of macroscopic properties when external conditions change

(for example the response of the system volume to changes in total pressure).
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Several relationships between pair-wise fluctuations and thermodynamic
derivatives have been derived using different routes (Hill, 1956; Schofield,
1966) , but a general method for obtaining the fluctuations of any given
pair of thermodynamic quantities under an arbitrary constraint has not, to
our knowledge, been developed. In a recent paper Debenedetti (1986)
presented relationships between the principal fluctuations and thermodynamic
stability coefficients. Here, we derive general expressions for the pair-

wise fluctuations of thermodynamic properties.

In the following, we consider a small (but still macroscopic) part of
a larger system that is in thermodynamic equilibrium. The large system
serves as an energy and mass reservoir. The small system (called simply
system from now on) is defined by its extent. This definition can be
operationally realized as follows : Suppose we select a fixed point in
space as the origin. We would then imagine spheres (or another geometric
shape) with progressively increasing diameters centered at tha; point. Ve
consider as our system the one that satisfies a single extensive constraint
that we have specified, e.g. a given total volume, total number of molecules
of a species, or total energy. Exactly one extensive constraint is required
for the definition of the system.

We will only be dealing with systems in which the fluctuations have a
purely classical character and quantum effects are unimportant. A discussion
of the conditions required for negligible quantum effects on the fluctuations
is given elsewhere (Landau and Lifshitz, 1980).

According to classical thermodynamics, the energy of an n-component
system can be written as a function of n+2 independent extensive variables

(Modell and Reid, 1983):

Um0 (X% Xy Xy Xars ) [E.2]

The natural set of extensive variables for U comprise the total entropy
S, total volume V, and N; (i=1l,n) , che number of molecules of each chemical
species present. Note that the variables S,V,N, may be ordered in an

arbitrary way.
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To derive the general relationship between fluctuations and the derivatives
of U and its transformed functions, we start from the standard expression
for the Gaussian distribution applicable for cases with more than one
independent variable (Landau and Lifshitz, 1980) and obtain (Debenedetti,
1986)

<8X, 6X;> = kT, D;j i,j < n+l
Xu+2
<6€,6X,> X,, " KT, 6, 1, s n+l [E.3]
+
<6¢,8¢,> = kT, D, i,j < n+2
+2
where §, = (aU/axi)x . The symbol X;,, means differentiation with all

(1]
X's except X, kept constant. T, is the equilibrium temperature of the

system, k is Boltzmann’s constant and 6,y is Kronecker's delta. D is the

matrix :
— —_
3§, 3¢, 3n+1
X, X[11 X, th] ). 8 X(11
ag,
3%, X 5,
2 - [E.4)
85,1 a€n+1
a}(ﬂ+1 x[n+1] aX'ﬂ+1 x[n+1]
L _ —

D, and Dz} are, respectively, the (ij)th element of the matrices D and

2'1. Note the D is a real, symmetric matrix.

The variables £, , can be identified as follows:
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€3 | T P B - .. By

where P is the pressure and p;, the chemical potential of component i.
This is only one of (nt+2)! possible and equally valid orderings of the
variables.

We can write 2 in a more compact form (Kumar and Reid, 1986)

U11 U12 e U1,n+1

U21 UZZ e U2,n+1

3(8,,62,631---,8041) . .
D - - . . [E.5]

(X, X, X5, ..., X 4,)

Un+1,1 U£+1,2 - Un+1,n+1-4

where U, is the partial derivative 32U/dX, 3X, .

Now, let us pﬁ:ove an important new relationship, name.y that the
inverse of D can be directiy related to the derivatives of a transformed

function of U. We will show that :

— _
aX, X, X, 41
9, 1€11; 8€11&01 9, 1€,
ax,
38, 1€ 2,

) 8%, Ky Xy, .. Xy )

a(El 962 '63 1o )$n+1)

ax, X,
a€n+1 e[n+1] afn+1 f[n+1]

[E.6]
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€17 in Eq. E.6 indicates that differentiation is to be carried out at

constant &§,,§,,...§;-1,81415---En+1+ X042+

The function

n+l

yoRt) = U - ¥ X, ¢, [E.7]
i=1

is known as the n+l Legendre transform of U. Using the properties of

Legendre transforms (Callen, 1960; Beegle et al., 1974), we can identify

the elements of D! in Eq. E.6 as:

aXx
- = -yi?*l) [E.8]
aed 6[Jl
In order to prove Eq. E.6, it suffices to show that :
a(f11€21€3|°°-l€n+1) a(x]_vxzvx3|°--sxn+1)
o - I [E.9]
a(x1|x21x3|'°'!&1+1) a(flo£2p€3|""€n+1)

Where I is the unit matrix. We write {, as a function of the n+2

variables X,...X .,

3¢, 3¢, 3¢, 3¢,
a, = — X, + — ax, + ... + aX ., + ax .,
09Xy [Xp1y Xy [X(2; OXn+1 X pne1 0Xn+2 1X(n42)

(E.10]

Differentiating with respect to fd, keeping all £'s (ex:cept fd) and

X,,, constant, we obtain:

de, 3¢,

— 81.1- —

de, ax,

ax,

X1y 9§

ag,
+ ——

€y 9%

0Xn+r

X[l‘l'l'l] afd

X,

Xpzy 8§

g,
+...+ —

€[J] a}gnl

€091
(E.11]

This completes the proof of Eq. E.6. Note that the treatment is

general and is not restricted to the (nt+l)-order matrix.



Now Eq. 3.6 can be rewritten:

ax,

<X, 6X,>

- kT, D;!
Lp S o "4

kT,

3¢,

$ia1
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- kT, y{o*+D» [E.12]

There is only one additional derivative, namely <6€,,,6X;>, that

cannot be calculated directly from Eq.
of Eq. E.10, we have :

a6n+2

3%,

<6€,4+28%,

<6X, 6X,>
X1 Xo+

>
Xavz

E.3. Expanding 6£,,, in the manner
a€n+2 sxzsx

+ —1 < > + +

5 - . .

2 3%, |X(,, Xn+2
aén+2

+ <6X, 41 6X,> [E.13]
3Xn+11X(n+1) 2 S

Now, using Eq. E.12 and the chain rule for partial differentiation,

5 a€n+2 axl
<6€,,,6K,> - kTo[ —
" Xas2 8%, %y, 2,
aen+2 axn+1
+
axn+1 x[n+1] 3fj

aEn+2 axz
+ ...+
€y 9% [Xpzy 9&;1€;,
aEn+2
] - KT, [E.14]
€ &y €5 Xase

To summarize, we have obtained the following relationships hetween the

fluctuations of any pair of thermodynamic wvariables under an arbitrary

extensive constraint :
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g,
<8$16€,J>xn+z = kT, \ j<n+?2 j=<n+2

axd 3}

3¢,
<6£15X.j>xn - kT, ————W j<nt+2 j=<n+l [E.15]
¥z aEi E[jl'xn+2

dx
- , j=ntl

j<n+l

R

<5X, 6%y> - kT, \
Hurz €, |€gg1:Fnsz

genexal expression for all cases,. by using

We can write Eq. E.15 as 2

the convention

if A, =& oK chen X, =X or &y
Now Eq. E.15 becomes :

ax,
<83, 87y - kT, — |- (E.16]
*? CPVR PYSRRREL

understood that in case of conflict, the first constraint

nce over the second (this wou

r the calculation

where it is
1d be the case fo

takes precede

of <6€,68,427 )-
i n+t2” X +2
ntation of the Fundamental Equation ( Eq.

rted from the U represe
s of S, V, and N,, as

We sta
s for

E.2), nnd obtained expression
well ables. 1f we are int

involv tart from a slightly different
tion. Writing :

the fluctuation
erested in fluctuations

ac their conjugate vari
formalism,

d to s

ing U jtself, we nee
the Fundamental Equa

in the S- representation of

s ( xl'x2""'xn'xn+1'xn+2)

(E.17]

§ =

e between the X's and the £'s in this case will be :

The correspondenc
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3 | u v N, N, . . . N

& | T B/T -p/T -yt o /T

Now the X, variables are U,V and N,, ordered in an arbitrary way.
Following the exact same formalism as developed above (actually in* this

is the framework for the development of Eq. E.3), we can obtain :

ax,

<6A, 6X,> - -k

—] [E.18]
J xu+z aAJ )Y

(31

which is very similar to Eq. [E.16].

This completes our development of the general relationship between
fluctuations and thermodynamic derivatives. An additional discussion of this
methodology, with application examples, is given in Panagiotopoulos and
Reid, 1986a.
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APPENDIX F. PROGRAM LISTINGS : MONTE CARLO SIMULATION

The program to perform the Monte Carlo simulations for binary mixtures
in the canonical NVT ensemble, according to the methods described in Chapter
4, was developed for execution on a CYBER 205 supercomputer. The programming
language was a special version of the FORTRAN programming language (CDC
FIN200) that has special exteqs;ons to take advantage of the vector processor
that is primarily responsible for the;high pérfbrménce of the CYBER 205.
All internal loops (that is, loopé at the deepest level of iteration for
the main program) were explicitly vectorized for maximum computational
efficiency.

In addition to the part of the program executed on the supercomputer,
a program was written (in normal FORTRAN 77) to generate the average
thermodynamic properties of the fluid after applying the long-range
corrections, from the detailed history of a simulation run produced by the
simulation program. The averaging program also determines the fluctuations
in the number density, energy and virial of the pressure for each subcell
of the basic simulation cell.

Table F.l presents a summary of the calling programs and subroutines,
with a brief description of their function. Complete listings of the
programs are given in the pages that follow, in the same order as presented
in Table F.1.
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Table F.1 Summary of programs and subroutines for Monte Carlo simulation

Name Function

NVT2 Main program. After an initialization step, the basic
Monte Carlo step with particle interchange is performed
(as described in Section 5.6) to generate the desired
number of configurations.

INP Input subroutine. Reads the simulation parameters from
appropriate input files

OUTP Output subroutine. Generates the detailed output files
with the simulation history

LJPOTEN This subroutine is called once, at the beginning of each
run, to initialize the tables containing the force and
energy as a function of distance

PUTFCC This subroutine initializes the position and type of the
particles inside the simulation cell to positions corresponding
to a face-centered cubic lattice.

AVG This is the post-run averaging program that calculates the
average properties of a fluid from the detailed record of
the simulation history produced by the Monte Carlo simulation
program.




C----

e

wN =

Parameter definitions

parameter (pi=3.1415926536, twopi=6.2831853072)
parameter (ncells=4, ntotal=4*ncells**3  ,nlf=ntotal/2)
parameter (ncomp=2,

ncross=ncomp*(ncomp+1l) /2, ndiscr=7500,maxhist=10000)
parameter (efgmin=-20.,efgmax=+20.,nefg=200)

Common Blocks

common/uparam/ulj(ndiscr,ncross), estar(ncross), sigmas(ncross)
,£lj(ndiscr,ncross) '
common/initial/seed,accmax, accmin,redfact
common/thermo/tstar, rhostar, pstar, nl
common/techn/nconf, nsamplel, nsample2, icont, maxconf
common/distance/rcutoff, vstep(Ncomp), thstep(Ncomp),
phstep(Ncomp), rstep, L, L2
common/position/xyz(3*ntotal), Lrij(ntotal,ntotal)
common/energy/eij(ntotal,ntotal),etotal
common/rdfp/irdf(Ndiscr,Ncross),iconc(8,0:NCOMP)
,crdf(ncross)
common/bft/xyztp(3*ntotal),ef(ntotal),eg(ntotal),
efhist(nefg,ncomp),eghist(nefg,ncomp)

Array and variable declarations

dimension ehist(0:maxhist),movhist(0:maxhist),
phist(0:maxhist),Lr(Ntotal)

dimension dum(3*Ntotal), rmove(Ntotal), emove(ntotal),
jcount(ntotal)

dimension dum2(3*ntotal),eold(ntotal),idum(ntotal),iduml(ntotal)

dimension elmove(ntotal),e2move(ntotal),pmove{ntotal),
pij(ntotal,ntotal),plmove(ntotal),p2move(ntotal)
,ipos(ntotal),pcmol(ntotal)
,esubcell(ntotal),psubcell(ntotal)

bit becount(3*ntotal)

integer seed

real L, L2

half precision ulj,flj,xyz,eij,ehist,phist,dum, rmove,emove
,kXyztp,ef,eg,efhist,eghist
,dum? ,eold,elmove,e2move,pmove,pij,plmove,p2move
,xmoved , ymoved, zmoved, pcmol, esubcell,psubcell

277



278

Commmmcmeeem e meammemmmmmeeaeeee—e—aameeemmmemmmsecece-us—se-—-----
c
C EXECUTABLE PART
C
o IR R LR LR LT
C---- Open I/0 files; read data
call INP
C---- Initialize ulj and flj arrays

call LIPOTEN
C---- Initialize other variables

L = (ntotal/rhostar)**(1./3.)
L2 = L/2.
tstari = 1./tstar
tstarim = -tstari
nsucc = 0
nsucci = 0
do 90 j = 1,ncross
do 90 jj = 1,ndiscr
90 irdf(jj,j) = 0
do 91 j = 1,8
do 91 jj=0,ncomp
91 iconc(j,jj) = O
do 92 j = 1,nefg
do 92 jj = 1,ncomp
efhist(j,jj) = 0.
92 eghist(j,}j) = 0.
crdf(l) = rhostar*4*pi*(nl-1)/ntotal*rstep**3
crdf(2) = rhostar*4*pi*nl*(ntotal-nl)/ntotal*rstep*+*3
crdf(3) = rhostar*4*pi*(ntotal-nl-1)/ntotal*rstep**3

C---=--- If this is not a continuation, initialize positions and vsteps

if (icont.NE.OQ) then
nconf = 0O
do 110 j = 1,ncomp
110 vstep(j) = 1./(16.*rhostar)**(1./3.)/sigmas(j)
call PUTFCC
endif

maxconf = nconf + maxconf
etotal = 0
pstar = 0



C----

120

130

150

C----

200

210

220

240

Initialize energies and distances for all particles

do 190 kmoved = 1,ntotal

if (Kmoved.LE.N1l) then
Ktype = 1

else

Ktype = 2

endif

Minimum image convention

do 120 j=1,ntotal

dum(j ) = abs (xyz(kmoved ) - xyz(j ))
dum(j+ ntotal) = abs (xyz(kmoved + ntotal) - xyz(j+ Ntotal))
dum(j+2*ntotal) = abs (xyz(kmoved +2*ntotal) - xyz(j+2*Ntotal))

do 130 j=1,3%Ntotal
if (dum(j).GT.L2) dum(j) = L-dum(j)
dum(j) = dum(j)*dum(j)

do 150 j=1,Ntotal
rmove(j) = SQRT ( dum(j) dum(j+Ntotal) + dum(j+2*Ntotal) )

Energy interaction calculation
NLJ1 = Ktype

NLJ2 = (MIN(2,ktype)-1)*(2*ncomp-MIN(2,ktype)+2)/2 + 1
+ ABS(2-ktype)

do 200 j=1,Ntotal
Lr(j) = MIN(INT(rmove(j)/rstep)+l,Ndiscr)

do 210 j = 1,nl

pmove(j) = £1j(Lr(j),nljl)
emove(j) =~ uli(Lr(j),nljl)
do 220 j = nl+l,ntotal
pmove(j) = £1j(Lx(j),nlj2)
emove(j) = ulj(Lr(j),nlj2)

emove (kmoved) = 0
pmove (kmoved) = 0

do 240 j = kmoved+l,ntotal
vstar = pstar + pmove(j)
etotal = etotal + emove(j)
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291

292

1000

C----

280

do 260 j = 1,ntotal
pij(j,kmoved) = pmove(j)
Eij(j,kmoved) = emove(j)
Lrij(j,kmoved) = 1lr(j)

do 291 j = 1,nl

irdf(Lrij(j,kmoved) ,NLJ1) = irdf(Lrij(j,kmoved),NLJ1) + 1
do 292 j = nl+l, ntotal

irdf(Lrij(j,kmoved) ,NLJ2) = irdf(Lrij(j,kmoved),NLJ2) + 1
Je=1

if(xyz(kmoved) .GE.L2) jc = 2

if(xyz(kmoved+ntotal).GE.L2) jc = jc + 2
if(xyz(kmoved+2*ntotal).GE.L2) jc = jc + &4

ipos(kmoved) = jc

continue

End of loop for initial configuration over all particles

Write initial configuration and energy in OUTP

call OUTPL
ehist(0) = etotal
movhist(0) = 0
phist(0) = pstar

continue
Determine which particle moves
Kmoved = INT(ranf()*Ntotal) + 1

if (Kmoved.LE.N1) then
Ktype = 1

else

Ktype = 2

endif
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C----

450

C----

281
Find new particle position

deltar = ranf()*vstep(ktype)

wl = ranf()*twopi - pi

w2 = ranf()*twopi

xmoved = xyz(Kmoved ) + deltaR*CGS (wl)*COS(w2)
ymoved = xyz(Kmoved+ Ntotal) + deltaR*COS(wl)*SIN(w2)
zmoved = xyz(Kmoved+2*Ntotal) + deltaR*SIN(wl)

Test if particle has moved out of the box and correct

if (xmoved.GT.L) xmoved = xmoved
if (ymoved.GT.L) ymoved =~ ymoved
if (zmoved.GT.L) zmoved = zmoved

L
L
L

if (xmoved.LE.O) xmoved = xmoved + L
if (ymoved.LE.0) ymoved = ymoved + L
if (zmoved.LE.O) zmoved = zmoved + L

Calculate minimum image convention distances

dum(l;ntotal) = vabs(xmoved-xyz(l;ntotal);dum(l;ntotal))

dum(l+ntotal;ntotal) = vabs(ymoved-xyz(l+ntotal;ntotal);
dum(l+ntotal;ntotal))

dum(1l+2*ntotal;ntotal) = vabs(zmoved-xyz(l+2*ntotal;ntotal);
dum(l+2*ntotal;ntotal))

dum (kmoved ) =

dum(kmoved + ntotal)

dum(kmoved + 2*ntotal) =

]
[N el e)
© OO

where(dum(1l;3*ntotal).gt.L2)
dum(1l;3*ntotal) = L-dum(l;3*ntotal)
dum(l;3*ntotal) = dum(l;3*ntotal) * dum(1l;3*ntotal)

do 450 j=1,Ntotal
rmove(j) = SQRT ( dum(j) + dum(j+Ntotal) + dum(j+2*Ntotal) )

Energy interaction update
nljl = ktype
nlj2 = (min(2,ktype)-1)*(2*ncomp-min(2,ktype)+2)/2 + 1
+ abs(2-ktype)
rstepin = 1./rstep
lr(l;ntotal) = vifix(rmove(l;ntotal)*rstepin+l;lr{l;ntotal))
where (lr(l;ntotal).gt.ndiscr) lr(l;ntotal) = ndiscr

lr(kmoved) = 1
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emove(l;nl) = g8vgathr(ulj(l,nljl;ndiscr),lr(l;nl);
emove(l;nl))
emove(nl+l;ntotal-nl) = q8vgathr(ulj(l,nlj2;ndiscr),
lr(nl+l;ntotal-nl);emove(nl+l;ntotal-nl))
Energy update; Add new interactions
detotal = g8ssum(emove(l;ntotal))

Subtract old interactions

deold = gq8ssum(eij(l,kmoved;ntotal))
detotal = detotal - deold

pacc = 1.
if (detotal.gt.0) pacc = exp (-detotal/tstar)

if (ranf().lt.pacc) then

Accept new configuration

Calculate position of particle after the move

je=1

if(xmoved.GE.L2) jc = 2

if(ymoved.GE.L2) jc = jc + 2

if(zmoved.GE.L2) jc = jc + 4

ipos(kmoved) = jc

Update position

xyz (kmoved ) = xmoved

xyz (kmoved+ ntotal) = yuwoved

xyz (kmoved+2*Ntotal) = zmoved

Etotal = Etotal + DEtotal

Calculate old contribution to pressure

pold = g8ssum(pij(l,kmoved;ntotal))

Calculate new contribution to pressure

pmove(l;nl) = q8vgathr(flj(l,nljl;ndiscr),lr(l;nl);
pmove(l;nl))

pmove (nl+l;ntotal-nl) = q8vgathr(flj(l,nlj2;ndiscr),
lr(nl+l;ntotal-nl) ;pmove(nl+l;ntotal-nl))
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C---- Update pressure
pstar = pstar - pold + ¢8ssum(pmove(l;ntotal))
C---- Update interaction matrices

eij(l,kmoved;ntotal) = emove(l;ntotal)

Pij(1l,kmoved;ntotal) = pmove(l;ntotal)

1rij(1l,kmoved;ntotal) = lr(l;ntotal)

eij(kmoved,1l;1) = g8vscatp(emove(l;ntotal),ntotal,ntotal;
1 eij(kmoved,1;1))

plj(kmoved,1;1) = q8vscatp(pmove(l;ntotal),ntotal,ntotal;
1 pij (kmoved,1;1))

1rij(kmoved,1l;1) = q8vscatp(lr(l;ntotal),ntotal,ntotal;
1 1rij (kmoved,1;1))

nsucc = nsucc + 1
endif

C---- End of updates for succesful move

C---- Update RDF information (assuming all 1lrij’s different)

iduml(l;nl) = q8vgathr(irdf(l,nljl;ndiscr),lrij(l,kmoved;nl);
1 iduml(1l;nl))
iduml(1l+nl;ntotal-nl) = q8vgathr(irdf(l,nlj2;ndiscr),
1 lrij(1+nl,kmoved;ntotal-nl);iduml(l+nl;ntotal-nl))
iduml(l;ntotal) = iduml(l;ntotal) + 1
irdf(1,nljl;ndiscr) = q8vscatr(iduml(l;nl),lrij(1l,kmoved;nl);
1 irdf(1,nljl;ndiscr))
irdf(1,nlj2;ndiscr) = gq8vscatr(iduml(l+nl;ntotal-nl),
1 lrij(1+nl,kmoved;ntotal-nl);irdf(1,nlj2;ndiscr))

C----  Bookkeeping

nconf = nconf + 1
ehist(mod(nconf,nsamplel)) = etotal
movhist(mod(nconf,nsamplel)) = kmoved
phist(mod(nconf,nsamplel)) = pstar
if(nconf.gt.maxconf) goto 9999

C if(nconf.ge.0) goto 2222

klmoved = int(ranf()*N1l) + 1
k2moved = int(ranf()*(Ntotal-N1)) + N1 +1
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Interchange role of klmoved and k2moved in 1lrij (tentative)

i1l = 1lrij(klmoved,k2moved)
1rij(klmoved,klmoved) = ill

Jrij(klmoved,k2moved) = 1
1rij(k2moved,k2moved) = ill
1rij(k2moved,klmoved) =

1

Calculate new Energies

elmove(l;nl) = gq8vgathr(ulj(l,l;ndiscr),lrij(l,k2moved;nl);
elmove(l;nl))

elmove(nl+l;ntotal-nl) = q8vgathr(ulj(l,2;ndiscr),
1rij(nl+l,k2moved;ntotal-nl);elmove(nl+l;ntotal-nl))

e2move(l;nl) = gq8vgathr(ulj(l,2;ndiscr),lrij(l,klmoved;nl);
e2move(l;nl))
e2move (nl+l;ntotal-nl) = q8vgathr(ulj(l,3;ndisecr),
1rij(nl+l,klmoved;ntotal-nl);e2move(nl+l;ntotal-nl))

Calculate old contribution to energy

deold = q8ssum(eij(l,klmoved;ntotal)) + q8ssum(eij(l,k2moved;
ntotal))

Energy update; Add new interactions

detotal = g8ssum(elmove(l;ntotal)) + q8ssum(e2move(l;ntotal))
detotal = detotal - deold

pacc = 1.
if (detotal.gt.0) pacc = exp (-detotal/tstar)

if (ranf().lt.pacc) then

Accept new configuration

Interchange position of particles before and after the move
idump = ipos(klmoved)

ipos(klmoved) = ipos(k2moved)
ipos(k2moved) = idump
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Update position

xmoved = xyz(klmoved )
ymoved = xyz(klmoved+ ntotal)
zmoved = xyz(klmoved+2*ntotal)
xyz(klmoved ) = xyz(k2moved )
xyz(klmoved+ ntotal) = xyz(k2moved+ ntotal)
xyz(klmoved+2*ntotal) = xyz(k2moved+2*ntotal)
xyz(k2moved ) = xmoved
xyz(k2moved+ ntotal) = ymoved
xyz(k2moved+2*Ntotal) zmoved

Update Energy and Pressure
Etotal = Etotal + DEtotal

plmove(l;nl) = q8vgathr(flj(1,1;ndiscr),1rij(1,k2moved;nl);
plmove(1l;nl))
plmove(nl+l;ntotal-nl) = q8vgathr(£f1lj(1l,2;ndiscr),
Irij (nl+l,k2moved;ntotal-nl) ;plmove(nl+l;ntotal-al))

P2move(l;nl) = q8vgathr(flj(l,2;ndiscr),lrij(1l,klmoved;nl);
p2move(l;nl))
P2move(nl+l;ntotal-nl) = q8vgathr(flj(l,3;ndiscr),
1rij(nl+l,klmoved;ntotal-nl);p2move(nl+l;ntotal-nl))

pstar = pstar - q8ssum(pij(l,klmoved;ntotal)) -
q8ssum(pij(l,k2moved;ntotal)) +
g8ssum(plmove(l;ntotal)) + q8ssum(p2move(l;ntotal))

Update interaction matrices

eij(1l,klmoved;ntotal)

eij(1l,k2moved;ntotal) e2move(l;ntotal)

Pij(1,klmoved;ntotal) plmove(l;ntotal)

pij(1,k2moved;ntotal) = p2move(l;ntotal)

idum(l;ntotal) = 1rij(l,klmoved;ntotal)

iduml(1l;ntotal) = lrij(l,k2moved;ntotal)

1rij(1,klmoved;ntotal) = iduml(l;ntotal)

1rij(1l,k2moved;ntotal) = idum(l;ntotal)

eij(klmoved,1l;1l) = qB8vscatp(elmove(l;ntotal),ntotal,ntotal;
eij(klmoved,1l;1))

eij(k2moved,1l;1l) = q8vscatp(e2move(l;ntotal),ntotal,ntotal;
eij(k2moved,1;1))

pij(klmoved,1l;1) = gq8vscatp(plmove(l;ntotsl),ntotal,ntotal;
Pij(klmoved,1;1))

Pij(k2moved,1l;1) = q8vscatp(p2move(l;ntotal),ntotal,ntotal;
pij(k2moved,1;1))

lrij(klmoved,l;1l) = q8vscatp(iduml(l;ntotal),ntotal,ntetal;

1rij(klmoved,1;1))
1rij (k2moved,1l;1) = q8vscatp(idum(l;ntotal),ntotal,ntotal;
1rij (k2moved,1;1))

elmove(l;ntotal)
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nsucci = nsucel + 1
else
C---- Return Lrij to its original state

1rij(klmoved,k2moved) = ill
1rij (klmoved,klmoved) = 1
1rij(k2moved,klmoved) = ill
1rij(k2moved,k2moved) = 1

endif

C End of updates for succesful interchange step

2222 continue

C---- Test if it is time to do book-keeping; do it or goto to 1000
if (mod(Nconf,Nsamplel).EQ.nsamplel-1) then

C---- Calculate energy and pressure block averages

ebavg = q8ssum(ehist:(0;nsamplel))
pbavg = q8ssum(phist(0;nsamplel))

ebavg = ebavg/nsamplel/ntotal

pbavg = pbavg/(3*ntotal*estar(l))*rhostar/nsamplel
psucc = float(nsuce)/float(nsamplel)

psucci = float(nsucci)/float(nsamplel)

do 660 j = 1,ntotal
eg(j) = qBssum(eij(l,j;ntotal))
660 pcmol(j) = q8ssum(pij(l,j;ntotal))

C---- Calculate energies, vi. .als and numbers in subcells

do 650 j = 1,8
bcount(l;ntotal) = ipos(l;ntotal).eq.]j
bcount(l+ntotal;nl) = ipos(l;nl).eq.]j
bcount(l+ntotal+nl;ntotal-nl) = ipos(l+nl;ntotal-nl).eq.]j
esubcell(j) = 0.5*q8ssum(eg(l;ntotal),bcount(l;ntotal))
psubcell(j) = 0.5*q8ssum(pcmol(l;ntotal),bcount(l;ntotal))
icone(j,0) = g8scnt(bcount(l;ntotal))
iconc(j,1) = g8scnt(bcount(l;nl))

650 icone(j,2) = g8scnt(bcount(l+nl;ntotal-nl))
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Calculate BFT and histograms for f and g
do 800 kmoved = 1,ntotal

dum(l;ntotal) = vabs(xyztp(kmoved)-xyz(l;ntotal);dum(l;ntotal))

dum(l+ntotal;ntotal) = vabs(xyztp(kmoved+ntotal)
-xyz(l+ntotal;ntotal);
dum(l+ntotal;ntotal))

dum(l+2*ntotal;ntotal) = vabs(xyztp(kmoved+2*ntotal)
-Xyz(1+2*ntotal ;ntotal);
dum(1l+2*ntotal;ntotal))

where (dum(1l;3*ntotal).gt.L2)
dum(1l;3*ntotal) = L-dum(l;3*ntotal)
dum(1l;3*ntotal) = dum(l;3*ntotal) * dum(l;3*ntotal)

do 850 j=1,Ntotal
rmove(j) = SQRT ( dum(j) + dum(j+Ntotal) + dum(j+2*Ntotal) )

ktype = 1

if (kmoved.gt.nlf) ktype = 2

nljl = ktype

nlj2 = (min(2,ktype)-1)*(2*ncomp-min(2,ktype)+2)/2 + 1
+ abs(2-ktype)

rstepin = 1./rstep
1lr(l;ntotal) = vifix(rmove(l;ntotal)*rstepin+l;lr(1l;ntotal))
where (lr(l;ntotal).gt.ndiscr) lr(l;ntotal) = ndiscr

emove(l;nl) = q8vgathr(ulj(l,nljl;ndiscr),lr(l;nl);
emove(l:nl))
emove(nl+l;ntotal-nl) = q8vgathr(ulj(l,nlj2;ndiscr),
lr(nl+l;ntotal-nl);emove(nl+l;ntotal-nl))

ef (kmoved) = gq8ssum(emove(l;ntotal))

ef (kmoved) =~ min(ef(kmoved),half(efgmax))

ncountf = int((ef(kmoved)-efgmin)/(efgmax-efgmin)*nefg) + 1
ncountf = max(l,ncountf)

ncountf = min(nefg,ncountf)

efhist(ncountf,ktype) = efhist(ncountf,ktype) + 1

ncountg = int((eg(kmoved)-efgmin)/(efgmax-efgmin)*nefg) + 1
ncountg = max(l,ncountg)

ncountg = min(nefg,ncountg)

ktype = 1

if (kmoved.gt.nl) ktype = 2

eghist(ncountg,ktype) = eghist(ncountg,ktype) + 1

continue

ef(1l;ntotal) = vexp(ef(l;ntotal)*half(tstarim);ef(l;ntotal))
eg(l;ntotal) = vexp(eg(l;ntotal)*half(tstari);eg(l;ntotal))
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bftfl = g8ssum(ef(l;nlf))/nlf

bftf2= g8ssum(ef(nlf+l;ntotal-nlf))/(ntotal-nlf)
bftgl = g8ssum(eg(l;nl))/nl

bftg2= g8ssum(eg(nl+l;ntotal-nl))/(ntotal-nl)

Write results in OUT

write(10,611) Nconf,psucc,psucci,ebavg,pbavg,
ehist(nsamplz1l-1)/ntotal,phist(nsamplel-1l)/ntotal,
bftfl,bftf2,bftgl,bftg2,

((icone(j,jj),j=1,8).jj=0,ncomp)

, (esubcell(j),j=1,8), (psubcell(j),j=1,8)

format(i7,2£6.3,4£9.4/4g10.3/2413/8£9.2/8£9.2)

Adjust step size to keep acceptance ratios within bounds

if (psucc.LT.accmin) then

do 640 j = 1,ncomp

vstep(j) = vstep(j)/redfact

else if(psucc.GT.accmax) then

do 641 j = 1,ncomp

if(vstep(j).1t.12) vstep(j) = vstep(j)*redfact
endif

nsucc = 0

nsucci = 0

endif

if (mod(nconf,nsample2).eq.nsample2-1) then
call outpl

endif

goto 1000

stop
end
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Parameter definitions

parameter (ncells=4, ntotal=4*ncells**3 nlf=ntotal/2)
parameter (ncomp=2,

ncross=ncomp* (ncomp+1) /2, ndiscr=7500,maxhist=10000)
parameter (efgmin=-20.,efgmax—+20.,nefg=200)

Common Blocks

common/uparam/ulj(ndiscr,ncross), estar(ncross), sigmas(ncross)
,£1j(ndiscr,ncross)
common/initial/seed, accmax,accmin,redfact
common/position/xyz(3*ntotal), Lrij(ntotal,ntotal)
common/thermo/tstar, rhostar, pstar, nl
common/techn/nconf, nsamplel, nsample2, icont, maxconf
common/distance/rcutoff, vstep(Ncomp), thstep(Ncomp),
phstep(Ncomp), rstep, L, L2
common/bft/xyztp(3*ntotal) ,ef(ntotal),eg(ntotal),
efhist(nefg,ncomp),eghist(nefg,ncomp)

Array and variable declarations

integer seed

real L,L2

half precision ulj,flj,xyz,eij,ehist,phist,dum,rmove,emove
,Xyztp,ef,eg,efhist,eghist

icont = 0

open (1,file='COMPDATA’)

open (2,file='INDATA')

open (10,file='OUT’)

open (11,file='OUT1’)

open (12,file='0UT2’)

open (20,file='XYZ',err=10, iostat = icont)

read (1,*) nl,tstar,rhostar

read (1,*) estar,sigmas

read (2,*) seed,accmax,accmin,redfact,
maxconf,nsamplel,nsample2

rcutoff = (ntotal/rhostar)**(1./3.)/2.

if (rcutoff.gt.4.) rcutoff = 4.

call ranset(seed)

call ranget(seed)

write (10,'(i10,2£10.5)') nl,tstar,rhostar

write (10,’(10f8.4)') estar,sigmas

write (10,'(i20,3£8.3,3i10)') seed,accmax,accmin,redfact,
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maxconf ,nsamplel,nsample2
write (10,'(£10.5)') rcutoff
read(20,*,err=40,end=40,iostat=icont) nconf,
seed, (vstep(j),j=1,ncomp)
call ranset(seed)
do 30 j = 1,ntotal
read (20,*,err=40,end=40,iostat=icont) jj,xyz(j),
xyz(j4ntotal) ,xyz(j+2*ntotal) ,xyztp(j),xyztp(j+ntotal),
xyztp(j+2*ntotal)
if (j.NE.jj) then
icont = 9999
goto 40
endif
continue

return
end

parameter (pi=3.1415926536, twopi=6.2831853072)
parameter (ncells=4, ntotal=4*ncells**3,nlf=ntotal/2)
parameter (ncomp=2,

ncross=ncomp* (ncomp+1) /2, ndiscr=7500,maxhist=10000)
parameter (efgmin=-20.,efgmax—+20.,nefg=200) '

common/techn/nconf, nsamplel, nsample2, icout, maxconf
common/position/xyz(3*ntotal), Lrij(ntotal,ntotal)
common/distance/rcutoff, vstep(Ncomp), thstep(Ncomp),
phstep(Ncomp), rstep, L, L2
common/thermo/tstar, rhostar, pstar, nl
common/energy/eij(ntotal,ntotal),etotal
common/rdfp/irdf (Ndiscr ,Ncross),iconc(8,0:NCOMP)
,crdf(ncross)
common/cputime/cputim
common/initial/seed,accmax,accmin,redfact
common/bft/xyztp(3*ntotal) ,ef(ntotal),eg(ntotal),
efhist(nefg,ncomp),eghist(nefg,ncomp)

real L,L2
half precision ulj,flj,xyz,eij,ehist,phist,dum,rmove,emove
,xyztp,ef,eg,efhist,eghist
dimension rrdf(ncross),fnorm(ncomp), gnorm(ncomp),
efnorm(nefg,ncomp) ,egnorm(nefg,ncomp)
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integer seed

write(*,5) nconf, (second(0)-cputim)/nsample2*1000
format(’ Nconf = ’,i8,’ CPU time -~ ',f10.4,’' ms/conf’')
cputim = second(0)

rewind(20)

call ranget(seed)

write (11,'(i10,120,3gl5.4)’ ) nconf,seed, (vstep(j),j=1,ncomp)

write (20,’(il0,i20,3gl5.4)' ) nconf,seed, (vstep(j),j=1,ncomp)

do 21 j=1,ntotal

write (11,°’(il0,3£f10.6)’') j,xyz(j),xyz(j+ntotal),xyz(j+2*ntotal)

write (20,’'(110,6£10.6)') j,xyz(j),xyz(j+ntotal),xyz(j+2*ntotal)
yXyztp(j) ,xyztp(j+ntotal) ,xyztp(j+2*ntotal)

ncount = 1

rrdf(l) = 0.

rrdf(2) = 0.

rrdf(3) = 0.

write(11,40) (irdf(l,j),j=1,ncross)

format(/’' RDFs *,319)

do 30 j = 2, ndiscr

rrdf(l) = rrdf(l) + irdf(j,l)/cxdf(1l)/j/3j/irdf(1,1)

rrdf(2) = rrdf(2) + irdf(j,2)/crdf(2)/3j/j/(ixdf(1,1)/float(al)+

irdf(1,3)/(float(ntotal-nl)))

rrdf(3) = rrdf(3) + irdf(j,3)/crdf(3)/j/j/irdf(1,3)

ncount = ncount + 1

if (mod(ncount,50).eq.0) then

write (11,36) rstep*j, (rrdf(jj)/50,jj=1,ncross)

format(£9.4,9£9.4)

ncoant = 0

rrdf(l) = 0.

rrdf(2) = 0.

rrdf(3) = 0.

endif

continue

write(1ll,*)

if(q8ssum(efhist(1l,1;ncomp*nefg)).1lt.1l) goto 61

do 60 j = 1,ncomp

fnorm(j) = 1./q8ssum(efhist(1l,j;nefg))

gnorm(j) = 1./q8ssum(eghist(l,j;nefg))

efnorm(l, j;nefg) = efhist(l,j;nefg)*fnorm(j)

egnorm(l, j;nefg) = eghist(l,j;nefg)*gnorm(j)

write(12,’(i7,6gl10.3,i6)') nconf, (1./fnorm(j)
,1./gnorm(j), j=1,ncomp),efgmin,efgmax,nefg

write(12,'(4gl0.3)’') ((efnorm(j,jj).egnorm(j,jj),jj=1,ncomp),

J=1,nefg)
write(12,%*)
continue

return
end
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Parameter definitions

parameter (ncomp=2,
Ncross=Ncomp* (Ncomp+1) /2, Ndiscr=7500,maxhist=10000)

Common Blocks

common/Uparam/ULJ(Ndiscr,Ncross), estar(Ncross), sigmas(Ncross)
,FLI(Ndiscr,Ncross)
common/distance/rcutoff, vstep(Ncomp), thstep(Ncomp),
phstep(Ncomp), rstep, L, L2
half precision ulj,flj,xyz,eij,ehist,phist,dum,rmove,emove
,xyztp,ef,eg,efhist,eghist

rstep = rcutoff*sigmas(l)/Ndiscr
do 100 j = 1,Ncross
I had to skip the first two values of r because of numerical
limitations of the half precision variables. They are set
to zero with negligible error on the properties of the fluid
rdum = rstep*2.5
do 150 jj = 3,Ndiscr-1
sl=(sigmas(j)/rdum)=*12
ULJ(jj,j) = &*estar(j)*(sl-(sigmas(j)/rdum)**6)
FLI(3j,]) = (4¥estar(j)*s1+ULI(jj,j))*6
rdum = rdum+rstep
ulj(l,j) = 0.
flj(lvj) = 0.
ulj(2,j) = 0.
£13(2,3) = 0.
ULJ(Ndiscr,j) = O
FLJ(Ndiscr,j) = O

return
end
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Parameter definitions

parameter (ncells=4, ntotal=4%ncells**3 nlf-=ntotal/2)
parameter (ncomp=2,

ncross=ncomp*(ncomp+1) /2, ndiscr=7500,maxhist=10000)
parameter (efgmin=-20.,efgmax=+20.,1efg=200)

Common Blocks

common/position/xyz(3*ntotal), Lrij(ntotal,ntotal)
common/thermo/tstar, rhostar, pstar, nl
common/initial/seed,accmax,accmin,redfact
common/distance/rcutoff, vstep(Ncoup), thstep(Ncomp),
phstep(Ncomp), rstep, L, L2
common/bft/xyztp(3*ntotal),ef(ntotal),eg(ntotal),
efhist(nefg,ncomp),eghist(nefg,ncomp)

half precision ulj,flj,xyz,eij,ehist,phist,dum, rmove,emove
,Xyztp,ef,eg,efhist,eghist

integer seed
dimension nrandom(ntotal)
logical isocc(ntotal)

‘do 10 j = 1,ntotal

isoce(j) = .false.

j=1

imolec= INT(ranf()*ntotal)+l
if (.NOT.isocc(imolec)) then
nrandom(j) = imolec
isocc(imolec) = .true.

j o= j+1

endif

if (j.LE.ntotal) goto 20

rcell = (4./rhostar)**(1./3.)
ncount = 0

do 200 j = 1,Ncells

rx = j*rcell

do 200 jj = 1,Nceils
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ry = jj*rcell

do 200 jjj = 1,Ncells

rz = jjj*rcell

Ncount = Nrandom(((j-1)*Ncells*Ncells+(jj-1)*Ncells+JJJ-1)*4+1)

Nfcount = ((j-1)*Ncells*Ncells+(jj-1)*Ncells+JJJ-1)*2+1

xyz (Ncount ) = rx - rcell

xyz(Ncount + Ntotal) = ry - rcell

xyz(Ncount +2*Ntotal) = rz ‘

xyztp (Nfcount ) = rx - rcell

xyztp(Nfcount + Ntotal) = ry - rcell

xyztp(Nfcount +2*Ntotal) = rz

Ncount = Nrandom(((j-1)*Ncells*Ncells+(jj-1)*Ncells+JJJ-1)*4+2)

Nfcount = ((j-1)*Ncells*Ncells+(jj-1)*Ncells+JJJ-1)*2+1+
nlf

xyz (Ncount ) = rx - rcell/2

xyz(Ncount + Ntotal) = ry - rcell/2

xyz(Ncount +2*Ntotal) = rz

xyztp(Nfcount ) = rx - rcell/2

xyztp(Nfcount + Ntotal) = ry - rcell/2

xyztp(Nfcount +2*Ntotal) = rz

Ncount = Nrandom(((j-1)*Ncells*Ncells+(jj-1)*Ncells+JJJ-1)*4+3)

Nfcount = ((j-1)*Ncells*Ncells+(jj-1)*Ncells+JJJ-1)*2+2

xyz (Ncount ) = rx

xyz(Ncount + Ntotal) = ry - rcell/2

xyz(Ncount +2*Ntotal) = rz - rcell/2

xyztp(Nfcount ) = rx

xyztp(Nfcount + Ntotal) = ry - rcell/2

xyztp(Nfcount +2*Ntotal) = rz - rcell/2

Ncount = Nrandom(((j-1)*Ncells*Ncells+(jj-1)*Ncells+JJJ-1)*4+4)

Nfcount = ((j-1)*Ncells*Ncells+(jj-1)*Ncells+JIJ-1)*2+2+
nlf

xyz (Ncount ) = rx - rcell/2

200

xyz(Ncount + Ntotal) = ry

xyz(Mcount +2*Ntotal) = rz - rcell/2
xyztp(Nfcount ) = rx - rcell/2
xyztp(Nfcount + Ntotal) = ry
xyztp(Nfcount +2%Ntotal) = rz - rcell/2
continue

return
end



a

20

611

30

'—l

N~NoupPpwN

o=

295
program avgiitl

parameter (pi=3.141592654 ,ncomp=2,maxpts=2500,ninter=ncomp*

(ncomp+1) /2 ,ntotal=256)

common/cl/ nconf (maxpts) ,psucc(maxpts),psucci(maxpts),
ebavg(maxpts) ,pbavg(maxpts),iconc(8,0:ncomp,maxpts)
,esubcell(8,maxpts),psubcell(8,maxpts),
esavg(8),psavg(8),e2savg(8),p2savg(8),
ficavg(8,0:ncomp),fic2avg(8,0:ncomp),avgf(0:ncomp)
,enavg(8) ,pnavg(8),epavg(8),bftf(ncomp,maxpts)
,bftg(ncomp,maxpts) ,bftfavg(ncomp) ,bftgavg(ncomp)

, fmuc (ncomp) , fmue (ncomp)

character*20 filel,file2

dimension sigmas(ninter),estar(ninter),nm(ncomp)
double precision seed

real nnfl,nln2gavg,nln2fl, nm

write (*,*) ' Enter filename for input : '
read(*,’(a)’') filel
write (*,*) ' Enter filename for output : '
read(*,'(a)’') file2
if (filel.eq.file2) goto 99
open(l,file=filel,err=99,form='formatted’,baccess='sequential’)
open(2,file=file2,form='formatted’,b access='sequential’)
write (*,*) ' Enter starting and ending configuration : '
read(*,*) nstart,nend
nc=1
read (1,*) nl,tstar,rhostar
read (1,*) estar,sigmas
read (1,’(£f20.0,3£8.3,3110)’) seed,accmax,accmin,redfact,
maxconf ,nsamplel,nsample2
read (1l,*) seed,accmax,accmin,redfact,
maxconf,nsamplel,nsample?2
read (1,*) rcutoff

read(l,617,err=30,end=30) nconf(nc),psucc(nc),psucci(nc)
,ebavg(nc) ,pbavg(nc) ,bftf(1l,nc),bitf(2,nec),
bftg(l,nc),bftg(2,nc), ((icone(j,jj,nc),j=1,8),jj=0,ncomp),
(esubcell(j,nc),j=1,8), (psubcell(j,nc),j=1,8)
format(i7,2£6.3,2f9.4/4g10.5/241i3/8£9.2/8£9.2)

nc =nc + 1

goto 20

nc = nc - 1

psuavg = 0.
psuiavg = 0.
eavg = 0.
e2avg = 0.
pavg = 0.
p2avg = 0.
egavg = 0,
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pgavg = 0.
e2gavg =
pP2gavg =
pngavg =
engavg =
epgavg =
nln2gavg
do 394 j
esavg(j)
e2savg(j) = 0.
psavg(j) = 0.
P2savg(j) = 0.
enavg(j) = 0.
pnavg(j) = 0.
epavg(j) = 0.

do 394 jj = O,ncomp
avgf(jj) = 0.
ficavg(j,jj) - 0.
fic2avg(j,jj) = O.
do 395 j = 1,ncomp
bftfavg(j) = O.
bftgavg(j) = 0.
ncact = 0

[ NeNeNe N

|
o+ o

,8

do 400 i = 1,n»

if (nconf(i).lt.nstart) then

nstarta = nconf(i)

goto 400

endif

if (nconf(i).gt.nend) goto 438

nenda = ncont (i)

ncact = ncact + 1

psuavg = psuavg + psucc(i)

psulavg = psuiavg + psucci(i)

eavg = eavg + ebavg(i)

e2avg = elavg + elLavg(i)*ebavg(i)

pavg = pavg + pbavg(i)

p2avg = p2avg + pbavg(i)*pbavg(i)

do 401 j - 1,8

esavg(j) = esavg(j) + esubcell(j,1)

e2savg(j) = e2savg(j) + esubcell(j,i)*esubcell(j,1i)
psavg(j) = psavg(j) + psubcell(j,i)

p2savg(j) = p2savg(j) + psubcell(j,i)*psubcell(j,i)
enavg(j) = enavg(j) + esubcell(j,i)*iconc(j,0,1i)
pnavg(j) = pnavg(j) + psubcell(j,i)*iconc(j,0,1)
epavg(j) = epavg(j) + esubcell(j,i)*psubcell(j,i)
egavg = egavg + esubcell(j,i)

pgavg = pgavg + psubcell(j,1i)

e2gavg = e2gavg + esubcell(j,i) * esubcell(j,i)
pP2gavg = p2gavg + psubcell(j,1i) * psubcell(j,i)
engavg = engavg + esubcell(j,i) * iconec(j,0,1)
pngavg = pngavg + psubcell(j,i) * iconec(j,0,1)
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epgavg = epgavg + esubcell(j,i) * psubcell(j,i)
nln2gavg = nln2gavg + icone(j,1,i)*icone(j,2,1)
do 401 jj = O,ncomp
avgf(jj) = avgf(jj) + iconc(j,jj,i)*iconc(j,jj,i)
ficavg(j,jj) = ficavg(j,jj) + iconc(j jj,i)
401 fic2avg(j,jj) = fic2avg(j,jj) + icone(j,jj,i)*icone(j,jj,i)
do 402 jj = 1,ncomp
bftfavg(jj) = bftfavg(jj) + bftf(jj,i)

402 bftgavg(jj) = bftgavg(jj) + bfrg(ij,i)
400 continue
438 continue

psuavg = psuavg/ncact

psuiavg = psulavg/ncact

eavg = eavg/ncact

e2avg = e2avg/ncact

pavg = pavg/ncact

p2avg = p2avg/ncact

egavg = egavg/ncact/8

pPgavg = pgavg/ncact,8

e2gavg = e2gavg/ncact/8

p2gavg = p2gavg/ncact/8

engavg = engavg/ncact/8

pngavg = pngavg/ncact/8

epgavg = epgavg/ncact/8

nln2gavg = nln2gavg/ncact/8

do 410 j = 1,8

esavg(j) = esavg(j)/ncact

e2savg(j) = e2savg(j)/ncact

psavg(j) = psavg(j)/ncact

p2savg(j) = p2savg(j)/ncact

enavg(j) = enavg(j)/ncact

pnavg(j) = pnavg(j)/ncact

epavg(j) = epavg(j)/ncact

do 410 jj =0,ncomp

ficavg(j,jj) = ficavg(j,jj)/ncact
410 fic2avg(j,jj) = fic2avg(j,jj)/ncact

do 418 jj = 0,ncomp

if(jj.eq.0) goto 417

bftfavg(jj) = bftfavg(jj)/ncact

bftgavg(jj) = bftgavg(jj)/ncact
417 continue
418 avgf(jj) = avgf(jj)/ncact/8

write(2,’'(a,i3,a,i3,3(a,f8.4))")

1 'Ntotal =',ntotal,’ N1 =’ ,nl,’ Tstar = ', tstar,

1 ' Rhostar = ’,rhostar,’ Rcutoff = ’,rcutoff
write(2,’(6£8.3,f19.0/3£8.3,3110)"’)

1 estar,sigmas,seed,accmax,accmin,redfact,

1 maxconf,nsamplel,nsample2

write(2,'(a,i7,a,i7,a,i7)') ' Ncount = ', ncact,
1 * from Conf. # ',nstarta,’ to ',nenda
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write(2,’'(a,6£9.4)') 'A ' psuavg,psuiavg,eavg,e2avg-eavg**2,
pavg,p2avg-pavg k2

write(2,'(a,8£9.2/2x,8£9.2)') 'E ', (esavg(j),j=1,8),
(e2savg(j)-esavg(j)**2,j=1,8)

write(2,’'(a,8f9.2/2x,8£9.2)') 'P ',(psavg(j),j=1,8),
(p2savg(j)-psavg(j)¥*2,j=1,8)

write(2,'(a,8f9.2/a,8£9.2)’) 'EN’

, (enavg(j)-esavg(j)*ficavg(j,0),j=1,8),

‘PN’ , (pnavg(j)-psavg(j)*ficavg(j,0),j=1,8)

do 420 jj = 0,ncomp

write(2,'(a,1il1,8f9.2/2x,8£9.2)') 'I',jj,(ficavg(j,ij),j=1,8),
(fic2avg(j,jj)-ficavg(j,jj)**2,j=1,8)

ecorr = eavg

pcorr = pavg + rhostar*tstar

fmuc(l) = -tstar*log(bftfavg(l)) + tstar*log(rhostar)

fmuc(2) = -tstar*log(bftfavg(2)) + tstar*log(fhostar)

nm(l) = float(nl)/float(ntotal)

nm(2) = 1 - nm(1)

do 510 j = 1,ncomp

do 510 jj =1,ncomp

NLY = (MIN(j,jj)-1)*(2*ncomp-MIN(j,jj)+2)/2 + 1

+ ABS(3-33)

ecorr = ecorr + 8.*pi*rhostar*
estar(nlj)/estar(l)*nm(j)*nm(jj)

*((sigmas(nlj)/sigmas(1l))**12/9./rcutoff**9 -

(sigmas(nlj)/sigmas(1l))**6/3./rcutoff**3)

fmuc(j) = fmuc(j) + 1l6.*pi*rhostar*
estar(nlj)/estar(l)*nm(jj)

*((sigmas(nlj)/sigmas(l))**12/9./rcutoff**9 -

(sigmas(nlj)/sigmas(1l))**6/3./rcutoff**3)

pcorr = pcorr + 8.*pi/3.*rhostar**2%
estar(nlj)/estar(1l)*nm(j)*nm(jj)

*(4.*%(sigmas(nlj)/sigmas(l))**12/3. /rcutoff**9 -

2.*(sigmas(nlj)/sigmas(1l))**6/rcutoff**3)

continue

fmue(l) = fmuc(l) + tstar*log(nm(l))

fmue(2) = fmuc(2) + tstar*log(nm(2))

eefl = e2gavg - egavgk*2

enfl = engavg - egavg*ntotal/8

pnfl = pngavg - pgavg*ntotal/8

nnfl = avgf(0) - ntotal**2/8. **2

epfl = epgavg - egavgkpgavg

nln2fl = nln2gavg -float(nl)*(ntotal-nl)/8.%*2
write(2,’'(2(a,f8.4,2x)/4(a,f8.4,2x)/4(a,£8.4,2%)
/4(a,£8.3,2x)/2(a,£8.3,2x)/4(a,£6.2,2x))"')
'Ecorr =', ecorr, 'Pcorr =',pcorr,

'ue 1=’ ,fmuc(l),’uc 2=',fmuc(2),'ue 1=',fmue(l),
'ue 2=',6fmue(2),’'Fl =' ,bftfavg(l),

'F2 =' ,bftfavg(2),’'Gl =' ,bftgavg(l),’'G2 =',bftgavg(2),
'<U>1/8= ',egavg,'<U,U>= ', eefl,
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'<F>1/8= ',pgavg,’'<U,N>= ' enfl,

'<F,N>= ' ,pnfl, '<U,F>= '’ epfl,

'<N,N>= ' nnfl,'<NL,NI1>= ',

avgf(l) -nl**2/8%%2, '<N2 ,N2> = ', avgf(2)-{ntotal-nl)**2/8**x2,
'<N1,N2>= ', nln2fl

cratio = (nnfl + pnfl/3./tstar)/ntotal*8

beta = nnfl/rhostar/tstar/ntotal*8

alfa = pcorr*beta/tstar - (enfl-ecorr*nnfl)/ntotal*8/
tstar**2

gamma = rhostar + (enfl*(l-ntotal/8/nnfl)+epfl/3/tstar)*rhostar
/ntotal*8/tstar

cv = (eefl - enfl**2/nnfl)/ntotal*8/tstar**2
write(2,’'(6(a,f7.4,1x))’) 'cratio=',cratio, 'beta=’, beta,
'alfa=',alfa,’'gamma=’,6gamma, 'bg/a=',beta*gamma/alfa

,'cv=' cv

stop

end
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APPENDIX G. MONTE CARLO SIMULATION RESULTS

G.1 Pure Lennard-Jones (6,12) fluid

The results of the simulation runs for the pure Lennard Jones fluid
are presented in Table G.l; The chemical potentials listed in the table,
as well as in the tables that follow, were calculated using Eq. 5.7 rather
than 5.12, since this calculation could be performed immediately, whereas
application of Eq. 5.12 required plotting the function L(u") versus u".
Eq. 5.12 is preferred, however, because it is generally more reliable at
high densities and provides estimates of the errors for the calculation of
the chemical potential. =~ The results for the chemical potential from the
two methods (Eq. 5.7 and Eq. 5.12) were found to agree within our estimated
accuracy for all runs at densities up to p"=0.700. Two values for each
state condition are listed in the table for the reduced chemical potential
u* (defined by Eq. 5.8b), for the following reason: Since the simulation
programs are written for a binary mixtures, simulations for the pure
Lennard Jones fluid were performed by using identical sets of parameters
for the two components. The deviation between the two estimates of the
chemical potential illustrate the typical accuracy of our calcuiations.

The last column of the table lists the average fluctuations of the
number of molecules in each subcell of the basic simulation cell. This
number was determined by determining the standard deviation of the number
of molecules in each subcell for the entire simulation and then averaging
for all the subcells. In general, the results for the fluctuation in the
number of molecules for each subcell were quite close for all subcells (as
shown in Table 6.3 for a mixture simulation), except in a materially

unstable region where the fluctuations were large.



Table G.1 Monte Carlo simulation results for the pure Lennard - Jones
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(6,12) fluid
T" p* R, M AR -E* P* -p* -p* <6NEN>
x103
0.928 0.010 4.00 3 0.87 0.088 0.0088 4.37 4.37 30.2
0.928 0.025 4.00 3 0.73 0.224 0.0201 3.67 3.67 36.0
0.928 0.050 4.00 3 0.58 0.460 0.0334 3.29 3.28 51.1
0.928 0.700 3.57 8 0.50 4.939 -0.250 4.00 4.02 6.6
0.928 0.750 3.49 8 0.50 5.288 0.046 3.31 4.14 6.6
0.928 0.775 3.46 20 0.49 5.445 0.307 3.50 3.70 5.3
0.928 0.800 3.42 8 0.50 5.602 0.626 3.92 1.93 5.2
1.150 0.050 2.50 10 0.63 0.427 0.0461 38.3
1.150 0.050 4.00 6 0.63 0.431 0.0461 3.92 3.92 38.4
1.150 0.075 4.00 5 0.53 0.650 90.0613 3.67 3.66 45.0
1.150 0.075 4.00 6 0.53 0.638 0.0612 3.67 3.67 42.6
1.150 0.100 2.50 10 0.50 0.853 0.0721 45.6
1.150 0.100 4.00 6 0.50 0.873 0.0599 3.55 3.55 56.2
1.150 0.125 4.00 6 0.50 1.081 0.0777 3.50 3.51 61.3
1.150 0.150 4.00 8 0.50 1.302 0.0787 3.50 3.49 59.2
1.150 0.300 2.50 10 0.50 2.324 0.046 60.7
1.150 0.400 0.40 10 0.50 2.919 -0.011 38.7
1.150 0.500 2.50 5 0.50 3.487 -0.061 12.0
1.150 0.500 2.50 10 0.50 3.505 -0.055 17.4
1.150 0.550 2.50 10 0.51 3.790 -0.055 10.8
1.150 0.600 2.50 5 0.50 4.130 0.040 10.5
1.150 0.600 2.50 10 0.50 4.130 0.034 9.8
1.150 0.600 3.75 5 0.50 4.133 -0.002 0.0
1.150 0.600 3.75 5 0.50 4.133 -0.002 0.0
1.150 0.600 3.76 6 0.50 4.118 0.000 3.79 3.58 8.4
1.150 0.625 3.71 6 0.50 4.291 0.110 3.61 3.62 7.9
1.150 0.636 2.50 6 0.49 4.375 0.153 8.2
1.150 0.636 3.69 5 0.50 4.360 0.159 0.0
1.150 0.650 3.67 6 0.50 4.467 0.160 3.67 3.48 7.7
1.150 0.700 2.50 6 0.49 4.813 0.417 7.1
1.150 0.700 3.57 6 0.50 4.792 0.480 2.13 2.91 6.2
1.150 0.750 2.50 10 0.50 5.121 0.947 6.2
1.150 0.800 2.50 10 0.50 5.424 1.642 5.3
1.150 0.800 3.42 6 0.50 5.406 1.709 0.39 0.86 5.7
1.150 0.835 2.50 5 0.49 5.603 2.406 6.6
1.556 0.050 4.00 6 0.69 0.367 0.0691 5.00 5.01 30.4
1.556 0.050 4.00 6 0.69 0.367 0.0691 5.00 5.01 0.0
1.556 0.050 4.00 6 0.69 0.367 0.0691 5.00 5.01 30.4
1.556 0.113 4.00 8 0.50 0.819 0.135 4.14 4.13 37.0
1.556 0.181 4.00 8 0.50 1.284 0.1870 3.78 3.79 40.6

(continued on

next page)



302

Table G.1 (concluded)

T p* R, M art  -E* P* -p* -u* <SNEN>
X103
1.556 0.226 4.00 8 0.50 1.562 0.214 3.66 3.64 29.9
1.556 0.317 4.00 8 0.50 2.161 0.266 3.48 3.42 24.1
1.556 0.362 4.00 8 0.50 2.424 0.282 3.37 3.36 23.0
1.556 0.400 4.00 6 0.50 2.682 0.344 3.25 3.32 20.5
1.556 0.452 4.00 8 0.50 2.979 0.385 3.14 3.19 13.4
1.556 0.600 3.76 6 0.50 3.932 0.893 2.11 2.19 3.1
1.556 0.800 3.42 8 0.50 5.093 3.448 1.47 1.41 5.4

t Acceptance ratic (fraction of successful displacement steps)

G.2 Test results for comparison with literature

The results for the mixture described in Section 6.2 are presented in
Table G.2. Results for the chemical potential of the same mixture have
been presented ny Shing and Gubbins, 1983. The comments made in the
previous section concerning the method of calculation of the chemical
potentials are also valid for this table. The fluctuation of the number
of molecules in each subcell now is composed of four distinct entries: the
fluctuations in the total number of molecules, regardless of species, and
the cross fluctuations of the three possible pairs of molecules, of type
1-1, 2-2 and 1-2 respectively. Note that the last fluctuation (§N,éN,) is
usually negative at high densities, which implies that there is a negative
correlation between the presence of the two types of molecules.

One additional column in this table, labeled IE, gives the "interchange
efficiency", defined as the fraction of successful interchange steps. The
same organization of the tables for the Monte Carlo simulation results
applies for the other mixtures studied (Tables G.3 - G.5). For the lower
density runs in Tables G.3 - G.5 no interchange was attempted, since the
normal displacement step is sufficient to rapidly equilibrate the distribution

of molecules. For these cases, the interchange efficiency is listed as O.
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Table G.2 Monte Carlo simulation results for a mixture with e],=1.41,¢;,~2,0],~0;,=1

at T"=1.2
N, p° M art IEt -E o <6N, 6N,>

x103 total 1-1 2-2 1-2

71 0.700 6 0.50 0.63 8.771 -1.521 5.81 9.94 7.3510.33 12.1 8.1 21.8 -8.2
128 0.700 6 0.50 0.65 7.417 -0.795 4.21 9.73 5.04 10.56 7.5 9.8 14.8 -8.6
171 0.700 6 0.50 0.69 6.449 -0.310 3.84 8.63 4.32 9.96 7.5 10.4 11.8 -6.5
218 0.700 6 0.50 0.72 5.495 0.18 3.34 7.08 3.54 9.37 6.5 8.2 5.1 -2.8
251 0.700 6 0.50 0.75 4.855 0.561 2.69 7.10 2.7111.83 6.3 6.9 0.9 -0.4

t+ Acceptance ratio (fraction of successful displacement steps)
$ Interchange efficiency (fraction of successful interchange steps); see also comments
in Section G.2.

G.3 Mixture I

Table G.3 Monte Carlo simulation results for Mixture I at T*=1.15

N, »,* M ARt IEt -E P - By HD Hp <8N, 6N, >
x10° _ total 1-1 2-2 1-2
8 0.050 6 0.63 0 0.422 0.0462 3.71 3.91 7.70 3.94 38.7 0.9 37.4 0.2
16 0.050 6 0.63 0 0.410 0.0465 3.72 3.90 6.91 3.97 36.4 1.8 34.2 0.2
32 0.050 6 0.64 O 0.398 0.0470 3.73 3.89 6.12 4.04 37.2 3.7 32.6 0.5
64 0.050 6 0.65 0 0.372 0.0480 3.76 3.86 5.35 4.19 35.7 7.8 26.3 0.8
96 0.050 6 0.66 0 0.355 0.0483 3.79 3.84 4.92 4.38 34.3 11.2 20.8 1.2
128 0.050 6 0.66 0 0.351 0.0486 3.81 3.8l 4.61 4.61 35.6 16.3 16.3 1.5
8 0.075 6 0.53 0 0.627 0.0616 3.37 3.65 7.36 3.69 43.1 0.9 41.8 0.2
16 0.075 6 0.53 0 0.623 0.0617 3.39 3.65 6.57 3.72 44.2 1.8 41.1 0.7
32 0.075 6 0.54 0 0.592 0.0632 3.40 3.63 5.79 3.79 42.3 3.9 36.7 0.8
64 0.075 6 0.56 O 0.551 0.0656 3.44 3.59 5.04 3.92 37.9 7.9 27.7 1.1
96 0.075 6 0.56 0 0.532 0.0659 3.48 3.56 4.60 4.10 38.1 12.4 22.2 1.8
128 0.075 6 0.57 0 0.524 0.0667 3.52 3.52 4.32 4.32 39.8 18.2 16.8 2.3
8 0.100 6 0.50 0 0.853 0.0719 3.17 3.55 7.15 3.59 65.3 0.9 62.8 0.8
16 0.100 6 0.50 0 0.837 0.0735 3.18 3.53 6.37 3.60 52.0 1.8 48.0 1.1
32 0.100 6 0.50 O 0.786 0.0743 3.20 3.49 5.59 3.64 45.0 3.7 40.1 0.6
64 0.100 6 0.50 O 0.747 0.0779 3.25 3.45 4.84 3.78 44.2 7.4 32.7 2.1
96 0.100 6 0.50 0 0.710 0.0809 3.31 3.40 4.44 3.94 45.8 13.6 27.0 2.6

(continued on next page)



Table G.3 (contimued)

N, » M art IEt -E T Tl T <8N, 6N, >
%103 total 1-1 2-2 1-2
128 0.100 6 0.50 0 0.704 0.0802 3.35 3.35 4.15 4.15 41.8 17.4 20.0 2.2
8 0.125 6 0.50 0 1.065 0.0781 3.02 3.48 7.01 3.52 70.7 1.0 69.0 0.4
16 0.125 6 0.50 0 1.008 0.0810 3.03 3.47 6.22 3.54 50.7 2.0 46.6 1.1
32 0.125 6 0.50 O 0.995 0.0854 3.07 3.45 5.46 3.60 64.9 4.3 54.0 3.3
64 0.125 6 0.50 0 0.907 0.0873 3.14 3.39 4.73 3.72 42.4 8.1 31.4 1.5
96 0.125 6 0.50 0 0.873 0.0907 3.20 3.32 4.33 3.86 47.8 12.5 28.2 3.6
128 0.125 6 0.50 O 0.872 0.0905 3.27 3.26 4.07 4.05 44.1 18.6 19.3 3.1
64 0.150 6 0.50 1.096 0.0957 3.04 3.32 3.84 4.12 58.1 .7.6 42.5 4.0
96 0.150 6 0.50 0 1.067 0.0989 3.09 3.27 4.22 3:81 46.0 13.3 26.3 3.3
128 0.150 6 0.50 1.038 0.1002 3.19 3.20° 3.99 4.00 &41.2 18.5 19.2 1.8
64 0.175 6 0.50 0 1.288 0.0993 2.99 3.30 4.59 3.63 89.2 10.6 60.3 9.2
96 0.175 6 0.50 0 1.197 0.1025 3.08 3.23 4.21 3.77 44.3 1l4.4 26.8 1.5
128 0.175 6 0.50 0 1.220 0.1034 3.16 3.17 3.95 3.97 50.2 18.3 23.2 4.4
32 0.500 6 0.50 0.77 3.285 0.052 2.49 3.61 4.88 3.77 16.4 3.7 18.3 -2.8
64 0.500 6 0.500.75 3.124 0.077 2.63 3.50 4.23 3.83 17.0 7.8 19.4 -5.1
96 0.500 6 0.500.73 3.029 0.133 2.87 3.34 4.00 3.88 11.9 11.5 15.2 -7.4
128 0.500 6 0.50 0.72 3.016 0.138 3.03 3.05 3.82 3.85 16.1 15.5 15.2 -7.3
32 0.525 6 0.50 0.77 3.410 0.011 2.36 3.76 4.75 3.91 10.8 3.8 13.2 -3.1
64 0.525 6 0.50 0.74 3.264 0.113 2.67 3.51 4.27 3.85 12.0 7.8 16.0 -5.9
96 0.525 6 0.500.72 3.165 0.150 2.77 3.23 3.89 3.77 11.6 11.7 15.6 -7.8
128 0.525 6 0.50 0.72 3.136 0.171 3.07 3.07 3.87 3.87 12.9 14.8 15.1 -8.5
16 0.550 6 0.500.79 3.683 0.019 2.08 3.78 5.27 3.85 16.3 1.8 17.5 -1.5
32 0.550 6 0.500.77 3.575 0.070 2.25 3.47 4.64 3.63 11.8 3.8 14.0 -3.0
64 0.550 6 0.50 0.73 3.409 0.156 2.56 3.43 4.15 3.77 11.9 8.0 16.3 -6.2
96 0.550 6 0.50 0.71 3.315 0.155 2.75 3.18 3.87 3.72 10.5 11.7 15.9 -8.6
128 0.550 6 0.50 0.70 3.308 0.224 2.90 2.92 3.70 3.72 12.3 14.7 14.7 -8.6
16 0.575 6 0.500.79 3.839 0.075 1.89 3.81 5.08 3.88 11.3 1.9 12.6 -1.6
32 0.575 6 0.500.76 3.732 0.128 2.28 3.63 4.67 3.79 10.9 3.8 13.3 -3.1
64 0.575 6 0.500.73 3.569 0.168 2.36 3.36 3.95 3.69 9.0 8.0 14.0 -6.5
96 0.575 6 0.50 0.71 3.469 0.185 2.80 3.09 3.93 3.63 10.3 1L.9 15.5 -8.5
128 0.575 6 0.50 0.70 3.429 0.225 2.86 2.95 3.66 3.74 9.6 14.3 14.2 -9.4
16 0.600 6 0.500.79 3.994 0.095 1.89 3.77 5.07 3.85 9.8 1.8 11.0 -1.5
32 0.600 6 0.500.76 3.893 0.140 1.90 3.41 4.29 3.57 10.3 3.9 12.9 -3.3
64 0.600 6 0.500.72 3.707 0.282 1.90 3.35 3.49 3.68 9.9 8.2 14.7 -6.5
96 0.600 6 0.500.70 3.607 0.284 2.38 3.11 3.51 3.65 10.2 11.9 15.5 -8.6
128 0.600 6 0.500.69 3.583 0.315 2.97 2.65 3.77 3.45 9.9 15.0 15.2 -10.1

(continued on next page)
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Tabie G.3 (concluded)

N, o M art -E* B M. <8N, , 6N, >
x10° total 1-1 2-2 1-2
32 0.625 6 0.500. 4.027 0.257 8.0 3.9 10.7 -3.3
64 0.625 6 0.500. 3.853 0.347 7.2 8.2 12.7 -6.9
96 0.625 6 0.500. 3.768 0.401 10.6 12.2 16.2 -8.9
128 0.625 6 0.50 0. 3.733 0.421 9.1 14.6 14.9 -10.2
16 0.650 6 0.500.79 4.309 0.294 1.35 3.29 4.54 3.36 7.1 1.8 8.4 -1.6
32 0.650 6 0.500.76 4.196 0.351 1.57 3.20 3.96 3.35 9.6 3.8 11.9 -3.0
32 0.650 5 0.500.75 4.196 0.388 1.27 3.38 3.66 3.53 7.8 3.9 10.2 -3.1
64 0.650 6 0.50 0.71 4.014 0.444 1.77 2.76 3.36 3.09 7.8 8.3 13.2 -6.9
64 0.650 5 0.500.71 4.004 0.511 1.97 2.97 3.56 3.30 7.6 8.2 13.2 -6.9
96 0.650 5 0.500.68 3.906 0.529. 2.27 2.82 3.40 3.36 7.9 12.5 15.4 -10.0
96 0.650 6 0.50 0.68 3.903 0.551 2.09 2.62 3.22 3.16 7.5 12.3 14.9 -9.8
128 0.650 6 0.50 0.67 3.872 0.528 2.61 2.40 3.41 3.20 7.4 14.6 14.6 -10.9
128 0.650 5 0.50 0.67 3.868 0.519 2.55 2.47 3.35 3.27 7.8 14.5 14.9 -10.8
32 0.750 8 0.500.73 4.796 1.138 C.14 1.75 2.54 1.90 6.2 4.0 9.1 -3.4
64 0.750 8 0.500.68 4.596 1.244 0.10 1.41 1.69 1.74 6.5 8.8 12.7 -7.5
96 0.750 8 0.50 0.64 4.472 1.337 0.83 1.19 1.96 1.73 6.4 13.3 15.4 -11.2
128 0.750 8 0.500.63 4.429 1.381 1.07 1.09 1.87 1.89 5.9 15.7 15.5 -12.7
t Acceptance ratio (fraction of successful displacement steps)
${ Interchange efficiency (fraction of successful interchange steps)
G.4 Mixture II
Table G.4 Monte Carlo simulation results for Mixture II at T"=1.15
N, p»° M art IEt -E T ™ <6N, 6N, >
x10° total 1-1 2-2 1-2
8 0.050 6 0.77 0 0.201 0.0520 3.78 3.66 7.76 3.70 32.3 0.9 31.0 0.2
16 0.050 6 0.77 0 0.207 0.0518 3.78 3.66 6.97 3.74 31.7 1.7 29.2 0.4
32 0.050 6 0.76 0 0.220 0.0515 3.78 3.67 6.17 3.83 33.5 3.6 27.7 1.1
8 0.063 6 0.74 0 0.250 0.0634 3.60 3.47 7.59 3.50 33.4 0.9 32.1 0.2
16 0.063 6 0.73 0 0.259 0.0631 3.61 3.47 6.80 3.54 33.8 1.8 31.1 0.4

(continued on next page)



Table G.4 (continued)

L

N, o M ARt IEt -E" T <6N, 6N, >
x103 total 1-1 2-2 1-2
32 0.063 6 0.72 0 0.277 0.0628 3.62 3.47 6.01 3.63 34.2 3.7 29.1 0.7
8 0.075 6 0.70 0 0.303 0.0738 3.47 3.30 7.46 3.34 34.5 0.9 33.1 0.3
16 0.075 6 0.70 0 0.311 0.0735 3.48 3.31 6.67 3.38 35.9 1.8 33.0 0.5
32 0.075 6 0.68 0 0.330 0.0729 3.49 3.33 5.88 3.48 35.1 3.6 29.3 1.1
64 0.075 6 0.66 0 0.372 0.0707 3.52 3.34 5.11 3.67 36.0 7.9 24.5 1.8
32 0.088 6 0.65 O 0.385 0.0823 3.40 3.19 5.79 3.35 38.0 3.6 31.7 1.3
64 0.088 6 0.63 0 0.436 0.0803 3.41 3.22 5.01 3.55 37.6 8.1 25.3 2.1
96 0.088 6 0.60 0 0.483 0.0777 3.46 3.25 4.58 3.79 41.2 13.3 21.8 3.1
128 0.088 6 0.58 0 0.537 0.0752 3.50 3.28 4.29 4.07 44.4 20.0 16.7 3.8
96 0.100 6 0.57 0 0.552 0.0865 3.40 3.15 4.53 3.69 43.4 13,5 22.5 3.7
128 0.100 6 0.54 0 0.614 0.0827 3.43 3.18 4.22 3.98 45.5 19.9 16.6 4.5
160 0.100 6 0.52 O 0.679 0.0795 3.46 3.20 4.00 4.33 46.9 27.0 12.4 3.7
192 0.100 6 0.50 0 0.732 0.0766 3.49 3.23 3.82 4.82 47.3 33.8 7.8 2.8
224 0.100 6 0.50 0 0.803 0.0732 3.53 3.25 3.68 5.65 56.4 48.0 3.8 2.3
160 0.125 6 0.50 O 0.845 0.0896 3.39 3.08 3.93 4.21 50.1 28.9 11.7 4.7
192 0.125 6 0.50 0 0.915 0.0849 3.42 3.11 3.75 4.70 S55.0 39.7 7.7 3.8
224 0.125 6 0.50 0 0.993 0.0808 3.48 3.15 3.63 5.54 55.3 45.3 3.8 3.2
240 0.125 6 0.50 0 1.071 0.0778 3.50 3.17 3.58 6.36 68.0 62.7 1.8 1.8
248 0.125 6 0.50 0 1.048 0.0784 3.49 3.15 3.52 7.14 57.5 55.8 0.9 0.4
224 0.150 6 0.50 0 1.202 0.0856 3.44 3.07 3.60 5.46 71.6 59.7 3.7 4.1
240 0.150 6 0.50 0 1.227 0.0828 3.48 3.09 3.56 6.28 63.4 58.4 1.8 1.6
248 0.150 6 0.50 O 1.268 0.0811 3.46 3.11 3.49 7.10 62.5 60.0 0.8 0.8
224 0.625 6 0.50 0.15 3.988 -0.002 3.85 3.06 4.00 5.45 11.3 9.6 3.6 -0.9
248 0.625 6 0.50 0.14 4.230 0.073 3.53 2.90 3.56 6.88 11.5 11.0 0.9 -0.2
16 0.650 6 0.50 0.20 2.431 0.068 3.83 2.83 7.02 2.90 34.6 1.8 32.5 0.1
96 0.650 6 0.50 0.19 3.016 -0.046 3.98 2.97 5.11 3.51 25.1 8.8 17.8 -0.7
160 0.650 6 0.50 0.16 3.565 -0.069 4.00 3.06 4.54 4.18 20.3 10.2 11.6 -0.8
240 0.650 6 0.50 0.13 4,300 0.127 3.57 2.96 3.64 6.15 9.8 8.9 1.8 -0.5
32 0.700 6 0.50 0.19 2.622 0.005 4.14 2.93 6.53 3.08 36.1 3.4 32.6 0.1
128 0.700 6 0.50 0.16 3.481 -0.102 4.08 3.04 4.88 3.84 17.5 8.2 14.0 -2.4
224 0.700 6 0.50 0.11 &4.447 2.848 3.08 2.85 3.23 5.24 7.7 6.9 3.4-1.3
64 0.800 6 0.50 0.14 3.307 0.060 4.03 2.91 5.62 3.24 30.5 5.6 26.4 -0.8
96 0.800 6 0.50 0.13 3.610 -0.069 4.04 2.98 5.16 3.52 14.9 6.5 14.4 -3.0
128 0.800 6 0.50 0.12 3.932 -0.016 3.95 3.07 4.75 3.87 10.3 6.7 11.4 -3.9

(continued on next page)
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Table G.4 (concluded)

N, p,° M ARt IEt -E T <8N, 8N, >
X103 total 1-1 2-2 1-2
160 0.800 6 0.50 0.10 4.308 0.148 3.61 2.85 4.15 3.98 10.4 7.2 9.9 -3.4
192 0.800 & 0.50 0.08 4.688 0.462 3.24 2.60 3.58 4.19 8.9 6.5 6.5-2.2
96 0.900 6 0.50 0.10 4.022 0.007 3.81 2.86 .94 3.41 10.7 5.6 12.8 -3.9
128 0.900 6 0.50 0.08 4.429 0.237 3.63 2.69 4.43 3.48 10.3 6.1 12.8 -4.3
160 0.900 6 0.50 0.06 4.830 ©.754 2.96 2.57 3.50 3.70 9.2 5.7 9.9 -3.2
64 0.950 6 0.50 0.10 3.816 -0.068 4.03 2.97 5.62 3.30 12.7 4.6 16.1 -4.0
96 0.950 6 0.50 0.08 4.234 0.153 3.59 2.79 4.72 3.33 11.1 5.6 15.4 -5.0
128 0.950 6 0.50 0.06 4.656 0.538 2.56 2.50 3.36 3.29 9 5.5 10.9 -3.7
32 1.050 6 0.50 0.09 3.763 -0.160 4.03 2.81 6.42 2.56 14.6 2.9 17.5-2.9
64 1.050 6 0.50 0.07 4.207 0.138 3.61 2.91 5.20 3.24 11.6 4.3 16.0 -4.4
96 1.050 6 0.50 0.05 4.673 0.529 3.33 2.47 4.46 3.01 10.0 5.5 15.6 -5.6
160 1.050 6 0.50 0.02 5.539 2.826 -2.83 1.16 -2.28 2.29 5.8 6.2 9.3 -4.8
32 1.150 6 0.50 0.06 4.107 0.093 3.81 2,90 6.20 3.05 10.2 2.8 13.6 -3.1
64 1.150 6 0.50 0.05 4.589 0.507 2.32 2.54 3.92 2.87 8.8 3.9 1l4.1 -4.6
32 1.200 6 0.50 0.06 4.272 0.191 3.29 2.60 5.68 2.76 9.5 2.8 13.2 -3.3
16 1.250 6 0.50 0.05 4.175 0.080 3.32 2.76 6.51 2.83 10.7 1.6 13.4 -2.1

8 1.300 6 0.50 0.05 4.217 0.049 3.92 2.67 7.91 2.71 9.7 0.8 10.8 -1.0

t Acceptance ratic (fraction of successful displacement steps)
$ Interchange efficiency (fraction of successful interchange steps); see also comments
in Section G.2.

G.5 Mixture III

Table G.5 Monte Carlo simulation results for Mixture III

N, o, M art I1Et -E P o-u] . -Hy . BT My <N, 6N, >
x103 total 1-1 2-2 1-2
T* = 0.928

~

64 0.010 3 0.94 030 0.0091 4.33 4.30 5.62 4.57 38.6

0 0. 3 1 0.2
128 0.010 3 0.92 0 0.045 0.0090 4.35 4.30 4.99 4.95 29.5 1%.4 14.0 -0.0

[

(continued on next page)
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Table G.5 (contimued)

N, o M art IEt -E* P -u . M cHL O H <6N, 6N, >
x10° total 1-1 22 1-2
T = 0.928
192 0.010 3 0.89 0 0.C65 0.0089 4.36 4.31 4.62 5.60 29.4 23.1 6.6 -0.2
128 0.025 3 0.83 0 0.115 0.0215 3.60 3.50 4.24 4.15 30.9 15.1 14.1 0.9
192 0.025 3 0.78 0 0.162 0.0216 3.64 3.51 3.90 4.80 33.5 25.6 7.2 0.3
64 0.050 3 0.78 0 0.153 0.0422 3.06 2.90 4.35 3.17 32.1 8.0 21.8 1.1
128 0.050 3 0.72 0 0.234 0.0400 3.12 2.92 3.77 3.57 35.6 17.5 14.6 1.8
192 0.050 3 0.66 0 0.331 0.0373 3.20 2.96 3.47 4.24 38.8 29.2 7.1 1.2
8 0.100 8 0.70 0 0.215 0.0827 2.64 2.34 5.85 2.37 32.7 0.9 30.8 0.5
16 0.100 8 0.69 0 0.231 0.0812 2.65 2.35 5.23 2.41 32.4 1.0 29.4 0.6
32 0.100 8 0.67 O 0.265 0.0796 2.69 2.36 4.62 2.48 33.3 3.8 27.2 1.1
64 0.10010 0.63 0 0.3462 0.0757 2.77 2.39 4.06 2.66 37.8 8.6 24.0 2.6
96 0.100 10 0.58 0 0.427 0.0709 2.85 2.43 3.76 2.86 42.0 15.7 19.6 3.4
240 0.125 8 0.50 0 1.864 0.0284 3.28 2.47 3.34 5.04 518.9499.9 2.3 8.3
240 0.125 10 0.50 0.38 1.668 0.0339 3.26 2.48 3.32 5.05235.7226.0 1.8 3.9
8 0.150 8 0.62 0 0.321 0.1164 2.49 2.05 5.70 2.08 34.4 0.9 32.5 0.5
16 0.150 8 0.60 0 0.344 0.1143 2.53 2.06 5.10 2.12 34.5 1.9 31.2 0.7
32 0.150 10 0.58 0 0.395 0.1103 2.58 2.09 &4.51 2.22 37.3 4.2 29.8 1.7
64 0.15010 0.53 0 0.515 0.1010 2.70 2.14 3.98 2.40 41.0 9.5 25.2 3.2
96 0.15010 0.50 0 0.645 0.0914 2.81 2.20 3.72 2.63 49.8 17.1 21.8 5.5
8 0.200 8 0.55 0 0.423 0.1463 2.46 1.87 5.67 1.90 36.0 0.9 33.8 0.6
16 0.200 8 0.53 0 0.456 0.1441 2.48 1.89 5.06 1.95 37.2 1.9 33.1 1.1
16 0.200 10 0.53 0.53 0.456 0.1449 2.50 1.88 5.07 1.94 38.5 1.9 342 1.2
32 0.20010 0.51 0 0.523 0.1371 2.56 1.92 4.4 2.05 39.7 4.5 30.2 2.5
64 0.20010 0.50 O 0.684 0.1204 2.70 1.98 3.99 2.25 45.1 10.4 26.0 4.4
96 0.20010 0.50 0 0.856 0.1026 2.87 2.05 3.78 2.48 57.4 19.7 23.3 7.2
8 0.250 8 0.50 0 0.529 0.1729 2.46 1.75 5.68 1.78 35.4 0.9 33.3 0.6
16 0.250 8 0.50 0.47 0.565 0.1676 2.52 1.76 5.10 1.82 36.7 1.9 32.4 1.2
32 0.250 10 0.50 0.45 0.654 0.1573 2.59 1.8l 4.52 1.93 44.1 4.7 33.1 3.2
64 0.250 10 0.50 0.42 0.838 0.1332 2.77 1.90 4.06 2.16 50.3 11.5 27.5 5.7
96 0.250 10 0.50 0 1.131 0.1050 3.00 1.97 3.91 2.41135.4 49.8 34.0 5.8
8 0.400 8 0.50 O 0.830 0.2366 0.64 1.54 3.86 1.57 35.3 0.8 33.7 0.4
16 0.400 10 0.50 0.35 0.882 0.2250 2.69 1.58 5.26 1.64 37.9 1.9 33.1 1.4
32 0.400 10 0.50 0.33 1.003 0.2004 2.83 1.63 4.76 1.75 44.7 4.6 33.5 3.3
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Table G.5 (contimed)

N, p, M apt IEt -E P' -l o M3 . cHY M <8N, 6N, >

x10° total 1-1 2-2 1-2
T* = 0.928

64 0.400 10 0.50 0 1.330 0.1508 3.02 1.71 4.31 1.98 59.3 13.7 30.5 7.6
96 0.400 10 0.50 0 1.595 0.1043 3.19 1.84 4.10 2.28 58.3 16.7 24.2 8.7
16 0.500 10 0.50 0.29 1.078 0.2519 2.83 1.49 5.41 1.55 36.8 1.9 32.4 1.2
32 0.500 10 0.50 0.27 1.237 0.2142 2.91 1.56 4.84 1.69 43.9 4.7 32.8 3.2
64 0.500 10 0.50 0.24 1.570 0.1542 3.15 1.67 4.44 1.94 34.3 9.0 21.8 1.8
96 0.500 10 0.50 0.21 1.924 0.0873 3.48 1.77 4.39 2.20 59.9 22.4 22.2 7.6
16 0.600 6 0.50 0.24 1.272 0.2785 3.02 1.47 5.59 1.53 29.7 1.9 26.7 0.6
32 0.600 6 0.50 0.22 1.458 0.2365 3.11 1.53 5.04 1.65 41.2 4.4 31.3 2.7
64 0.600 6 0.50 0.20 1.811 0.1444 3.40 1.63 4.68 1.90 42.0 10.3 23.9 3.9
96 0.600 6 0.50 0.19 2.144 0.0412 3.70 1.77 4.61 2.21 32.6 14.5 16.5 0.8
16 0.700 6 0.50 0.20 1.~C5 0.2923 3.15 1.42 5.73 1.48 28.9 1.9 26.0 0.5
32 0.700 6 0.50 0.19 1.657 0.2480 3.25 1.48 5.18 1.61 29.4 3.8 24.6 .0.5
64 0.700 6 0.50 0.17 2.047 0.1338 3.52 1.60 4.80 1.87 28.5 7.4 20.3 0.4
96 0.700 6 0.50 0.15 2.463 0.0256 3.73 1.71 4.64 2.15 22.7 10.7 15.2 -1.6
16 0.750 6 0.50 0.19 1.547 0.3020 3.17 1.39 5.75 1.45 20.1 1.8 18.8 -0.2
32 0.750 6 0.50 0.17 1.749 0.2462 3.35 1.43 5.28 1.55 23.9 3.8 20.5 -0.2
64 0.750 6 0.50 0.16 2.151 0.1242 3.63 1.56 4.91 1.83 18.3 6.6 15.5 -1.9
96 0.750 6 0.50 0.14 2.593 0.0189 3.76 1.72 4.67 2.15 18.5 8.7 13.9 -2.1
224 0.750 6 0.50 0.06 4.665 -0.1243 4.38 1.77 4.51 3.70 7.3 7.0 3.2 -1.5
240 0.750 6 0.50 0.05 4.973 0.0532 4.44 1.69 4.49 4.26 6.1 6.1 1.7 -0.8
224 0.775 6 0.50 0.05 4.827 -0.0108 4.09 1.65 4.22 3.58 7.2 6.6 3.4 -l.4
240 0.775 6 0.500.05 5.131 0.1104 2.98 1.67 3.04 4.24 6.0 6.2 1.6 -0.9
224 0.785 6 0.500.05 4.886 0.0727 3.97 1.39 4.09 3.32 7.5 6.6 3.3 -1.2
16 0.800 6 0.500.16 1.654 0.3318 3.16 1.37 5.74 1.43 24.5 1.8 22.7 -0.0
16 0.800 6 0.50 0.16 1.654 0.3318 3.16 1.37 5.74 1.43 24,5 1.8 22.7 0.0
32 0.800 6 0.500.16 1.851 0.2653 3.44 1.43 5.37 1.55 18.0 3.4 16.8 -1.1
64 0.800 6 0.500.14 2.279 0.1540 3.69 1.51 4.98 1.77 16.3 6.2 14.8 -2.3
96 0.800 6 0.500.12 2.759 0.0469 3.79 1.61 4.70 2.05 15.9 8.5 13.1 -2.8
128 0.800 6 0.50 0.10 3.233 -0.0703 3.94 1.74 4.58 2.38 11.8 8.8 10.8 -3.9
192 0.800 6 0.50 0.06 4.354 -0.0039 3.65 1.65 3.91 2.94 8.5 7.0 7.0 -2.8
224 0.800 6 0.50 0.04 4.966 0.1917 3.69 1l.44 3.81 3.37 5.7 5.6 3.3 -1.6
240 0.800 6 0.50 0.04 5.284 0.3771 2.70 1.45 2.7€ 4.02 5.3 5.4 1.7 -0.9
32 0.825 6 0.500.15 1.906 0.2763 3.44 1.41 5.37 1.53 20.3 3.4 18.1 -0.6
64 0.825 6 0.50 0.13 2.348 0.1599 3.67 1.51 4.95 1.78 15.4 5.8 14.9 -2.6
6 0.50 0.11 2.823 0.0444 3.79 1.64 4.70 2.07 14.9 7.4 1l4.1 -3.3

96 0.825
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Table G.5 (contimued)

N, »° M ARt IEt -E° P' - Ky . cHY M <8N, §N, >
x103 total 1-1 2-2 1-2
T* = 0.928
128 0.825 6 0.50 0.09 3.336 -0.0091 3.90 1.67 4.54 2.31 10.0 7.4 10.4 -3.9
160 0.825 6 0.50 0.07 3.898 0.0446 3.84 1.75 4.28 2.66 7.5 7.0 8.4 -4.0
192 0.825 6 0.50 0.05 4.492 0.1054 3.70 1.47 3.97 2.75 8.1 6.7 6.7 -2.7
224 0.825 6 0.50 0.04 5.120 0.4016 3.55 1.25 3.68 3.18 7.1 6.5 3.8 -1.6
32 0.850 6 0.500.14 1.964 0.2754 3.39 1.37 5.32 1.49 18.2 3.3 17.1 -1.1
64 0.850 6 0.50 0.12 2.406 0.1519 3.63 1.54 4.92 1.81 16.2 5.9 15.3 -2.5
96 0.850 6 0.50 0.10 2.906 0.0486 4.00 1.48 4.91 1.92 13.6 7.2 13.7 -3.7
128 0.850 6 0.50 0.08 3.433 0.0259 4.04 1.67 4.68 2.31 10.5 7.7 11l.6 -4.4
160 0.850 6 0.50 0.06 4.009 0.0475 3.83 1.60 4.26 2.51 7.9 6.8 8.6 -3.8
192 0.850 6 0.50 0.04 4.614 0.3141 3.30 1.49 3.56 2.77 7.2 6.6 6.7 -3.1
32 0.875 6 0.500.13 2.014 0.3024 3.44 1.36 5.37 1.49 16.0 3.2 15.9 -1.6
64 0.875 6 0.50 0.11 2.476 0.1976 3.68 1.49 4.96 1.75 16.6 5.7 15.7 -2.4
96 0.875 6 0.50 0.09 2.980 0.0641 3.8 1.54 4.77 1.98 10.8 6.8 12.6 -4.3
128 0.875 6 0.50 0.07 3.536 0.0411 4.04 1.49 4.69 2.14 9.3 7.1 10.0 -3.9
160 0.875 6 0.50 0.05 4.126 0.1374 3.81 1.50 4.24 2.41 8.9 6.1 9.4 -3.3
32 0.900 6 0.500.13 2.056 0.2906 3.42 1.33 5.35 1.46 11.7 3.1 12.6 -2.0
64 0.900 6 0.50 0.11 2.540 0.1746 3.63 1.52 4.92 1.78 14.6 5.6 15.2 -3.1
96 0.900 6 0.50 0.08 3.065 0.1222 3.80 1.47 4.71 1.91 10.7 6.5 12.9 -4.3
128 0.900 6 0.50 0.06 3.630 0.1302 3.44 1.46 4.08 2.10 7.7 6.7 10.1 -4.6
160 0.900 6 0.50 0.04 4.235 0.3258 3.49 1.34 3.93 2.25 7.5 6.5 8.4 -3.7
32 0.950 6 0.50 0.11 2.181 0.3566 3.32 1.31 5.25 1.43 15.2 3.0 15.1 -1.5
64 0.950 6 0.50 0.09 2.677 0.2613 3.53 1.39 4.82 1.65 12.1 5.1 13.6 -3.3
96 0.950 6 0.50 0.07 3.228 0.1988 3.98 1.34 4.89 1.78 9.1 6.0 11.9 -4.4
128 0.950 6 0.50 0.05 3.826 0.3551 3.42 1.32 4.06 1.96 8.5 6.2 11.5 -4.6
32 1.000 6 0.500.10 2.274 0.4031 3.45 1.27 5.38 1.40 11.1 3.1 12.7 -2.3
64 1.000 6 0.50 0.08 2.810 0.3425 3.62 1.35 4.91 1.61 10.1 4.9 12.4 -3.6
96 1.000 6 0.50 0.05 3.397 0.3861 3.23 1.28 4.14 1.72 8.9 5.6 12.4 -4.5
128 1.000 6 0.50 0.03 4.018 0.6622 4.38 0.96 5.03 1.61 6.9 6.3 9.9 -4.7
T* = 1.061
32 0.400 6 0.50 0.38 0.958 0.2770 2.70 1.62 4.90 1.76 38.4 4.2 39.3 2.0
32 0.400 6 0.50 0.38 0.958 0.2770 2.70 1.62 4.90 1.76 38.4 4.2 30.3 2.0
32 0.400 6 0.50 0 0.961 0.2816 2.71 1.61 4.92 1.75 35.3 4.5 27.4 1.7
32 0.400 6 0.50 O 0.961 0.2816 2.71 1.61 4.92 1.75 35.3 4.5 27.4 1.0
64 0.400 6 0.50 O 1.206 0.2333 2.90 1.71 4.38 2.02 52.7 11.6 28.9 6.1
96 0.400 6 0.50 O 1.454 0.1836 3.09 1.81 4.13 2.31 43.0 16.7 20.1 3.1

(continued on next page)



Table G.5 (continued)

N, o M at IEt -E P* -ul L emp o By M <6N, 6N, >
x10° ' ' total 1-1 "2-2 1-2
T* = 1.061
128 0.400 6 0.50 0.31 1.738 0.1383 3.28 1.87 4.02 2.61 37.0 21.4 12.9 1.4
32 0.500 6 0.50 0 1.177 0.3251 2.78 1.48 4.98 1.62 39.7 3.3 32.7 1.8
64 0.500 6 0.50 0 1.468 0.2650 3.00 1.61 4.47 1.91 32.3 9.5 18.8 2.0
96 0.500 6 0.50 O 1.785 0.1990 3.18 1.71 4.22 2.21 30.6 14.6 15.7 0.2
128 0.500 6 0.50 0.25 2.105 0.1263 3.41 1.77 4.14 2.51 24.7 15.2 12.1 -1.3
128 0.500 6 0.50 0.25 2.093 0.1243 3.43 1.79 4.16 2.52 24.6 14.8 12.3 -1.2
32 0.600 6 0.50 0.26 1.381 0.3747 2.85 1.42 5.06 1.56 24.5 3.6 21.2 -0.2
32 0.600 6 0.50 O 1.398 0.3764 2.88 1.37 5.08 1.51 26.5 4.7 20.3 0.8
64 0.600 6 0.50 0.24 1.716 0.2895 3.14 1.50 4.61 1.81 23.3 7.6 17.1 -0.7
64 0.600 6 0.50 © 1.738 0.3098 3.09 1.50 4.56 1.80 21.7 6.8 17.1 -1.1
96 0.600 6 0.50 0.23 2.051 0.1992 3.34 1.62 4.38 2.12 23.6 11.0 15.2 -1.3
9 0.600 6 0.50 0 2.080 0.2157 3.36 1.55 4.40 2.05 26.9 9.9 15.2 0.9
128 0.600 6 0.50 0.21 2.441 0.1219 3.61 1.69 4.34 2.42 17.4 11.7 11.5 -2.9
32 0.700 6 0.50 O 1.597 0.4281 2.89 1.28 5.09 1.42 20.1 4.2 18.4 -1.2
32 0.700 6 0.50 0.22 1.581 0.4188 2.91 1.27 5.12 1.41 18.1 3.4 17.0 -1.1
64 0.700 6 0.50 0.20 1.974 0.3407 3.12 1.38 4.59 1.68 21.9 6.9 16.8 -0.9
64 0.700 6 0.50 O 1.956 0.3203 3.22 1.43 4.69 1.74 18.4 5.5 15.5 -1.3
96 0.700 6 0.50 0.18 2.379 0.2412 3.28 1.47 4.32 1.97 18.0 9.0 14.2 -2.6
96 0.700 6 0.50 0 2.382 0.2624 3.33 1.45 4.37 1.95 18.4 11.9 14.2 -3.8
128 0.700 6 0.50 0.16 2.799 0.1668 3.50 1.57 4.23 2.31 15.4 9.5 12.0 -3.1
32 0.750 6 0.50 0 1.689 0.4405 2.93 1.25 5.14 1.39 15.3 2.8 15.8 -1.7
32 0.750 6 G.50 0.20 1.697 0.4592 2.89 1.23 5.09 1.37 23.1 3.6 20.6 -0.6
64 0.750 6 0.50 0 2.102 0.3615 3.09 1.34 4.56 1.64 19.5 7.5 16.6 -2.3
64 0.750 6 0.50 0.18 2.094 0.3526 3.13 1.35 4.60 1.65 16.4 6.2 15.3 -2.5
96 0.750 6 0.50 0.16 2.520 0.2724 3.30 1.40 4.3¢ 1.90 14.6 7.9 13.5 -3.4
96 0.750 6 0.50 0 2.535 0.2644 3.26 1.40 4.31 1.90 15.1 8.9 13.7 -3.8
128 0.750 6 0.50 0.14 2.982 G.2027 3.48 1.44 4.22 2.18 10.5 8.3 11.0 -4.4
32 0.800 6 0.50 0 1.810 0.5033 2.89 1.17 5.09 1.31 17.7 3.7 16.4 -1.2
32 0.800 6 0.50 0.18 1.797 0.4961 2.96 1.19 5.17 1.33 17.4 3.4 16.5 -1.2
64 0.800 6 0.50 O 2.231 0.4445 3.16 1.23 4.63 1.54 15.0 7.9 13.9 -3.4
64 0.800 6 0.50 0.16 2.236 0.4075 3.09 1.29 4.56 1.60 15.2 5.8 14.0 -2.3
96 0.800 6 0.50 0.14 2.680 0.3410 3.33 1.33 4.37 1.83 12.6 7.4 12.9 -3.8
9 0.800 6 0.50 0 2.684 0.2953 3.28 1.30 4.32 1.80 12.1 8.4 14.7 -5.5
128 0.800 6 0.50 0.11 3.175 0.2780 3.56 1.33 4.29 2.07 11.7 7.8 11.1 -3.6
32 0.850 6 0.50 0.16 1.906 0.5467 2.91 1.14 5.11 1.28 18.1 3.2 17.7 -l.4

(continued on next page)
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Table G.5 (concluded)

N, o M st IE -E P -py . My . B cH <8N, 6N, >
x10° total 1-1 2-2 1-2
T+ = 1.061

32 0.850 6 0.50 0 1.912 0.5765 2.95 1.10 5.16 1.24 15.8 3.1 15.5 -l.4

64 0.850 6 0.50 0 2.370 0.4778 2.99 1.14 4.46 1.44 12.9 6.6 11.6 -2.6

64 0.850 6 0.50 0.14 2.353 0.4479 3.11 1.17 4.58 1.47 12.5 5.7 14.0 -3.6

96 0.850 6 0.50 0 2.844 0.4201 3.41 1.20 4.45 1.69 12.3 7.9 11.8 -3.7

96 0.850 6 0.50 0.12 2.837 0.4124 3.26 1.15 4.30 1.65 10.3 6.7 11.5 -3.9
128 0.850 6 0.50 0.09 3.369 0.4142 3.17 1.22 3.91 1.95 109 7.2 11.9 -4.1

32 0.900 6 0.50 0.14 2.009 0.6142 2.90 1.00 5.10 1.14 12.1 3.1 13.3 -2.2

64 0.900 6 0.50 0.12 2.483 0.5306 3.03 1.03 4.50 1.34 11.8 5.1 13.9 -3.6

96 0.900 6 0.50 0.10 3.004 0.5115 3.08 1.20 4.12 1.70 9.8 6.2 11.9 -4.2
128 0.900 6 0.50 0.07 3.559 0.6081 3.20 0.96 3.9 1.69 8.7 6.8 10.8 -4.5

T* = 1.19%

96 0.300 6 0.50 0.45 1.076 0.2275 2.95 2.0l 4.12 2.57 39.0 14.7 18.8 2.8
128 0.300 6 0.50 0.43 1.286 0.2006 3.07 2.08 3.90 2.91 36.3 19.6 14.1 1.4
160 0.300 6 0.50 0.41 1.513 0.1671 3.25 2.15 3.8l 3.32 36.0 25.1 10.3 0.3
192 0.300 6 0.50 0.38 1.788 0.1381 3.34 2.20 3.68 3.85 5%.6 45.9 7.4 3.1

64 0.400 6 0.50 0.39 1.155 0.3198 2.78 1.71 4.44 2.05 36.8 8.7 23.6 2.3

96 0.400 6 0.50 0.37 1.386 0.2731 2.95 1.81 4.12 2.37 27.3 12.0 15.7 -0.2
128 0.400 6 0.50 0.35 1.649 0.2283 3.13 1.89 3.96 2.72 32.6 17.6 13.9 0.5
160 0.400 6 0.50 0.33 1.950 0.1852 3.32 1.94 3.88 3.11 36.2 24.0 10.4 0.9
192 0.400 6 0.50 0.31 2.252 0.1379 3.41 1.99 3.75 3.64 43.6 349 6.9 0.9

96 0.500 6 0.50 0.31 1.695 0.3075 3.00 1.60 4.17 2.16 27.4 11.9 16.4 -0.4
128 0.500 6 0.50 0.29 1.997 0.2504 3.20 1.71 4.03 2.54 20.6 13.0 11.4 -1.9
160 0.500 6 0.50 0.27 2.360 0.2079 3.30 1.75 3.86 2.92 24.8 17.9 9.5 -1.3
192 0.500 6 0.50 0.26 2.690 0.1141 3.53 1.82 3.87 3.47 18.9 16.2 6.3 -1.8

96 0.600 6 0.50 0.25 2.007 0.3611 3.04 1l.44 4.21 2.00 21.9 9.7 15.3 -1.5
128 0.600 6 0.50 0.23 2.37L 0.2966 3.07 1.55 3.90 2.38 14.9 10.5 11.1 -3.3
160 0.600 6 0.50 0.21 2.759 0.2448 3.37 1.61 3.93 2.78 19.1 13.9 9.6 -2.2
192 0.600 6 0.50 0.20 3.173 0.1744 3.50 1.64 3.84 3.30 11." * s.1 -2.6

96 0.700 6 0.50 0.20 2.308 0.4577 3.04 1.26 4.21 1.82 1la. 6 13.5 -3.4
128 0.700 6 0.50 0.18 2.741 0.4003 3.03 1.31 3.85 2.14 12.8 8.7 11.1 -3.5
160 0.700 6 0.50 0.15 3.200 0.3446 3.27 1.28 3.83 2.45 11.2 8.4 9.6 -3.4
192 0.700 6 0.50 0.13 3.693 0.3587 3.04 1.28 3.38 2.9% 10.0 8.5 6.4 -2.5

+ Acceptance ratio (fraction of successful displacement steps)
{ Interchange efficiency (fraction of successful interchange steps); see
in Section G.2.

also comments
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