
COMPLEXITY MEASURES FOR PROGRAMMING LANGUAGES

Technical Memorandum 17

(This report was reproduced from an M.S. Thesis, MIT,
Dept. of Electrical Engineering, September 1971.)

Leonard I. Goodman

September 1971

PROJECT MAC

Massachusetts Institute of Technology

Massachusetts 02139Cambridge

-2-

ACKNOWLEDGMENTS

I wish to thank Professor John Donovan, the supervisor of

this thesis, for his encouragement, enthusiasm, and guidance

during the research and preparation of this report. His he1lp

is deeply appreciated.

I acknowledge fellow graduate student Jerry Johnson for

the many discussions we had during the early formulation of

this work, and Cathy Doyle for her typing of this thesis report.

Finally, I thank my wife Mindi for her patience and encour-

agement during my graduate study.

Work reported herein was supported in part by Project MAC,
an M. I. T. research program sponsored by the Advanced Research
Projects Agency, Department of Defense, under Office of Naval
Research Contract Number Nonr-4102(01). Reproduction of this
document, in whole or in part, is permitted for any purpose of
the United States government.

-3-

COMPLEXITY MEASURES FOR PROGRAMMING LANGUAGES*

Leonard I. Goodman

Abstract

A theory of complexity is developed for algorithms imple-
mented in typical programming languages. The complexity of a
program may be interpreted in many different ways; a method for
measuring a specific type of complexity is a complexity measure
-- some function of the amount of a particular resource used by
a program in processing an input. Typical resources would be
execution time, core, I/O devices, and channels.

Any resource whose use is independent of previous and future
usage can be handled by the theory. This condition includes time
but excludes space complexity. For a specific measure, the com-
plexity of the basic programming elements can be determined and
used to compute the complexity of an arbitrary program with a
particular input. Because this method gives little information
about the general complexity behavior of the program, another
approach is developed.

This new approach analyzes the complexity of a program with
respect to a valid set of inputs -- a finite set of legitimate,
halting inputs. A program equation is developed to make the trans-
formations undergone by the inputs more explicit. Using the equa-
tion, the input set is partitioned into classes of constant com-
plexity. The classes are used to compute maximum, minimum, and
expected complexities of the program on the input set.

Several equivalence relations are defined, relating different
programs by their complexity. Complexity is also discussed in terms
of concatenation and functional equivalence of programs.

*This report reproduces a thesis of the same title submitted to
the Department of Electrical Engineering, Massachusetts Institute
of Technology, in partial fulfillment of the requirements for the
degree of Master of Science, September 1971.

-4-

Table of Contents

Chapter I - Introduction 6

1. Functions, Algorithms, Programs 7

2. Complexity Measures 9

3. Previous Work 10

4. Graph Models of Programs 11

Chapter II - Complexity of Arbitrary Programs for

Single Inputs 13

1. Introduction 13

2. Constraints on Complexity Measures 13

3. Complexity of Basic Program Elements 15

4. Complexity of Arbitrary Programs 22

5. The Set Approach 23

Chapter III - Program Equations and Set Complexity 24

1. Introduction 24

2. Input Sets 24

3. Program Equations 25

4. Complexity Equivalence Classes 31

5. Conclusion of Example Program 35

6. Summary 37

-5-

Chapter IV - Complexity of Advanced Constructs and Input

Schemes 38

1. Introduction 38

2. Subroutine and Function Calls 38

3. LOOP Blocks 44

4. Multiple Inputs 48

5. Different Data Types 51

6. String Input 52

Chapter V - Results in the Complexity Theory of Programming

Languages 53

1. Introduction 53

2. Preliminary Definitions 53

3. Relations Between Programs with Identical Input

Sets 56

4. Concatenation 67

5. Functional Equivalence 73

Chapter VI - Conclusions and Suggestions for Further Study 76

Appendix - Mathematical Notation 80

References 84

-6-

Chapter I. Introduction

Within the past ten years, there has been an increased

interest by computer scientists and mathematicians in the theory

of computational complexity. This theory is concerned with

measuring the difficulty of computing functions and with studying

the properties of measures of computational difficulty. Most

of the work done in this field has remained within the domains of

recursive function theory and the analysis of Turing machine

computation of functions. (See, for example, Hartmanis and

Hopcroft [1] for an overview of complexity theory.) One area of

complexity theory that has not received much attention is the

analysis of functions represented by computer programs. The

current research is directed towards this area.

We attempt to apply the basic principles of computa-

tional complexity theory to algorithms which are implemented

in typical programming languages. One of the basic ideas of

this complexity theory of programming languages is to view the

complexity behavior of a program over a finite set of "valid

inputs", rather than over some infinite domain or for only one

input. A 'Valid input" is one for which the program in question

halts and which the program is actually intended to process.

Looking at the complexity for all the elements in a set of this

type will enable us to get a better picture of the complexity

behavior of the program. We will also be able to define some

relationships between different programs if the complexities

-7-

of their elements relate in certain ways.

1. Functions, Algorithms, Programs

We have mentioned the concept of computational complex-

ity with regard to functions, algorithms, and programs without

clearly defining these three terms and explaining the differences

between them.

A function defines an association between the objects

of one set (the domain of the function) and the objects of

another set (the range). The method of determining the object

in the range set corresponding to the object in the domain need

not be explicitly stated; a set of ordered pairs of the form

(domain element, range element)

completely defines a function. Even if a rule for the function

is given (e.g., via a lambda expression [2]) the evaluation of

the rule may remain indeterminate. For example, if we have the

function

Xx. x+x*x

do we perform the addition first or the multiplication?

The computational complexity of a function would

have to measure the difficulty of computing the range element

given a domain element, no matter what rule was used to determine

the range element (more than one rule may specify the same

function), or how the rule was evaluated (as long as the evalua-

tion procedure produced the correct answer). Complexity theory

of functions is outside of the current discourse.

-8-

An algorithm is either the specification of the rule

which defines a function and the method for evaluating the rule,

or simply the evaluation procedure for a given rule. An algorithm

is frequently presented in terms of a flow chart, where each

of the nodes of the chart represents a basic operation whose

meaning and evaluation are (hopefully!) unambiguous.

The complexity of an algorithm is more basic than

that of a function. In the case of an algorithm, we need only

examine the specific evaluation procedure defined by the algorithm

in order to determine the complexity behavior we wish to observe.

However, in our complexity analysis, we will eventually come down

to analyzing the basic elements of the algorithm: arithmetic

operations, assignments of values to variables, testing condi-

tions, branching, etc. The complexity of these simple operations

generally cannot be specified any further. We may choose to

express these operations in terms of the corresponding Turing

machine operations and deal with Turing complexity. Although

this may be adequate in some cases, the complexity of an algorithm

on a Turing machine does not give much insight into the complexity

of the same algorithm written in a programming language and run

on a computer.

A program is the implementation of an algorithm in a

particular programming language. If the program is written in

the assembly language of a particular machine, we can determine

the complexity of the basic elements of the programs in terms of

-9-

the characteristics of that machine. If the program is written

in a high-level language, the complexity properties of the basic

operations would not be completely constrained until we specify

which machine the program will run on (and probably how the

language translator to be used on the program would work). How-

ever, we may choose to leave the complexity in terms of the basic

operations of the high-level language.

2. Complexity Measures

The computational complexity of a program may be inter-

preted in many different ways. A scheme. for measuring a specific

type of complexity will be called a complexity measure. Basically,

a complexity measure is some function of the amount of a partic-

ular resource used by a program as it processes a specific input

value. This resource might be time, space, CPU usage, channel

activity, etc. We might have a program 0 with input n. Asso-

ciated with 0 is a measuring program which is 'monitoring"

the execution of 0. (n) would tell us the amount of a particular

resource used by 0 to compute O(n). Thus the program is mea-

suring the complexity of O.

In the recursive function formulation of complexity

theory, a complexity measure is a recursive enumeration of all

partial recursive functions to each of which is associated

a step-counting function . is constrained to satisfy

the following two axioms (from Blum [3]):

1. 0i(n) is defined iff 0 (n) defined

-10-

2. M(i,n,m) = 0 if (n) / m is a recursive function

1 if f.(n) = m

By defined, we mean that a function halts for a particular input.

Uses of Complexity Measures

As we have stated, a complexity measure provides infor-

mation on the resource usage of a program. As long as programmers

have been writing computer programs, they have been concerned with

the resource usage of their programs; specifically, they have

wanted to know how long their programs would run and how much

core they would require. As multiprocessed and time-shared

computer systems evolved, programmers wanted to know about the

use of system resources other than CPU time and core: channel

usage, device usage, secondary storage requirements, supervisor

usage, etc. The amount of each of these resources used by a

program would constitute a different measure of its complexity.

A theory of computational complexity would give us a

method for quantitatively analyzing the complexity behavior of

computer programs and for comparing different programs on the

basis of this behavior. Hopefully, this theory should be some-

what independent of which type of complexity is being measured,

so that the same techniques would be suitable for a number of

different resources.-

3. Previous Work

There has been little work done in the area of complex-

ity measures for programming languages. Meyer and Ritchie [4]

-11-

found some weak bounds on the running time of a class of pro-

grams called Loop Programs. These programs compute exactly

the primitive recursive functions. However, programs written

in most languages will compute recursive functions which are not

primitive recursive. Thus, the Loop Program analysis is not

general enough.

Ramamoorthy [5] studied the time complexity of programs

which could be modelled by discrete Markov processes: each

decision-making element in the program is statistically indepen-

dent of all others. He felt that his analysis would be useful

for micro-programmed instruction sequences. However, the tech-

niques developed would not work in the case of an arbitrary

program.

4. Graph Model of Programs

We will be using the graph model to represent the

structure of computer programs. We present here an informal

definition of this model. A graph of a program consists of a

set of nodes connected by a set of directed arcs. The nodes

represent the statements or elements of the program; they

will be labelled with a statement identifier or function name.

The arcs represent the flow of control in the program. They

determine the execution sequence of the nodes. More than one

arc may leave a particular node. In this case, each arc will

be labelled with a unique selector that determines which node

will be executed next.

-12-

A successor of a given node is a node which is pointed

to by a directed arc from the given node. A predecessor of a

given node is a node which points to the given node. A node

may precede or succeed itself. A node with no arcs leaving it

is a terminal node; it is the last node to be executed. A program

graph may have more than one terminal node. The node which is

pointed to by an arc that has no node at its other end is the

starting node. A graph may have only one such node. The arc

leading into the starting node may have an input value or set

of values at its other end. The entire graph will usually be

labelled with the name of the program.

Thus, the program A consisting of the statements

sl, s2' s3 where 82 is a conditional statement with two possible

successors would be represented as:

A: xF

x is the input value; s1 is the starting node, s3 is the terminal

node. The successors of s2 are s1 and s3; the predecessor of s2

is si. T and F are selectors for s2'

-13-

Chapter II. Complexity of Arbitrary Programs for Single Inputs

I. Introduction

Before we analyze the complexity behavior of programs

over a set of inputs, we will first present methods for determining

the complexity of a program with respect to one input. This will

involve defining the complexity of the basic programming constructs

to be used in the programs, and specifying a set. of rules which

will enable us to compute the complexity of a group of basic con-

structs which have been combined. These rules will determine the

types of complexity measures for which our methods and techniques

will be valid. It happens that these same rules will be suffi-

cient for analyzing complexity behavior over a set of inputs.

2. Constraints on Complexity Measures

We will require that our measures of complexity satisfy

three rules. The first two rules are the axioms of Blum presented

in Chapter I. The first axiom, 0 (n) defined iff 0 (n) defined,

implies that the measuring function (program) § must depend on

the entire computation of 4, on input n; if this were not true,

then I might produce an answer even though § did not halt. This

axiom also implies that when $ terminates, we have all the neces-

sary information to determine the complexity.

The second axiom,

M(i,n,m) = 0 if § (n) i m is a recursive functi

L1 if §i(n) = m

states that we can always tell if , operating on input n will have

on

-14-

complexity m. In the case of time complexity we could let our pro-

gram g, with input n run until it had executed for m time units.

If , halted, M(i,n,m) = 1. If , continued to execute, M(i,n,m) = 0.

The third rule is the linearity constraint. It is this

rule which allows us to find the complexity of a group of basic ele-

ments which are formed into a structured program. The constraint

may be stated as follows:

Let A be a program with input x, such that A can be

divided into two segments s1 and s2 where s1 is the predecessor of

s2. A graph for A would be:

A:

We can represent the complexity of A with input x as C(A,x). Simi-

larly the complexity of s1 is C(sl,x). However, s2 does not have

input x but rather some transformation upon x, induced by s,. We

can represent the input to s2 as s1 (x). The complexity of s2 is

then C(s2 ,s1 (x)). Linearity requires that for all x for which A

halts,

C(A,x) = C(s ,x) + C(s2 's1(x))

Another way to state the linearity constraint is that

any use of the resource in question must be independent of how

much was used previously or how much will be used in the future,

but dependent upon transformations of the input.

-15-

Time of execution satisfies this constraint. Other

resources which also do are the number of calls to the supervisor

program, device usage, and channel usage (from the point of view of

the number of times the channel is used). One resource that does

not generally satisfy the constraint is the amount of core used by a

program. Since core may be shared, it may be available for different

uses at different times. In the previous example, some of the space

needed for s2's computations may be done in s 's area. Thus,

C(A,x) s C(s ,x) + C(s2,s1 (x))

However, if space is never reused, then space complexity may be

incorporated into the general theory. For any resource which obeys

this constraint, the methods to be presented may be used to deter-

mine the complexity of a program with regard to the use of that

resource.

3. Complexity of Basic Program Elements

Our goal is to be able to determine the complexity of an

arbitrarily structured program. First, we will define the com-

plexity of the basic elements of our language. This language

will not be any specific one but will be representative of modern

high-level languages. Below, we list one possible set of basic

elements. Naturally, we cannot include every possible program

construct; however, those listed are found in many languages.

Arithmetic operations

Assignment

-16-

Transfer of control

Conditionals

Iteration

Function calls

I/0 and supervisor calls

In discussing each of these elements, we will use time

as a sample resource. Of course, "time" may be expressed in micro-

seconds, CPU cycles, or any other units. Other complexity measures

may be handled similarly.

Arithmetic Operations

This category includes the common mathematical opera-

tions. The time complexity of any of these operations is just the

time required to execute it. If we are dealing with an assembly or

machine language program, we may express the time in terms of the

instruction execution time of the corresponding machine. If we

are writing in a high-level language, and if we know the computer

which will execute the machine code resulting from our program,

we may express the time complexity in a similar manner (ignoring

any compiler optimization).

If we do not know which machine will execute our program,

we may choose to measure the complexity in terms of the number of

additions, the number of multiplications, and the number of other

independent operations. We may think of having an n-dimensional

"complexity vector", where n is the number of independent opera-

tions. The "unit vector" for each of the dimensions is the com-

-17-

plexity of a basic operation; the coefficient of this unit vector

is the number of such operations which have occurred. We can reduce

this vector only if we express the unit complexities in terms of

something else, such as the machine instruction times of a specific

computer. Then we can obtain one value for the complexity, as we

did in the case of an assembly language program.

Note that we are treating the complexity of these opera-

tions as having a fixed value, independent of the value of the

operands. If this assumption were not true, we would have to examine

the sub-operations which form an operation until we found some con-

structs which were complexity-invariant. We will need this condi-

tion when we examine complexity for a set of inputs.

Assignment; Transfer of Control

By assignment, we mean the assigning of the value of one

variable to another. Transfer of control is the familiar BRANCH

or GOTO statement. These two constructs may be treated in the same

way as the arithmetic operations: either their complexity may

be expressed in terms of instruction execution time or they may

be treated as two of the independent operations. We also assume

that the complexity of these operations is a fixed value.

Conditionals

The prototype of our conditional statement will be:

IF p(x) THEN s1 ELSE s 2

-18-

p is some test on the value of x which does not change this value.

If this test is satisfied (p(x) TRUE), then s1 will be executed;

otherwise s will be executed. We can represent the structure

of the conditional by the following graph model:

x

p(x)

T F

s7 s 2

Using the linearity condition and noting that p does not change

the value of x, the complexity of our conditional will be:

C(cond,x) = c(p,x) +fC(s 1,x) if p(x) TRUE

LC(s2,x) if p(x) FALSE

p, si, and s2 may all represent complex constructions, which can be

broken down to basic elements.

Iteration

In most languages, the programmer has the ability to

execute a section of program repeatedly, depending upon certain

conditions. This is the basis of the iteration statement. We

usually have a variable, defined only for the iteration construc-

tion, whose value is incremented from a lower limit to some upper

-19-

limit while the statements within the bounds of the iteration state-

ment (the body) are executed for each increment of the variable.

Some languages allow additional features: multiple ranges for the

control variable, negative increments, negative lower limits,

attaching a conditional test to the iteration, and others. Examples

of the iteration construction are the FORTRAN DO statement, the

ALGOL FOR statement, and the PL/I DO statement.

We will use a particularly simple form of iteration state-

ment. We will retain only the concept of executing a body of state-

ments for a certain number of times. This is the LOOP block and

has the following form:

LOOP N

(body}

END

The semantic interpretation of the LOOP block is that the body is

executed N (contents of N) times in succession. Changes to N

within the body do not affect the number of times that the body

is executed. The body may contain other LOOP blocks; thus they

may be nested to any level.

The complexity of a LOOP block may be interpreted in

several ways. We may view the LOOP structure as equivalent to N

physical copies of the body of the block. We may then compute

the complexity using linearity. Alternatively, since the LOOP

block is usually the feature of a high-level language, we may

-20-

examine its translation in machine language. This will involve

the initialization of a dummy variable, the body of the block, the

incrementing of the variable, a test to see if we have exceeded the

number of iterations, and a transfer to the beginning of the body.

The complexity of the block could then be computed using the

complexity of these elements and the linearity condition.

We will use the simpler interpretation of complexity.

If we denote the body of the LOOP block by s, and assume that all

statements within s are a function of the variable x, then the

LOOP block

LOOP N

8

END

will have complexity

C(LOOP-BLOCK,x) = C(s,x) + C(s,s(x)) +C(s,s2 (x)) +

3 N-1
C(s,s (x)) +...+ C(s,s (x))

where s denotes the functional composition of s with itself i

times.

Function Calls

A function or subroutine call involves a call to the

subprogram executed in the calling program, and the execution

of the subprogram itself. We will assume that the call state-

ment is a basic construct similar to an arithmetic operation and

-21-

that its complexity is independent of its argument; furthermore,

we will assume that it does not change the value of its argument.

The value of the call statement argument, and hence the input to

the subprogram, will be some transformation of the original input

to the calling program. As an example, consider the program A

with input x which contains a call to the function B with argument

x (actually some transformation on the original value of x). A

could be represented in graphical form as:

A:

B(x)

The complexity of A would then be

C(A,x) = C(sl,x) + C(CALL) + C(B,s,(x))

+ C(s2, B'sl(x))

All occurances of x in this expression denote the original input

value of x.

I/0 and Supervisor Calls

We can view these constructs in the same light as

arithmetic operations. For a particular machine, the time com-

plexity of these elements is simply the time needed to execute

them. In a high-level language, we may treat them as independent

-22-

operations.

Types of Complexity

Certain elements have a constant complexity which does

not depend on their inputs. This group includes arithmetic opera-

tions, assignment, transfer, and the supervisor operations. Condi-

tional statements have a constant complexity for those inputs for

which p(x) is true, and another constant complexity for those inputs

for which p(x) is false. This assumes that the elements composing

p, Si, and s2 are all of constant complexity. Finally, we have

LOOP's and subroutine calls which have a complexity dependent upon

the input and number of iterations for the LOOP block and the input

for the subroutine or function.

If certain supervisor operations have different complexi-

ties for different inputs, we may treat them as subroutines.

4. Complexity of Arbitrary Programs

Having defined the complexity of our basic programming

constructs, we can use these complexities and the linearity condi-

tion to find the complexity C(A,x) of any program A with any

input x for which A halts. (We may easily extend our results to

include the case of programs with multiple inputs.) This approach,

however, does have shortcomings.

The complexity of a program with respect to one input

will not usually give us much information about the general com-

plexity behavior of the program. We will know even less if the

program does not halt for that input. If we wish to learn more

-23-

about the complexity behavior, we will need to repeat our calcu-

lations for a large set of inputs. Although the program may

exhibit the same complexity behavior for many different inputs,

we will not be able to take advantage of this relationship because

we are dealing with each input individually. The domain of input

values is arbitrarily large until we bind our program to a partic-

ular machine or language specification. Because of the nature of

this domain, we cannot bound the values of C(A,x) since A defines

an arbitrary partial recursive function. Finally, we have no

facility for comparing the complexity behavior of two different

programs other than inputting the same value to both programs and

calculating the resultant complexity.

5. The Set Approach

The remaining chapters will use the work on single input

complexity to develop another approach to program complexity. This

approach examines the complexity behavior of a program over a

finite set of inputs which have certain useful properties. The

set approach will make it easy to examine such behavior as the

expected value of complexity and maximum and minimum complexity;

the complexity structure of a program will become more apparent.

Also, the set approach will enable us to examine complexity rela-

tions between different programs.

-24-

Chapter III. Program Equations and Set Complexity

1. Introduction

Having defined the complexity of the basic program

elements and developed methods for determining the complexity of

a program with respect to one input, we are ready to deal with

program complexity with respect to a set of inputs. We develop

the concepts of the program equation and a valid set of inputs

to aid in the complexity analysis. We make some simplifying

assumptions about the type and number of inputs to our programs

and the type of components in these programs. In the next

chapter we remove these restrictions to obtain a more general

model. An explanation of the mathematical notation used in

this and later chapters will be found in the appendix.

2. Input Sets

We will assume a simplified form of input structure

for our programs. These programs will have only one input,

which will be a non-negative integer; further, we will assume

that all operations upon this input result in non-negative integer

values. Given a program A which satisfies these conditions,

let U1 be the set of non-negative integer inputs for which A

halts, and which are valid inputs to A. By a valid input,

we mean an input which A is actually intended to process.

Thus, if A is meant to process only even non-negative integers,

then U1 contains only these integers, though A may halt for

some odd integers or, in fact, for all odd integers.

-25-

Next, let U2 be the set of allowable non-negative

integer values for the machine on which A is running or for

the language in which A is written. (If both the language and

the machine limit the set of values, we will use those conditions

which are more restrictive.) U2 may be quite large, but it is

always finite. We can now define a valid input set X to the

program A as:

X = Un u2

We see that X is finite and for all inputs x in X, A halts.

We may be interested in examining only some of the

valid inputs to A at any particular time. If X'QX, we will

say that X' is also a valid input set to A. X' has the same

properties as X except that it does not contain all the valid

halting inputs for A. We will refer to X as the maximal valid

input set to program A for a particular U2 - i.e., for a

particular machine or language realization.

3. Program Equations

We now define a method for obtaining an equation

representation for a program. We will initially assume that

the program contains no LOOP blocks or subroutine calls, and

has only one input.- These restrictions will be removed later.

The concept of a program equation is based on the work

of Zeiger [6]. He derives some relationships between programs,

polynomials, and power series. We start the derivation of

-26-

the equation by putting our program A into graphical represen-

tation. With each node of the graph, we can associate a func-

tion on the inputs to that node. Since we have temporarily

eliminated LOOP's and subroutines, we have remaining arithmetic

operators, assignment, transfer, conditionals, and supervisor

calls. Transfer does not change any values. Assignment is a

type of arithmetic operation, and supervisor calls change values

of variables in specified ways. Thus, we have two general types

of functions: arithmetic and conditional.

An arithmetic function f maps a set X into another set

F, defined as:

F = f(X) = { f(x) | xeX

A conditional function p maps X into a set P. We will say that

p(x) = x if x satisfies the predicate p; otherwise p(x) is

undefined. Therefore, p acts as an identity function for those

inputs which satisfy its associated conditional test. We can

see that p(x) is defined if and only if p(x) = x. Then

P = p(I) = { xeX p(x) is defined }

We are using the conditional function in a different

sense than the conditional statement of the preceding chapter.

That statement had -the form

IF p(x) THEN s1 ELSE s2

-27-

p(x) is assumed to take either the value TRUE or FALSE. If

p(x) = TRUE, we execute sI; otherwise, we execute s2. In the

case of a conditional function, we have the following situation:

x

p(x) defined

p (x)

ned p(x)

s1 s2

defined

We define the function p(x) as follows:

p(x) defined iff p(x) undefined

If p(x) is defined, its value is x; we take the arc with the

appropriate selector and execute s1 with input x. We cannot

execute s2 because the selector leading to this node was not

satisfied.

Conversely, if p(x) is undefined, p(x) is defined;

its value is x. We then execute s2 with input x. One case or

the other (but not both) must happen. We also have the relation

p(x) = p(x)

so that if our conditional function is p(x), our selectors will

remain the same. We will abbreviate "p(x) defined" by "r"

-28-

(TRUE) and '5(x) defined" by 'F" (FALSE). This is in keeping

with the standard notation of program conditionals.

Having specified the function associated with each

node of the program graph, we define the equation of the pro-

gram as the summation of all possible functional paths from

the starting node of the graph to any terminal node. A func-

tional path is defined as the composition of the functions

associated with the nodes which comprise the path. The resulting

composed function is applied to the set of inputs. The sum

of chese functional applications is set equal to the function

defined by the entire program applied to the set of inputs.

Given a program A with input set X, its equation would

be

A(X) = 'E f (X)
i=0

where each f is a composition of simpler functions. The

summation is of infinite extent because an arbitrary program

graph contains an infinite number of paths.

We illustrate these concepts with a sample program

T gW
A: X p(x)

F

halt

Sampe prgra:

-29-

The simplest path through A starts at p and takes the F arc

to the halting node. We will assume that this latter node has

no functional or complexity significance. If we recall that

F is equivalent to '5(x) defined", the first term of A(X) will

be

f 0(X) = p(X) = { xeX p(x) defined }

The next simplest path starts at p, takes the T

arc to g, returns to p, and then takes the F arc to the halting

node. The composition of the functions encountered in this

path is (with the right-most function encountered first)

f = pagep

This function applied to X yields the next term of A(X):

f (X) = { g(x) I xeX & p(x) defined & p(g(x)) defined }

Continuing in this manner we get the complete equation:

A(X) =p(X) + p-g-p(X) + p.(g.p) (X) +

= E p(gop) (X)

0

where (gop) = the identity function. TbWre is no unique corre-

spondence between a particular index and a particular functional

path. In this case, we have calculated functions in order of

-30-

increasing path length. It happened that

f =p(gp)

However, any other one-to-one correspondence between the f

and the functional paths would work. We will conclude this

example later in the chapter.

The application of f1 to X results in a set of values.

We define

F, = f (X)

The +'s in our equation are to be interpreted as set union. Then

F G A(X) and U F = A(X)
i=0

Each f is generally composed of arithmetic and

conditional functions. Suppose f, = g •... g1. We will say

that f i(x) is defined if and only if for all conditional

functions g e(gnA n-l' '' 1 , gj applied to its argument

is defined; i.e., g (g g1 (x)) is defined. Then

f i(x)eF if and only if f (x) is defined. Now we can define

the set of elements in X which exactly yield each Fi:

X = { xeX I f (x) is defined }

We then have the relation F1 = f (X).

-31-

Simplification of the Equation

We can reduce our equation if we require that X be

a valid input set to A.. We then have that X is finite and for

all inputs in X, A halts. Since X is finite, there are only

a finite number of non-empty X . Let m be the greatest integer

for which X mO (the empty set); then for all i>m, X1=0 and F =0.

We then have:

m
1. A(X) = E f (X

i=0
m

2. U X = X (it may be that some of the X are empty;
i=0

this will occur if the corresponding Fi

is empty)

3. X i Xn = $ if i/j (because programs are deterministic,

any input undergoes only one trans-

formation)

4. Each f is composed of only a finite number of sub-

functions since A halts for all x in X.

Thus, given a valid input set, we can reduce our program equa-

tion to a finite number of terms, each term of finite extent.

We also get a partition { X0'Xl'...X } of our original input set.

4. Complexity Equivalence Classes

The subsets of X,{ X }, have the following property:

for all xeX1 , the functional path associated with x is the same.

Since we have allowed no LOOP blocks or subroutines in our

programs, and since all x in X take the same branch from every

-32-

conditional test, the complexity of this functional path is con-

stant. This complexity is completely defined in terms of the

functions in the path and has a value C(A,x), xeX. X

will be called a complexity equivalence class. Associated

with each X will be an equivalence class complexity - C(A,X).

By definition,

C(A,Xi) = C(A,x), xeXi

The complexity information for program A with input

set X is contained in the two sets

[X0 ,X ,...JX m

{C(A,X 0), C(A,X 1),...,C(A,X m)

We observe that many programs do not treat every input differently.

Often, many inputs will be similarly processed. Therefore, we

are led to believe that the number of equivalence class will

often be smaller (though not always much smaller) than the

number of distinct input values. In this case, we have a (rela-

tively) compact description of the complexity behavior of A.

Uses of Complexity Equivalence Classes

The complexity equivalence classes may be used to

calculate the following quantities with respect to a particular

input set:

1. Expected value of complexity

-33-

2. Maximum value of complexity

3. Minimum value of complexity

In a later chapter we will show how these classes are useful

in determining relations between different programs.

Expected Complexity Value

Expected complexity value will tell us the average

resource usage by a program over- a particular input set. The

expected value of a function g over a discrete-valued domain

X is (see, for example, Drake [7]) the sum of the products of

values of the function at points in the domain and the prob-

ability that the particular point will be chosen:

E(g,X) = E g(x)-Pr(x)
xeX

Xf C(A,X) is the expected value of the complexity of A with

input set X,

C(A,X) = E C(A,x)-Pr(x)
xeX

m
Since U X= X,

1-0

C(A,X) = E E C(A,x)-Pr(x)
X ixeX i

But for all xgXi, C(A,x) = C(A,Xi); and since x eX, and x i

are independent events,

Pr(Xi) = E Pr(x)
xeXi

-34-

Then,

E C(A,x).Pr(x) = r C(A,X)•Pr(x) =
xeX xeX

C(A,X i)(E Pr(x)) = C(A,Xi).Pr(X)
xEX

.. C(A,X) = E C(A,X)•Pr(X)
X

The probabilities Pr(X) are based on any method

used in selecting the inputs to A, and take into account any

a priori knowledge of the selection method. If the selection

of inputs is random,

Pr(X) = X /1 X

If X $, then for any selection method, Pr(O) = 0. The value

of C(A,X) is not changed by averaging over empty sets.

Maximum Value of Complexity

The maximum complexity is an upper limit on the usage

of a particular resource for any execution of a program, given

an input value from the input set in question. To compute

this quantity, we need only find the maximum value of C(A,X)

over the Xi. We must remember that some X may be empty; so

we only look at C(A,X) for non-empty X . The maximum com-

plexity will be denoted Cma(A,X).

-35-

Minimum Value of Complexity

The minimum complexity is the corresponding lower limit of

resource usage by the program. It is the minimum of C(A,X)

over the non-empty X . It will be denoted C (A,X).

C (A,X) and C . (A,X) are important quantities. They
max min

say that any execution of the program will require C . (A,X) of

resources, but never more than C max(A,X), when inputs are taken

from X.

5. Conclusion of Example Program

Returning to our sample program introduced earlier in this

chapter, we will specify the input set and the functions com-

prising the program:

X = { 1,2,3,...,10 }

g(x): x:=2k (x is assigned the value 2x)

p(x) = x iff xc5

p(x) = x iff x>5

A(X) = ' f (X)
i=0

2
f = p f =p.(gap) f 2= p.(g.p).
f0 1 2' ''

F0 = f0 (X) = { xeX p(x) is defined } = [6,7,8,9,10 }

X0 = (6,7,8,9,10 }

F = f (X) = p((2,4,6,8,10 }) = { 6,8,10 3

X = { 3,4,5 }

-36-

F2 f 2 (X) = p({ 4,8 } [8 }

F3

3

(YnA4) [F -X n].n n

A(X) - f (X)
LmOi

C(A,KO) 0- 3i)* XCX

Note that the complexity of the conditional test (p itself)

is the same whether p(x) or p(x) is defined, Terefore,

C(p,z) • C(p,x) • c" Yxex

*. C(A,10) - c

C(A,X 1) - C(A,x), xeX1

C(A,x) C C(p,x)1*t(5> 4, c(p,g(x))

c + c + c 2c + c

C(A,) • 3c + 2c
p2 - g

C(A,X3) 4 4c + 3c
P g,

7w

-37-

To determine C(A,X), the expected complexity, we need to know

the values of Pr(X i). Let us assume a random distribution.

Then

Pr(X) = | X 1/| X

C(A,X) C(A,X).Pr(X =
i=o

5 c + 3 (2 c +c) + .l(3c +2c) + I.(4c +3c)
10o- 1 P To 10 T- 9 To 10 9

=9 c + 4 c
5p 8

Cax(A,X) = C(A,X 3) = 4c + 3c

Cmin(A,X) C(A,X0) = cp

6. Summary

We have developed several important concepts for the

complexity study of programs - valid input sets, an equation

representation of a program, complexity equivalence classes,

and equivalence class complexities. We have seen the use of

these concepts in the analysis of complexity behavior. Finally,

we have shown how the equivalence classes and their associated

complexities have given a compact and orderly representation of

the complexity information for a program over a set of inputs.

-38-

Chapter IV. Complexity of Advanced Constructs and Input Schemes

1. Introduction

In this chapter.we extend our complexity analysis pro-

cedures to include programs with additional programming features,

such as subroutine calls and LOOP blocks, and also programs with

more than one input. We also discuss input data types other than

the non-negative integers and finally variable length inputs.

2. Subroutine and Function Calls

Let us assume that we have a program A with valid input

set X. A has the finite equation representation

A(X) = f (X)
i=o

We can express the jth term, f , as a composition of subfunctions:

f = gm*gm-l*''' 1

Suppose gk is a call to the program B. Let Y be the maxineil valid

input set to B. The equation for B is then

p
B(Y) = E hi(Y)

i=0

B will be called from A at point gk within f with a set of values

X' = gk•.. .gl(X)

-39-

where the series of composed functions is the transformation

applied to the elements of X. If we assume that A is working

correctly, then all values passed from A will be valid inputs

to B. Thus X'; Y. The equation for B(X') will have, at most,

as many terms as that for B(Y). Then

q
B (X') = 'Elh(X) qs p

i=o

To obtain the complexity equivalence classes for A with

input set X, we cannot simply calculate the X corresponding to

the Fi = fi (X). The reason is that there is no unique complexity

associated with X since f contains a call to B which has q+l

distinct functional paths associated with it. To get the true

equivalence classes for A, we will have to substitute the terms of

B(X') into A(X) between gk+1 and gk in f . Assuming no other

function calls in A, this procedure will yield an expanded set of

functions f', each having a unique functional path. Any value

computed in B and returned to A will be available to gk+1. This

expansion yields the following equation for A:

j-l q
A(X) = E f (X) + gm''k+1-(E h).gk'...g(X) +

ir=0 i=0
n n+q+l
E f (X) = f i'(X)

i=j+1 i=0

-40-

We can now calculate the complexity equivalence classes

X = { xeX f '(x) is defined

and the associated class complexities C(A,X).

We are assured of finding a new finite representation

for A(X) because:

1. A(X) (unexpanded) has a finite number of terms.

2. B(Y) has a finite number of terms.

3. A is assumed to be operating correctly so that X'Q Y.

Therefore, B(X') has a finite representation. Intro-

ducing B(X') into A(X) yields a new finite representa-

tion for A(X).

This method is general enough to handle multiple levels

of subroutine calls, multiple calls to the same subroutine from

the same calling program, and recursive subroutine calls. To

illustrate multiple levels of calls, suppose that in the pre-

vious example, B called a program C with input set Y'. We would

find the equation for C(Y'), substitute this into B(X'), and sub-

stitute the expanded B(X') into A(X). We know that the process

of subroutine calls must terminate since A halts for all input

values in X.

For the case of multiple calls from the same program,

assume A called B twice, once with input set X' and once with set X".

We would use our analysis procedure to find B(X') and B(X") and sub-

stitute these into A(X).

-41-

Suppose A calls itself as a subroutine. These recur-

sive calls must terminate because of the halting condition. If

the set of values passed from A to itself is X', we know that

X'Q X. After finding A(X'), we substitute it into A(X).

Example of Subroutine Call

We will consider a program A with input set X which

calls a program B with maximal input set Y.

X

X = { 1,2,3, ...,9 3

p(x)=x iff xzO mod 3

g~x): :=x+1
A:

g(x): xc

p (x)

F T

g (x)CALL

halIt

-42-

Y = { 3,6,9,12,15, ...,3'n }

h(y): y:=y/ 3

Y

q(y)=y iff y=O mod 3

B:
h (y)

q (y)
F

T return

Denoting the node "CALL B(x)" by "b", we have the following

equations:

- -2
A(X) = b-p(X) + b-peg-p(X) + bep.(g-p) (X) +

= E f (X)

B(Y) =qeh(Y) + q-h-q-h(Y) + q.h-(q.h)2 (Y) +

= E h (Y)
i-0

Using our analysis on just the equation for A(X), we get the

following classes:

X= 3,6,9} X1 = (2,5,8 }

A(X) = f i(X)
i=0

X2 ' 1,4,7

-43-

However, since the inputs in any X. undergo different transforma-

tions in B, these are not complexity equivalence classes. We will

have to substitute B(X') into A(X) wherever B is called from A.

Let XI be the set of inputs to B when B is called from
0

f 0. Then

X' = b-p(X) = 3,6,9 } : Y

H0 = h0(X) = 1,2 X0 1 = 3,6

H, h (X') = {1 }
1 10 X02 =[9

Since X= X1 U '0 01 02#

B(X ') = Eh (X') = -(X)+ eq-h(X)
i=0 i 0

Similarly, let X be the set of inputs to B when it is called

from within the function f . Then,

X' = f(X) = { 3,6,9 =X

B(X') = 0 hi(X{)
1 J=0

Finally we let X be the inputs to B when it is called from f2 '

X= f = 3,6,9 =X'

B(X) = h (X')
i=0

-44-

We can now substitute the three equations for B into the appropriate

places in A(X) to get the expanded version of this equation:

A(X) = B(X6)•f0 (X) + B(X,)•f(X) + B(X)"f 2 M

= h0f 0(X) + h1.f 0 (X) + h0 f1 (X) + h If1 (X)

+ h0 f 2(X) + h1.f2 (X)
5

= E f (X)
i=o

Each of the classes X,, i=0,1,...5, now corresponds to a set of

inputs with a single complexity value; each X is a complexity

equivalence class.

3. LOOP Blocks

We have discussed the LOOP block in a previous chapter and

defined the complexity of this construction as follows:

If the body of the block is denoted by s and all state-

ments within s are a function of x, then the LOOP block

LOOP N

S

END

will have complexity

C(s,x) + C(s,s(x)) + C(s,s 2(x)) + ... + C(s,s N-1x))

We can now include LOOP's into our theory of program equations

and complexity equivalence classes. We will illustrate the

-45-

handling of loops by several examples.

Suppose we have the following program A with input x:

LOOP x

h(x)

g(x)

END

If A has a valid input set X, we may represent A in graph format

as follows:

X

x

A:
h(x)

*(x)

halt

The dotted lines delineate the scope of the LOOP block. The "x"

just outside the box defines x as the iteration control variable.

The equation for A(X) will have to indicate that g and

h will be executed a different number of times for each value of

-46-

x in X. Assuming no attributable complexity to "END", the equation

A(x) = E (g-h) (X)
xex

If IXI=n, this sum will expand to n terms. If g and h have a

constant associated complexity, there will be n complexity equiva-

lence classes for A with set X. In this case,

x- x 3 and C(A,X) - C(A,xi)

Let us consider the more complicated program B:

I
B:

h(k

phl

halt

-- V~j

- -. W.

-47-

Now the LOOP block may be executed many times, the number of

iterations each time (i.e., x) dependent upon previous executions.

To calculate B(X) we use our basic method: find those

inputs for which B halts on the first pass through p, on the

second pass, etc. Sum these terms to get B(X).

If f0 is the functional path which terminates on the

first path through p,

xf 0 (X) = pE (g-h) (X)
xeX

Similarly, if f denotes the functional path which ends on the second

pass through p,

f (X) = p.E (g-h)x .p.E (geh)X(X)
x'eX' xer

X'

Continuing in this manner,

B(X) = E f i(X)
i-0

Since X is finite, there exists an n such that for all j>n,

f(X) .

n

., B(X) = E f i(X)
i=0

-48-

While this is a valid equation for B(X), each

X= xX I f.(x) is defined 3 does not correspond to a single

value of complexity. Each f. will have to be subdivided by
3.

expanding out the summations. The subterms, f.', will correspond

to single values of complexity; and the X.,

X = [xEX | f (x) is defined }

will be complexity equivalence classes.

4. Multiple Inputs

We now extend our complexity analysis procedures to

programs with more than one input. We will deal specifically

with the case of two inputs. The generalization to programs with

n inputs is ininediate.

Let A be a program with two inputs, x and y. Analagous

to the one input case, we define the set U1 as

U1 = { (x,y) | A halts for non-neg. integer inputs x and y; x and

y valid }

We then define U2 as the set of all ordered pairs of non-negative

integer values for the language in which A is written or the machine

on which A is running:

U2 = [(x,y) x and y are allowable non-neg. integer values }

-49-

Then the maximal valid input set to program A is

Z = Ulnu2

As before Z'g Z is also a valid input set.

We can then proceed to find the functional paths of the

program graph from the starting node to a terminal node. The

function f associated with each path maps ordered pairs (x,y)

to (x',y'). f is composed of arithmetic and conditional func-

tions. For any (x,y)eZ, we can calculate a complexity C(A,(x,y))

defined by a path through A.

Using the functional paths through A and noting that Z

is a valid input set we can obtain the finite equation for A(Z):

n

A(Z) E f (Z)
1=0

The f immediately lead to the complexity equivalence classes

Z= (x,y)CZ | f((x,y)) is defined J

and the equivalence class complexities

C(A,Z) = C(A,(x,y)), (x,y)eZ

Before finding the Z,, we may have had to expand the f to take

care of any function calls or LOOP blocks. We can now calculate

C(A,Z), Cmax(A,Z), and C min(A,Z) as before.

-50-

If we define the sets X and Y as

X = {xj3y such that (x,y)eZ}

Y = {yZx such that (x,y)eZ}

we can easily see that Zr XxY. For (x,y)cZ implies that xCX

and yeY which imply that (x,y)cXxY. Note that Z is not necessarily

equal to XxY. If, for inputs x 0eX, YEY, A does not halt, then

(x 0 Z.

Inputs vs. Variables

Although A may have n inputs, it may have m variables

(including input variables) internal to it, m>n. One way to handle

the m-n variables which are not inputs is to express them in terms

of transformations on the inputs. Thus if y is not an input

variable, then before it is used, it must have a value assigned to

it. This value is a function of the n-tuple of input values:

y = f((x1 , ...,Xn))

Another way to solve the problem is to view A as having

m inputs. Those variables which are not actual inputs have a

default value assigned to then say zero. If A is working correctly,

these variables will be assigned new values before they are used for

their original default values.

-51-

5. Different Data Types

So far, we have limited our discussion to programs which

operate on non-negative integers from 0 to intmax - an upper bound

imposed by either the language in which A is written or the machine

on which A is running. It is not conceptually difficult to extend

the complexity analysis procedure to cover other types of input.

In most implementations, negative integers range from

-1 to some lower limit: negmax. If we wish to analyze a program

A with an integer input (positive or negative), then our maximal

valid input set X would still be defined as U1 lU2 , but now

U1 = {xj A(x) halts and x a valid integer input}

u2 = {xf x an integer and negmax - x : intmax}

We would then procede as before to find the program

equation A(X), the complexity equivalence classes X,, and the

subset complexities C(A,Xi).

We may also easily handle character input (the character

set on a machine is always finite) and floating point numbers

(always finite in number because of the limitations on the magni-

tude of the exponent and the precision of the fraction). In the

most general case, we would have a program with several inputs of

different data types. The work on multiple inputs would apply here,

generalizing to n-tuples with components of different data types.

-52-

6. String Input

We have not yet considered programs which have string

or variable length input sequences. An example of such a program

would be a compiler whose input is a series of characters in the

source language which it is required to translate. There is often

only one input variable in such programs; each time a new character

is read, the value of that character is placed in the input variable.

However, unlike previous programs where current values of variables

could be defined in terms of transformations upon older values,

the new value of the input variable in the case of string input is

not generally definable in terms of previous values. Although we

might like to treat this new value as a separate input, the number

of such new inputs is indeterminate, so we cannot directly apply

our previous methods.

One way out of this problem is to observe that compilers

and similar programs usually read their string of inputs until the

string is exhausted. Therefore, given an input string of n charac-

ters, we know that the program processing this string will read in n

distinct input values. If we view an n character string as being

n inputs to the program, then each length string defines a diff-

erent input situation. Thus, when analyzing the complexity of a

program with string input (where the string is always read in its

entirety), a set of valid inputs would be defined as a subset

of all strings of a fixed length, say n. We would then treat the

program as having n inputs.

-53-

Chapter V. Results in the Complexity Theory of Programming

Languages

1. Introduction

We are now ready to investigate some of the proper-

ties of the complexity-theoretic concepts previously intro-

duced. We define some complexity relations between programs,

define the complexity of concatenated programs, and study

equivalence of programs in the light of complexity theory. We

prove some results about these areas.

2. Preliminary Definitions

We first define a special form of the complexity

equivalence classes of a program; this form will be used in

most of the definitions which follow. It is a standard which

will be used in comparing equivalence classes of different pro-

grams.

Definition: Given a program A with input set X,

we define the set XA as follows:

XA a { X X is a complexity equivalence class

of A with input set X}

Definition: XA is said to be in normal form iff

[X #$ (empty set) and i/j * C(A,X)/C(A,X)]

-54-

Normal form implies that all the complexity equivalence

classes X. contain at least one element of X and the complexity

of any equivalence class, C(A,X), is unique. It is this

normal form which allows us to compare the set of all equiva-

lence classes of two different programs.

If XA is not in normal form, it may be put in this

form by deleting any Xi= $, and if C(A,X i) = C(A,X.), then

replacing X and X. by a new equivalence class X .= X U X

where C(A,X i) = C(A,X i). Note that the deletion of X,= $ or

the creation of X . does not change C (A,X), or C . (A,X), ori3 max min

C(A,x). In the case of C(A,X), we have

X,= $ => Pr(Xi) = 0

Also if we form X 1 = X U X , then since Xfl X o,

Pr(X ij) = Pr(X) + Pr(X)

C(A,X i) • Pr(X) + C(A,X) . Pr(X.)

= C(A,X ij) • (Pr(X i) + Pr(X))

= C(A,X i) • Pr(X .)

If we replace X and X by X 1 , C(A,X) remains the same.

Next we define a shorthand notation for the complexity

equivalence of single inputs and equivalence classes of inputs.

-55-

Definition: Given a program A, the relation =A is

defined as follows:

For x, x2 valid inputs to A, x =A2 iff C(A,x) =

C(A,x2)

For X., X. equivalence classes of A, Xi=AX jiff

C(A,X.) = C(A,X.)

It is easy to see that =A is an equivalence relation (reflexive,

symmetric, transitive) since it is defined in terms of another

equivalence relation (=).

Lemma 1: If XA is in normal form and x1 ,x2eX, then

xy=Ax2 iff ([unique XieXA such that x1,x2eXi)

Proof: (<a) x,,x2cX C(A,x,) = C(A,x2) 1 X=A2

(*) x=Ax 2 0 C(A,x,) = C(A,x2). Suppose

1xy and x2eXk. Then X =AXk. By normality of XA' Xj=Xk'

Then x1 ,x2 CXj., X ZA. Since the X are disjoint, X. is unique.

QED

The lemma gives us another statement of the normal

form condition - all inputs with the same associated complexity

are in the same equivalence class. This result will be useful

in later sections.

-56-

3. Relations Between Programs with Identical Input Sets

We now turn to relations between programs which have

the same valid input set.. We will develop a series of equiva-

lence relations between such programs, based on different com-

plexity properties of the programs.

Similarity

The first equivalence relation, which we now define,

is also the weakest. It specifies a relation between programs

which divide the same input set into the same complexity

equivalence classes.

Definition: Given programs A and B, both with input

set X and with XA and I in normal form, A and B are similar

on X iff XAXB.

Similarity between two programs on a given input set

is equivalent to saying that two inputs to one program have the

same complexity if and only if they have the complexity when

input to the other program. This may be formally stated in the

following theorem:

Theorem 1: A and B are similar on X iff

(Vx, lxeX)l xl=Ax2<> xlBx2 I

-57-

Proof: (=>) Suppose xl=A 2. Then by lemma 1,

x1 ,x2 e X , Xi XA where XA is in normal form. But by similarity,

XA=XB; then X XB. Therefore, x1=B 2. Likewise, x =B x => XlA2 1A 2'

(<) Construct X e X from all xeX such that

x =A,; similarly construct X'e X from all xeX such that x = xi B B i
Since x =A i B = , X = X'. Continuing for all x CX, weSicexA if B ~i~ Xi i* Xi,w
see that X X A X e . Thus XA=X . None of the X are

empty (because =A and = are reflexive); if C(A,X) C(A,X.),
j

then by hypothesis C(B,X) = C(B,X). Therefore in normalized

form, XA XB. Thus A and B are similar on X. QED

Although the complexities for the two inputs (x 1 and x 2

are the same in each program, the magnitude of this complexity

for the two programs is, in general, different. Thus x =A2

and x1B x2 do not imply that C(A,x,) = C(B,xl).

Similarity between two programs is preserved by

taking subsets of the original input set, and by intersection

of different input sets which induce similarity.

Theorem 2: If A and B are similar on X and also on Y,

they are similar on Z 9 X and on X n Y.

Proof: (Subset) Let IXA = n. Define Z =Z x,

VX e X Then

n n n
U Z= U (Z X) = Z (U x) = Z n X = z

i=1 i=l i=1

-58-

Also, for i X j,

z n z. = (Z n x) n (z n xi)

z n (x n x) = z n e = e

Eliminating any Zi= 0, ZA= [Z } is in normal form. Since

XA XB' ZA= ZB. Therefore A and B are similar on Z.

(Intersection) XnY gC. Using the first part

of the proof, A and B are similar on X n Y. QED

Absolute Similarity

Certain pairs of programs may be similar on all valid

input sets. We have the following definition:

Definition: A and B are absolutely similar iff

A and B are similar on all valid input sets X.

Lemma 2: If A and B are similar on the maximal

valid input set X, they are absolutely similar.

Proof: All valid input sets are subsets of the maximal

valid input set. By theorem 2, since A and B are similar on

the maximal input set, they are similar on all valid input sets.

Thus A and B are absolutely similar. QED

-59-

Lemma 3: If A and B are absolutely similar, and if

A and B are similar on X and on Y, they are similar on X U Y.

Proof: The union of two valid input sets is also a

valid input set. By hypothesis, A and B are similar on all

valid input sets. QED

Homomorphism

We define the relational operators <A and >A for single

inputs and input classes.

Definition: For x,,x2 valid inputs to A, x > 2
1 A 2

iff C(A,xI) > C(A,x2) and xl<Ax 2 iff C(A,x,) < C(A,x2).

For Xi, X. equivalence classes of A, X >AXj iff

C(A,X > C(A,X.) and X <A X iff C(A,X < C(A,X

Similarity tells us that for B similar to A, xl=AK 2

iff xlBx2. It also implies that xYAX2 iff xl$Bx2. We cannot

say that xl<A2 implies xl<Bx2 , nor can we establish any other

ordering relation on the complexities of inputs. To do this,

we need to define another relation on programs with the same

input set which will tell us something more about the relative

magnitudes of the equivalence class complexities. This leads

to the following definition:

-60-

Definition: Suppose A and B are similar on X and we

order the equivalence class complexities C(A,X) and C(B,X.)

in strictly increasing order (strictly increasing because XA

and XB are in normal form) to form two n-tuples (n= IXA I:

(C(A,X 1), C(A,X 2), ... , C(A,X))

(C(B,X), C(B,X'), ... ,C(B,X'))

Because XA= XB we know that:

(VX e X) (EX'eX) [X i ']i A j B j

(VXeX) (E X e XA) '= X]

Then A and B are homomorphic on X iff (V1 i n)[X = X']

The main property of the homomorphic relation, that

the order of complexity is preserved in homomorphic programs,

is shown in the following theorem:

Theorem 3: A and B are homonmrphic on X iff (Vx 1 ,x 2 E X)

[x I relopA -° x2I- xrelop B x2

where relop E[>,=,<3 and is the same in both cases.

-61

Proof : (=>) Let x 1 X, x2 jeX. Suppose C(A,X)
th

is in the i position of its ordered n-tuple (as above) and

C(A,X.) is in the jth position. By homomorphism, C(B,X) and

th th
C(B,X.) are in the i-- and j-- positions of their n-tuple. Then

C(A,X) relop C(A,X) iff C(B,X) relop C(B,X)

C(A,x) relop C(A,x 2) iff C(B,x) relop C(B,x2)

x IrelopA x2 iff x1 relopB x2

where relop is the same operator in all cases.

(<=) By hypothesis, (Vx1,x2 eX) 1x relopA x2 iff

x relopB x2]. In particular, xl=Ax2 iff xl=Bx2, so by theorem

1, A and B are similar on X. Now assume that in the ordered

n-tuples for C(A,X i) and C(B,X), (Hi)[X / X']. Let i be the

smallest index for which this is true. Suppose the element

corresponding to C(A,X ') is C(B,X). We then have:

(C(A,X), C(A, X2) ... , C(Ag,) ..

(C(B,X1), C(B,X2), ... , C(B,X.) ...)

Since i is the smallest index, then X. could not have occurred
J

within the first i-1 complexities C(A,Xk), k ! i-l. Therefore,

C(A,X.) > C(A,X.). Similarly, C(B,X i) > C(B,X). If x e X.,

X e X , < 2 but x1 > x Contradiction! Then our assumption
a X AX 2 w B 2

that X~y X~ was wrong. Thus A and B are homiomorphic on X. QEI)

The homomorphism relation gives us the information we

-62-

need to determine the relative magnitudes of the equivalence

class complexities of two programs. To see if homomorphism

holds, we need only examine the two sets of complexity equiva-

lence classes and the associated complexities. If IXAl « IX!,
the number of objects we will have to examine is small compared

to the total number of inputs.

As with similarity, homomorphism is preserved by

subset and intersection of input sets:

Theorem 4: If A and B are homomorphic on X and on Y,

they are homomorphic on Z g X and on X n Y.

Proof: (Subset) By theorem 2, A and B are similar on

Z. We can order the equivalence class complexities of A and B

on Z:

(C(A,Z I), C(A,Z 2), ...,I C(A,Z))

(C(B,Z), C(B,Z), ..., C(B,Z'l))

where Z.=X.n Z and Z'=X'fn Z as in the proof of theorem 2. Since

X.= X', then Z,= 2 , YZE ZA(= ZB).'. A and B are homomorphic on Z.

(Intersection) XnY cX. Using the first part

of this proof, A and B are homomorphic on X n Y. QED

-63-

Homomorphism and Complexity Limits

In Chapter III, we introduced the notion of maximum

and minimum complexity on a set of inputs. We noted that these

quantities bound the resource usage of a program on a particular

input set. Here, we formally define these two quantities and

also two others.

Definition: Given a program A with input set X and

XA in normal form, we can define the following quantities:

C ax(A,X) = max [C(A,Xi) }

iSA

Cin(A,X) = min C(A,Xi) i
XyeXA

X (A) = that X. for which C(A,X) = C (A,X)max . i max

X (A) = that X for which C(A,X) = C (A,X)min i i min

X and X are unique by the normal form condition. They tell

us which inputs will consume the greatest amount of the resource

being measured and which inputs will consume the least. These

two quantities are preserved by homomorphism:

Lemma 4: If A and B are homomorphic on X, then

X (A) = X (B) and X (A) = X (B)
max max min min

-64-

Proof: Suppose X (A) - X han

(YX e X X X)[X< X]

Butt' by hWbMttt

(TX e X X)IX X]

min

Similarly, for x(A= X (B).QE
axmaxQE

We also state, without proof, the following lea

which relates complexity limits to subsets of input sets:

ISgM, 5 f- Z r X, theri Cma(A,') is d ,k) and

C9(C (A)

Thus C and C for the maximal valid input set limit the

corresponding quantities for all other valid input sets.,

-65-

Absolute Homomorphism

Analagous to absolute similarity, we can define two

programs to be absolutely homomorphic if they are homomorphic

on all valid input sets. Results corresponding to lemmas 2

and 3 can be shown for absolute homomorphism.

Isomorphism

We now define one last equivalence relation between

programs with the same input set; this relation is stronger

than homomorphism.

Definition: A and B are isomorphic on X iff they are

similar on X and

(MXE X A)[C(A,X) = C(B,X)i

Isomorphism is a special case of homomorphism! the

complexity associated with any equivalence class is the same

for both programs. As we would expect, isomorphism is preserved

by subset and intersection of input sets; however, it is also

preserved by union of input sets.

Theorem 5: If A and B are isomorphic on X and on Y,

they are also isomorphic on Z 9 X, X n Y, and X U Y.

Proof: (Subset) By theorem 4, A and B are homomorphic

on Z.

(VZ i ZA) [C(A,Z.) = C(A,Xi) = C(B,X.) = C(B,Z)]

-66-

(Intersection) Follows fromw subset proof.

(Union) Let Z X U Ti First * must show

that Z
A

Y e X (VT)[Y Mx -)
{xY (x)

simiarl, z• zU z2U zB3. By hypothesisSimilarly, s'B X=7X'Y7Y

(alln idnormal form d, ad

(YX 1 Y)[C(A,x) - c() g 0(& c y

ZAl1 and ZA2 zB2

Since , - ~

zz

C(A,Z) - C(A,X Z X

2 i Y

-67-

C(B,Z.) = C(B,X), Z = Xi

C(B,Y.), z = Y.

(Note: if Z.= X.iU Y., C(A,X) C(A,Y.) and C(B,X.) = C(B,Y.))
i ~ 1 i 1 1 1.

But by hypothesis, C(A,X.) = C(B,X.) and C(A,Y.) = C(B,Y.)

Therefore, C(A,Z) C(B,Z), VZ E Z Thus A and B are isomorphic

on X U Y. QED

Isomorphism not only preserves Xa and Xmin but also

C a, C min , and C(A,X); we state the following easy lemma without

proof.

Lemma 6: If A and B are isomorphic on X, then

X (A) = X (B) C (A,X) = C (B,X)
max malx max max

X (A) = X . (B) C (A,X) = C .(B,Y)min M1in min Min

C(A,X) = C(B,X) if the methods used in selecting the

inputs to A and B (i.e., Pr(X)) are the same.

We will return to isomorphism in the next section when

we discuss concatenation of programs.

4. Concatenation

We will now investigate the complexity properties of

programs which may be combined or concatenated to from larger

programs. By the concatenation of two programs A and B, we

mean the program which is formed by appending B, to the eind)f A,

-68-

so that when the locus of execution reaches the end of A, it

will enter B. We will assume that A places the outputs of its

computation into certain registers and that these same registers

are used by B as inputs. B is not requred to use all of A's

outputs as inputs: however, B cannot need more inputs than A

can supply. We will say that A is I/O-compatible to B if this

restriction is obeyed.

We will also assume that neither A or B is changed

by the concatenation of B onto A (which will be denoted by

"A.B"). We run into at least one trouble spot: If A finishes

execution by halting somewhere in the middle. To continue with

the execution of B, we would need to change this HALT instruction

into a BRANCH to the end of A. This modification would probably

change A's complexity with respect to certain inputs. To avoid

this difficulty, we will assume that all programs terminate by

executing their last instr.uction. Thus iw'e may perform conca-

tenation without changing instructions in either rogram.

If we wish to study the complexity of A.B for an input

set X, the inputs to B will have to be valid haltin inputs.

Therefore, A(X), the set of inputs to B, will always be a ralid

input set. Given this fact, the complexity of AeB for any input

x can be determined by linearity:

C(A.B,x) = C(A,x) + C(B,A(x))

-69-

Compatibility

We now place another restriction on the concatenation

of programs which will enable us to prove some properties on the

complexity of concatenation. This restriction will be defined

in two stages as follows:

Definition: Let A be I/0-compatible to B and for X

a valid input set to A, A(X) = Y is a valid input set to B.

Then A is X - compatible to B iff for X E XA (in normal form),

there exists Y e YB (in normal form) such that A(Xi) = F r Y

X -compatibility tells us that a set of inputs (Xi)

which, by definition have the same complexity for A (C(A,X i))

will be transformed into a set of inputs (Fi) for B which will

all have the identical complexity - C(B,Y). We now extend

this relation to all equivalence classes of X:

Definition: A is X-compatible to B iff A is X -compatible

to B for all X e XA (in normal form).

If A is X-compatible to B, it is easy to see that for

x ,x 2 e X,

1A2 1lA.Bx2

However the converse is not necessarily true. If xl/A42 and

A(x 1) 1 B A(x2), it may still be that xl=ABx2. By theorem 1,

-70-

we conclude that A and A-B are not necessarily similar on X.

Compatibility is preserved by several operations on

input sets. We state the following two theorems without including

the proofs.

Theorem 6: If A is X-compatible to B and also Y-

compatible to B, and if Z g X, A is Z-compatible and X n Y-com-

patible to B.

Theorem 7: If A is X-compatible to B and also Z-

compatible to B, and if for A(X.) g Y. and A(Z) 9 T ,

X =AZ => Y,= T , then A is X U Z-compatible to B.

In the case of theorem 7, we need the additional

restriction that (X = Z => Y = T) because if two equivalence

classes (X i,Zi) must be combined in the normal form of (X U Z)A

as a result of having the same complexity (X AT i), the images

(Y,,T) of these classes under A must also have the same

complexity (Y B Ti) so that A(X U Z i) Y U T .

Compatibility and Isomorphism

To conclude the section on concatenation, we discuss

some relationships between compatibility and isomorphism.

We would like to see under what conditions isomorphic programs

can be concatenated to yield programs which are still isomorphic.

We first show that isomorphism is preserved by the concatenation

of the isomorphic programs to a program which is compatible to

-71-

both:

Theorem 8: If A is Y-compatible to B and to C, and

if B and C are isomorphic on X = A(Y), then A•B and A-C are

isomorphic on Y.

Proof: Let D = A.B, E = A.C,

yD E and (VY eY D)[C(D,Y.) = C(E,Yj)].

subsets:

We need to show that

YD is composed of two

YD=Y i CA (jVYJE A) [YiDY I

U { Y U Yk j D k I DIU D2

Similarly, IE YElU YE2

Since C(B,X1) = C(C,X i), vX e X8, it must be that

Y =YE and D2 YE2 Therefore, YD= YE

Then (VY ICD

C(D,Y) =(

C(A,Y.) + C(B,A(Y)) = (b

C(A,Y.) + C(C,A(Y)) = (b

C(E,Y.)

A.B and A•C are isomorphic on Y.

by linearity)

y isomorphism)

y linearity)

QED

-72-

Since A-B and A•C are isomorphic, we can continue the

concatenation if we can find a program D which is Z-compatible

to A.B and A-C and where D(Z) E Y. Then D.A-B and D'A•C will

be isomorphic on Z.

We now show the conditions under which the concatena-

tion of pairs of isomorphic programs results in programs which

are also isomorphic.

Theorem 9: Suppose A and B are isomorphic on X,

A is X-compatible to C, B is X-compatible to D, C and D are

isomorphic on Y = A(X) U B(X). Then A•C and B•D are isomorphic

on X iff

(iE XA j c)[A(X), B(X) Y

Proof: (<) Let E = A•C, F = B.D. Then

XE= X CAI (VXj A E j

U { X U X X =EX } =E U E2

Similarly, F XFlU XF2

Since A(X i), B(X.) cy and C and D are isomorphic

on Y, C(C,A(X)) = C(C,Y.) = C(D,Y.) = C(D,B(X.)). Also,

C(A,X.) = C(B,X), VX E X . Thus, C(E,X.) = C(F,X), YX .

-73-

XE1XF 1, XE2 XE2 and thus X = XE

Then (VX e XE)'

C(E,Xi) = (by linearity)

C(A,X i) + C(C,A(X.)) = (by isomorphism)

C(B,X i) + C(C,A(X)) (by hypothesis)

C(B,X) + C(C,Y.) = (by isomorphism)

C(B,X) + C(D,Y) = (by hypothesis)

C(B,Xi) + C(D,B(X)) (by linearity)

C(F,X)

.. A•C and B•D are isomorphic on X.

(=>) Given A(X i) g Y , B(X i) Yk, we want

to show that Y,= Yk. For X E A, C(E,X,) = C(F,X). By

linearity, C(A,Xi) + C(C,A(X i)) = C(B,Xi) + C(D,B(X)). But

C(A,Xi) = C(B,X) so we must have that C(C,A(X)) =

C(D,B(X i)); or C(C,Y) = C(D,Yk). But since C and D are

isomorphic on Y, then YC YD (in normal form). Therefore,

Y j= Yk QED

5. Functional Equivalence

It is often the case that we wish to examine two

programs which represent different algorithms for the same

function. The programs compute the same output when given the

same input from a specified input set; however, the method

-74-

(algorithm) used to compute the result is not the same. This

situation often arises when we wish to determine which version

of a particular subroutine or program we should use. All

versions represent (hopefully!) the same function, but one

version may use less resources than another. Program equivalence

may also arise in the area of simulation. If one program is

simulating another, and if the first program is also producing

the same output as the second, then the programs are equivalent.

Equivalence is defined here in terms of similar func-

tional behavior on a specified input set. Output values are

defined as transformations on input values. If output variables

are not also inputs, their values must be expressable in terms

of the inputs.

Definition: A and B are equivalent on X iff

(Yx e X) [A (x) = B(X)]I

It is easy to see that equivalence is closed under

subset, union, and intersection: if A and B are equivalent

on X and on Y, they are equivalent on Z 9 X, X n Y, and X U Y. Equiva-

lence and concatenation are related by the following lemma:

Lemma 7: If A and B are equivalent on X, C and D

equivalent on Y where A(X) c Y; and if A, B are I/0-compatible

to C, D then A-C, A.D, B•C, B•D are equivalent on X.

-75-

Proof: By I/O-compatibility restriction,A9C, etc.

may be correctly formed. Now for xeX, A(x) = B(x) = y. Since

yeY, C(y) = D(y). Therefore, A.C(x) = B•D(x) and A*C and B.D

are equivalent on X. Similarly for the other cases. QED

To conclude this chapter, we present the following

theorem which relates isomorphism, compatibility and equivalence:

Theorem 10: Suppose A and B are isomorphic and

equivalent on X, A is X-compatible to C, B is X-compatible to D,

C and D isomorphic on Y = A(X) = B(X) (since A and B equivalent).

Then AeC and B.D are isomorphic on X.

proof: We look at theorem 9. Since A(x) = B(x),

Vx e X, A(X i) = B(X), VXi X. Since A is X-compatible to

C, A(X) C YJ, Y e Ic. But by the isomorphism of C and D on

Y, C Y D. Then B(X) Q Y . Therefore, AoC and BiD are isomor-

phic on X. QED

If C and D are equivalent on Y in addition to being

isomorphic, we can use lemma 7 to conclude that A*C and B•D

are isomorphic and equivalent on X.

-76-

Chapter VI. Conclusions and Suggestions for Further Study

Conclusions

We have developed a general theory of computational

complexity for computer programs. We have looked at complexity

from the viewpoint of resource usage and regarded the use of

different resources as different measures of the complexity of

a program. Many complexity measures fit into our theory, the

only requirement being that the usage of the associated

resource obey the linearity principle.

Our theory has been based upon observing the behavior

of a program on a valid set of inputs. We have also relied

extensively on an equation representation of the transformations

which a program applies to its inputs. We have attempted to

justify the use of finite input sets by noting that real pro-

grams, running on real computers, are able to accept and

manipulate only a finite number of distinct input values, due

to software and hardware limitations. In addition, most pro-

grams actually process only a subset of all possible input

values. Our methods were shown to be valid for programs with

a large number of programming linguistic constructs and with

several different input schemes.

The complexity analysis of a program produced a set

of complexity equivalence classes and a corresponding set of

class complexities. We have noted that most programs do not

-77-

treat every input value differently, and therefore the number

of equivalence classes will generally be smaller than the number

of possible inputs. Thus, these two sets give a relatively

compact representation of the complexity information for a program

operating on a given input set. These sets immediately led to

some complexity parameters for the program:

1. C(A,X) - the expected complexity value on the set X

2. Cmax (A,X) - the maximum complexity on the set X

3. X (A) - those inputs which result in complexity C (A,X)max max

4. C min(A,X) - the minimum complexity on the set X

5. X (A) - those inputs which result in complexity C (A,X)
min min

C (A,X) and C . (A,X) bound the resource usage of program A
max mi-n

and tell how much of this resource A can possibly use and how

much it must use to process inputs from set X.

Our basic purpose has been to develop some theoretical

tools for studying the difficulty of computing functions by

observing the program implementations of these functions.

While these techniques will work for any program of the types

described, the necessary computations will become unmanageable

if the program equation is complex or if the number of complexity

equivalence classes is large. Thus, one could not expect to

sit down and find the equation and equivalence classes of a

PL/I compiler, just as one would be hard-pressed to prove that

such a compiler is "correct". Our techniques will probably

be most valuable in the analysis of small programs and also

-78-

in deciding which version of a particular program will be most

suitable for use; suitable in the sense of using the least

resources over a particular set of inputs, where we may wish

to minimize C(A,X), C (A,X), or C (A,X).
max min

Programmers and systems analysts are often faced

with this latter problem, particularly in a large programming

system such as a language translator or operating system which

is modularized and which has its basic components frequently

replaced as the system is up-graded. The complexity analysis

techniques allow different versions of program modules to be

compared, perhaps in one case on the basis of maximum resource

usage, in another with regard to average resource usage, in a

third with respect to some combination of complexity parameters.

Areas for Further Study

We have used the concept of a program equation for

much of our work. This equation is independent of a study

of complexity. It gives a concise algebraic formulation of

a program or algorithm. It is also valid on an infinite input

set as long as all elements in this set are halting inputs for

the program in question. The equation brings to light the

transformational characteristics of a program. It should be

useful in the study of other aspects of programs and programming

languages, such as program semantics and program correctness.

-79-

A subject which we have not examined but which is

important is the use of space as a complexity measure. The

use of space did not follow the linearity principle. An

analagous constraint for space and its related measures would

have to be devised to analyze the complexity of programs with

respect to these resources.

We have not discussed the effects of transformations

of the program on the complexity. For example, suppose we make

a well-defined modification to program A with input set X.

Is there a well-defined effect on X A, Ca (A,X), Ci (A,X)?

Cooper's work on graph transformations [8] may be useful here.

We have defined three equivalence relations between

programs with the same input set. There may be other relations,

intermediate in strength between similarity and isomorphism

which reflect other programming situations.

We have mentioned that it is advantageous for

lXi » iXAl. In this case, XA and (C(A,X) X eRA) give

us a more economical representation of the complexity informa-

tion for A than if we simply looked at all x in X. However, we

have not explored the relationship between the relative size of

XA and the nature of A itself. Are there certain conditions for

which we get this economical representation?

-80-

Appendix - Mathematical Notation

Sets

We make use of the notion of a set and various opera-

tions upon it. A set is an unordered collection of objects

and is named by a capital letter. The elements of a set are

enclosed in braces and separated by commas.

A subset of a given set is another set containing all,

some, or none of the elements of the original set. If Z is

a subset of X, we write Z a X. If a subset contains no elements,

it is called the empt set and denoted by O.

The size of a set X is written lXi and is simply the

number of elements in X.

The union of the sets X and Y, denoted X U Y, is a

set containing those elements which are in either X or Y or

both.

The intersection of sets X and Y, denoted X) Y, is

a set containing those elements which are in both X and Y.

We denote membership in a set by the symbol e. Thus,

a E (a,b }. Similarly, c I { a,b }.

A set may be specified by describing the conditions

for membership in the set rather than listing all of the members.

We use the notation

X x "conditions" }

This may be read 'X is the set of all objects x such that the

-81-

conditions are true". Thus the set

Y = [x| xeX1 and xeX2

describes Y as the intersection of X1 and X2.

Ordered Pairs, Cross Products

An ordered pair, denoted (x,y), is an object with

two components. The order of the components is significant:

(x,y) is distinct from (y,x) unless x = y.

A set of ordered pairs can be formed from sets of

single objects by the cross product operator. The cross pro-

duct of the sets X and Y, denoted Xx4 is defined as follows:

XxY { (x,y) | xeX and yeY 3

Quantifiers

We use two logical quantifiers in our notation. The

universal quantifier, denoted Y, may be read "for all". It

is used to qualify the statement following it. Thus,

(Yx e X)]x !5 y]

means "for all x in X, x r y".

The existential quantifier, Z, may be read "there

exists". The statement

(Hx E X)[x s 5Y]

-82-

means "there exists an x in X such that x y".

Quantifiers may be grouped in a series to form more

complex logical statements. We might have

(Vx e X)(Hy G Y)[x y]

which states that "for all x in X, there exists a y in Y such

that x y",

Functional Composition

The composition of functions f and g, denoted fog, is

another function which transforms the domain of g into the

range of f. Thus if g(x) = y and f(y) = z, fag(x) = z. Composi-

tion may be continued for any number of functions. If a function

i
f is composed with itself i times, we may abbreviate this as f

Implication and Equivalence

If the truth of statement A implies the truth of

statement B, we write

A => B

This may also be read "if A then B". Similarly if B implies

A, we write

B => A

-83-

f A and B imply each other, they are said to be

equivalent and we write

We can also write equivalance as

a:a rn. s -sugo '± ±24nnIihn

'nosz -i s csr::l - - f a
iIn ¶iff is an abbreviation for "if and only if".

* sidatnt Vi ~--e nv os fa 1

nf

SJ')t 44

19_CQ A .. rz t..3-1L 9

t -£ saa n anag - '193

",

7f

t9

C-,

.7-

-84-

References

1. Hartmanis, J., and J. E. Hopcroft, "An Overview of the

Theory of Computational Complexity", Technical

Report No. 70-59, Department of Computer Science,

Cornell University, April 1970. (See also JACM

18(3), July 1971, for a later version of this report).

2. Landin, P. J., "'The Mechanical Evaluation of Expressions",

Computer Journal 6, 4 (January 1964) pp. 308-320.

3. Blum, M., "A Machine Independent Theory of the Complexity

of Recursive Functions", JACM 14 (1967) pp. 322-336.

4. Meyer, A. R., and D. M. Ritchie, "The Complexity of LOOP

nd
Programs", Proceedings of the 22-- National ACM Conference,

(1967), pp. 465-469.

5. Ramamoorthy, C. V., "Discrete Markov Analysis of Computer

th
Programs", Proceedings of 20- National ACM Conference,

(1965), pp. 386-392.

6. Zeiger, H. P., "Formal Models of Some Features of Programming

rd
Languages", Proceedings of the 3-- Annual Princeton

Conference on Information Science and Systems, (1969),

pp. 425-429.

7. Drake, A., Fundamentals of Applied Probability Theory,

McGraw-Hill Book Company (1967), New York.

8. Cooper, D. C., "Some Transformations and Standard Forma of

Graphs, with Applications to Computer Program.",

in Mbchine Intellizenc. 2, Dale and Michie (ad.)

American Elsevier Publishing Company, Inc., (1968),

New York.

--

UNCLASSTFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report ia classilied)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED

Project MAC 2b. GROUP
None

3. REPORT TITLE

Complexity Measures for Programming Languages

4. DESCRIPTIVE NOTES (Type of report and incluelve dates)

Technical Memorandum
5. AUTHORIS) (Les name, first name, initial)

Goodman, Leonard I.

(. REPORT DATE 7a. TOTAL NO.OF PAGES 7. NO.OF REFS

September 1971 86 8

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

Nonr-4102 (01)
b. PROJECT NO. TM-17

9b. OTHER REPORT NO(S) (Any other numbera that may be
assigned this report)

d.

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
None 3D-200 Pentagon

Washington, D.C. 20301
13. ABSTRACT

A theory of complexity is developed for algorithms implemented in typical programming
languages. The complexity of a program may be interpreted in many ways; a method for
measuring a specific type of complexity is a complexity measure -- some function of the
amount of a particular resource used by a program in processing an input.

After the complexity of the basic program elements is determined, program complexity is
analyzed with respect to single inputs and then with respect to finite sets of legiti-
mate halting inputs. A program equation is developed to aid in the complexity analysis.
Using this equation, an input set is partitioned into classes of constant complexity.

Several equivalence relations are defined, relating different programs by their complex-
ity. Complexity is also discussed in terms of concatenation and functional equivalence
of program.

14. KEY WORDS

Computational Complexity Complexity Measures Program Equations
Program Resource Usage Programming Languages Program Equivalence Relations

DD m°v".s 1473 (M.I.T.)
Security Classification

