DOCUMENT CONTROL DATA - R\&D

(Security clasaification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

Fenichel, Robert R.

ACKNOWLEDGMENT

Work reported herein was supported in part by Project MAC, an M.I.T. research project sponsored by the Advanced Research Projects Agency, Department of Defense, under Office of Naval Research Contract Nonr-4102(01).

A NEW LIST-TRACING ALGORITHM

MAC Technical Memorandum 19

Robert R. Fenichel
October 1970

PROJECT MAC

Massachusetts Institute of Technology

List-processins systens have eacl: allowet use of only a single size and confiruration of list cell. This paper describes a system which allows use of arbitrerily many different sizes and confisurations of list cell, possibly not specified until run time.

1. Introduction

List-processine systens (e.s., L1si 1.5 [10], stip [12]) have each allowed use of only a single size and confi,uration of list coll. (1) This paper describos a system whoh allows uso of arbitrarily many different sizas and confisurations of list cells, possibly not spocified until run tioc.
Hultiple sizes and confiountions of list cells are important in meny applications mere the natural quanta of lata are not homoneneous in size ant format. For exampe, an alsebraic interproter misht record the followint information ahout each variable known to it:

```
reference count
value
print name
pointer to hash-table cntr:
```

The interpreter aisht also hende floatiner-point numbers as objects. Now, if only a single coll-size is allowed, then cither floating-point numers will be represontel with extrevacont waste of space, or variables will each bo chainod out into several (1) The aborted LISP 2 systen [1] ws to have alloves multiole cell sizes and confiruretions, hut only with a bit of "systems Drocraming ... beyone the donain of the averase usor" [5, p. 7] supporting each type of cell.
smaller cells, with conconitant waste of bou spoce (for spurious pointers linking tho cells) and time (for following tho spurious pointers).

It will appear (Section 2 below) thot 1 ist-tracine is the prinery ohstacle to implementatinn of list-processins systems With multiple sizes and confirurations of cells. Sections 3 and I tescribe a tectnioue for list-trocin- in such systons. (I)

The renainter of the paper is sennrally tutorisl, rolatire the list-tracer of tho earlisr soctions to sxistimg pronems ond solutions in list-processinc.

2. The Importance of List Tracine

Any 1 ist-processime system must provilo means for ónainins single list cells from froe storare (nucell), for settins and examining the contents of the various finds of a given $1 i s t$ cell (set/look), and for rotumine tisusod list structar to froe storase (craselist). Other sirvicos are senorolly defined irs teras of these primitives. (2)

```
(1) After develomine this techimac, tho author hocome zware of
the sommont rolatod:ork of S. larstall [b].
(2) Sore and bolou, servicos not rolated to list grocessin= are
irnorad. For oxamolr, Dmly a smoll potton of l.lop is rulovant;
most of LISP is concerned witl functiom-apliogtion, arithmetic,
ams other extramcous servicos.
```

2. 1 : incell

Olytainint cells from froe stora"s is a relativoly well-untorstout problon, even mbon colls of ur, rayicublo siza must be loliverod. [6, ra 435-451] ln anch traivijual list-orocessing system, titis servior is ;rovided by a bilt-ir function; (1) in nodern, generol-puroos oros rameins lanauacs, run-tine routines are necesserily provisod to porform this service. (2)
2.2 Set/ 100 L

Sotimer and exaninin the contonts of finlts within ist cells bas never hern even a coto-ontimizetion oryhem In oed. traditional 1 ist-orocossire suoton, thor aro a sottiro functiot and an oxaninine function for oact finl of tho stanlarl list cell. (3) A,tinc a now typo of coll to such a systar nitits
 lityrory.
(1) E.jer cons in L!SP ant nucoll i: SLI?.
(2) ㄷ.. The The routinos suportine ALbocatr stotomosts in PL/2 [2] or tho F'́nE (sic) routino in AET [11].
(3) In LISP, for example, the numor of fiolis is tio, so to systen , rovites two oxaminina functions (car ant cer) ant two settins functions (rolaca and rolacd).

In systens mhethed within born enoral-uuroose lamonos, these numerous built-in fuctions are not necessary. Us ing based-structure teclarations(1) within such lanauates, fiolis of arbitrary list colls may be roforonoet by memonic nonns, and accosset by in-1inn coto.
2.3 Eresclist

Peturning disused list-structure to froo storre must bo Derformed by some variation of one (or both [12]) of the following two mothots:
2.3.1 Garbese oollection [9]

When froe storace is in short supply (or, as
in [4], when it is unesi rehly scatterod), trace all Iist-structur accossiblc by promen, arkine all cells touched. Then scan the entire region of nemory from wich colls are takn. During t'is scan, Dlace untarked ($=$ inacressible) cells on the free-storoge list, and remve the marts from mertod cells.
(1) This terninoloE: is that of Pl/1. Lisers of Aen or of SN [7] declare components.
2.3.2 niscar-scannin: [12]

$$
\begin{aligned}
& \text { Whon a piece of list-structur is tiscartot } \\
& \text { by a user oromran, trace throush this structurn } \\
& \text { and return all of the colls involved in it to free } \\
& \text { storarce. hs a rofinoment (as in [12]), allow } \\
& \text { colls to hold roference counts, an! rowurn } \\
& \text { substructuros to free storase only when they are } \\
& \text { no lonser sharod as substracturo by non- iscerlod } \\
& \text { structuros. }
\end{aligned}
$$

Either of these methods ronuires procedure for tracins throust a list structure. (1) Such a proceduro must be able to accopt a pointer to a cell \mathbb{C} ant, usint this pointer, to explore C_{e} ijentifyint all of the other colls which have C as list-narent. The procoture must mot be nislod by the nresence in $£$ of irrolevent ficlis containine floatine-moint numers, fla,bits, or other mon-atroses.

The list-tracing procedure is the only ossentiol list-processins service athich is not routiocly proviso: by
(1) The ori inal SLIP implementation [ID] sproads un erace
out thinly and discontintuously in tine. This is in pleasins accorlance with the ensineerins arincino whold favors srooth, continual application of eneryy. Tro total effort is the same, homever, and the information neeted yy tho procedure is unchenged.
nodern meneral-murposo lantuanes.
3. Pointers and Tyo Information

Even thoust: caci tratitional list-srocoss ina syston allons only a single size of cell, none ants hy utty omy a sinele type of cell. In LISP, For ovampe there are atons and non-atons. In SLIP, there aro heaters ont non-hoators.
 computable. In early implementations, this necosery tyon informetion was rocortod in L itsolf.

In morn rocent innomentavions, the type information is carrict in the minter to ce This use of rich pointers reflects two develoments in list-processim imolenontation [3]:
3.1 linadiate values

If an atonic detun con bo oxpressed in as fon bits as an address.(1) then it is more efficiont wo coy suot a datu: thon to hande it intirectly. But if "pointors" sonetines contain imotiote tata insteal of altrosses, then
(1) Truth values and small-mannitute interers exemplify subl data.
pointers must also contair typo infornetion to charactorize the data they hold.
3.2 Virtual menories

Querying type-information is a comor 1 ist-roosssins oporetion. (1) In virtual-armory systens, waro menor; references nay be costly, it is ocononion to ylace type-informetion in the pointers, so hat reforences to the cells neel not be mate.
4. An Elemontary List-Tracing Proceture
4.1 Definitions
4.1.1 A word is a quantity of memory sufficient wold an adtress.
4.1.2 \hat{A} poiritor is a two-moryonect consisting of a type-code and an adtress.
4.1.3 A cell is a set of one ormore cortiruous ors in menory. The roguiroment of contivuity is inonset only so that a sineln attross sonoton spocifios the molo coll.
(1) E.E., the functions aton, numberp, fixp, otc. in Lisp, or mantst in SLIP.
4.1.4 A word in a cell C may ho use:
(a) tosether with the next wort in i, to contain a pointer, or
(b) to contain the astross of anothor cell be or
(c) to contain bits (e.g., a floeting-soint number) which are neither the type-cole of a pointer (as in (a)) nor the attress of anothor cell ${ }^{2}$ (as in (b)).
4.1.5 Tho colls x and c' are of the sane type if ant only if
(a) they aro of cound size ant
(b) for each wor in in with corresponding wors W^{\prime} in c^{\prime}
(i) if Le takon tosethor wit who next wor in C contains a pointer, thon so do the corresponding worts in c'.
(ii) if U contains the aderss of another coll D_{e} then U' contains tio adaress of a cell D' wich is of the som type as D.
(iii) if l! comtans bits whot ar
noither the type-code of a nointer nor
the attross of another cell De the: so
does He $^{\prime}$
H.1.6 Two oirters mint to colls of the sano type if and only if they contain the sarne typo-cote.

```
    4.2 Tomplatos
    Cell-type I can he Anseribet with a template of n+1
worts, whore n is t!e numor of worts in onc! cell of tyem
I.
```

(a) Hord contanins n.
(b) For $1 \leq i \leq n$,
(i) If words i ant itl of each coll of type I contain a ointer, then wri i of tio tomatate contains B a constont fifferent fros any type-cola.
(ii) If wort i of cach cell of type I contains tiee alaross of a cell of type I', thon oori i of the tombete contems the tyon-co ir of I'.
(iii) If whit i of ary cell of tije I
contains bits wict ar neithor tho tupocole of a onoter nor the alarass of another cell Le t.a.
 difforent fron P an! fron an wow-codo.
4.j The Key Idea

In order to allow a list-tracing proron to trace a list structure contairine colls of tyon the prosen must, from the pointer to a coll of typo Ie be able to fint the tondate for colls of tyin I. The simple, sinole, contral itea of this maper iss

The type-cole for colls of typn I any lo the
atdress of the template for colls of type I.
4. The Almorithon

A list-tracino procouro is tisaloyot hor in a matar: forn of plif. As riven, whis arocoury rotrocos storni substructuras, loons irdefinitrly on rontrant etructuros, and is finty rocursive.

```
list_scon: procoturo(tymo_cote, cell_altross, f);
    tcolare (type_code, óll_attross) a|tres,
        f cxtornal entry(atross, atdros);
    /* Apply tho function 'f' to every call of the list
    structure whose root is a coll of tyon 'tyoc_cote' at
    location 'coll_at4ress'. */
```

 deciore cell wort(n) adress hased (cell_adrass),
    ```
    I template hase: (tyno_cote),
        2 n fixed,
        2 tomlato_wort(n) alsmss,
    i local fixod,
    (P,Z) cxternal atdross;
i=1;
(o while (i\leqn);
    if tempate.tor!(i) = z thon
            /* corrosmontino yort ir the coll is a
                bit-oattern whict toos not smocir: a
                list-child of the coll. In otter morls, the
                onrrespontimr uorl of the cell is irrolevant
                to list-tracim%. */
                    i = i+1 /* Ski; post tho irrolovant morl */;
    else if tomlato_wort(i) = ? thon
            /* Corresponding vori in tho cell is a
            type-oode, and the folloming wort in the coll
            is an adtross. Tonethor, those smocify a
            list-chil: of the coll. */
            do;
            call list_scan(coll_wort(i),
                        cell_wor(i+1),f);
                i = i+2;
            ent;
            else
            /* Corresnon!ing wr ir: the coll is the
        address of a list-child coll whose tyon is
        &iven by this word in the tomlate.*/
            No;
            call list_scen(templatn_worl(i),
                        coll_%rt(i), f);
            i = i+1;
        ent;
ent;
call f(typo_coto, ccll_a!tross);
    roturn;
```

ent list_scan;
5. Sone Elahorations of the Elementary Procedure
5. 1 Imed iate Dato (cf. Section 3.1 ahove)

As shown in Section it. above, the clementary proceduro almost allows tombatos with $n=0$. The only mocessary chanse is to nake the call of f conditional won $n>0$.

For aded efficioncy, of course, the loon coult be elaboroted so as to avoid spurious self-calls for processine of descendant pointers which contain imediate date in tho place of addresses.
5.2 Classes of Types

Certain operations at bioher lovels of the systen may involve classes of tymes. For cxamole, numers, arras, ans variatoles are all "atoms" to LIS?. It may to uscful to at! a wor of flag bits to cacl template so that classes of tyoes ary be easily distinruishet.
5.3 Re-ontront Lists and Shered Suhstructuro

The elcontary procedure will exert rodumtant offort on shared substructure, and it rill oxert unhoundet effurt on
reentrant lists. Sonetines these casesmay hevolet by using simplified tenplates; at other limes, marking aill bo necessary.
5.3.1 Simlis iot Tometates

By the tefinition of reentrant imileit in soction 1 . above, mony structures aro reentront ovon thoust t'oy woul not ordinarily be so tescribet. For nxamo, consior any structure in athen ootors arm mathot by backomintors, as in stlu. Suct a structure is its on iost-aratomil\% 0nt reentrant for puroses of die olowntory orocedure.

This superficial roontrancy is mot notiocs in traditional systens since hant-tallores list-tracers have always been sonsible enownt to follow only one set of pointors. To estahist this restriction lori, to back-pomber wors of the amporiate tombacs om wo set to \underline{Z} ("this is not an atross"), even woush the corresmonting worts in the colls to rally contein attresses.
5.3.2 arkins

When true rontrancy is mossin? , the ilst-tracine procotur mot marle trocet 1 ists so that Ghoy are not trace
asein as their own list-hescotants. Shrime any also ve losimble to ayoil roturtent tracime of sharet substructur.
5.3.2.I It may hapen that enlls of certain types are never the roots of ronctent or share: structures. Cells of these types noet never be marked.
5.3.2.2 If the list-tracer is makins ube of marline, it will intermate a bit in the tomplate to see if this coll should be maret.
5.3.2.3 If colls of this typo stoultbo marked, then the location of the mork must le deternined. The location may he set by conventint (ege.e any cell which is mortot is market ir its first wort) or hy tho prosence of a suecial cote (1) Pant Z) in tho corresmontiry wort of wo template.

If this cell is alrealy mares, thon the list-tracer returns. Othermise, the list-tracer antis this cell and traces its substructuro.

Each use of a moring list-tracer may need to be followed by a iist-trace to reset the marks. Alternately, if a broad field is used for marking, then coch trace can use a ne: bit-nattern (say, consecutive intezors) as the merk. (1)
5.3.3 Reforenco Counts

The use of referone counts for storwe manamenent [12] is formally similar to the use of morime. In perticalar, the consiterations of pararrops 5.3.2.1-3 are all applicoble to roferonce counts.
5.4 Linear Lists

Linear lists are combn in list-processins applications. In other arts, it is comon for cach cell of a given type to atilize a siven word for the astress of another cell of the sane type. To indicate the ond of tho list, a distinctive bit-pattern (c.a., all zoro) is uset.

It may be ocononical to use a hit in the tomplote to indicate that the associatet colls aremence of linear lists. Then, the list-trocer can use a wirtosone: 100\% insteat of a self-call for oach cell of linar list.

5. 5 Other Special Cases

In certain anplications, the list-tracins protan my need to take aconut of $i d i o s y n c o t i c$ gronertios of cortain onll-types. For sxample, smonse that a list-scanor is beins used to scon tiscarnl struotures (Bection a.3.2 above) in an alobraic intorirator who inclatas orlls of type variabla. one of these cells stoult bo raturat to froe storase only if
(a) its reforence count has sone to zom, and
(b) thore is no value assocince! atot th is voriable.

Sone variables moy attitiongly be spodolly protecta! from disappearanco.

The interproter may have all of to variatle cells chamé to an itontifior mast table. If t! is is so, ton Whon a variala cell is to bo rotarn! to fros stome, the hash-tahle chain mast be nochene

The various actions of this whate mive all le trinerelby a bit in tho tomblo of cills of tyr variable bificence about eivis this sort of ambication-tependent information to the list-procossine routines nay be offset by ibe arcuments of section 7 bolow.

6. Lon-Recursive List Ecanninc

In some anviromants, it aill mocomonicel to rarite the list-scamer so as to avoi rocursivo cells.
0.1 Local Stackin\%

If momory usatie as a stack is available, and rocursive call of tho list-somone con bo rolacoly ith a "oush" operation of tho nointor armumen. Tlon the list-sconner cone is all surroutod a low wion thons no intors fron the stock until tho stoct is conty.
6.2 The Destsch-sohor-iaite Almrithe

If a stack is not availato, to liot-sonemon tochnique of moutsch, schore, amt baton(1) moy be anpropiote. The Doutsch-schorr-iaite (bon) technique usos the scanned list itsolf for tomor:r storon turin the scan.
6.2.1 The Al,orition

Consider a list structure consistime (in part) of a frondoaront coll ce a peront coll De and a chill call o. To scan cell C, the list-scanner mocks
(1) It is croditel to thon ir [0]. ?. 4I?.
(a) the type of C , and
(b) the attross of C , ant
(c) an index wict will rene over the wris of \underline{C}.

The bs'l list scamer also rambers those hota for coll ${ }^{\text {P. }}$

Wen the bse list-scanner returns to E fron C , it ust
(a) Iiscart its dota comonmines Ce and
(b) roplace its data concemine -6 by its ita
concernins $P_{\text {, }}$ an:
(c) somehon roplace its tata concerning, P by
the correspondine data conenrnint G.

These data conerrine are retrievod fros wors of coll P, were thoy ore stored whon the D3:! sconer was about to move fron P dom to C. The worluset for theso data is simply that wrt of P containing the atdress of Since tho data concorning f arn kont alive within the DSt prorram durine oneretions on ce contimuous storose of wose data in P is not essontial. of courso, those data must be restored to P upon roturn fron ${ }^{2}$ before they are "discarted" as sursestod just ahovn.
5.2.2 Applicability of the Alsorithm

The usll sclome nay roqui m that a sare worl or tw to present in cuery cell. This is so bocause althoust throo data (type, address, and intermal intex) concorning the grandparent cell must be temporarily stord in the baront cell, only one datun (ateress) concornira the chilit celi may be there to be overuritton. At best, the chila coll will have heen itentif iot with two woris (type and atlress), an! the grandmarent's internal indox will still be boneloss.

In proctical cases, there aro frocuently a fow extra bits available in eac! cell. It nioht be notot, morovor, that the internal index may be roprosentahie ath as little as one bit; this was its size in the oriminel rat inglomentation.

7. On Subroutines and Iechnical Conounication

Bost of the various list-brocessirg techniaues describod abovo have been imiomente: for use in an alselare interpreter. The interpreter uses colls of sevon difforent sizes and about fifiy liffernet wops. This paner, instead of boing molly devoted to liscussion of tho underlyine techniques, withe have mor concomet itself ofth
tho motulerization, callins-soquences, an: other blacl-box Aetails.

This tochnioun-oriontet deseristion is tho rosult of vion ahout the state of prowraming. A fou yonrs an, list-0rocossin: was an prome ant dififult husionse Usors wor not intorostot in the intoral tomermans, any arm than, a fow more yonrs aso, thoy hat boon interestot in ar internol teohnisuos of flootio-moirt inter retive routines.

Tomy, the tectnimus oner used only winin specinlists' floetino-point routines arn colon in-lins by everyone. Sinilarly, list-processim cote is totay more ofton tailored than bouste off the rack.

The listin-lovers, no doubt, would the in touch with tho author no moter ghat he li:

B. Acknowlodmoments

The author is indentet to prof. J. bosos for !is encouramemont, to C. loutt ant \therefore. Sussmot for woir coments on an arly !poft, ant in Prof. Artbur Evans, dr., for brisums the ark of S. iarstall [a] ant iartio Richards to the author's attention.

REFERECES

1. Abratans, Paul U. et al. "Whe LISP 2 Prosraming Lancuase and syston," MFIPS Proceedinss, XIX (Fall, 1963), pp. 651-676.
2. Anonymous. PL/I Reference lanual (10f: Cororalion, 1968).
3. Bobrou, Daniel G., ant Burphy, Daniol L. "Structure of a LISP Systen Usins T:o-level storate," ciche $\%$, U, (iarot, 1907), 20. 155-159.
4. Fonichol, Robere r., and Yocholson, Jerue c. "h Lis. Garbase Collector for Virtual-imemry Compator systons,"

5. llavkinson, L. "LISP 2 Internal Storane Conventions." Systen Development Corporation Tech Heno T1:3417/550/50 (Santa Monica, 1907).
6. Knuth, Donal: E. Funtamental Algorithos (Bealine, Hassachusetts: Adtison-Hesley, 106s).
7. Lans, Charles A. "SML-Systras Assombly Lancuere," res Procectinus, xoxly (soring, 1969), 50. 543-557.
8. Marshall, S. "An Alcol 58 Carbara Collcotor." Wievit Computatior Conter Tochnical Monrantum Tholl (Harover, tas !!amshire: Paremonth Collore, 1950 .
9. Viccarthy, Jotn. "pocursive Functions of syarolic Expressions and Their Computation by lachine - $1, "$ gene 111, 4 (April, 1000), pi. 104-105.
10. en al. LISP 1.5 Propramer's lanuol (Centriloc: (ilt)pross, 1965).
11. Ross, D.T. AED-0 Prosraming llanual ('ectosmahod, 1964).
12. Weizonbaum, J. "Symotric List Processor," chcie $\because 1, ~ 9$ (Geptember, 1963), D. 524-544.
13. ._ "Recovery of Reontrant List Structurs in SLIP," CACHL $x 11,7$ (July, 1950 , 20. 370-372.

$$
-? j-
$$

dicharls to the author's attrntion.

