
THE MACAIMS DATA MANAGEMENT SYSTEM

Robert C. Goldstein
and

Alois J. Strnad

MAC Technical Memorandum 24

April 1971

(Paper presented at 1970 ACM SICFIDET Workshop
on Data Description and Access, Rice University

Houston, Texas, November 15-16, 1970)

Massachusetts Institute of Technology

PROJECT MAC

Cambridge 02139545 Main Street



MSTEY iTkM5AAM ATAO 8MIADAM SfT

UnSt .t aoIA

A

Itel LitqA

I, l01 d OV#L Is b,asao, "01#"

.4

-',-

& i fisot; faitM &ra. 47n

C



0 1

The MacAIMS Data Management System

by

Robert C. Goldstein and Alois J. Strnad

I. I n t r o d u c t i o n

MacAIMS (MAC Advanced Interactive Management System) is a

relatively small research project that was initiated in the

summer of 1968 to investigate the feasibility of using some of

the then existing computer facilities at M.I.T. to aid in the

management of Project MAC. Several interesting and useful

interactive programs were developed and are currently in use.

However, the primary, and not very suprising, result of our early

work was the discovery that no existing system offered either the

desired highly human-oriented interactive style or the capability

of providing very rapid, yet carefully controlled, access to a

large data base. Thus, early in 1970, we found ourselves faced

with the prospect of developing entirely new information handling

tools if we wanted to extend the capabilities of our management

system beyond the level that had already been achieved.

The work reported herein was performed at Project MAC, an M.I.T.
research project sponsored by the Advanced Research Projects
Agency, and was supported by the Office of Naval Research under
Contract N00014-69-A-0276-00C2.



0 2

The MacAIMS Data Management System

Multics

At just about the same time that we were deciding to go

ahead with this effort, a major new computing facility became

available at M.I.T. This new facility, the Multiplexed

Information and Computing Service (Multics), was the result of

more than five years of work by the Computer Systems Research

Group at Project MAC in cooperation with the Bell Telephone

Laboratories and the General Electric Company, and is generally

conceded to represent a major advance in the area of

multi-programming, multi-processing computer systems. it is

pertinent to say a few words here about Multics since many of the

things we ultimately decided to do would be impractical in a less

powerful environment.

Memory Orzanization

Perhaps the most important aspect of Multics for our present

purposes is its memory organization. Nearly all large computers

employ a hierarchy of memories, ranging from core through drums,

disks, tapes, etc. Each level in the hierarchy Is characterized

by having larger capacity and slower access than the preceeding

ones. In conventional systems, the applications programmer must

individually manage his own use of the hierarchy, explicitly

moving programs and data from device to device. In Multics, this



U 3

The MacAIMS Data Management System

approach is replaced by a single lcvel, but two-dimensional,

memory organization. It is as if each user had available to him

a large number of identical core memories. These memories are

referred to in Multics as segments, and a user process may have

up to 256,000 segments, each containing, in the current

implementation, as many as 64,000 36-bit words. The total size

34
of this address space is therefore 2 words, and a user program

may address any bit in that entire range as easily as if it were

all implemented in core. Multics also employs a paging strategy

for managing the physical memory hierarchy. This means, for

example, that it is feasible to provide lengthy blocks of program

or data for special situations, secure in the knowledge that

except when those situations exist, these blocks will cost us

nothing in either core space or swapping time.

Access Control

Another important aspect of Multics from the point of view

of the information system designer is its facility for access

control. Again, a two-dimensional approach is taken, covering

first access to segments, and then access within a segment. Each

segment has an associated access control list which identifies

all the users authorized to use that segment and also specifies

the mode of access for each of them. The four access modes are



The MacAIMS Data Management System

read, write, execute, and append. Within a segment access is

controlled by a system of concentric protection rings which can

be thought of as a generalization of the "supervisor mode, user

mode" facility of most modern computer systems. Any attempt to

access a segment from a not sufficiently privileged (i.e. outer)

ring will cause a trap. A routine provided by the "owner" of the

segment will then be called to decide whether or not to permit

the specific access being attempted.

With its very large directly-addressable virtual memory and

its flexible access control capabilities, Multics provides

important new tools for handling large data bases. Let us now

turn to an examination of the way in which these capabilities are

actually used in the MacAIMS Data Management (MADAM) System. It

should be pointed out that all programming for the, MADAM system

is in PL/1, the primary language on Multics and the language in

which the Multics system itself is written.



0 5

The MacAIMS Data Management System

II. O v e r v I e w

In our early experiments in the MacAIMS project, we made use

of a variety of data structures, including linked lists, trees,

and networks with fairly complex interconnections. This

diversity came about as a result of our attempt to store each

data base in the manner most efficient for it. If nothing else,

this certainly gave us a lot of experience handling different

types of data structures. As a result, we have concluded that

conventional approaches are incapable of providing the necessary

capability, flexibility, and efficiency. We have therefore

decided to base the MADAM system on a relational, or set

theoretic, approach to data base organization. Since this paper

is concerned primarily with implementation, it would not be

appropriate to go into any detail on the theoretical basis for

our system. It also would be unnecessary since several excellent

papers on this subject have recently appeared (1,2). In essence,

we take the view that all of the information we might wish to

store in our data base consists of data elements and relations

among them. Furthermore these data elements and relations fall

naturally into sets. For example, we might have a set of persons

names, and a set of telephone numbers. We might then also have a

set of relations associating telephone numbers with people. One

obvious advantage of this approach compared to more rigid network



0 6

The MacAIMS Data Management System

oriented systems is the ease with which exceptional conditions

can be handled. For example, the cases of a person who has no

telephone number or of one who has several require no special

treatment of any kind. A further advantage is that the

substantial body of theory concerning sets and operations on

them can all be brought to bear on the data management problem.

Access Control

A relational approach to data management also has some

attractive implications for the problem of access control. This

arises from the fact that the data elements can be stored

separately from the relations among them. It would therefore be

possible, for example, to give a particular user access to the

name set and the salary set without allowing him to associate

specific salaries with individuals. In other words, we can

protect that particular relation while still allowing the user

access to both names and salaries in other relations, for

example, a (name,telephone> relation and a <salary,account>

relation. As a second example, a user could be given access to

all sorts of relations about people for some research purpose,

while perfectly preserving individual anonymity by denying access

to the name set or any other data element set that would permit

identifying the individuals involved.



The MacAIMS Data Management System

Reference Numbers

The overall structure of the MADAM system is presented in

Figure 1. It will be noted that the primary division in the

system is between those procedure and data segments concerned

with data elements and those concerned with relations. The

following two sections of this paper will take up these portions

of the system in more detail. However, before getting into that,

some discussion of reference numbers is in order since they play

such an important role in our implementation. Whenever a new

data element enters the system, it is immediately assigned a

reference number which is used for all subsequent operations on

that element. This makes an important contribution to our goal

of storage and operational efficiency. In the first place, all

reference numbers are of known, fixed length. This is in sharp

contrast to the data elements themselves which may vary from one

bit to many characters. In our particular implementation,

reference numbers are all 36-bit quantities since this is the

word length of the computer on which the system is implemented.

Incidentally, this does not imply that the total number of items

36
and relations in the system is restricted to 2 . A reference

number is only unique within a set of either data elements or

relations. Furthermore, if in some exceedingly large system,

that limit should be approached, a simple change in the



0 8

The MacAIMS Data Management System

declaration statement could be used to arbitrarily increase the

length of a reference number. The effect of this on performance

would depend on the particular hardware involved. In our case,

reference numbers could be extended to 72 bits with very little

loss in speed. Aside from the efficiency achieved by using fixed

length quantities throughout most of the system, we probably also

save storage space since the average length of a data element is

almost certainly in excess of 36 bits.

The use of reference numbers also materially aids our access

control efforts. Since relation sets are expressed exclusively

in terms of reference numbers, we can easily give access to a

relation while withholding the identity of the actual data items

involved.

An obvious apparent liability of our use of reference

numbers is the element of indirection that they introduce. We

have just seen how that can be used to advantage in controlling

access to the data base, but at first glance it might appear that

they also introduce substantial overhead whenever an operation on

a data element must be performed. In fact, this Is not

necessarily so. If proper attention is given to the algorithm

for assigning reference numbers, the data element itself need

never be referred to except on input or output. For example,



The MacAIMS Data Management System

probably the most common operations performed on a data base are

comparison and ranking. That is, we want to knov. wheth-er twc

data elements are equal or if not, which one is greater. If t-e

reference numbers are assigned using a method which nreserves

order, these operations can be performed directly on the

reference numbers themselves. Not only is it unnecessary to

refer to the actual data element, but the comparison itself can

probably be performed much more quickly on the single-word long

reference number than on the variable length data element.

Again, of course, our access control capability has been enhanced

by our not having to dig out the actual data element.

We should also mention two special reference numbers which

turn out to be very useful. One is used to indicate a null, or

absent, field. This may arise as a result of certain of the set

operations. The other special reference number is represented

graphically by an asterisk and acts something like a wild card.

That is, It will match anything in its particular field. For

example, if I had the relation set (name,country of

citizenship>, I could locate all of the Australians by

intersecting that relation set with the single element one

(*,Austral ia>.



10

The MacAIMS Data Management System

Standard Forms

A further interesting property of this scheme is that we

have the opportunity to do some preprocessing at the time we

assign reference numbers. A standard form is defined for each

type of data element and this is the only form in which data is

stored in the system. The procedures discussed in the following

section of this paper have the responsibility of processing an

Input item into a standard form prior to the assignment of a

reference number. Thus, any two input items which result in the

same standard form will have the same reference number assigned

and there will be no ambiguity at a later time as to whether or

not they are equivalent. One example of the value of this

approach is the multitude of different ways in which people write

dates. Another, which is a bit trickier, concerns the

equivalence of upper and lower case letters In a character

string. In some cases this distinction might be Important. In

others, it should clearly be ignored.

This section has attempted to provide a general

introduction to the MADAM system. The rest of the paper will go

into greater detail on the representation and manipulation of

data elements and relations.



11

The MacAIMS Data Management System

Ilil. D a t a E I e m e n t s

A data element, in our terminology, is any basic piece of

data that is stored within the system. For example, the name

"John" might be a data element; so might the name "Smith".

Alternatively, if it were appropriate, "John Smith" could be

one. Data elements are represented throughout the system by

36-bit reference numbers. This approach enables storing each

data element only once within the MADAM system and also

substantially Improves the operational efficiency by providing a

consistent representation for all data elements.

Data Element Module

A user of MADAM

the detailed data

performed but which

not even have to

organized since, e

considerations may

Element Module (DEM)

user and the part of

must be protected from having to bother about

base maintenance functions which must be

are of no direct concern to him. He should

be aware of how the data is represented and

ven in an operational system, efficiency

require changes from time to time. The Data

provides the direct interface between the

MADAM that performs these functions.

Each Data Element Module is designed for a particular data

type. In other words, each data type, such as person's name,



12

The MacAIMS Data Management System

date, salary, occupation, deparment, field name, etc., may have

its own module. The number and types of DEM's depend on the

particular application. Each Data Element Module is one

procedure segment. As will be seen later, it may have its own

associated data base which is a data segment. A DEM has to

perform all of the functions which a user needs for storage and

manipulation of data elements. We have defined the following set

of entry points:

read - read the input stream and produce the standard form. For

example, the input to the DEM for dates might be " 6,

Jan., 1962.". The standard form returned by this entry is

"19620106". A data element can be stored within the MADAM

system in the standard form only.

write - this entry will write the given standard, form on the

output stream in natural, human - oriented form. Taking

the data from the previous example, the output would be

"January 6, 1962".

get_reference number - the reference number corresponding to the

given standard form will be returned.

get_data_element - this entry will return the standard form of

the data element corresponding to the given reference

number.

insert - the given standard form will be made known to the



13

The MacAIMS Data Management System

specified Data Element Module and a reference number

assigned.

delete - the specified data element is logically deleted by

setting a status bit.

These entries in a DEM will be used by a "system writer" - a

programmer who uses MADAM to set up a particular application.

They never appear to the ordinary user of an applied system.

Each DEM does not necessarily include detailed coding for all

these functions. In many cases, a Data Strategy Module (a

procedure segment) may be invoked as an intermediary.

Data Strategv Module

Most data elements fall into one of two basic classes:

character strings and integers. (In some applications, a third

class, real numbers, might have to be added. Since our initial

application is in the managament area, we do not have the problem

of scaling numerical data and choose to work exclusively with

integers for precision.) The distinction between character

string data elements and integer ones is that for integers we can

use the data element itself for the reference number.

For character string data elements, the reference number is a

36-bit binary number assigned by the DSM. The leftmost "one" bit



The MacAIMS Data Management System

is used as a flag to indicate the start of significance. The

actual mechanism for associating a reference number with a

particular character string is represented in figure 2. It will

be seen that a binary tree is used to store the standard forms.

This scheme meets the conditions suggested for reference number

assigment algorithms given in section 11.

The reference number for an integer data element is the

integer itself. The mechanism for storing these data elements in

a binary tree is represented in figure 3.

Because of different methods for storing and associating the

reference numbers with character strings and integers and because

the structures of the nodes are not exactly the same in the two

cases, there are two Data Strategy Modules: DSMstring and

DSM_integer. Both have the same functions and entry points as a

Data Element Module except that the entry points "read" and

"write" are omitted. Implementing these two DSM's means that

most of the entry points in a typical DEM are nothing more than

calls to the equivalent function in one of the DSM's. "Read" and

"write" must be handled separately since they are heavily

dependent on the "meaning" of the particular data element.



15

The MacAIMS Data Management System

Nodes of a binary tree

We have explained a mechanism for storing a data element as

a node in a binary tree and associating a reference number with

it. Because the data element may not be the only information in

the node, we must describe a node more precisely. As we

mentioned earlier, MADAM is written in PL/1. A PL/1 declaration

of a data structure is very descriptive and we will use it to

indicate the structure of the nodes (figures 4a and 4b). Note

that the data element is stored in standard form. As can be

seen, the two nodes are very similar. In a node representing an

integer the data length and reference number are omitted. The

data element in this case is also the reference number.

Data Element Segment

A Data Element Segment is the data base for a particular

Data Element Module. A DEM can have at most one DES.

As new data elements are inserted and space for their nodes

allocated in the Data Element Segment, the binary tree may became

unbalanced. That is, some of the branches of the tree may became

much "longer" than others and therefore substantially reduce the

efficiency of the MADAM system. The same effect may occur if



The MacAIMS Data Management System

there are a large number of logically deleted nodes in the tree.

(See the DEM entry point "delete"). Special programs run in a

background mode handle this situation by physical deletion of the

flagged nodes and by rebalancing the tree.

Figure 1 illustrates the connections among the various types

of segments. As can be seen, each Data Element Module uses its

"own" DES via a Data Strategy Module. It should be pointed out

that a DEM does not have to have a DES. For example, a DEM for

salary might have a built-in procedure for encoding the salaries,

but the data elements might not have to be stored at all.

There is one DEM for field names. Since field names are no

different from any other type of data element, they can be

handled exactly the same way. In order to have the system be

self-descriptive, the data base must include the identity of the

Data Element Module that should be used to process instances of

each field name. This connection between a field name and a DEM

is stored just like any other relation (see Section IV.) Each

DEM must therefore have an associated reference number which is

assigned by the DEM for DEM's.



17

The MacAIMS Data Management System

IV. R e 1 a t i o n s

We have just presented a very elaborate mechanism for

keeping track of individual data items and assigning reference

numbers to them. Let us now look at the process of representing

and manipulating relations among data items. Throughout this

discussion, whenever we refer to a data item, we rcally mean the

reference number of a data item. Relations are represented

exclusively in terms of reference numbers.

We all know intuitively what a relation is. It is, for

example, "John is Paul's father". Technically, however, we

should call this an n-tuple (in this specific case, a duple).

The terms "relation", or "relation-set", we reserve for the whole

set of duples relating fathers and sons.

Having adopted the notion of a set, we can now implement all

of the basic set theoretic operations such as union, difference,

projection, etc. We choose also to extend the usual mathematical

definition of a set by introducing the concept of order among the

n-tuples. This is, of course, unnecessary for any of the set

theoretic primitives but makes the computer implementation of

them much more efficient. It is also useful on input and output

since people tend to prefer ordered information. This leads us

to define two additional primitives: sort, and



18

The MacAIMS Data Management System

getsuccessor_relation. Sort takes as input a relation set and a

sort key. The key is in the form of a Relation Descriptor. The

sorting operation consists of ordering the n-tuples numerically

after first rearranging each one in accordance with the new

Relation Desriptor (sort key). Get_successorrelation requires

as input a relation set and an n-tuple and returns the n-tuple

immediately following the given one in the appropriate collating

sequence.

Data Structures

Most previous data management systems have been capable of

supporting only a limited number of data structure types,

usually in fact just one. It should be clear that any data

structure type which is at all suitable for storing relations can

be used to store any relation. However, depending on the nature

of the relation and the type of access required to it,

alternative data structures may vary tremendously in efficiency.

Since we had no way of knowing as we designed this system how and

what it would be used for, we felt obligated to at least provide

a mechanism for implementing any type of data structure.

Our basic approach is similar to that discussed in the

preceeding section for data elements. That is, there are two

types of segments. One type contains the actual relational data



19

The MacAIMS Data Management System

in whatever form the user feels appropriate. The other type of

segment contains the procedures that operate on this data. As in

the preceeding situation, there are alternative sets of

procedures. However, whereas one Data Element Module was

required for each type of data element known to the system, a

Relational Strategy Module (RSM), so called, is required only for

each type of data structure implemented, regardless of the

contents of the relation. Thus, while a typical operational

system would have a large number of Data Element Modules, it

would probably have not more than two or three RSM's. This is

fortunate since the latter is a significantly more complicated

piece of programming. Each Relational Strategy Module knows how

to perform the primitive operations on its type of data

structure. The operation of the system is therefore completely

transparent to the particular data structure used, assuming only

that the appropriate RSM is available.

The Canonical Form

There Is one further point which ought to be made

concerning data structures. Most of the primitive operations

that we have defined require two structures as inputs and produce

a third as the output. A potential difficulty arises when it

becomes necessary to operate on two sets of relations that happen



The MacAIMS Data Management System

to be stored in different types of data structures. It is

clearly not feasible to write a Relational Strategy Module that

can operate on every other possible type of structure in addition

to the one it is specialized for. Our approach to this problem

has been to define one type of structure as the "canonical

form". Every RSM must be capable of accepting a canonical form

as either of its inputs and of producing the canonical form as

output, Thus, to operate on two data structures of different

types, one of the relation sets would first be converted to

canonical form using its particular Relational Strategy Module

and then the RSM for the second data structure would be used to

perform the actual operation using the canonical form as one of

its inputs.

In order to make the job of programming a Relational

Strategy Module a reasonable task, we have attempted to define a

canonical form that would represent a simplest common

denominator. The structure we have decided upon can be thought

of most easily as a two-dimensional array where each row is one

n-tuple and each column corresponds to a particular field. The

canonical form for the relation <father,son> is illustrated in

figure 5. It requires exactly two columns, one for fathers and

one for sons. In order to identify the columns, we add a zeroth

row to our array known as the relation descriptor. It looks



2 1

The MacAIMS Data Management System

exactly like any other row, except that its entries, rather than

being data elements, are field names. These, like the data

elements themselves, are referred to only by reference number in

the relation data segments. While it is convenient to think of

our canonical form as a two-dimensional array, it is actually

implemented as a linked list of n-tuples to facilitate

insertions, deletions, and sorting. It is likely that when we

come to a detailed consideration of inter-computer transmission

of relation sets, we will transform the linked list back into an

ordinary array in order to eliminate all use of pointers which

tend to exhibit a particularly virulent form of machine

dependency.

Organizinz Relational Data

An important aspect of any data mangement system is

remembering just what information is in the system. We have

already seen how defining a data element called "field name"

allows us to keep track of all the different kinds of data

elements in the system without having to create any additional

mechanism. It would clearly be nice to do something very similar

for relational data. Upon close examination, in fact, the

requirement appears somewhat more stringent. For example, if a

question comes up which involves the (father,son> relation, we



2 2

The MacAIMS Data Management System

would like to be able to find out not only whether that specific

relation exists in the system, but if not, whether the required

relation set is a subset of any existing one, e.g.

(father,mother,son>. This question can also be turned around.

If we are actually looking for a complicated relation that does

not already exist, we would like our indexing scheme to tell us

which existing relation sets contain at least some of the

required information and can therefore be used to build the

desired one.

By direct analogy with the scheme used for data elements, we

keep track of all the relation sets known to the system by

creating another relation set whose component n-tuples are the

relation descriptors of all the known relation sets along with

the information required to locate each one. Pursuing the

analogy further, there is nothing special about this relation

set. It has a relation descriptor whose components might be, for

example, "field_l", "field_2", etc. Furthermore this relation

descriptor would appear as an n-tuple in the body of the relation

set along with all the other relation descriptors. To find out

whether some specific relation existed, for example, our

<father,son> case, one would merely have to construct the desired

relation descriptor, take it as a one element set, and intersect

it with the set of all relation descriptors. If one were clever



23

The MacAIMS Data Management Systein

about us iag the2'wId rard" mentlone i n sect i on 1I, one pass

could not only identify any occurences of this specific relation

set, but also any in which the desired one was a subset. It

should be clear how this process can be turned around to select

relation sets that are likely candidates for combination when the

desired one is more complicated than any in the basic system.

* <7-.-



The MacAIMS Data Management System

V. A c k n o w I e d K e m e n t s

We would like to thank Professor James D. Bruce, and the

Messrs. Burton J. Smith, Andrew I. Fillat and Leslie A. Kraning,

all of the M.I.T. Electrical Engineering Department, who first

called to our attention the possibilities inherent in a

relational approach to data base management. We also wish to

acknowledge the contribution of all the other members of the

MacAIMS team, particularly Mr. Douglas M. Wells, who was too busy

implementing the system to help write the paper. Mrs. Eileen

Moore did all of the typing with her usual speed and accuracy.

VI. R e f e r e n c e s

1. Codd, E.F. "A Relational Model for Large Shared Data

Banks", Comm. ACM 13,6 (June 1970), 377-387.

2. Fillat, A. I., and Kraning, L. A. Generalized Organization

of Large Data-Bases; A Set-Theoretic Approach to Relations,

M.I.T. Electrical Engineering Dept. Masters Thesis, June

1970

The entire MacAIMS System is discussed in exhaustive detail in a

series of MacAIMS Multics Memos. A complete list is available

from the authors.



0~

n 
d4

VI-I

* Page 25I

0

rdd

ro >

rdH



Page 26

Binary Tree for Character Strings

*

000000000000000000000000000000000001

Mauldin

Lewis Nelson

10 11

Kartew Linn Nelsen Rausch

100 101

1101111
Hardin Myer Rabits Spann

1000 110 0 1110 lill

Glatt

Mullo

10000 11000

Gold Murphy

100001 110001

*
In succeeding reference numbers, all bits to the left of the flag
have been omitted for clarity. First left-most "one" bit is used
as a flag to indicate the start of significance.

Figure 2



Page 2'/

Binary Tree for Integers

40

30 50

75
20 35

70 80

25
37

81

23

Figure 3



2 8

The MacAIMS Data Management System

of the node for a character string.

declare 1 node based,
2 1p pointer, /*pointer to the next left node*/
2 rp pointer, /*pointer to the next right node*/
2 rn fixed bin, /*reference number*/
2 dl fixed bin, /*data length in number of*/

/*characters*/
2 data char(a_dl refer(node.dl)), /*actual data*/
2 st bit(1); /*status bit for logical deletion*/

a_dl fixed bin; /*maximum data length*/

Figure 4a.

Structure of the node for a Integer.

declare 1 node based,
2 Ip pointer, /*pointer to the next left node*/
2 rp pointer, /*pointer to the next right node*/
2 in fixed bin, /*lnteger data*/
2 st bit(1); /*status bit for logical deletion*/

Figure 4b.

declare

9hLWkhWL9 Nd h ft U kc N5 X w Nf h d f r haracter strinzStructure



Relation
Fathers Sons *Descriptor

John Bill

Al Dick

Doug John

Steve Sam

Notes: Both field names and instances of them are

actually represented as reference numbers.

"John" appears both as a father and a son.

Figure 5 - The Canonical Form

2 9

Rows

0

1

2

3

4



Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

I. ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED

Project MAC 2b. GROUP None

3. REPORT TITLE

The MacAims Data Management System

4. DESCRIPTIVE NOTES (Type of report and Inclusive dates)

Technical Memorandum

5. AUTHOR(S) (Last name, first name, initial)

Goldstein, Robert C. and Strnad, Alois J.

6. REPORT DATE 7. TOTAL NO. OF PAGES 76. NO. OF REFS

April 1971 33 2

Ba. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(5)
NOOO1 4-69-A-0276-0002MATM2

. PROJECT NO.TM-24

Ob. OTHER REPORT NO(S) (Any other numbers that may be
assigned this report)

d.

0. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

3D-200 Pentagon
Washington, D.C. 20301

3. ABSTRACT

This paper describes the MacAIMS Data Management System (MADAM). It begins
with a brief discussion of the overall goals of the project, its operating
environment (Multics), and its data management requirements.

The MADAM system is based on a relational model of data, and employs set-
theoretic primitive operations for manipulating data. The basic philosophy
of the system and some issues involved in its implementation are described.

14. KEY WORDS

Data Management System
Information Retrieval
Data Structure

Data Manipulation
Access Control
Data Organization

Management Information System
Data Base Management
Set-Theoretic Data Structures

D DNPOV Is 1473 (M.I.T.) UNCLASSI FIED

Security Classification



MIT/LCS/TM-24

THE MACAIMS

DATA MANAGEMENT SYSTEM

Robert C. Goldstein
Alois J. Stmad

April 1971


