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ABSTRACT 

Heuristics for genera ing oonstruc:tions to help solve high school 

geometry p:rob lems are give Many examples of the use of these heuristics, 

a.re given. A method of translating geometry prob.Le.ms into v~ctor algebr,a 

problems is · hcussed. The solution of these vector algebra geometry problems 

is, analyzed.. The use of algebraic constructions to help solve these vector problems 

is also discussed. 
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1 ., INTRODUCTION 

In the field ,of mathematics there are some problems which cannot be 

solved us.ing only the elements defined i the probleru Whe: this <Ji tun ti ort. 

occu,:s :t it be1:omes n,eceHsary to introduce some additional l ement 5 .i n •1 t,~ 

problem. These .additions to ·the problem are usually known as constt,Jctin 1~. 

I elementary algebra t he elements of a problem. are · he variable in l 

The introduction ,of new elements into the pl'oblem, cor . esponds to the defifd 

tion of some new variables in the pr,oblem... In the word p oblems ,of modetn 

algebra the elem.ents are the members ,of a. grou.p ,, The insertion. of a tern of 

the fom (a a -i) corresponds to the intro due tion cf a n,ew element i ttc., the 

problem. In Euclidean Geometry the introduction of a. ne~ element corresrouds 

to the introduction of some new points and lines into t he figu:re. 

In this t:beai we 'lr.+111 study he.uristie:s for the generation of two kinds 

of conrs,truct:101118. In t e f 1:rst half o,f this, thesis~ some heuristics for 

creating geometry ,c:ons.tructionrs will be discussed These heuristics were 

d,eve.loped to help so i ve ge.ometry problems which satisf'y the follo·wing '1 r.:::.on 

dit1ona 

1) All lines. in the pt'oblem figur,e. are st-raigbt. There are no curvP.d 

lines of any ort. 

2) The pl'oblem cannot be solved by making the trivial const uctfon of 

co,n ecting 2 points!li: in the dia:grani. 

Three types of constru.ction heuri.stics will be described, The f int 

type deals with the t',eflecU.on ,of the figure as a construction. Heuristics 

c,oncerning when and how to reflect part of the figure around a point wi. 1 e 

discussed. 

*Unl,ess otherwise specified in this papeir. the word "point''' is understood to 
mean a position marked by the in.tersectiion of 2 or more lines not jus.t: a po­
sition in a line. 
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The. second type of heurist.ic ie the S,ituation.al Constructi,on Heuristic 

(SCH). The SCHt s de.scribe specific local situations in g,eome.try (such as th 

type of goal or the types of cons trainta in the problem} and sugge 6t h con 

s.tructions bat should be draw for each situation The refl,ection heurist icr. 

can also be co1ns1dered an SCH. Since a reflection. is not normally considere~ 

a construction, :it will be discussed separately, 

The third type of heuristic concerns constructions for the application 

of a previously proven theorem. Occasionally in geometryt the student will 

,:,ecognize that the probl,em figure is very similar to a figure of a. pre­

viously prov,en theorem. The student may consider thie information contained 

in the theorem to be useful for the ,solution of his o•wn problem.. In o:rder 

t,o utilit:e thie theorem, conetruc.tio,ns must be inserted in the problem 

figure to ,create the figure of the previously proven theorem. Methods for 

drawing, this type of construct:Lon are discussed. 

-n the second half of this tbee1s ,, g,eometry problems expressed in a dif ­

f ere.nt form are studied ,. There ie, a.n interesting alternative method of re­

prese·11ting ,geometry problems. Through a simple transforma.t:ion procedure we 

can ,i;:onve:rt a problem represented in geometric terms into one. represented in 

vector alg.ebra te1;111s The problem is the.n changed from proving geometric 

relations in a given figure to ded.ucing algebraic: relations from a set of 

simultaneous vector alg:ebra equations. So, essentially, the geometric con­

straints of the figure are conve:rted into vector equations~ In this alge ... 

braic system, the geometric constructi,o,n corresptmds to he introductio of 

a new variable and ne equ,ations In this half cf the thesis. the solution 

of geometry problems in this vecto,r algeibra system is studied. Also, the 

algebraic version of t:he construction is studied. The geometry construction 
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he.urist i ,cs, previously d,escribed are converted to a vector a.lgeb:ra fo .. i , • 'r • 

fora a:nd use of these alg,eb:raic constru.c.tion heuristics are describ d. 
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2 GEOMETRY CO STR CTION HEURISTICS 

2 . 1 Midpoint Refle.c ion Constru,ction 

This discussion of the midpoint reflect i on constru c. t n s ti ·_,., i ~•' ~tr, 

four ma.in sections. The first part wi l be concerned with ~ fonn a l wo r. H. ::-.; 

definition of ref.lection. * Then using this def ini t io , 1 some gene a pro c-_ r ­

ties of reflection wi.11 be discussed. The second part: is a d isc t1 s s ion ;:, f 

when and how to apply the reflection. co structions. Since the e E! ect_on 

can be applied to each point ,of the figur,e independently of he o t her po· nt s, 

some 1:ul es to dete ne which point.s to, ref lee t wil be given. Also so e 

heuristics will be gi.vea to help determine which figures s hould have the 

cons true. tion a.ppl ied to them, The third ma in part wi 11 be a disc. uss ion of 

the motivation for this construction Reflection's method of operation 

tr.ill be analyzed. Examples of the use of the t ·ef lection construction on 

actual geometry problems, will be given in part four. 

2 •. 1. 1 A Formal Definition of Midpoin ** Reflection 

Although most people unde rstand the concept of reflect:L,on, a ·formal 

definition of midpoint r e flection 'Will now be gi.ven so hat a co on defi­

n.i.tion can be used and referre-d to. This definition will a so be used to 

prove some proper ties of the reflection. We can formally define t.he mid­

point ef lection construction in. the f ,ollowi g way. 

To reflect aro nd a point M~ fi.nd the images of all poiats X that 

are dis tinct f om M. The following p,rocedure should be followed 

*I this section I shall frequently 1:ef,e.r to midpoint ref e i n a · ·s 
ref lection. 

**Although this operation should real -y be called a poi ·t reflection,. we shall 
continue t o call it a midpoint refl,ec.tion to emphasize the fa.ct that refl ec­
tion will only be applied to points tha.t are midpoints. For a disr:ussi on of 
why reflection is. applied only to midpoints see Section 2.1.,. 



10 

to find the imag,e of a point X: d:raw the straight 1 ine de ermined 

by X and. M, extend the straight line determined by X and M
1 

fo:r a 

length equal to the length XM. Now the endpoint of the extended 

line segment 1s x~, the imag,e of X reflected around M. The i mage 

of M~ M' 1 is the same point as M. 

X M,M 

Fig. l 

..,______ 
d 

x• 

Applying the midpoint reflection co st.ruction to a figure essentially 

ere tes an exact duplicate of t .he orig.inel figure. This duplicate is 

atta,ched to the. original at three points. These points are: M, the midpofot 

about which the reflection took place, and A and B, the 2 endpoints of the 

line segment of which M is th,e midpoint, Intuitively, we can regard the 

reflection as ,creating a dupl.icate of the original figure and them super­

imposing the duplicate so, that the po.ints M and M', A and BI and B and A' 

coincide. 

A C' 

C 

B,A' 

Fig. 2a Fig. 2b 
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P om our intuitive notion of the reflection in Fig. Zb we can observe soms 

interesting propert.ie.s of the reflection. For instance~ in Fig. 2b since 

AC'A'C is a parallelogram, so AC""' A1 Cr and AC 11 A1 C'. sing the. form.al 

definition of the midpoint reflection construction we can pre e so e of the 

relationships betwe.e.o elements of the figure and their images u.nder ref ' <"'r:­

tion 

2.1. 2 Midpoint Reflection Relations 

lUU If XY h a line segment and X'Y' is the image of XY under m.idpoin re­

flection~ the length of X1 Y' is equal to the. length of XY. 

PROOF· If X., Y, and M a.1:e a11 colinear, XM • MX' and ffl ' MY 1 by defi­

nition of the reflection construction. 

X 

X y 

Fig. 3 

If X ~ Y .t and M a re not all col inear ~ connect 1 ine. segments XM, 

YM 1, and XY. Then r ,e.flect the figure around M. 

I 

Fig. 4 
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Now:, XM = MX 1 and YM == lfi I by de.finition of the ref lection , on­

struction, Angle XM'l angle Y'MX' by the equai ·ty of ertica 

angles. So triangle XMY is congruent to triangle X1MYr by SAS . 

Therefore:. XY ... , X' 1 by cor-responding parts of congruent tr -

angles. 

RR.2 Tf XY is a. line segment and X'Yi is the image of XY under m·dpoint re­

flection, and if X,. Yi and M a·re not. al l colinear then XY. is parallel 

to X.'Y''. 

PROOF: By the steps use.d to demonstrate RRl~ we can also demonetrate 

that in Fig. ,4 angle XYM "' angle. X'1 Y'H by con·esponding part.s 

of congruent triangl,es. So XY is parallel to X1Y' by the al­

ternate int,erior angle theorem. 

RR3 If angle XYZ has as its image und,er midpoint reflection angle. X'Y'Z' ~ 

'then an,gl,e. XYZ ~ angle XI Y' Zr • 

PROOF: If x~ Y :t and Z are not all c:oUnear ,, conoe.c t line XZ so that 

angle XY.Z is contained i ·n triangle XYZ. 

• M 

Y' 



PROOF: 
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As a result of the reflectio , there will be a triangle X'Y'Z. 

Now XY .., X'Y', XZ .. X1 Z', and YZ = Y I Z' by 'RRl. So triangle XY 7. 

is congruent to triangle X 1Y Z I by SSS. So by cm:res:ponri.ing 

parts of congruent triangles, angle XYZ "" ang l e X 'Y 'Z 1 
•. ln 

order for this to be a valid argument M, the poi nt about which 

the reflection takes place, may be any poi n of the figure. I t 

can even be the point X , Y, or z. 

If X, Y, and Z a.re all coline.ar • find a li th point W which is not 

colinear with X, Y, ad .z 

w w 

X ' 
~y .. z X• "'y . I z 

• M •M,M• 

z•.-

y"W' 
"JC' 

Fig. 6 

Now since is not colinear with X; Y, and z, by the. argument 

just completed above,. angle XYW "" angle X1Y1 W' and angle WlZ • 

an.gle W'Y 1 Z 1
• So angle XYZ - angl,e XYW angle WYZ - angle 

angle. WI Y' Z •· "" ang,le X' Y I Z' • 
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2 .1.3 When a.nd. Row to Apply the Midpoint Reflection Construc.tion 

Now the -problem. cf when and holil to apply the midpoint ?"eflection con­

struction will be discuss,ed. 

The ain criteria for applying the reflection co,nst:ruc:: io is tha 

there be a midpoint in the figure. A figure is a candidate for applying 

reflection whenever it contains a midpoint. 

Once a midpoint 'to reflect around has been found~ t:he next problem is 

to decide what parts of the figure to reflect. One simph~ solution is to 

ref 1.ec t the entire figure This method has the disadvantage of reflecting 

puts of the figure which may never be used in the. proof. These unused 

figure parts do, however, increase the complexity of the diagram and make 

the p:roof harder to find. 

We will now present an alternate method of pe·rformi.ng the -reflection. 

A set of rules will be given. to determine which points i , the figure to 

reflect. This method enable,s us to decide to reflect only the essential 

parts of t e figur,e. So from the standpoint of comple.xity in the figure 

and in finding the pro,of, this method of reflection is superior to the 

simp ,e method given above. 

Embedded in the follo-r.nng set of rules are some heuristics to reject 

some figures as reflection candidates. 

The. follo'Wing .steps implement the rules to choose which points to re­

flect:: 

STl Choose a midpoint in the figure. Call this point M. Let P and Q 

be the end poi ts of the line which has M as its midpoint . Cho,ose 

these 3 points. 

S 2 Seliect ,ooe of the. other lines which intersect M. Find the 2 points 
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on thia line that are 'the 2 closest points to M 11n a 1 the r- ~ l.d • o I 

M. That is. o e point is the ,closest to M from unc .<ildc- thl~ 

other point closest from the other side, Choo:-.e un uf t lu.!Hl' 'l. 

points. Cdl this chosen point E. In choosing a pnint 1-:. pr•­

f erenc.e should. be given to p,oints wh ch ore midpoint:-.;. 

ST3 After a point E has been chosen I check and see fr l,: Ls he m Id­

point of some other line in the fir,ure. Tf E f::-i the mltlpu l11t of 

line segmen GH , choose point G. 1'hen ~o to ~t p 8'1'7 , rr I·: 1 s 

not the midpoint of some line 1n the figure . hi step does not 

apply 

S1'4 f the point E will be reflec't::ed 1.nto another point which is 

already in the figure., ( 1. e, ,, if there is a point X and 1-:' .. X) 

then reject this point E: and go to ST6. 

If the point E will not be reflected onto ~nother point in the 

figure, then this step does not apply. 

STS If the line EM is perpendicular to PQ (1. e •• lf EM is the peTpen­

dicular bisector of PQ) 1. reject this point E and go to ST6. 0th r­

wise this step does not app y and go to ST7. 

ST6 Go back to ST2 and select another point E. Tf another suitable 

point E cannot be found, then give up re lect ng a ound the mid­

point chosen in STL Tf there is another midpoint in the fii,::,ur 

to r ,eflect around~ sta~t .:it STl and try it, Otherwise give up on 

ttyin to apply (he midpoint refl ection construction ~o thls 

fi~uTe. 

ST7 At this tlm , we have chosen t1~ points P, Q M, E and maybe G. 

A 11 ch se c:hosen po lnts should be ref lee: t ed around M. Also, ·1 l l 
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line aes~nts formed by these chosen points hould. be reflected 

(formed imp U ,e.s a. line s egme:nt lihic h has 2 chosen points as its 

endpoints). 

ST8 Now, usually -he goal of the problem 1s to prove an equali y or 

inequality betv.reen segl!l.ents or that two segments are parallel. 

If the goal is this type j then look at all of the lines in the 

goal, if none of these segD1ents are to be reflected,, go back to 

STl and try to g,enerate a new set of points a.nd 1ines to r .eflec • 

If no set of lines to r ,eflect can be generated which contains 

at least one of the segments in the goal, give up on trying mid­

point reflection as a construction. If tbe goa1 concerns an 

angle. ,equality or some other n.on-se.gment goal, this step does 

not a.pply. 

After all these: steps are .finished t the reflection construct ion is 

complete. 

2 1. 4 Mot 1 v a tion fc r the Midpoint Ref lee tion Construe t ion 

ln order to motivate the ref lee t :I.on construe tion ~ it is first nec,es­

s.ary to examine the effects of the construction. The construction reflects 

part of the figure around a midpoint. Through the midpoint reflection rela­

tion.s we can see that the image of what is reflected is identical to the 

original. Therefore 1 in a way,~ can sa.y that the reflection transports 

part of the figure to a differe:n,t position. 'We could also say that the con­

struction has reorganized the figure. Generally~ tbe purpose of reflectfo,n 

and the reorganhation of the figure is to regroup the elements of the goal 

and the. elements constraints in such a. way that they are. all present in cn.e 

single polygon (either a. triangle er parallelogram). It is also intended 
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that t:his gr0uping in a single polygon ma.k,e the deduction o f the goa 7 i;, 

trivial. 

For example> if 'We wanted to prove 2 lines pa ra l l el the 1nte: 1dPri r e­

sult of a reflection construct.ion would be a parall elcgra1n w · t h h~ 2 Ii n~•: 

as opposite sides. If -Y,e wanted to prove two segments equal ~ d wer e giv •n 

2 equal angles. the intended result ,of a ref le ct.ion wou l d be ;m i s o~c.ele ~ 

triangle wi h he 2 equal angles as the base angles and the t wo segm~n s ;:i _ 

the legs of the isosceles triangle. 

The decision of whether a particular figure can success , ully be re­

grouped into the single polygon forni is made when choosing whi ch poin.ts c:o 

ref le.ct. The rules to chose which points to ref l ect also co tain heuristics 

to decide when a problem can be solved by -reflection. 

Step ST4 rejects an. application of reflection because in the situation 

to which this step is applicable a.11 lines created by ref l ection can also 

be created by the triv1al construction of connecting 2 points, 

St ,ep ST5 rejects an. application of :r,eflection because the refl ection o f 

a point E such that EM .L PQ will not a.cc.omplis:h anything. The onl relation­

shipa tha.t could be deduced after the reflec.t:io t:ould be tnose that coul d 

be. deduced before the reflec:tion. Essentially the reg-rouped Ugu e created 

by reflection would be. the same as the origina1 figur,e. 

E E 

p M Q 
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Step ST8 rejects an appli,cation of reflection be.cause in order that al 

the elements of ·the goal be pt:esent in a single polygon I it is usually eces·­

sat" to regroup one of the elements of the goal. 

Reflectio is applied only to points that are idpoints in the figure 

for the following reason. Reflection when applied to midpoints maps some 

points in the figure ont.o other points already in the figure. For examp ,~ 

if Mis the litiidpoint of AB, then reflection around M will map A onto B. 

This mapping of points onto ,other points is crucial if we. wish to achieve. 

the effects ,described in the first paragraph o 

zation of the elements of the figure). 

C 

this section (the reorgani-

R 

For example. suppo.se. M is the midpoint of AB but X is not the midpoint 

of QR. The affect of the :reflection around Mis to regroup the figure so 

that segme ts AC and BC and angl,es ACM and BCM (or thei equivalent images) 

ai-e present is a single triangle, triangle BCC'. The reflection around .X 

does not produce such a neat reorganization of the elements o the figure. 
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2 .1. 5 Examples of the Midpoint Reflect.ion Construction 

EXAMFLEl 

A 

~ C 

GIVE ' : triangle ABC~ AM ~ MB, AN a NC 

PROVE: MN 11 BC and MN = ½ (BG) 

In order t.o try reflection use the rules to choose which points to 

reflect. .Applying the rules we get: 

STl N i.s the midpoint of AC, Choose N, A, and C to reflect. 

ST2 Line MN intersects N, Ch.oose M to reflect. 

ST3 M is the idpoint of AB. Choose B c.o reflect. 

S 7 Points chosen; r, A, C, M, and B. 

ST8 Since segm,ent MN is part. of the goal and is also to be re­

flected,, we can proceed t.Tit.h the construction. 



By R.Rl ' BM = B, I ' 

I is given that AM c BM. 

Therefore B M' ~ AM. 

20 

By RR2 AM is parallel to B'M'. 

Therefore AB'M'M is a. parallelogram. 

So MM' - AB t and MM 1 is parallel to AB 1 • 

By RR.2,, AB' is parall,el to A 'B. 

So MM' is pa.rall,el to A' B, or ~ is parallel to BC, 

By RR1 t AB I A'l3 and MN "' M'N'' . 

So 2MN A'B 1 OT MN~ i(BC). 

EXAMPLE 2 

A 

E 

GIVEN: triangle ABC I AD is any line drawn ft-om A to the base BC, CF ..L AE. 

BE ..L AE ~ CR • RB 

PROVE: RF..- RE 

Let us try Teflection. W,e will apply the rules to choose :reflection 

points. 

ST R is the m.dpoint of BC. Choose R, C • B, • 

ST2 RF intersects R.. Choose P. 

ST3 Does Not Apply (DNA), 

ST4 DNA 



21 

STS DA 

sr7 Points chosen are R, C, B~ F. 

ST8 Since RF is part of the goal and is also to be reflected t 

the reflection ca.n proceed. 

A 

By RR2 'c' I I FC II BE 11 C'E. 

Now the postulate that only one line can be drawn parallel to a given 

line h:rough a giv,en point 1mp,lies that F' C' and EC' must lie on the 

same straight i.ne so F EC' is a straight line. 

So F'E is a right tria gle. 

By RRl, YR= F'R' 

i'ow use the theorel!l that the median to hypothenuse of a :tght triangle 

is equal to one-half the hypothenuse. 

So FR - RE, 

EXAMPLE 3 
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GIVEN~ .A.BCD is a square, BF' bisects angle DBA~ CK J.. BF 

PROVE: AR = 2SL 

Let us try reflection. 

STl k is the midpoint of RL Choose k, R L. 

ST2 BF 1nl:.ers-ects k. Choose B. 

S'.!'3 DNA 

ST4 DIA 

STS Bk is perpe.ndic.ula·r to RL so we reject. point B. 

ST6 We will go back to ST2 and choose another point, 

S1'2 BF intersects k Choose F. 

ST3 DNA 

ST4 DNA 

ST5 Fk is perpendicular to Rt so we reject point F. 

ST6 We have run out of points to choose in ST2. But all is not 

lost since there is ano•ther to reflect around. We will go 

back to STl. 

Stl S is the m:idpoint of BD. 

ST2 AC intersects S. Cho,oee A. 

ST3 DNA 

ST4 A vrl.11 be reflected onto C so we will reject A. 

ST6 We: can go back to ST2. The. other points we can choose are F 

and C. Both of these wil.l also be rejected. For the sake of 

brevity~ we will not list those steps~ After these rejections 

We can go back to STl. 

STl S is the mid.point of AC. Choose. S, A, C. 

ST2 LS intersects S. Choose L. 

ST3 DNA 
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ST4 DNA 

STS DA 

ST7 Points chosen S, A, C, L. 

ST8 Since SL is part of the goal ,and is to be reflected~ the 

reflection can proceed. 

R 
B 

D C,A' 

Now tbe. problem can be solved. 

EXAMPLE 4 

A 

1i-------,F 

L-------D 
C 

GIVEN~ AB• CD, AB is not parallel to CD~ AB= EC~ BF - FD 

PROVE: the angle AB makes with EF is e .u.al to the angle CD makes t.iith EF 

Let's try reflecti.on. 

STl F is the. midpoint of BD, Choose F, B D 
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ST2 E1 intersects F. Choose E. 

ST3 ! is the midpoint cf AC. 

ST7 Points chosen: F, B, D, 

ST8 Since goal 0 ly concerns 

Choose A. 

I .A. 

angles 1 this 

' ~ ,1, 
I 

·--..... JAT 

s t:ep does not apply . 

Since AB is not parallel to CO~ CDAt is a: well formed triangle. 

By RR2 , .AE 11 A I E' an.d At E I I I EC. 

So E CA' B' ia a par a lleLogram . 

Therefor,e. CA' 11 EE'. 

By RRl, AB • A'B' - CD. 

So t.riangle CDA' is isosceles and a.ngl,e DCA 1: angle DA' C. 

Now since CA I J EE 1 
; , the ,angle CD makes with EF is the same .as the 

angle A' B' makes. with EF. 

By RR2 ;, AB 11 A' B ' • 

So the angle AB makes with EF is, the same as the a.ogle A' B' makes with 

EF. 

Then by transitivity I the goal is pr,ove<I .• 



EXAMPLE 5 

p 
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F 

D 

GIVEN: AC "" AB.. D is any point of BC~ DEF is perpendicular to BC, ~ 

1s perpendicular to BC 

.PROVE: 2 (AP) (DE + D ) 

Let us try reflection. 

STl 

ST2 

ST3 

ST4 

STS 

ST6 

P is the midpoint of SC. Choose P ,. C, B. 

~ i.ntersecte. P 

DNA 

DNA 

Choose A. 

Jiip is perpendi,cular to BC so we reject A 

We have no more points eo c ooee in ST2. Also there are no 

more midpoints t:o reflect a.t'ound. So we will give up trying 

re:fle.cti!on on this problem6 

Tbe ext examples are additional probl,em.s to which the Midpoint Reflection 

Construction can be applied. 
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EXAMPLE 6 

GIVEN; trapezoid ABCD ~ AD is parallel to BC~ AE "" EB, CF "' FD 

PROVEr EF I AD1 11 BD, BF"' ½(AD+ BC) 

EXAMPLE 7 

GIVEN: AC> AB, BD • DC, angle AFG ... angle AGF 

PROVE: AF • !(AC - AB) 
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EXAMPLE 8 A 

G-I EN: AC - AB, D is any point on AB, DE "" EF 

PROVE : CF a BD 

EXAMPLB9 A 

GIVE.? : angle BAM "' angl,e MAC, BM • MC 

PROVE: AB• AC 

EXAMPLE 10 

B 

p 
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GIVEN: AB "' PQ , BD ""' Q,S , BC "' QR 

PROVE: triangle ABC .:: tl'·iangle PQR 

EXAMPLE 11 

GIVEN: AM , MC 

PROVE:: BM < ½ (AB + BC) 

EXAMPtE 12 

GIVEN: angle BAC is acute. BD = DC 

PROVE. 6 (AD) > (AB + AC · · BC) 

EXAMP'LE 13 

A 
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GIVE . BM ;;;;I MC,. "" l. AB . 
3 

PROVE: AR a RM, MR "" 
I MC 

EXAMPLE 14 

GIVEN; trapezoid .ABGD; AB 11 CD, P is t.be 1nidpoint of AC~ Q is he midpoint 

of BD 

PROVE: PQ 11 DC 11 All 

2. 2 Situational Construction. Heuristics 

This: section contains a descriptio of the Situations Construction 

Heuristics (SCH' s). As the name sugges,ts, these heuristics generate ,con­

structions for cet"tain local situations in geometry. Altogether, six con­

struct io,11 s,i tuations. will be give in the description of the SCH rs. 

The form.at oft.he description consists of five ma.in part . The first 

two parts are a description of the cons,truction situation. The situation is 

described in te.rm.s of the: constraints on the figure and the problem goal. 

The thi d part :specifies the construction tha.t should be applied. The fourth 

part con.tains the 111otivation for drawing the specified construction. The 

fifth pa.rt contains example problems in which the SCR can be used. 
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Situation: AB 11 -CD, AB ~ CD 

Goal· to prove an equality of the font 

AB + X1 Y l + . . . + ¾YN "" CD + R1 S + .. ,, + ~SM 1 

N ~ l.M?._l,XY1-/aO 

Construction: From A draw a line parallel to BC intersec ing CD at P. 

D 

I' , 
A-...... -_,. .......... _ 

I 

1 
C 

Motivation: In. general there are 2 goals which a construction should 

achieve. One is that it should somehow bring us closer to 

a solution. The other is that it should bring the .solution 

closer through the utilization of tbe constraints on the 

f 1gure. This is a vital goal since a complete proof will 

utilize all the canst aints on the f igu-re. (unless the• p ob­

lem s overspecif e. , . So a construction should allow ua 

to ma e use of a constraint in proving the goal. SCHl 

creates a parallelogram which proves AB equal to part: of CD. 

Since this ,equality is part of the problem goalt ve are 

closer to the solution.. Also in our proof of the equality, 

we utilized the constraint that AB 11 CD. Therefore both 

goals of the construction have been achieved. Another reason 

for maki g this const uction is that the usual methods of 

geometry (such as congruency) are only able 1:0 pro,ve equality 

between 2 pairs of line segments. The methods are not help-
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EXAMPLE 15 

31 

ful i .n. proving e.qualit.y a.bout a -s-urn of line segme ts . Su 

this construction helps to reduce the form of 1, e goal in 

in that it elimLnates a sum , Hopefullyt this cons rue ion 

will also be. able to reduce the goal to p (Wing a s ing 1 

pair of segments equal. 

A 

GIVEN: PD .l AB, EC J. AB~ PF J. AC, AB "' AC 

PROVE= EC: .. (DP + PF) 

DP 11 EC and DP + EC, the goal is the correct form. Using SCIU draw 

AX 1 1 PD, 
A 

B p C 

The p~oblem can now be solved. 



EXAMPLE 16 

GIVEN : AC lia; AB, AP .L BC, FD> BC 

PROVE. 2 (AP) =- (DE + DF) 

32 

AP 11 DF, AP ~ DF, the goal is of the correct f.o,rm. 

AX 11 PD. 
F 

C p D B 

The problem can now be solved. 

sing SCH! dra 

The next 5 examples are additional problems to, which SCH1 can be applied .• 

EXAMPLE 17 

E 

C 8 
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GIVEN: pal'allelogram ABCD, CF .LEG, DG J.. EGt BE J.. EG 

PROVE: CF '"' (BE + DG) 

EXAMPLE 18 
A 

B 

M 

GIVE : angle. BAN • angle NAC • LP J. AB~ ME . .l. AB, LG .L AC, MH .L AC, MD 11 AN 

PROVE; (FL - GL) • (EM - MB) or (FL + MH) (EM + GL) 

EXAMPLE 19 B 

GIVEN: eguilaterial tri,angle ABC with P any point within ABC. DP, EP ~ and 

FP a:re perpendicular to AB, BC t .A.C; BG ..l AC 

PROVE: BG • • (PDi + PE + P ) 
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EXAMPLE 20 

B 

D A 

GIVEN: parallelogram ABCD, DN J..AC, BN 11 AC 

PROVE : AR "' CR + BN 

EXAMPLE 21 
A 

GIVEN: AD "' BE - CF J MR 11 CF ' MQ j I BE I MP 11 AD 

PROVE ; AD - BE "' C'.F ~ (MF + MQ + MR) 

Before we state the next SCH, it is necessary to make a definition. 

DEFIN! !ON: P is a ratio point if P lies on a line XY, P between X and Y, 

and if the ratio be tween XP and PY is an impcrtan atio in he 

problem. (XP I PY) .is an impo,rtant 1:atio if it is part of a con­

straint on he problem or if the ratio is par o f the problem goal . 
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Examples of ratio points are: midpoints (the r XP 
in - i p con-

s t:rai::ned to be l) , points. P on a 1 ine ~ when he goal i ,1 f hi? 

f o rm ~ ~' and points Pon a. line XY ·when t he r a t o ;;;.· i:s d er -

XP mined by the ratio of 2 ot e.r segments in t he prohl em <py 

Now, making use of the above definition, we can define the nex t sett .. 

SCH2 Situal: io : there is a ratio point P on a l ine XY in he figu re 

_Goal: the goal may be anything 

~, 
CD. 

Construction: Choose a line XB which is not colinear with XY. From P 

draw- a line parallel to XB that: inte sects, YB at Q. I 

the goal of the problem is to prove a ela ti,onship be­

tween various segments of the figure, try to make XB one 

of the segments in the goal. 

y 

-- -'W R 

B 

Motivation: The general motivation for t h is construction i s that after 

.it has been performed. the heorem "a line parallel to one 

side of a triangle and intersec: ing the other two sides di ~ 

vides these sides into pr,opertial segments 11 ~an be applied 

(i.e.., since PQi I ! XB, ~ - ~) 



36 

Mo,re specifically there are. 2 different situations which con­

tain ratio points in w-hich this construc tion is especially 

useful. The first ,situation is when XB is one of the seg­

ments of the goal ot: when t ,he ratio ~ i s part of th,e. goal. 

'Fhen the construction will ere.ate a new representation of the 

goal. PQ is some f ract:ion of XB and t he ratio i is equa.l 

XP to py· This new representation ,of the goa l can make t:he. 

problem solution mu.ch easier. For e'Xampl e ., if t.he problem 

goal is to pt:ove ½(XB) equal to some other segment and if 

there is no s ,e.gme:nt of length i (XB) in the figure• then to 

deduce he goal using the normal congruency methods of geo­

metry will usually be difficult If P is the midpoint of 

XY, then this constructio,n will create a segment of length 

t (XB}. This will allow us to use the no,rmal cong·ruency 

methods of geometry to prove PQ • t(XB) "" GR. The deduc­

tion of PQ ""' GH should. be 1m1ch easier than the goal 

-:(XB) "' GH The second specific situation. is when P:B is the 

angle bisector of an.gle n ,x. 

y 

B 

The construction allows us to transfonn the constraint of 

angl,e YBP = angle 'PB.Y into one of 2 equal segments,. PQ and 
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QB. The constraint tha a line is an a.ngle bi sec tor 1s 

sometimes difficult to utilize in a proof. y ransforming 

the constraint it may be easier to uti_ize in a proof. 

EXAMPLES OF S CH2 

EXAMPLE 22 

.B E D C 

GIVEN: BC 2.U> 'BE ED,, BD - DC 

PROVE: angle EAD ~ angle DAC 

E and D are both ratio points (they are bot.h midpoints). Using SCH2 

draw DX 11 AC. The problem can new be solved. 

A 

EXAMPLE 2.3 
A 

B 



GIVEN! angle CAE • angle DAB 

PROVE: (.AB) 2 _, (:SD) (BE) . 
~ (CE) (CD) 
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. BD BE and D are both ratio points since the ratios DC and EC are part.s of the. 

goal. Udng: SCH2 draw EX and DY parallel to AC and AB. 

AC are segments of the goal. 

EXAMPLE 24 

B 

C 

AE 
EC 

PROVE : DE t t BC 

E D 

A 

C 

ote that AB and 

AD AE D a.nd E are both ratio points since the ratios BD and EC- a:t:e part of 

~anstraints of the problem. Using SCH2: draw EX 11 AB. 

A 

C 



EXAMPLE 25 

1 
GIVEN: B = NC,, AM r- J (AB) 

PROVE~ AR - RN MR .. ~ (MC) 

39 

is a ratio point :;nee it is a midpoint. MR is a segment ,of the goal. 

· sing SCH2 dra:w X 11 MR. 

A 

The next 3 example.s are additional problems to which SCH2 can be applied. 

EXAMPLE 26 

A 

GIVE: angle ACD • angle DCB 

PROVE: Ml/DB - AC/CB 
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EXAMPLE 27 A 

p 

B 
M 

GIVEN: AN ~ NC, BM MC, BP .,l PRt CR .L PR, AQ i_ -PR 

PROVE: AQ .. (BP + CR) 

EXAMPLE 28 A 

B 

GIVEN: AB > AC> angle BAD ... . angle DAC 

PROVE: AD < ½(AB + AC) 

For additional problems to which SCH2 can be applied 1, ee,e the problems in 

examples l, 3, and 7-12, 

SCR3 Situation: AB • A I B' ~ ,angle ABC ~ angle A' BI C 1 
, and t:hese 2 cons,traints 

are not corresponding parts of some pair of congruent tri­

angles. 

Goal: to prove some kind of s egment or angle equality. 

Construe ti,on: 1) draw AD J. BC 

2), draw A'Dt J. B'C 1 
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C 

Motiva. ion: The basic motivation of i:hts heurist i c: i s to c-r e.;e:i t ,:i c-on­

gruency in t:he figure. If this congrue , cy solves part o r 

a.11 of the problem. 1 tben the construction has achieved its 

purpose. If this construct ion creates new triangles t:.ha t 

conta.in elements of the goa l t it is intended that the con­

gruency created by the construction will enable us to prove 

another congruency which ~11 involve elements of the goal. 

EXAMPLES OF SCH3 

EXAMPLE 29 

A D E 13, 

GIVEN~ angle FDC: angle EDC, angle DEC angle CEG, 'DF .!.. AC~ EG j,. BC 

PROVE: DE (FD + GE) 

Since angle FDC = angle EDC~ CD "" CD~ and the goal involves segment: 

equality~ we can apply SCH3 and draw CX perpendicul ar to AB 

C 

A D E B 
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EXAMPLE 30 
A 

D 

GIVEN: angle 5 .. angle 6, angle 1"' angle 2 

PROVE: angle 3"" angle 4 

C 

'Ihe goal involves an angle equality so \,Te can use sca3. Since angle 5"" 

angle 6 and QB ~ QB,, draw QX J. AB and QZ J,. BC using SCH3 .. Again using 

SCB3 ,. since angle l "' angle 2 and OC "' OC drav QY ..LAC. 

A. 

Z D 
The next 6 examples will be additi.onal problems to which SCH3 can be applied. 

EXAMPLE 31 

D 

y 

GIVEN: ABDE and ACGF ar,e squares, Ill: ...l. E 

PROVE: BI"' IC 

G 
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H 

GIVEN: AB .l BC• BHGC and ABDE are squares, LE l. AL, GK J.. KC 

PROVE: AC (EL GK) 

EXAMPLE 33 
A 

D 

GIVEN: angle DCG"" angle DCB, angl e DBC ~ angle DBE, DE .lAE 

PROVE: AE - ½(AC + BC + AB) 
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F. "AMPLE 34 --- --

f!JVE : para.l elogram ABCD, DN J_ AC BN I j AC 

FROVE: PQ PB 

r~ VEN: trapezotd ABCD, AB 11 CD, angle ADC angle BCD 

P~OVE: AD 'BC 

l"f ~ 36 

t_;rve·: BE~ CDJ BE bisects angle ABC, CD bisects angle ACB angle ABE= 

angle GDC angle ADG - angl!! BCH, BC"" 00 

PRUVE: .AB "' AC 



SCH4 Situation.: an inter e.ction point of 2 e r more line segm.ents is, con­

. · rained tc lie within a triangle 

Goal: t o rove either .an a gle inequal ity er a segment inequa! J t • 

r· . ..!. ~•~ ion: The principle objective is t:o d a.~ a line from t h nt.er-

section poiot P to a side o the tria g e . This can be 

done in either of 2 ways: 

1 ) •li!xt,end one of t he iue segments whic h he.l p fo · 

P so that the segment will meet one or the sides 

of be tr'angle. 

2) from the i n .ersection point P draw lines parallel 

to the sid~s of the polygon. 

Motivation: Since the goal in\J'o ves an inequality one · ethod of solving 

he problem would be o constru.ct some new triangles so that 

the triangle inequaJ.ity theorem or the exterior angle. theorem 

could be appli,e.d to solve the goa . 

· angl~ .. so 

that the ne,quali y theorems may be applied. Al·so by draw­

i ng l ines throug P a way of utilizing the constraint that 
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EXAMPLE 37 
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P :ls inside. the t.riangle. is provided. e triangles created 

by the construction would have diffet'ent relatio,nships with 

the other parts of the figure if P was ou tside the triangle. 

r.i::VEN: triangle ABC with th,e point D '\rlthin ABC 

PROVE: angle Al:l'B > ang:le ACB 

D is c.onstrain,e,d to be within ABC.. The goal is an angle inequality. 

Because of these conditions trle cari apply SCR4 and extend D so that it 

in.tersects BC at X. 

B 

EXAMPL 38 
A 
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GIVEN: FB and CG are any two lines drawn from C and B t lm :i n te s ct i n­

side ABC 

PROVE: (AF+ AG)> (HF+ HG) 

H is constrained to be within .ABC. The goal is a seg111en i ne qua ity . 

Because of these conditions we can app l y SCHli and draw 1-IX I I A'F a1<l 

HY 11 AG. 
A 

EXAMPLE 39 
A 

GIVEN: points E and Fare 'vlithin triangle ABC 

PROVE: (AB+ .AC)> (BE+ EF + FC) 

E and F a:re constraiaed. to1 be within ABC. The goal is a segment 

inequality. Because of these conditions we can. apply SCH4 and extend 

FE so that it intersects AB at X and extend EF so that i int.ersects 

AC at Y. 

B C 
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5CH5 Situation: AB = 2CD and the midpoint of AB i s not he intersecrion of 

2. or more lines 

~: to prove anything 

Consitruction: Consider the midpoint of AB to be t he nte:rsec ic-n of 2 

or more lines. Then try to app ly t he ncrmnl const"tuc io 

heuristics of geometry. ote that t he trivial conotruc-

ti.on of connecting 2 points can be app l ied o th~ m:l.dpoin 

B 

..... 
A. 

M 

• .. 
B 

Motivation: The normal pro-of methods of geometry (such as congruent tri­

angles) dea.l only wi.th equal segments and angles. The con­

straint KB equals 2CD is not in this form so it 111ay be diffi­

cult to utilize th.is constraint in a proof. With the above 

construction we have converted the constraint into one co -

cerning equal seg,:nents. This shoul d make the fonnulation cf 

a proof easier. 

EXAMPLES OF SCR5 

EXAMPLE 4Q 
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GIVEN: rectangle ABCD~ AB - 2BC, BP - ~(AB) 

PROVE : BD .1. CP 

We are gitJ",en thet AB '- 2BC. So using SCH5 we consider M he mi ri - oin t 

of AB o be the intersection of 2 or more lines. Then using SCU2 we 

can dra.,; MX 1 1 :BC. 

p M 

C D 

EXAMPL- 41 

A 

D 

GIVEN : AC ~ AB - BC 13,D .,, 2Al! , FD ..l FC 

PROVE: angle FAC is a righ angle 

We are given that BD ... 2AB. So using SCRS we consider t-1 , the midpoint 

o BD, to be the i t er section of 2 or more. line Fi . "T'hi:>n th~ 1-"TO ,em can 

be solved by drawing the segment MF. 
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The prob em contained in exampl,e 25 can also be so l ved by using SCH5 . 

SCH6 Situation: angle ABD angle CBE~ DBE is a line• A and C are on he 

smne side of DBE 

Goal: to pl;'ove an equality or inequality w1 th one of the te:rms bei g , he 

sum. (AB + 'BC) 1 e.,..g.; (AB + AC) "" PQ 

Construction: Extend AB through "B ,a distance equal to BC • 

... 

Mo ivation: Thro gh the construction we have created a single .segment 

AX equal to the sum of (AB + BC). A proof usiog t:he t"·egu­

lar triangle metbods of geometry is much easier to create 

if the elements of the goal ares ngle segments like AA 

instead of sums of segments like (AB+ BC). Also the c:on­

straing of angle AB.D :a angle. CBE can mor,e easily be utilized 

in proving a pair of congt'uent tr i angles. Since angle XBE"" 
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EXAMPLE 42 
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angle ABD • angle CBE, triangle CBE is congrue t n h tang r 

BXE. This congruency can be: very useful in ptt:>I:' ~<;. ~ee 

the examples ~hich follow. 

A B 

p Q N 

GIVEN: A and B are on the same side of straight line MN a.n le 1 ~ angl,e 2. 

Q is any other point ,on MN 

PROVE: (AP+ BP)< AQ + BQ 

The goal involves an equality with the t ,erm (AP + BP). Angle 1 "" 

angle 2. Because of these conditions lie can apply SCH6 and extend AP 

through P for a distance ,equal to BP. 
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EXAMPLE 43 

~' ~ 

X 

GIVEN: PD J.. AB , EC J. AB, PF ,L AC, AB ;;; AC 

PROVE: EC e (DP+ PF) 

The goal involves an equality wi'th the. term (DP + PF). It cnn be •Te ­

duced that angle DPB = angle FPC. Because of these conditions lJe c~n 

a.pply SCH6 and extend DP through P for a distanc:e equal to FP. 

2. 3 Cons·tructions to Apply to a Previously Prov,e.n Theorem 

This s ection will discuss heuristics to create constructions tha t en.able 

the application of a previously pro,;ren hem:em. This typ,e of const1:;uct i on 

is r,eally very similar to tne cons tructions described in the SCH se c t ion. 

!'.fany of the SCH constructions can be consid,er,ed to be construct ions that al ,... 

a p1:'eviously proven theorem to be applied. The only difference i .s the type 

of theorem that the scets utilize. The seas apply very simple ba1,dc theot:et11s 

such as the sid,e angle side cong1:uency theorem~ or the theorem that the oppo-

ite sides of a pa.l'.allelogram ar e parallel. Al.so~ the opportunity to apply 

these s impl,e theorems occurs quite f :requently in geometry, 

In contras t, t:he theorems which will be discussed in this section are 

more. complicated. They are not the basic heol'etns of geometry. Because: of 

t he :t complexity~ situations fer the useful appl.ica.t:ion of · ese theorem!; 

does not occur as frequently as for the basic 1:heorems of the SCE1 1 s . 

The first step in drawing this type of construction is o choose s:n 
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appropr i a t e t heorem to apply. Thi.s decision is usuaJ. l y bas d o n whe t her th . 

resu l ts of the theorem a.re useful for the so l ution of he probl~tn . For 

e~ample, the theorem that the al til::udes of a t riangle. are c:oncurrPnt t-mu td 

be considered useful ·f the goal of the probl em was t o prove ha t: .u/J li eP 

we.re perpendkula.r t .o each other. An.othe r considerat ion ..:oul •~ be whethe r 

any of he constraints of the theorem we.re present i n t he pri · 1e • For 

example~ we would. check for perpendiculars in t:he figure if ue wan P-rl to ~P l ' 

the theorem that the altitudes of a triangle are concurren t. 

Once a theorem has, bee.n chosen :t the next step is o draw the neede'1 ·o -

s tructions . The constructions can be drawn with :this one simpl e heuristic: 

establish a corrEmpondence between the po i nts o f the theorem figure and the 

points of the problem. The parts of the theorem figure tnat have no, counter­

pa-rts in the problem figure are the pa.rts which must be inserted into the 

pt:o blem figure by c.onstn1ction. This correspondence of the igures can us uall :­

be e stablished by pairing the element s of t.he theor,em goal with t.he ,elements 

of the problem goal .. Another method of es t ablishing this co-rrespoodence is 

to pair tne constraints of the problem with the constraints of the. theorem. 

Some e:xamples of the use of this heuristic will now be given. 

EXAMPLE 4-4 E 

!l 

F 

C H 
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GIVE : ABDE and ACFG are squares 1, AR J..]3C 

PROVE: FB, DC, and AH a.re all concurrent at a po,i.nt Q 

The heorem o be applied is, the theor,e that the ale i tudes of ,i _,:i­

angle are concurren't .. By mathcing t .he elements of the prob em goaJ 

and the t .heorem goal t it can be seen that we wish co c reac.e a t rinn~l r 

wh · ch has parts of th.e lines FB t CD,, and AH as its alL tudes. r. is 

no c possible to construct such a triangle immediately.. Ho wever, we 

can achlev,e most of the matchings by drawing a triangle which has par s 

of the li, es FB and AH as its altitudes. Also part o - CD is a lin 

in the interio-r of the constructed triangle.. 

Construction: AH is extended through A. CX is perpendicular to FB and 

interse~ts AH at X. 
i 

, r ' 
E 

I ., I 

' I 
• I 

D 

F 

C H :B 

EXAMPLE 45 
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GIVEN: BE bisects angle ABC DC bisects angle ACB, U .l, DC AG .J. B 

PROVE ~ G r I sc 

The theorem that the line c.onnecting tbe midpoints of 2 side::= of n 

triangle is parallel to the third side is the theorem to be applied, By 

mate hing the goal elements we can see that we nee.d a t i.ang e that ha!'i 

part of BC as its base and part of FG as a line co1mec Ing the. mid­

points of the 2 other sides. 

Construction! draw FX J., FC and GY J_ BG 

B 

EXAMPLE 46 

B 

GIVEN: BE .. EA 1 AD 

PROVE: EC> BD 

A 

X y 

X 

C 

C 

Theorems to be applied: 1) the medians of a triangle are concurrent 1 

2) if t:wo triangles have two sides respecitvely equal to two sides of 

he other, and the third sides unequal, then the angle contained by the 

sides of that with the g't'eater base is great:er than the corresponding 

angle of the other. 

Construction; draw AX the median of BC 
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,, 
/ 

/R 

/ 

GIVEN: triangle ABC ~tb altitudes AFt BE, and CD 

PROVE: AF, BE, and CD meet at a point 

Theorem to be applied: The perp,endicular bisectors of the. sides of a 

triangle at"e concurrent. 

Constructions: draw PQ so that. PA • AQ = BC and PQ J.. AF 1 dra:w P 

so tha"t PB "" BR AC and PR 1. BE, draw QR so that AB = RC • OQ and 

CD J.RQ, 

2. 4 Evaluation of the Construction Heuristics 

The 3 types of cons ruction heuristics dest!ribed are very effective for 

m.ost of the simple problems in geometry which require const uctions By 

simple problems it is eant problems of elementa'ty and intermediate diffi­

culty for a student who has a good knowledge of high school geometry. 

The midpoint reflection heuristic, SCH.l, SCH2t and SCR3 have a wide 

range of applicability. -each heuristic can be successfully applied to s 

number of problems. SCH4 t SCH5 and SCH6 are more limited in their appli­

cabilit.y. They are. d,esigned to handl.e special situations in ~hich the mo e. 
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general heuristics are ot applicable. In applying al these heur·stics n 

a problem~ this group of heuristics should be applied only after the ore 

general heuris ica ave been applied. 

he constructions to apply a previously proven theore are usually easy 

to generate. The procedure o identifying pofots and lines of the p,;oblem 

figure with the theo·rem figure is very simple and e{fective. Although this 

type of construction is quite simple fro the poi.nt of vie.w o ac:tually 

generating .he poin sand lines, this problem solving technique does have 

one major difficulty. The prob em of deciding which theorem to apply can be 

vet:y d"fficult. In a complex problem figure a large numbe of theorems a 

be applicable. 

The above three types of heuristics are all similar in one respect .. They 

all essentially identif sotne local si·tuation in geometry and through this 

id,entificat ion decide whic:h const1;'uctio should be drawn. This type ,of heur-

isei,c is very effective for the simple problems in geometry. or the diffi-

cult geometry problems (s.uch as the in ernal angle bisector problem) however, 

this type of heuristic is aot effective . Al hough the local heuristics can 

be applied to these hard problems and constructions generated; the problems 

cannot be solved with these cons.tructions. This ailure is due ta global 

conditions in the problet11 which the construction heuristics are unable to deal 

with. 

Some exampl,e.s of these difficult problems will be given .. Because of the 

scat'c.ity of this type of problem, there will be no attempt to give heuristics 

for the solution of these difficult prob ems. Wi h such a small sample o 

problems it is very difficult to make any deductions abou·t the general pro­

perties of -hese problems. 
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A 

B 

58 

C 

(THE INTERNAL ANGLE 

BISECTOR PROBLEM) 

GIVEN: angle 1 ._ angle. 2 angle 3 ... angle~ DC"" BE 

PROVE: AB "" AC 

First, ~e can appl SCH3 to the problem. Since angle l.., angle 2 

BF we can draw perpendi~ulars from D1 F, and E. 

P2 

C 

Fig. 7 

In Fig. 7 ~ using SCH3~ we have drawn DP2 and FPi+ perpendicular t::o 

AC and DP1 and FP3 perpendicular to BC. Also, we could have drawn 

the corr,esponding set of perpendiculars from F and E. 

N,one of the constructions generated through SCHJ is effective, in 

solving the problem. Evei:-y construction ails to provide a way to 

utilize the constraint that DC,.. BE. The constructions all concen­

trate on t:he angle constraints while neglecting the segment constraint. 
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We can also apply SCH2 to the. problem since the angle bisectors in the 

pro l ,em create ratio points 

C 

Fig, 8 

In Fig. 8 using SC!I2 ~ we have drawn DX 11 BC and D,Y 11 AC. Also we 

could have drawn the corre sponding set of pa allel fro- E., 

None of the constructions generated ,through SCH2 is effective in solving 

the problem. Again, every cons truction fa.Us to provide a way to 

utilize the segment. constraint of DC - BE. The angle constraints are 

the only ones utilized by the cons tructions. 

EXAMPLE 49 

A 

B C 

(THE THEOREM OF 

MORLEY) 
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GIVE . a.ngl,e l == angle 2 ,.. angle 3 ~ angle 4 = angle 5 = an.gle 6 ~ angle 7 -

angle 8 ~ angle 9 

PROVE: PQR is an equilateral triangle 

in this problem there are. many instances where SCH3 can be appl.led, 

A 

Fig., 9 

In 1g. 9, usin,g SCH3, and since .angle 3 .. angle 4 and AP - M 

we have drawn XP .1. AB and PY j..AQ. 

We ,could have also di-aw the corresponding set of perpendiculars from 

AW CQ,. CR., BR and BP. 

None o.f these SCH3 c,onstructions is eff ect:iv•e in solving the problem. 

Each construction considers Only a pair of equal a gles, The con­

structions fail to pr,ovide a way to utilize in a proof the global con­

strain s of three angles being equal and of all three angle bisec·tor·s 

being present in the triangle. 
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EXAMPLE 50 

L 

Fig 10 

GIVEN: angle 1 - angle. 2, angl,e J ,,. angle. 4:t angle 5 "" angle. 61 R, Q, 

and p a.re t.he orthocenters of triangles NAB MCA, and LBC 

PROVE: RQ I I BC 1 RQ ... BC 

The.re are three -tnstam:.es in the problem where SCH4 can be applied. In 

Fig.10, the perpendiculars NX and . have be.en added th.rough SCH3 . A 

corresponding, set of perpe:ndiculars could also have been added at L 

a.nd M. 

None of these constructions will solve the problem. The constructions 

are not able to allow us to utilize the constraint that the three 

angles (angle 1 + angle 2), (angle 3 + angle 4) and (angle 5 + angle 6) 
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are all extet'ior angle,s of t-he sam.e triangle. The cons -ruct1011s only 

allo~ us to utilize the constraint of angle e ,quality while t .hey neglect 

the global constraint of the ext: ,erior angles . 
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3 GEOMETRY PROBLEMS EXPRESSED l I A VECTOR ALGE.BRA FORM 

3.1 Transformation of Geometry PToblems into Vector Algebra Problems 

In this half of the thesis we wil l deal with an algebraic representation 

of geo etry. There will be a discussion of the solutions f or geometry prob­

lems translated into this algebraic representation. Tbe a l gebraic form o f 

the geometry construction heuristics d.esc.ribed in the f i rst hal f of this 

paper will a l so be discussed. 

In order o obtain an alg,e.braic descriptfon of geometry probl ems we 

will first describe. an algebraic re.presentation of geomet i c figures and re-

lations There is a simple method for transforming a geometry figure des-

c.ription into a vector algebra description.. Consider every point in 'the .geo-

metric figure to be a vector in a two d.imensio al vector space. or ,every 

point in the figure, the corresponding vector can be. considered to be a 

directed line segment from an arbitrary origin to the point. So ea.ch point 

in the. geOfilet.ry figure becomes a variable in the vector algebra description. 

A. line segment is represented as the difference of 2 vectors. These 2 vec­

tors are of courset the vectors representing t:he 2 e.ndpoints of the line 

segment. ( n order to prevent confusion, a line segment in t.he vector alge­

bra system \tlll always: be :represented as. the difference of 2 vectors, not as 

a single vector. A single vector will always represent a point, ) An angle 

fm:med by 2 line segmen.ts is represented as the ·normalized dot* product of 

2 vectors. 

The common g,eometric relat ionsnips also have counte-rpart s in the vector 

*The dot product of 2 vectors A and B is defin,ed to be (IA I I BI cos6) where 6 is 
the angle between t:he tl,l'O vectors and where I Al is the magnitude of the vector A. 
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algebra system., For example, the equality of 2 line segments is repre.sented 

by the equality of t .he magnitude of 2 ve.ctcrs ., A summary o the. common geo 

metrk terms and relationships and their vector equivalents is given in 

Table I. 

A discussion of the above method by representing geometric problems in 

terms of vector algebra problems can be found i _ [1]. 

This algebraic description of geometry has some annoying differenc,es 

with geometry. First, -he r ,epresentation of a point as a single vector 

variable ca.uses some difficulties. Although we t.iant to consider our vectors 

as two dimensional, t.he rep,r,esenta:tion of them as a singl e variable allows 

them to have a.ny numbe of dimensions Tha is 1 suppose 'W'e have a geometric 

point A ► we represent: this fact algebraically by defining a variable A. Now 

we. would like A to be two dimensional (so our g,eo:metric and algebraic rep:re-

senta.tions w:t 1 be isomorphic) that is t A '"" (x1 , x:2) :But by the vector 

variable A could be represented as A "' (:iq,. Y.2 1 x3) or A - (x1, x2 •••• ,, ~). 

So although all points i geometry are copla ar, in the algebraic description. 

,of it t not all the points may be coplanar, 

he result of this difference is that the geometry relationt that is, if 

the alterna~e in.terior angles of 2 U.nes are equal t then the lines are parallel 

is not necessarily true in: the algebraic descr ption. of geometry. 

EXAMP E 51 
- -

B D 



OMMON GEOMETRIC TERMS AND RELATIONSRIPS WITH THEIR VECTOR ALGEBRA EQUIVALENTS 

Geometric Term or Relation 

oinr: 

L.ine Segmen 

Angle 

Angle Equality 

Angle Inequality 

Colinearity 

Midpoint 

Ratio of 2 .segments 
of a line segmen 

Geometric Representation 

point A 

segment AB 

angle ABC 

n2ie AnC ~ angle PQR 

angLe ABC~ angle PQ~ 

coltnear .A, .B, C or 
a.ngle All,C ,.. 180a, 

Mis the midpoint of AB 
0 

colinear Al H, B and AM= MB 

co linear A,. X, B a11d 
(AX/BX) ,., k 

ABLE 

Vecto gebra Representatl.on 

A 

(A - B) 

'A - B} 'f c - B.) lA - nl' c - el 
(A - n)(c - Bt 
I A - BI IC - "8 · 

'fP - Q)l~ 
P - QnR - QI 

(A - B)( C - B) (P - gHR - QJ 
IA - !J le - Bl > JP - Q~ R - or 

colin A, B, C or 
IA - nl + IB - cl ~ IA - cf or 

(k + l)~ • kA + C where k ia some 
non-zero constant or 

(A ·- 13), {C - B) 
IA - B[ le - Bl _. -l 

M • ~(A+ B) 

(k + l)x; A + kB o-

J~L .. k 
~ 

a, 
VI 



COMMON GEOMETRIC TERMS AND RELATI0NSUlPS WITH THEIR VECTOR ALGEBRA EQUIVALENTS 

Ceolllet~ic Term or Relation 

Non-Colinearity 

Segment Equality 

Segment Inequality 

Parallel Line 

Triang.Le 

Right Angle 

Geometric Representat1on 

non-,col1ne.ar ABC or 
0°' < angle ABC < 180° or 
0° < angle ACB < 180° or 
0° < angle CAB < 180° or 

AB= CD 

AB< CD 

An parallel to CD 

triangle ABC 
non-colinear A, B, C 

ri~ht angle ABC or 
AB is perpendicular to 

BC 

TABLE I (continued) 

Vector Algebra Representation 

ncolin A, B,, C o:r 

tA - B) (C - B) 
- " <A - BI ~ C - 8 I < 1 or 

(A - C)(B - C) 
- " < l A - c 11 n - c I < 1 or 

-1 < (C - A)(B - A) 
IC - A'.n n - Ar < 

or 

there does not exist a constant. k 
such that. (k + 1):B .,. A + kC or 

IA - Bj + IB - cl> IA - cj 

jA - nl = le - of 
[A - Bl < le - nl 

(A - B).,. k(C - D) where k 
is some non-zero constant 

Ncolin A, B, C or 
IA - Bl +I IB - cl > IA - cl or 
iA - Bl+ JA - Cl > IB - Cl or 
JA - cl+ JB - ci > IA - Bl 

(A - B)(C - B) _ O 
JA - Bile - BJ -

O'I 

°' 
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In geometry AC .J. AB and BD J., AB implies that AB J I BD. 

In '!::he algeb,:aic description (A - C) (B - A) .., 0 and (B - D) (B - A) .., 0 

does no imply that (A - C) ""'k(B - D) where k is some non-zero con­

stant, Imag.ine the case where A, B Ct and D are all 3 dimensiooal vec­

tors. Then if (A - C) is orthogonal to (A - B) With (A - C) a vector 

not in the same plane a (B - D) (i.e •• (A - C) is orthogonal to the sur-­

face of the paper) then the relation (A - C) "" k(B - D) does not bold. 

Another difficulty with the algebraic representation is that it is not 

possible to represen.t adequately the addition of angles 

addition of angles is a very straightforward ope.ration . 

D 
B C' 

Fig.11 

In geometry the 

In Fig. ll(angle BAC) + angle (CAD) "" angle (BAD). But in the v,ect.or 

'f B - ~1 (D - ,A) (B A)(C - A) 
algebra system B - A lo - Ar is not always equivalent to I B - A I IC - Al + 

This is because of the characteristics of the cosine 

function, 

A third deficiency of the algebraic description is that due to the na­

ture of the cosine function, the vector algebra rep:re.sen.tation. of an angl,e 

is not unique f.or angles great:,er than 180 degrees 

Although these differences between geometry and this vector algebra 

system are annoying~ none of these differences impede the solution of any of 

the problems discus,sed in this thesis. 

Using the above transformation method~ we can convert geometry problems 
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into vector algebra problems. n the. vector system, a geometry problem con­

sisting of a diagram and a go.al is represented by a set of simultaneous vec­

tor equations and a goal •. 

EXAMPLE .52 A 

D C 

The geometric description of the problem ia: 

GIVEN: triangle ABC AB_, AC, AD 1s perp,e.ndicular to BC, DF is i;:,erpendiculai­

to AC, E s the midpoint of DF 

PROVE. AB is perpendicular to BF 

Using the trans.formations described i ,- T'able ! , the vector algebra des­

cription of the pt"oblem, is 

GIVEN: (1) N'colin A,, B, C 

(2) IA - B! ~ IA - cl 
(3) (A - D)(B - C) ~ 0 

(4) (D - F) (A - C), • 0 

(5) E "' ½ (D + F) 

PROVE: (A - E)(B - F) - 0 

3. 2: The Solution of Vector 1Geometry Problems 

In geometry the solution ,of a problem consists of proving a geometric 

relatio,nship utilizing -he problem figure and a set of basic axiotils. In the 



69 

vector algebra system the solution* of a problem consists of deducing a vec­

tor algebra relationship from a sef: of simulta eous vector equ .,i tions. Tl1e t ~ 

are two ways l:o approach these vector problems. One way is to regarrl the 

problem as a geometry problem with a diffe:nmt kind of notation. Ush1g thi s 

approach the method. of solution is identical to the me.thod used in geometry 

problems, The solutions consist of a series of geometric deductions trans­

late into vector notation. The second way of approaching these vec or geo­

metry problems is to forget that there is a geometric interpretation of 

these pt'oblems and. to regard the problem as one of algebraic. manipulation, 

EXAMPLE 53 

GIVE_ (l) Non-c.olinear A, B,, C 

(2) Non- col:1near Bt ct D 

(3) AB I I CD 

(4) .AB "" CD 

PROVE: AD - BC 

The equivalent vector algebt'a problem is 

GIVEN; (l) Ncolin At B, C 

(2) colin Bt C, D 

(3) {A - B) - k(C - D), k is some non-z ,ero constant 

*ln these algebraic solutions we will usually make the assumptiou that for 
any two variables A and B, A,; B. This will prevent some degenerate cases 
from appearing in our problem.s. e.g.~ if A~ B, what does (A - B)(C - Bl 
equal? I A - 13 I I C - n I 
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PROVE: IA - DI~ JB - c} 

Now letrs consider 2 possible !llethods of solution fot this vect or geo­

metry problem. 

First we can consid.er this to be just a transformed geometry pro blem. 

From (3) we can deduce that 

(S) (A - B)(D - B) = (C - U)(B - D) 
IA - BI ID - BI IC - DI /B - D{ 

By identity we get 

So using (1), (2) t (4), ,(5) ~ and (6) we have obtained a vector version 

of the SIDE-ANGLE-SIDE congruent triangle. Therefore we can deduce that 

IA - DJ.,. !:s - cl by the equivalence of co't'responding parts of congruent 

triangles. 

ow we will consider the problem to be one of algebraic manipulation. 

By definition IA - Bl Square root ( (A - B) 2). So usi ng (3) and (4) 

we get 

(A - B) 2 _. k 2 (C - D) 2 

(A - · B) 2 = (C - D) 2 so k 2 = 1 

therefore 

(5) (A - B) • (C - D) or (D - C) 

Rea:rranging (5) we get 

(5') (A~ D) a (B C) or (C - B) 

(5 11
) (A - D) 2 _. (B - C) 2 or (C - B) 2 

CS''') IA- n! 2 ~ IB - cl2 

(5n 11
) !A - DI == IB - cj 
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ow in the. next few sections we will look a-tin more depth the 2 ap­

proaches to t:he solutions of the vector geometry problems. 

3 .2 .1 Solution of Vector Geometry Problems by Algebraic 'l.n ·"pulaticr1 

Vector geometry problems can be divided into 2 main cla:4ses when con­

sidered from the point of view of solution by algebraic manip1dation. Thi? 

2 classes are those problems Yhich do oot. require the use of a non-("C>)ine~r­

ity canst aint and those probl,ems which do require a non- nli[1earity C'<'ltiS rainr 

EXAMPLE 54 

To illustrate the use and. the lack of use of the non-col:inearity con­

straint let: us examine one of the simplest geomet.ry problems, the isos­

celes triangle theorem (pons as:inorum) 

Th.e geometric desc iption of this probl,em is 

GIVEN: (1) non-co linear A. B ~ C 

(2a) AB AC 

(2b) angle: ABC_. angle BCA 

PROVE: (a) angle ABC - angle BC.A 

(b) AB "' AC 

The vector algebra description of the problem is 

GIVEN~ (1) m:olin A, B, C 

(A - B)(C - B) 
(Zh) ! A - .Bl le - Bl 

(B - C)(A - C) 
"' IB - cl IA - cl 
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PROVE~ (a) (A - B)(C - Bi_ (B - C)(A - C) 
IA - Bl le - e - [B - cl tA - cj 

(b) IA - Bl ~ {A - cl 
aw let's look at the. solution of part (a). We must prove 

(A - B)(C - B) a -C)(A - C) 
IA . Bl IC - BJ ;;;; B - cl IA - er 

By identity we get 

(3) IB - cl ~ [B - cl 
We can reduce the goal to proving 

(A - B)(C - B) ~ (B - C)(A - C) 

( 4) AC - Al!- - BC + B 2 AB - BC - AC + C 2 

From (2a) we get 

(2a') A2 + B2 - 2AB .A2 + c2 - 2AC 

Rearranging terma, we get 

AC - AS+ B2 _. AB - AC+ c2 

lolbich is a form of (4) so the problem is solved. 

ote that we only used constraint: (2a) t:o obtain a solution. The non 

colinearity constraint of (1) "'1'as never needed. 

No~ let's look at the solution of part (b), We must prove 

A solution cannot be obtained without the non-colinearity constraint 

of (1). 

a ________ _.A._._.c 
• •r "'4 

Fig. 12 
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~A - B) ( C B) _ ~B - C) f A - C) 
In Fig.12 r A _ Bl IC _ Bl "" fB _ cl A_ cl "' o, but it is not necessarily 

true that. ! A BI "' I A - CI 

ow we will show hew to obta n a solution u.sing the non-colinearity 

constraint.. The constraint in (1) wi.11 be interpreted ao; 

; I ) (B - A)( C - A) ( 
~ 1 . -1 < I B - A 11 C - A I - ang A) < 

(2b) can be written .as 

or 

(2bu) (1 + (ang A)) IA Bl "' (1 + (ang A)) !A - cl 

since -1 < (ang A) < 1 we can divide both sides of (2h 11
) by 

(1 4 ang A)) and get 

The solution of problems which do not require the no -col:inearity con­

straint is usually quite straightf,orward. Most solutions. i ~olve only simple 

substitutions and the creation of linear combinations of the constraint equa­

tions. 

A 
EXAMPLE 55, (2) 'ill 

E 

*In so e vector algebra examplest a number -i'IJ parenthe&-S m.11 be given. 
This number will refer to a previous example ~here the proble was described 
in geometric terms. 



GIVEN: (l) (C - F)(F - E) • 0 

(2) (B - E)(F - E) • 0 

(3) R ~ i(C + B) 

(4) colin C,. D1 B 

(5) nco11n At B ., C 

PROVE: l1 R - Fl ~ IR - El 
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If this pr,oblem were to be eolved geOlllletrica -ly, a construct- on would 

have to be drawn. In the vector algebra system.~ the solution does not 

require a connructicth Also the ·n.on-colin,earity constraint of (5) is 

not required .in the vector solution. 

SOLUTION: 

(l) (C ... F), (F ... Fl) a CF CE - F2 + EF • 0 

The 

(,2) (B E)(F - E) ~ BF ... !B - EF + 

goal is IIR. - Ff IR ... E J or 

R2 + p2 - 2FR a R2 + E2 ... 2ER or 

F 2 - 2FR "' E2 - 2ER 

Now substituting (3) the goal becomes 

(4) pZ - CF - BF ::i E2 - CE - BE, 

We ,can ea ily derive ,(4) by (2) - (1) 

E2 -

BF .. BE - EF + E2 • -CF + CE - P 2 - EF 

E2 - CE ... BE• F2 - CF - BF 

0 
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EXAMPLE 56,, (1) 

B C 

GIVEN: (1) M- HA+ B) 

(2) N "" i(A + C) 

(3) ncolin A~ Bt C 

PROVE: ( N) "" t(B - C) 

The no.n-linearity constraint of (3) will not be required 1n t:he solution. 

SOLUTION: (1) - (2) gives 

(M - N) .. f (A + B - A - C) or 

(M - N) ~ ½(B - C) 

Q.E D. 

The solution of vecto1r geometry problems which do require he use of a 

non-colinearity constraint in a problem is quite complicate. 

There are se:'leral reasons for the gr,e.at complexity of these no -colin­

earity constraint ( CC) problems. The main reason is that many of the more 

difficult pr,oblem.s in geometry (e .. g., the. internal angle bisec or problem 

and the Theor,em of Morley) require the use of a non-colinearity constraint. 

An.other reason is that there ar•e a number of ways to utilize the non col.in­

earity constraint when solving a problem. 

EXAMPLE 57, (26) 

These next 3 e.xample.s will illustrate 3 ways in ~hic.h the non-colinea.r­

ity constraint can be used to .solve a vector geometry proble . The algebraic 
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deriva. ions that will be given in these next examples w'll ~e erall.y be very 

sketchy,. The inteTe.sted (and masochistic) reader ma try to fill :in r:he de­

tails himself. 

GIVEN: (1) {A - B) (B - D) 

A - Bj !B - D[ 
(D - B)(B - C) 

~ ------..:...------
1 o - Bi IB - cl 

(2) colin A~ D C or (k. +l)D • A k1C 

(.A - B)(C - B) 
(3) ncolin A, :B, C or -1 < I A _ BI IC _ BI 

" HA~B Let k2 .,. " 
:B - C 

~ PROVE:~ H k "' "' k1 2 

< l 

Into (1) we substitute for D using (2),(and with some re. rranging) 

~ - AD - B2 BD 
BD - CD - B2 + BC ;:; kz 

"let (A - B ~ ·( C - B) _ _ ) 
~ '\ A - B 1 'C - B 11 (ang B 

k1 k2, 

k1+l 
(ang B) + k1+l 

l tc:1 .. k2 

k1+l 
(ang :B) + k.z(k2+l) 

k1 ( (ang B,) - l) - k2 ( (ang B) - 1) 
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so since -1 < 1(an.g B) < 1, we. can sa.y that k1 ~ k:2 

Q.E.D. 

EXAMPLE 58, (7) 

This use of the: non.-colinearity constrai twill exploit the fact that 

if there are 3 non-colinear vectors, every vector (which can be expressed 

as a linear combination of these 3 vectors) has a unique re:preseota.t .en in 

terms of these 3 vectors. 

A 

C 

GIVEN: (1) 3D - 2A + B 

(3) colin A, R, M or (k1 + l)R • k1A + M 

(4) colin D~ R~ C or (k2 + l)R k2D + C 

(5) ncolin A, B, C 

Substituting (1) into (4) and (2) into (3) and rearranging we get 
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Now by ·e~lo.iting the non-colinearity of A~ B~ and C we can equate the 

constants for each of them in (3') and. (4 1
). So 

,:< h b 3 . i d d .. h k- ~ ~ - -- 1 &r,om t , e a ,ove equat ens we can e, uce .. _at 1 -~ • 

Q.E.D. 

EXAMPLE 59, (26) 

This use of the non-coline.arity c,on.str.aint will utilize a vector ver­

sion of the Lai.: of Sines. The algebraic version of it is the identity 

that 
2 2 

{B. - A) (C - A) (A - B) (C - B) 
fB - Al IC - Al l IA - Bi re - B! (I), ~-...m..;;;..-..;....&. ....... ------"'-'--- "" ~---'-· --~-------"-'-· -

IB - c12 IA - cj 2 

1 -
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The above identity is t:"ea.lly the vector algebra version of the law of 

2 si e. 
B 

(A - Bf(B - D) 
GIVEN! (1) I A - B 11~ DI "" (D = B) ,(B - · C) 

ID - BllB - ct 

(2) colin A, D; C or (k1+l)D ~A+ k1C 

(3) ncolin A. B, C or -1 < (A - B) (C - . B) < l 
1 A - BJ ~ c .. 11 r 

PROVE: ~ -~ 
l~~ 

T,o verify this goal using t:he identity i:n (I) , deri.ve the fact t.hat 

Then use (l). 

3 .• 2. 2 The Use of Constru.ctions in Solving Vector Geometry Problems by 

Algeb aic Manipulation 

Constructions (a construction in the vector algebra system c.orr·esponds 

t.o the introduction of a new variable and some new constraint equations) to 

solve vector geometry pl'oblems are not used as fre.quently as geometry con­

structions are used. The. reader may have already no·ticed that many of the 

problems that required a construction when solved geometrically did not re­

quire a construction ~hen solved by algebraic manipulation. This is due to 
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the form of some of the constructions. or example, suppose. we construct a 

midpoint M of a line AB in the. geometric solution of a proble. Ihen we can 

usually formulate a vector algebra proof of the. problem t.i hout a construc­

tion. This can be done by translating the geometry proof i nto vector algebra 

terms. ( Se•e the next sec. tion fo an e:xamp 1 e of translating geometry methods 

into vector algebra terms. In the section the 5 geometry congruency theorems 

are trans.lated in vector algebra terms,) ow the midpoin · M we constructed 

for the geomet'ti.c solution when translated in vector alge.bra terms becomes 

equal to the expression ½(A+ B). So we can express the new variable Min 

terms of previ.ously existing ones. So it is not n,ecessary to introduce the 

new variable Minto the vector version of the proof. We just replace all 

instances of it by an equivalent eXpression of previously de. ined variables. 

Therefore we bave a vector algebra proof of the pt"oblem which does not re­

quire a construction (Le.• introduction of a new variable). The problems 

which can be solved geometrically using the midpoint reflection constructio • 

SCH2J or SCH4 can usually be solved algebr.aic.ally without a cor.stn.1cti.ou .• 

This method of elim.1 ation of the need for a construction is not always 

useful. Suppose we have a geometric constructio· to d1;aw a perpendicular IJJ 

from a point A to line BC. n vector algebra terms we would i troduc.e a. 

variable D such tha f: (A - D) (B - C) = 0. Expres,s1ng D in terms of pre.viously 

defined variables is quit difficult. 

There are a significant number of geometry problems which we believe 

require a construction in their algebraic solution (Due to the · any methods 

of algebra.ic solution,, we cannot definitely decide "-'hich proble s require an 

algebra.ic solution. ln this paper we mll use the criteria that if a prob­

lem has no s,traightfo:r-ward alg,eb aic solu.tion then it will be considered f:o 

require a construction. By a :straigh forward solution it is meant the. 
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methods used to solve the ·problems in this chapter.) 

Theme is one algebraic construction heuristic v1hkh is useful. 

Vector Constructi,on Heuristic 1 (VCHl) 

If the goal of the. p o,blem is to prove an equality of the arm 

1 c - o [ - IP - Q
1

J , , define a new variable x such t hat IP - xi + 

jP - Q[and p - xi e IA - Bl. This construction has the effect of 

:reducing the goal co proving IC DI j Q - xi. 
The motivation for this algebraic construction is that all the algebraic 

problem solving methods a.re easy to apply to problems that involve proving 

the 1llagnitude of 2 vectors are equal It is not very easy to try to prove 

an equality about: the sum of the magnitudes of 2 vectors. Th1.s construction 

is able to convert the problem so that the aJ.ge.brak methods can be more 

easily app . ied. 

G 
EXAMPLE 6 0 J (17) 

E 

C B 

GIVEN: (1) (D - A) "" (C B) 

(2) (C - F)(E - G) :;: 0 

(3) (D - G)(E - G) 0 

(4) (B ·- E) (E G) "" 0 

(5) Colin G, F, At E 

PROVE: j C - F[ - IB - El + lo - GI 
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By def 1ning· X so that ID - GI iai IX Ff we can reduce the goal to 

proving Jc - xi""' le - El. This can be done using straight.forward 

methods . 

This alg,ebraic heud .. stic. is very similar to the geome y construction 

heuristic SCHl. This is due to the fact that both the geometric and a.lbe­

braic methods are not convenient for proving equality about a sum of seg­

ments or vector magnitud,es. Both methods a. e geared for proving equality 

between a single p a1.r of e leme.n·t s . 

This algebraic heuristic is the only one lwhich ha.s bee f ormulated . ., In 

section 3 .3 .1 we present a v,ector version of some of the o t he ge,ometry 

construction heurist.ics present,ed earlier. These heuristics cannot really 

be considered to be algebraic heuristics since there is. really no algebraic 

motivation f ,or them. Their motivation really hae a geometric nature , We 

considered VCIU to be an algebrai.c. heuristic bec.ause it can be given .a good. 

alg,ebraic motivation. SCH! a:n.d VCIU are similar bec.ause the geometric and 

algebraic problem solving methods share. some common properties. 

There are other geometry problems which. require an a.lge.bra.ic ,construc­

tion in their algebraic solution, ?hese geometry problems are mostly those 

which can be solved geometrically using 5CR3 and SCH6. We will not present 

any algebraic con.stru.ction heuristics for these problems. Due to the com­

plexity of achieving a purely algebraic solution for these problems, we 

have. been unable to analyie adequately these problems from a algebraic point 

of view. As stat,ed earlier·, a vector v,ersio of SC63 or SCH6 is not really 

a sat sf actory algebraic: construction heuristic since the heur istics have 

no real algebraic motivation., 

To conclude thh section we will summarize its r ,esults Geometry prob-
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lems solved by us ng :reflection,, SC!:12 or SCH4 generally do no require an 

algebraic construction. Geometry probLems solved by SCH!~ SCH3 and SCR6 

for the mos part require an algebraic construction. The only a]gebra:Lc con­

struction he.uristic that has been formulated has be.en for the prob ems 

solved by SCHl. 

3.2.3 A Relation Between the .Algebraic and Geometric Solutia s of a Proble 

The use or lack of use of the non-c.olinearity cO'nstraint in a vectot' 

geometry problem can also be related to th,e. solution of he corresponding 

geometry problem. 

The main methods of proof in geometry are the 5 congruent triangle 

theorems, (The similar triangle theorem. is only a slight generalization o,f 

the Side-Angle-Angle and Angle-Side-Angle. congruency the,orems and wiLl not 

b,e discussed.) ln examp,les 57 - 61 we present algebraic derivations of the 

5 congruent triangle theorems. Of the 5 ·thecrems., o ly the Side-Angle­

An_gl,e. and the Angle-Side-Angle coogr-uency theorems required the use of the 

non--scolinearity constraint in their derivations. So any geom _•: :y problem 

which can be solved using only the other 3 kinds of congruency theorems 

will not require a non-colinearity constraint for i . s algebraic solution. 

Only those problems which use the Side-Angle-Angle or t:he Angle S de-Angle 

theorems will re.quire a non-coline.arity constraint. 

EXAMPLE 61 (Vector Version of the ASA Congruency Theorem) 

A 
p 

B C Q 
R 
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GIVEN: (l ) I A - Bl ~ p G. I 

(l) (B - A) (C ~ A) ~ (Q - P_l (R - P) 
IB - Al I c - Ar 1Q - Pl IR - Pl 

()) (A - B)(C - B) fp - Q)(R - Q) 
IA al ]c - nJ • P - Q[ IR - QI 

(4) _ colin (A, B, C) ~ Ncolin (P ., Q, R) 

PROVE: IA - cl = !P - RI 
SOLUTION: 

sing (1) ~ rew ite ,(2) and (3) as 

(2 ') (B - A)(C - A) _ (Q - P)(R - P) 
le - Al - IR - Pl 

(]t) {A - B)(C - B) (P - Q)(R - Q) 
Jc-Bl .,. IR-QI 

In (2 1
) substitute (B A)(C - A) = IA - c! 2. - (B. - C)(A - C) 

and (Q - P)(R - P).,, IP - R[ 2 - (Q - R)(P - R) 

I A - cl 2 - (B - C)(A - c)~ = jP - RI 2 - CQ - R)(P - R) 
IA - cl IP - RI 

or (2°) 

IA - cl - IB cl CB - c)fA - _c) I A - cl B .. cl 

I - -I I -I (Q - Ri (l' - R) 
... F - R - Q - R TQ RIP - RI 

In (3') substitute (A - B) (C B) • J C - BI 2 - ·(B - C) (A - C) 

and (P - Q )( R ·- Q) "" I R - Q 'J 
2 - ( Q R)(P - R) 

(3") ! c B I - I A cl CB - c) (A - c) - r - - · IA - cl lB - Cl 

I 1 I -, (Q - R)(P - R) 
~ R - Q - p - R IQ - RI IP - RI 
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No..; we will use the vector algebra version of the geometry that if 2 

angles of a triangle ar,e equa l to 2 angles of another triangle• the 

third angle of each triangle is equal.. So b31 using this theor,em we 

can say 

(B - C)(A - C) (Q - R)(P - R) 
lA - cl1B - cl = IQ - RI IP - RI - k 

so 

(2u) [ A - Ct - k[B - cl - IP - RI kl Q - RI 

(3 11
) J B CI - k !A - C "" IQ - RI - kl P - RI 

Now we will invoke the non-colinearity con.strain!:: in (4). Since nco in 

(A~ :S~ C), we can say that 

(B - C)(A - C~ 
-l < IB - cl IA - c - k < 1 

his allows us to derive from (5) that 

O.E.D. 

Notice that in this problem the itlon-colinearity constraint Yas n•ecessary 

fo,r the solution of the problem . 

EXAMPLE 62 (Vector Version of the S.AA congruency theorem) 

A 



86 

(l) p· - A)JC - A) ... (Q - P) rt -Pt 
B - Al IC - A! 'Q - p I' R - F 

(A C)(B - C) ~p - R~(Q - P) 
(
3

) IA - c I I B - cl • f P - RTJQ - P'l 

(4) Ncolin (A~ BI C), Ncolin (P ~ Q .• R) 

PROVE = 1 e - c I ... IQ - RI 
SOLUTION: 

se the vector algebTa version of the geometry theorem that if 2 angles 

of a triangle are equal l:.o 2 angles of anathe triangle, the third 

angle of each t .riangle is equal .. This will allow us to say that 

Now use the same derivation we used to deriv,e the ASA theorem. 

To show that the ASA and SAA theorems always require the norn-colinear­

i ty constraint we use the following diagram. 

C 
A 

H R p Q I ... , ....... . 
• ... 

Now in the above diagrams A1 B, and Ct and also P~ R~ and Rare co-

linear. Also 
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(C - A) Fa A) (R - P)'(Q - P) 
I c - Al Ii - Al - 1-R - e IIQ PI 

(C - B)(A - B) (R - Q)(P - Q) 
1 c - BI IA - B 1 - 1 R - QI IP' - Qr 

The c,onditions of both the ASA and SAA 1:heore.ms are satisfied 

(~cept for the non-colinearity constraint). But I A - C' is not 

necessarily equal to 'p - at. So both theorems must require 'the non­

colineari ty constraint. 

EXAMPLE 63 (Vector Version of the SAS congruency the.orem) 

p 
A 

A B C 
6 

GIVE (1) IA - Bl .. IP QI 
c2J I• - cl ~ IP - Rt 

Q R 

(
3

) (B - A)(C - A) _ (Q - P)(R ·- P) 
le - •I 1c - Al IQ - Pl!R - Pl 

PROVE: ! B - CI :ail l Q - Rj 

From (1), (2) , and (3) 

(B - A)r(C - A) (Q - P)(R - P) 

( 4) BC - AB - AC + AZ "" QR - PQ - PR + p.2. 

From (1) 

(5) A2 + B2 - 2AB P2 + Q2 - 2PQ 

Fl:orm (2) 

( 6) A 2 + C 2 - 2AC • F 2 + R 2 - 2PR 
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Compute (5) + (6) - 2(4) 

B 2 + C 2 - 2BC "' Q2 + R. 2 - 2·QR 

IB cl2 - ,P - Ql2 

jB - ct ~ jp - Q] 

Q.E.D 

EXAM?LE 64 (Vector Version of the SSS congruency t .heor,em) 

A 

B 

GIVEN : u > r A - B, r ,,, 1 p - Q 1 

,(z) I A - cl "' ~JP - RI 

(3) IB - cl - tQ - al 

sing (1) and (2) the goal can be changed to 

(B A)(C - A)= (Q - P)(R - P) 

BC - AB - AC A 2 "' QR - PQ - PR + P2 

Using (1)~ (2), (3) 

(1') A2 + B2 - 2AB "' P 2 + Q2 - 2FQ 

(2 •) A 2 + c2 - 2Ac - P2 + R 2 - 2PR 

(3 r ) B 2 + c2 - 2B C -=- •Q 2 + R 2 - 2QR 

Compute (1') + (2 1 
) - (3 1

) 

2A2 + 2AB - 2AC + 2BC"" 2P2 2PQ - 2FQ + 2QR 

BC - AB - 2AC + A2 - QR - PQ - PR+ P2 

Q.E.D. 
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EXAMPLE: 65 (Vector Vii!:rsion of the Hypothenuse-Leg congruency theorem) 

A 

B C Q 

GIVEN: (1) IA - Bl a IP - QI 

(2) IA cl e !P - RI 

(3) (A - C)(B - C) - (P - R)(Q ~ R) e 0 

PROVE: IB - c! - jQ - RI 

From (3) 

p 

R 

AB - AC - B,C + c2 - PQ - PR - QR + R 2 "" 0 

From (l) 

A2 + B2 - 2AB • P2 + Q2 - 2PQ 

From (2) 

A2 + c2 - 2'AC 1111 P 2 R2 ·- 2PR 

Compute (1) - (2) + 2(3) 

B2 - c2 - 2.AB + 2AC + 2AB, - 2.BC 2C2 2AC 

= Q2 - R2 - 2P·Q + 2:PR + 2PiQ - 2PR. - 2QR + 2R2 

B2 + C2 - 2BC Q2 R2 - 2QR 

Is - cl 2 ~ IQ - 12 

Is - cl - lo - RI 
Q E.D. 

3.2.4 Solution o.f Vector Geomecry Problems Using Geometric Methods 

The solution of vector g.e.ometry problems using geometric methods is 

quite simple. This method merely regards the vector geome.t:ry problems as 
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geometry problems expressed in a different notation. 

Since this. method is parallel to the g,eometric method of solving prob­

lems, constructions will often be needed. The next section wi 1 discuss what 

kind of constructions Bbould be made in the vector algebr,a. system. Since our 

method cf solving the vector algebra problem is similar o that of geometry, 

our vector algebra constructions will also be similar to those in g,eometry. 

3,2.4.1 Vector Algebra Description of Geometry Construction Heuristics 

This section contains heuristics f o,r generating constructions in the 

vector algebra repres•entation of geonie·try. These heuristics a.re essentially 

a vector algebra translation of som.e of the situational c:ons t ruction he.uris,t ic:s 

described in the first half of this the.sis. 

VECTOR ALGEBRA VERSION OF SOME SITUATIONAL OONSTRUC -ION HEURISTICS 

VECTOR VERSION OF SCH2 

A • 
D1efinition~ R is a ra:t:l.o vector if an equation of the form 

(k + 1) R A + kB, k > 0, is either a constraint of the prob­

lem or a goal of the problem. Another fortn of this equation 

- . ( ·, D - ) ~ 1~ could be Colin A, ..,., B - , ~ ~-

Situation: R is a ratio vector 

Goal: to deduce some. relationship 

Construction: S,elec.t. so11!l:e vector of the form (A - C) • Define a new vector X 

to be X ,a; k(A - C) + R~ k > 1~ and Colin (B~ Xi C). Also it 

may be necessary to define ot.her vectors Vt such that 
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and Ha.re 2 other vectors in the problem. 

R 

If the goal i.nvclves deducing a r ,ela:t1on.sh1p concerning 

vector magnitudes: or vector equalities, (i.e., if the goal 

is o,f the form IX - YI "' I W Z I or IX - YI < tw - .Z I or 

<(X - Y) .,, k( - Z) , k + O) try to select the vector (A - C) 

so that it is one of the vectors involved in tbe goe:l. 

EXAMFLE OF SCH2 

EXAMPLE 66,, (25) 

A 

C 

GIVEN: (l) N• ½(B + C) or 2N ;;a B+ C 

(2) 4M"" J 3A 

(3) Colin (A, R1 N) 

PROVEt R ~ ½(A+ N). 
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Select N as a ratio vector Select: (M - C). Defin,e a new vector X to 

be X ~ (M - C) + ~ k > O, and Colin (M, X1 B). 

B 
N C 

VECTOR VERSION OF' SCBJ, 

I I I I. (A - B_} (C - B) 
Situ at ion: A - B - A 

1 
- B , I A _ BI IC _ BI (A' - B')(C 1 

- B1
) 

IA~ - :stl le·• - B1 I 
Goal: to prove a vector magnitude or a dot product equality 

Const.ruction: Define D to be. (A - D){~ - C) ""0 and Colin (A D,, C) 

Define or to be (A' - D' )(Bt ·- C1
) = 0 and Colin (B'' ~ D' 1 C') 

A 

EXAMPLE OF SCH3 

EXAMPLE 67 ,. (33) 



(2) 

(3) (D - E)(A - E) - 0 

(4) Colin (A, B,, E) 

(5) Colin (G• C, A) 
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PROVE= , A - E 1 -H r A - c 1 + r B - c r + , A - B , , 

Since the goal involves a vector magnitude equality we c ar: uee s,Cff3. 

There are 2. situations in which SCH3 c.an be applied. The first situa-

tion is (1) and ID, - cl ID - c'I. The second is (2) and 

ID - BI - ID BI . So using SCH3 we ~11 define 2 vectors X and Y. X. 

1s a vector such that (D - X) (B - C) ~ 01 and Colin (C I X, B). Y is a 

v ector such that (D - Y) (G - C) a:: 0 and Colin (G~ Y ~ C) • 



A 

E 

G 

VECTOR VERSION OF SCH4 

Definition: P is inside A. B • and C if Ncolin (A, B~ C) and P is a. vector 

s.ucb tb.a.t if X, YI and Z are A, B I and C or H, A., and C or 

C, BI and A., then there exists a v,ector W such that Colin 

(Xt P ~ W) Colin (Y:1 w~ ZL IY - vi < IY - zl and 

I W Z I < I Y - Z I .. In geomet.ric terms these conditions state 

that P is. a point within a triangle ABC. 

Situation: Pis inside A, B, and C 

Goal: to prove a vecto,r magnitude inequality or a. normali:zed dot product 

inequality 

Construction: Either: (1) Choose a vector Q in the figure, Define a new 

vector X to be Colin (P, Q, X) a.nd Colin (Dt E1 X) where D 

and E a.re ,either A. 'B, o•r c. 



EXAMPLES OF SCR4 

EXAMPL 68 1 (37) 

C 

In the above figure Q • C,J Di "' A, and E • B. 

a new vector X to be Colin (D X, E) and ( 

O't': (2) Define 

- G) "'k(P - X), 

k I- 0. where D, E., F, and G are either A~ B, or C .. 

The vector algebra definition of a point being inside a tri­

angl,e may seem very clumsy and difficult to use. This is 

because l:IIOSt people utilize a v ,eey intuitive ,., tc-~p,t of 11a 

point inside a tria.ngle 11
• Any rigorous definition of this 

concept. will probably be very clumsy and difficult to use. 

C 

A B 



GIVE ' Pis inside A~ B~ and C 

Since tbe goal involves a normalized. dot p,roduct inequality we can apply 

SCH4. Define X such that Colin (A, P, X) and C-olin (C X B). 

C 

VECTOR VERSION OF SCH5 

S1t.uation: I A - BI - 2 IC - DI and the v,ector X - t (A + B) is not defined 

in the p~o,ve. 

Go al : to prove anything 

Co struction: Define the vector X • ! •(A + B) . Then if needed the other 

construction heuriat.ic.s can be appl1.ed,. 

A 

A B 
X 

EXAMPLES OF SCHS 

EXAMPLE 69, (41) A 

D 
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GIVEN: (1) ,A - cl =- IA - B! ~ le - cl 
(2) IB - nl • 2 A - Bj 

(3) (F - D)(F - C) - 0 

(4) Colin (A :B D) 

(5) Colin (C. B F) 

PROVE: (F - A)(C - A)"" 0 

Since we have (2) we ca use SCH5 ad define X - f(B + D) 

A 

D 

VECTOR VERSION OF SCH6 

. . fA - B)(D - B) (C - B~(E - Bl 
Si t-uation: A - B 11 ID - Br ... 1 C B IE - B Colin (D, :B, E) ~ and for all 

vectors V, if Colin (A~ V> C) fv - Al < IA - cj , and 

Iv - er < IA - cl. then Ncolin (D, v, E). This last condition 

in geome.tric terms s.tates that A and C should be on the same 

side of the lie DE. 

~: o prove an equality or inequality with one of the terms being the 

sum (IA - Bl + tB - cl). E.G., IA - 11 j + je cj,. IP - Qj .• 

Construction: Defi e X such that 1B xi ~ IB - cl Colin (A, B, X), 
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EXAMPLE 70 1 (42) 
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... 
E 

... 
~-... X 

GIVE (1) For all vectors V, if Colin (A) V, B), Iv - Al < I A - BI and 

tv - Br < !A - Bl~ then Ncolin (M, V, N) 

~A - P) (M - P~ {B - P)(N - F) 
( 2) f A - Pl IM - Pl .,. IB - Pl IN - Pl 

(3) Colin (M, P, Q .~ N) 

C4) p r Q 

PROVE = , 1 A - F 1 + 1 s - p 1 > < , i A - Q 1 + t B - q r , 

Since we have (1), (2), and (3) we can use SCH6 and define X. such that 

B 

A~-

M p .... .., Q 
... .... 
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4 SUOOESTIO S FOR FUYORE WORK 

There a.re several are.as in which future work could be done. 

One area would be the. field of geometry theorem provi. g. Work would 

involve the incorporating the geometry construction heuristics of this the­

sis into the framew-ork of a geometry theorem prover (such as the one des­

cribed in [ 2]) • This type of wo,rk would fir st require a set of heuristics 

to decide when to attempt to d:raw a construc.tion during the c.ourse of sol­

ving a ge0111etry problem. 

Another area of future l\Tork could be to explcrre the use of a symbol 

manipulation system (such a.s the one described in [3]) to help solve the 

vector algebra versions ,of geometry problems. As was noted previously, some 

of the algebraic manipulation necessary to solve the vectcr geometry prob­

lems is quite. formidable.. If the us.e of the symbol manipulatfon s,ystem was 

successful 1 this ~ ,uld pro,;ride a new kind of practical geometry c.heorem 

pr,over. 

In other branches of mathematics there a.re operations similar to that 

of the geometric construction. For e:ic,ample,in group theory a construction 

operation could correspond to t.he inse:rU,on of a term of the form (a a 1) in­

to an expression so that it could be more easily evaluated. This kind of con­

struction i ,s used to help solve word prob ems for groups (see [ 4] for a dis­

cussion of the word problem). 

For future work it \l:Ould be useful to formulate heu-rist:ics fort.he use 

of t:he construction opera.tion in other branches: of mat hem.a.tics. Comparisons 

could then be made between the heuristics for construction operattons in vari 

ous branches of mathematics. These comparisons could then be used to identi­

fy some general properties of construction heuristics. 
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