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WEAK MONADIC SECOND ORDER THEORY OF SUCCESOR 

IS NOT ELEMENTARY-RECURSIVEt 

By 

Albert R. Meyer 

Let LSIS be the set of formulas expressible in a weak monadic second 

order logic using only the predicates [x = y+l] and [x EX]. B~chi and 

Elgot[3,4] have shown that the truth of sentences in LSIS (under the standard 

interpretation< N, successor> with second order variables interpreted as 

ranging over finite sets) is decidable. \ve refer to the true sentences in 

LSIS as WSIS. We shall prove that WSIS is not elementary-recursive in the 

sense of Kalmar. In fact, we claim a stronger result: 

Theorem 1: There is a constant E > 0 such that if~ is a Turing machine 

which, started with any sentence in LSIS on its tape, eventually halts in 

a designated accepting state if and only if the sentence is true, then for 

t• 
all sufficiently large n, there is a sentence of length n for which ~•s 

computation requires 

1 
steps and tape squares. 

t· - By the length of a sentence we mean the number of characters in it 
including parentheses, digits in subscripts, etc. Any of the standard 
conventions for punctuating well-formed formulas may be used, except that in 
some cases conventions for matching parentheses may imply that for infinitely 
many n, there cannot be any wff's of length n. In this case, we assume that 
wff' s may be lengthened by concatenating a finite sequence of "blank" 
symbols which leave the meaning of the wff unchanged, so that sentences of 
length n can be constructed for all sufficiently large n. 

tThis research was supported by the National Science Foundation unler research 
grant GJ-34671. Reproduction in whole or in part is permitted for any 
purpose of the United State Government. 
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t (n) 
Let t 0 (n) = n, tk+l (n) = 2 k . A well-known characterization of 

h 1 . f . b R W R. h. [ 14 ] tee ementary-recursive unctions y .. itc ie shows that a set of 

sentences is elementary-recursive iff it is recognizable in space bounded by 

for some fixed k and all inputs of length n ~ 0. Hence, WSIS is not 

elementary-recursive. 

In these notes we prove a somewhat less powerful version of Theorem 1, 

which by Ritchie's result is still sufficient to establish the truth of 

our title. 

Theorem 2: Let~ be a Turing machine which, started with any sentence in 

LSIS on its tape, eventually halts in a designated accepting state iff the 

sentence is true. Then for any k ~ 0, there are infinitely many n for 

which ~'s computation requires 

k 

steps and tape squares for some sentence of length n. 

The idea behind our proof will be to show that there are sentences in 

LSIS of length n which describe the computation of Turing machines, provided 

the space required by the computation is not greater than tk(n). Since 

a Turing machine using a given amount of space can simulate and differ from 
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all machines using less space, we will deduce that small sentences in LSIS 

can describe inherently long computations, and hence 1
515 

must itself be 

difficult to decide. 

Actually it will be more convenient to develop an intermediate notation 

called y-expressions for sets of finite sequences. We will show that 

y-expressions can, in an appropriate sense, describe Turing machine 

computations, and that LSIS can describe properties of y-expressions. 

Definition: Let~ be a finite set whose elements are called symbols. 

j'( ~'~ 

· ~ is the set of all finite sequences of symbols from ;. For x, y E I:", 

the concatenation of x and y, written x•y or xy, is the sequence 

consisting of the symbols of x followed by those of y. An element x E ~)'< is 

called a word, and the length of xis written l(x). We use~ to designate 

the vacuous sequence of length zero in ,}'' which by convention has the 

-;': ·-k 
property that x•~ = ~•x = x for any x E ~. (~ is the free monoid with 

identity~ generated by :E,) Concatenation is extended to subsets 

··k 
A, B c ~ by the rule 

A•B =AB= (xy I XE A, y EB}. 

For any Ac~*, we define 

0 n+l n ·k 
A =(~},A = A •A, A 

These operations are familiar in automata theory, We introduce one 

further mapping. 

D f
. . . t e 1.n1.t1.on: For any :E, the function y~: P(L*) ➔ 

rules 

-ft P(S) = (A I A C S} the power set of S. 

is defined by the 
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.l(x) = .l(x)} = zJ,(x) 
.,. 

for x E "I:,", 

.,. 
for A C "i:,". 

We omit the subscript on y" when "I:, is clear from context. 

·;';: 

y-expressions over "I:, are certain words in ("I:, U (J, ~' ;:;, ~' i, l}) where 

y • -, rv' ,_, ,...._,' are symbols not in "I:,. Any y-expression a defines a 

Definition: For any "I:,, y-expressions ~ "I:, and the function 

·k 
L:(y-expressions over L,) ➔ P("i:,) are defined inductively as follows: 

1) cr is a y-expression over "i:, for any cr E /J, and L(cr) = (cr}; 

2) if a, ~ are y-expressions over "i:,, then (a•~), (aU~), 
rv ,....., ,...._, rv rv ,_ 

,::;i al, and Xi al, are y-expressions over "I:,, and 

L(( a. ~ )) = L(a)•L(~), L(( au~))= L(a) u L(~), 
,...._, rv rv rv ,-...,, rv 

3) That ' s a 11. 

Having thus made clear the distinction between a y-expression 

a and the set L(a) it defines, we will frequently ignore the distinction 

~·( 

when there can be no confusion. Thus we write "I:, = a U ,(cr) instead of 

"'k 
"i:, = L( i a~ ;:;i all). Similarly, for any set of letters V c "I:,, 

* * since V consists precisely of those words in~ which do not contain a 

symbol not in V. Thus there is a y-expression a over~ such that L(a) = ,I 
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7< 
V. DeMorgan's law gives us intersection, and then the identities 

n 
imply that from a y-expression of lengths for!; we can obtain a 

y-expression of lengths+ c for Vn, and conversely from Vn to J!1, for 

some constant c and alls, n EN. We shall show below that in general 

s may be much smaller than n. 

Definition: Empty(~) = (a I a is a y-expression over Li and L(a) = ¢}. 

Since the regular (finite automaton recognizable) subsets of ~-k are 

closed under•, U, --,, and y, it follows that Empty(~) is recursive and 

in fact primitive recursive. One simply constructs a finite automaton 

for L(a) and tests whether the automaton accepts some word; there are 

well-known procedures to do this. ~ priori analysis of this procedure 

however indicates that from deterministic automata for y-expressions a, 

~ one would obtain a non-deterministic automaton for a•~ or y(a), and then 

would have to apply the "subset construction" of Rabin-Scott [DJ to 

obtain an automaton for --i(a•~) or --,y(a). Since the subset construction 

can exponentially increase the number of states in the automaton, 

y-expressions in which k complementations alternated with y's and 

concatenations can lead to an automaton with tk(2) states. The time and 

space required by a Turing machine which recognizes Empty(~) by the 

procedure outlined above can be bounded above by 



t (c) = 
n • n 

.2cs 
2" 

2 
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for some constant c and ally-expressions of length n ~ O. It will follow 

from results below that such absurd inefficiency is inevitable. 

Definition: A Turing machine ~ recognizes a set A c r/' if, when started 

-f< 
with any word x E ~ on its tape,~ halts in a designated accepting 

state iff x E A. 

Let f: N ➔ N The space complexity of ~ set A c ~~•, is at most 

f almost everywhere, written 

SPACE (A)~ f (a.e.) 

iff there is a Turing machine which recognizes A and which, for all but 

finitely many x EA, uses at most f(t(x)) tape squares in its computation 

on input x. The space complexity of! exceeds f infinitely often written 

SPACE (A)> f (i.o.) 

iff it is not true that SPACE (A)~ f (a.e.). 

We shall use Turing's original one tape, one read-write head model 

of Turing machine, and define the number of tape squares used during the 

computation on input x to be the larger of t(x) and the number of tape 

squares visited by the read-write head. Then by convention at least 

max( t(x), l} tape squares are used in a computation on any input word x. 

We briefly review some well-known facts, first established by Stearns, 

Hartmanis, and Lewis [15], about space-bounded Turing ~achine computations. 
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Definition: A function f: N ➔ N is tape constructible iff there is a 

Turing machine which, started with any input word of length n ~ 0, halts 

having used exactly f(n) tape squares. 

Fact 1: t
0 

+ 1 = ~n[rrl-1] is tape constructible. For any k > 0, tk is 

tape constructible. 

Fact 2; If f: N ➔ N is tape constructible, and SPACE (A) $ f (a.e.) for 

'ir 
some Ac LJ, then there is a Turing machine which recognizes A which halts 

on every input x E "£,., using at most f(£(x)) tape squares. 

-k 
Hence, SPACE (A)$ f ~SPACE("£, -A)$ f. 

Fact 3: If f: N ➔ N is tape constructible,then there is an Ac [0,1} 

such that 

SPACE (A)$ f and 

SPACE (A)> g (i.o.). 

for any g: N ➔ N such that 

. gi.!l2_ 0 
hm f(n) = • 
n---tco 

Our proof consistsof a sequence of reductions of one decision or 

recognition problem to another. In contrast to the usual reductions of 

recursive function theory, our reductions must be computationally efficient. 

We introduce a particular notion of efficient reduction which is sufficient 

for our purposes. 

·k ·k 
Definition: Let "£

1
, "£

2 
be finite sets of symbols, and A1 c Lil, A2 c "£2 • 

A
1 

is efficiently reducible to A
2

, written 
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providing there is a polynomial p and a Turing machine which, started with 

~ ~ 

any word x E z:" on its tape, eventually halts with a word y E Z:
2
" on its 

l 

tape such that 

2) the number of tape squares used in the computation on input 

x isat most p(£(x)) (and~ fortiori £(y) ~ p(£(x))). 

We remark that all the reductions which are described below require 

only a linear polynomial number of tape squares and a polynomial number of 

steps, but to minimize the demands on the readers intuition (since we never 

actually give a flow-chart or table of quadruples for the Turing machines 

we describe) we allow polynomials of any degree. Even so, eff is much more 

restricted than is necessary to prove Theorem 2. 

Fact 4. eff is a transitive relation on sets of words. 

Fact 5. If A
1 

eff A
2 

and SPACE (A
2

):::: f (a.e.), then there is a polynomial 

p such that 

SPACE (A
1

) ~ 11.n[ max[ f(m) I m ~ p(n)} + p(n)] (a. e.) 

Proof, Immediate from Fact 5 and that observation that for any 

polynomial p, tk(p(n)) + p(n) ~ tk+l (n) for all sufficiently large n. 

The proof of Theorem 2 can now be summarized. 

Proof of Theorem 2: We will establish below that 

Empty (6) eff Empty ([0,1}) for any finite .I;, 
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-k 
and finally that for any k and for any set Ac (0,1} such that 

SPACE (A)~ tk (a.e.) there is a finite~ such that 

A e ff ~ (L-) 

From fact 4, we have A eff WSIS for any A and k such that 

SPACE (A)~ tk (a.e.). 

Then from facts 1, 3 and 6 we conclude that SPACE (WSIS) > tk_ 1(i.o.) 

for any k. Q.E.D. 

It remains only to establish the required reductions. 

Lemma 1: Empty((0,l}) eff WSIS 

Proof: For any y-expression ct over (0,1} we shall show how to construct 

a formula Fct E LSIS with two free integer variables and one free set 

variable. For any set Mc N, let CM: N ➔ (0,1} be the characteristic 

function of M,that is, CM(n) = 1 ~ n EM. The formula F will be 
ct 

constructed so that for n, m EN, Mc N, M finite: 

F (n,m,M) is true~ [[n < m and C (n)•C (n+l) ••• CM(m-1) E L(ct)] 
ct -- M M 

or [n = m and~ E L(ct)]]. 

F is constructed by induction on the definition of y-expressions. If ct 
ct 

is 0 or 1, then 

F
0

(x,y,X) is [y = x+l and , ( x E X) ] , 

Fl (x,y,X) is [y x+l and x E X]. 

If ct is i, 13 ,:, 6 2,, then 



If a is y ( ~ ), then 
~ ~ ~ 

respectively. 

It is clear that there is a Turing machine which, given an input 

aE (0, 1, (, ), U, y, •,-,J 
~ ,...,,; ,....,, ,..._, rv ,....,, 

can test whether a is a well-formed 

y-expression and, if so, print out the sentence 

-, (~x)(~y)(~X)[F (x,y,X)], 
a 

never using more space than some fixed polynomial in t(a). (If a is not 

well-formed, the machine prints out (~x) [x = x+l].) Hence, Empty((0,l}) 

eff WSIS, Q.E.D. 

It will be convenient to work with larger symbol sets than (0,1}, but 

a trivial coding will demonstrate that this involves no loss of generality. 

Let~ be any finite set of symbols with l~l ~ 2. Say 0, 1 E ~, 

0 ~ 1. Then for any n ~ 1, there is a y-expression over~ for ('ff)*. 

* n-1 * To see this, consider a word in I: not in (0 1) • Such a word either 

fails to begin with On-l 1, fails to end with 1, or contains a subword in 

n-1 ,., >'( 
= -,(0 1 ~ ) U -,(~ 1) 

U(~,·( 1 ~-\u-1) ~,·(), 

>'( 
and so, noting that~=-,(~•~), we have 

(On-l l)* = -,(~ U -,((On-l l)*)) U ~, 

and 
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Now given any finite set ~l choose n sufficiently large that 

l~nl ~ !~1 1 and let h: ~l ➔ rf1 be any one-one function. Extend h to a one-onE 

map from P(~
1 

>'<) into P( (~n)>'<) by the obvious rules h(;\) = ;\, 

h(xa 1) = h(x)•h(a1) for x E ~/, a 1 E ~l' and h(A) = LJ (h(x)} for Ac 2:/. 
xEA 

·k 
There is then a y-expression over~ for h(~1 ), because a word fails to be 

··k 
in h(~1 ) either because its length is not a multiple of n, or else because 

it contains a subword of length n not in h(~
1

) which begins at a position 

congruent to one modulo n: 

Lemma 2: (Coding) Let z:;
1

, ~ be finite sets of symbols with !~! ~ 2. 

·k n 
Let h: P(~

1 
) ➔ P( (~ ) >'<) be the extension of a one-one function from 

n L
1 

to~ for some n ~ 1. There is a Turing machine which, started with 

a y-expression a over ~l' halts with a y-expression ~over~ on its tape 

such that 

h(L(a)) = L(~). 

Moreover the space used during the computation with input a is bounded 

by a polynomial in l(a). 

Proof. The transformation of a to~ operates by applying the following 

rules recursively. 

If a E ~l' ~ is set equal to an expression for h(L(a)). 

If a is i, a 1 :, a2), or i, a 1 ~ a2), , then ~ is i, ~l :.., ~22, or 

l ~l ~ ~2 l,, respectively, where ~l' ~2 are the transforms of a 1 , a2 • 

If a is y ( a ' , then~ is ~~ 1--G 
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where ~l is the transform of a
1 

and T,l is a y-expression over"£ for 

justifies this rule.) 

since 

It is clear that a Turing machine can carry out this recursive 

transformation within the required space bound. Q.E.D. 

Corollary: Empty(!;) eff Empty (0,1} for any finite "E,. 

Proof: Code"£ into (0,1} via has in Lennna 2. Then a E Empty (!;) ~ 

L(a) = ¢ ~ h(L(a)) = ¢ ~ L(~) = ¢ ~ ~ E Empty (0,1}. Q.E.D. 

We now show how, given a y-expression· for "En, one can construct 

a y-expression of about the same size describing any desired computation 

of a Turing machine, providing the states and symbols of the Turing 

machine can be represented in!; and the computation only requires n tape 

squares. This construction will be applied recursively to obtain 
tk (n) 

y-expressions of size n for!; , and will then finally be used to 

conclude that A eff Empty(!;) for any Ac (0,1} such that SPACE (A)~ 
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Definition: Let~ be any Turing machine with tape symbols T and states 

S. Assume b ET where "b" designates a blank tape square. An 

instantaneous description (i.d.) of~ is a word in (TU (S x T))t which 

contains exactly one symbol in S X T. Given any i.d. x = y• (s,t)•z 
·k 

for y, z ET, s ES, t ET, ·the next i.d., Nex~(x) is defined as follows: 

if when '.mis in states with its read-write head scanning symbol t, '.m enters 

state s'and writes symbol t' ET, then Next~(x) is 

y•(s', t')•z 

yet' (s', u)•w 

if~ does not shift its head, 

if '.m shifts its head right and z 

,'( 

for u ET, w ET, 

uw 

if '.m shifts its head left and y = wu 
-/( 

for u ET, w ET. 

NexSJ!(x) is undefined if (s,t) is a halting condition, or if (s,t) is 

the rightmost (leftmost) symbol of x and~ shifts right (left). Let 

Nexs.n(x,O) = x if xis an i.d., undefined otherwise; Nex1Jl(x, n+l) = 

Finally, let# be a symbol not in TU (S X T). The computation 

Comp('.m,x) of~ from xis singleton set consisting of the following word 
-/( 

in({#} UT U(S X T)) : 

t S X T ((s,t) I s Es and t ET}. We assume T n (S X T) = ¢ 
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where n is the least integer such that (qa,t) occurs in Nex½Ji(x,n) for 

some t ET and designated halting state q. CompCJ.)1,x) =¢if there is no 
a 

such n. 

Remark: Note that our definition of computation differs from the one 

commonly in the literature. The computation CompCJ.)1,x) is defined for 

i.d. 's x, not input words x. Moreover, all ·i.d. 's in Comp('.ffi,x) have 

exactly the same length. A key property of CompCJ.)1,x) is given next. 

Fact 7: Given 9Jt as in the preceding definition, let I;=[#} UT U (S X T). 

* st th st Then for any i.d. y EI;, the n-1 , n and n+l symbols of y 

th 
uniquely determine then symbol of Nex~(y) for 1 < n < t(y) providing 

Nex~(y) is defined. 

Hence, there is a partial function ½Jc= i3 ➔ r; such that if cr1 ,cr2 ,a
3 

st th st 
are the n-1 , n , n+l symbols of CompCJ.)1,x), then ~(cr

1
,cr2 ,cr3 ) is the 

st 
n+t(x)+l symbol of Comp('.ffi,x) for 1 < n < t(Comp(m,x))-t(x) and any i.d. x 

such that Comp('.m,x) =/: ¢. Also, ~(cr1 ,cr2,cr3) = ¢, if cr2 E (S X T) and 

cr
2 

is a halting condition of :m. 

Lemma 3: (Simulation) Let 9Jt be a Turing machine with states S, symbols T, 

and designated halting state qa ES. Let r; = [#) UT U(S X T). There is 

a Turing machine ~(9:Jt) which, started with any word y•#•a on its tape 

where y is an i.d. of :m and a is a y-expression over LJ such that L(a) 

r;n for some n > 0, halts with a y-expression ~ over r; such that 

n n 
= Comp ('.ill, b • ye b ) • 
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Moreover, there is a polynomial p such that 31"('.J:11) never uses more than 

p(t(y•#•a)) tape squares in its computation. 

Proof: We shall describe how to construct they-expression~ for 

/\ffin n " n Comp\././•, b yb ) from Y"ff•a where L(a) = L- • We begin by noting that the 

* n n n n words in Li not equal to Comp(:Dl,b yb ), i.e., ,(Comp('.J:11,b yb )), can be 

characterized as follows: 

1) 

2) 

3) 

4) 

words that do not begin with #bnybn#, or 

words that do not contain q , or 
a 

words that do not end with#, or 

words that violate the functional condition determined by 

~ in Fae t 7. 

These four sets of words can also be described by the formulas 

1 I ) 

2 I) 

3 I) 

4 I) 

,(#• (L(a) n b
000

) •y• (L(a) n b
000

) •#•"£/), 

,(Li\ (( q } xT) •I/), 
a 

,(Li"'--#), 

U [Li
000 

•cr
1

cr
2

cr
3 

• L (a)• ~(y)- 1 
• L (a)• (Li- L(o-

1
, o-

2 
,o-

3
)) .z:;°"] 

0 1 ' (J 2 ' (J 3 ELi ;)Jl 

But it is easy to see how to construct y-expressions directly from 

(l')-(4 1
), and therefore~ is simply the complement of the union of these 

four expressions. Note that£(~)~ c•l(y#a) for some constant c which 

depends only on IJJI, and not on y or a. Moreover a Turing machine 

~('.111) which constructs ~ from y#a need never use more tape squares than 

t(~), and so certainly runs within a polynomial space bound. Q.E.D. 
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Definition: A ~~tk-TM is a Turing machine such that for some polynomial 

p, some function fk ~ tk, and all n > O, when the Turing machine is 

started with On on its tape, it halts with a word a on its tape such that 
fk(n) 

1) a is a y-expression over :E and L(a) = :E , 

2) the number of tape squares used in the computation is at most p(n). 

Lemma 4: If there is a :E'-tk-TM for any finite E', then there is a 

E-tk-TM for any :E such that !El~ 2. 

Proof: Code :E' into :E as in Lennna 2. Details are left to the reader. 

Q.E.D. 

Lemma 5: For any k ~ 0 and any :E with !El~ 2, there is a E-tk-TM. 

Proof: A E-t
0

-TM simply prints an expression for y(crn) from input On, 

where cr E :Eis any symbol. Proceeding by induction, assume there is a 

E-tk-TM. Let~ be a Turing machine which, started with On on its tape 

for any n > O, lays out tk(n) tape squares on its tape and then uses 
tk(n) 

these tape squares to cycle through some number fk+l(n) ~ 2 = tk+l(n) 

steps before finally halting. Since tk is tape-constructible, it is easy 

to obtain~ as described. Choose :E as in the simulation lemma applied 

to~-

The :E-tk+l-TM operates as follows: Given On, use the D-tk-TM to 

obtain a such that L(a) 
\(aj 

=~ Apply~(~) of the simulation lemma 

n-1 to (q
O

,O)O •#•a where q
O 

is the start state of~- This yields a 
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f (n) 

y-expression p such that L(~) = Comp(9\,x)where x =bk •(q
0

,0)0n-l.bfk(n) 

But Comp0\_,x) is defined since~ halts on input On within tk(ri.) ::::: fk(n) 

tape squares. Moreover, .t(Comp(~,x)):? tk+l(n) since :I\ runs for at J·-3.st 

tk+l(n) steps. Hence, the output of the D-tk+l-TM is simply y(p). 

Since by hypothesis a is obtainable in space p
1

(n) for some polynomial p
1

, 

and similarly Pis obtainable in space p2 (n+l + p
1 

(n)) for some polynomial 

p
2

, the entire process requires only polynomial space. Q.E.D. 

·i( 

Lemma 6: For any set Ac (0,1} , if Comp(A):;; tk (a.e.) for some k:? O, 

then there is a finite~ such that A eff Empty(~). 

,•: 
Proof: Let 9] be a Turing machine which recognizes (0,1} -A and for 

-}: 

every x E (0,1} , 9] halts using at most tk(.t(x)) tape squares. By 

Fact 2, there is such an 9:n. 

Choose~ as in the simulation lemma applied to~. 

The Turing machine which efficiently reduces A to Empty(~) operates 

as follows: 

a such that 

~·( 

given x E (0,1} , use a D-tk-TM to obtain a y-expression 
fk (n) 

L(a) = ~ for n = .t(x). Apply ~Cill) of the simulation 

lemma to (q
0

, u)•w•#•a where q
0 

is the start state of 9J!, and 

""k 
x = uw for u E (0,1}, w E (0,1} . (We ignore the case x = ~.) This 

yields a y-expression p which we claim is the desired output. 

Since 9J1 requires space at most tk(n), we conclude that Comp(9],y) where 

fk(n) fk(n) 
y = b •(q

0
,u)•w•b is nonempty iff xis accepted by~ Hence 

x EA ~xisnot accepted by9]~ Comp(9],y) = ¢ ~ L(~) = ¢ ~ p E ~(T✓). 

This verifies our claim that pis a correct output. 
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As in the preceding lemma, the Turing machine transforming x to ~ 

requires space at most a polynomial in i(x). Q.E.D. 

This completes the lemmas required for Theorem 2. 

It is not hard to extend this argument to obtain Theorem 1. We 

use a stronger form of Fact 3 due to Blum [l] to obtain from the proof 

of Theorem 2 more information about the frequency of the (i.o.) condition 

in the statement that Comp(WSIS) > tk (i.o.). 

Theorem 3: The following decidable full and weak second order theories 

are not elementary-recursive: two successors, countable linear order, 

countable well-order, unary function with countable domain, unit interval 

under~. Also, first order theory of two successors with length and 

prefix predicates, and the first order theory of <N,+,P>, where P(x,y) 

t 
~ [xis a power of two and x divides y], are decidable but not elementary. 

These results follow by reasonably straightforward efficient reductions 

of WSIS to each of these theories. 

y-expressions are themselves of interest as a decidable but non­

elementary word problem. 

Corollary: ~([O,l}) is not elementary-recursive. 

Further remarks: 

(1) The results and methods described here were developed in May, 1972. [9] 

This paper is a revised version of a preliminary report with the same 

title written at that time. Since then, in collaboration with 

t 
The decidability of these theories is shown in [6,1~. 
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M.J. Fischer, M.O. Rabin, and L. Stockmeyer, J. Ferrante and C. Rackoff, 

close upper and lower bounds on space or time have been obtained for most 

of the classical decidable theories in logic as well as for various 

notations related toy-expressions. 

are 

Some of the more interesting results to appear in forthcoming papers 

(i) (Meyer) The satisfiability problem for sentences in the first 

order theory of linear order is not elementary; in fact space 

tE (n) is required for some E > 0. WSIS also requires this 
•n 

much space. An upper bound t (n) follows from Rabin's 
C • n 

proof that S 2 Sis decidable [12Jt 

(ii) (Stockmeyer) The emptiness problem for expressions involving 

only the operation of U, •,-, is not elementary, that is, the 

y-operation is unnecessary. The simulation lemma and its proof 

become considerably more subtle. 

(iii) (Fischer-Rabin) Any decision procedure for the first-order 

theory of <N,+>, that is, Presburger's arithmetic, requires 

t
2

(E•n) steps even on nondeterministic Turing machines. 

Ferrante and Rackoff[7], following Cooper[S] and Oppen[ll], 

have established an upper bound of space t 2 (E•n). 

(iv) (Fischer-Rabin) Any decision procedure for the first order 

theory of <N-(0},•> requires time t
3

(E•n) even on nondeterministic 

Turing machines. Rackoff has shown that space t
3

(c•n) is 

sufficient. 

t In [12], Rabin inaccurately claims his decision procedure is elementary. 
In a personal communication, he has informed me that he was aware that 
his procedure required space t (n), but that he misunderstood the 

C • n 
definition of elementary. 
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(v) (Fischer) Let 3 be any class of structures with a binary 

associative operator* and the property that for arbitrarily 

large n there exists s ESE 3 such that 

where sm = s ,., s ,., • • • -1, s. Then any decision procedure for 
~ 

m 

satisfiability over 3 of sentences in the first order language 

of* requires t 1(E•n) steps. This general result applies to 

nearly all the familiar decidable theories in logic, except for 

the propositional calculus and pure equality. 

(vi) (Meyer) The decision problem for satisfiability of sentences in 

monadic predicate calculus with only seven (approximately) 

quantifiers requires time t
1 

(E•n) even on nondeterministic 

Turing machines; time t 1 (c•n) is achievable on nondeterministic 

Turing machines. 

(vii) (Fischer-Meyer) The decision problem for satisfiability of 

sentences in the first order language of a single monadic 

function is not elementary. 

(2) Abstract complexity theory has been open to the criticism of being 

unable to exhibit "natural" decision problems in which phenomena 

such as speed-up appeared. Applying Blum's results [2) on effective 

speed-up to our simulation of Turing machines via WSIS, we can show 

that given any decision procedure for WSIS, one can effectively 

construct a new decision procedure for WSIS which is much faster 

(faster by tk for any k) than the given procedure on at least one 
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sentence of length n for all sufficiently large integers n. Similar results 

apply to the other decision procedures mentione~ above. 

(3) The relation eff can be characterized in a manner similar to 

the definition of the elementary functions or the primitive recursive 

functions. 
2.5 

€ , so called because it lies properly between the Grzegorczyk 
2 3 . 

classes € and e, is defined inductively as follows: 

1. 

2. 

3. 

4. 

. llog yj 2. 5 
x - y, x+y, x•y, x 2 E e , 

2 • 5 · 1 d d 1· . f . ( b . € is c ose un er exp icit trans ormation su stituting 

constants and renaming or identifying variables), 

2.5 
€ is closed under composition of functions, and 

2.5 
€ is closed under limited recursion, limited sum and limited 

. . . t· t mi nimiza ion. 

5. That's all. 

* I If we identify words in~ with the integers they represent in ~1-adic 

notation, and for any set Ac~~·( let CA: N ➔ (0,1} be the characteristic 

function of the set of integers identified with A, then B eff A if and only 

. 2.5 
if CA(x) = CB(f(x)) for some f Ee and all x EN. 

E · 11 2 · 5 "d h" h 1 1 . 1 . h" h ssentia y € provi es a ig - eve programming anguage in w ic 

one can formally express the procedures we informally claimed could be 

carried out by polynomial space-bounded Turing machines. In this manner 

our proof could be presented in a completely formal fashion without appeal 

to intuition about the space requirements of computations. We prefer the 

latter approach. 

tSee Grzegorczyk' s paper for definitions. [8]. Closure under limited 
recursion actually implies closure under limited sum and limited 
minimization. 
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