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ABSTRACT 

* Let N be the set of nonnegative integers and let < N ,+> be the 

weak direct product of< N,+> with itself. Mostowski[ 9] shows that the 

theory of < /" ,+ > is decidable, but his decision procedure isn't elementary 

recursive. We present here a more efficient procedure which operates 

2cn 

within space 2
2 

As corollaries we obtain the same upper bound for the 

theory of finite abelian groups, the theory of finitely generated abelian 

groups, and the theory of the structure < N+, • > of positive integers 
.,. 

under multiplication. Fischer and Rabin have shown that the theory of <N",+> 

2
dn 

time 2Z requires on nondeterministic Turing machines [5]. 

We also obtain some very general results about the nature of the 

theory of the weak direct product of a structure with itself. 
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Section 1: Introduction 

The significance of the distinction between decidable and undecidable 

theories has been blurred by recent results of Meyer and Stockmeyer [7,8,14) 

and Fischer and Rabin[ 5] who have shown that most of the decidable 

theories known to logicians cannot be decided by any algorithm whose 

computational complexity grows less than exponentially with the size of 

sentences to be decided. In many cases even larger lower bounds have 

been established. In this paper we develop some decision procedures 

whose computational complexity roughly meets the lower bounds. Part of 

this development includes a treatment of the relationship between the theory 

of a structure and the theory of its weak direct product which may be of 

independent interest. 

Let N be the set of non-negative integers. Whether a sentence of 

the first order theory of N under addition is true is decidable according 

to a theorem of Presburger[l2]. A more efficient decision procedure given 

by Cooper[2] has been proved by Oppen[lO] to require only 

steps for sentences of length n, where c is some constant. This result 

is strengthened by Ferrante and Rackoff[4 ], who show that space 

is sufficient; this latter theorem will also appear in this paper as a 

corollary of some more general results. 
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* Let N be the set of functions from N to N of finite support, i.e., 

* N = (f: N ➔ N f(i)=O for all but finitely many i EN}. The structure 

< N+,•> positive integers under multiplication is isomorphic to the 

* structure< N, +>where addition is defined component wise and the first 

order theory of this structure is known to be decidable by a theorem of 

Mostowski[ 9 ]. Mostowski's procedure, however, is not elementary recursive 

in the sense of the following definition: 

Defintion: An elementary recursive function (on strings or integers) is 

one which can be computed by some Turing machine within time bounded by 

a fixed composition of exponential functions of the length of the input. 

(This is shown by Cobham[ 1] and Ritchie[l3] to be equivalent to 

Kalmar's definition [cf. 11).) 

In this paper we use the technique of Ehrenfeucht games[ 3] to derive 

* a new procedure for deciding whether sentences are true over< N, + >. 

Our procedure can be implemented on a Turing machine which uses at most 

tape squares (and hence 

step$ on sentences of length n. As a corollary we obtain the same upper 

bound on decision procedures for the first order theory of finite abelian 
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groups and of finitely generated abelian groups. Recent results of Fischer 

and Rabin[ 5] show that for some constant c"> 0, any decision procedure 

* for the first order theory of< N, +>requires time 

even on nondetenninistic Turing machines. Thus, the worst case behavior 

* of our procedure for< N, +>is nearly optimal in its computational 

. t requirements. 

In section 2 we derive some very general results about theories of 

structures and their weak direct products. In section 3 we apply some 

* of these results to the theories of< N,+ >, < N, +>and abelian 

groups. (Most of the results on abelian groups are due to Mike Fische4) 

tif tis a function of n, let DTIME(t) (NfIME(t)) be the class of 
functions, each of which can be computed by some deterministic 
(nondeterministic) Turing machine within time t as a function of the 
length of input. It is easy to see that NfIME(t) ~c t,J 

O 
DTIME(ct). It 

is conjectured that NfIME(t)-DTIME(2t) i ¢. 
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Section~: Some General Development 

For this section, let t be the language of the first order predicate 

calculus with no function symbols, with finitely many relational symbols 

such that ~- is a t. -place formal predicate for 1 s; is; i,, 
-1 1 

and a constant symbol~- We will denote the formal variables of l by 

When we write F(x1,x2, •.• ,~) we will mean that Fis a 

formula of l free in at most x1,x2, ... ,~. 

For the rest of this section, let g be a fixed structure for i; 

t · g=<s,~ 1, ... ,~i,,e> where Sis a nonempty set, ~i ~S 1 for ls;is;i,, and 

e ES. We will assume that we have a norm on S, by which we mean a function 

11 11 : S ➔ N, and we will denote the norm of a E S by 11 a 11. If i EN, then we 

will write a.=:: i to mean 11 al I s; i. 

For convenience we will 

when k > 0, and similarly for 

to denote the k-tuple (a1,a2 , .•. ,ak) 

etc. (1k,a) will denote the k+l-tuple 

(a1 ,a2 , ... ,ak,a), etc. When k=O, 1k and; simply denote the unique 

0-tuple, i.e., the empty sequence. 

Definition: Let F be a formula of l. Then by the quantifier-depth of F, 

or q-depth(F), we will mean the depth of the deepest nesting of quantifiers 

in F. Formally, if Fis an atomic formula then q-depth(F)=O; otherwise 

q-depth(F l VF 2) =Max( q-depth(F 1) ,q-depth(F 2)}, q-depth(~F)=q-depth(F), and 

q-depth(3:x F )=l+q-depth(F). 

➔ ➔ k ➔ ➔ 
Definition: For all n,k EN and all ak' bk ES , define ak 'ii_ bk iff for every 

➔ ➔ ➔ 
formula F(~) of q-depth s; n, F(ak) and F(bk) are either both true or both 

false. 
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k 
- is an equivalence relation on S . 
n 

➔ ➔ k 
Lenuna _!: Let n, k EN and ak' bk ES such that 

➔ ➔ 
1) For each ak+l ES there exists some bk+l ES such that ak+l 'ii bk+l. 

and 2) For each bk+l ES there exists some 
➔ ➔ 

ak+l ES such that ak+l ii bk+l" 

➔ 
Then ak 

➔ 

n=F-1 bk. 

Proof: Say that 1) and 2) hold. Since every formula is a boolean combnation 

of formulas each of which begins with an existential quantifier, it is 

➔ ➔ 
sufficient to prove, for F(~) of the form :H:~+l G(~+l) where q-depth(G) s n, 

that 

➔ 
So assume that F(ak) holds. Then let ak+l ES be 

➔ ➔ 
holds. By 1), let bk+l ES be such that ak+l ii bk+l" 

true, G(bk+l) is true (by definition of n 
➔ ➔ 

F(ak) holds if F(bk) holds. 0 

➔ 
such that G(ak+l) 

➔ 
Since G(ak+l) is 

is true. By synnnetry, 

Definition: Let M(n,k) be the number of equivalence classes of - restricted 
n 

k to S. 

Lennna I: Let n,k EN. Then M(n,k) is finite and for all 1k E Sk there is 

➔ ➔ k ➔ 
a Formula F(~) of q-depth n such that for all bk ES , F(bk) <=> 

➔ 
(i.e., F defines the ii equivalence class of ak). 

➔ k ➔ 
Proof (by induction on n): If n=0 and ak ES , we can clearly take F(~) to 

be a conjunction of atomic formulas and negations of atomic formulas. The 
.R., 

number of atomic formulas free in at most x1,x2, ... ,~ is i~l(k+l)ti 

.R., t · 
,I; (k+l) 1 

So M(0, k) s 2 1 =l 

So assume the Lemma true for n (and all k). We shall prove it for 
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➔ ➔ ➔ 
n+l (and k). Let F/~+1),F2(~+1), .•• ,FM(n,k+l)(~+l) be a sequence of 

formulas of q-depth n such that for each lk+l E sk+l there exists an i, 

➔ 
1 $ i ~ M(n, k+l), such that Fi defines the ii equivalence class of ak+l · 

h ➔ . k d f For eac ck E: S e ine 

W(~k)=(i I l$i$M(n,k+l) and We shall show 

defines the n+l equivalence class of 6k. 

➔ ➔ ➔ ➔ 
Clearly if bk ~l ck' then W(bk)=W(ck) by definition since each 

➔ formula ~~+l Fi(~+l) is of q-depth n+l. To prove the converse we first 

prove the following: 

➔ ➔ 
Lemma 2.1: If W(bk)=W(ck), then for each ck+l ES there exists some bk+l ES 

such th ➔ = b at ck+l n k+l (and by symmetry, for each bk+l ES there exists 

➔ ➔ 

some ck+l ES such that ck+l iibk+l). 
➔ ➔ 

Proof of Lemma 2. 1: Say that W(bk)=W(ck) and ck+l ES. Let i, 1 $ i ~ M(n, k+l), 

➔ • ➔ ➔ 
be such that Fi(~+l) defines the ii equivalence class of ck+l" Fi(ck+l) 

➔ • ➔ • ➔ 
is true, so ~~+lF i (ck,~+l) 1s true, so i E W(ck). So 1 E W(bk). This 

➔ ➔ 
means that i~+l Fi(bk'~+l) is true, and therefore we can find bk+l such 

➔ ➔ 
that Fi(bk+l). Since Fi defines the ii equivalence class of ck+l' we must 

➔ ➔ 

have ck+l iibk+l' 

By Lemmas 2.1 and 1, Note that the n=Fl 

➔ ➔ 
equivalence class of ck is determined by W(ck) which is a subset of 

( 1,2, ••. ,M(n,k+l)}. So M(n+l,k) $ 2M(n,k+l). This and the bound on M(O,k) 

imply that 
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for some constant c. 

Remark: There are structures g such that 
2rrl-k 

□ 

2° • • ~ height E:n 
M(n,k) ~ 2 J (for some constant E:), so M(n,k) is not in 

general bounded above by an elementary recursive function. For many 

structures, however, M(n,k) grows considerably more slowly. 

Definition: Let H: J ➔ N. Then g is H-bounded iff for all n, k EN and all 

➔ ➔ k . ➔ • 
F(xk+l) of q-depth s n and all ak ES , if ::ff~+lF(ak'~+l) 1s true in g 

then [::ff~+l .:SH(n,k, Jf~k{ 11 ai 111) ]F(1k,~+l) is true in g_ (We take 

Max¢ to be 0.) 

For the rest of this section, let H:J ➔ N be a fixed function such 

that g is H-bounded; we will also assume that His nondecreasing in each 

argument. H-boundedness of a structure guarantees that quantifiers ranging 

over all of Sin a sentence can be replaced by quantifiers ranging over 

elements of S whose norms are bounded by a function determined by H. 

This is made precise in the following lemma. 

(Q.=V or ::ff for each i, lsisk) with q-depthsn+-k, i.e., q-depth(F)s:n. 
1 

Let ~ E J< be a sequence such that m. ~H(rrl-k-i,i-1, Max {m.}) 
1 ~j<i J 

for 1 sis k. 

➔ 
Then Q1x1 Q2x2 ... Qk~F(~) is true ¢:> 

➔ 
(Q 1x1 _:::m1) (Q2x2_::: m2) ... (Qk~.:5 ~)F(~) is true. 

Proof: Consider the formula Because g is H-bounded, 
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if m1 ~H(n+k-1,0,0) then Q1x1 (Q 2x2 ... Qk~F(;)) is equivalent to 

➔ 
(Ql xl .:S ml) (Q2x2 ... Qk~F(~)). 

Now for each aES such that //all:5:m1, consider the formula 

Q3x3 Q4x4 ... Qk~F(a,x2,x
3

, ... ,~). Because g is H-bounded, if 

m2 ~H(n+k-2,l,m1) then Q2x2 (Q3x3 ... QkxkF(a,x2 ,x3 , ... ,~)) is equivalent 

to (Q2x2 .::;m2) (Q3x3 ... Qk~F(a,x2,x3 , ..• ,~)). Hence, 

(Q1x1.:Sm1)Q2x2 ... Qk~F(;) is equivalent to 

➔ 

(Ql xl .:S ml) (Q2x2 .:S m2)Q3x3 Q4 x4 • · · Qk~F (~) · 

By k-2 additional applications of the H-boundedness of g, we arrive 

at Lemma 3. 0 

Remark: The reason the concepts of norm and H-boundedness for g were 

introduced is because they have relevance in particular cases towards 

achieving efficient and easily described decision prodedures for the 

theories of g and the weak direct product of g with itself. Many of our 

lemmas and theorems (such as Lermna 1), however, either don't involve 

these concepts at all or have simpler versions which don't involve them. 

So even if all mention of norm or H-boundedness is ignored, this section 

implicitly contains important results about the nature of the weak direct 

product of g with itself. 

Lemma ~: Let n,k EN and let ~ E J< be a sequence such that 

➔ k 
m.~H(n+k-i,i-1, Max (m.}) for l:5:i:5:k. Then for each akES there is 

l. 1:5:j<i. J 

some bkESk such that i:k ii bk and/ /bi/ I :5:mi for l:5:i:5:k. 

➔ 
Proof: Let n,k,~, 

there is a formula 

➔ 
and ak be as in the statment of the Lemma. By Lemma 2 

➔ 
F(~) of q-depth n which defines the~ equivalence class 
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➔ ➔ ➔ 
of ak. Since F(ak) is true, ~x1 ~x2 •.. ~~F(~) is true. So by Lennna 3, 

➔ 
(~x1 .:::5m1) (~x2 .::Sm2 ) ..• (~~.::S ~)F(~) is true. This means that for some 

bk E Sk, F(bk) is true and I lbil I s:mi for ls: is:k. □ 

➔ ➔ k 
Lemma -2_: Let n, k EN and let ak' bk ES 

➔ ➔ 
If ak iJi bk then for each ak+l ES 

➔ ➔ 
there exists some bk+l ES such that ak+l iibk+l and 

II bk+l 11 s: H ( n, k, Max { I I b. I I 1). 
ls:is:k 1. 

➔ ➔ k ➔ ➔ 
Proof: Let ak' bk ES such that ak iJi bk • Let ak+l ES. By Lemma 2 

➔ 
there is a formula F(~+l) of q-depth n defining the ii equivalence class 

➔ • ➔ ➔ _c+ c+ 
of ak+l' Since ~~+lF(ak'~+l) is true and ak n+l bk' ~~+lF(bk'~+l) 

c+ 
is true. Since g is H-bounded, we can choose bk+l ES such that F(bk+l) and 

I lbk+ll I S:H(n,k,Jlf~k{ I lbil In. But F(bk+l) implies bk+l ii 1k+l' □ 

Lemma 6: 
➔ ➔ k ➔ ➔ 

Let n,kE N and ak,bk ES • Then ak tiFl bk ~ 

1) For each ak+l ES there exists some bk+l ES such ➔ 
that ak+l 

-::-+ 

ii 0k+l' 
➔ ➔ 

and 2) For each bk+l ES there exists some ak+l ES such that ak+l ii bk+l' 

Proof: Immediate from Lemmas 1 and 5. □ 

➔ ➔ 
Lemma l= Let n,k EN. Then there exists a formula Fn,k(~,yk) with exactly 

➔➔ k ➔➔ ➔ ➔ 
6n quantifiers such that for all ak' bk ES , Fn,k(ak' bk) ~ ak ii bk. 

Proof: The Lemma is clearly true if n=O. So assume it is true for n; 

we will prove it for n+l. By Lemma 6, we can define Fn+l k as follows: 
' 

V~+l~Yk+l\fyk+l~~+lifxVy( [ (x=~+l /\ y=yk+l) V (x=~+l /\ y=yk+l)] ➔ 
➔ ➔ 

Fn,k+l(~,x,yk,y) ), 

Fn+l,k clearly has 6 more quantifiers than Fn,k+l' □ 
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* * * * * * Definition: Define the structure 3 =<S ,R
1

,R
2

, •.. ,R,e,,e >: 

s"''=(f:N ➔ S I f(i) :/-e for only finitely many iEN}; 

➔ * t, 
for 1 :5: j :5: ,e,, if f E (S ) J, ➔ ·k 1 

then f ER. iff (i) ER. for all i EN 
tj tj J tj J 

(where 1 (i) abbreviates (f1 (i),f
2
(i), ••• ,ft. (i)) ); 

tj J 
* * e (i)=e for all iEN. (That is, 3 is the weak direct product of g with 

itself.) 

* * For a norm on g we define, for f ES , 

11 fl l=Max( (iEN I f(i) :/- e}U[ 11 f(i) 11 I iEN} } • By f_sm we will mean 

I I fl I :5:m. 

Definition: Define the function µ,:if ➔ N by setting µ,(O,k)=l and 

µ,(rrl-1,k)=M(n,k+l)•µ,(n,k+l) • 

• ,. 3 , ... 
Definition: Define H": N ➔ N by H '(n, k,m)=Max(H(n, k,m) ,m + µ, (m-1, k), 11 e 11}. 

The major theorem of this section will be 

Theorem 1: g * is H,., -bounded. 

Definition: Let A and B be sets, let nE N. Then A~ B iff either 
n 

1) card(A)=card(B) (where card abbreviates cardinality) 

or 2) card(A) ~ n and card(B) ~ n. 

Clearly~ is an equivalence relation on the class of sets. 
n 

We now prove a combinatorial lemma: 

Lemma .§_: Let N1 and N
2 

be sets and let n,m EN such that n :/- 0 and N1 n':m N2 . 

Let A1 ,A
2

, •.. ,An be a sequence of (possibly empty) pairwise disjoint 
n 

subsets of N1 such that i,A Ai= N1 • 

Then there exists a sequence B
1

,B
2

, ..• ,Bn of pairwise disjoint subsets 

n 
of N2 such that iJi Bi =N2 and such that Ai i Bi for 1 :5: i :5: n. 
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Proof: If card(N1)=card(N
2

) then the Lennna is obvious. So assume 

card(N1) :2: n•m and card(N
2

) z n•m • For some i, 1 s: is: n, we must have 

card(Ai):.:: m, so assume without loss of generality that card(A1):.:: m. 

Define numbers p
2

,p
3

, •.. ,Pn EN by 

Seard (A.) if card (A.) < m 
p. = 1 1 for 2 s: i s: n. 

1 (_ m if card (A. ) :2: m 
l_ 

n 
Clearly i.§

2 
pi :s: (n-l)•m. Since card(N2 ):.:: n•m , there exists a sequence 

of pairwise disjoint subsets of N
2

, namely B
2

,B
3

, ••• ,Bn, such that 

n 
card(Bi)=pi for 2:s:i:s:n. So Ai i Bi for 2::;;is:n. Let B1=N2- iJ2 Bi 

n 
card(N2 ):.:: n•m and card(iJ

2 
Bi) s: n•m - m , so card(B

1
) :2:m. Since card(A1) 2 m, 

Definition: Let 

➔ k 
for a 11 ak E S , 

1 ➔ *k f ➔ 
n,kE N and k'gk E (S ) . Then we say k En gk 

(i EN i 1k(i) ii 1k) µ(~,k) (i EN I gk(i) ~ 1k} • 

iff 

~'< k 
Remark: E is an equivalence relation on (S) . We will show that if 

n 

1k En gk and if F(;) has q-depth :s: n, then F(1k) and F(gk) are either both 

true or both false in g*. 

1 ➔ ~'<k 1 ➔ ➔ 
Lemma 9: For all k EN and k'gk E(S ) , if k EOgk and if F(~) is a 

1 * quantifier free formula (q-depth(F)=O), then F( k) is true in g if and 

➔ * only if F(gk) is true in g . 

Proof: Clearly it is sufficient to prove the Lennna for the case where F 

➔ 
is atomic. So say that fk E

0 
➔ ➔ 
gk and F(~) is an atomic formula. By 

symmetry, it is sufficient to show that 

➔ * So assume that F(fk) is false in g 

➔ * ➔ F( fk) false in g ~ F (gk) * false in g . 

By definition of the relations 
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of g'"' we can choose i
0 

EN such that F(1k(i
0

)) is false in 8. Since 

1k E0 gk' (i EN J 1k(i) 5 1k(i0 )1 µ(O,k) (i EN I gk(i) 5 1k(i0)}. 

Since µ(O,k)=l, we have card([i EN I ik(i) 5 1k(i
0

)});;;: 1. So let i 1 EN 

be such that gk(i 1) U 1k(i
0
). By definition of U, 

F(1k(i
0

)) false in g ~ F(gk(i
1
)) false in 8. So F(gk) is false in g''". □ 

1 ➔ ,, k 1 ➔ 
Lemma 10: Let n,k EN and k'gk E (S ) such that k En+l gk. Then 

* * for each fk+l ES there exists some gk+l ES such that 

➔ ➔ 

l) fk+l En gk+l 

and 2) I jgk+ll I sH'\n,k, Max ( J jg. j j}). 
lSiSk 1. 

1 ➔ >'<k 1 ➔ II II Proof:Let k'gk E (S ) be such that k En+l gk. Let m=Jf;2k( gi 1 and 

* ➔l -::+2 -=+M(n, k+l) 
let fk+l ES . Let bk+l' bk+2 , ••• , bk+l be a sequence of representa-

. f 11 h . 1 1 Sk+l t1.ves o a t e = equ1.va ence c asses on • 
n 

Our goal is to find 

* gk+l ES such that if ls j SM(n,k+l), then 

( i E N I fk+ 1 ( i) ii bl+ 1} µ ( n;i'<+ 1) ( i E N j ~k+ 1 ( i) ii bl+ 1} ; we a 1 so want 

11 gk+ll I s H,'< (n,k,m). Instead of defining gk+l simultaneously on all of N, 

we will define it separately on various pieces of N. 

➔ k . ➔ • jf . ➔ For each ak ES define N1 (ak)=( 1. EN k(1.) rJ.i ak} and 

➔ I ➔ ➔ N2 (ak) =( i EN gk (i) rif.l ak}. We claim it is sufficient to define gk+l 

➔ 
on each N2 (ak) such that 

I) (iEN1C1k) I 1k+l(i) ii bt+1} µ(n~+l) (iEN2C1k) I 8k+l(i) ii bl+1J 

for all j, 1 s j s M(n,k+l). 

➔ 
II) If i E N2 (ak) and i >m+µ(n+l,k), then gk+l (i)=e. 

and III) If i E N2 (1k) and is m+µ(n+l,k), then j j gk+l (i) j j s H(n,k,m). 

* * An examination of the definitions of H and the norm on S will show 
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that II) and III) together imply I/ gk+ll I :S: H* (n,k,m). Since 

➔ I ➔ k ➔ I ➔ k {N1 (ak) ak ES } and {N2 (ak) ak ES } are each a collection of disjoint sets, 

it is easy to see from I) and the definition of µ(n;l'<+l) that if 

1:S:jsM(n,k+l) then 

(1k~sk { i E Nl (tk) I 1k+l (i) ii bt+1J )µ (n;l'<+l) C;;tk~sk { i E N2 cik) I tk+l (i) 

1 .,... ➔ ➔• 

i.e.' ( i EN I k+l (i) ii 0l+1} µ, (n;l'<+l) { i EN I gk+l (i) ii bt+1J · 

➔ k . 
So now let ak ES be fixed for the rest of this proof. Abbreviate 

➔ ➔ 
N1 (ak) by N1 and N2 (ak) by N2 • Begin by defining gk+l (i)=e if i E N2 and 

i >m+µ(nt-1,k); this guarentees II) above. It remains to define gk+l 

on N
3
={iEN

2 
/ i:S:m+µ(nt-1,k)}. 

The definition of Entl implies that N1 µ(n+l,k) N2 • We wish however 

to demonstrate that N1 µ(i-Jl,k) N3 : 

infinite set, and card(N
3

) 2'. µ(nt-1,k) since gk(i)=(e,e, .•• ,e) for 

~ 
m < i :S: m + µ ( nt 1, k) ; if 1k nf. l ( e , e, .•• , e). , 

~ 

1 ➔' 

Define, for l :S: j :S: M(n,k+l), Aj=( i E N1 I k+l (i) ii b~+l}. 

A1 ,A2 , ••• ,¾(n,k+l) form a sequence of pairwise disjoint sets whose union 

is N1 . Since N1 µ(n+l,k) N3 and µ(ntl,k)=M(n,k+l)•µ(n,k+l), Lemma 8 

tells us there exists a sequence B1 ,B2 , ••. ,BM(n,k+l) of pairwise disjoint 

subsets of N3 whose union is N3 such that Aj µ(n;l'<+l) Bj if l:S:j :S:M(n,k+l). 

Now let i E N
3

; we want to define gk+l on i. Let j be such that 

i E Bj" Since Bj f¢, Aj f ¢. So let i 0 EAj. Since i
0 

E N1 and i E N2 , we 
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have 1k(i0 ) rJ.i 1k rJ.i gk(i). By Lemma 5 we can define gk+l(i) such 

that 1k+l(i0 ) ii gk+l(i) and 

/ /gk+l(i)/ I ~H(n,k,Max(/ /g 1 (i)/ / ,//g2 (i)I I , •.• ,I lgk(i)I /}) ~H(n,k,m). 

1 -:+. 
Clearly III) above holds. Since i 0 E Aj, k+l (i0 ) ii bl+i · So 

➔ (.) - -:+bj 
gk+l 1 n k+l · 

We have 

➔ -:+. 1 -:+. 
(iEN3 I gk+l(i) ii bl+1}=Bj µ(n;1+1) Aj=(iENl I k+l(i) ii bl+1} for 

1 ~ j ~ M(n,k+l). To complete the proof of Lemma 10 we must show I), 

➔ ➔-

i.e., ( i E N2 / gk+l (i) ii b~+lJ µ (n;l<.+l) Aj when 1 ~ j ~ M(n, k+l). 

So fix j, l~j~M(n,k+l). If 

➔ -:+. ➔ -:+. 
( i E N2 / gk+l (i) ii ol+iJ = { i E N3 / gk+l (i) ii ol+iJ we are done, so assume 

{ i E N2 I gk+l (i) ii bl+iJ -:) { i E N3 / gk+l (i) ii bt+i}. Since 

N
3
={iEN2 / i~m+µ(n+-1,k)}, there must exist some i>m+µ(n+-1,k) such 

➔ • - ➔ ➔ • - -:+j 
that i E N2 (hence gk(i) n+l ak) and gk+l (1) ~ bk+l· But since i >m+µ(n+l,k) 

➔ ➔ 
implies gk+l(i)=(e,e,•..:.,_•,eJ, this means that ak rJ.i (e,e, •.• ,e) and 

Teng th le+ 1 lengthlc 
➔j 

bk+ 1 n ~. 
length k+l 

Hence , both A. and 
J 

➔ ➔ * k ➔ Lemma 11: Let tk,gk E (S ) and let F(~) be a formula of q-depth ~ n. 

If fk En gk' then F(fk) is true in g* ~ F(gk) is true in g*_ 

Proof (by induction on n): If n=0 then Lemma 11 follows from Lemma 9. 

So assume Lemma 11 true for n (and all k); we will prove it for n+-1. 

1 ➔ *k f ➔ 
Let k'gk E (S ) such that k En+l gk. By Lemma 10 (1), we have 
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* ➔ * 1k+l a) For each fk+l ES there exists some gk+l ES such that E n gk+l· 

* 
·k ➔ 

and b) For each gk+l ES there exists some fk+l ES such that 1k+l 
E n gk+l" 

By the induction hypothesis, 1k+l En gk+l implies that fk+l and 
➔ • f gk+l sat1.s y 

* same depth n formulas in g . We can therefore prove, exactly as in Lemma 1, 

that a) and b) together imply that fk and ~k satisfy the same depth n+l 

formulas. D 

* ')'( 
Theorem 1: g is H -bounded. 

➔ ~ *k Proof: Let F(~+l) be a formula of q-depth $; n and let tk E (S ) be such 

that 3:~+lF(fk'~+l) is true in g*_ Let fk+l Es''( be such that F(fk+l) 

is true. Since fk En+l fk, Lemma 10 implies that for some fk+l Es''(, 

1k+l En (fk, fk+l) and 11 fk+ll I $; H* (n,k, Jr~k{ I I fi 11}). rt is sufficient 

now to show that F(fk,fk+l) is true. But this is obvious from Lemma 11, 

since F(1k+l) is true and fk+l En c1k, fk+l) and q-depth(F) $; n. 11 

* Remarks: The complexity of g is related to the complexities of M(n,k) 

and g as follows: 

Theorem 2: If the theory of g is elementary recursive and M(n,k) is 

bounded above by an elementary recursive function, then the theory of 
7( 

g is elementary recursive. 

Theorem 2 follows either from a generalization of the results of 

this section or from a careful examination of Mostowski's decision 
.. k 

procedure for g [ 9] ; a proof will not be given here. It is interest-

ing to note that in all cases we know of where the theory of g is 

the 
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proven to be elementary recursive, the proof essentially consists of 

giving an Ehrenfeucht game [ 3 ] decision procedure, which in turn shows 

that M(n,k) is elementary recursive. This suggests the following 

conjecture. 

Conjecture 1: If the theory of g is elementary recursive, then M(n,k) 

is bounded above by an elementary recursive function. 

The converses of both Theorem 2 and Conjecture l are fase, as we 

will now indicate by an example. Let our language l consist of two 

relations, x1=x2 and x1 ~x
2 

(x1 equivalent to x
2
), and the constant 

symbol O. For every nonempty set A of integers greater than 1, let~ 

be an equivalence relation on N such that for every integer i 

1) If i EA then there is exactly one 7r. equivalence class of size i. 

and 2) If i !/. A then there are no 7r. equivalence classes of size i. 

Define the structure gA=< N,=,7r.,O>. 

Since for any integer i we can say in S, that there exists an 

equivalence class of size i, by varying A we can make the theory of 

gA arbitrarily hard to decide or arbitrarily nonrecursive. But it is 

easy to see that g: is merely an infinite collection of infinite 

equivalence classes and hence has a simple theory; in fact, the theory 
j'( 

of gA can be decided in polynomial space. So the converse of Theorem 2 

is false. 

Now let A be a fixed set of positive integers and consider M(n,k) 

for gA; we will show that (no matter what A is) M(n,k) is bounded above 

by an elementary recursive function, contradicting the converse of 

Conjecture 1. 
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➔ ➔ k 
For each ak, bk E w- define iff for all i,j such that 

I) a i 7r O ¢:) bi 7r O , and a i =O ¢:) bi =0 . 

II) a 1.· ::.,; a . ¢:) b . ::.,; b . , and a . =a . ¢:) b . = b .. 
A J l.A j 1. J 1. J 

and I I I ) { a E N I a ::.,; a . } ~ { b E N I b ::.,; b . } . 
Al.n Al. 

➔ 'b ➔ ➔ 
It is not difficult to show that ak R ⇒ ak = b . Since the 

n k n k 

number of R equivalence classes on rJ< is bounded above by an elementary 
n 

recursive function (of n and k), so is M(n,k) for g A" 

Remark: Although we have onlydealt here with the weak direct product 

of g with itself, a similar development can be carried out for the 

strong direct product of g with itself. 
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Section 3: Some Applications 

Let £1 be the language of the first order predicate calculus with 

the predicates x 1 s x2 and x 1+x
2

=x
3

, and the constant symbol 0. Let 

Z be the set of integers and let I be the structure < z,s,+,O >. Let 

* * Z =(f:N ➔ Z J f(i)fO for only finitely many iEN} and let I be the 

* ,'( 
structure < Z ,s,+,O > where s and + are defined component-wise and 

0 is the identically O function. For a E Z let the norm of a 

be lal, the absolute value of a. For f E Z let the norm of f, written 

11 fJ I, be Max( ( I f(i) J Ii EN} U ( i EN I f(i) f O} } as in section 2. By 

a~m and f~m we will mean Jal sm and 11 fl Ism, respectively. 

➔ k 
Lemma 12: There is a constant c such that for all n, k EN and all ak E Z 

➔ 
and all formulas F(~+l) of £1 with no more than n quantifiers, if 

i~+1F(1k''1c+l) is true in I, then 

is true in I. 

Proof: See Ferrante and Rackoff [4]. D 

Lemma 13: There is a constant c such that I is H-bounded where 
0 

2co(n+k) 

H(n,k,m)=(l +m) • 2 
2 

Proof: Let n,k EN and ik E Zk and F(~+l) be a formula of .£1 such that 

a~+l F(1k,~+l) is true in I and q-depth(F) s n. Let m= Jf~k( I ai I}. 

➔ ➔ 
By Lemma 7, let Fn,k+l<~+l'Yk+l) be a formula with exactly 6n 

quantifiers which defines the relation~ on zk+l. Let G(~,x) be the 

formula V¾:+la~+l (F n k+l (~k'~+l'~''\:+l) /\ -x s ~+ls x). 
' 
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Clearly G has 6n+2 quantifiers and 3:xG(~k,x) is true (in I). By 

➔ 
Lemma 12 we can find a E Z such that G(ak,a) is true and 

!al$ (l+m)•2
2 2

c(6n+2+k) 

➔ ➔ 
Now let ak+l E Z be such that F(ak+l) is true. Since G(ak,a) is 

I ➔ - (➔ I ) true, we can find ak+l E Z such tl:B t ak+l ~ ak' ak+l and 

2c(6n+2+k) 2c 0 (n+k) 

I ak+l J $ ( 1 + m) • i s (1 + m) • 2
2 

for some constant c 
0 

(unless n=k=O, a trivial case). 
➔ 

Since F(ak+l) holds and q-depth(F) $ n, 

Theorem l= For some constant c 1 , the theory of I can be decided in 

c 1n 
space 2

2 
(as a function of the length of sentences). 

Proof: Let F be a sentence of £1 which in prenex normal form is 

➔ 
Q1 x1 Q2x2 ••. Qnxn G(xn) where G is quantifier free. Let 

2con+i 

m. =2
2 

for 1 $ i $ n. Applying Lemma 3 to I, we see that since 1. 

m.2".H(n-i,i-1, Max rim.I}) for l$i$n, Fis equivalent to 
1. l$j<i J 

(Qlxl ~ml) (Q2x2~ m2) · · · (Qnxn~ mn) G(;tn) · 

F can be decided in I by setting aside for quantifier Q., 
. 1. 

. 2c n+1. 
2con+1. 2 o 

2 + 2 tape squares; every integer $2 in absolute value 

can be written in this space in binary. Then decide F by cycling 

through each quantifier space appropriately, all the time testing the 

truth of G on different n-tuples of integers. We let the reader convince 

himself that a Turing machine implementing this outlined procedure need 
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c 1n 
use only 2

2 
tape squares for some constant c 1• ■ 

* Lemma 14: For some constant c 2 , I 

Proof: We first calculate bounds for the function M(n,k). Letting 

2c0 (n+k)+i 
2 

m.=2 
1 

for l:S;is;;k, we see that m. ~H(n+k-i,i-1, Max rim.I}) for 
1 ls;i<j J 

➔ k 
So by I ermna 4, for each ak E Z there is some 

Hence 

for some constant c
3

. 

So for some constant c 2 , H (n,k,m)=Max[H(n,k,m),m+µ,(n+l,k),O} s; 

c
2 

(n+k) 
?< 22 

By Theorem 1, I is ( 1 + m) • 2 -bounded. □ 

Theorem 4: The theory of I 

c
4

n 
i 

can be decided in space 2 for some 

constant c
4

. 

Proof: Let Fin prenex normal form be the sentence 

?'( 

relevant to Z we see, exactly as in Theorem 3, that Fis equivalent 

in I to 

Now if f E Z 

c
2
n+i 

i 
and f::S. 2 

➔ 
) G (x ). 

n 

2c2n+i 

, then f ( j ) =0 for j > i and 
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c
2
n+i 

for all j EN, so the first 2 
z2 successive values 

off can be represented on a tape with roughly 

n+ . c
2

n+i 
c2 i 2 

(z2 +2)•z2 tape squares. So a procedure like the one out-

c4n 
··k 

lined in Theorem 3 would decide the theory of I 
z2 

in space 2 for some 

constant c4 . ■ 

'{( * 
Definition: Let '1 * be the structure <N,s;,+,0 >, i.e., the weak 

direct product of the nonnegative integers with itself. 

csn 
* 22 

Theorem 5: The theory of fL can be dee ided in space 2 for some 

constant cs· 

Proof: There exists an obvious procedure which operates in linear space 

* and takes a sentence F to a sentence F' such that Fis true in fL if and 
°I( 

only if F' is true in I . So Theorem 4 implies Theorem 5. ■ 

Our next goal is to efficiently embed the theory of finitely 

* generated abelian groups into the theory of I . Recall that a finitely 

generated abelian group (henceforth abbreviated FGAG) can be thought 

of as a finite direct product of groups, each of which is either Zora 

finite eye lie group [ 6 ] . Let Z. denote the cyclic group (0,1, ... ,i-l} 
l. 

where addition is performed modi. The basic idea of the embedding is 

* to think of every nonzero f E Z as representing a FGAG, Gf. This is 

made precise in the following definition. 
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* * Definition: Let f E Z , ff. 0 . Define i,f=card[ i EN I f(i) f. O}. Define 

mf:[1,2, ... ,i,f} ➔ N by mf(j)=the /h smallest member of [iENI f(i) f.O} 

Define the FGAG where 

Clearly every FGAG is isomorphic to Gf for some fE z''•, ff.a''•. 

·!( °1( 
Definition: Let f,g E Z , ff. 0 , such that for all i EN 

a)f(i)=O ~ g(i)=O 

and b)f(i) >0 ⇒ 0:5:g(i) <f(i). 

Then we say that & represents~ member of Q_f. In particular, g 

represents <g(mf(l)),g(mf(2)), ... ,g(mf(i,f)) > which can be verified to 

be a member of Gf. Clearly every member of Gf is represented by a 

>'< 
unique g E Z . 

We now informally define some formulas of i
1 

to be interpreted over 

>'< 
I . 

1) ONE(x). ONE(f) will mean that for some i EN, f(i)=l and for every 

j f. i, f(j)=O. Define ONE(x) as follows: 

x:::: 0 /\ x f. 0 /\ Vx' ( (0:;;; x' /\ x' :;;; x) ➔ (x' =0 V x' =x) ) . 

2) NPOZ(x1 ,x
2
). NPOZ(f 1 ,f

2
) will mean ONE(f

1
) and 

f
1 
(i)=l ⇒ f

2
(i):;;; 0. Define NPOZ(x

1
,x

2
) as follows: 

ONE(x
1

) /\ 3:x
3 

(x
3

::?: 0 /\ x
3 

+ x
2

::?: 0 /\,---,(x
1

:;;; x
3 

+ x
2

) ) • 
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Define ZERO(x1,x2) as follows: 

NPOZ(x1,x2) A NPOZ(x1 ,-x2). 

4) PICK(x
1
,x

2
,x

3
). PICK(f

1
,f

2
,f

3
) will mean ONE(f

1
), and 

f 1 (i)=0 ⇒ f
2

(i)=0, and f
1
(i)=l ⇒ f

2
(i)=f

3
(i). Define PICK(x1,x

2
,x

3
) 

as follows: 

5) MEM(x1,x
2
). MEM(f

1
, f

2
) will mean f

1
-/- o''' and f

2 
represents a member 

of Gf . Define MEM(x1,x2) as follows: 
1 

x
1

-/-0 A VxVxi Vx2( (PICK(x,xi,x
1

) A PICK(x,x2,x
2
)) ➔ 

( (x1=0 ➔ x2=0) A [(xi~ 0 A xi/. 0) ➔ (0 $ x2 $ x1 A x2-/- xi)]) ) . 

represent members of Gr and the member represented by f4 is the sum in 
1 

Gf
1 

of the members represented by f
2 

and f
3

. Define PLUS(x
1
,x

2
,x

3
,x4 ) 

as follows: 

MEM(x
1
,x

2
) A MEM(x

1
,x

3
) A MEM(x

1
,x

4
) A VxVxi Vx2 Vx3 Vx4 ( 

[PICK(x,xi,x1) A PICK(x,x2,x2) A PICK(x,x3,x
3

) A PICK(x,x4,x4)] ➔ 

[x2 +x3=x4 V (x?0 A x2 +x3 -xi=x4)] ) . 

Theorem 6: The first order theory of FGAG can be decided in space 

2
cn 

2
2 

for some constant c. 

,'( 

Proof: Using the formulas MEM and PLUS and the fact that f E Z represents 

* a FGAG if and only if f-/-0, we obtain a procedure which operates in 

linear space and which takes a sentence F of the language of groups 
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to a sentence F' of t 1 such that Fis true of all FGAG if and only if 

·k 
F' is true in I. Applying Theorem 4, we arrive at Theorem 6. Iii 

Theorem l: The first order theory of finite abelian groups (abbreviated 

FAG) can be decided in space 

2cn 

i2 for some constant c. 

Proof: Recall that a FAG can be thought of as a finite direct product 

of cyclic groups [ 6]. Hence, using MEM and PLUS we can do exactly the 

* same embedding as in Theorem 6 except that now f E Z represents a FAG 
.. \- ... , ... 

if and only if f /: o' and f;;::: o". ■ 

Acknowledgments: I'd like to thank Albert Meyer for his numerous helpful 

suggestions about the content and format of this paper. 
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